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“Qu’est-ce au juste qu’une montagne? En donner quelque définition simple
- l’ensemble des terres méditerranéennes au-dessus de 500 mètres par exemple
- inutile précision. C’est de limites humaines, incertaines, malaisées à reporter
sur la carte, qu’il doit être question"

Fernand Braudel (La Méditerranée et le monde méditteranéen à l’époque de
Philippe II - La part du milieu, 1966; pp. 34)

“Quand on écrit un roman, on est Dieu le Père, parce qu’on crée le destin
(...). Quand vous faites un film, vous êtes roi, parce que le destin est déjà là :
il y a un scénario et vous ne pouvez pas vous égarer (...). Et quand vous êtes
un documentariste, vous êtes un humble esclave qui marche derrière et ramasse
les traces qu’ils ont laissées derrière eux."

Pierre Schoendoerffer (entretien à Marianne, 26 février 2007)





Part I

Introduction and state-of-the-art
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General introduction

1.1 Research focus and motivations

Cities are a complex phenomenon, involving a large variety of demographic,
economic, and environmental processes. Nowadays, they also accommodate
most human beings. The world’s urban population surpassed the rural popu-
lation around 2005 (UN, 2014), and continues to grow since reaching 75% in
the European Union (EEA, 2013). There is, therefore, a need to understand
how cities function, not only to reduce the social or environmental impact of
sub urbanisation (see e.g. Kahn, 2000; Glaeser and Kahn, 2003; and Glaeser
and Kahn, 2008), but simply because it is where most people live. As other
research topics of social and human sciences, metropolitan areas cannot, how-
ever, be studied through direct experiments. Hence, studying cities has always
led to the development of "virtual laboratories", i.e. theoretical and empirical
models. Let us simply cite the three classical descriptive model of urban geo-
graphy: the concentric zone model of Burgess (1925), the sector theory of Hoyt
(1939) and Hoyt (1965), and the multiple nuclei model of Harris and Ullman
(1945); or two of the most famous urban economics models, the urban bid-rent
model of Alonso (1964) and the equilibrium non-mono centric model of Fujita
and Ogawa (1982).

All of these models were initially one-dimensional or assuming a featureless
isotropic landscape. Although it makes sense in explanative models studying
the structure of cities resulting from the influence of one or a few processes, this



1. General introduction

is obviously not the case for predictive model forecasting the future land use
pattern of metropolitan areas. This latter category encompasses two frame-
works: Cellular Automata (CA, see White and Engelen, 1993; Batty, 2005;
White et al., 2015) and Land Use and Transport Interactions (LUTI) models
(see Wegener, 2004; Hunt et al., 2005).

A reasonably realistic representation of space is expected from these mod-
els, as well as an assessment of their sensitivity to the Modifiable Areal Unit
Problem (MAUP), i.e. to the fact that identical individual data yield different
statistical results when aggregated in varying ways. Such works can be found
for CA models, showing an influence of the size of the pixels on the predicted
land use pattern (e.g. Jenerette and Wu, 2001; Jantz and Goetz, 2005; Menard
and Marceau, 2005; or Kocabas and Dragicevic, 2006). Different studies also
exist for aggregated (four-stage) transport models, studying the variations of
the forecasted trips’ length and frequency induced by changes in the size or
shape of the traffic analysis zones (e.g. Chang et al., 2002; Zhang and Kuka-
dia, 2005; and Viegas et al., 2009). On the contrary, for LUTI models, no
comparable sensitivity analysis could be found.

This thesis focuses on this later gap, and more precisely on the land use side
of dynamic LUTI models which constitute state-of-the-art modelling in that
field. We will examine both the sensitivity to spatial bias of the econometric
methods used to forecast the evolution of the study area (the behaviour of the
model) and of the final situation predicted (the outputs). This spatial bias is
induced by the two main spatial choices that modellers face when using a LUTI
model, the spatial extent and the spatial resolution. Our general objective is
the following:

General objective Assess the sensitivity of the behaviour and outputs of LUTI
models to the variations of either the spatial extent or the spatial resolution of
the model.

The spatial extent refers here to the choice of the boundaries of the study
area. It relates to the challenge of identifying the limit between urban and
rural areas, that do not correspond anymore to a straight line but (as the
Mediterranean mountains described by Braudel) to a fuzzy area determined
by human activities (Cavailhès et al., 2004; Caruso et al., 2007). The spatial
resolution is more technical. It designates the size of the minimal areal units
existing in the model. For various practical reasons, most LUTI models remain
spatially aggregated and the size of the areal units chosen as zoning system
may thus influence the model system.

The relevance of this research derives from the importance of LUTI models
in land-use planning and policy evaluation. LUTI models have enjoyed a grow-
ing interest since the beginning of the 1990s, for both scientists and planners,
thanks to their ability to forecast future urban pattern and to assess the influ-
ence of environmental policies (Rodrigue et al., 2009). Operational applications
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of such models originally appeared in the US (Rosenbaum and Koenig, 1997;
Bartholomew, 2007) Nowadays, several different LUTI models exist (see Hunt
et al., 2005; Simmonds et al., 2013; or Wegener, 2014), that have been applied
on numerous case studies, especially in the US and in Europe. For instance,
the recent EU-funded project SustainCity (2009 – 2013) aimed to develop op-
erational applications of a micro-simulation LUTI model for Brussels, Paris,
and Zürich (see Bierlaire et al., 2015). LUTI models are even widely used for
policy evaluation (see Badoe and Miller, 2000; Geurs and van Wee, 2004; and
Bartholomew, 2007 for reviews). In the US, it is mandatory for metropolitan
planning organisation to take into account the feedback effect of transport on
land-use when applying for federal funding for transportation infrastructure
improvements (Dowling, 2005; Waddell, 2011). They have, therefore, to rely
on LUTI models as modelling framework when assessing the potential influence
of such projects.

Our intention, in this thesis, is to demonstrate the importance of spatial
choices for the robustness and goodness-of-fit of operational applications of
LUTI models. The precise definitions of LUTI models, spatial extent, and res-
olution are given in section 1.2. Section 1.3 describes the main methodological
choices and the outline of the thesis.

1.2 Terminology

1.2.1 Land-use and transport interaction model
The term "LUTI model" encompasses a large variety of frameworks (see chapter
2). The key factors, nevertheless, emerge clearly. For Wegener and Furst,
1999a, LUTI models must be integrated and operational. In a nearly identical
way, Hunt et al. (2005) consider that such models have to be integrated, com-
prehensive, and operational. These three components mean that the model
should (a) explicitly represent the links from transport to land use, and vice-
versa. It should also (b) account for a complete range of spatial processes,
especially the evolution of land use, through modelling the location choices of
households and employment (comprehensiveness). Finally, (c) at least one ap-
plication for policy analysis on a metropolitan region should exist. In a similar
way, according to Wegener (2014), LUTI models " explicitly model the two-
way interaction between land use and transport to forecast the likely impacts
of land-use policies (...) [or] transport infrastructure investments (...), for de-
cision support in urban planning. That excludes transport models per se, which
predict traffic patterns (...) and land-use models change models that predict
likely land-use changes (...), as well as models that deal only with one urban
subsystem, such has housing or business location" (Wegener, 2014; pp. 38).

Therefore, LUTI models have to represent agents (at least households and
employment) in some way (either by simple totals per zone or by a fully disag-
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1. General introduction

gregated representation), which excludes from the scope of LUTI models Cel-
lular Automata where land use is only accounted for by a condition (e.g. rural
versus urban). Two consequences emerge from this representation of agents.
First, LUTI models generally rely on a zoning system composed of areal units
of irregular size and shape (statistical or administrative units rather than grid
cells). Secondly, LUTI models use econometric methods to predict the evolu-
tion of the quantity of agent in each zone (rather than on transition rules to
predict changes of the state of the pixels as in a CA model). Finally, LUTI
models are applied models, attempting to predict the future structure of the
city rather than understanding the demographic or economic processes lead-
ing to this structure. Hence, to specify our framework, the definition of LUTI
model that will be used in this thesis is the following:

Definition 1 A land-use and transport interaction model (LUTI) is an applied
model aiming at forecasting the evolution of a metropolitan area. It has to (a)
integrate explicitly the two-way interactions between land-use and transport,
(b) to implement a comprehensive set of spatial processes, including at least
the evolution of land use and the location choices of both households and em-
ployment, and (c) to allow operational uses for policy evaluation. The zoning
system consists in a set of areal units able to accommodate various activities
(i.e. not defined by a particular condition as in CA model). LUTI models fore-
cast the level of activities in each zone through time by using a sequence of sub
models mainly based on econometric methods.

Note that we will make a distinction between how a LUTI model works
and the results that it produces. In this thesis, the behaviour of a LUTI model
will designate the set of (econometric) methods by which it will forecast the
evolution of the study area. This behaviour is specific to each LUTI model,
although common features can be identified (see chapter 2). The output of
a LUTI model is the situation predicted at the end of the simulation period.
Its nature (e.g. number of inhabitants and jobs per municipality) may vary
depending on the LUTI model used.

1.2.2 Spatial bias
Spatial bias is understood here as any modification in the representation of
space that may affect either the behaviour or the outputs of a LUTI model.
The conceptual background of these spatial bias are detailed in chapter 2. As
indicated in section 1.1, we will focus here on two spatial choices made by the
modellers.

Definition 2 The spatial extent designates the size and composition of the
study area on which a LUTI model is applied. The process by which a change
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in this spatial extent will - or will not - influence the behaviour and outputs of
the model is referred to as the boundary effect.

Definition 3 The spatial resolution defines the zoning system used by a LUTI
model, i.e. the size and shape of its basic spatial units. The potential sensitivity
of the model to a change of its spatial resolution is called the scale effect.

Note that the terms areal units and Basic Spatial Units (from now on BSU),
although similar, convey different meaning. Basic Spatial Units (abbreviated
BSU) will strictly be used here to designate the minimal spatial units existing
in a LUTI model, i.e. its spatial resolution. The term areal units is to be
understood in a broader sense as the result of a given zoning system, i.e. of
a particular partition of space. The areal units for which a given variable is
available can, for instance, be different from the BSU used in the model.

1.3 Methodological choices and outline of the thesis

Methodological choices have to be made to reduce our research questions to
a feasible and consistent experiment plan, i.e. a sequence of analysis allowing
an answer as complete as possible of our general objective while respecting
the limited time available, as described by the outline of the thesis. Many of
them emerged during the analyses. Hence, this section intends to present in an
orderly fashion the "meta-choices" defining (1) which analyses will be conducted
in the following chapters, and (2) why they were designed in that particular
way.

1.3.1 Context of the thesis
The SustainCity project

This thesis was partially conducted under the framework of the EU-funded
SustainCity project (2009 - 2013). The UCLouvain contributed to two of its
work packages. The main task was to study the influence of spatial bias in
LUTI models, which has led to this thesis. The second task was to help the
development of the Brussels case study. For this latter task, the UCLouvain
team has been responsible for the collection and processing of all data related
to land use in this specific case. Note that the remaining data processing steps
(especially the generation of the synthetic population) and the calibration of the
model were under the responsibility of other stakeholders of the project. The
SustainCity project constrained several methodological choices, in particular,
the LUTI platform used. In this thesis, the zone version of the UrbanSim model
(OPUS v 4.3) will be used in conjunction with MATsim as a representative
LUTI model system.
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The UrbanSim model only forecasts the evolution of land use (see chapter
2). The transport dimension is added by coupling it to an external transport
model, hereMATsim. As indicated, their use was determined in the SustainCity
project proposal, but several reasons make the use of UrbanSim relevant. First,
it is a disaggregated model with an individual representation of agents, and its
internal principles are similar, although somewhat simpler, to those of other
state-of-the-art LUTI models (e.g. IRPUD, Delta, and PECAS; see chapter
2 and chapter 4). In particular, UrbanSim relies on regression methods and
discrete choice models to forecast, respectively, the evolution of real estate
prices and agents’ location choices. It would not have been possible to assess the
sensitivity of different LUTI models to spatial bias in this thesis. Nevertheless,
this focus on UrbanSim remains one of our main methodological weaknesses,
and its implications will be discussed in chapter 7. Secondly, from a practical
point-of-view, UrbanSim is a free and open-source software, and no acquisition
or consultancy fees are therefore required for its use. The source code being
public, no "black box" problem should appear, allowing reproducibility of the
results. Both factors are, in theory, incentives for the use of UrbanSim. From
a user point of view, however, this resulted in a lack of detailed documentation
and technical support (limited to the online discussion forum). The learning
curve is, therefore, very slow and consists mostly in trial and error. Hence, one
often feels as if facing not a "black box" but rather a "black hole" when trying
to develop operational application of UrbanSim.

Focus on land use

This thesis focuses on the land use side of the "Land Use and Transport Interac-
tions" models. LUTI models (at least those distributed by private consultancy
companies, see chapter 2) are rarely integrated models. They constitute rather
a coupling between a land use model (e.g. UrbanSim) and a transport model
(e.g. MATsim). Classical four-step transport models (trip generation, trip dis-
tribution, mode choice, and route assignment) relied on areal units as origin
and destinations, designated as Traffic Analysis Zones or TAZ. Such models
are, obviously, sensitive to the size and shape of the TAZ, has demonstrated
by Chang et al. (2002); Zhang and Kukadia (2005); or Viegas et al. (2009).
The current state-of-the-art, however, consists in activity-based models where
individuals are the relevant level of analysis (Timmermans, 2003; Rasouli and
Timmermans, 2013).

Such micro-simulation models are able to simulate individual decisions of
travels (for multiple purposes) rather than only the number of trips between
origins and destinations. Note that even if MATsim’ internal principles are
quite different from other transport models (Nagel et al., 2008), it is also an
activity-based micro-simulation model. The coupling plug-in with UrbanSim
is, however, limited to home-to-work commuting fluxes (see chapter 5). The
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integration between UrbanSim and MATsim (partially developed during the
SustanCity project, see Nicolai and Nagel, 2015) appears, nevertheless, to be
more complete and straightforward than for other transport models (e.g. MET-
ROSIM, see de Palma et al., 2015b).

The reader interested in details on transport modelling can refer to Ax-
hausen and Gärling (1992), Bowman and Ben-Akiva (2000), de Dios OrtÃozar
and Willumsen (2011), or Lucotte and Nguyen (2013). The point, here, is that
such purely disaggregated transport model are nowadays in frequent use, in-
cluding during the SustainCity project (see Nicolai and Nagel, 2015). On the
contrary, the land use side of a LUTI model remains in most cases an aggreg-
ated one (see chapter 2). Even if individual agents are accounted for (as in
UrbanSim), the space itself is still divided into areal units. As mentioned by
section 1.1, the sensitivity of LUTI models to the size and shape of these areal
units has never been assessed. Therefore, in the remainder of this thesis, the
sensitivity analysis will be focused on this land use side of LUTI models.

1.3.2 Outline of the thesis
Part I: general introduction and state-of-the-art

This first part constitutes the theoretical background of the thesis. In the cur-
rent chapter 1, we presented the motivation and aims of the thesis. Chapter 2
will provide a detailed overview of land-use and transport interaction models,
by reviewing four successive topics: (1) the history of LUTI models’ develop-
ments, (2) the internal principles of representative and/or currently operational
LUTI models, (3) the spatial choices made in applications of these models for
land-use or transportation planning, and (4) the theoretical background of spa-
tial bias and their relevance for LUTI models.

Part II: sensitivity of LUTI models econometric’ components to
spatial bias

The aim of Part II is to improve the state-of-the-art on the sensitivity to spatial
bias of econometric methods on which LUTI models rely to predict the evolu-
tion of a metropolitan area. It requires a sensitivity analysis of the behaviour
of the model system to the spatial extent and resolution, in order to answer the
following research question:

Research question 1 Does a change in either the spatial extent or the spatial
resolution influence the behaviour of a LUTI model? And, if so, by which
mechanisms?

LUTI models in general, and UrbanSim in particular, rely on two main
econometric methods (see chapter 2): regression and discrete choice models.

9



1. General introduction

The influence of the scale effect on parameter estimates of regression methods
has been extensively studied, which is not the case for the boundary effect. For
discrete choice models, the sensitivity analyses of the scale effect are much less
extensive. Existing works do not focus on spatial bias, or use BSU larger than
those on which recent LUTI models’ applications rely (see section 2.5). Hence,
the sensitivity analysis of the behaviour of UrbanSim to spatial bias will aim at
advancing the state-of-the-art in the field of spatial bias in statistical methods,
by considering questions that are relevant for LUTI models and have not (or
poorly) been assessed in existing works.

In chapter 3, we study the sensitivity of an urban land price model, using
a regression method, to the size and composition of the study area chosen to
define the city. Chapter 4 assesses the sensitivity of DCM to the scale effect,
with a particular focus on the implications in the context of LUTI models.

This part of the thesis uses the Brussels metropolitan area as an empirical
case study. This city is a highly interesting case study to assess the influence
of cities’ delineations on econometric methods, due to its particular political
context (see chapter 3). Nevertheless, prototypes UrbanSim applications de-
veloped for Brussels (i.e. Gallay, 2010; Patterson et al., 2010; and Patterson
and Bierlaire, 2010) show that data availability is strongly limited for some
crucial components of the model system (this issue is extensively discussed in
Cabrita et al., 2015). Hence, the sensitivity analysis of UrbanSim’ economet-
ric components proposed in chapters 3 and 4 will be assessed using external
data sets, rather than the database developed for the Brussels case study of
SustainCity.

1.3.3 Part III: influence of spatial bias on LUTI models’
outputs

LUTI models are, intrinsically, applied models. Part III focuses, therefore, on
the the sensitivity of LUTI models’ outputs to spatial bias. It attempts to
explore both theoretical aspects and practical implications of the sensitivity of
LUTI models to spatial biases, to answer the following research question:

Research question 2 Does a change in either the spatial extent or the spatial
resolution influence the outputs of a LUTI model? And, if so, can it jeopardise
policy evaluation based on these outputs?

The underlying assumption is that spatial bias will only constitute an issue
for operational applications of LUTI models if the variations, induced by a
change of either the spatial extent or the spatial resolution, are larger than (a)
the inter-runs variations and (b) the variations due to the implementation of
land-use or transport scenarios. Since this issue has received no attention in
literature, until now, a complete analysis is required. It is the aim of chapter
5.

10



1.3. Methodological choices and outline of the thesis

Development of an operational application of a LUTI model on a metropol-
itan area represents a tremendous amount of work (about 3.5 years in the case
of the SustainCity project). Therefore, in chapter 5 a synthetic city is used to
explore the sensitivity of UrbanSim’ forecasts to both the boundary and scale
effect. The influence of cities’ delineation on LUTI models’ outputs will, in par-
ticular, be assessed systematically. The practical advantages of this choice are
that a synthetic case study allows defining BSUs of identical sizes (e.g. a grid)
that can easily be re-aggregated into larger BSU levels. The influence of the
size of the study area can also be examined more consistently, since the limit
of the influence area of two CBDs can be fixed by the modeller (see chapter
5). The main interest, however, is theoretical. The synthetic case study allows
defining the utility function of the agents. The set of feedbacks driving their
location choices are, therefore, perfectly known, ensuring that variations in the
outputs of the model observed between the different spatial extent or resolu-
tion are due to these spatial biases, rather than to noises resulting from the
insufficient goodness-of-fit of the model.

The last step, conducted in chapter 6 aims to assess if the forecasted feas-
ibility and/or sustainability of various land use or transport scenarios can be
affected by the spatial resolution of the model (due to time constraints, this
analysis has not been extended to the spatial extent). We rely on the Brussels
case study of the SustainCity project for this latter analysis, since a real-world
case study allowed for better estimates of the cost and revenues of the proposed
scenarios.

1.3.4 Part IV: recommendations and conclusion
Part IV concludes the thesis. Hopefully, the analysis performed in Part II
and III will provide two types of practical insights for modellers. First, the
priority that should be devoted to the spatial bias issue, compared to other
issues affecting the operational applications of LUTI models (see chapter 2).
The second desired outcome is to be able to propose "best spatial practices",
allowing reducing the sensitivity of LUTI model to spatial bias.

Therefore, chapter 7 will cover four successive aspects. (a) First, a sum-
mary of the findings of the thesis. Then, different recommendations allowing
to reduce the sensitivity of LUTI models to spatial bias will be exposed, cov-
ering (b) the "best spatial practices" and (c) the potential developments of
LUTI models’ internal principles. Finally, (d) paths for further research are
discussed, together with an alternative approach to LUTI models for land use
and transport modelling. Figure 1.1 provides a graphical outline of the thesis.
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Space in Land Use and Transport

Interactions models

2.1 Introduction

Even if the definition of Land Use and Transport Interactions models adopted
in chapter 1 is restrictive, a large number of models fit into it. Their internal
principles and development have been studied in numerous reviews (e.g. We-
gener, 1995; Southworth, 1995; Miller et al., 1998; Miller et al., 1999; Wegener,
2004; Timmermans, 2003; Dowling, 2005; Hunt et al., 2005; and Wegener,
2014). The present chapter is largely based on these previous works. It in-
tends, however, to propose an original perspective, by assessing how the space
is taken into account within LUTI models. We focus first on the two main
spatial choices that LUTI modellers face: (a) the delineation of the study area,
hereafter referred as the spatial extent of the model, and (b) the choice of the
Basic Spatial Units (BSU), i.e. the spatial resolution. Secondly, the influence
of space on the internal principles of LUTI models will also be considered. Al-
though the potential bias induced by the MAUP or the UGCoP are not new
(see section 2.5), this chapter shows that they have been largely ignored in
most applications of LUTI models (see also Thomas et al., 2015).

The chapter is divided into four successive sections. Section 2.2 presents an
history of LUTI models, describing the early spatial challenges faced by these
models and the current debates in that field. Section 2.3 introduces the in-
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ternal principles of representative or state-of-the-art LUTI models. Section 2.4
proposes a meta-analysis of space within LUTI models applications based on
two case studies: operational applications by Metropolitan Planning Organisa-
tions (MPO) in the US and applications of LUTI models in Europe published
in peer-reviewed journals. Section 2.5 presents the conceptual framework of
spatial bias and their relevance for LUTI models..

2.2 An history of space within LUTI models

The need to account for feedback effects in the land use and transport cycle
was recognised in the early sixties (Hansen, 1959). But the history of LUTI
models is made of cycles. Three waves can be identified (see Timmermans,
2003). The first operational developments (Lowry, 1964) have been criticised
at the beginning of the seventies in the famous "requiem for large scale mod-
els"by Lee (1973). Various authors (Batty, 1994; Harris, 1994; Wegener, 1994)
later argued that recent technological advances such as GIS had solved the
seven sins outlined by Lee (1973). Lee (1994) rebuffed this statement, but
LUTI models nevertheless prospered during the nineties. Note that the in-
troduction of federal regulations in the US during the nineties, constraining
Metropolitan Planning Organizations (MPO) to take into account land use ef-
fects in their long-term transportation plan (Waddell et al., 2007; Wegener,
2011a), also played a role. This was followed by a new cycle of criticisms,
focused on conceptual limitations (Timmermans, 2003) or on the poor results
produced by LUTI models (see e.g. Bartholomew, 2007; Wagner and We-
gener, 2007; Nguyen-Luong, 2008). It does not seem that these criticisms lead
to more usable models, but rather accelerated the development of dynamic
micro-simulation models (Wegener, 2011a; Simmonds et al., 2013; Wegener,
2014). Nowadays, forty years after Lee (1973) seminal paper, the debate is still
ongoing (see te Brömmelstroët et al., 2014; Batty, 2014): are we beyond the
seven sins of large-scale models?

The three main steps that can be identified in the LUTI model’s timeline are
thus the following: (1) early development in the sixties, (2) renewed interest in
the nineties, and (3) the recent introduction of micro-simulation models. The
point of this section is not to propose a complete history of urban modelling
during that period, for which we refer the reader to Harris (1985), Wegener
and Furst (1999b), and Batty (2008). Instead, we propose to explore how the
space was taken into account on each of these steps, on a conceptual point of
view and for representative LUTI models.

14



2.2. An history of space within LUTI models

2.2.1 From Lowry to Lee’s requiem
The land use and transport feedback cycle

The underlying motivations for the development of LUTI models are classically
described by the land use transport feedback cycle (Figure 2.1) that highlights
the set of relationship between the location choices of agents and their travel
behaviours. It originates from Hansen (1959). Space is a key aspect of this
cycle, since transport is seen as the result of the spatial mismatch between
residential location and economic activities (and conversely influence the loc-
ation decisions of agents through transport costs). Although the purpose of
this diagram is to provide a synthetic view of a complex phenomenon, many
dimensions of space are over simplified by this land-use and transport feedback
cycle. For instance, travel times and costs derive from distance between loca-
tions that are a function of both the spatial extent and resolution of the model:
it has been demonstrated that the size of the Traffic Analysis Zones (or TAZ)
influences the trip lengths in a travel model (see e.g. Zhang and Kukadia,
2005; Viegas et al., 2009). Location decisions of investors and users will also
be constrained by several spatial characteristics other than travel times, such
as land-use regulations.

Therefore, this example illustrates the simplistic representation of space in
LUTI models frameworks. As we attempt to show in this chapter, the lack of
interest for spatial biases can be observed in other theoretical grounds of LUTI
models (e.g. the urban sub systems by speed of change, see section 2.2.2). In
operational LUTI models, the spatial resolution is sometimes discussed, but
mostly from a data availability point of view (section 2.4). The spatial extent
almost never.

The Lowry model

The model of the Pittsburgh region developed by Lowry (1964) is often referred
as the first land use and transportation model (Rodrigue et al., 2009; Wegener,
2014). This model represents the culmination of the idea that computer model
were (at the time) new tools for planning (Harris, 1965) and constitute a break-
through for urban planning (Wegener, 1994). The general principles of the
Lowry’s model still shape some of the current operational LUTI models and
will be described in section 2.2. Let us simply recall that a gravity-type spatial
interaction model is used to determine the equilibrium location of retail and
residential activities (Rodrigue et al., 2009).

The spatial choices made by Lowry (1964) in the original application of his
model to the Pittsburgh region are interesting. Due to data requirements, the
model was fitted for the area covered by the Pittsburgh Area Transportation
Survey of 1960 (PATS), which encompass (roughly) 1000 km2, 1.5 million in-
habitants and 550 000 jobs (Figure 2.2). It should be noted that the boundaries
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Figure 2.1 – The land-use and transport feedback cycle (source: Wegener
and Furst, 1999b)

of the PATS, a cordon line of unclear nature, do not match exactly those of
the Pittsburgh Urbanized Area defined by the 1960 census. This issue is men-
tioned by Lowry (1964) himself. Hence, the spatial extent of the project can
be defined as an urban region based on a transportation criterion.

As Basic Spatial Units, Lowry (1964) uses custom grid cells: 456 units cre-
ated by aggregating the PATS tracks on a grid with a one-mile interval (Figure
2.2). The reasons are that basic units from the PATS were too numerous and
that Traffic Analysis Zone (also from the PATS) were overly specialized towards
transportation study. The advantages and drawbacks of the retained zoning
system are worth quoting: "while the actual tracts boundaries follow those of
constituent city blocks, the abstract grid takes no account of the boundaries of
other natural areas; individual tracts may be functionally heterogeneous, divided
by topography or discontinuities in land use. The main advantage of this geo-
graphic coding system is computational flexibility [and] is neutral with respect
to theoretical patterns of urban structure" (Lowry, 1964; pp. 58). The spatial
resolution have thus been constrained by the modelling strategy rather than
by data availability. Both the spatial extent and the spatial resolution can be
criticised on a scientific point of view. It should however be stressed that such
an accurate description of the spatial choices made during the development of
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Figure 2.2 – The Lowry’s model of Pittsburgh (left = study area; right = BSU;
source: Lowry, 1964)

the model is rarely found in recent applications of LUTI models (see section
2.4).

Criticisms

Alongside with other urban models developed in the sixties, the Lowry’s model
has soon been criticized. Lee (1973) famous requiem for large-scale models
effectively puts a stop to the development of land-use and transport interactions
model for 15 to 20 years. It is worth recalling the "seven sins" identified by Lee
(1973):

• Hypercomprehensiveness: large-scale models attempt to replicate too
many processes and are expected to serve too many different purposes;

• Grossness: although a large amount of data is required, only aggregated
results are produced;

• Hungriness: too much data are needed;

• Wrongheadedness: there is a hiatus between the processes supposed to
be represented within the model and the actual set of equations driving
the model;

• Complicatedness: the increasing number of variables leads to increas-
ing interactions (feedbacks), many of them non significant, obscuring the
behaviour of the model;
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• Mechanicalness: numerical error may be present in computer’s calcu-
lations;

• Expensiveness: large-scale models have very high costs.

A clear spatial aspect appears in three of them. (1) The grossness issue is
largely a spatial one. It points out that large-scale urban models only produce
aggregated results. According to Lee (1973), the usefulness of such results
(e.g. the future number of inhabitants in a given zone) is limited to a small
number of people involved in urban planning, and these people would not
have needed the model to come up with similar forecast. To produce locally
detailed results, a high spatial resolution is required but small and, therefore,
numerous, BSUs increase the computational power needed. (2) Hungriness
refers more specifically to this large amount of data required by LUTI models
(a problem already recognized by Lowry, 1964). Spatial data add a further level
of complexity in the data collection and processing task since they are often only
available at different scales and for non-perfectly overlapping areal units (see
section 2.5). Finally, (3) wrongheadedness states that the processes supposed to
be represented by the model do not correspond to the equations or set of rules
that are actually driving the model. One of the examples given by Lee (1973)
is explicitly spatial: "while valid at the scale of a metropolitan area the gravity
model [for trip distribution] has no explanatory power at the neighborhood level"
(Lee, 1973, pp. 165) and results in the well-known ecological fallacy problem
(see Robinson, 1950). According to te Brömmelstroët et al. (2014), most of
these seven sins remain unsolved today, even if the development of GIS has
somewhat simplified the task of urban modellers.

2.2.2 The Nineties, a golden age for LUTI models
In 1990, the US Congress adopted major amendments to the Clean-Air Act of
1970 (CAAA). The Intermodal Transportation Efficiency Act (ISTEA, 1991)
soon followed this new environmental legislation. Both laws state that cities
applying for federal funds for transport infrastructure must take into account
the impact on land use and environment (Waddell et al., 2007; Wegener, 2011a).
Note that they have been preceded by other legislations with similar purposes,
e.g. the Federal-Aid Highway Act (1962) and the National Environmental
Policy Act of 1970 (Bartholomew, 2007), and followed by others (e.g. TEA-21
of 1998; SAFETA-LU of 2005). Nevertheless, CAAA and ISTEA are frequently
presented as the cause of the renewed interest for LUTI models in the nineties
(see e.g. Dowling, 2005; Waddell, 2011).

More technical reasons can also be highlighted. Computers made large
progress between the Lowry’s model and the nineties. The most notable devel-
opment, however, was the Geographical Information Systems, or GIS. These
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tools were soon used into LUTI models (see section 2.2.2) and to build vari-
ous GIS-based environmental models (Goodchild et al., 1993; Goodchild and
Marvin, 1996; Sui, 1998)1.

The consequence has been the development of a large variety of models.
Wegener (1994) found 13 different LUTI frameworks. This number later grows
to 17 (Wegener and Furst, 1999b) and even 20 (Wegener, 2004). Note that these
reviews focus on LUTI models with an academic origin, and do not include
many custom frameworks developed by MPO (see section 2.4). Southworth
(1995) identifies 17 LUTI frameworks, corresponding only partially to those
found by Wegener (1994). By combining these reviews, a total of 30 different
models emerge (Table A.1, in Appendix). Most of them, however, have not
reached an operational status, or are not anymore in use today. Therefore,
section 2.3 will only provide an overview of the internal principles for those
that are still in use nowadays (see also Table A.3, in Appendix).

Dynamics of urban sub systems

The model of Lowry (1964) was an equilibrium model: the state of the city is
predicted for a one-time point in the future. The evolution between the base
year and this horizon is not modelled.

However, modellers will soon advocate that processes affecting the urban
system react differently over time to a perturbation, i.e. that "Rome was not
built in a day". Table A.2 presents the conceptual formalisation of the urban
sub systems by speed of change (Wegener et al., 1986; based on Snickars et al.,
1983). Note that among the processes described by Table A.2, the slower ones
are those with the largest impact on the land-use. "Human settlements evolve
over a long time span by the cumulative efforts of many generations. The
resulting physical structure of cities displays a remarkable stability over time
prevailing even after major devastations such as wars, earthquakes, or fires"
(Wegener et al., 1986; pp. 4). Hence, many LUTI models (see section 2.3)
are now quasi-dynamic models and proceed by iterations (of usually 1 year),
meaning that the final state in iteration t is the initial state in t+1 (Simmonds
et al., 2013; Wegener, 2014).

Nevertheless, another group of modellers (mostly represented by A. Anas,
see Anas and Liu, 2007) continued the development of equilibrium LUTI mod-
els, and the two approaches co exist nowadays. This thesis focus, however, on
the "dynamic" family, represented here by UrbanSim (see chapter 1).

1Note that the development of cellular automata models of land-use (e.g. White and
Engelen, 1993; Batty, 2005) can also be related to GIS.

19



2. Space in Land Use and Transport Interactions models

The California Urban Futures model

This model succeeds to the Bay Area Simulation Systems (itself descending
from the Lowry’s model, see Goldner, 1971) and was continuously updated
during the nineties (Landis, 1994a; Landis, 1994b; Landis and Zhang, 1998a;
Landis and Zhang, 1998b). It provides a good example of the evolution fol-
lowed by LUTI models throughout that period. Note that it presents several
differences with the models originating from Lowry (1964) framework: (1) the
population growth is allocated to discrete individual sites rather than to large
areal units. (2) Accessibility to jobs is not the only factor affecting the location
and density of new real estate development. (3) The model takes advantages of
GIS techniques to organize a spatial database and manage land development
potential. (4) Development policies are explicitly implemented in the model.
Finally, (5) the model is easy to use and includes a graphical output. Moreover,
the model is quasi-dynamic and simulates the future land-use by time-steps of
five years (Landis, 1994a).

The model has been developed for the Northern California Bay Region (19
counties surrounding the San Francisco’s Bay). Landis (1994a) insists on the
need for the model behaviour and output to be relevant for planners and policy
makers. Since policies undertaken by various public authorities had to be sim-
ulated, the model had to use administrative delineations. Three levels of basic
units are used: counties, cities, and Developable Land Units (or DLU). Counties
are the largest areal units of the model and correspond to administrative units.
They are divided among cities (i.e. a municipality) and non-incorporated areas
(i.e. land that is not organised as a self-governing entity). The DLUs are
custom units. They "do not have regular shapes or sizes, but are generated as
the geometric union [in a GIS] of different map features and their attributes"
(Landis, 1994a; pp. 408). The layers used to define the DLUs include adminis-
trative boundaries, cities’ sphere of influence, wetland, slope, current land-use
types, road network, and land prices (Landis, 1994a).

Figure 2.3 shows the principles of the model. An Ordinary Least Squares
regression predicts the future population per counties and cities. Independent
variables include the population in t − 5 and different place specific factors.
The population growth of non-incorporated areas is the difference between
the future population per county and the total population of the cities in that
county. The spatial allocation sub model then develops the DLUs (i.e. simulate
the construction of new residential units), starting from the more profitable one,
until the total future population is allocated. The size of the DLU, its zoning
rules if any, and the population density in similar, already developed, areas
determine the number of inhabitants per DLU. The profitability of the DLUs
is estimated as the (future) houses selling price minus all development-related
costs: land price, construction, public infrastructure, etc (Landis, 1994a). This
framework allows an easy implementation of new policies, by adding into the
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spatial database a layer (e.g. greenbelt, land-use rules) accounting for this
policy (see Landis, 1995 for examples).

Landis (1994a) notes, however, that several features of the model could be
improved, such as more comprehensive development rules, the incorporation
of employment, and the distinction between different types of households. A
second version of the model, known as CUF-II, has been developed to remedy to
these shortcomings (see Landis and Zhang, 1998a; Landis and Zhang, 1998b).
In this latter version, the growth sub model is divided between two categories
of households and 10 employment sectors. DLUs have been simplified to grid
cells of 100 by 100 meters. Landis and Zhang (1998a) note that parcels would
have been a near-ideal unit to study land-use changes but that such data were
not available, hence the grid cells. Moreover, rather than deterministic rules,
CUF-II implements a multinomial logit framework to predict land-use changes.
Nine different development events (e.g. undeveloped to single-family residential
use) are defined. The utility function depends on the initial land-use, grid
cells characteristics (slope, accessibility to other activities), local zoning rules,
etc. Transition probabilities estimated by the logit model are used as bids,
representing competition between land-uses in a given site (Landis and Zhang,
1998a).

2.2.3 21st century: the age of reason?

The trends towards agent-based micro simulation models exist since (at least)
the second half of the nineties. Note that most LUTI models used nowadays
were already operational at the time (see section 2.3). It is clear, however, that
the enthusiasm of the Nineties has been tempered since the new millenium,
even if the need to account for land-use/transportation interactions in urban
planning is recognised (Badoe and Miller, 2000).

Two reasons support these recent criticisms. The behavioural and theor-
etical grounds of LUTI models are still weak (Timmermans, 2003). Land-use
and transportation field borrows methods and tools from other disciplines and
put them into one integrated model. As a result, "it is a strange experience to
notice that at symposia on integrated land-use - transport systems often basic
principles that were discussed (...) considerable time ago are still high on the
agenda" (Timmermans, 2003; pp. 21). Moreover, different large-scale projects
based on LUTI models have failed to meet their goals (e.g. Wagner and We-
gener, 2007, Nguyen-Luong, 2008, or Wegener, 2011a). In particular, the time,
cost, and complexity of building the spatial database needed by the model is
often under estimated.
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Figure 2.3 – The California Urban Futures model (workflow from Landis,
1995)

Current practices

A review of land-use and transport scenarios planning from Bartholomew (2007)
is presented in section 2.4. All projects reviewed in this paper are located in
the US and took place between 1989 and 2003. The modelling framework is
generally less integrated than academic models reviewed by Wegener (1994) or
Wegener and Furst (1999b). In most cases (Table 2.4), it consists in a travel
model to which a GIS land-use sub model has been added (in a similar fashion
than in the CUF model). Sensible differences are visible in today’s model-
ling practices. Lee (2009) conducted a survey focused on TMA2 and MPO
responsible for an area having more than 200 000 inhabitants (total of 201
organizations, among which 146 responded). The results show that 47% the
TMA/MPO where doing both land-use and transport modelling (while 46%
only made transport modelling). MPOs commonly use models that originate

2Transportation Metropolitan Agency
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Land use model used %
Home-grown model 23
UrbanSim 15
GIS-based model (e.g. UPLAN) 12
PECAS 9
Qualitative policy judgement 9
DRAM/EMPAL 6
Other model 16
No data 10

Table 2.1 – Land-use modelling tools of large TMA/MPO (source: Lee, 2009;
n = 68)

from academic (DRAM/EMPAL, UPlan, UrbanSim, PECAS), as showed by
Table 2.1. The transport model used was for 73% of the 146 MPOs a classical
four-step model, only 4% of the planning organizations using an activity-based
model. Moreover, despite regulatory constraints, merely 27% of the MPOs
achieved an operational integration between land-use and transport (and 12%
were working on it). It should also be mentioned that Lee (2009) found that
large MPOs were more likely to use advanced quantitative models than small
one.

Current debates

Wegener (2014) identifies two debates, or dividing lines, in the current urban
modelling frameworks: (1) the opposition between equilibrium and dynamic
models, and (2) the aggregate macro-economic approach versus disaggregated
models with an individual representation of agents. To our point of view, the
first debate has largely been solved in favour of (quasi-)dynamic models, even
if no truly dynamic (i.e. having a continuous representation of time) urban
models exist. The second debate is more problematic and has a stronger spatial
component.

It results from the influence of the micro simulation approach (see Orcutt
et al., 1961) on LUTI models. Contrary to various transport models (includ-
ing MATsim, see Nagel et al., 2008), land use models such as UrbanSim are
not a real micro simulation model. Nevertheless, modellers have internalised
the idea that individual units (households or jobs) should be accounted for,
leading to the development of disaggregated urban models with a distinctive
representation of agents. This evolution was also made possible by the growth
of computer power and the increasing availability of detailed spatial data in
the Nineties (Wegener, 2014).
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This approach is grounded in micro-economic theories. It also allows tak-
ing into account the heterogeneity between agents and their preferences. Under
that conceptual framework, the use of discrete choice models to forecast loc-
ation choices of agents or of new real estate development is a natural choice
(Orcutt et al., 1961; Heppenstall and Smith, 2014). However, disaggregated
models results "are subject to stochastic variations, i.e. may differ significantly
between model runs with different random number seeds unless averaged to a
level of aggregation they were designed to overcome" (Wegener, 2011a; pp. 2).
Stochastic variations (or Monte Carlo error) may be greater than the variations
observed between scenarios, precluding the use of the models as planning tools.
Their magnitude is a function of the number of choices (e.g. the number of
households moving) and the number of alternatives (e.g. the number of zones)
simulated. Wegener (2011a) shows that stochastic variations increase when the
ratio choices/alternatives decrease. For a fixed number of choices (i.e. if we
assume a constant population), the ratio choices/alternatives will decrease if
the number of alternative increases. Hence, for a given city, small BSU leads
to larger stochastic variations than aggregated ones.

The presence of stochastic variations has been demonstrated in operational
LUTI models, in particular SimDELTA (Feldman et al., 2007) and UrbanSim
(Sevcikova et al., 2007), and in other applications of discrete choice models
(Moeckel, 2007). Wegener (2011a) outlines four potential solutions to this
issue: (1) aggregate the output at a larger level than the BSU used by the
model. (2) Artificially increase the number of choices (see Hunt et al., 2008).
The most often recommended solution, and the one applied in this thesis, is
(3) to run the model several times and to take the average results. Finally (4),
the stochastic nature of micro simulation models can be recognized, and results
presented as probabilities of transitions rather than deterministic forecasts.

2.2.4 The future?
The history of urban modelling goes from macroscopic equilibrium model to
agent-based micro-simulation models (Batty, 2008). Today’s models represent
more detailed process, at a finer geographical scale. However, methodological
constraints of disaggregated models are numerous (see Nguyen-Luong, 2008;
Wegener, 2011a): data requirements, computing time, and stochastic vari-
ations. Since these challenges are case-specific, it is unlikely that a general
solution will emerge in a near future. Potential future development of LUTI
models, and their adequacy to solve spatial bias, are discussed in chapter 7.

2.3 Representation of space within LUTI models

Over time, LUTI models have known several evolutions of their internal prin-
ciples. A clear trend can be identified, from older aggregated equilibrium mod-
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els towards newer disaggregated dynamic models (section 2.2). Hence, the aim
of this section is to assess in more details how the space is represented in the
internal principles of LUTI models. Describing every existing LUTI (for a non
exhaustive list, see Table A.1) is obviously not possible, since many of them
are tailored developments for one specific case study. Moreover, very few of
them have reached the state of operational (i.e. having at least one practical
application), comprehensive (which includes most spatial processes, i.e. land
development, location choices of agents, and transport), integrated land-use and
transport frameworks (Hunt et al., 2005). Table A.1 shows that the number of
LUTI models compared in recent reviews (Hunt et al., 2005; Simmonds et al.,
2013; Wegener, 2014) is much more limited than those listed by Wegener, 2004.
The number of models that have been applied on several case studies is also
highly limited (note that most of them, including DELTA, PECAS, TRANUS
and UrbanSim, have in common to be supported by a commercial consultancy
company).

Therefore, we rely on two criteria to select the LUTI models that will be
reviewed here. First, they have to constitute a representative sample of the
different modeling strategies implemented. Table A.3 presents a short summary
of the frameworks used in the models reviewed by Wegener (1994). In the same
way, Table 2.2 proposes a typology of LUTI models based on Timmermans
(2003) and Wegener (2014). Note that the third category of Timmermans
(2003) only differs from the second by relying on a transport model simulating
activities rather than solely home-to-work trips. Secondly, reliable description
of these models should exist in the literature.

The eight models selected here are, by chronological order, the Lowry model,
MEPLAN, IRPUD, TRANUS, DELTA, MUSSA, UrbanSim and PECAS. Their
internal principles are presented in appendix A, on the exception of UrbanSim.
This latter model is used in the analyses (see chapter 1) and it will, therefore,
be extensively presented in chapter 5. Note that this selection left aside various
models tailored for one specific case study. Note that relying on the interna-
tional literature may have bias this selection towards model originating from
Anglo-Saxon academics and/or consultancy company (excluding Europeans de-
velopments such as PIRANDELLO).

2.3.1 Overview of the representation of space
All models reviewed here operate on "zones" (defined as non overlapping basic
spatial units of irregular size and shape), rather than on pixels or custom GIS-
based overlay (as in, for instance, the CUF model). Table 2.3 summarises their
nature. In terms of size, three groups can be drawn. MEPLAN and TRANUS
both rely on a small number (50 to 100+) of large land use zone (Echenique,
2001; Hunt et al., 2005). The Lowry (1964) model (see section 2.2.1), MUSSA,
(Martinez and Donoso, 2010) and UrbanSim use relatively small BSU (see
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Wegener (2014)
Timmermans (2003) Spatial interaction Accessibility based

location models location models
Aggregated spatial in-
teraction models

Lowry, DRAM - EM-
PAL

IRPUD

Utility maximising
multinomial logic
based models

MEPLAN, TRANUS DELTA, MUSSA,
UrbanSim, PECAS

Activity based micro
simulation models

ILUTE, ILUMASS,
RAMBLAS

Table 2.2 – Typology of LUTI models (based on Timmermans, 2003 and We-
gener, 2014)

chapter 5). The latter appears to be the more spatially disaggregated model
among those reviewed here. Finally, IRPUD (Moeckel, 2007; Wegener, 2011b),
DELTA (Simmonds and Feldman, 2005; Bosredon et al., 2009), and PECAS
(Hunt et al., 2009a and Hunt et al., 2009b) implement a multi-level represent-
ation of space, with large zones further divided into small one. For instance,
there are three nested levels in IRPUD: (1) a macroscopic model of economic
and demographic changes, (2) a mesoscopic model of households, jobs, and real
estate development location choices, and (3) a microscopic model of land-use
changes (Timmermans, 2003).

In terms of nature, most models rely on administrative units (Table 2.3).
Custom units are generally re aggregation of census track and are, therefore,
also based on administrative units. Note that the Traffic Analysis Zones may
differ from the land use zones. Overall, no constraints are given on the size,
shape, or nature of the BSU except some technical one such as a limited number
to reduce computation time.

2.3.2 A typology of LUTI models

A clear trend appears in LUTI model, from macroscopic to microscopic model
(section 2.2). It can be decomposed in two components: the evolution towards
(1) more detailed representation of agent’s behaviour, and (2) smaller basic
areal units. Figure 2.4 proposes a qualitative typology of the LUTI model
reviewed in section 2.3 based on these two disaggregation components. The first
one relates to the inclusion into LUTI models of more detailed representation
of the agent’s behaviour. Examples include the housing market sub model of
IRPUD and the space development sub model in PECAS.
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BSU
Model Size Type Example
MEPLAN Large Administrative Bilbao: 66 BSUs for 1 500

km2

TRANUS Large Administrative 50 to 100+
Lowry Small Custom Pittsburgh: 456 BSUs (ag-

gregation of survey track)
MUSSA Small Custom Santiago de Chile: 409 BSUs
UrbanSim Small Administrative Paris: 1 281 BSUs, µ = 9.3

km2; Brussels: 4 945 BSUs, µ
= 1.04 km2

DELTA Multi-level Custom Scotland: 50 "areas" divided
into 720 "zones"

IRPUD Multi-level Administrative Dortmund: 246 BSUs + 54
external zones

PECAS Multi-level Administrative Maximum 750

Table 2.3 – Typology of BSU in LUTI models

The second one, spatial disaggregation means the evolution towards small
basic spatial units, which culminates in UrbanSim. It seems to have followed
the increasing availability of detailed spatial data (thanks to GIS technologies)
and of computing capacity. Hence, the spatial resolution of LUTI models ap-
pears to be mostly constrained by data availability even if data requirements of
LUTI models are often poorly described. Although this spatial disaggregation
trends is valid on the long term, a distinction should be made between models
that (a) focus on small basic spatial units (UrbanSim) and (b) those who rely
on a multi-level representation of space (IRPUD, DELTA, PECAS).

The main econometric methods implemented in LUTI models are (a) spa-
tial interaction models, (b) discrete choice model, and (c) linear regression
model (see appendix A). Section 2.5 describes the conceptual framework of the
sensitivity of these methods to spatial biases. Our point, here, is that these
internal principles are not independent of the level of spatial aggregation used
by LUTI models. On the first hand, spatial input-output matrix limits the level
of spatial details since the coefficient of the matrix become unreliable for small
zones (Hunt et al., 2005). On the other hand, Discrete Choice Model (DCM)
and regression require a sufficient number of observations to produce robust
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Figure 2.4 – Typology of LUTI models (horizontal = spatial details; vertical =
internal principles details)

results. Therefore, the risk exist of using a model whose internal principles are
inconsistent with the level of spatial aggregation of the case study.

Overall, these short descriptions of a representative set of LUTI models
show that space is never seen as an issue. No limitations or guidelines for the
choice of the BSU are given in the documentation of LUTI models, except
for purely technical constraints (computation time). All models are presented
as flexible and it is claimed that they can be adapted to every context. The
fact that most of these models are supported by private consultancy company,
and constitute therefore a commercial product, certainly influence this vision.
Note that Timmermans (2003), Dowling (2005), Hunt et al. (2005), or Wegener
(2014) have proposed more detailed comparisons of LUTI model based upon
their level of time, spatial and economic details.
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2.4 Spatial extent and resolution: a meta-analysis

Section 2.2 and 2.3 show that even if LUTI models are, by nature, spatial, the
zoning system used does not appear to be a key component in the development
of these models. Nevertheless, spatial issues raise specific challenges for the
data collection and processing, as well as for the comparability of the results
among case studies (Thomas et al., 2015). To characterize the representation
of space in operational applications of LUTI models, this section attempts to
identify their spatial extent (i.e. the size and composition of the study area)
and resolution (i.e. the size of the BSU). An exploratory analysis is proposed
for two case studies: (a) the use of LUTI models by Metropolitan Planning
Organizations (MPO) in the US and (b) applications of LUTI models in Europe
published in peer-reviewed journals.

2.4.1 Land use and transportation planning in the US
Data collection

Since 1962, all urbanized areas of more than 50 000 inhabitants are required
to have their own Metropolitan Planning Organisation, or MPO (23 U.S. Code
Art. 134 - 135). They are public agencies, composed of representatives of local
governments and transportation authorities responsible for land-use planning
and long-term transport management. Land use and transportation planning
from MPO are almost exclusively published as grey literature (i.e. technical
reports or summary for policy makers) which raises several difficulties. The
first one is that such works are not indexed on scientific bibliographic data-
bases (e.g. ScienceDirect, Scopus). Hence, we use here a sample of 79 projects
of land-use and transport planning (for a total of 62 metropolitan areas, see
Figure 2.5) collected by Bartholomew (2007). It covers a wide range of applica-
tions, from re-development of urban brown field to long-term planning for large
metropolitan area. The sample was collected by mean of a two-stage survey
conducted in 2003 - 2004 (see Bartholomew, 2007 for details). The key point is
that it was directed towards organization’s members of either the National As-
sociation of Regional Council or of the Association of Metropolitan Planning
Organizations, to which the author asked if they were conducting scenarios
planning projects in the field of land use and transport.

The aim of the work of Bartholomew (2007) was to study scenario planning,
not to review spatial choices made by modellers, which ensure the independence
of the sample. Three drawbacks should, however, be mentioned regarding the
use of this data set for the goal pursued here. First, a clear selection bias
exists, since it only includes projects initiated by planning organization, and
not those that originate from academic. Secondly, most of these projects were
conducted in the Nineties (50% of them being completed before 2001 and 75%
before 2003), excluding recent developments. Finally, most of the projects in
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Type of tools n %
Travel forecasting model 47 55
- with transit/pedestrian-oriented development sub model 9 11

- with a GIS scenario building tool 20 25
- with a land use allocation model 7 9

Sketch travel model 3 3
Sketch land use/travel model 3 3
Land use model only 4 5
GIS model only 10 12
Economic model/analysis 6 7
Other and no data 13 15

Table 2.4 – Analysis tools used in scenario planning projects (table from
Bartholomew, 2007)
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Figure 2.5 – Land use and transport scenario planning projects (sample
from Bartholomew, 2007; the size of the dots is function of the number of projects)

the sample focus on transportation scenarios and, as a consequence, the tools
used are often not true LUTI models (see Table 2.4). Nevertheless, Figure
2.5, showing the spatial distribution of the projects reviewed by Bartholomew
(2007), is consistent with the distribution of the largest cities in the US and with
the population density. The over-representation of Oregon can be explained
since it is the state of origin of the author. Hence, the sample does not appear
to suffer from a geographical selection bias.
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2.4. Spatial extent and resolution: a meta-analysis

Methodology

Among the sample collected by Bartholomew (2007), we have been able to
retrieve the original references for 48 of the projects: 38 technical reports,
nine summaries for policy makers and one paper in a peer-reviewed journal.
Moreover, a technical appendix of the work of Bartholomew (2007) is available
online and describes each project (see Bartholomew, 2005). From these docu-
ments, different information have been extracted (see Table 2.5) to assess the
spatial extent and resolution of each project.

The main difficulty of technical report and summary for policy makers is
that their contents vary widely from one document to another. On average, the
level of details decreases from a technical report to policy-maker brief and then
to the annotated bibliography provided in Bartholomew (2005). The accuracy
of the data also differs from one variable to another. As a result, eight projects
have been excluded due to a lack of data (none of the variable given in Table
2.5 could be gathered from their reference). It should also be noted that the 71
remaining projects (see Table A.4) corresponds to only 56 different case studies
(i.e. study area). In particular, there are four projects in San Diego and three
for Baltimore, the Willamette Basin and Wilmington (Figure 2.5).

Even for the remaining projects, missing values are frequent (Table 2.5).
Variables related to the spatial extent are complete for 48 projects and have a
fairly good level of accuracy, on the exception of population data. The numbers
given for this variable were those found in the reference of the project when
possible and if not those of the 2000 census (since the starting point of the
project is in most cases not given). Hence, these values should be considered as
an order of magnitude, for comparison purpose, rather than accurate figures.
The accuracy of variables related to spatial resolution (results and BSU) is on
average lower. Only 23 projects have complete information, while the same
number has missing value for the two variables. In a given work, results are
often presented at different levels (e.g. at the study area level for transport
indicators but at the county level for demographic or land-use projections).
Moreover, the BSUs of the model are generally poorly described, even for simple
characteristics such as their total number or their average area. They should
hence be seen as qualitative indicators. Overall, data for all of the variables
given in Table 2.5 have only been obtained for 17 of the projects, and 24 projects
have one missing value.

Spatial extent

Six categories of projects can be identified based on the composition of the
study area and the criteria used for its boundaries (Table 2.6). Administrative
and MPA categories are geographically similar, since their boundaries often
follow those of the counties. The difference is that MPOs are constrained to
use the metropolitan planning area boundaries as study area, while for other
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Field Definition Data
Study area Name of the study area 71 (100%)
Composition Qualitative description of the the study area,

i.e. main cities or number of counties
71 (100%)

Methodology Criteria used to define the study area 56 (79%)
Surface Total surface (in km2) of the study area 54 (76%)
Population Number of inhabitants in t0 65 (91%)
Results Level of aggregation used in to present the

results
36 (51%)

BSU Type and number of basic spatial units 35 (49%)

Table 2.5 – Spatial characteristics of LUTI scenario planning projects
(sample from Bartholomew, 2007; Data = number of projects for which the informa-
tion could be gathered)

organizations the use of administrative boundaries is a matter of choice. Only
one project (Albuquerque) uses a delineation of the metropolitan area based on
a functional indicator, corresponding to the extension of the water distribution
network (leading to a morphological area). The reason given by the author
is that the city has sprawl out of it’s administrative boundaries and that the
water service area corresponds to the zone covered by urban services. There
is a clear relationship between the criterion used to define the study area and
its composition. The Development criterion designates both the extent of the
project and the nature of the area of interest. In a similar way, for all projects
in the Network category, the study area can be qualified as a corridor, i.e. an
area that has no other intrinsic characteristics than to be at less than a given
distance from the studied transport infrastructure3. The study area of the
Albuquerque project, only member of the Functional category, corresponds to
a metropolitan area. For most projects, however, administrative boundaries
are used. In the MPA group, 20 of the projects’ area of interest encompasses
several counties (between 2 and 11), while for the city of Flagstaff it consists
in its metropolitan area (note that this relatively small city is surrounded by
the second largest county of the US, Alaska excepted). The use of counties
boundaries by MPO is not mandatory, but it seems to be always the case for
our sample. A larger diversity appears for the Administrative group, with three
projects corresponding to cities or township, five to one county, 14 to several
counties, and two to the state of New Jersey. Hence, this latter category do not
always correspond to metropolitan area but also include regional applications.

3The term "corridor" is used in different references to designate the project, e.g. Highway
41 corridor master plan or Mountain View corridor growth choices study.
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The projects vary widely in scale, with a study area ranging from 0.08 to
165 000 km2 and a population varying from 0 (development projects) to about
18 millions. The population density (for the 50 projects for which both the
surface of the study area and the population are known, see Table A.4) is
comprised between 0 and 1 385 inhabitants per km2. Note that the projects’
average population density (268 hab/km2) is significantly lower (t = -2.91**)
than the threshold used by the US Bureau of Census to define urban areas
(390 hab/km2). It suggests that most study area exceeds these urban areas
and rather corresponds to the metropolitan statistical area (see Federal Re-
gister, 2000 for further details on the U.S. Census Bureau definition’s of urban
areas). It should also be noted that the distribution of both the surface, and the
population, is highly skewed to the right (skewness of 3.8 and 2.7). This is due
to the presence in the sample of two projects (Southern California and Ches-
apeake Bay) that correspond to region rather than to metropolitan area. Some
relation can be highlighted between the scale of the projects and the definition
of their study area (Figure 2.6). The Network category consists in all case in
impact study of transport infrastructure improvements and, therefore, have a
smaller scale than projects based on administrative or MPA delineations. De-
velopment and Functional categories had to be excluded, due to a lack of data,
but also correspond to small-scale projects. Projects based on administrative
or MPA delineations do not show significant differences in terms of scale.

To sum up, justifying the spatial extent of the project does not appear to
be a necessity to modellers and/or consultant involved in its realization. It
can be understood for Metropolitan Planning Areas, since their boundaries are
defined by legislative prescription and "shall encompass at least the existing
urbanized areas and the contiguous area expected to become urbanized within a
20-year forecast period" (23 US Code Art 134). The area for which MPOs are
responsible is thus defined in their status, making the question of the spatial
extent irrelevant. Nevertheless, it is not mandatory that the boundaries of
this area follow those of the counties that are members of the MPO. The fact
that this is always the case in our sample suggest that delineations of the
MPOs’ responsibility area is not based on an analysis of the extension of the
metropolitan area, but rather on a default choice. In a similar fashion, projects
belonging to the Administrative category are in most cases sponsored by a
public administration. It is likely that this sponsor will require results for all
the areas under its jurisdiction, and the degree of freedom left to modellers is
unknown. For Development and Network projects, however, this lack of interest
is much more problematic. They correspond to relatively small-scale projects,
and one may thus wonder if the study area defined really encompasses the area
that will be impacted by the project. In particular, corridor study areas are
geometric delineations (e.g. all areas at less than three miles from the studied
highway) and therefore assume an isotropic influence of the project. Finally,
United States’ counties vary widely in size over the country. The scale of the
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Criterion Definition Projects
Administrative Administrative delineation, usually counties 24 (34%)
MPA Metropolitan planning area of the MPO

sponsoring the project
21 (30%)

Network Road or rail network 11 (15%)
Development Area of urban development project (brown

field valorisation or new construction)
5 (7%)

Watershed Catchment area of a river 5 (7%)
Functional Study area based on functional criteria 1 (1.5%)

Table 2.6 – Study area of the land use and transport planning projects
(sample from Bartholomew, 2007; n = 56)
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Figure 2.6 – Land use and transportation planning projects by study area
and population (sample from Bartholomew, 2007; the grey rectangle denotes the
area covered by the left plot)

project is not thus only function of those of the metropolitan area studied, but
is also affected by the administrative delineations. The surface of the study
area may thus differ widely for two cities having a similar population (see
Figure 2.6). Hence, the nature of the study area is likely to vary, reducing the
comparability of the results.

Spatial resolution

Due to the high frequency of missing data, the sample is here reduced to less
than 30 observations. No statistical tests could be conducted and this lat-
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ter step is thus only qualitative. For transport indicators (e.g. modal split,
evolution of fluxes), results are mostly presented at an aggregated level, either
the study area or per county, even when the model uses smaller traffic ana-
lysis zones. Land-use changes are generally given at an aggregate level (e.g.
evolution of the built-up area per county). Maps at a smaller level can be
found, but are used for illustration purpose only. The choice of the BSU is
never discussed, nor than the BSU themselves. None of the references include
simple indicators such as the average size of the BSU, and only four gave their
total number. Moreover, the BSUs often vary between the land use and the
transport component of the modelling framework. Three types of BSU can
be identified: (1) census blocks, (2) Traffic Analysis Zones (TAZ) and (3) GIS
overlay. Census block are the lowest geographic unit defined by the US Census
Bureau and, consequently, the smallest unit for which statistical information’s
are available. TAZ are custom geographic units, defined by modellers to run
a travel model. They usually correspond to aggregation of census blocks. Fi-
nally, land use is often available as raster data. As a result, different projects
uses GIS overlay to merge statistical and land use data, ending up with BSU
roughly corresponding to plots or pixels. To sum up, results appear to be given
at the level relevant for policy makers, either the study area as a whole or by
administrative delineations. Moreover, BSUs of the model are seen as a purely
technical aspect. Their size and nature depend on the modelling framework
used, leading to large variations in size and number. Models based on a GIS
often use small pixels or plots, while LUTI models focus on custom TAZ based
on census blocks. Large-scale projects seem to use more disaggregated BSU,
but this tendency remains unclear. It may reflect the larger capabilities of large
MPO (as outlined by Lee, 2009; see section 2.2).

2.4.2 Applications of LUTI models in the EU

Data collection

This second case study is based on papers published in peer-reviewed journals
with impact factor before December 2014. All other forms of communications
(proceedings, working papers or chapter in books) are excluded. Three biblio-
graphic databases have been used (Google Scolar, Scopus, and ResearchGate)
and the selection rely on author’s appraisal, i.e. is considered as LUTI’s papers
an article where the authors affirm to use such type of model. The sample
obtained is limited to 19 papers, confirming the tendency highlighted by We-
gener (2011a). Table A.5 summarizes the spatial characteristics of the 25 case
studies presented in these papers (see also Figure 2.7). The variables collected
for each publications are described in Table 2.7.
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Field Definition
Study Area The city or region modelled
Authors Name of the author(s)
Date of publication Year when the paper was published
Journal Journal in which the paper was published
Size Mention of the size of the study area (Yes/No)
Population Inhabitants within the study area
Area Extension of the study area, in km2

Map Is a map of the study area provided (Yes/No)

Table 2.7 – LUTI model applications in Europe (bibliometrical information
collected for papers published in peer-reviewed journals; results are given in Table
A.5)
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Figure 2.7 – LUTI model applications in Europe (according to papers pub-
lished in peer-reviewed journals)
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Results

Five case studies (Dortmund, Leeds, Brussels, Bilbao, and The Netherlands)
have led to more than one publication, reducing the number of different cities
or metropolitan area to 17 (Figure 2.7). This repetition can be explained
by the profile of the author: academics are more inclined to publish their
work than consultant. It also reflect, however, scale economies: since the data
collection step is often long and difficult (Wagner and Wegener, 2007; Nguyen-
Luong, 2008; Wegener, 2011a), available databases are re-used for when the
original model is refined. Most case studies (23/25) are isolated urban areas
(the remaining two, Zondag and de Jong, 2011 and Zondag et al., 2015, cover
The Netherlands). The delineations of these urban areas are, however, not
well documented. Official extent of the metropolitan area are often used, but
most authors do not mention their exact limits, nor include a map devoted
to the description of the study area. The choice of such study areas seems
governed by policy/administrative reasons, by the agencies supplying the data,
and/or by the researchers assembling the available data. No critical viewpoint
appears on these choices (only Mackett, 1990 questions that problem, without
solving it), neither than on their consequences in terms of urban disparities.
Large variations of scale are observed, with a population within the study
area comprised between 0.3 and 14 millions of inhabitants (note that 25% of
the papers does not mention this simple indicator). Hence, the nature of the
studied area is different from one city to another. It sometimes includes rural
landscape (e.g. Paris) or catchment area of other cities (e.g. Brussels). Both
factors limiting the comparability of the outputs. The questions of intercity
relationships as well as the representation of “the rest of the world” while
modeling urban transport/land use realities is not considered either.

2.4.3 Space in operational applications of LUTI models

The two case studies presented here are not exhaustive. Many applications of
LUTI models, in the US, in Europe and, a fortiori, in the rest of the world,
have not been reviewed. The fact that the same conclusion can be drawn from
these two very different samples is, however, noteworthy. Spatial choices made
in operational applications of LUTI model appear to be default choices, i.e.
to rely on official administrative delineations or on data availability without
questioning the relevance of the study area and/or of the BSU. In particular,
even if LUTI models left the modellers free to select the study area on which
they are applied (see also section 2.3), most applications rely on an aggregation
of administrative units (counties in the US, various for Europe) that intersect
the footprint of the metropolitan area. The constraint faced by the modellers,
in particular the MPO’s area of responsibility, should however be recognised.
Nevertheless, this lack of awareness for spatial biases constitutes, to our point
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of view, a clear weakness for the robustness and comparability of LUTI model’s
applications.

2.5 Spatial bias and LUTI models

Biases arising from the use of geographical data are not a new issue in statist-
ical analysis. Various handbooks on quantitative geography, spatial analyses
or econometrics have extensively described them, as well as the methods pro-
posed to control or reduce their influence (e.g. Anselin, 1988b; Haining, 1993;
Fotheringham et al., 2000b; Fischer and Getis, 2010; and LeSage and Pace,
2009). Spatial, in some sense, is special (Anselin, 1989). Nevertheless, the
three previous sections, on the history of LUTI models (section 2.2), their in-
ternal principles (section 2.3), or their operational applications (section 2.4),
suggest that space is never seen as a constraint in LUTI models. As a res-
ult, the effects of spatial bias on LUTI models’ behaviour and outputs remain
largely unexplored, and probably underestimated. This section aims at form-
alising their potential influence on LUTI models, first by presenting the three
main theoretical and conceptual framework of spatial bias, then by reviewing
their relevance for the spatial extent and resolution.

2.5.1 Theoretical and conceptual background
The modifiable areal unit problem

The well-known Modifiable Areal Unit Problem (hereafter MAUP) attempts
to understand why identical individual data yield to different statistical results
when aggregated in varying ways. The first evidence of this issue is found in
Gehlke and Biehl (1934), although its definition was introduced by Openshaw
and Taylor (1979) and Openshaw (1984). The MAUP is classically divided
between two components: (1) the scale effect deals with the variations of stat-
istical measures with the size of the areal unit (Fotheringham and Rogerson,
2009; Briant et al., 2010; Arbia and Petrarca, 2011). Note that for a finite num-
ber of observations, aggregation of individual data into areal units of increasing
size leads to a decrease of the number of observations. The (2) aggregation effect
is defined as the variations of statistical measures arising from the aggregation
into areal units based on a different criterion (Arbia and Petrarca, 2011). In
this case, the number of the areal units remains identical, but their borders are
different.

The aggregation effect is often found to lead to random variations, and is
largely considered as intractable (Fotheringham and Wong, 1991). Regarding
the scale effect, Openshaw (1984) suggested four initial solutions to control
and/or reduce its influence. First, one could simply ignore the MAUP and
hope that the outcome of the research is still significant. Second and third
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solutions are similar: they aim at reducing the effects of the MAUP by using
either individual data, or the "appropriate scale of analysis". The last solution
proposed by Openshaw (1984) is to draw the spatial units so that the analysis
produces a predicted outcome. None of these solutions can, however, be easily
applied to LUTI models. Appropriate scale of analysis or custom spatial units
are indeed difficult to use in the field of LUTI models, since data are most
likely to be available only for administrative units, and these units remain the
relevant level for policy makers.

First studies on the MAUP focused on correlations (e.g. Gehlke and Biehl,
1934; Openshaw and Taylor, 1979; and Openshaw, 1984), but were soon ex-
tended to multivariate regression analysis. The literature on that particular
topic is abundant (e.g. Arbia, 1989; Fotheringham and Wong, 1991; Amrhein,
1995; Reynolds and Amrhein, 1998; and Arbia and Petrarca, 2011). These
work show a systematic variation of parameter estimates when the number
of zone decreases, some becoming more negative and other becoming more
positive. The influence of the MAUP on parameter estimates of multivariate
regression methods is often considered unpredictable (Arbia, 1989; Fothering-
ham and Wong, 1991). More recent works, however, have suggested a link with
the spatial autocorrelation structure of the variables (Reynolds and Amrhein,
1998). A positive autocorrelation means that adjacent areal units have similar
values. Parameter estimates are less sensitive to the MAUP in that situation.
Arbia and Petrarca (2011) reaches similar conclusions for a spatial auto re-
gressive model. Note that these results apply only to the classical definition of
the MAUP. To our knowledge, the influence of the size of the study area on
linear regression’s parameter estimates remains unexplored.

The sensitivity of Discrete Choice Models (from now on DCM) to the MAUP
has been far less studied. Arauzo-Carod and Antolín-Manjón, 2004 have com-
pared firm’s location choices for three levels of administrative units, using both
DCM and Count Data Models (CDM). They observe significant differences
between parameter estimates and conclude that location choice factors do not
act uniformly with the scale over broad geographic regions. However, their
study area (Catalonia region, Spain) and areal units (provinces or municipalit-
ies) cannot be compared easily to typical applications of LUTI models (metro-
politan areas with small BSU such as census tract; see chapter 2). The avail-
ability of detailed data sets on firm’s locations means that empirical studies
of households or employment location choices have evolved from aggregated to
disaggregated areas (e.g. census wards instead of municipalities or regions, see
e.g. McCann and Sheppard, 2003; Guimaraes et al., 2004; and Arauzo-Carod
et al., 2010). An example for residential location choice in Paris (France) can
be found in de Palma et al. (2007): the conclusion is that the factors driving
these choices vary with the size of the spatial unit considered (municipalities
or grid cells of 500 by 500 meters), but the paper does not provide a complete
analysis on the influence of the MAUP.
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Regression analysis and discrete choice models are the most used econo-
metric methods in LUTI models (see chapter 2). Hence, for further details
on the influence of the MAUP on statistical analysis, we refer the reader to
above-mentioned handbooks. Note that the sensitivity of a spatial interaction
gravity model (a procedure commonly found in older aggregated LUTI models)
to the MAUP can be found in Arbia and Petrarca (2013).

Note that the ecological fallacy problem (Robinson, 1950) is closely related
to the MAUP, even if the two concepts are presented separately in the liter-
ature. It states that correlations between individuals can be different from
the one computed at the level of the group to which the individuals belong.
This issue arises when the characteristics of the individuals are deduced from
aggregated data. Hence, ecological fallacies do not affect estimations of eco-
nometric methods per se, but rather data preparation and interpretation. A
typical example for LUTI models is that synthetic population often has to be
generated based on aggregated marginal controls (e.g. Ye et al., 2009; Farooq
et al., 2015a; Farooq et al., 2015b).

The uncertain geographic context of problem

Spatial bias can also be linked to the less-known Uncertain Geographic Context
of Problem (UGCoP, see Kwan, 2012). It states that the delineation of areal
units used as observations may not correspond to the true causally relevant
units (Kwan, 2012). It differs from the MAUP in the sense that it does not as-
sess the influence of various delineations of areal units, but aims to identify the
true delineations relevant for the study of a given phenomenon. The examples
given by Kwan (2012) are focused on the field of health geography, and no sys-
tematic sensitivity analysis appear to exist. Nevertheless, in the field of LUTI
models, the UGCoP can be related to the question of the neighbourhood taken
into account by households to select their residential location. Guo and Bhat
(2004) show that it can be greater than administrative delineations (census
block). Hence, households may consider the land use and amenities around
their potential dwelling within a radius larger than the areal units used in the
model. Note that the shape of the neighbourhood taken into account will also
affect parameter estimates of a residential location choice model (see Guo and
Bhat, 2007), raising the question of the definition of the true neighbourhood
considered by agents .

The definition of the study area is also closely related to the UGCoP issue.
LUTI models are generally applied on metropolitan areas (see chapter 2). It is
a known issue that due to the sub urbanisation process, urban areas do not have
a clear border anymore (see Cheshire and Gornostaeve, 2002; Dujardin et al.,
2007; Cörvers et al., 2009; or Farmer and Fotheringham, 2011). Finally, not the
that no methodology has been proposed yet to solve the UGCoP, although it
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most likely involves a better comprehension of individual’s behaviours (Kwan,
2012).

2.5.2 Relevance of spatial choices for LUTI models
The general lack of awareness for spatial biases observed in the field of LUTI
models means that the spatial issues identified since the beginning of LUTI
models remain largely unsolved (Lee, 1973, te Brömmelstroët et al., 2014). Let
us briefly go back to the seven sins of Lee (1973). The grossness issue has seen
improvements, thanks to the higher level of detail of current models that allows
simulating more policies. Nevertheless, the case studies reviewed in section 2.4
show that results of LUTI models are still presented at an aggregated level.
The hungriness is perhaps even more prevalent for micro simulation models
(see Wegener, 2011a) than for models derived from Lowry (1964). Finally,
the wrongheadedness is still a fundamental issue, especially since different as-
sessments based on LUTI models’ outputs (e.g. environmental impact) have
become, in some cases, legally binding (see section 2.2 and 2.4.2). Overall,
both spatial extent and spatial resolution have implications for LUTI models
developments and applications.

Spatial extent

The footprint of a city is a complex phenomenon, driven by multiple factors
such as its geography, its history, the local governance process and actors,
and its size and interconnections, relative to other cities (Rémy, 2004; Paulet,
2009). Many operational applications of LUTI models are publicly funded (see
section 2.4), which may retrain the modellers to use the jurisdiction of these
public authorities as study area. Wether this is a real constraint or a default
choice remains, however, an open question. In any case, the spatial extent issue
is closely linked to the delineation of cities’ catchment area, that has fascinated
geographers for decades (see chapter 1 and chapter 6). It has been largely
demonstrated that cities sprawls out of their administrative boundaries, but
the relevant delineation of a city depends on the goal of the study (Dujardin
et al., 2007). The lack of interest observed in the definition of the study area
raises, therefore, the risk of biasing the estimation of the LUTI model.

In this chapter, we show that the spatial extent chosen may affect both the
data collection and processing step, as well as the behaviour of the model. Two
issues should be particularly highlighted. First, if the study area covers multiple
administrative entities, there is a risk that some data will not be available
and/or will have different definitions. For instance, land use regulations are
often a regional competence meaning that land use categories can vary across
the study area. This potential bias is, however, specific to each case study.
Making more formalisation or generalisation is, therefore, impossible and it
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will thus not be assessed in this thesis. The second issue, i.e. the influence on
the behaviour of the model, can be related to the Uncertain Geographic Context
of Problem. In particular, the spatial extent chosen for the model may include
rural areas and/or part of other cities. This will increase the heterogeneity of
the study area, potentially affecting the goodness-of-fit of the model for both
econometric sub models (which will be explored in chapters 3 and 4) and the
model outputs (see chapter 5).

Spatial resolution

The areal units (or BSU) used in a LUTI model are often seen as a purely
technical aspect (see section 2.4). Modellers select one model and apply it
using the areal units for which data are available. There is often no integration
between the land use and transport components of the LUTI model, resulting in
a dichotomy between land use and traffic analysis zones. In early applications
of LUTI models, it was also frequent for an aggregated traffic model to be
combined with land use model based on raster data. The choice of the areal
units is, nevertheless, likely to influence both the data collection and processing
steps and the behaviour of the model system. Leading, potentially, to variations
in its outputs.

The first aspect, data collection and preparation, relates to spatial aggreg-
ation issues (see Goodchild and Gopal, 1989). The variety of the spatial data
required by LUTI models means that they will often be maintained by different
providers. For instance official census data for socio-economic characteristics
but regional survey for travel behaviour. Land-use regulations are also likely to
involve different political bodies. In Belgium, land use planning is the respons-
ibility of the regions, but municipalities can define additional rules. The use
of data available for different spatial units raises the risk of ecological fallacy
(Robinson, 1950). As for the spatial extent, however, the presence of this bias
depends on the case study. Its influence being impossible to formalise, it will
not be assessed in further analyses.

Even when the database is completed, the size of the areal units may still
affect the behaviour of LUTI models. The spatial resolution issue is indeed
conceptually identical to the scale effect of the well-known Modifiable Areal
Unit Problem (Openshaw and Taylor, 1979). Section 2.3 shows that LUTI
models heavily rely on econometric method, especially regression analysis and
discrete choice models. Parameters estimates of both methods are known to be
sensitive to the MAUP. The forecasts of both future real estate prices and future
location of agents can, therefore, affected by the spatial resolution of the model
system. The direction and magnitude of this potential bias in LUTI models
has, to our knowledge, never been assessed. Hence, chapter 3 will explore the
sensitivity of discrete choice models to this spatial resolution issue, and chapter
4 and chapter 5 those of the model’s outputs.
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2.5.3 Conclusion
To our opinion, limiting factors (administrative regulations or data availability
constraints) doesn’t excuse the lack of interest for the spatial extent and resolu-
tion of the model. The current debate on the optimal level of disaggregation of
micro-simulation models (see Wegener, 2011a) is certainly a step in the good
direction. Its emergence, however, is partially linked to the failure of large-
scale disaggregated LUTI models’ project (e.g. Wagner and Wegener, 2007;
Nguyen-Luong, 2008). Knowing that spatial biases may be present should en-
courage the realisation of a careful exploratory spatial data analysis, to assess
their potential influence, instead of ignoring it. The main challenge of today’s
LUTI model, as we intend to demonstrate in this thesis, is thus not to increase
the level of details. As pointed out by Wegener (2011a), it would rather be to
identify the optimum level of conceptual, spatial, and temporal resolution for
each component of the model. There is a need for multi-level models where the
level of details can be adjusted to the process simulated, and to data availab-
ility (see chapter 6). There is also, and perhaps even more, a need for a better
awareness of spatial biases in LUTI models applications
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3.1 Introduction

The aim of the chapter is to extent the state-of-the-art on the influence of spatial
biases on regression analysis, by examining their sensitivity to the boundary
effect, i.e. variations of the size of the study area. Contrary to the scale effect,
this issue of the size and composition of the study area has received no or little
attention (see chapter 2). Although the use of regression procedure in state-
of-the-art LUTI models is limited, chapter 2 shows that UrbanSim (among
others) relies on such methods to forecast the evolution of real estate prices.
For consistency with the general topic of the thesis, the research question of
this chapter is thus the following. How does the functional delineation of the
city influences land prices determinant?

A sensitivity analysis of (developable) land price to the delineation of the
study area is conducted on the case study of Brussels (Belgium). A hedonic
model (log-linear and semi-parametric specifications) is estimated for 12 de-
lineations of the city (morphological, functional, administrative, or based on
transportation infrastructure), as well as on automatically constructed delin-
eations. The underlying assumption, grounded in the classical bid rent model
of Alonso (1964), is that the land price is a function of the accessibility to the
CBD. The Alonso-Muth model assumes a clear-cut limit of cities, located where
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the opportunity costs of urban and agricultural land-use are equal. Hence, in
rural areas the influence of accessibility to the CBD on land prices is expected
to be null. Assuming that local amenities have been controlled for, the effect
of the accessibility to the CBD on land prices should thus decrease when the
size of the delineation increases.

The emergence of sub centres, however, leads to non-linearity in the decrease
of land price when the distance to the CBD increases (see e.g.McMillen, 1996;
Anas et al., 1998; Ahlfeldt, 2011). Fujita and Ogawa (1982) and Fujita (1989),
among others, have proposed analytical model to introduce such sub centres
in the general Alonso-Muth model. Another limitation of the model is that
suburban settlements do not show a dichotomy between urban and rural land
uses. Nevertheless, Cavailhès et al. (2004) have proposed an analytical model
where households commuting to the CBD and farmers can be present in a mixed
belt surrounding city centre. Hence, this chapter aims to test the intuition that
the influence of accessibility to the CBD on land prices will be affected by local
conditions (secondary centres or rural areas having loose relationship with the
CBD) and that these variations allow to assess the efficiency by which the
influence area of a city is captured by different delineations of that city. This
work can be related to Bode (2008), who proposed to use the fraction of land
prices attributable to economies of urban agglomeration to delineate cities. The
bottom-line of this chapter is that different delineations can be proposed for the
same city, but that they have different meaning and are not interchangeable,
nor easily comparable.

This chapter is organised as follows: section 3.2 presents the case study and
section 3.3 the methodology. Results are presented in section 3.4, and discussed
in section 3.5. Finally, Section 3.6 summarises the implications for operational
applications of LUTI models.

3.2 The case study

Brussels is the capital and main employment center of Belgium. It is an out-
lier among European cities in that its official extension (the Brussels-Capital
Region, hereafter BCR) is so small, yet so politically significant, relative to its
functioning whole (Thisse and Thomas, 2007; Cheshire, 2010). This BCR ac-
counts for 1.1 million inhabitants, while the total metropolitan area can reach,
depending on its definition, up to 2.5 millions inhabitants (see Table 3.1). In
terms of employment, 18.8% of Belgian GDP was produced in the BCR in
2007, and about 670 000 jobs were located in it, 229 500 being occupied by
people commuting daily from Flanders, plus 126 500 from the Walloon Region
(Thisse and Thomas, 2010). In the BCR, there is "a socio-economic cleavage,
with working class neighbourhoods along a north to south - west axis, and a rich
south - east quadrant" (Vandermotten et al., 2010; pp. 82). This deprived axis
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Figure 3.1 – Study area

goes beyond the boundaries of the BCR (see e.g. Thomas and Zenou, 1999;
Kesteloot et al., 2001; Dujardin et al., 2008) and is visible in the distribution
of land prices and median annual income (Figure 3.4).

Different secondary cities are found in the vicinity of Brussels (Figure 3.1).
The main ones are Leuven and Mechelen (both in Flanders) and the conurba-
tion of Wavre, Ottignies, and Louvain-La-Neuve in Wallonia. Compared to the
Belgian’ average, real estate prices are high in the entire study area, but mostly
in Flanders (see section 3.2.2).

3.2.1 Definitions of Brussels’ catchment area

Given the political context of Belgium, none of the functional delineations
proposed for the Brussels metropolitan area have made their way out of the
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academic world (publicly funded researches on Brussels are often limited to
the BCR). This lack of consensus has encouraged geographers and economists
to propose their own definition of the Brussels metropolitan area, making this
city a fascinating case study for comparing urban delineations. The different
delineations of Brussels used in this work are presented hereafter.

Delineations proposed in the literature

Two administrative delineations are used (Figure 3.2a). As already mentioned,
the official administrative extent of Brussels is the BCR. Before 1995, it was
included in the Province of Brabant, which can thus also be considered as a
potential delineation of Brussels:

• The Brussels-Capital Region (BCR) includes 19 municipalities and
corresponds to the very dense urban center;

• The Former province of Brabant (Brabant)1 is constituted of 111
municipalities

Functional delineations of Belgian cities were first proposed in 1979. Latest
revision was made by Van Hecke et al. (2009), using the population census of
2001. It combines a morphological agglomeration, defined by the contiguity of
built-up areas (maximal distance between buildings less than 200 meters), with
three nested delineations that match the boundaries of the municipalities (the
smaller administrative units for which land prices are available, see section
3.3). These latter three have thus been considered (see below). Figure 3.2
shows the extension of these delineations for Brussels. Note that a map of all
urban regions in Belgium is given in appendix (Figure B.2).

• TheOperational Agglomeration (OA) is the set of municipalities hav-
ing more than 50% of their inhabitants in the morphological agglomer-
ation. In 2001, it includes 36 municipalities, and corresponds to the
densely build area;

• The Urban Region (UR) (62 municipalities) includes the OA plus
the suburbs (26 municipalities), which are defined by a mix of socio-
economical indicators. UR is widely used as definition of the Brussels
city region in scientific work (e.g. Riguelle et al., 2007; Verhetsel et al.,
2010);

• The Metropolitan Labour Area (MLA) includes 122 municipalities:
the UR plus the 60 municipalities of the Commuter Living Zone, or CLZ,

1Former since it has been divided among the BCR, the Walloon Brabant and the Flemish
Brabant provinces in 1995
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defined as all municipalities having more than 15% of active popula-
tion commuting daily to the OA. Note that the presence regional cities
(Mechelen and Leuven) on north and east of Brussels limit the extension
of the MLA on these directions (Van Hecke et al., 2009).

Sensitivity analysis of these functional delineations to the threshold values
used can be found in Dembour (2004) and Dujardin et al. (2007). However,
these works have not been considered here, since the differences with the de-
lineation proposed by Van Hecke et al., 2009 are limited. Transport infrastruc-
tures, such as the RER network, have also been used to delineate Brussels.
The RER, for "Réseau Express Regional", is a fast train network to and from
Brussels, currently under construction. The extension of this RER network has
been defined by law (Figure 3.2c):

• The Official RER Zone (RER) is defined as all municipalities "within
a radius of about 30 km from Brussels" (Moniteur Belge, 2004; pp. 97),
and includes 136 municipalities;

• An Inner RER Zone (InnRER) is defined by the same law as the OA
plus all municipalities contiguous to the BCR, for a total of 41 municip-
alities;

• Furthermore, potential effects of the RER have been studied using an Ex-
tended RER Zone (ExtRER) of 147 municipalities (the RER Zone plus
21 additional municipalities, without justification; see Boon and Gayda,
2000).

Different works have aimed to apply innovative methodologies (fractal geo-
metries and clustering of OD-matrices) to delineate Brussels (Figure 3.2d and
e). These methods are original in the sense that the delineation of the city
is endogenously determined, rather than based on exogenously fixed threshold
values. The resulting delineations of Brussels are:

• A fractal morphological delineation (Fractal), using the dilation of
individual building footprint method proposed by Tannier et al., 2011.
Roughly, the urban boundary corresponds to the point of maximum
curvature on the dilation curve, i.e. the curve of the number of built
clusters as a function of the buffer width used in the dilation step. This
morphological delineation intersects 48 municipalities (see Tannier and
Thomas, 2013);

• A phone basin (Phone, see Blondel et al., 2010) based on an Origin-
Destination (OD) matrix of mobile phone communications (at the muni-
cipality level and for the entire country). A network partition methodo-
logy based on the modularity of the graph (Blondel et al., 2008) is used
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Population Area
Delineations n million km2

Brussels-Capital Region (BCR) 19 1.039 162
Operational Agglomeration (OA) 36 1.441 577
Inner RER zone (InnRER) 41 1.533 726
Fractal morphological agglo. (Fractal) 48 1.576 932
Urban region (UR) 62 1.820 1 527
Phone basin (Phone) 66 1.731 1 718
Job basin (Job) 105 2.197 3 282
Former province of Brabant (Brabant) 111 2.467 3 376
Metropolitan labour area (MLA) 122 2.662 4 153
Official RER zone (RER) 126 2.953 4 151
Extended RER zone (ExtRER) 147 3.267 4 969
Union (Union) 160 3.382 5 602

Table 3.1 – Delineations of Brussels (values for 2010; n = number of municipal-
ities included in the delineation)

to draw communities of municipalities. The phone basin around Brussels
encompasses 66 municipalities;

• A job basin (Job, see Thomas et al., 2013) that uses the same methodo-
logy than phone basins but on an OD matrix of home-to-work commuting
fluxes in 2008. The methodology applied lead to a job basin of 105 mu-
nicipalities, centred on Brussels.

Finally, the Union of the delineations of Brussels is here defined as all muni-
cipalities (160) belonging to one of the aforementioned functional delineation.
Table 3.1 and Figure 3.2 summarise the extension of these delineations of Brus-
sels.

Automatically generated delineations

In order to study the variations of land price determinants independently from
the underlying urban structure, a continuum of delineations has been generated,
by the following procedure:

1. The BCR (19 municipalities) is the initial delineation of the continuum
(iteration 0), and the Union of delineations (160 municipalities) as its
maximal extension;

2. Delineation n is defined as all municipalities belonging to the n − 1 de-
lineation, plus the municipality not included in k− 1 having the minimal
Euclidian distance to the centroid of the municipality of Brussels;
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a. Iteration 1

Municipalities

Included
Not included
Municipalities boundaries
Brussels−Capital Region

b. Iteration 5 c. Iteration 25

Figure 3.3 – Continuum of delineations of Brussels (note: complete extent =
Union)

3. This procedure is repeated iteratively (Figure 3.3) until that all municip-
alities are included. The continuum thus consists in 141 delineations (i.e.
160 - 19).

It should be noted that this continuum assumes that the influence of Brus-
sels spreads evenly in all directions, which is not the case due to the presence of
regional cities close to Brussels (see section 3.5). It is, therefore, less meaningful
than functional delineations.

3.2.2 Data
The aim is here to compare different delineations of Brussels, not to build
the best possible model of land prices for each of them. For estimations of
detailed land price models on either Belgium or Brussels, the reader can refer
to Goffette-Nagot et al. (2011), Cavailhès and Thomas (2013), or Pholo Bala
et al. (2014). We restrain ourselves here to a simple specification, with a limited
amount of explanatory variables. This approach has been preferred due to
the specificities of LUTI models (see below), but also because informations
on land prices are rather limited in Belgium (no individual transactions are
available). The only data disclosed by the Belgian Directorate-general Statistics
and Economical Information (or DGSIE) are an annual series, at the level of
the municipalities, of the number of transactions per annum, the overall value
of these transactions (e) and the total surface of the parcels sold (in square
meters). Hence, the average price for 1 square meter of developable land sold
within the municipality between 2006 and 2008 is used here (Table 3.2). A
three-years period reduces biases due to very small numbers of transactions (a
map of the total number of transactions per municipality is given in appendix,
see Figure B.1). Still, five municipalities within our study area have less than
10 transactions and have been excluded from the analysis. Prices are deflated
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between years by the consumption price index. Developable land is used as a
proxy for real estate prices. Since they have fewer intrinsic characteristics, it
can be assumed that their average price depends mostly of the municipality
location. As expected, land prices are maximal for municipalities close to
Brussels (Figure 3.4) and decrease with the distance. All other things being
equal, prices also tend to be higher in Flanders than in the Walloon Region,
due to population densities and to land use policy (Goffette-Nagot et al., 2011).

The control variables reflect these limitations of the dependant variable.
They can be divided into three groups: socio-economic, local amenities, and
accessibility indicators. Variables of the first group are based upon the Alonso-
Muth model. For the second group, we rely on a subset of the variables tested
by Goffette-Nagot et al. (2011), while the third group includes tow accessibility
indicators of different nature, as in Ahlfeldt (2011). Note that the use of simple
variables is consistent with the specificities of LUTI models. Residential units’
attributes are typically not represented, forcing the modeller to rely on zonal
characteristics to forecast real estate prices (see chapters 6 and 7). Moreover,
the number of zonal characteristics whose evolution is forecasted by the model
is limited, which also constrain the modeller towards simple specification (see
Nguyen-Luong, 2008). The limited number of independent factors considered
here constitutes, therefore, a weakness of this work, but a weakness that will
be present as well in most operational applications of LUTI models.

Hence, these control variables are the following: Population density, which
is the number of inhabitants per square kilometres in each municipality (Fig-
ure 3.4) in 2008, and Income, equal to the median earnings per household in
euros for fiscal year 2008, are used as socio-economic indicators. Sources for
these data are the DGSIE. The Travel time to the closest main (IC/IR) railway
station2 is used as a local amenities’ indicator and accounts for the proximity
of the municipalities to both the public transport network and to secondary
centres with retail activities. Forest cover, expressed as the share of the total
surface of the municipality covered by forest (from CORINE land-cover data-
base, see EEA, 2006), is used as green amenities’ indicator. Given the average
size of municipalities (34 km2), it is impossible to test for the presence of parks
or schools (Goffette-Nagot et al., 2011). Finally, a dummy variable (Wallonia)
taking the value 1 if the municipality belongs to the Walloon region, and 0
otherwise (BCR or Flanders) is considered.

For comparing the different delineations of Brussels, the key variable of the
model is an indicator of the accessibility to Brussels, since it will capture the
influence of the city on its neighbouring areas. For that purpose, the Travel
time to the centroid of the municipality of Brussels by car, in minutes and
congestion included, is used (data from Vandenbulcke et al., 2007). In addition,

2IC (InterCity) and IR (InterRegio) is the name given by Belgian railways for fast, direct
trains. By extension, the « IC/IR stations » are the stations where these trains stop.
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Variable Units Mean SD Min Max
Land prices (transactions) 110 70 9 452
Land prices (value) e/m2 169.1 181.6 28.1 1 664.9
Population density hab/km2 1 601 3 474 106 20 630
Median annual income × 1000 e 20.9 2.2 12.3 32.1
Forest cover % 6 9 0 56
Time to IC/IR stations minutes 5.6 3.7 0.1 17.2
Travel time to BXL minutes 43.1 17.6 1.0 79.6
Accessibility to jobs 10.52 0.24 10.10 11.27

Table 3.2 – Variables of the land prices model (for the Union delineation; SD
= standard deviation)

a gravitational measure of the Accessibility to jobs (Ai) in each municipality i
is also used.

Ai = log(
n∑
j=1

dij × wj) (3.1)

In equation 3.1, dij denotes the travel time by car between the centroid of
the municipality i and the centroid of the municipality j (data from Vanden-
bulcke et al., 2007) and wj the number of jobs located in j. Note that all
municipalities in Belgium are taken into account to compute Ai. Job’ data
come from the Belgian National Social Security Office (ONSS, 2015), and ex-
clude self-employees. Although it has been shown that the linguistic border
between French and Dutch-speaking part of Belgium significantly reduces in-
teractions (Dujardin, 2001; Blondel et al., 2010), estimating the magnitude of
this effect is a complex task. Hence, we do not consider any border effect here.

Given the importance of the BCR as an employment centre, the correlation
(Pearson product-moment) between the travel time to the Brussels CBD and
the Accessibility to jobs is high (-0.86***). Still, their nature is different:
the Travel time to the Brussels CBD only measures the accessibility to that
specific location, while the Accessibility to jobs takes into account all potential
destinations. Hence, it is here expected that the effect of this latter variable
should be similar for all delineations of Brussels, while the influence of the travel
time to the Brussels CBD would vary according to the size or the composition
of the delineation used.
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3. Boundary effect on land price determinants

3.3 Methodology

The influence of the delineation of Brussels on land price determinants is as-
sessed using a two steps methodology. First, a hedonic model of land price is
estimated on the functional and automatically - generated delineations of the
city (see section 3.2). This model is estimated by OLS (equation 3.2) and by a
semi-parametric specification, as in equation 3.3 (mixed model representation
of penalised splines, see Ruppert et al., 2003). For the latter one, the relation-
ship between land prices and the accessibility indicator (either the travel time
to the Brussels CBD or the accessibility to jobs) is not constrained to a linear
form.

Ln(Pi) = α+ βjX
control
ij + βaX

accessibility
ia + εi (3.2)

Ln(Pi) = α+ βjX
control
ij + f(Xaccessibility

ia ) + εi (3.3)

Where Pi is the average selling price, in euro per square meter, of develop-
able land in the municipality i, Xcontrol

ij a vector of the j control variables
in i and Xaccessibility

ia the accessibility indicator a in i, α is a constant and εi
the random, normally distributed, error term associated to each observation
i. Definition and sources of the dependent and independent variables have
been discussed in section 3.2. Since this work is exploratory, the benchmark
specification of the land price model for each delineation of Brussels has been
determined by a stepwise procedure, using the Akaike Information Criterion to
select the set of control variables (see Venables and Ripley, 2002). Three dif-
ferent cases are considered, in order to compare the effects of the accessibility
indicators (Table 3.3). The specification implemented for the continuum of de-
lineations is based on the variables found significant for functional delineations
(see section 3.4).

Note that we did not measure the presence of spatial auto correlation
between the dependant variable nor than between the residuals of the regres-
sion. Its presence is very likely given the size of the BSU (see Goffette-Nagot
et al., 2011). Nowadays, most estimations of hedonic prices rely thus on more
advanced econometric specifications than OLS, especially spatial regression
models. This option has not been considered here, since such methods are
not yet implemented in UrbanSim neither than in other state-of-the-art LUTI
models. See chapter 7 for details.

This first step allows for a global analysis of the influence of the boundaries
of the study area on the land price model. In the second step, local variations of
the relation between land prices and accessibility have been examined through
a Geographically Weighted Regression (GWR) model (Fotheringham et al.,
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3.4. Results

Accessibility indicators
Case Control variables Travel time Accessibility to jobs
A All Yes Yes
B All Yes
C All Yes

Table 3.3 – Stepwise regression (variables included in each specification)

2002). Its specification is given by equation 3.4, where u indicates that the
parameter βk(u) describes the relation between land prices and the independent
variable k around the location u, and is specific to that location (Charlton and
Fotheringham, 2009). Other notations are identical to those of equation 3.2.

Ln(Pi)(u) = α+ βj(u)Xcontrol
ij + βia(u)Xaccessibility

ia + εi (3.4)

For each accessibility indicator, three specifications are estimated. (a) A
simple one with the accessibility indicator as the only independent factor, (b)
a control specification, including the variables found to have an influence on
land price in all cases (see section 3.4), and (c) a fitted specification using the
variables selected by case B and C of the stepwise regression for the Union
delineation. A Gaussian kernel is used, and the bandwidth is determined by
the cross-validation optimization methods (Fotheringham et al., 2002). For the
travel time to Brussels, the bandwidth is equal to 3.9 kilometres for specification
(a), 7.3 for specification (b), and 23.7 kilometres for specification (c). For the
accessibility to jobs, it is of 5.4, 7.1, and 114.7. The GWR procedure estimates
the local value of the parameter estimates (βia(u)) for each observation i. The
weights affected to all other observations j are based on their Euclidean distance
with i. If j is inside the bandwidth, its weight decrease with the distance
following a gaussian curve. If j is located further away than the limit of the
bandwidth, it receives a null weight. The set of observations used to compute
the local value of the parameter estimates is thus different for each observations,
leading to the results showed by Figure 3.5.

3.4 Results

The parameter estimates of the land price models are presented in Table B.2
(in appendix). Using the variables selected by the stepwise procedure (Table
B.1, in appendix), functional delineations of Brussels can be divided into two
groups that correspond roughly to "small" versus "large" delineations of Brus-
sels. Results should then be considered as illustrative for these delineations.
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3. Boundary effect on land price determinants

Moreover, it appears that the AIC criterion leads to keep into the model vari-
ables not significant at the 5% level. This is especially the case for these small
delineations, and for the Forest cover variable.

As expected, Population density and Income influence land prices in all
delineations. The local amenities’ variables (Forest cover, Travel time to the
closest railway station and the Wallonia dummy) are only selected in large
delineations. When the two accessibility indicators are included in the models
(case A) the Accessibility to jobs is always preferred to the Travel time to
Brussels CBD. For case B, the Travel time to Brussels is only selected for large
delineations. For case C, the Accessibility to jobs is selected for all delineations
except the Urban Region.

The specifications estimated for cases’ B and C are re-used for the semi-
parametric regression model. For automatically generated delineations, the
specification is identical for all iterations, and includes the variables found to
be selected in all cases: Population density, Income (plus the Wallonia dummy
when the continuum reaches this region) and, according to the case considered,
the Travel time to Brussels or the Accessibility to jobs. For a given delineation,
the parameter estimates of the control variables are never significantly different
for the OLS or semi-parametric methods.

Nevertheless, Figure 3.5 shows that if the land price gradient is almost
linear for the Accessibility to jobs (but become slightly steeper for low values
of accessibility), this is not the case for the Travel time to Brussels. For this
variable, the land price gradient is flat for the municipalities close to Brussels,
become steep for those located between about 20 to 35 minutes from the CBD
and then flatten again. This pattern is visible for all functional delineations,
although relatively large variations are perceptible for the continuum (gray
background). Hence, Figure 3.5 demonstrates the difference of nature between
the Accessibility to jobs and the Travel time to Brussels, and suggests that the
influence of the latter may be used in future work to assess the extension of
the metropolitan area of Brussels.

A geographically weighted regression model has then been used to invest-
igate local variations of the relationship between land prices and the Travel
time to Brussels or the Accessibility to jobs. Figure 3.6 shows the variations
of the parameter estimates of the accessibility indicator for the different spe-
cifications of the land price model (control specification is identical to those
of the continuum). Simple and control specifications lead to counter factual
parameter estimates for some municipalities (those close to Gent and Antwerp
in the north, or Charleroi in the south), suggesting that they do not belong
to the influence area of Brussels. This effect disappears for the fitted specific-
ation. The influence of the travel time to Brussels on land prices remains,
nevertheless, minimal for these municipalities.
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3.5. Discussion

3.5 Discussion

3.5.1 Consistency and limitations

The Alonso-Muth model assumes that the utility of households’ increases with
the accessibility to jobs and decreases with land prices. The positive parameter
estimates of the Accessibility to jobs are thus consistent. Since this variable
takes into account all jobs in Belgium (see section 2.2), its significant influ-
ence on land prices for all delineations of Brussels was expected. No significant
difference is observed in parameter estimates, and the predicted land price
gradient is linear when expressed as function of this variable. These results
are consistent with Ahlfeldt (2011), who found that gravity-based accessibility
indicators are better at capturing the employment accessibility than the tra-
ditional distance to the CBD. Moreover, selection of the accessibility to jobs
rather than the distance to the CBD by the stepwise procedure (case A, Table
B.1) is also in line with the result obtained by Ahlfeldt (2011). Hence, on a
general point of view, the Travel time to Brussels is less adequate to capture
accessibility to jobs, since it only reflects the accessibility to the portion of the
jobs located in the CBD.

This latter characteristic is, however, the reason why this variable is used to
assess the efficiency by which the delineations of Brussels capture the influence
area of that city. The results presented here are partially inconclusive on that
aspect, since variations of the influence of accessibility to the CBD on land
prices are weak. A possible explanation is the lack of detailed information on
real estate transactions. As described in section 3.2.2, only the average value
was available, and at the level of the municipalities (average size of 34 sq. km).
Although Brussels is a fascinating case study, because of the numerous different
delineations of the city proposed in the literature, data availability constraints
reduce the robustness of statistical analysis. Note that this weakness is likely
to influence the UrbanSim model of the city as well (see chapter 6) and raises
the question of the adequacy of a disaggregated LUTI model to forecast the
evolution of this city. This methodological choice, however, was constrained
by the SustainCity project. Yet, even if parameter estimates do not show
significant differences, the variables selected by the stepwise procedure and the
slope of the predicted land price gradient can be used to compare delineations
of Brussels.

3.5.2 Variations of the size of the study area

This chapter shows that no optimal delineation appears to estimate land prices.
The adjusted R2, and median error are similar for all delineations of Brussels
larger than the Urban Region (Table B.2). Nevertheless, differences appear in
the specification of the land price models. Delineations smaller than the Phone
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3. Boundary effect on land price determinants

basin are limited to socio-economic or environmental amenities’ factors, and
the Travel time to the CBD does not have a significant influence. On the con-
trary, developable land and single-family houses prices are strongly influenced
by Brussels in the entire province of Brabant (Vanneste et al., 2007). When
including these municipalities in the study area, the Travel time to the Brussels
CBD becomes a significant determinant of land prices (and it remains so for
all larger delineations).

Therefore, the size of the study area influences the nature of the area in-
cluded in the delineation of the city. Relatively small delineations of Brussels
lead to a land prices’ structure that corresponds to Hoyt’s sector theory (1939).
This structure can be explained by negative externalities (see Vandermotten
et al., 2010). For large delineations, the land prices’ structure is mostly con-
sistent with the Alonso-Muth model, even if the accessibility to the secondary
employment centre (for which the travel time to IC/IR stations is a proxy) has
to be taken into account by the model.

3.5.3 Variations of the composition of the study area

The criterion used to define a delineation of Brussels influences the nature of
the study area. Among large delineations of Brussels, delineations based on
OD-matrices (Phone, Job, and MLA) have a steeper land price gradient than
the RER zones (official and extended), Brabant and Union (Figure 3.5). The
continuum of delineations shows an even lower slope of the land price gradient.

The latter group (RER zones, Brabant, and Union) has a larger proportion
of their municipalities located in Flanders. All other things being equal, land
prices tend to be higher than in Wallonia due to the scarcity of space and the
denser urban network (Goffette-Nagot et al., 2011). Moreover, the complete
Metropolitan Labour Area (MLA) of Leuven (12 municipalities) and Mechelen
(5) are included in the Union of delineations of Brussels, together with eight
municipalities belonging to the MLA of Antwerpen or Gent (see Figure B.2 in
appendix). One municipality of the MLA of Charleroi (in Wallonia) is also in-
cluded. For these municipalities, the percentage of people commuting (to work
or to school) or migrating to the secondary centre is higher than to Brussels
(Van Hecke et al., 2009), and no significant relationship is found between land
prices and the Travel time to Brussels (Table 3.4).

The MLA of Brussels is also subject to some drawbacks. The threshold
value used by Van Hecke et al. (2009), 15% of commuters to the Operational
Agglomeration, is small compared to the one used in France (40%) or in the US
(25%, see Dujardin et al., 2007). Hence, the Commuter Living Zone includes
rural areas with relatively low land prices and population density (Brück, 2002).
The relationship between land price and travel time to the Brussels to the CBD
is thus weaker for that zone.
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3.6. Summary and implications for LUTI models

Zone Pearson correlation
Travel time to Brussels Accessibility to jobs n

UR -0.83*** 0.85*** 62
Union -0.72*** 0.85*** 160
CLZ -0.46*** 0.71*** 60
Other MLA -0.27 0.63*** 26

Table 3.4 – Variations of land prices with space (pearson product-moment
correlation with the (log of) land prices; note: n = number of observations; ***
= ρ significant at 0.001; CLZ = Commuter living zone of Brussels; Other MLA =
Metropolitan Labour Area of Leuven, Mechelen, Antwerpen, Ghent or Charleroi)

3.6 Summary and implications for LUTI models

The chapter shows that delineation of cities exists for different purposes, and
that they are not interchangeable. The methodology and criteria chosen to
delineate a city have a clear influence on the size and the composition of the
delineation produced and, as a consequence, on its nature (Table 3.5). It has
long been noted that morphological delineations of cities (e.g. the Operational
Agglomeration and the Fractal morphological agglomeration) do not capture
the enlarged range of spatial interactions allowed by the modernisation of trans-
port technology (Pumain, 2003).

Large delineations of cities can, however, be subject to an overestimation
of the city’s influence area. This latter problem arises from the inclusion of
secondary centres and/or rural areas (see section 3.5.3). For instance, RER
zones are based on the physical extension of the railway network, rather than
on the actual commuting pattern. These delineations (and the continuum)
imply that the influence of Brussels spreads evenly in all directions. Although
this assumption holds for an isotropic and featureless landscape as the one
of the Alonso-Muth model, this is clearly not the case in a highly urbanised
country such as Belgium.

In terms of implications for operational applications of LUTI models, this
chapter confirms the intuition that a poorly defined study area may affect the
outputs of the model (see also chapter 5). The variations of parameter estimates
observed between delineations of Brussels (Table B.2) mean that varying study
areas will lead to different forecast of future real estate prices. These prices
will, in turn, be used as inputs to forecast households and/or firms’ location
choices in UrbanSim (see chapter 5 and 6). Due to the sequential nature of
UrbanSim, such biases are thus likely to propagate to main outputs of the model
(i.e. the final location of the agents). Note that in UrbanSim, as in other LUTI
models (e.g. MEPLAN), residuals of the real estate price sub model in t are
inputed as independent variable in this sub model in t + 1, therefore allowing
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3. Boundary effect on land price determinants

Criterion Size Nature
Morphological Small City centre, intra urban area
Socio-Economic Medium Urban region
Attractiveness (fluxes) Large Monocentric metropolitan area
Transport infrastructure Large Polycentric region

Table 3.5 – Nature of cities delineations

for a potential mitigation of this bias. Chapter 7 will discuss the optimal
methodology to delineate the study area of an operational application of a
LUTI model.
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Scale effect in a MNL model of
employment’ location choices

4.1 Introduction

Discrete Choice Models (or DCM) constitute a key component of most state-
of-the-art LUTI models (see chapter 2). The reason is that they rely on the
utility level perceived by agents and are, therefore, grounded in the micro
economic theory. As in stand-alone applications (see Arauzo-Carod et al., 2010
for review), their purpose is to forecast location choices of agents (households or
economic activities). Although this has been far less studied than for regression
analysis (see chapter 2), they are subject to spatial bias when the choice set
consists in areal units (which is precisely the case for LUTI models). The aim
of this chapter is extending the state-of-the-art in that respect: how are DCMs
influenced by a change of the size of the Basic Spatial Units (hereafter BSU)
used as the choice set in a LUTI model context? To provide an answer as
complete as possible to this question, this chapter considers three successive
research questions.

First, do the parameter estimates of DCM vary with the size of the spatial
units constituting the choice set? An empirical analysis of job’s location choice
is conducted for two spatial patterns (monocentric, using the jobs in services
and polycentric, using industrial activities, see section 4.2). The study area is
the metropolitan area of Brussels (Belgium), and four levels of hierarchical ad-
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ministrative units are used as BSU. For consistency purposes, the econometric
framework is identical to the DCM implemented in UrbanSim, i.e. a linear-
in-parameter, utility maximizing, multinomial logit model (see Waddell et al.,
2003).

Secondly, are the variations in parameter estimates between BSU signific-
ant compared to misspecification issues? Amrhein (1995) and Briant et al.
(2010), among others, show that this latter issue may be more important than
the former one. Here, five different specifications are estimated for each loc-
ation choice model. It allows a comparison of variations between BSU and
specifications and, therefore, of the relative importance of spatial biases versus
misspecification issues.

The third step is to assess operational implications. A clustering procedure
is conducted to compare the structure of the probability of location through
scales. Moreover, the following experience is performed: assuming that new
jobs are created and are allocated through the BSUs proportionally to the
predicted utility level, does the distribution of these jobs vary when simulated
for different BSU level?

To cover these questions, the chapter is organized as follows: the case studies
are detailed in section 4.2 and the methodology in section 4.3. Section 4.4
presents the results, which are discussed in section 4.5. Section 4.6 summarises
the findings and their implications for LUTI models.

4.2 Case study

The city of Brussels (Belgium) is used as case study. Administrative and stat-
istical delineations in Belgium have a high level of spatial detail (see section
4.2.1), allowing studying the effect of scale on a more continuous way than
in previous works of Arauzo-Carod and Antolín-Manjón (2004) and de Palma
et al. (2007).

Moreover, it can be expected that the sensitivity of DCM to scale will be
affected by the underlying spatial distribution of firms/jobs: if jobs are concen-
trated in one main employment centre, it will always emerge from the neigh-
bouring areas. On the contrary, if jobs are scattered through small employment
centres, these secondary centres may be diluted within their neighbourhood for
large BSUs. To assess this potential effect, two case studies are considered, cor-
responding to two different spatial patterns. The first case study (Monocentric)
examines the location choices of jobs in the tertiary sector on a mono centric
study area, the Urban Region of Brussels (see section 3.2). The combination
of the high centrality of jobs in services and of a small study area results in a
mono centric case, with most of the job concentrated in the CBD of Brussels
(Figure 4.1a).
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Surface (km2)
Case study BSU level n Min Mean Max
Monocentric Statistical ward 2 074 0.01 0.7 14.9

Sections 550 0.01 2.6 15.4
Former municipalities 173 0.25 8.7 45.0
Municipalities 62 1.06 23.8 68.6

Polycentric Statistical ward 4 223 0.01 0.9 15.9
Sections 1 217 0.01 3.3 16.5
Former municipalities 473 0.25 8.7 45.0
Municipalities 126 1.06 32.4 96.4

Table 4.1 – Basic spatial units (n = number)

In the second case study (Polycentric) location choices of industrial jobs are
estimated on a large and poly centric study area. The so-called RER zone (see
section 3.2) has been used. Together with the less concentrated distribution of
jobs observed for industrial activities than for services, the larger extent of this
study area leads to a more poly centric structure (Figure 4.1b). Figure C.1 (in
appendix) shows the extension of these studies areas, and the administrative
units used as BSUs (see also Table 4.1).

4.2.1 Basic spatial units
Four levels of administrative and statistical units are used in the analyses.
The higher level is the municipality. Each can be subdivided into "former"
municipalities (aggregated into the current municipalities in 1977). For census
purposes, those latter units can be divided into sections, themselves composed
of several statistical wards. These are the smallest areal units for which data
are available from the Belgian Directorate General Statistics and Economical
Information. These BSU levels are hierarchical, meaning that a BSU of level n
is strictly contained in only one BSU of level n+1 (see Figure C.1). Conversely,
it means that statistical wards can be aggregated recursively into sections,
former municipalities, and municipalities, without boundaries conflict. Since
this chapter focuses on operational implications, we did not consider artificial
territorial units (i.e. division of space based on raster, gridcells, or Thiessen
polygons).

4.2.2 Jobs’ location
For job’s location data, the Home-To-Work Travel (HTWT) Survey of 2008
(see Witlox et al., 2011, Van Malderen et al., 2012) has been used. This sur-
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vey is a legal requirement, which allows a response rate above 90%. For all
firms located in Belgium having at least 100 employees, it gives the geographic
coordinates of all plants of more than 30 employees. The NACE-BEL 2008
2-digits classification of economic activities (see DGSIE, 2011) has been used
to select the firms in industrial activities (NACE code from 12 to 45 included)
that compose the Polycentric case study, and in services (NACE codes higher
than 45), for the Monocentric case study. Note that since the HTWT data
set is limited to firms of more than 100 employees, it only accounts for 57%
of the total number of jobs in tertiary sector and 43% for industrial activities
(see ONSS, 2015). It should also be noted that the HTWT database includes
all jobs at one given time, rather than jobs having recently relocated. Figure
4.1 shows the spatial distribution of jobs for the two case studies considered in
this chapter. Descriptive statistics of the number of jobs per BSU are given by
Table 4.2.

Note that few studies exist on the use of DCM to assess location choices of
firms or jobs in Brussels, except Baudewyns (1999) and Baudewyns et al. (2000)
who use a different framework (stated preferences). Nevertheless, Marissal et al.
(2006) show that jobs remain concentrated in central places (see also Riguelle
et al., 2007) even if (between 1991 and 2001) job’s growth was systematically
lower in the city centre than in the suburbs. Tertiary sector, i.e. the Mono-
centric case study (financial activities, in particular), is highly concentrated
in the Brussels-Capital Region, while non-trade services are less concentrated
but still reflect the distribution of the population and, consequently, the urban
structure (Marissal et al., 2006). Secondary cities have a higher importance for
industrial activities (i.e. the Polycentric case study), especially in Flanders.

4.2.3 Zonal characteristics
We would stress here that the goal of this chapter is not to find the best ex-
planatory model for job’s location choices in Brussels. The HTWT data set has
been used because it was available, and it allows comparing different spatial
patterns (mono centric and poly centric). Only simple variables are used as
independent factors. Nevertheless, we attempted to rely on variables grounded
in the economic geography literature. The econometric model used through-
out this chapter (see section 4.3) follows the neoclassical perspective (Hayter,
1997), which assumes that agents are rational and have perfect information (see
Shukla andWaddell, 1991, Waddell et al., 2003). In such conceptual framework,
location determinants are cost-driving factors, i.e. agglomeration economies,
transport infrastructure, and technology or human capital (see Arauzo-Carod
et al., 2010 for review).

The zonal characteristics used throughout this work attempt to cover these
three categories. A wide range of variables could be taken as a proxy, but
two reasons explain those selected here. First, given the high variations in the
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sizes of the BSU (see Table 4.1), we restrained ourselves to independent factors
expected to play a role at all scales. Local characteristics that could have
been significant for small BSU alone (see e.g. de Palma et al., 2007) are thus
excluded. Secondly, only variables that can be aggregated into large BSU by
sums or means have been considered. It constitutes certainly one weakness of
this work. In particular, one could wonder if the use of a more detailed model
will not reduce variations across scales. This is, however, not our opinion, since
previous work using more complex specifications found significant variations
of parameter estimates between BSU (see e.g. Arauzo-Carod and Antolín-
Manjón, 2004; de Palma et al., 2007). The use of a more advanced method is
perhaps a better way, with the restriction that they are not, to the exception
of nested logit, implemented in LUTI models, nor than in most operational
applications of DCM (see chapter 7). The following paragraphs define the zonal
characteristics used as independent factors into the location choice model.

For agglomeration economies, the density of jobs was selected. However,
since a one time-step data set is used, and not firms having recently relocated,
explaining the jobs’ location by the jobs’ density leads to major endogeneity
concern. Preliminary analysis proved that including the job’s density in the
model precluded any other variables to have a significant effect. Hence, this
variable has been excluded. Another problem is encountered for technology and
human capital that mostly rely on socio-economic factors: the DGSIE only dis-
closes real estate prices at the municipalities level. Most studies on real estate
prices in Belgium (e.g. Goffette-Nagot et al., 2011, Cavailhès and Thomas,
2013, or chapter 3) thus use municipality as the level of analysis. There is no
example of the estimation of a disaggregated indicator of real estate values at
the statistical ward level (which will be a complete work in itself). Moreover,
simply attributing to all lower-level BSU the value of the municipality to which
it belongs may bias econometric estimations and do not seem a good option
in a work dedicated to the scale effect. Hence, real estate prices will not be
used in this work. Population density (POP_DENS), available from the DG-
SIE at the statistical ward level, is instead used as a proxy. It is defined as
the number of inhabitants per square kilometre. Population density is likely to
have a positive influence on utilities for large BSU (municipalities and former
municipalities) since it will represent, at this scale, urban areas. However, for
small BSUs, a negative influence can be assumed due to competition for land
(a high population density meaning that there is no or few spaces left for other
activities).

Transport and accessibility amenities are accounted for by four variables:
travel time (TIME_BXL) to Brussels (in minutes), by car and congestion in-
cluded is used as an accessibility indicator to the main employment centre.
Travel times are computed between the centroid of each BSU and the centroid
of the municipality of Brussels (data from Vandenbulcke et al., 2007). The
accessibility to jobs (ACC_JOBS) is a Shimbel index of the travel time by car
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(data from Vandenbulcke et al., 2007) between i and all other spatial units of
the same level in Belgium, weighted by the total number of jobs (self-employed
excluded) located in these BSUs, from the HTWT database. Local amenit-
ies are accounted for by the Euclidean distance between the centroid of each
BSU and (a) the closest IC/IR trains station1 (DIST_TRAIN) and (b) to the
nearest entry/exit on a highway (DIST_HGW). The use of the Euclidean dis-
tance is a simplifying assumption. Note that since most of the study area (for
both Monocentric and Polycentric case studies) correspond to sub urban or
rural areas, the use of the Manhattan distance would not have been a better
option.

In Belgium, Baudewyns et al. (2000) found that the proximity of transport
infrastructure has a positive impact on firms’ location choice, and similar find-
ings are numerous in the empirical literature (see Arauzo-Carod et al., 2010,
for review). These variables are thus expected to have a positive parameter
estimate for both Monocentric and Polycentric case studies and for all BSUs.

Figure 4.1 shows the distribution of these explanatory factors and their
descriptive statistics are given by Table 4.2. For BSUs larger than statistical
wards, the databases have been generated by aggregation of the initial data,
by sums or means. Note that in the econometric model, all these variables are
expressed in log.

4.3 Econometric estimations and sensitivity analyses

4.3.1 Location choice model

Fundamentals of DCMs are simple: an agent select one alternative among those
available (the choice set), in order to maximize his utility at the time when the
choice is made (Ben Akiva and Lerman, 1985). These alternatives have to be
mutually exclusive, exhaustive and their number must be finite (Train, 2003),
all conditions that hold for areal units. Our econometric framework is here
identical to the Employment Location Choice Model in UrbanSim (see Wad-
dell et al., 2003). It corresponds to the classical linear-in-parameters, utility
maximizing MNL model (Ben Akiva and Lerman, 1985). No alternative specific
constants are included. Due to the size of the choice set, a random sampling of
10 alternatives per observation is performed (the selected one, and nine non-
chosen alternatives), as proposed by McFadden (1978) and, again, to mimic
the specification implemented in UrbanSim. Hence, the probability that an

1A main train station is here defined as a train station where IC (intercity, fast direct
trains) and IR (interregio, semi direct trains) train calls.
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BSU Variables Min Mean Max SD
Statistical wards SERVICES 0 165 10 620 679

(n = 2 074) INDUSTRY 0 16 3 281 127
POP_DENS 0.00 6.33 10.71 2.24
INCOME 0.00 6.75 9.32 3.50
LAND_PRICE 3.34 4.88 7.42 0.69
TIME_BXL 0.00 2.68 3.80 0.81
DIST_TRAIN 4.50 8.02 9.75 0.82
DIST_HGW 3.57 7.34 9.49 0.98

Sections SERVICES 0 622 24 238 1 887
INDUSTRY 0 54 3 281 250
POP_DENS 0.00 5.99 10.34 1.59
INCOME 0.00 6.69 9.32 2.44
LAND_PRICE 3.34 4.78 7.42 0.66
TIME_BXL 0.01 2.78 3.80 0.66
DIST_TRAIN 5.47 8.15 9.74 0.78
DIST_HGW 4.40 7.50 9.48 0.94

Former Muni. SERVICES 0 1 976 58 618 5481
INDUSTRY 0 139 4 796 461
POP_DENS 0.00 5.71 9.55 1.23
INCOME 0.00 6.57 9.29 1.88
LAND_PRICE 3.34 4.64 7.42 0.58
TIME_BXL 0.00 2.92 3.80 0.54
DIST_TRAIN 6.07 8.32 9.74 0.71
DIST_HGW 5.21 7.72 9.48 0.83

Municipalities SERVICES 0 5 515 103 675 13 629
INDUSTRY 0 522 6 282 1 033
POP_DENS 3.77 6.24 9.55 1.06
INCOME 3.86 6.67 9.03 0.98
LAND_PRICE 3.34 4.88 7.42 0.69
TIME_BXL 1.06 2.71 3.73 0.57
DIST_TRAIN 6.07 8.10 9.62 0.68
DIST_HGW 5.47 7.45 9.30 0.81

Table 4.2 – Variables of the location choice model (by BSU levels; note: all
variables expressed in log and values are given for the Polycentric case study; SD =
standard deviation; SERVICES and INDUSTRY = number of jobs for, respectively,
the Monocentric and Polycentric case studies)
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alternative i is selected (Pi, see equation 4.1) depends on its utility (ui), which
itself relies on Xi, the characteristics of i.

Pi = eβkXik+εi∑
j e
βkXjk+εj

(4.1)

The model is based on an individual representation of jobs (rather than
firms). Hence, no firm-specific factors are included and the only characteristics
of the jobs taken into account are their current location. Explanatory variables
are thus limited to site-specific factors. This choice matches those made in
recent applications of the UrbanSim model, where the characteristics of the firm
are not taken into account (see in particular Cabrita et al., 2015 for Brussels).
It is, however, clear that the little effort made to consider jointly plant and
zone factors remains one weakness of DCM (Arauzo-Carod et al., 2010; see
e.g. Arauzo-Carod and Antolín-Manjón, 2004 for an analysis that consider
both the size of the firms and of the areal units). Models for Monocentric and
Polycentric case studies are estimated independently (in R, using the mlogit
package; see Croissant, 2012).

Sensitivity analysis of parameter estimates

For each case study, the methodology was the following. Six different combina-
tions of the independent variables have been drawn (Table 4.3). They focus on
socio-economic characteristics, on accessibility indicators or on a mix of these
factors. Two reasons explain the use estimation of different specifications. First,
Amrhein (1995) and Briant et al. (2010) argue that for econometric model the
misspecification’s issue induces larger variations of parameter estimates than
those observed between BSUs. It was thus necessary to test this issue here
(which corresponds to our second research question). Secondly, no study on
jobs’ location choices based on a DCM model exists for Brussels (see section
4.2.2).

In the subsequent analysis, all independent factors are expressed in log.
This choice has been made since the goodness-of-fit of the model was generally
higher than with the linear form. However, we did not perform a formal test
on the functional form of the model. The relative influence of this latter issue
on parameter estimates, compared with the scale effect or mis specifications
issue remains thus an open question.

These specifications are estimated for the four levels of BSUs. The bench-
mark model (i.e. the one used in the sensitivity analysis of the DCM to the size
of the BSUs, first research question) is selected among the estimated specifica-
tions using the following conditions. (a) The AIC has to be lower, or similar to
the other specifications. The AIC is used here thanks to its ability to compare
the goodness-of-fit of specifications involving different number of independent
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Specifications
Variables (1) (2) (3) (4) (5)
POP_DENS 0 1 0 1 0
ACC_JOBS 1 1 0 0 1
TIME_BXL 0 0 1 1 1
DIST_TRAIN 1 1 1 1 1
DIST_HGW 1 1 1 1 1

Table 4.3 – Specifications of the location choice models (1 means that the
variable is included in the specification, 0 otherwise)

variables. (b) All independent variables should have a significant effect on the
utility level (for α = 0.05). Other specifications (hereafter referred as control)
will be used to compare the magnitude of the variations of parameter estim-
ates between BSUs to those observed between specifications (second research
question). Both the direction and magnitude of these variations are examined.
Direction consists in studying whether the parameter estimates increase or de-
crease with the size of the BSU and if change of signs can be observed (between
BSUs and between specifications). The magnitude refers to the absolute dif-
ferences between parameter estimates. In particular, we aim to identify which
pairs of parameter estimates are significantly different from each other, between
BSUs and between specifications, by pair wise t-tests (Bonferroni correction of
the p-values).

Sensitivity analysis of the probability of location

The last step is to assess operational implications (third research question).
In LUTI models using DCM to forecast location choices of jobs, the predicted
probabilities of location (equation 4.1) are used to distribute new and/or relo-
cating jobs among the BSUs (Waddell, 2002; Waddell et al., 2003). On a pure
operational point of view, it can thus be argued that the variations of para-
meter estimates through scales are of little importance as long as the spatial
structure of these predicted probabilities of location remains identical. Let’s
imagine a municipality composed of 10 statistical wards. If the sum of the pre-
dicted probability of location at this level is equal to the probability predicted
for the municipality, the scale does not influence their spatial structure.

Moreover, the sum over all alternatives of the individual probability of loc-
ation is equal to one (equation 4.1). An increase in the utility of one zone will
thus (all other things being equal) increase the probability of that zone and
decrease those of all other zones. Hence, the link (through utilities) between
variations of parameter estimates and predicted probability of location is not a
direct one. Let us add that multivariate specifications are used, meaning that
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an increase of a parameter estimate can be compensated by a decrease of an-
other one. Descriptive statistics of variables also change between the four levels
of BSU. These reasons make it difficult to identify the exact influence of the
variations of parameter estimates. Operational implications of the choice of the
BSUs on LUTI models using DCM to forecast job’s location choices are thus
assessed using the predicted probability of location, by a two-step procedure.

First, a cluster analysis (Ward method - note that other hierarchical clus-
tering methods have been tested, leading to similar results) has been realised.
The observations used are the statistical wards, each being characterized by its
probability of location (predicted by the benchmark model) and by the prob-
abilities of location of the three larger BSU to which it belongs. It has the
advantage of allowing for a finer spatial level of analysis. Another benefit is
that it allows taking into account the four levels of BSU, rather than conduct-
ing two-by-two comparisons. The optimal number of clusters is determined
by the combination of CCC (Sarle, 1983), pseudo-t2 (Duda and Hart, 1973)
and CH index (Calinski and Harabasz, 1974). The underlying idea is that a
similar spatial structure of the predicted probability of location should lead to
a linear progression of descriptive statistics per cluster. That is to say, that
one cluster should have relatively low probability of location for all BSU levels,
another medium probability, and so on. A cluster corresponding, for instance,
to statistical wards having a low probability of location for small BSUs but a
high one for large BSUs means, on the contrary, that the spatial structure of
potential employment centres varies through scales.

Secondly, the following exercise is conducted: an increase of 1% of the num-
ber of jobs is assumed (because of economic growth), and these new jobs are
randomly distributed among BSUs, each BSU being weighted by its probab-
ility of location predicted by the DCM. Again, this procedure mimics those
employed in LUTI models (see Waddell et al., 2003). The predicted number
of new jobs per municipality can then be compared to the one per statist-
ical ward, by aggregating the latter one at the municipality level. To mitigate
the stochastic variations, 100 repetitions of the distribution procedure are used.
Note that relocation are not allowed here, meaning that the location of existing
jobs is fixed.

The workflow of the sensitivity analysis can be summarized as follows: (1)
draw of a set of specifications, (2) estimation for the four levels of BSU, (3)
selection of the benchmark model, (4) analysis of the parameter estimates’
variations through scales, (5) analysis of the parameter estimates’ variations
across specifications, (6) cluster analysis, and (7) experience of the distribution
of new jobs. The estimations have been repeated over 100 independent samples
of 1% of the observations (in the further analysis, the mean parameter estimate
over the 100 samples is used).
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4.4 Results

4.4.1 Selection of the benchmark model
Figure 4.2 gives the AIC values for each specification. For the Monocentric case
study, the variations observed across specifications are never significant. Non-
significant parameter estimates (see Table C.1) are found for specifications (2),
(4), and (5). Moreover, specifications (1) and (5) exhibits a multicollinearity
problem between the accessibility to jobs and either the distance to highways
or the travel time to Brussels, leading to negative parameter estimates for the
former variable. Hence, specification (3) will be used as a benchmark for further
analysis of the variations through scales, since (a) its goodness-of-fit is similar
to other specifications, (b) all the parameter estimates are significant, and (c)
of the expected sign (the utility decreases when the distance to Brussels or to
transport infrastructure increase).

For the Polycentric case study, at the statistical ward level, the AIC value
is significantly lower for specifications (2) and (4). Non-significant parameter
estimates are found for all cases (see Table C.2), but less frequently for spe-
cifications (2) and (3). The multicollinearity issue remains present, but its
magnitude is reduced. Hence, for comparability purpose with the Monocentric
case study, it has been decided to use specification (3) as a benchmark also
here. Other specifications are used as control, to compare variations linked to
the size of the BSU with the variations between specifications.

Note that the McFadden pseudo-R2 (see Table C.1 and C.2) of the bench-
mark model is in most cases slightly lower than the one of specifications (2)
and (4), but the differences remain weak, especially since these specifications
include 4 independent factors instead for three for the benchmark.

4.4.2 Variations of estimate parameters
Between BSU levels

Across BSUs, parameter estimates of the benchmark model are significantly
different (at the 5% level) for all variables, on all pairs of BSUs and for
both Monocentric and Polycentric cases. The only exception is the Statistical
wards/Sections pair for DIST_HGW (results of the pair wise t-test comparis-
ons are given in Table C.3, in Appendix).

Parameter estimates of the benchmark model do not evolve monotonously
with the size of the BSUs. For the Monocentric case, Municipalities appear to
behave differently than the three smaller BSUs, especially for DIST_TRAIN
and DIST_HGW (Table C.1). For the Polycentric case (Table C.2) depending
on the variable, Statistical wards and Municipalities appear different from the
other BSUs. No changes of sign are observed among parameter estimates of
the benchmark model. It should be noted, however, that TIME_BXL evolves
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Figure 4.2 – Variations of the AIC (note: error bars = AIC value +/- one
standard deviation; (x) refers to the specification, see table 4.3)

from a non-significant to a positive effect with the size of the BSUs for the
Polycentric case study.

Between specifications

Most parameter estimates are also significantly different between the bench-
mark model and control specifications for most variables and BSUs (Table C.4,
in Appendix). Non-significant differences appear, however, more frequently,
but no clear explanations for their variations across case studies, specifications,
or BSU levels emerge.

Changes of sign among parameter estimates remain limited, for the Mono-
centric case study, to the Former municipalities’ level: the parameter estim-
ates of TIME_BXL are positive for model (5), but negative in the benchmark
model. The same opposition can be observed for the DIST_TRAIN variable
between model (1) and the benchmark. For the Polycentric case, no change
of signs can be observed for TIME_BXL and DIST_HGW, only evolutions
from significant to non-significant. The DIST_TRAIN variable shows oppos-
ite parameter estimates between model (2) and the benchmark at the Former
municipalities and Municipalities level. As one could have expected, differences
in parameter estimates appear to be linked to the degree of similarity between
specifications in terms of variables included (such as the benchmark model and
model 4). The inclusion of only one additional variable may, however, have a
high influence on parameter estimates, as showed by the pair of specifications
(1) and (2), and between the benchmark model and model (5).
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Figure 4.3 – Predicted probability of location (top = Monocentric case study:
bottom = Polycentric; discretisation = quantile)
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c. Former municipalities
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Figure 4.4 – Predicted probability of location (continued from previous figure;
top = Monocentric case study: bottom = Polycentric; discretisation = quantile)
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4.4.3 Predicted probability of location

Using the benchmark, the highest probabilities of location are found in the
Brussels city centre, which is consistent with the sign of parameter estimates
(Table C.1 and C.2). Other clusters of BSUs with high probabilities of location
can be observed close to train stations and/or highways (the combination of
both factors corresponding usually to a secondary city). Variations in the
spatial structure of the probability of location through BSUs levels can also be
observed on the maps of the predicted probability of location (Figure 4.3).

Note that the aggregation of the predicted probability of location from stat-
istical ward to municipalities’ level (by summing the probability of all statistical
wards belonging to the same municipality) results in values different than those
directly predicted at municipalities’ level. Relative differences vary from -336 to
+88% for the Monocentric case study (mean = -21%), and from -324 to +86%
for the Polycentric one (mean = -18%). Moreover, the correlation (Pearson)
between aggregated and direct values is medium: 0.61*** for Monocentric and
0.52*** for Polycentric. Hence, to explore these variations on a consistent way
for the entire study area, a clustering procedure has been conducted.

For the Monocentric case study, three clusters are obtained. They are
organized in concentric rings around the centre of Brussels (Figure 4.5) and
correspond respectively to relatively low (CL1m), medium (CL2m), and high
(CL3m) probabilities of location (see Figure C.2, in Appendix). Probabilities
are significantly weaker in CL1m than in CL2m, and in CL2m compared to
CL3m, for all BSUs (at α = 0.05). For the Polycentric case study, the clustering
produces five clusters. The concentric structure from high to low probabilities
also appears, with CL3p being the city centre of Brussels, CL1p rural areas, and
CL2p suburbs or secondary centres (Figure 4.5). Two particularities should,
however, be noted: CL4p and CL5p have similar values for small BSUs, but
relatively low values are observed at the municipalities level for CL4p, and the
opposite for CL5p (Figure C.3). Note that for other specifications, the number
of clusters (using the exact same procedure) varies from 4 (model 2 and 5)
to 10 (model 4) for the Monocentric case study, and from 4 (model 5) to 11
(model 4) for the Polycentric one. The spatial pattern is also similar, although
variations in the number of clusters make a formal comparison difficult.

Figure 4.6 shows the differences in the predicted number of new jobs between
Municipalities and Statistical wards. Negative differences mean that more new
jobs are predicted at the Statistical wards’ level than at the Municipalities’ level
(and positive differences the opposite). The spatial structure of the variations
is similar for the two activity sectors, which was expected since (a) identical
specifications are used and (b) the parameter estimates are of the same sign.
The correlation (Pearson product-moment) between the number of new jobs
predicted by Statistical wards and Municipalities is of 0.62*** for the Mono-
centric case study, and also of 0.62*** for the Polycentric case study. Greater
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Figure 4.5 – Clustering procedure (at the statistical ward level, using the pre-
dicted probabilities of location)

absolute variations are found for the former one. They can be explained by
the larger number of new jobs (3 419 versus 658) and by the lower number
of BSU (62 versus 126). The municipality of Brussels and secondary cities
receives fewer jobs at the municipality level than at the statistical ward level.
On the contrary, more jobs are distributed (at the Municipalities level) in dif-
ferent small municipalities within the Brussels-Capital Region. In suburban
or rural areas, the differences are limited in magnitude. Negative differences
are found for municipalities close to transportation infrastructure, and posit-
ive differences for more peripheral municipalities. Hence, for our benchmark
model, the concentration of jobs in cities appears to decrease with the size of
the BSUs.

4.5 Discussion

4.5.1 Consistency and limitations

The sensitivity analysis presented in this chapter suffers from several short-
comings. The literature shows that the econometric framework used (linear-in-
parameter MNL model) is subject to many limitations when applied on spatial
choice sets (see chapter 7). It has specifically been decided to stick to this
model, since it is the one used by many LUTI models. Nevertheless, one may
wonder if the best option would not be to implement in LUTI model’s specific-
ations allowing to take into account a spatial effect (see e.g. Guo and Bhat,
2004; Guo and Bhat, 2007; Sener et al., 2011; Alamá-Sabater et al., 2011;
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a. Monocentric
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Figure 4.6 – Variations in the number of new jobs (Municipalities minus
Statistical ward; discretisation = Jenks)

see also chapter 7), or nested logit models (Cornelis et al., 2012). Another
drawback is that the specification of the model is limited to simple variables
and is identical for all BSUs, while Arauzo-Carod and Antolín-Manjón (2004),
de Palma et al. (2007), and our own findings, show that location choice factors
do not act uniformly through scales.

The choice of keeping the same specification for all BSUs comes from the
fact that the benchmark model performs better at all scales than any other
estimated specifications. However, it can be argued that specifications tailored
for each BSU could reduce the variations in the spatial structure of the prob-
ability of location. More fundamentally, it illustrates the limitations of the
econometric specification currently implemented in UrbanSim (see chapter 6).

The variations observed among parameter estimates between BSUs were ex-
pected, given previous works on the Modifiable Areal Unit Problem (Amrhein,
1995; Arbia, 1989; Fotheringham and Wong, 1991; see, in particular, Arauzo-
Carod and Antolín-Manjón, 2004 and de Palma et al., 2007 for DCM). This
chapter thus confirms that such variations can be expected in all applications of
DCM. The size of the BSUs does not influence the sign of parameter estimates
here, meaning that the influence of a given factor on utility remains positive
or negative through scales even if its intensity varies. However, independent
factors were limited in this chapter to variables expected to have an influence
on jobs’ location choices at all scales. This result may thus be an artefacta due
to the methodological choices made throughout this chapter.
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4.5.2 Variations across BSU levels and specifications

The exact direction and magnitude of the observed variations in parameter
estimates are obviously specific to our case study. It should be noted, how-
ever, that these variations are not monotonous. For the Monocentric case
study, parameter estimates generally increase (in absolute terms) from Stat-
istical wards to Former municipalities, while they decrease for Municipalities.
For Polycentric, an increase is observed from Statistical wards to Former mu-
nicipalities, followed by stabilization.

Other works assessing the influence of the MAUP on DCM (Arauzo-Carod
and Antolín-Manjón, 2004 and de Palma et al., 2007) rely indeed on only two
different levels of analysis. Hence, predicting or controlling variations of para-
meter estimates through scale is not straightforward, since these variations do
not seem to be directly linked to the size of the BSUs. A potential reason is
that administrative units do not correspond to the land use structure, even if
modellers are often constrained to use such areal units, for a data availability
reason, and because they remain a relevant unit for policy making. In the
absence of comparable analysis in other works, it is difficult to assess the ex-
tension of these findings. Since the probability of location in a zone i depends
on the utility of i and that of all other zones (see equation 4.1), we expect that
they will remain valid for other case studies.

Previous works (Amrhein, 1995; Briant et al., 2010) found larger variations
of parameter estimates between specifications than between BSU levels. Mag-
nitude of the parameter estimates’ variations are here comparable between
BSUs and specifications (significant differences are observed in most cases; see
Tables C.3 and C.4). The use of a different econometric model may constitute
an explanation, and scales are not perfectly comparable. Briant et al. (2010),
for instance, worked on France, with larger areal units. The high degree of
similarity between specifications in terms of independent variables is also likely
to reduce the differences between parameter estimates. Hence, spatial biases
are here found to be of comparable magnitude with misspecification issue. The
location choice models remain, however, very simple. The comparison of differ-
ent specification should thus be seen as a methodological precaution (to be sure
that spatial biases are worth worrying about), and certainly not as a complete
analysis of misspecifications issues in DCM.

4.5.3 Spatial structure of the probability of location

The third research question addressed by this chapter is to examine if the size of
the BSU influences the spatial structure of the predicted probability of location
(let us recall that the case studies correspond to two activity sectors, services
and industrial activities). The answer appears to be yes. More precisely, ag-
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gregation into large BSU levels leads either to a dilution or to a diffusion of the
high probabilities predicted for small BSU levels.

Consider the example of a large BSU made of five smaller BSUs, and imagine
that the estimation of the DCM at the small BSUs level leads to one BSU
having a high probability of location, the four others a low probability. It is
likely that at the aggregated BSU level, we will end up with a low probability of
location. This is the "diffusion" process, that occurs when statistical wards with
a high probability of location are rare in a given municipality. The "diffusion"
process takes place when the importance of these statistical wards is larger (e.g.
when two or three of the small BSUs, among the five, have a high probability
of location). In that situation, these high probabilities are transferred to the
aggregated BSU level, ending up with a municipality having a relatively high
probability of location.

Results show that these processes have a limited influence for the Mono-
centric case study, where one cluster corresponds to relatively low probabilities
of location at all scales, another to medium probabilities, and the third one to
high probabilities. Moreover, the concentric structure of these clusters, centred
on the Brussels CBD, is consistent with the urban structure. Statistical wards
belonging to the "medium" cluster (CL2m) that are scattered within the "low"
one (CL1m) encompass secondary employment centres (Wavre, Louvain-La-
Neuve and Halle). Note that the distribution of the predicted probability of
location is highly skewed, which explains why CL2m shows a negative deviation
from the global median (Figure C.2, in Appendix).

The situation is more complex for the Polycentric case study (i.e. jobs
belonging to industrial activities). "Low" to "High" clusters are also found
(respectively CL1p, CL2p and CL3p) and their spatial extension are close to
the one observed for the Monocentric case. This similarity can be explained by
the fact that identical specifications are used for both case studies, and that
the parameter estimates have the same sign. The study area being larger, the
"Medium" (CL2p) cluster encompasses extra secondary cities: Aalst, Mechelen
and Leuven, while the "Low" (CL1p) cluster corresponds to most of the rural
parts of the study area.

Two additional clusters are observed. CL5p corresponds to statistical wards
for which the probability of location tends to increase with the size of the BSU,
and CL4p to the opposite. Looking at their spatial structure, CL5p is com-
posed of low-density statistical wards located within the municipality of above
mentioned secondary employment centres. (The statistical wards where the
jobs are actually located in these municipalities belonging to CL2p). CL4p
is found surrounding isolated CL2p’s statistical wards (or next to CL1p), but
located on the other side of a municipality boundary. Hence, the relative ex-
tension of potential employment centres depends on the scale of the analysis.
On the first hand, when the size of the BSUs increases, some statistical wards
could become part of an employment centre: this is the diffusion process ob-
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served for CL5p. On the other hand, some statistical wards are diluted into a
rural neighbourhood, as for those belonging to CL4p.

4.6 Summary and implications for LUTI models

Operational implications, for LUTI models, of the sensitivity of DCM to the size
of the BSU can only be partially explored by the stand-alone DCM presented
in this chapter. The main reason is that the utility of each BSU is assumed
here to be constant. There is no feedback’s effect decreasing the utility of one
BSU when its number of jobs’ increases. In a complete LUTI model, feedbacks
can arise from several factors (see chapter 5 and chapter 6).

A classical example is that an increase of the job density in one BSU should
increases the real estate prices. If these real estate prices are included as in-
dependent variable, with a negative parameter estimate, in the specification of
the location choice model, the utility level of that BSU will decrease in t + 1.
Another potential feedback is that the travel time to Brussels may increase
when the number of jobs increases, due to congestion effects simulated by the
transport component of the LUTI model. If such feedbacks are present, the
distribution of new jobs by a LUTI model would not be identical to the one
simulated here.

The distribution of new jobs among BSUs, proportionally to the predicted
utility level, vary when observed at different scales. For our case studies, sub-
stantial differences are observed in the absolute number of new jobs per muni-
cipality. A strong spatial structure also emerges, large BSU levels leading to
a lower concentration of jobs in urban areas (Figure 4.3). Hence, even if the
experiment performed here shows that the distribution of new jobs is similar
through scales (high correlation for the number of new jobs per BSU, see sec-
tion 4.4), it also shows that employment centres gain more or less importance
during the simulation, depending upon the size of the BSU used. The nature of
the BSUs for which the DCM predicts a high probability of job’s location can
explain these findings. Such BSUs correspond either to (a) actual employment
centres (i.e. BSUs where a large number of jobs are located) or (b) to BSUs
having similar intrinsic characteristics than these employment centres, even if
the number of jobs located in it is presently limited. The latter ones are less
frequent for large BSU levels than for small ones, for two reasons. First, a lar-
ger size means that adjacent BSUs are more likely to be dissimilar. Secondly,
the lower number of large BSU means that the distribution of the probabil-
ity of location is less continuous. Hence, the spatial heterogeneity increases
with the size of the BSUs (although the variation range of independent factors
is lower, see Table 4.2), which may explain the higher heterogeneity in terms
of predicted probability of location. However, this spatial heterogeneity does
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not explain the differences observed when the probability of location at the
statistical wards’ level is aggregated into municipalities (see section 4.4.3).

LUTI models such as UrbanSim (see chapter 2) rely on the probabilities
of location estimated by the DCM to distribute new/relocating agents during
iterations of the model. Variations in the spatial structure of the high prob-
ability of location have thus important operational implications for land-use
planning: they mean that estimating a jobs’ location choice model for one
BSU level instead of another may lead to forecasting different zones as the bet
potential for future jobs’ location. These variations in the spatial structure
of the probability of location are not straightforward to predict, as showed by
the structure of the clusters for the Polycentric case study. The reason is that
they depend simultaneously on three elements: (1) the variations of parameter
estimates over scales and (2) of descriptive statistics of the explanative factors,
that affect the utility level of each BSU, and (3) the number of these BSUs: the
sum of the probability of location is one. Hence, all other things being equal,
an increase of the utility of one BSU leads mechanically to a decrease in all
others.

Although the lower importance of the employment centre observed for large
BSUs is a result specific to our case studies, this situation corresponds to the
identification of employment sub centres. Hence, prior to estimate a DCM of
jobs or firms’ location choices, a careful exploratory spatial data analysis of
the distribution of jobs should be conducted, in order to identify these sub
centres at different scales and to compare their importance and localisation.
Even if economic activities still tend to cluster into office parks (Archer and
Smith, 1993), a multi polarisation trend has long been observed in cities (see
e.g. Ladd and Wheaton, 1991), and many studies have attempted to identify
the sub centres of employment. Nevertheless, no consensus appears on the
appropriate methodology (Redfearn, 2007): traditional cut-off approach such
as in the seminal work of Giuliano and Small (1991) on Los Angeles, locally
weighted regressions (McMillen, 2001; McMillen and Smith, 2003), local meas-
ure of spatial autocorrelation (LISA, see Anselin, 1995; Riguelle et al., 2007)
or Discrete Choice Model (Shukla and Waddell, 1991 with Dallas-Forth Worth
as the case study). Given the sensitivity of econometric method parameter
estimates to the size of the areal units demonstrated in the literature, the use
of non-parametric methods (such as the LISA) should be preferred.

The sensitivity of Discrete Choice Models to the size of the spatial units used
as the choice set highlighted by this chapter is consistent with the literature on
the Modifiable Areal Unit Problem (see e.g. Arbia, 1989; Fotheringham and
Wong, 1991) and can be summarised as follows. First, a significant influence
to the size of the BSU is found for parameter estimates of the DCM and,
consequently, on predicted probability of selection of the alternatives in the
choice set. It allows extending previous works (Arauzo-Carod and Antolín-
Manjón, 2004; de Palma et al., 2007; see also chapter 2) to a broader range of
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scales, by showing that similar conclusion can be draw from an urban case study
with small BSU. Secondly, these variations are of the same order of magnitude
than those observed between specifications. If we compare these results to
those of Amrhein (1995) or Briant et al. (2010), it suggests that the relative
importance of spatial biases and misspecifications issues depends on the case
study and econometric methods considered. Here, a comparable influence on
the model is found. Finally, the distribution of new jobs among the study area
(using the probability of location predicted by the DCM) is different between
scales. Since DCMs are used to forecast agent’s location choices in many LUTI
models (see Wegener, 2004 and chapter 2), their outputs (e.g. the final number
of jobs and households per BSU) may thus be affected by using one level of
BSU instead of another, which will be assessed in chapter 6.
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5
Experiments on a synthetic case study

5.1 Introduction

This chapter focuses on the sensitivity to spatial bias of the direct outputs of a
LUTI model, i.e. the final number of agents per zone. Chapters 3 and 4 show
that such bias affect parameter estimates of econometric sub models within
UrbanSim’. Chapter 4, in particular, demonstrates that the size of the areal
units used as choice set may affect the estimation of agents’ location choices.
However, due to the large number of feedback effects within a LUTI model,
it is not straightforward to link the variations of parameter estimates to those
observed in the final distribution of agents.

A simple synthetic case study is used, in two configurations. First, a mono
centric and isolated city. The influence of both the scale and boundary effects
will be assessed, as well as the influence of two simple scenarios (improvements
of the transportation network and urban growth boundaries). Secondly, a
poly centric metropolitan area will be implemented. The idea of the second
configuration is to study more in-depth the influence of the boundary effect.

The chapter is organised as follows. Section 5.2 details the internal prin-
ciples of the UrbanSim model. The implementation of the synthetic city is
presented in section 5.3, on both theoretical and practical point of view. Section
5.4 then presents the experiments on the mono centric configuration, followed
by section 5.5 for the poly centric one. Section 5.6 summarises the findings and
their implications for real world applications of LUTI models.
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5.2 The UrbanSim model

UrbanSim is a quasi dynamic model, based on a disaggregated representation
of agents (households, jobs, see Waddell et al., 2003; Simmonds et al., 2013)
and space (buildings, zones). An overview of the model system (Figure D.6)
can be found in Waddell (2000); Waddell (2002); or Waddell (2011). Figure
5.1 details the sequence of sub models called by UrbanSim. See chapter 2 for a
comparison of UrbanSim with other LUTI models. Technical details on the sub
models can be found in Sevcikova et al. (2007). Finally, note that UrbanSim
only models the evolution of agents and land-use and has thus to be interfaced
with a transport model, here MATsim (see Nagel et al., 2008), for simulations
of the home to work trips and computation of accessibility indicators.

The model exists in three different versions: "gridcells" (the original im-
plementation, discarded in recent applications), "zones", and "parcels". In the
gridcells version, the study area is divided into pixels, while in the zone version,
the BSUs are of irregular sizes and shapes, corresponding usually to adminis-
trative units. The parcel version is very similar, except for the real estate
development sub model (see Zollig Renner and Axhausen, 2015). In this sec-
tion, we focus on the zone version, since it is the one used in most applications
of the model. Appendix D.1 gives the list of the tables required by UrbanSim’
database (and their content), while the list of existing sub models is given in
appendix D.2.

Hierarchical structure: zones, buildings, agents

UrbanSim operates on three levels: zones, buildings, and agents. The zones
are the BSU used by the model, corresponding usually to administrative de-
lineations. Their size and shape are, therefore, constant. These zones are used
to store environmental amenities that consist in user-defined variables plus the
outputs of the transport model (see appendix D.1). The surface of a zone is
not explicitly shared among land use categories. UrbanSim relies rather on
intermediate entities (between zones and agents), called buildings.

These buildings are divided among several building types (whose categor-
ies are user-defined). A building of type j in a zone i constitutes an aggregated
representation of all individual buildings of that type existing in the zone. The
buildings represent current and potential land use through different charac-
teristics. Let us give an example assuming that a zone i comprises 10 houses
(among other buildings) and that a provision (determined by land-use planning
rules) exists for two new construction. The corresponding "house" building in
i is characterised by the existing number of residential units (here 10, whether
they are actually occupied or not) and by a capacity of residential units of 12.
Other characteristics include the total land area consumed by these 12 houses,
and their average value (see appendix D.1). Additional characteristics can be
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Figure 5.1 – The UrbanSim model system

defined by the user, but their value will not be updated by the model system.
Note that building types are either residential or non-residential. The former
can accommodate households and home-based jobs, while the latter are limited
to non-home-based jobs.

Two types of agents are represented in UrbanSim: households and jobs.
Note that firms are not represented in UrbanSim and that employment is,
therefore, accounted for by these individual jobs. Both categories of agents
are attributed to a given building. All households belong to the same cat-
egory but several intrinsic characteristics (see appendix D.1) can be defined. It
should be noted, however, that UrbanSim does not model demographic or eco-
nomic evolutions. One household of four persons, having two cars, and earning
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a total annual income of 50 000 monetary units will, therefore, keep the same
characteristics during the simulation period. The only exception is that house-
holds can relocate from one building to another. A demographic sub model
was developed during the SustainCity project (see Turci et al., 2015), but has
not been implemented in any operational application of UrbanSim (including
those of the project).

Jobs are first divided between home-based and non-home-based jobs. The
former can include all types of activities, while the latter are further divided
among the activity sectors (which are user-defined). Firms are, however, not
explicitly modelled. Intrinsic characteristics of jobs are, therefore, limited to
the category (i.e. home-based or non-home-based status), the activity sector,
and the id of the building where the job is located. This latter variable is, as
for households, the only one that can evolve during the simulation period.

Finally, although UrbanSim relies on households, MATsim operates at the
level of the individual. Hence, an intermediary entities can be defined, the per-
sons, allowing the exchange of information between the two models (see section
5.2.1). As indicated by its name, the persons’ level consists in a disaggregated
representation of every individual composing the households. Personal charac-
teristics (see appendix D.1) can thus be added but are generally limited to the
id of the job occupied by the person (if any). As already mentioned, there are
no demographic components within UrbanSim, meaning that the characterist-
ics of persons are constant over the simulation period, as for households.

5.2.1 Iteration

UrbanSim operates by iteration of one year during which five sequences of sub
models are called (Figure 5.1). Before reviewing them, let us note that all sub
models within UrbanSim correspond to only four different methods:

• Deterministic: a sub model that compute a quantity, using a mathem-
atical formula and various inputs;

• Sampling: a sub model that select a given number of agents by random
sampling;

• Discrete choice: a DCM predicting the location choices of agents (see
chapter 4 for details on the econometric specification);

• Regression: a regression predicting the future level of real estate prices
(see chapter 3 for details on the econometric specification).
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Buildings

The first sequence ("buildings" on Figure 5.1) aims at predicting real estate
developments occurring within the study area. Its principle is summarised by
Figure D.1 and consists in the successive cal of three sub models:

1. In the Development Project Transition sub model (DPTM), the vacancy
rate (i.e. the number of existing residential units minus the number
of households) is compared to the (exogenously defined) average long-
term vacancy rate. If the current rate is lower than the target, future
development project are created in order to reach the target;

2. The location of these development projects is determined by the resid-
ential development projects’ location choice sub models (RDLCM), and
constrained by development capacities: real estate developments can only
occur if the building is not at its (exogenously defined) maximal capacity;

3. Finally, the last sub model of the sequence (Add Project to Buildings)
updates the characteristics of the buildings to which a new development
project have been affected.

The same procedure is repeated for every building type. Note that on Fig-
ure 5.1, NRDLCM refers to the non-residential development projects’ location
choice sub model. RDLCM and NRDLCM are divided into one specification
for each building type.

Households and jobs

The second and third sequences are identical in their principles (Figure D.2 and
D.3). Their role is to forecast future location of new or relocating households
and jobs, as described hereafter:

1. The Household Transition sub model (HTM) simulates population growth.
The total number of households at each iteration is defined exogenously
as a macro-economic assumption. Hence, the HTM sub model will first
compute the number of new households, equal to the difference between
the total defined for t minus the total in t − 1. Then, it draws the cor-
responding pool, by random sampling, among existing households. The
new households are created by duplicating this sample;

2. The Household Relocation sub model (HRM) selects the moving house-
holds, i.e. those that will change their residential location. The number
of moving households is computed as the total number in t times the
households’ relocation rate (an user defined macro-economic parameter);
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3. Finally, the Household Location Choice sub model (HLCM) allocates the
set of relocating households (new + moving) to available locations.

Note that households’ relocation rates can be divided according to age of
head and income level. As mentioned above, the procedure is identical for
jobs, except that different macro-economic assumptions and specifications of
the Employment Location Choice sub model (ELCM) have to be declined for
each activity sector. Chapter 4 details the econometric specification of the
ELCM. Stricto Sensu, the model allocates new or relocating agents to build-
ings. However, except their type, real estate values and capacities (i.e. the
number of households or jobs that they can receive), buildings have no in-
trinsic characteristics. In many implementations of UrbanSim (Waddell et al.,
2003, Waddell et al., 2007, de Palma et al., 2015a, and Cabrita et al., 2015),
location factors of agents are thus limited to zonal attributes (e.g. income
level, population or job densities, car accessibility) for jobs, or to a mix with
households’ characteristic; see also chapter 6).

Real estate prices

At this point, the iteration is almost completed. The fourth sequence (Figure
D.4) only consists in updating real estate prices to the new distribution of
agents. Hence, the Real Estate Price sub model (REPM) predicts the price
level in t + 1, using a log-linear regression model (see chapter 3). Note that a
different specification of the REPM is used for each building type.

Transport

The fifth sequence (Figure D.5) calls the external travel model (here MAT-
sim), to update transport indicators. The reasons for using MATsim are given
in chapter 1. Although it is a micro-simulation activity-based model able to
simulate multi-purpose trips, the coupling plug-in with UrbanSim is limited to
home to work trips (see Nicolai and Nagel, 2010, Nicolai et al., 2010, Nicolai
and Nagel, 2011 and Nicolai and Nagel, 2015). Practically speaking, MATsim
reads the location of workers and jobs from UrbanSim’ database to perform
the estimation transport fluxes. The following indicators are then exported to
UrbanSim: (1) at the zone level, the accessibility to jobs by different mode (by
foot, by car with and without congestion, and by public transport if any). (2)
Home-to-work (and work-to-home) travel times and distances are estimated at
the persons level. Note that the accessibility to jobs is computed as a log sum,
i.e. a Shimbel index weighted by the number of jobs in each destination.

Additional configuration files are requested byMATsim. The transportation
network must be stored in external xml file (i.e. not included in the UrbanSim
database). The road network is accounted for by storing a list of nodes, char-
acterised by their X/Y coordinates, and links that join nodes together. Five
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characteristics must be given for each link: (1) node of origin, (2) node of des-
tination, (3) maximal travel speeds in m/s, (4) number of traffic lane, and (5)
capacity in vehicle per hour. It is possible to define a public transport network,
by an origin - destination matrix of travel times and distances, the nodes of the
matrix accounting for public transport stops. The implementation of transport
scenarios also requires specific configuration files. A cordon fee scenario will,
for instance, rely on an additional file to store the list identifying the links
of the road network subject to the fee and the characteristics of the fee (i.e.
start/end time and amount of monetary units).

5.3 A simple, small-scale, synthetic city for UrbanSim

The use of synthetic data sets is frequent in studies on the MAUP, to control
the relation between variables (e.g. Fotheringham and Wong, 1991, Amrhein,
1995, and Reynolds and Amrhein, 1998). The purpose of an artificial case
study is similar here, since it allows controlling the structure of the city and,
therefore, the factors driving agents location choices. Several simplifying as-
sumptions have been made to reduce the number of parameters that control
the structure of this synthetic city. The goals of this section are to details
these assumptions and to outline the practical implementation of the script
generating the database of the synthetic city.

5.3.1 Agents characteristics
We assume that agents are homogenous. All households include three persons
(two parents, one children), and both parents work (the complete list of agents’
characteristics accounted for by UrbanSim is given in appendix D.1). To avoid
discrepancies in the transport model, the number of car is set to two. The total
annual income (identical for all households) is set to 50 000 euros (close to the
average annual income in Belgium according to the 2001 population census).
Other characteristics are also based on average values observed in Belgium.
All jobs belong to the same employment sector. Given the assumption that all
households include two workers, if H is the number of households in t0, the
total number of jobs is equal to J = 2H. Note that these jobs are divided
among non-home-based jobs (95% of the total) and home-based jobs.

Since agents are homogenous, their creation does not involve a real synthetic
population approach (see e.g. Barthelemy and Toint, 2013 for a state-of-the-
art application to Belgium, or Farooq et al., 2015b; Farooq et al., 2015a for
applications developed during the SustainCity project). All fields have identical
values (see Table D.1), except the ids (household, building, and zone). Hence,
the generation of agents merely involves inputting the correct number of rows
(one row per agent) in the households and jobs’ tables. The use of homogenous
agents is a strong simplifying assumption. It is, nevertheless, consistent with
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the initial formulation of the Alonso-Muth model, on which the structure of
the synthetic city is based (see section 5.3.2).

5.3.2 Spatial structure of the study area
The synthetic city is developed on a featureless landscape. The space is divided
into squared grid cells of identical size (the number of rows and columns can
be adjusted by the user). Three parameters must be given to set up that
grid: the number of rows and columns, and the surface of a cell. The only
characteristic of a grid cell is, therefore, its Euclidean distance to each CBD
(whose location and relative size must be exogenously provided). However, the
mathematical form of the synthetic city, i.e. the functions allowing to compute
the initial number of agents per zone, is mostly the result of trials and errors.
The reasons are detailed hereafter.

Methodological constraints

When building the synthetic city, we decided that the utility function of house-
holds should follow the principles of the Alonso-Muth model, i.e. to (a) increase
with the accessibility to jobs and (b) to decrease with the real estate prices.
These real estate prices should, in turn, be proportional to both the households
and population density. However, contrary to a pure theoretical city approach
(e.g. Schindler and Caruso, 2014, Delloye et al., 2015; see also section 7.4.1),
this utility function is not defined explicitly in UrbanSim, but results from the
estimation of the households’ location choice model. Practically speaking, the
utility level of households in each zone is determined by the variables included
in this sub model, and by the sign of their parameter estimates.

Which means that we had to define the initial spatial structure of house-
holds and jobs without knowing if the estimation of the location choice and real
estate price sub models will produce parameter estimates of the desired sign.
Therefore, rather than relying on theoretical density functions such as Clark
(1951)’ law (a negative exponential; see also Newling, 1969; Batty and Longley,
1994), we had to proceed by trial and error. The mathematical form finally
selected (see equations 5.1 and 5.2) allows having the desired direction of the
feedback effects on the utility level1. It consists in an inverted logistic curve
for the population density, and to a negative exponential for jobs. Although
somewhat different from above-mentioned theoretical densities’ functions, this
choice implies that jobs are highly concentrated close to the CBD, while house-

1Testing different mathematical form of the synthetic city is a burdensome task. It
involves generating a complete database, then to import into UrbanSim (which cannot be
fully automated), and to estimate manually the econometric sub models. Hence, even if
different values of the distance - decay parameter (β) had been tested, no full sensitivity
analysis was performed.
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holds sprawl more towards the suburbs. Both characteristics are consistent
with the Alonso-Muth model.

Mathematical form of agents’ densities

The mathematical functions controlling density take thus the form of an inver-
ted logistic curve for households (equation 5.1), and to an exponential decrease
is for non-home-based jobs (equation 5.2). They allow determining the attrac-
tion potential of a zone i, noted Pi. In equations (5.1) and (5.2), α denotes
the relative size of each CBD (see section 5.5), β the distance-decay parameter
(set to one here), and n the number of CBDs.

Pi(h) = (
∑
i=1:n

αn
1

1 + e−βhdin
)/n (5.1)

Pi(j) = (
∑
i=1:n

αne
−βjdin)/n (5.2)

Potential Pi(h) and Pi(j) are then re-scaled between 0 and 1. The number
of households hi and non-home-based jobs ji in a zone i in t0 is thus equal to
HPi(h) and 0.95JPi(j) (rounded to the closest entire value). Home-based jobs
are distributed between zones proportionally to the household’ density.

Land use and buildings

In a zone version of the UrbanSim model, agents are located in buildings, which
in turn are situated in one given zone. The building types are limited to Houses
and Offices. They are assumed to be mono-functional, i.e. purely residential
or non-residential. Their characteristics (number of residential units, of non-
residential square feet, and average value) depend on the number of agents per
zone.

The following assumptions are made for residential buildings (Houses) in
t0. First, the number of residential units (i.e. existing dwellings) for an house
located in the zone i is equal to ru0 = hi(1+vr) with vr the average, long-term,
vacancy rate (set here to 10%). The residential units capacity ruc is equal, for
all Houses, to the maximal value of ru0. Practically speaking it means that
the residential developments’ capacity is null in the CBD and increase with
the Euclidean distance to the CBD. The identical value of the residential units
capacity for all zones reflects the absence of any land-use planning constraints.
Note that since the utility level of households is higher close to the CBD, we
have to define a threshold value preventing all new or relocating households to
locate in the CBD. An additional capacity of zero was the simplest definition
for that limit.
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Finally, the average value per residential unit (prui ) is defined by equation
5.3, where µ(hi) denotes the average number of household and Cr a constant.
Note that Cr is set to 50 000 here (in order to have real estate price close to
values observed in Belgium) but has no practical importance. Since incomes
are uniform among households, only the spatial variations of the residential
prices matter in their location choices.

prui = hi
µ(hi)

× Cr (5.3)

Non-residential buildings (Offices) are similarly characterised by the exist-
ing floor space for jobs, the floor space capacity (existing + developable) and
their average price. Note that this latter characteristic is here the value of one
square meter of floor space, not (as for Houses) the price of the entire build-
ing. This is an hard-coded assumption in UrbanSim’ source code, see Waddell
(2000). The non-residential surface in t0, noted nr0, is equal to 20ji(1 + vr).
In other words we assume that each job require a surface of 20 square meters.
The non-residential surface capacity (nrc) is equal to the maximal value of nr0.
The real estate prices in t0 are given by equation 5.4, where µ(ji) denotes the
average number of non-home-based jobs per zone, and Cnr is a constant (set
to 100 here).

pnri = ( hi
µ(h) + ji

µ(j) ) × Cnr (5.4)

Finally, note that the buildings are assumed to be mono-functional, meaning
that the non-residential surface (both existing and potential) is set to zero for all
Houses. Non-residential buildings, conversely, does not include any residential
unit.

5.3.3 Macro-economic assumptions

The macro-economic assumptions represent the steady state of the studied
urban area. They are, therefore, user-defined and specific to each case study.
The only assumption here is that the population growth is linear, meaning that
Hn, the number of households in tn is equal to H0(1+g)n−1 with n the number
of year and g the population growth rate. The control totals for jobs are derived
from these values for households, following the rule that J = 2H. Another
simplifying feature is that the (user-defined) relocation rates are identical for
households and jobs and constant since agents are homogenous.
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5.3.4 Transportation network
A road network connects the centroid of each zone to the centroid of all adjacent
zones, on a von Neumann neighbourhood and in both directions (i.e. A to B
and B to A). The length of each link is the Euclidean distance between the two
centroid. Maximal speed is set to 13.88 m/s (50 km/h, the maximal authorised
speed in urban areas in most European countries), and the capacity of each
lane (one in every direction) to 500 vehicles per hour.

We decided not to include any public transport system, since it would
have required numerous assumptions about the location of the public trans-
port stops, and on the travel times. Moreover, the accessibility to jobs by
public transport would only influence the location choices of households if this
variable is included in their utility function (see Table 5.2). We recognise that
this methodological choice constitutes a strong limitation. Nevertheless, given
the limited additional indicators that a public transport network would have
offered (limited to travel times, since technical problems were encountered with
the model choice component; see chapter 6), it seemed not to be worth the trade
off.

5.3.5 Practical implementation
The synthetic city is generated by a script, written in R. The inputs are limited
to a csv file storing the user-defined parameters (see section 5.3.2). The outputs
consist in a database (csv files) consistent with the requirements of zone version
of UrbanSim (see appendix D.1). Table D.3 summarises the sequence followed
by the script. Note that different actions are required after the generation of
the database before being able to run simulations. Overall, these steps are the
following:

1. Input user-defined parameters within a csv file;

2. Run the "synthetic city" script within R (see Table D.4);

3. Upload the different tables into a SQL database (this step is required to
ensure that UrbanSim store the different fields in the good encoding, i.e.
integer, float, or string - an additional R script allows automating this
procedure);

4. Upload the SQL database to OPUS using the built-in functionnalities;

5. Define and estimate the econometric sub models (REPM, HLCM, ELCM,
RDPLCM, NRDPLCM - this step has to be done manually);

6. Run the MATsim to compute initial values of travel and accessibility
indicators (practically speaking, it consists in running UrbanSim for one
iteration with all other sub models deactivated);
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7. Run complete simulations within UrbanSim

5.4 Mono centric configuration

This first implementation of the synthetic city is used to assess both the in-
fluence of the scale and boundary effects. This section consists, however, in an
exploratory analysis. There is two reasons for that. First, the development
of this synthetic case study is mostly the result of trial and error, leading to
a somewhat non careful definition of the experiment plan. Secondly because
several components of the model system are neutralised, to keep the feedback
effects as limited as possible. The assessment of spatial bias is, therefore, es-
sentially based on pairwise comparisons.

Note that we assume a mono centric synthetic city, and an higher utility
level close to the CBD for both households and jobs. The reason of this choice
is to reduce the influence of variations of the spatial extent. Since the aim of this
work is to assess the sensitivity of UrbanSim to spatial bias, we feel necessary
to rely on a case study where the influence of these biases should be limited.

5.4.1 Methodology
Structure of the synthetic city

The synthetic city is assumed to be a grid of 45 × 45 zones (the central one being
the only CBD). The surface of each of the 2 025 zones is of 2 km2. The initial
number of households is set to 405 000 in order to have an average population
density of 100 households (or 300 inhabitants) per square kilometre. Given the
parameter used in the potential equations (5.1 and 5.2), it gives a maximal
number of households per zone of 350, or 385 residential units (with the 10%
vacancy rate). Macro-economic assumptions are the following: we assume a
constant growth rate (of 1% per annum) of the number of households. The
relocation rate is set to 10% per annum. Finally, the target vacancy rate for
residential buildings has been arbitrarily fixed to 10%.

In order to simplify the behaviour of the model, the evolution of the jobs
is not accounted for. Growth and relocation rates are set to zero for this
category of agents. The corresponding sub models are thus neutralised during
one iteration of UrbanSim. Note that the existing stock of dwellings is sufficient
to accommodate the total number of households at the end of the simulation
period, allowing to neutralise also the sub models simulating the development
of new residential or non-residential capacities.

Case studies

Three case studies are defined (Figure 5.2). To assess the influence of the scale
effect, two nested BSU levels are compared: (a) Reference and (b) Aggregated,
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which consist in a simplification of the city into a 15 by 15 grid, meaning that
each large BSU is constituted of a square of nine initial zones (for a total of 149
large BSUs). Re-aggregation procedure between the Reference and Aggregated
case study is limited to land-use (i.e. buildings and zones): characteristics of
aggregated zones or buildings are computed using initial zones or buildings
values, by sum (surface, number of existing and potential residential units)
or mean (average value per unit, distance to the CBD). For agents, the re-
aggregation procedure consists in the replacement of their initial id(s) by the
id of the aggregated zone or building to which the agent belongs. Note that to
avoid shape problems (see section 5.4.2), it has been decided to use a subset
of the initial synthetic city, consisting of a circular study area. The extension
is based on the Aggregated case study and includes all large BSU having their
centroid in the circle inscribed in the initial square.

The boundary effect considers the Reference case study as the complete ex-
tension of the study. A Subset case study is generated by selecting all the zones
for which the Euclidean distance between their centroid and the centroid of the
CBD is less or equal to an arbitrary selected threshold of 60% of the maximal
distance (see Figure 5.2). The sub setting procedure consists in extracting
from the original database the agents and buildings that belong to one of the
zone of the subset. Since the BSU level does not change, no re-computations
of buildings or zones characteristics are necessary. Control totals are adapted:
the share of households in the Subset relative to the total for the Reference
case study is computed, and the same ratio is used for the population growth
in the subset (i.e. final - initial number of households). Descriptive statist-
ics for all case studies are presented in Table 5.1. Figure 5.3 shows the main
characteristics of the synthetic city in t0.

Scenarios

Three scenarios are implemented on each case study (ending up with nine pairs
case study/scenario). First, the Baseline scenario assumes a linear evolution of
the synthetic city, without external shock. Secondly, a transport infrastructure
improvements scenario (Highways) has been defined as follows: the replace-
ment of all roads between the CBD and the BSUs located on the north, east,
south and west by express roads. The attributes of the corresponding links in
the network used by MATsim have an average speed of 25 m/s (90 km/h), two
circulation lanes and a capacity of 3 200 vehicles per hour. Figure 5.4a shows
the relative variation of the car accessibility to jobs induced by the implement-
ation of this scenario. Thirdly, Urban Growth Boundaries (UGB) are defined
by increasing the provision of residential units in the BSUs close to the CBD
(i.e. at less than 40% of the maximal distance to the CBD) and decreasing it
in the BSUs located further away (Figure 5.4b). Note that the total number of
residential units remains identical between scenarios. Both Highways and UGB
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Case study
Reference Aggregated Subset

BSU 1341 149 861
Agents Households 321 160 321 160 236 284

Jobs 610 191 610 191 433 828
Variables Hab/km2 Min. 75.0 78.6 101.5

Mean 119.7 119.7 137.2
Max. 176.0 175.3 176.0

Jobs/km2 Min. 169.0 172.9 198.0
Mean 227.5 227.5 251.9
Max. 426.0 397.6 426.0

Car accessibility Min. 7.70 8.84 8.15
to Jobs Mean 9.18 9.63 9.30
(Logsum) Max. 9.68 10.20 9.74
(Log of) Houses Min. 9.19 9.50 10.71
price Mean 11.41 11.43 12.14

Max. 14.93 14.73 14.93

Table 5.1 – Mono centric case studies

scenarios take place in t0, meaning that the changes in the baseline situation
occur before the start of the simulations.

Note that these scenarios have been designed to trigger a response of the
model system rather than to mimic land-use policies currently implemented in
metropolitan area. In particular, the implementation of the Highways scen-
ario should have a direct effect on households’ location choices, since it affects
one of the independent factors driving their utility level (see Table 5.2). An
improvement of the existing road network is a simplifying assumption but is
also, on a practical point of view, the more straightforward way to implement
a change in the car accessibility to work. Obviously, for real-world case studies,
the transport scenarios implemented nowadays would rather consist in restric-
tion on the road network (e.g. cordon toll) or the development of alternative
mode (see chapter 6). The effects of the UGB scenario are, on the contrary,
indirect. The utility level of households is not affected by its implementation,
but the available location yes, which may influence the final situation predicted
by UrbanSim.
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Reference
Subset

Aggregated
Initial

Figure 5.2 – Mono centric case studies

Calibration of econometric sub models

The aim is to keep the number of feedbacks within the synthetic city as low as
possible. Econometric sub models have thus been limited to variables consistent
with the Alonso-Muth model. Location choices of households are assumed to
depend only to the (log of) job density and houses prices, and on the car
accessibility to jobs. Parameter estimates for both case studies are given in
Table 5.2. This set of independent factor is implemented for two reasons: (a)
their relevance for households’ location choices (e.g. Anas, 1982, Fujita, 1989),
and (b) because the values of these variables are updated at each iteration of
the model, which allows taking into account the evolution of the synthetic city
in location choices. Location choice sub models are estimated within UrbanSim,
using a stratified sample of 10% of the agents located in each zone. A steady-
state is, therefore, assumed for the synthetic city.

Population and jobs densities are thus the only factors affecting houses price.
Note that the latter is constant over the simulation period, since the evolution
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Households

[75 to 94]
]94 to 108]
]108 to 120]
]120 to 134]

]134 to 149]
]149 to 162]
]162 to 176]

a. Reference b. Aggregated c. Subset

Non−home−based jobs

[169 to 196]
]196 to 220]
]220 to 247]
]247 to 275]

]275 to 310]
]310 to 351]
]351 to 426]

(Log of) Houses price

[5.01 to 5.17]
]5.17 to 5.29]
]5.29 to 5.43]
]5.43 to 5.54]

]5.54 to 5.66]
]5.66 to 5.76]
]5.76 to 5.86]

Car accessibility (logsum)

[7.85 to 8.57]
]8.57 to 8.8]
]8.8 to 8.96]
]8.96 to 9.11]

]9.11 to 9.35]
]9.35 to 9.69]
]9.69 to 10.17]

Figure 5.3 – Characteristics of the mono centric case studies (values in t0)
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Figure 5.4 – Scenarios (variations induced by the implementation of the Highways
and UGB scenario; Reference case study)

of jobs is not modelled. However, limiting the real estate price sub model
to the population density makes the system perfectly singular, preventing the
estimation of this sub model, reason why the job density is included. Even if
not satisfactory from an intellectual point of view, this choice has no practical
influence on the outputs. Since the BSUs are featureless, there was no need to
include local amenities’ indicators. Parameter estimates are given in Table 5.3.
Note that the algorithm generating the synthetic city precisely assumes that
houses’ prices are a function of population and job densities (see section 5.3),
explaining the nearly perfect adjusted R2 values.

The feedback effects occurring in the model are thus limited: (1) new house-
holds locating in one zone will increase houses’ prices in that zone, causing a
decrease of its utility level. (2) Relocation of households may as well affect
the car accessibility to jobs, although on a less predictable way. Note that the
Highway scenario will also affect this variable.

Simulations

The simulation period lasts 20 years (or the same number of iterations of
UrbanSim). Thirty runs are performed for each combination case study/scenario
to cope with the stochastic variations of the model (random sampling of relocat-
ing agents), following the recommendations of Wegener (2011a). Configuration
of the MATsim/UrbanSim interface uses the default parameters presented in
Nicolai and Nagel (2010). Iterations of MATsim being more computationally
intensive than for UrbanSim (on the configuration used for simulations, about
two hours compared to a few minutes), the travel model is estimated every five
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Case study
Variables Reference Aggregated Subset
(Log of) Job density 5.39 (0.13) 132.08 (2.13) 4.73 (0.15)
(Log of) House price -0.59 (0.11) -85.99 (1.56) 0.28 (0.16)
Car accessibility -0.11 (0.03) 6.78 (0.2) -0.1 (0.05)
AIC 192 856 123 637 145 649
Likelihood ratio 0.10 0.42 0.07
n 31 503 31 503 23 219

Table 5.2 – Households location choice sub model (between brackets: standard
deviation; all parameters significant at α ≤ 0.05)

Case study
Variables Reference Aggregated Subset
Constant 4.509 (0.002) 4.51 (0.007) 4.59 (0.001)
Pop. density 0.01 (6x10−5) 0.01 (1x10−4) 0.008 (3x10−5)
Job density -6x10−4 (2x10−5) -7x10−5 (6x10−6) -3x10−4 (1x10−5)
R2 (adjusted) 0.99 0.99 0.99
n 1341 149 861

Table 5.3 – Real estate price sub model (for houses; between brackets: standard
deviation; all parameters significant at α ≤ 0.05)

iterations of UrbanSim. Overall, the sequence of sub models executed during
an iteration is the following (see also appendix D.2)2:

1. Households transition sub model (HTM);

2. Households relocation sub model (HRM);

3. Households location choice sub model (HLCM);

4. Real estate price sub model (REPM);

5. For iterations 1, 5, 10 and 15: External travel model (TM, hereMATsim).

No calibration procedure is performed per se. This step usually consists,
for LUTI models, in running the model in-between the base year and a time

2The following sub models of UrbanSim are neutralised: Development project transition
sub model, Residential and Non-Residential development location choice sub models, Add
project to buildings sub model, Employment transition sub model, Employment relocation
sub model, Employment location choice sub model, Distribute unplaced jobs sub model and
Refinement sub model.
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5.4. Mono centric configuration

step for which observed data are available, then compare it with the forecasted
situation at this time step (Wegener and Furst, 1999a). The synthetic city being
generated for only one time-step, it is impossible to perform such analysis here.
Moreover, the aim of this section is to assess the variations in the response of
the model between different size of BSU and study area, not to make actual
predictions.

Finally, the variations observed between case studies and/or scenarios are
significant only if they exceed the inter-run variations (Table 5.4). Note that
they are limited in magnitude for Reference and Subset case studies, and ex-
tremely similar between scenarios. Larger variations are found for the Aggreg-
ated case study.

Scenario
Case study Baseline Highway UGB
Reference 3.23 3.20 3.31
Aggregated 24.99 24.93 24.48
Subset 2.31 2.33 2.40

Table 5.4 – Inter-runs variations (average over the 30 runs; standard deviation
of the difference from mean in the final share of households per zone)

5.4.2 Results
Assessment of the influence of the scale and boundary effects focus on the differ-
ences observed in the final distribution of households. Without further notices,
all indicators are given for t20 (last year of the simulation period) and that the
evolution is computed as the value in t20 minus the value in t0. It should be
noted that the results presented hereafter have limited meaning from economic
or geographic point of view. The validity of the variations observed (e.g. a
larger urban sprawl for the Aggregated case study) is, therefore, limited to our
synthetic city. Nevertheless, they will hopefully allows a better understanding
of the mechanisms driving the sensitivity of the outputs of UrbanSim to the
scale and boundary effect. This is the main purpose of our experiments. Figure
5.5 shows the evolution of the number of households per zone between t0 and
t20.

Scale effect

Comparing the Reference and Aggregated case studies allows estimating the
influence of the scale effect. Large differences are observed in the final number
of households per zone, varying (as Aggregated minus Reference) from -1 873 to
+1 618. Relative variations go from -67 to +86%. Hence, the spatial structure
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5. Experiments on a synthetic case study

of the population changes dramatically in t20 for the Aggregated case study
(Figure 5.6; left). Households relocate from zones at a medium distance from
the CBD to zones situated either (1) in the periphery of the study area or (2)
close to the CBD.

Boundary effect

The boundary effect is assessed by comparing the Reference and Subset case
studies. Over the 30 runs, the Reference case study predicts a number of
households within the subset in t20 that vary from 278 724 to 279 355. This is
significantly less than the final number of households for the Subset case study
(285 458). (Note that this latter final population was defined a priori by the
macro-economic assumptions). Relative variations of the number of households
are, therefore, mostly positive (Figure 5.6; right). They vary from -13 to +19
(+7 on average). Relative variations go from -6.7 to +3.8%. A strong spatial
structure appears, with larger differences in "dense suburbs" while low or even
negative differences are observed in the periphery of the Subset case study. The
presence of negative differences, despite the lower final number of households
for the Reference case study, suggests that variations would have been larger if
the totals were equal.

Influence of the scenarios

Variations due to the scale or boundary effects will only constitute an issue if
they are (1) larger than inter-runs variations and (2) comparable in magnitude
to the influence of potential scenarios (Highways and UGB). Let us start with
the Highways scenario. Relative variations with the Baseline in the final num-
ber of households per zone are comprised between -4.4 and +4.7% for the
Reference case study. They are of -19 to +35% for the Aggregated and of -3.5
to +2.1% for the Subset case studies. No spatial structure emerges, whatever
the case study (Figure 5.7; upper row), and such values do not exceed inter-
runs variations. The improvements of the transportation network implemented
by the Highway scenario have thus no significant impact on the evolution of
the city. The main reason being that the changes in the car accessibility to
jobs are insufficient to impact the location choices of households.

Figure 5.7 (lower row) also shows the variations induced by the implement-
ation of the UGB scenario. For both the Reference and Subset case study,
the final distribution of households is similar to those of the baseline. An up-
ward shift is observed for the UGB in central areas (on average, +6.1% for the
Reference case study and +5.8% for the Subset). A corresponding downward
shift is observed in peripheral areas (of, respectively, -1.8% and -2.7%). Similar
observations are made in central areas for the Aggregated case study, but the
situation is more confused in peripheral areas. Note that the increase observed
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Figure 5.5 – Evolution of the number of households per zone (upper row:
absolute variations; lower row: relative variations; discretisation: Jenks)

in central areas has a magnitude equal to the changes implemented by the UGB
scenario (i.e. 24 additional residential units per zone).

5.4.3 Discussion
Given the simplifying assumptions made on the structure of the synthetic city,
and the neutralisation of several components of the model system, it is not
possible to derive general implications, on a geographic point of view. Never-
theless, the present case studies are useful to assess the mechanisms driving the
sensitivity of UrbanSim to spatial biases, which can be summarised as follows:

1. Parameter estimates of econometric sub models vary with the scale and
boundary effects;
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(Aggregated − Reference)/Reference, in %

[−67.69 to −42.54]
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(Subset − Reference)/Reference, in %

[−2.45 to −0.2]
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]0 to 1.17]
]1.17 to 2.3]

]2.3 to 3.36]
]3.36 to 6.6]
CBD

Figure 5.6 – Sensitivity to the spatial extent and resolution (variations of
the final number of households per zone; left = scale effect; right = boundary effect;
discretisation: Jenks)

2. These variations lead to differences among case studies in the utility level
perceived by households (see chapter 4);

3. The probability of location in each zone is, therefore, affected;

4. Hence, ultimately, UrbanSim will locate new or relocating households in
different places.

Step one is demonstrated in chapter 3 for the real estate price sub model and
4 for the location choice sub models. For the synthetic case study, see Tables
5.2 and 5.3. Chapter 4 also assesses steps two to four. The present chapter
provides two additions. First, the experiments are conducted with UrbanSim
itself, rather than by replicating its internal principles in an external frame-
work. Secondly, multiple iteration are performed. Feedback effects are thus
present, which may either mitigate or reinforce the influence of the variations
of parameter estimates.

Variations of the probability of location

Let us first examine these four steps without considering feedback effects. The
variations of parameter estimates of the households’ location choice sub model
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]0 to 6.97]
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Figure 5.7 – Influence of the scenarios (upper row: Highways; lower row: UGB;
discretisation: Jenks)

(Table 5.2) are consistent with those observed in chapter 4. Change of signs
can be observed between case studies. Note that parameter estimates are more
stable for the real estate price sub model (Table 5.3). Hence, the utility level of
each zone is also different from one case study to another. The potential influ-
ence on the outputs of UrbanSim is, however, more straightforward to assess by
using the variations of the predicted probability of location (as demonstrated
by chapter 4).

Figure 5.8 shows these predicted probability of location in t0. Since the
sum of the probability of location is equal to one, the area under each curve is
identical for all case studies. Therefore, Figure 5.8 shows that a larger concen-
tration of households close to the CBD can be expected for the Aggregated case
study (compared to the Reference), and a lower one for the Subset. Moreover,
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Figure 5.8 – Probability of location of households in t0 (curves: moving
average)

for the Aggregated case study, the probability of location is slightly smaller for
zones between 10 and 12 km from the CBD than for zones further away.

The observed differences in the number of households per zones for the
Reference and Subset case studies (Figure 5.6; right) are consistent with these
variations of the probability of location. The link is less clear in the Reference
versus Aggregated situation (Figure 5.6; left). A larger concentration of house-
holds does indeed take place close to the CBD for the Aggregated case study,
but the largest decreases (compared to the Reference) are observed for zones
ranging from 15 to 20 km from the CBD (Figure 5.6). This distance is sensibly
higher than the 10 to 12 km bandwidth that exhibits maximal differences in
the probability of location (Figure 5.8).

Hence, the experiments conducted here validate the theoretical mechanisms
by which the outputs of UrbanSim are affected by changes in the spatial extent
or resolution. They also prove that the initial (i.e. in t0) probability of location
is useful to predict variations due to the scale and boundary effects.
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5.4. Mono centric configuration

Feedback effects on location choices

This initial probability of location is, however, not totally sufficient. The reason
is that the variations of parameter estimates imply that the feedback effects
within the model system will change in intensity or even direction among case
studies. Two of these feedback effects exists here. First, an increase in the
population or job density in one zone may generate congestion, reducing the
car accessibility to jobs and, therefore, affecting the utility level of the zone
on the next iteration. However, the car accessibility to jobs varies here of less
than 1% between t0 and t20 (without any spatial structure and whatever the
case study).

The main feedback effect is, therefore, the evolution of real estate prices
(Table 5.5). Its spatial structure is similar between case studies, with a larger
increase close to the CBD. This was expected, given that houses prices are
proportional to population density (Table 5.3). Given the sign of parameter
estimates (see Table 5.2), an increase of these prices results, however, in a
decrease of the utility level for the Reference and Aggregated case studies, but
to an increase for the Subset.

Figure 5.9 show the initial probability of location in t0 and the variations
between t0 and t20. As expected, it decreases close to the CBD for the Reference
case study, but increases for the Subset. Which concurs reducing the differences
in the final share of agents close to the CBD that would be observed if the
probabilities of location were constant throughout the simulation period.

Note that the Aggregated case study is not represented on Figure 5.9. The
probability of location in the central zone is above 99%, meaning that absolute
differences are maximal there, but that huge relative variations are observed
in peripheral areas. Besides the cartographic issue (discretisation), the spatial
structure is not consistent with the greatest variations of the share of households
per zone (Figure 5.6).

The outputs of the model are consistent with both (a) the initial struc-
ture of the synthetic city and (b) the evolution of the utility level perceived
by households. The feedback effects contribute here to mitigate the variations
that should be observed in the outputs of UrbanSim. There is, however, no
indication that this result is valid for other case studies. To sum up, since the
final probability of location cannot be computed prior to running the simula-
tions, the variations in the outputs of LUTI models for different spatial extent
and resolution are likely to remain unpredictable.

Consistency and limitations

Wegener (2011a) shows that the magnitude of inter-runs variations is a function
of the ratio between choices (i.e. the number of agents who relocate during an
iteration) and alternatives (the number of zones where they can relocate). This
ratio is of 28 for the Reference case study and 33 for the Subset (with a slight
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t20 minus t0, in %
Case study Min. Mean. Max. ρ

Reference 16.8 28.5 41.3 -0.89***
Aggregated 18.0 29.8 46.3 -0.99***
Subset 18.1 27.5 38.5 -0.96***

Table 5.5 – Variations of houses’ prices (Baseline scenario; ρ= Pearson Product-
Moment Correlation with the euclidean distance to the CBD)

●

a. Reference

●

●

(Final (t+20) − Initial (t0))/Initial (t0), in %
[−7.21 to −1.04]
]−1.04 to 0]
]0 to 1.57]
]1.57 to 4.26]

]4.26 to 6.63]
]6.63 to 10.3]
CBD

c. Subset

Figure 5.9 – Variations of the probability of location of households in t0
(discretisation: quantiles).
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increase over the simulation period due to the population growth). For such
values, the inter-runs variations observed here (see Table 5.4) are lower here
than those found by Wegener, 2011a. It may be due to the strong spatial
structure of the utility level (Wegener, 2011a uses uniform utilities). Hence,
although the variations between case studies and scenarios are of the same
order of magnitude than these inter-runs variations, it can be assumed that
they represent actual variations rather than noises.

The outputs of the Aggregated case study raises questions. The relocation
process visible in Figure 5.6 is consistent with the evolution of the utility level.
Its intensity is, however, greater than any of the variations observed in other
case studies. Inter-run variations are also far larger for this case study (Table
5.4), although the larger choices on alternatives’ ratio should have reduced it (as
in Wegener, 2011a). A potential reason is that the relocation rate is identical
in-between Reference and Aggregated case studies. The probability that one
household decides to move from one zone to another is thus equal, although
the size of the BSU varies, resulting in an ecological fallacy problem (Robinson,
1950). It is, however, unclear if this issue is enough to generate such a large
relocation phenomena.

Operational implications

Variations induced by the boundary effect are limited in magnitude for our case
study, since the zones not included in the Subset have a low utility level, but
remain significant. This limited influence is, however, due to the strong mono-
centric structure of the synthetic city. Most metropolitan areas nowadays show
as sub urbanisation process, linked to the preferences of households (see Anas,
1982, Fujita, 1989). Moreover, heterogeneity among households has not been
considered. Again, location preferences are commonly different between socio-
economic groups, and spatial segregation occurs (see e.g. Anas, 1982, Fujita,
1989, and Zenou, 2009). The influence of the choice of the study area on LUTI
models’ outputs is, therefore, likely to be larger for real world applications.
This question of the delineation of the study area and of the relation with the
"rest of the world" will be analysed in a more detailed way by section 5.5.

Even for a very simplified case study as the one used here, it is not straight-
forward to predict the variations in the outputs of UrbanSim for different spatial
extent or resolution. Comparing the initial probability of location, as we did
here, can help assessing them. In real-world case studies where location choices
of agents depend on numerous variables, the number of feedback effects will be
increased accordingly. The mechanisms driving the sensitivity of the outputs
of LUTI models to spatial biases are thus likely to be obfuscated.
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5.5 Polycentric case study

5.5.1 Methodological choices

This experiment aims at assessing more in-depth the influence of the boundary
effect on the outputs of LUTI models. We consider the case of a polycentric
metropolitan area: the studied theoretical urban environment is composed of
the "catchment areas" of two CBDs (called here East and West) separated by
a suburban area (Figure 5.10). This study area consists in a rectangle of 60 by
25 kilometres. Since it is larger than the mono centric case study, the BSUs
are reduced to squares of 1 by 1 km. Each CBD is located in the centre of a
catchment area of 25 by 25 zones. The initial number of non-home-based jobs
and households per zone is a function of the Euclidean distance to both CBDs,
as for the mono centric configuration (see section 5.3).

Main inputs are presented in Figure 5.11. The simulation period is limited
here to 10 years, and a linear growth of 1% per annum for both households
and jobs is assumed. As in the mono centric configuration (section 5.4) each
iteration of UrbanSim accounts for one year. A MATsim run is performed with
an interval of three iterations. Three situations are defined in terms of size:
equal-sized CBDs, small West CBD (West CBD half the size of the East CBD
for households and jobs) and large West CBD (West CBD twice East CBD).
Seven different extensions of the study area are considered: the Complete area
and 6 Small Extents (named Exx, with xx the number of columns from the
western extremity - see Figure 5.10). They result in a progressive inclusion of
the East CBD into the studied area (see Figure 5.11, in appendix). Note that
it means that the small west CBD and large west CBD case studies are not
symmetric. For the former, the small extents result in the progressive inclusion
of a larger CBD than the west one, while for the latter this is the opposite.
Each pair of CBD’s size and Extent is simulated 30 times to cope with the
stochastic nature of the model; the results presented here are average values.

Each Extent is a subset of the Complete area. Hence, initial conditions of
a zone are the same for all subdivision of the study area (e.g. same number of
agents and level of real estate prices in t0), at two exceptions: (1) the Euclidean
distance to the CBD is computed to the closest CBD for the Complete area,
and to the West CBD for all others. (2) The travel model (see section 5.3)
estimates the car accessibility to jobs independently for each extent.

5.5.2 Estimation of the econometric sub models

The location choice sub model for households relies on three variables: car
accessibility to jobs, residential buildings’ real estate prices and Euclidean dis-
tance to the closest CBD. The latter one allows having the expected sign for
parameter estimates of car accessibility and real estate prices (i.e. positive and
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Figure 5.10 – Poly centric case studies (with Exx the name of the small extents,
where xx refers to the number of column from the western extremity)

negative) while keeping the model as simple as possible (the distance to CBD is
constant over time). Non-home-based jobs only depend on the car accessibility
to jobs and on real estate prices of non-residential buildings. The main reasons
for the selection of these variables is that they are grounded in the economic
geography theory and are updated at each iteration (see section 5.2).

Estimations show a very low predictive power for households (Table D.4)
and further specifications (not reported) did not allow solving this issue. The
goodness-of-fit of the employment sub model is high in all cases (Table D.5).
Note that parameter estimates for real estate prices are positive in the employ-
ment’ sub model for most Extents. It means that the direction of the feedback
loop will be opposite to the expected one (positive for car accessibility, negative
for real estate price), therefore affecting the behaviour of the model. Despite
these specificities, high utilities are found close to the CBD(s) in all cases, and
future or relocating agents should thus locate there rather than in peripheral
areas.

For the real estate price sub model, selected independent factors are the
population and jobs densities (Table D.6). As expected, all parameter estim-
ates are positive. Three additional econometric sub models intervene in one
iteration sequence: (1) the home-based jobs location choice sub model forecasts
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Figure 5.11 – Main characteristics of the poly centric case studies (discret-
isation: jenks)

the location choice of home-based jobs, assumed here to depend only on popu-
lation density (negative parameter estimate in all cases), (2) residential and (3)
non-residential location choice sub models determine the location of the new
real estate projects, increasing the capacity of each zone to accommodate new
or relocating households/jobs. Both depend on real estate prices and on car
accessibility. The expected sign of the parameter estimates (i.e. negative and
positive) is obtained in all cases.

5.5.3 Results

Since agents are homogenous, a limited number of indicators can be used to
compare the final situations forecasted by the model. Four have been selected:
the final number of (1) households and (2) non-home-based jobs per zone in t10,
(3) the evolution (between t0 and t10) of real estate prices for non-residential
buildings and (4) the mean home-to-work travel time in t10. The Complete
Extent is used as reference, and relative differences (in %) are computed with
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Small Extents: a negative difference means larger final values for the Small
Extent than for the Complete, and vice-versa. Deviations from the Complete
Extent are first computed for each BSU. Such zone-to-zone variations reveal
a certain level of noises (due to stochastic variations in the UrbanSim), which
vary upon the indicators. Hence, spatially aggregated variations have also been
computed for three macro-zones: the "Catchment area of the West CBD", the
"Suburban area", and the "Catchment area of the East CBD".

Let us start by examining the evolution of the Complete study area between
t0 and t10. Table 5.6 shows that the magnitude of the values per zone in t10
remains credible. The largest differences with t0 are observed for employment
and can be explained by the low number of jobs in many peripheral zones
(Figure 5.11). Moreover, most of the variations take place near the CBDs, a
result consistent with the parameter estimates of econometric sub models (see
Table D.4 to D.6). Hence, the behaviour of the model appears believable, and
its outputs can thus be used to assess the sensitivity of LUTI models to the
delineation of the study area.

Indicator Value in t10 ρ
Min Mean Max

Households 21.93 110.40 243.97 -0.97
Jobs 0 211.49 16 371 -0.38
Real estate prices 2 109 21 382 820 021 -0.47
Home-to-work travel time 0 60.95 119.19 0.86

Variations with t0 (%)
Households 9.44 10.56 14.13 -0.97
Jobs -100 31.45 100 -0.15
Real estate prices 3.59 6.75 10.48 -0.47

Table 5.6 – Calibration (Complete extent and equal-size CBDs; ρ = pearson
product-moment correlation with the Euclidean distance to the CBD; all coefficients
significant for α ≤ 0, 001)

Households

Variations (between Complete and Small Extents) are limited in magnitude,
either by zone (Figure 5.12) or by macro-zones (Table D.7). Since their mag-
nitude is lower than the inter-runs variations (which vary from 0.58 to 1.27%),
they can only be considered as random; indeed no specific spatial structure
appears. The size of the CBDs seems to slightly influence these variations
(that decrease from Small West CBD to Large West CBD), but it could be
an artefact due to the higher number of agents. Note that the growth in the
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number of households between t0 and t10 is larger close to the CBDs, and that
this structure is preserved in all extents of the study area.

Non-home-based jobs

Large differences are observed between the Complete Extent and Small ones,
and they are significantly larger than inter-run variations. A strong spatial
structure emerges in zone-to-zone (Figure 5.13) as well as in macro-zones vari-
ations (Table D.7) with, for all Small Extents and all CBDs’ sizes a higher
concentration of (non-home-based) jobs near the CBD (negative differences
with the Complete Extent) and a lower one in the "dense suburbs". Zone-to-
zone variations are more influenced by the extent than by the size of the CBDs.
From Extent E35 to E25, the "dense suburbs" shrink to a ring of limited width.
Zone-to-zone variations are low in the case of a Small West CBD, medium for
the Large West CBD, and high for Equal-size CBDs. For macro-zones, negative
differences are observed in the smaller CBDs, i.e. the portion of the East CBD
for the Equal-size CBDs case study, and respectively the West and East CBD
in the two other cases. Note that for E50 (Equal-size CBDs) and E40 (Large
West CBD), the opposite situation appears. Due to the concentration of jobs
close to the CBDs, no variation is observed for extents that do not include any
part of the catchment area of the East CBD. Overall, between Complete and
Small Extents, a relocation process is observed from the "suburbs" to the city
centre. The intensity of this process highly depends on the size of the CBD,
which can be explained by the larger number of new jobs. Across Extents, the
magnitude remains similar. Four particular situations will be later discussed:
E40 and E45, for Small and Large West CBD.

Real estate prices

Prices of non-residential buildings depend on population and jobs densities.
The spatial structure of their variation between Extents is quite similar to that
observed for jobs, but with a larger level of noise induced by the random vari-
ations observed for households. Moreover, the parameter estimates of the real
estate price sub-model vary from one case study to another, therefore, affecting
the evolution of these prices. Zone-to-zone variations show in most cases posit-
ive differences close to the CBD, meaning that the increase in real estate prices
is lower in these zones for Small Extents than for the Complete Extent (Figure
5.14). Aggregation by macro-zones leads to the same conclusions (Table D.7).

As for jobs, E40 and E45 show the opposite situation for Small and Large
West CBDs than for the Complete Extent, i.e. a larger increase of real estate
prices close to the CBD (positive differences on Figure 5.14). A potential
explanation lies in the parameter estimates of the (log of) population density
in the real estate prices sub-model that is slightly larger for E40 and E45 than
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for the Complete study area. Hence, a comparable increase of the population
in this zone (Figure 5.12) may lead to these counter-intuitive results.

Finally, parameter estimates of the (log of) job density are lower for the
Complete than for most Small Extents (Table D.7). Hence, an equal increase
in the number of jobs per zone will produce a larger increase of real estate prices
in the Complete Extent, which reinforces the positive differences observed.

Home-to-work travel time

The magnitude of the variations is larger than those observed for the previous
indicators, and the spatial structure is clear and highly influenced by the re-
lative size of the West CBD (Figure 5.15). The observed noises are probably
explained by the use of only 25% of the agents in MATsim’s runs.

A large increase in commuting time is observed for all zones located East
of the West CBD in the Small West CBD case; the same appears in E50 for
the Equal-sized CBDs and Large West CBD cases, but it is limited to the
catchment area of the East CBD. On the contrary, larger commuting times are
observed in the Eastern part of the study area for E35 to E45 (Equal-size CBDs
and Large west CBD case studies). The variations aggregated by macro-zones
(Table D.7) show a large decrease in home-to-work travel time for all Extents
in the Small West CBD case and for E25 to E35 in the equal-size CBDs case.
Meanwhile, an increase in commuting times is observed for the catchment area
of the East CBD for E40 and E45 in the Equal-size CBDs and Large West CBD
cases. This can easily be explained by (1) the lower overall competition for jobs
in Small Extents (the number of households decreases more rapidly than the
number of jobs when the size of the extent decreases, see Figure 5.11). (2) The
exclusion of the East CBD from the study area leads to lower opportunities for
people located in the eastern part of the study area, constrained to commute to
the West CBD in all extents smaller than E50. The same is true for the western
part of the study area where residents face the competition of people that were
commuting to the East CBD in the Complete extent. The combination of these
factors induces the observed decrease of average home-to-work travel time, and
their local increase.

5.5.4 Discussion
Two main critics can be addressed to our methodology. First, the different
extents of the study area were not designed with a concern of realism, but to
provide a continuous evaluation of the influence of cities’ delineations. However,
we end up with quite realistic situations such as Extents E25 to E35 that consist
in adding to the study CBD a rural area with few or no functional links with
the CBD. On the opposite, Extents E40 to E50 include a portion of another
CBD into the studied urban area. Secondly, the study area is here totally
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E50 ● ●W E

Equal−size CBDs

● ●W E

Small West CBD

● ●W E

Large West CBD

E45 ● ●W E ● ●W E ● ●W E

E40 ● ●W E ● ●W E ● ●W E

E35 ● ●W E ● ●W E ● ●W E

E30 ● ●W E ● ●W E ● ●W E

E25 ● ●W E ● ●W E ● ●W E

[−0.8 to −0.15]
]−0.15 to −0.08]
]−0.08 to −0.04]
]−0.04 to 0]

]0 to 0.01]
]0.01 to 0.06]
]0.06 to 0.17]
]0.17 to 1.67]

Figure 5.12 – Variations of the number of households (value = Complete−Ex
Complete

,
in %; discretisation method = quantiles; dashed grey = not included in the extent)
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E50 ● ●W E

Equal−size CBDs

● ●W E

Small West CBD

● ●W E

Large West CBD

E45 ● ●W E ● ●W E ● ●W E

E40 ● ●W E ● ●W E ● ●W E

E35 ● ●W E ● ●W E ● ●W E

E30 ● ●W E ● ●W E ● ●W E

E25 ● ●W E ● ●W E ● ●W E

[−213.92 to −0.76]
]−0.76 to 0]
]0 to 0.32]
]0.32 to 6.8]

]6.8 to 15.86]
]15.86 to 26.5]
]26.5 to 50.11]
]50.11 to 100]

Figure 5.13 – Variations of the number of jobs (value = Complete−Ex
Complete

, in %;
discretisation method = quantiles; dashed grey = not included in the extent; white
= no jobs in t0)
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E50 ● ●W E

Equal−size CBDs

● ●W E

Small West CBD

● ●W E

Large West CBD

E45 ● ●W E ● ●W E ● ●W E

E40 ● ●W E ● ●W E ● ●W E

E35 ● ●W E ● ●W E ● ●W E

E30 ● ●W E ● ●W E ● ●W E

E25 ● ●W E ● ●W E ● ●W E

[−17.21 to −2.56]
]−2.56 to −0.88]
]−0.88 to 0]
]0 to 0.21]

]0.21 to 0.96]
]0.96 to 1.74]
]1.74 to 2.78]
]2.78 to 8.83]

Figure 5.14 – Variations of real estate prices (non residential prices in t10 minus
t0; value = Complete−Ex

Complete
, in %; discretisation method = quantiles; dashed grey = not

included in the extent)
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E50 ● ●W E

Equal−size CBDs

● ●W E

Small West CBD

● ●W E

Large West CBD

E45 ● ●W E ● ●W E ● ●W E

E40 ● ●W E ● ●W E ● ●W E

E35 ● ●W E ● ●W E ● ●W E

E30 ● ●W E ● ●W E ● ●W E

E25 ● ●W E ● ●W E ● ●W E

[−13252.99 to −64.85]
]−64.85 to −35.97]
]−35.97 to −21.33]
]−21.33 to −10.73]

]−10.73 to −1]
]−1 to 0]
]0 to 11.17]
]11.17 to 100]

Figure 5.15 – Variations of the home-to-work travel time (value =
Complete−Ex

Complete
, in %; discretisation method = quantiles; dashed grey = not included in

the extent)
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isolated from the "rest of the world". The UrbanSim model indeed assumes a
closed study area while our results suggest that taking into account fluxes from
and to the "rest of the world" would have been preferable, especially in terms of
home-to-work travel. Such strategies are often implemented into the transport
model of LUTIs’ applications (see e.g. Gerber, 2012; Gerber et al., 2012).

Nevertheless, most spatial structures and parameter estimates of the eco-
nometric values in the sub-models are consistent with the principles of the
Alonso-Muth model. Hence, the evolution of the study area over the simulation
period is credible (Table 5.6). The variations observed in primary (location of
households and jobs) and secondary indicators (evolution of real estate prices,
home-to-work travel time) are those expected.

In any case, our results suggest that the addition of rural areas has only a
limited influence on the model. It corresponds to the E30 delineation, where
the relative variations with the Complete Extent mostly consist in noise. Strong
biases arise when the study area (1) fails to encompass some portions of the
influence area of one CBD (Extent E50, where peripheral areas of the East
CBD are excluded) or (2) includes some portions of the catchment area of a
close CBD, but leaves this latter centre not included (Extents E35 to E45, that
does not include the East CBD itself). These cases show major discrepancies
from the Complete Extent, that may lead, in operational applications of LUTI
models, to falsehood in transport or land use planning scenario’s evaluations.
Moreover, Extent E50 indicates that the magnitude of these biases is propor-
tional to the size of the not included CBD (i.e. biases increase when the East
CBD is larger than the one on which the study area is centred (West CBD).

5.6 Implications for real-world applications

This chapter relies on a synthetic case study. It was designed to simplify the
structure of the city and, therefore, exploring more easily how spatial biases
affect the behaviour of the model. We faced, however, several unexpected dif-
ficulties in the development and applications of this synthetic case study. The
final mono centric configuration was mostly determined by trials and errors.
Previous simulations on a smaller grid (27 by 27) were unreliable, due to the
small number of aggregated BSUs. Moreover, relying on the Euclidean dis-
tance to the CBD produces a concentric extension of the city, which does not
match the boundaries of a squared study area. Peculiarities were thus observed
on the edge of the grid; hence the decision to reduce the mono centric config-
uration to a circular study area. The location choice sub model also raises
two difficulties: first, a low goodness-of-fit is observed for households, even if
the explanatory variables are highly correlated with the population density.
Secondly, parameter estimates often have a counter intuitive sign, which can-
not be explained by multi collinearity issues. Overall, the goal followed has
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been partially reached, as showed by section 5.4.3 and 5.5.4. The usefulness
of the synthetic case study is, however, reduced by the difficulty to calibrate
the location choice sub models, even on a city with a perfectly known spatial
structure.

Some implications can, nevertheless, be drawn for real-world applications
of LUTI models. First, the analysis of the feedback effects affecting the be-
haviour of the model (section 5.4.3) raises the question of explanatory versus
predictive models (see Shmueli, 2011). That is to say, should the location
choices sub model reflect the process that are supposed, according to literat-
ure, to affect households’ location choices, or maximise the goodness-of-fit even
if the included variables have no clear meaning on an economic or geographical
point of view? Nguyen-Luong (2008) argues, using the case study of Paris,
that simple specifications with few variables are preferable (although the aim
of this work is obviously different than ours). This approach is also privileged
here. There is, nevertheless, a direct link between the variables included in
these sub models and the behaviour of the model. The non inclusion of the car
accessibility to jobs, for instance, will neutralise the potential influence of an
improvement of transport infrastructure (as in the Highway scenario). Hence,
the variables used in econometric sub models of UrbanSim define the utility
level of the agents and the feedback effects accounted for. The issue here is
that the different sub models are often estimated separately, leading to counter
factual situations (see chapter 7).

Our results are non conclusive for the scale effect (which will be studied
more in-depth in chapter 6), due to the peculiarities observed in the behaviour
of the Aggregated case study (section 5.4.3). Simulations clearly show, on the
contrary, that the boundary effect (i.e. the delineation of the study area) should
be of primary concern in operational applications of LUTI models. Systematic
variations are observed across extents for most indicators. They do not consist
in stochastic noises, but have a strong spatial structure that can be explained
by the nature of the study area (inclusion or exclusion of the eastern CBD, see
section 5.5.3). This is both good and bad news. On the plus side, it means
that a careful exploratory spatial data analysis for defining the relevance of the
study area can clearly improve the quality of LUTI models’ outcomes. The bad
news are that the study area in often imposed by the authority or the sponsor
of the project (i.e. an administrative authority will most likely require its entire
area of jurisdiction to be included in the model, even if such delineation is not
meaningful in terms of urban reality). The study area should thus be carefully
delineated to avoid or to control the inclusion of a portion of the influence area
of other cities. Chapter 7 proposes an "ideal" method of cities delineation for
LUTI models applications. The comparability of LUTI model outputs is, in
any case, likely to remain difficult when study areas are of different nature. The
choices made in the delineation of the study area should, therefore, be made
very clear in the description of any operational application of LUTI models.
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The Brussels case study: lessons for

policy evaluations

6.1 Introduction

Ou final experiment is to assess if spatial biases may jeopardise policy evalu-
ations based on LUTI models’ outputs. We know from chapter 5 that these
outputs vary due to both the scale and boundary effects. The analyses conduc-
ted in this previous chapter were, however, limited to a baseline situation, i.e.
an uneventful evolution of the study area. The two scenarios implemented in
chapter 5 have been used to provide a reference, for comparing the variations
observed for different spatial extent and spatial resolution. We intend to go one
step further in the present chapter, by focusing on potential wrongheadedness
induced by spatial biases in policies’ evaluation.

That is to say, can the implementation of a given land-use or transport
scenario be considered profitable when the model is run at one BSU level, but
unprofitable on another one? We rely here on the urban region of Brussels (Bel-
gium) as empirical case study, for reasons exposed in chapter 1. For consistency
purpose, we also limit ourselves here to the scale effect.

Five different scenarios are defined, covering various dimensions of the
model system. The outputs of the UrbanSim model for four different BSU levels
are used to compute sustainability indicators, and to perform a generalised-
costs comparison of the scenarios. The model system is thus considered here as
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a "black box". To answer the research question, the variations of the indicat-
ors across scenarios are compared to those between BSU levels (for both their
magnitude and direction). The generalised-costs approach is used to assess if
the ranking of each scenario varies from one BSU level to another. Figure 6.1
details this workflow.

The chapter is organised as follows. Section 6.2 shortly reviews the methods
used in conjunction with LUTI for policy evaluations. Data and methodology
are detailed in section 6.3. Section 6.4 presents the results that are discussed
in section 6.5. Section 6.6 concludes.

6.2 Policy evaluation in LUTI models

To select the indicators that will be used for comparing the scenarios, it is
necessary to summarise how policy evaluation is performed in land use and
transport planning, and the specificities of LUTI models. This evaluation usu-
ally relies on multi-criteria analysis or cost-benefits analysis (Geurs and van
Wee, 2004; van Wee, 2015). Both methods are widely described throughout the
literature. The reader can refer to e.g. Ishizaka and Nemry (2013), Nijkamp
and Blaas (1994) for the former one, and to Atkinson and Mourato (2006),
Boardman et al. (2006) for the latter. Nevertheless, different conceptual and
technical challenges restrain the capabilities of LUTI models to perform policy
evaluations.

The main criterion to evaluate a policy appears to be the sustainability of
the city. This notion is not exactly the same from economic (see e.g. Arrow
et al., 2004) or a geographic point of views (see e.g. Brown et al., 1987; Bulke-
ley and Betsill, 2005). In an urban/LUTI model perspective, the principal
component is the influence of transport on environment (Geurs and van Wee,
2004; Rodrigue et al., 2009). The main conceptual challenge is thus to make
this influence endogenous in the model. Car ownership and air pollution level,
for instance, are rarely estimated (Wegener, 2004; Dowling, 2005). Therefore,
without additional methods or model, sustainability indicators estimated from
the outputs of LUTI models are limited, and often rely on expert judgment
(Geurs and van Wee, 2004).

Policy evaluation (i.e. the comparison between different scenarios) is, by
definition, the last step of LUTI model projects. As noted by Wegener (2011a),
many operational applications have run out of time before reaching this stage
due to unexpected practical difficulties. Moreover, despite the large variety
of detailed data required, one common and ancient (see Lee, 1973) criticism
of LUTI model is that they produce only aggregated results. Again, sustain-
ability indicators seem particularly prone to be available only at a meso- or
study area level (Geurs and van Wee, 2004). Efthymiou et al. (2014) proposed
multidimensional indicators to take advantage of the disaggregated nature (in
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space, time, and agents) of LUTI models. This approach has, however, not yet
been used in operational applications.

Eventually, the main difficulty is the multidimensional nature of the sustain-
ability, encompassing economic, social, and environmental components (Hély
and Antoni, 2014; Proost et al., 2015). Aggregation can be done qualitatively,
but a formal integration of these three pillars requires each indicator to be
expressed in monetary units. For that purpose, Proost et al. (2015) have pro-
posed a Social Welfare (SW) function that allows comparing the outcome of
one scenario to those of the baseline. Its specification consists in a weighted
sum of the utility of (a) the inhabitants, (b) the commuters, and (c) the rest
of the world. The (d) local stock left to future generations is also included
(accounting for the sustainability), together with (e) the cost of implementa-
tion of the scenario and (f) the generated revenues. Using the case studies of
the EU-funded SustainCity project (Brussels, Paris, and Zürich) as examples,
Proost et al. (2015) conclude, however, that the translation of this SW func-
tion from a theoretical formulation to a practical indicator is severely limited
by data availability (see section 6.4).

To sum up, in operational applications, policy evaluation is often limited
to a set of simple indicators (see Bartholomew, 2007 for review). Hence, the
same approach will first be used in this chapter. These simple indicators of
the influence of the scenarios are assumed to have an equal weight and will,
therefore, be examined independently rather than in a multi-criteria analysis.
In a second step, the SW level of each scenario will be computed, in order to
rank them according to their profitability. The results of both methods will be
compared for our different BSU levels.

6.3 Data and methodology

6.3.1 Data

The empirical case study used in this chapter is the metropolitan area of Brus-
sels (Belgium), based on the Brussels case study of SustainCity. A detailed
description of this model and the database can be found in Cabrita et al.
(2015). Note that Patterson et al. (2010), Patterson and Bierlaire (2010) de-
scribed earlier implementations of UrbanSim on Brussels. However, their works
consist in prototype models, based on aggregated data, and have few common
points with the model of Cabrita et al. (2015).

The study area used in the SustainCity project (or "SustainCity Area")
raises several concerns (see Thomas et al., 2015; and chapter 3), since it en-
compasses municipalities having few relationships with the CBD and/or that
belongs to the catchment area of another city (see Figure B.2). Chapter 5 have
demonstrated that the extent and composition of the study area may influence
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6.3. Data and methodology

Surface (km2) Inhabitants
BSU level n Min Mean Max Min Mean Max
Statistical ward 2 074 0.01 0.74 13.70 0 694 4 608
Section 550 0.01 2.78 15.47 0 2 616 18 883
Former muni. 173 0.08 8.82 45.02 0 8 316 77 238
Municipalities 62 1.16 24.62 68.58 3 282 23 205 104 698

Table 6.1 – BSU levels (descriptive statistics for 2001; study area = urban region
of Brussels)

the parameter estimates of the location choice’s sub models within UrbanSim
and the outcomes from the model.

It has thus been decided to reduce the "SustainCity Area" to a more mean-
ingful delineation of Brussels, the Urban Region (or UR, see Van Hecke et al.,
2009 and Figure 6.2). The UR has an extent of 1 526 km2 and in 2001(base
year of the model) it accounted for 1.44 million inhabitants and 0.99 million
jobs (see also Figure 6.4). Its centre is composed of the 19 municipalities of
the Brussels-Capital Region, hereafter BCR. For comparison, the "SustainCity
area" reaches 5 169 km2, representing 2.69 million of inhabitants and 1.45 mil-
lion jobs.

Cabrita et al. (2015) uses Statistical wards as BSUs. These are the smallest
areal units for which statistical data are available from the Belgian Directorate
General Statistics and Economic Information (DGSIE). They can be aggregated
into larger nested BSU levels: Sections, Former Municipalities, and Municip-
alities. They will al be used in the simulations. Table 6.1 summarises their
relative size.

6.3.2 Methodology
The model

The UrbanSim model is used to forecast the evolution of the Urban Region of
Brussels. A detailed description of the model system can be found in chapter
5. The base-year data is 2001 (allowing the database to rely on the 2001
population census). Since forecasting the evolution of the city far into the
future is not mandatory here, the simulation period is limited to 20 years (i.e.
20 iterations of UrbanSim). MATsim is run with an interval of five iterations,
i.e. in 2001, 2006, 2011, and 2016. Calibration is performed after ten iterations
(i.e. in 2011, year of the last existing population census). Simulations are
performed independently for the four BSU levels. Moreover, five scenarios are
defined, and it is assumed that they are implemented at the end of 2010. Note
that the simultaneous implementation of different scenarios is not considered.
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●

Brussels

●
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●

●

Mechelen

Leuven

Aalst

Wavre

Ottignies−Louvain−La−Neuve

Nivelles

●

●

Brussels
Secondary cities
Regions
Municipalities
SustainCity Area
UR of Brussels

Figure 6.2 – Study area (Urban Region of Brussels, relative to (a) the "SustainCity
Area" and (b) to Belgium; typology of the municipalities from Van Hecke et al., 2009)

Hence, we end up with 20 combinations of BSU level and scenario. To cope
with the partially stochastic nature of UrbanSim, each of them is simulated 10
times. In section 6.4, all indicators are based on average values.

Scenarios

To provide a reference, a business-as-usual situation is first defined. In this
Baseline, the simulation period is uneventful. The only variations are the
growth of the number of households and jobs. These forecasts come from
the Belgian Federal Planning Bureau and are detailed in Cabrita et al. (2015).
For households, it is of about 1% per annum, from 743 487 in 2001 to 887
138 in 2020. Growth rates vary widely across employment sectors, from 9%
(hotel/restaurant) to 59% (leisure activities). In absolute term, the largest
increases are observed for tertiary sector’ jobs (+86 250), health (+44 766),
and industrial activities (+32 320). Note that the variations of the number of
agents over the simulation period are assumed to be equal for all scenarios.

A Cordon toll scenario is first designed, to reduce the congestion problems
to or within the BCR. Hence, the toll barrier is located on the boundaries of the
BCR (Figure 6.3). The fee is fixed to 5e, as in Cabrita et al. (2015), and has
to be paid whatever the time of the day (this choice is the result of modelling
constraint, see section 6.5). Practical implementation rely on MATsim, using
an external configuration file defining the links of the road network affected,
the type of congestion tax, the monetary value of the fee, and the period of
time. For details see Cabrita et al. (2015) and Nicolai and Nagel (2015).
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Scenarios

Cordon toll boundaries
Municipalities
Strategic zones
Land−use restrictions
Subsidied area (BCR)

Figure 6.3 – Scenarios (map of their implementation area)

The Office scenario builds on the 11 strategic zones identified by the BCR’
territorial development agency for future urban development (see ADT-ATO,
2015). A review of impact studies available from the ADT-ATO website indic-
ates that new office spaces are planned for five of them (Figure 6.3), accounting
for a total of about 440 000 square meters of floor space. We assume that these
development projects take place at the level of the statistical wards and are
later aggregated into larger BSU levels. The implementation of this scenario
relies on the Scheduled Development Event Model (SDEM) within UrbanSim
(see Gallay, 2010). Practically speaking, this sub model will increase the values
of non-residential square meters available in each zone by the required amount,
in 2010.

Finally, the Subsidy and Land-use scenarios aim at reducing urban sprawl
of households. For the first one, we assume that a fiscal incentive is allocated
to households choosing to locate within the BCR. It accounts for an apparent
decrease of real estate prices by 5%. The Land-use scenarios introduce stronger
land-use planning regulations, decreasing the number of future residential units
allowed in the suburbs of Brussels by 20%. Suburbs (see Figure 6.3) are defined
here accordingly to Van Hecke et al. (2009). Both scenarios are implemented in
UrbanSim by altering the average value per dwelling (Subsidy) or the residential
units capacity (Land-use) within each zone, by means of the SDEM sub model.
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Estimation of UrbanSim econometric submodels

The last step prior to running the simulations is to estimate the econometric
sub models within UrbanSim (see chapter 3, chapter 4, and chapter 5 for a
complete description). The aim of this chapter calls for a workflow where these
sub models are estimated independently for all BSU levels (Figure 6.1). Hence,
to ensure consistency through BSU levels and minimise potential selection bias,
we rely on automatic variable’s selection procedures.

Update of real estate prices at the end of the iteration is performed in
UrbanSim by a log-linear regression estimated by OLS (see chapter 3). This
specification was replicated in R and then calibrated by a backward procedure
(iterative exclusion of independent variables whose t-test’ significance level is
higher than 0.05, starting by the least significant one). The main weakness of
this approach, as shown in Table E.3, is that several specifications are limited
to fixed factors and/or to only one endogenous variable. Therefore, variations
of population or jobs’ densities will not influence these prices. Although this
situation is unsatisfactory from a modelling point of view, we have decided to
keep these specifications, to ensure consistency in the estimations.

The econometric framework of the location choice sub models is detailed
in chapter 4. They forecast the probability of a given building to be selected
by new or relocating agents (households and jobs), or for real estate devel-
opment project. Calibration is handled by estimating, within UrbanSim, ten
specifications based on different combinations of the explanatory factors (Table
E.1). The specification having the lowest AIC value is selected. Note that for
employment, estimations are only performed for non-home-based jobs. Given
the lack of accurate data on home-based jobs, it has been decided to neutralise
that part of the model system.

It should be noted that for Former municipalities and Municipalities, this
procedure leads to frequent inclusion of non-significant variables (especially for
employment, see Table E.5). Hence, the AIC was perhaps not the best indicator
(see e.g. Burnham and Anderson, 2002). However, the sub models have been
estimated within UrbanSim, in which no other indicators were available for
model comparison. To ensure the reproducibility of the results, it has been
decided to stick to these specifications.

Endogenous variables (i.e. updated by UrbanSim during its iterations) are
used as much as possible. Three constant variables are nevertheless considered
to account for characteristics that cannot be forecasted by the model (Table
E.1). The following indicators account for agglomeration economies: Popula-
tion density is defined as the number of inhabitants per square kilometre in
each BSU. Job density (in jobs per sq. km) is declined for the total jobs and
for each of the eight activities sectors. Accessibility factors are the Car Ac-
cessibility to Jobs, a logsum indicator estimated by MATsim (see Nicolai and
Nagel, 2011 for details), and the Euclidean distance (in meters) to the Brussels’
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CBD. This latter variable is measured between the centroid of the municipality
of Brussels and the centroid of all other BSUs.

Socio-economic amenities include the share of households within a BSU
having a monthly income higher than 3 100 e, or lower than 1 852 e. These
categories come from the 2001 population census. In the households’ location
choice sub model (or HLCM), these variables are used as interaction term with
a dummy variable equal to one if the household has a high income, and zero
otherwise. The percentage of households within a BSU where (at least) one
member has a university degree is also considered.

Other amenities are the House prices, the level of local taxes, and a Green
amenities score. Available data on real estate prices are highly limited in Bel-
gium (see chapter 3). House prices serves thus as a proxy for all residential
real estate types, and identical values are imputed to all BSUs belonging to the
same municipality. Local taxes is an instrumental variable, included only into
the real estate price’ sub model (or REPM), to reduce potential endogeneity
biases. Note that their level is limited to 9% of the federal taxes (i.e. if an
household pays 10 000 e/year of taxes to the state, its municipality of res-
idence can charge in local taxes a maximum of 900e). The Green Amenities
score is computed from the surface of each BSU covered by green areas (forest
or agricultural land, data from the CORINE 2006 Land Cover Database; see
EEA, 2006) divided by the total surface.

Descriptive statistics at the level of the statistical wards’ level are given in
Table E.2. For larger BSU levels, their value is computed by aggregating the
database by sum or means. Note that in the econometric sub models, most of
these explanatory factors are expressed logarithmically. Figure 6.4 shows their
spatial distribution.

6.3.3 Policy evaluation

Simple indicators are first computed, for each BSU level and each scenario.
Agent’s location choices are examined by computing the share of (1) house-
holds, (2) tertiary sector jobs, and (3) total jobs within the BCR at the end
of the simulation period (i.e. 2020). At the study area’ level, the home-to-
work (1) travel times and (2) distances are used, together with (3) green space
consumptions. By selecting these indicators, we attempt to cover different
components of both the model systems and the sustainability issue. They also
have the advantage of being direct outputs of either UrbanSim or MATsim.
The variations in-between scenarios are later compared to those across BSU
levels, to assess the sensitivity of the model to each component.

In the second step, a generalised-cost approach is used, by computing the
Social Welfare (SW) level of each scenario (as proposed by Proost et al., 2015).
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Figure 6.4 – Main variables (BSU level = municipalities)
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The SW level (see equation 6.1), has the advantage (compared to the simple
indicators) of allowing ranking the scenarios.

SW = U + (R− C) (6.1)

In equation (6.1), U is the final utility level at the case study level (i.e.
the sum of the utility of all inhabitants), R the direct revenues generated by
the scenario, and C the implementation costs. Both R and C are computed
at the public authorities’ level. This specification comes from Proost et al.
(2015). Nevertheless, several simplifying assumptions are made: (a) the city is
closed, meaning that the utility levels of commuters and the rest of the world
are not taken into account. (b) The only time horizon considered is the end
of the simulation period. (c) No assumptions are made on equity preferences.
Therefore, an equal weight is imputed to all income classes. (d) The utility
level U is computed as in equation 6.2.

U = INC −HC − TC (6.2)

INC denotes the annual income of the inhabitants (note that it differs from
R, the revenues generated by the scenarios). HC is the annual housing cost
equal (as in Di Pasquale and Wheaton, 1996) to the selling price times the
interest rate (set here to 5%). TC is the annual transport cost, equal to the
product of the commuting time with the number of working days per year (220
here) and the value of time (0.15 e, per minute). All components of U are
thus expressed in Euros. Note that the utility is thus reduced here to a budget
constraint. We follow here the specification and parameters’ values of Proost
et al. (2015). Housing and transport costs are endogenous to the model system.
Evolution of incomes, on the contrary, is not modelled. The earnings of each
household are thus constant over the simulation period. Cost and revenues of
the scenarios will be estimated based on the literature (see section 6.4).

All scenarios are supposed to increase the sustainability of the study area.
The simple indicators computed at the study area’ level allows estimating which
scenario produces the more sustainable final situation. This approach, however,
has not been followed here since the aim of this work is to compare through
scales the variations induced by the implementation of the scenarios, not to
assess which one is optimal from that sustainability point of view. It should
also be noted that due to the simplifying assumptions made in the estimation
of the SW level, the generalised-costs approach do not include a sustainability
component.
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6.4 Results

6.4.1 Econometric sub models

Table E.3 presents the parameter estimates of the real estate prices’ sub model.
For houses, all parameters have the expected sign. The adjusted R2 increases
from small to large BSU levels, while the number of significant variables de-
creases. The explanation for these variations is that even if the prices are
uniform within the municipality, the distribution of the independent variable
is not. The goodness-of-fit is lower for flats, but parameter estimates remains
mostly of the expected sign. For the households’ location choice sub model,
the best specification (using the AIC criterion) is identical for the four BSU
levels, and corresponds to the inclusion of all explanatory factors (although the
goodness-of-fit remains low). In the case of employment, the goodness-of-fit
is generally high, but the specifications vary more widely between BSU levels.
Parameter estimates are of the expected sign in most cases for both households
(Table E.4) and jobs (Table E.5).

Sub models forecasting the location of future residential and non-residential
developments have been constrained to a single specification, due to the lack
of data on developer’s behaviour. For residential buildings, it involves the (log
of) population density, Euclidean distance to the CBD, housing prices, and the
car accessibility to jobs. The specification for non-residential buildings relies
on the (log of) population density, job density, house prices, and on the car
accessibility to jobs. Both parameter estimates are of the expected sign and
further details are, therefore, not included.

Parameter estimates of both of these econometric methods are known to
be sensitive to the scale effect of the MAUP (i.e. to a change of the size
of the BSU). As expected, such variations are observed here. The variations
of parameter estimates will, however, not be further discussed since we focus
here on changes in the outputs of UrbanSim. We refer to Fotheringham and
Wong (1991); Arauzo-Carod and Antolín-Manjón (2004); and chapter 4 for
work dedicated to the MAUP.

6.4.2 Calibration

Assessing the performance of the model for all BSU levels is necessary before
comparing scenarios. In UrbanSim, as in other LUTI models, this calibration
procedure consists in comparing the situation forecasted by the model with
the observed reality on a given time step (Wegener and Furst, 1999b; Bonnel
et al., 2014). Observed data come here from the 2011 population census (see
DGSIE, 2015a). The correspondence between the predicted (from the baseline
scenario) population densities in 2011 and this reference is given in Table 6.2.
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BSU
Indicator Stat. wards Sections Former muni. Municipalities
(Observed - Predicted inhab/km2)/(Observed inhab/km2), in %, in 2011
10% Quantile -57.08 -42.66 -6.35 3.02
Median 9.74 8.71 18.23 15.25
90% Quantile 39.27 28.63 36.82 29.93

Observed versus Predicted inhab/km2, in 2011
Pearson’ ρ 0.91*** 0.54*** 0.98*** 0.99***
Moran’ I -0.001 -0.004 -0.007 0.003

Table 6.2 – Calibration (observed data from the 2011 population census; predicted
data from the Baseline scenario)

Note that the location of the jobs was not available, constraining to limit the
calibration to households.

The results in Table 6.2 suggest that the absolute performance of the model
is limited, but that tendencies are preserved. The population growth was under-
estimated during the development of the model, leading to a predicted number
of inhabitants of 1 766 947 in 2011 versus 1 906 258 according to the census.
Figure E.1 shows that for all BSU levels the model underestimates the future
population in the BCR and secondary urban centres, and overestimates it in
rural areas. The spatial auto-correlation, however, is not significant (Table 6.2).
Overall, the performance appears similar for all BSU levels. This is the critical
point here, since it can thus be assumed that eventual variations between BSU
levels observed in 2020 will be linked to the scale effect, rather than noises due
to a varying goodness-of-fit of the model.

6.4.3 Indicators of location choices, transport, and land-use

Table 6.3 gives the final share of agents within the BCR, for each combination
of BSU level and scenario. The standard deviation allows assessing the inter-
runs variations. For households, variations are systematically larger between
BSU levels than across scenarios, by one order of magnitude. Two groups of
BSU levels appear: "small" (Statistical wards and Section) and "large" (Former
Municipalities andMunicipalities). Intra-group differences are limited (but still
larger than across scenarios), while a large gap is observed between "small" and
"large" BSUs. On the contrary, no difference is observed for tertiary sector’
jobs (services), either between BSU levels or across scenarios. For all jobs, the
variations are slightly larger. The gap observed between sections and former
municipalities is larger than the differences across scenarios. Inside the group
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of "small" BSU levels, the differences are, however, as limited than across scen-
arios. The same is true for the "large" BSU levels.

This opposition between the "small" and "large" BSU levels does not hold
for transport and land-use indicators at the scale of the study area (Table
6.4). Variations of the commuting distance are very limited for both BSU
levels and scenarios. Given this stability, no or few variations were expected
for the commuting time. Table 6.4 shows that from Statistical wards to Former
municipalities, values are indeed close to each other. Nevertheless, commuting
time for Municipalities are 3 to 4 minutes larger than those estimated for other
BSU levels, for reasons that will be exposed in section 6.5. Finally, the share of
surface occupied by green areas is stable across scenarios. Larger variations are
observed between BSU levels, in particular for the Section compared to other
BSU levels.

6.4.4 Generalised-costs analysis

Table 6.5 gives the social welfare level of the scenarios. Housing and transport
costs are computed from simulation results, while the income level is constant.
Estimates of the implementation cost of the scenarios, and of the direct reven-
ues, are extrapolated from the literature. Since the scenarios are fictive (even
if inspired from actual projects), the accuracy of the proposed values is limited,
and they should be seen as an order of magnitude.

Efficiency and/or equity of cordon congestion taxes have been assessed in
numerous theoretical works, but survey of real-world applications are much
scarcer. Anas and Lindsey (2011) estimate the implementation costs in London
(256 million e, for a toll area of 22 km2), Stockholm (206 mil. e, for 30 km2),
and Milan (7 mil. e, for 8 km2). Geographical and technical differences make,
however, difficult to deduce generic values from these examples. In London,
the perimeter of the tolled area is of 21 km, leading to a cost of 12 million
e/km. In Stockholm, it is of 6.8 million e/km (perimeter of 30 km), but
the insular nature of the city strongly reduces the number of access points.
Annual operation costs (including maintenance and investments) are far from
being negligible. Anas and Lindsey (2011) estimate them to 245 (London),
31 (Stockholm), and 15 (Milan) million e. For Stockholm, Eliasson (2009)
attributes the lower operating cost (compared to Oslo) to the use of a more
automated system (note that a large amount of the operation cost was devoted
to call centres and to provision for complaints or legal action). Hence, we have
assumed an implementation cost of 10 millions e/km for the BCR which gives a
total for the Cordon scenario of about 700 million e. In the absence of reliable
figure for Belgium, operating costs had been set to 100 million e/year (value
derived from those for Stockholm, see Eliasson, 2009). The revenues will be
computed from simulations results. Note that since a closed city is assumed,
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Scenario
Indicator BSU Baseline Cordon Office Subsidy Land-use
Households (1) 51.23 51.23 51.26 51.24 51.24

(0.06) (0.05) (0.06) (0.06) (0.06)
(2) 51.07 51.07 51.05 51.08 51.08

(0.02) (0.00) (0.01) (0.01) (0.02)
(3) 54.96 54.98 54.91 54.93 54.93

(0.08) (0.08) (0.06) (0.07) (0.07)
(4) 54.84 54.84 54.85 54.85 54.85

(0.02) (0.02) (0.02) (0.02) (0.03)
Tertiary jobs (1) 72.34 72.33 72.35 72.31 72.33

(0.04) (0.03) (0.04) (0.06) (0.04)
(2) 72.34 72.33 72.28 72.30 72.32

(0.02) (0.03) (0.04) (0.04) (0.05)
(3) 72.34 72.32 72.36 72.36 72.35

(0.05) (0.03) (0.07) (0.04) (0.05)
(4) 72.35 72.32 72.32 72.33 72.30

(0.06) (0.03) (0.03) (0.05) (0.03)
Total jobs (1) 69.12 69.13 69.12 69.13 69.11

(0.03) (0.01) (0.02) (0.02) (0.01)
(2) 69.15 69.12 69.11 69.13 69.12

(0.02) (0.02) (0.01) (0.02) (0.02)
(3) 69.49 69.49 69.49 69.50 69.50

(0.03) (0.01) (0.02) (0.02) (0.01)
(4) 69.49) 69.48 69.46 69.50 69.48

(0.02) (0.02) (0.02) (0.02) (0.03)

Table 6.3 – Share of agents within the Brussels-Capital Region (average
value over the 10 runs in 2020 in %; between brackets: inter-runs standard deviation;
1 = Statistical wards; 2 = Sections; 3 = Former municipalities; 4 = Municipalities)
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Scenario
Indicator BSU Baseline Cordon Office Subsidy Land-use
Travel time (1) 38.35 39.97 37.96 38.20 37.98
(minute) (0.52) (0.50) (0.22) (0.39) (0.19)

(2) 38.44 39.86 38.43 38.39 38.23
(0.20) (0.28) (0.21) (0.24) (0.16)

(3) 38.24 39.29 38.36 38.27 38.50
(0.19) (0.24) (0.29) (0.36) (0.33)

(4) 42.84 44.54 41.65 43.73 42.09
(0.81) (1.13) (0.21) (0.56) (0.34)

Travel distance (1) 19.24 19.20 19.18 19.21 19.19
(km) (0.03) (0.03) (0.03) (0.03) (0.02)

(2) 19.09 19.06 19.11 19.12 19.1
(0.03) (0.04) (0.01) (0.01) (0.01)

(3) 19.53 19.50 19.52 19.53 19.52
(0.05) (0.03) (0.02) (0.05) (0.02)

(4) 19.20 19.18 19.2 19.23 19.2
(0.01) (0.02) (0.02) (0.02) (0.01)

Resid. area (1) 23.99 23.99 23.96 23.99 23.99
(%) (0.01) (0.02) (0.02) (0.01) (0.01)

(2) 45.20 45.19 45.20 45.21 45.18
(0.05) (0.08) (0.07) (0.07) (0.06)

(3) 40.53 40.54 40.55 40.55 40.55
(0.04) (0.03) (0.05) (0.05) (0.03)

(4) 41.92 41.89 41.93 41.92 41.93
(0.04) (0.02) (0.01) (0.01) (0.04)

Table 6.4 – Transport and land consumption indicators (median value over
the 10 runs in 2020; between brackets: inter-run’ standard deviation; 1 = Statistical
wards; 2 = Sections; 3 = Former municipalities; 4 = Municipalities)
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the balance between these revenues and the additional transport costs for the
residents will be zero.

Information about construction costs of office in Belgium is extremely par-
tial. Based on two recent projects (EUROPA building, 55 000 sq. meter for
240 million e, see EC, 2015; and the new NATO HQ, 250 000 sq. meter for 1.1
billion e, see NATO, 2014), they can be estimated between 4 000 and 4 300
e/m2 in the BCR. These two examples are, however, "high-end" buildings, with
requirements (prestige, security features) not commonly found in basic office
space. The construction cost for flats in the BCR was of 2 670 e/m2 in 2011
(KF, 2012). Hence, a rough estimation of the Office scenario implementation
cost would be of 1 to 1.6 billion (assuming a price per square meter ranging
from 2 500 to 4 000 e). Data on office space rents are more complete, at least
for the BCR (from 165 to 285e/m2/year in 2012, depending on the location,
see CBRE, 2012). The annual revenues taken from the implementation of the
Office scenario can thus be estimated to 81 millions (for a 100% occupation
rate). Assuming no inflation and the maximal estimated cost, the amortisation
period would be of 19 years, which seems conceivable. Furthermore, a pub-
lic ownership is assumed for these new office spaces. If these developments’
projects were to take place, it is most likely that they will be organised in a
public-private partnership, an option that has not been considered here.

Uncertainties are lower for residential scenarios. In 2010, the cost of the
Subsidy scenario would have been about 160 millions e (12 276 residential
real estate transactions in the BCR, for a total price of 3.1 billion e; data
from DGSIE, 2015b). And its total cost over the 2010 to 2020 period can
be computed from simulation results. The Land-use scenario only requires
modifications in the land-use scheme by various public administrations. Its
implementation cost can thus be considered as null.

On the short term, direct revenues of both Subsidy and Land-use scenarios
are limited to variations in the stock of local taxes collected. Observed levels
(Figure 6.4) vary only slightly within the study area. To simplify, the direct
revenues taken from the Subsidy and Land-use scenarios will thus be considered
equal to zero.

6.5 Discussion

6.5.1 Consistency and limitations
Several components of the present chapter can be related to previous findings.
First, the sensitivity of parameter estimates on the size of the BSU is a known
issue. As indicated in section 6.4.1, it is referred as the scale effect in the liter-
ature on the MAUP (Fotheringham and Rogerson, 2009; Briant et al., 2010).
Variations observed here in parameter estimates are consistent with those found
in works dedicated to the MAUP (see, in particular, chapter 4). Secondly, We-
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Scenario
BSU Baseline Cordon Office Subsidy Land-use

(1) INC 21.39 21.39 21.39 21.39 21.39
HC 4.91 4.91 4.91 4.91 4.91
TC 0.21 2.35 0.19 0.21 0.19
U 16.27 14.13 16.29 16.27 16.29

C 0 1.70 15.5 to 16.1 1.48 0
R 0 2.12 0.80 0 0

SW 16.27 14.55 15.5 to 16.1 14.79 16.29
Rank 2 5 3 4 1

(2) INC 21.39 21.38 21.39 21.39 21.39
HC 4.89 4.90 4.89 4.89 4.89
TC 0.21 2.21 0.20 0.20 0.19
U 16.29 14.27 16.30 16.30 16.31

C 0 1.70 15.5 to 16.1 1.44 0
R 0 1.98 0.80 0 0

SW 16.29 14.55 15.5 to 16.1 14.86 16.31
Rank 2 5 3 4 1

(3) INC 19.15 19.16 19.15 19.15 19.16
HC 3.14 3.14 3.14 3.14 3.14
TC 0.22 1.96 0.21 0.22 0.21
U 15.78 14.47 15.80 15.79 15.81

C 0 1.70 15.5 to 16.1 1.38 0
R 0 2.11 0.80 0 0

SW 15.78 14.06 15 to 15.6 14.41 15.81
Rank 2 5 3 4 1

(4) INC 19.17 19.17 19.16 19.17 19.16
HC 2.78 2.78 2.77 2.78 2.77
TC 0.65 2.56 0.58 0.65 0.60
U 15.74 13.83 15.60 15.73 15.79

C 0 1.70 15.5 to 16.1 1.37 0
R 0 1.88 0.80 0 0

SW 15.74 14.01 15 to 15.6 14.37 15.79
Rank 2 5 3 4 1

Table 6.5 – Generalised-cost analysis (average values over the 10 runs, in billion
e; 1 = Statistical wards; 2 = Sections; 3 = Former municipalities; 4 = Municipalities;
INC = income level; HC = housing cost; TC = transport cost; U = utility level;
C = implementation cost of the scenario; R = direct revenues; SW = social welfare;
Rank = rank of the scenario; note that the inter-run’ variations does not affect the
ranking)
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gener (2011a) explores stochastic variations (i.e. inter-run variations) due to
changes in the ratio of the number of choices (i.e. agents who relocate) on the
number of alternatives (i.e. BSU). His results show that stochastic variations
decrease when this ratio increase. Since the number of agents is fixed here,
inter-runs’ standard deviation should decrease from small to large BSU levels
(reduction of the number of alternatives), which is indeed the case, especially
for households (Table 6.3).

Thirdly, the low response of the model system to the scenarios is consistent
with previous applications of LUTIs in Europe (e.g. de Palma et al., 2008 for
Paris; or the MOEBIUS project for Luxembourg, see Lord and Gerber, 2013).
The cordon scenario in Cabrita et al. (2015), who uses the same model system
than here, is similar to the Cordon scenario implemented here. The observed
relocation of agents is negligible in both cases, and the influence on commuting
time and distances is also limited. On the contrary, the densification scenario of
Cabrita et al. (2015) leads to a large relocation of households towards the BCR
(+8.5% compared to the baseline). It is, however, based on the very strong
assumption that new residential units are constructed within the BCR at the
rate of 2% of the total dwellings stock per annum, for five consecutive years.
The changes implemented are, therefore, far larger than for our Subsidy and
Land-use scenarios. Overall, the results appear thus consistent with previous
works.

It was impossible to take into account the modal share of car and public
transport due to technical difficulties causing MATsim to crash when the model
choice module is activated1. This issue should have a limited influence on
the Baseline, Office, Subsidy, and Land-use scenarios. For the Cordon, the
workaround was to apply the congestion fee for the entire day, rather than for
the morning peak hour only. To avoid the fee, households must thus either
relocate inside the BCR, or select a job located outside of it. Both processes
that have a reaction time far longer than a change in travel behaviour (Wegener
et al., 1986; Simmonds et al., 2013), therefore constraining the low effects
observed for the Cordon scenario.

One could also argue that scenarios implementing larger deviations from
the initial conditions would have triggered a larger response of the model sys-
tem (as for the densification scenario of Cabrita et al., 2015). This has not
been attempted, since it would have contradicted the purpose of this work, in
which variations induced by the scenarios are used as references to assess the
sensitivity of a LUTI model to the scale effect. A more theoretically sound
criticism is that a longer simulation period would have allowed slower urban
processes, such as land-use changes (see Wegener et al., 1986; Simmonds et al.,
2013) to take place. UrbanSim, however, is a path-dependant model: the util-

1Multiple trials with various sample size suggest that this is not only a memory issue,
but provide no further indications. Moreover, it is unclear if the modal choice option has
been used in any operational application of the UrbanSim/MATsim coupling plug-in.
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ity function of agents, defined by the specifications of the location choice sub
models, is fixed over the simulation period. Changes should thus start as soon
as the scenarios are implemented, and continue until development constraints
(e.g. the maximal number of households per zone) are reached. If no variations
are visible after 10 years, it is unlikely that they would occur after twenty.

6.5.2 First and second order sensitivity to scale
The main interest is not to focus on Brussels, but to highlight general results
of the sensitivity of LUTI models to scale. Variations observed in the location
choices of agents (Table 6.3) appear to be linked with the spatial structure of
their perceived utility-level. Figure 6.4 shows that households are less concen-
trated in the BCR than tertiary sector jobs. A mono centric structure seems
thus to have a lower sensitivity to the scale effect than a poly centric one. This
result is quite straightforward, since a large centre will always emerge from
its neighbourhood, whatever the aggregation level, while small centres may be
"diluted" for large BSU levels (see chapter 4). Variations in the distribution of
agents can be seen as a first order scale’ sensitivity of LUTI models. They are
induced by the influence of the MAUP on econometric methods, specifically
here the sensitivity of DCM to the size of the areal units that constitute their
choice set (see Arauzo-Carod and Antolín-Manjón, 2004; chapter 4).

A second order scale’s sensitivity is observed in Table 6.4. These indicators
are derived from agents’ location choices, but their computations require addi-
tional parameters that are themselves sensitive to the BSU level. Let’s consider
the commuting times: MATsim uses as origins and destinations the centroid of
the zone. For large BSU levels, a high number of agents are therefore concen-
trated on the same location. Yet, assuming that all agents within a zone are
located on its centroid is usually a too strong hypothesis (see e.g. Goodchild
and Gopal, 1989) and MATsim thus allows randomly distributing them in a
buffer centred on each centroid. The width of this buffer was set here as the
radius of a circle whose area is equal to the median area of each BSU level
(from Statistical wards to Municipalities: 320, 790, 1 450, and 2 715 meters).
Such correction is needed to avoid local congestion effect that would otherwise
arise from the concentration of a large number of agents in a small number of
origins or destinations. It appears that it works properly for the three small
BSU levels, but that for Municipalities the width of the buffer is insufficient.

The total residential area constitutes a second example. This indicator
depends on the median area of a residential plot. For detached houses and
from Statistical wards to Municipalities, it is of 716, 982, 1 098, and 1 039
square meters. For Sections, the median plot size is far larger than those
of Statistical wards, which explains the greater values observed in Table 6.4.
While for "large" BSU levels, the increase in the median plot size is more than
compensated by the relocation observed towards the BCR, where plot size are
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smaller. These findings raise once again the question of spatial aggregation
methods (see e.g. Goodchild and Gopal, 1989).

The social welfare level (Table 6.5) changes through BSU levels due to vari-
ations of the inputs (location of agents, real estate prices). The scenarios’ rank-
ing are, however, not affected. The generalised-costs approach thus provides
consistent results through scale. Reasons are that the scenarios are either
implemented at the building level (Office) or following the border of the mu-
nicipalities (Cordon, Subsidy, Land-use). It was a natural choice here, since
the municipalities are the only BSU level to have an administrative power.
The sensitivity of the results to scale remains, however, an open question for
scenarios with a more complex spatial footprint. Nevertheless, the generalised-
costs relies on aggregate values at the study area level, and large differences
are observed in the balance (revenue minus cost) of the scenarios.

6.5.3 Recommendations for operational applications
The results presented here raise several concerns for operational applications
of LUTI models. Let us first note that DCMs are used in almost all state-of-
the-art LUTI models (see Wegener, 2004; Simmonds et al., 2013). Therefore,
the sensitivity to scale observed for UrbanSim is likely to be present in other
models, even if variations in magnitude remain an open question. It is also
probable that other case studies will show a significant level of sensitivity to
scale, linked to the initial spatial distribution of agents. Poly centric patterns
(i.e. households here) appear more influenced by the size of the BSU than mono
centric one (jobs in services). These findings confirm that a good knowledge of
the study area is vital for LUTI model projects (Nguyen-Luong, 2008).

The main finding is that the sensitivity to the size of the BSU varies from
one output of the model system to another. It is unclear if primary (i.e. the
final location of agents) or secondary (e.g. travel times) indicators should be
preferred. LUTI models have been criticised since Lee (1973) for producing only
the kind of aggregated results that the former one constitutes. The meaning
of the latter may, however, be obfuscated by their computation that requires
additional parameters varying with the BSU level. Yet, they highlight an ad-
ditional dimension of the urban realities. Indicators at the agents’ level (as in
the generalised-costs approach) would allow taking advantage of the disaggreg-
ated nature of micro-simulation model. However, as long as the LUTI model
is not based purely on individual observations and agents, the spatial biases
will persist. And it is unclear if an evolution towards more disaggregation is a
desirable path for LUTI models, due to stochastic variations and longer com-
putation times (see Wegener, 2011a), but also constraints on data availability
(see Thomas et al., 2015).

The research question of this chapter was: can the scale effect biases policy
evaluation? Our results suggest that it depends on the indicator used. If
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policy makers require actual predictions (e.g. that the commuting time should
decrease by 10%), then the answer is yes. Nevertheless, the direction of the
variations between scenarios is preserved (the only significant example being
the increase of travel time for the Cordon, see Table 6.4) through BSU levels.
This is also true for the ranking of the scenarios according to their SW level
(Table 6.5). Hence, when the model system is used as a simplified reality, to
compare options, then the size of the BSU does not seem to be an issue. This
result can be related to the discussion between explanative versus predictive
models (Shmueli, 2011). It also depends on the objective of the work.

Unhopefully, to our knowledge, LUTI model results often favour actual pre-
dictions (see Badoe and Miller, 2000; Bartholomew, 2007; Handy, 2008). Gen-
eralizing policy evaluation’s methods based on a consistent, multi-dimensional,
economic framework (e.g. Hély and Antoni, 2014; Proost et al., 2015) may re-
duce the risk of wrongheadedness due to the scale effect. They do not, however,
solve the fundamental problem that LUTI models themselves (and particularly
their econometric components) are sensitive to spatial biases (see chapter 3,
chapter 4, and chapter 5), for which no easy or straightforward solution exists.
We would like to urge here (as Nguyen-Luong, 2008) that a good knowledge
of the study area is vital to select the adequate BSU level, according to data
availability constraint and the spatial structure of the city.

6.6 Conclusion

This chapter proposes a sensitivity analysis of a LUTI model’ outputs to the
size of the areal units used by the model. Using an empirical case study (Brus-
sels, Belgium) and four BSU levels, the results show that variations with scale
are generally larger than those between scenarios. A poly centric structure
appears more sensitive than a mono centric one, but variations of the results
are not monotonous with the BSU level and thus cannot be easily general-
ised. The main reason is that econometric methods in LUTI models are sens-
itive to the scale effect of the MAUP, confirming previous findings of chapter
4. These results have important implications for policy evaluations based on
LUTI models. Actual predictions are likely to be biased by the BSU chosen
for the model, especially if separated indicators are used rather than a unified
economic framework (cost - benefit analysis). On the contrary, when the model
is used as a simplified reality to compare scenarios, the results are consistent
through scales. Together with those of chapter 5, these findings call for a bet-
ter awareness of potential spatial biases in operational applications of LUTI
models (see chapter 7). Space may biases LUTI models and, therefore, space
matters in their operational applications.
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Recommendations and conclusion

7.1 Executive summary

Different experiments have been conducted in this doctoral dissertation to meet
its general objective: assess if the behaviour and outputs of LUTI models are
affected by their spatial extent and resolution. The answer is yes. Despite
the limitations highlighted in all chapters, our findings demonstrate the sens-
itivity of LUTI models to space, and provide insights to understanding the
causes of this sensitivity, which are both internal (i.e. due to the mechanism
of UrbanSim) and external (i.e. due to modellers’ choices).

The added value of this thesis to the current state-of-the-art is twofold. Part
II provides an extension to the existing literature on the MAUP, by assessing
the sensitivity of regression methods to the spatial extent, and the sensitivity
of a discrete choice model to the spatial resolution. The analyses conducted
in Part III are original (no other published work has considered the question)
and demonstrate the influence of spatial bias on the outputs of LUTI models.
Overall, a significant sensitivity to spatial bias is found for four of the situations
explored in this thesis, and a limited sensitivity for the two others (see Table
7.1). Let us recall that the behaviour of LUTI models refers here to their
internal principles (i.e. regression methods and DCM), while the outputs consist
in the final situation predicted by the model. The spatial extent designates the
size of the study area on which a LUTI model is applied, and the resolution
the size of its Basic Spatial Units.



7. Recommendations and conclusion

Before summarising how they affect LUTI models, let us recall that our main
methodological choice (see chapter 1) was to focus on the land use component of
LUTI models (represented here by the UrbanSim model) and that only two case
studies have been used (Brussels and a synthetic city). It is, therefore, necessary
to question the validity of our findings for other LUTI models. Chapter 2
shows that other state-of-the-art LUTI models also rely on utility-maximising
methods to forecast agents’ location choices, and their parameter estimates will
be sensitive to spatial bias. Secondly, bias occurring in the data collection and
processing steps will be present whatever the modelling framework used. It is
thus likely that any LUTI model will show some levels of sensitivity to spatial
bias.

7.1.1 Spatial extent

The spatial extent has a limited influence on parameter estimates of regression
models for real estate prices (see chapter 3). No significant variations are found
in parameter estimates. It can, however, be due to the spatially aggregated
data used here. The magnitude of the variations of these parameter estimates
can be related to changes in the nature of the study area, from the CBD to a
mono centric urban region and, eventually, a poly centric metropolitan area.
Significant variations of parameter estimates are, on the contrary, observed for
Discrete Choice Model (DCM) forecasting agents’ location choices (see chapter
4). For both methods, these findings imply that both the size and the compos-
ition of the study area influence the socio-economic process occurring within
it.

The outputs of UrbanSim are influenced by the size and composition of the
study area, as shown by the sensitivity analysis on the mono and poly -centric
configurations of the synthetic case study (chapter 5). As for econometric
components, the composition appears more critical than the size. The inclusion
of rural areas, with no or few relationships with the CBD, has only a limited
influence. The main risks of bias occur when the study area encompasses a
portion of the catchment area of other CBD (i.e. municipalities that are more
attracted by a CBD located outside the study area than by those included).
The potential influence of the spatial extent on policy evaluation has not been
assessed in this thesis. Chapter 5 show that simple indicators would have been
affected but the sensitivity of a generalised costs approach remains an open
question. Our guess is that this potential influence would be linked to the
nature of the changes implemented, but the variety of the possible scenarios
makes formalisation difficult.
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Spatial choices
Component Spatial extent Spatial resolution
Regression
analysis

Limited sensitivity. See
chapter 3: variations of
parameter estimates are ob-
served but are not signi-
ficant. The relevant inde-
pendent factor vary with the
nature of the study area

Not assessed in this
thesis. Strong evidence of
significant sensitivity in the
literature; see chapter 1.

Multinomial
logit

Significant sensitivity.
See chapter 5: variations
of parameter estimates and
utility level.

Significant sensitivity.
See chapter 4: variations
of parameter estimates and
utility level linked with
the spatial structure of the
agents.

Outputs Low to significant sens-
itivity. See chapter 5: de-
pends on the indicator con-
sidered and on the nature of
the zone added to the study
area.

Low to significant sens-
itivity. See chapters 5 and
6: depends on the indicator
considered and on the spa-
tial structure of the agents.

Policy evalu-
ation

Not assessed in this
thesis

Limited sensitivity. See
chapter 6: significant vari-
ations observed for some
simple indicators but no
influence on a cost-benefit
analysis.

Table 7.1 – Summary of the findings
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7.1.2 Spatial resolution

The influence of the spatial resolution on the real estate price sub model was
not assessed, due to a lack of data. Nevertheless, there is strong evidence
from literature (see chapter 1) that parameter estimates of regression methods
vary with the size of the BSU. Literature also highlights a similar sensitivity
for DCM (see chapter 1). This thesis allowed extending the state-of-the-art in
that field by considering smaller BSU than those used in existing works, and by
relating directly the sensitivity analysis to LUTI models. Significant variations
are found in parameter estimates, affecting in turn the utility level of each BSU.
The magnitude of this influence appears to be linked with the spatial structure
of agents: a strong mono centric distribution is, indeed, less affected by changes
in the size of the BSU than a poly centric one. On a conceptual point of view,
this sensitivity to the spatial resolution can be related to a varying importance
through scales of the process and amenities driving agents’ location choices.

The outputs of UrbanSim are sensitive to changes in the size of the BSUs
(see chapter 5 and chapter 6). Our results show that this sensitivity is a function
of the spatial distribution of agents and, therefore, varies from one indicator
to another. The explanation of this sensitivity lies in variations of the relative
intensity (or even direction) of feedback effects accounted for by the model.
Regarding policy evaluations, a limited sensitivity is found. Simple indicators
vary with the size of the BSU. Policy evaluation based on threshold values or
multi-criteria analysis will, therefore, be biased. Generalised-costs approach,
on the contrary, produce consistent results whatever the size of the BSU (i.e.
the ranking of the scenario is not affected, even if their final social welfare level
changes; at least for the scenarios tested in chapter 6).

7.1.3 Operational implications

Does this sensitivity to spatial bias have implications for operational applica-
tions of LUTI models? Again, the answer is yes. Despite limited in magnitude,
the variations observed between different spatial extents or resolutions are lar-
ger than between scenarios. Moreover, predicting these variations prior to
running the simulations is impossible.

The variations of parameter estimates cannot be predicted (see chapters 3
and 4), since the set of independent variables imputed to one econometric sub
model is user-defined and, therefore, specific to each case study. Chapter 5
shows that studying the variations of the utility level predicted by the location
choice sub models is a more promising study path. Nevertheless, although
identifying the portions of the study area where the growth of (for instance)
the population will increase or decrease between the different spatial extent or
resolution seems possible, we cannot predict the magnitude of these variations.
The reason is that LUTI models account for a large number of different feedback
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effects, whose intensity and direction are affected by the boundary and scale
effects. Even the very simple specifications used in our synthetic case study
lead to unexpected evolutions (see chapter 5). In real-world applications, where
agents’ location choices depend on multiple variables, the number of feedback
effects could be exponentially larger, precluding any disentangling.

Hence, the sensitivity of LUTI models to space is not only a technical prob-
lem, but results also from the choices made by the modellers. In the remaining
of this chapter, we explore, therefore, three perspectives for future develop-
ments. Section 7.2 assumes that we are on the verge of developing operational
applications of LUTI models, and attempt to propose “best spatial practices”
for the selection of both the spatial extent and resolution. Section 7.3 then
examines the technical development of LUTI models that would improve the
representation of space (spatial econometrics methods and multi-scale models).
Finally, section 7.4 proposes an alternative approach for land-use and transport
modelling based on (1) a better integration of economic geography theory into
LUTI models and, (2) the potential development of "feasible LUTI models".
Section 7.5 constitutes the general conclusion of the thesis.

7.2 Best spatial practices in LUTI models

7.2.1 How to delineate the study area?
The spatial extent, i.e. the size and shape of its study area, affect various
dimensions of a LUTI model application (see section 7.1). Especially if the
study area encompasses areas under the influence of another city than the
main CBD. Hence, the optimal delineation of the study area of an operational
application of a LUTI model should present three characteristics. First, inter-
actions between places, through transport, should exist inside the study area.
Secondly, the study area should be large enough to assess the influence of large-
scale scenarios (e.g. transportation network improvements). Chapter 2 shows
quite clearly that LUTI models’ applications favour such large study areas,
corresponding to the extended urban area category (see Table F.2). Finally,
UrbanSim (as many other LUTI models) assumes a closed city. To reduce po-
tential bias, interactions between the study area and the “rest of the world”
should thus be as limited as possible.

Methods for cities’ delineations

This issue relates to the question of the definition of cities’ influence area.
Due to the long-existing sub urbanisation process, built-up fringes show irreg-
ular patterns, recent detached housings estates being mixed with traditional
rural buildings and employment opportunities (Tannier et al., 2011). The bin-
ary distinction between cities and countryside is thus no longer valid (Schuler
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et al., 2009). Administrative boundaries are also often obsolete, many cities
sprawling out of their official limits (Dujardin et al., 2007). Hence, the urban
phenomenon should be studied using morphological or functional delineations
taking into account the economic influence of a metropolitan area (Cheshire
and Gornostaeve, 2002; Cheshire, 2010).

Official functional delineations of urban areas exist, in various countries
(e.g. France, see Le Jeannic and Vidalenc, 1997; Julien, 2000; Julien, 2001,
the US, see Federal Register, 2000; Federal Register, 2002; and Switzerland,
see Le Gleau et al., 1996; Dujardin et al., 2007). In addition, the methodology
followed by Van Hecke et al. (2009) for Belgium is detailed in chapter 3. Most
of these functional delineations can be organised in three nested categories
(Table F.1), varying clearing in meaning and according to the criteria taken into
account. The main drawback of these classical methods for cities’ delineation
is that they rely on arbitrarily definedthreshold values (Coombes and Bond,
2007; Blondel et al., 2010; and Thomas et al., 2013).

Recognising this potential bias, innovative methodologies have emerged, of-
ten relying on interaction matrices among locations. Commuting patterns are
particularly favoured, due to their natural relation with labour market areas.
Karlsson and Olsson (2006) propose a review of theories and methods for the
delineation of such functional regions. Applications based upon the partition
of networks representing commuting fluxes can be found for Czech Repub-
lic (Klapka et al., 2014), Ireland (Farmer and Fotheringham, 2011), Slovenia
(Konjar et al., 2010), United Kingdom (Coombes, 2013), and Brussels (Thomas
et al., 2013). Networks of phone calls have also, but less frequently, been
used. Notable examples include United Kingdom (Ratti et al., 2010) and Bel-
gium (Thomas et al., 2013). These recent developments in urban delineation’
method attempt to identify functional region based upon an endogenous para-
meter, usually some kind of modularity, i.e. a measure attempting to maximise
the intra-region similarity and to minimise the inter-region dissimilarity. Note
that delineation of the morphological agglomeration using fractals (see Tan-
nier et al., 2011 for theoretical background, and Tannier and Thomas, 2013 for
an application to various European cities) are not discussed here since we are
focusing on the complete extent of the labour market area.

Best delineation for LUTI models

Among the indicators commonly used in cities’ delineation (Table F.1), we re-
commend using commuting flows, and to apply a methodology based on the
partition of an origin – destination matrix, with an endogenous criterion that
attempts to produce clusters with maximal intra-group fluxes and minimal
inter-group fluxes. The job basin proposed in Thomas et al. (2013) constitutes
a good example. This approach meets the three desirable characteristics ex-
pressed for the study area of LUTI models: (a) commuting is the product of the
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spatial mismatch between residential locations and employment centres. (b)
Commuting fluxes produce large delineations, and (c) the proposed methodo-
logy will allow creating a study area with strong internal ties but loose links
with the rest of the world, reducing potential border effect bias.

Three technical limitations should be addressed. First, origin – destination
matrices of commuting fluxes are generally drawn from one areal unit to another
(rather than using individual data). Discrepancies can, therefore, still exist at
the edge of the delineation, but this bias should be limited if data is available
for sufficiently small areal units (practically speaking, no larger than Belgian
municipalities). Secondly, it does not guarantee that the fluxes to or from the
outside of the study area will be negligible. The need for a better representation
of the interactions with the “rest of the world” will, therefore, remain (see
section 7.3). Finally, this methodology is only valid for urban applications of
LUTI models, i.e. when the study area is centred on one metropolitan area.
Regional applications can also be found, i.e. an application of LUTI model
encompassing a network of cities or even an entire country (e.g. TIGRIS XL
for The Netherlands, see Zondag and de Jong, 2011; Zondag et al., 2015 and
MARS for Austria, see Pfaffenbichler et al., 2010). This latter case should be
dealt with by relying on a multi-scale model (see section 7.3).

The main limitation is the existence of political constraints. Chapter 2
shows that the spatial extent of a LUTI model is not always a matter of choice
for the modellers. In this situation, two cases may appear. (a) If the commuting
area is larger than the mandatory study area, the poly centric example from
chapter 5 shows that the biases should be limited. (b) The opposite situation
can, on the other hand, lead to major discrepancies. Yet, this latter case is
similar to the regional applications of LUTI models, and should also be dealt
with by a multi-scale model.

7.2.2 What zoning system should be used?

Most LUTI models are not purely disaggregated. A zoning system has, there-
fore, to be defined. The desirable characteristics of such areal units are that
(1) they should be consistent with the neighbourhood taken into account by
agents in their location choices, but also (2) be useful for policy makers. Zones
corresponding to (or that can be re-aggregated into) official administrative
boundaries are, therefore, desirable. These two characteristics are somewhat
contradictory. Moreover, the spatial resolution issue is also technical, and can
be divided between constraints external to the model systems, and those in-
herent to its internal principles.
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External constraints

Data availability constitutes the main constraint on the spatial resolution, as
shown in chapter 2 and section 7.1. Due to the inherent bias of the aggregation
or disaggregation procedures (Goodchild and Gopal, 1989; Fotheringham and
Rogerson, 2009; Fotheringham et al., 2000a), it is preferable that modellers rely
on the areal units for which most of the variables required are available.

A more conceptual issue is that the aim of a LUTI model’s application
may also influence the optimal level of areal units. Chapter 6 shows that the
specifications of the location choice sub models are affected by the size of the
areal units. The principal factors (population or jobs’ density, accessibility) are
selected for all BSU levels, but specifications for large ones generally involve
fewer variables (see appendix E.1). In other words, the processes relevant to
predicting location choices vary through scales, which is consistent with the
findings of Guo and Bhat (2004); de Palma et al. (2007) and Guo and Bhat
(2007). Hence, the spatial resolution will affect the processes that the model
will be able to simulate. If detailed scenarios have to be tested, then small
areal units are required. On the contrary, relatively large areal units appear
sufficient if only simple forecasts are requested.

Internal constraints

Chapter 2 outlines a link between the internal complexity of LUTI models and
their level of spatial disaggregation. Disaggregated LUTI models allow to take
advantage of the increasing availability of micro-level data. Nevertheless, smal-
ler areal units mean an increased level of stochastic variations in the outputs
of the model (Wegener, 2011a). The most evident solution to these biases is
to run the model several times, and to average the outputs of the successive
simulations (however increasing the computation time).

A second internal constraint is that the areal units are the same for all
categories of agents. Meaning that the neighbourhood considered by households
to assess the environmental amenities of a given residential location is identical
to the one used by firms to forecast their future locations. It is, however, in
contradiction with the desirable features highlighted at the beginning of this
section (this issue is discussed in section 7.3).

Overall, the current section mainly raises more questions that modellers
should ask themselves prior to the data collection and processing steps. The
reason is that the spatial resolution depends on the modelling framework used,
on data availability, and on the final goal of the work. These components
are specific to each case study. Making further generalisations is, therefore,
difficult.
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7.3 Toward an optimal spatial model

7.3.1 Spatial econometrics: the solution?
The potential of spatial econometrics methods for LUTI models is sometimes
discussed (e.g. Löchl and Axhausen, 2010; Efthymiou and Antoniou, 2013;
Thomas et al., 2015) but the first operational applications have yet to emerge.
Broadly speaking, spatial econometrics methods (see LeSage, 1999; Anselin,
2002; Le Gallo, 2002; LeSage and Pace, 2009; or Anselin, 2013 for a detailed
overview) aim at reducing the biases arising from the presence of spatial de-
pendence among dependant or independent variables of a statistical model,
or within its error term. Some authors have argued that such methods were
mostly useless, since they could prevent one from identifying the true causal
parameters (Gibbons and Overman, 2010). Another limitation is that they
consist in treating the symptoms (i.e. the spatial dependence problem) rather
than the causes (Le Gallo, 2002).

However, the context of LUTI models presents two specificities. First, in-
trinsic characteristics of agents and residential or non-residential buildings are
limited. Both the real estate prices and location choice sub models will thus
mostly depend on locations’ amenities. Some level of spatial auto-correlation
has, therefore, to be expected. The zoning system may induce the same issue,
since data availability often constrains to rely on statistical units that do not
follow the "natural" boundaries of real estate settlements. Hence, the presence
of spatial auto-correlation among econometric components of LUTI models is
the product of the internal principles of the model system. Willing to correct
that issue by implementing proper statistical methods is, therefore, natural.
We briefly present in this section the type of spatial econometric methods that
could be implemented within LUTI models, and the advantages and drawback
of such technical developments.

Regression methods

UrbanSim (among other LUTI models - see chapter 2) relies on regression ana-
lysis to forecast the evolution of real estate prices throughout the simulation
period. Numerous theoretical and applied publications exist on Spatial Auto-
Regressive model (SAR), and Spatial Error Model (SEM), e.g. LeSage and
Pace (2009); Anselin (2013). But also more complex specifications, such as
Simultaneous Autoregressive model (Bivand et al., 2013; McMillen, 2003; El-
horst, 2010), or Spatial Durbin Model. The reader interested in further details
on these specifications, and on the choice between them, can refer to Le Gallo
(2002); Anselin (2002); Anselin et al. (2006); LeSage and Pace (2009); Elhorst
(2010); Anselin (2013); or Bivand and Piras (2015).

Many operational applications can be found in the field of hedonic estima-
tions of real estate prices, e.g. Bowen et al. (2001); Wilhelmsson (2002); Anselin
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and Lozano-Gracia (2009); Löchl and Axhausen (2010); Cavailhès and Thomas
(2013); and Pholo Bala et al. (2014). Their implementation within LUTI mod-
els would not raise major technical challenges. Both above-mentioned methods
are currently available in many statistical analysis packages, including python
libraries (PySAL, see Rey and Anselin, 2007) – the language in which the
source code of UrbanSim is written. The main caveat is that they require a
spatial weight matrix. Various specifications exist (see Getis and Aldstadt,
2004; Zhou and Lin, 2008). The literature proposes some methods to select
the "best" spatial weight matrix (see Kostov, 2013; Seya et al., 2013) but it
would still add a level of complexity to LUTI models. Let us note, however,
that LeSage and Pace (2009) show that the variations in parameter estimates
from one spatial weight matrix to another are generally limited.

Overall, spatial econometric methods are mature enough for regression ana-
lysis. No practical difficulties exist for their implementation within LUTI mod-
els. In particular, the selection of the relevant specification (SAR, SEM, or
SAC) can be automated by relying on the information provided by the Lag-
range multiplier test (see Anselin, 1988a). The only additional work for the
modeller will be to select the type of spatial weight matrix, for which default
settings can be implemented. Hence, even if their usefulness for solving the
spatial extent and resolution issues remains unknown at this stage, we believe
that implementing spatial regression methods within LUTI models is worth the
(limited) effort required.

Discrete choice model

The situation is more complex for discrete choice models. Within LUTI mod-
els, they rely, for computational tractability purposes, on the classical linear-in-
parameter, utility maximisation multinomial logit (MNL) model with random
sampling of alternatives (see chapter 4 and McFadden, 1978). Moreover, LUTI
models use a zoning system composed of discrete areal units. (Note that re-
vealed preferences’ data sets have thus to be used, i.e. data sets with the actual
location of the firms, rather than the more classical stated preferences’ frame-
work - see Wardman (1988) for a comparison of these approaches). Hence, the
typical choice set consists in census tracks or municipalities, and it includes
a very large number of alternatives. The presence of spatial autocorrelation
among these alternatives is, therefore, a common problem, and the Independ-
ence of Irrelevant Alternatives’ assumption is unlikely to hold in such case
(Sener et al., 2011). This bias can be accounted for by Generalised Spatially
Correlated Logit (see Guo and Bhat, 2004; Sener et al., 2011), or by including
a spatially weighted average to the utility function of each alternative (Alamá-
Sabater et al., 2011). These specifications are, however, far more computation-
ally intensive, and not commonly implemented in econometric software.
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Broader concerns must also be mentioned. First, the choice set can be
different among agents (Thill, 1992), and especially for residential location
choices (see Pagliara and Wilson, 2010 for review). The random sampling of
alternatives assumes a perfect knowledge of all alternatives, which is unrealistic
given the limited capacity of agents for gathering information (Fotheringham
et al., 2000a, Meester and Pellenberg, 2006). Secondly, for small areal units,
the relevant extension of the neighbourhood taken into account by agents can
exceed the size of these areal units. To correct this bias, a multi-scale modelling
structure has been proposed (Guo and Bhat, 2004), but it is itself sensitive to
the definition of the neighbourhood (Guo and Bhat, 2007).

Overall, an ideal specification of DCM with spatial choice set would be one
that is independent of the level of aggregation in the definition of the zone.
That is to say, a model where the probability of a zone i, created by merging
two zones j and k, is equal to the sum of the probabilities of j and k, i.e.
that Pi = Pj + Pk. That equality only holds if the utilities are expressed in
logarithm, with ui = ln(βXi). As for other econometric developments, such
specification is, however, far more computationally intensive than the classical
linear-in-parameters specification and not commonly implemented in statistical
analysis software (Train, 2003).

Therefore, we believe that nested logit models constitute a more feasible
approach (see Cornelis et al., 2012 for an application to Belgium). Such frame-
work are implemented in IRPUD and PECAS (see chapter 2) and consist in
the selection of one large region, then of the precise location), similar to the
urban areas/suburbs/commuting zone/rural areas’ typology used by Cornelis
et al. (2012). Amenities of a given location should also be computed by buffer
of varying bandwidth rather than within the areal unit. This approach does
not raise particular technical difficulties, except the definition of the relevant
bandwidth.

7.3.2 Multi-scale models
Wegener (2011a) argues that future developments of LUTI models should not
consist in increasing the level of detail, but rather to identify the optimal level
of detail, on conceptual, temporal, and spatial components. In our opinion,
implementing a multi-scale representation of space is indeed more important
than increasing the spatial resolution, compared to the one of recent operational
applications (e.g. Cabrita et al., 2015; de Palma et al., 2015a and Schirmer
et al., 2015).

Both IRPUD and DELTA implement a multi-scale representation of space
(chapter 2). For IRPUD, it consists in defining large regions surrounding the
study area, which is itself divided into small zones (for DELTA, all regions are
further divided into zones). The aim is twofold. First, the commuting fluxes
between the study area and these external zones are explicitly represented,
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allowing accounting for the interactions with the rest of the world. Secondly, the
population and employment growth can be made endogenous by distributing
the total annual increase of households and jobs according to the characteristics
of these regions.

The best option to draw the large areal units is, in our opinion, to rely
on the same methods of origin - destination matrix partition than the one
suggested for the study area itself. The partition method can for instance be
run for the whole of Belgium. The cluster encompassing Brussels becomes the
study area (and is afterwards divided into small zones), while all other clusters
or, at least, that adjacent to the study area, are used as large areal units.

Whether all the large areal units should be further divided into zones (as
in DELTA) or only the central one (as in IRPUD) depends on the scope of
the work. The former approach is required for regional applications of LUTI
models. For instance, the complete extent of our poly centric synthetic city
(see chapter 5) could be divided into three large areal units (catchment areas
of the two CBDs, and the suburban area). In the relatively common situation
(see chapter 2) where modellers are constrained to a regional study area, this
multi-scale approach can thus be used to represent the different "life-basin".
In an "urban" application of LUTI models similar the mono centric synthetic
city and the Brussels case study considered in the thesis, the latter approach
is sufficient.

At this point, we do not know the reduction of boundary and scale effects
that a multi-scale approach would allow. It appears, nevertheless, both feas-
ible and theoretically sound. A more careful consideration for geographical
structure, compared to current applications, is required in the definition of the
multi-scale areal units to fully exploit their potential, but we believe that this
framework constitutes a promising path for future developments.

7.4 Another approach?

A remarkable result of recent operational applications of LUTI models (e.g.
de Palma et al., 2008; Lord and Gerber, 2013; Cabrita et al., 2015) is the
stability of the final situation predicted by the model, whatever the scenarios
implemented. The reason appears to be the inertia of the geographic structure
of metropolitan areas. Therefore, one can wonder if LUTI models are really
useful, given that they produce only limited results but comes at an high cost.
Despite these difficulties, including the sensitivity to spatial bias, we believe
that LUTI models are likely to remain highly praised tools for policy evalu-
ation in an urban or sustainable development context. For two reasons: (1)
the integration between land use and transport is a legal requirement when
applying for federal funding for transportation network’s improvements in the
US (see chapter 2), and (2) thanks to the wide range of indicators that they
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offer to assess various scenarios (see Efthymiou et al., 2014; Hély and Antoni,
2014; Proost et al., 2015). Hence, it is not useless to ask ourselves on broader
questions on the future of LUTI models.

7.4.1 The need for better spatial theories

Theoretical weaknesses of LUTI models

Each component LUTI models can be related to an important field of theory
(Figure 7.1) and, when taken independently, is generally recognised as an ad-
equate tool. The challenges arise from the integration of these components
within one modelling framework (the LUTI model itself), for three reasons.

First, their econometric components often rely on relatively simple methods
compared to the state-of-the-art of the field from which they derive (e.g OLS
regression instead of spatial models, see section 7.1; or MNL model instead
of nested logit, see Pagliara and Wilson, 2010; Arauzo-Carod et al., 2010 for
reviews). We already quoted in chapter 2 that, "it is strange experience to
notice that at symposia on integrated land-use – transport systems often basic
principles that were discussed (. . . ) [a] considerable time ago are still high on
the agenda" (Timmermans, 2003; pp. 21).

The second reason relates to the urban systems by speed of change (see
Table A.2). It suggests that the response time of a land use process to a per-
turbation is far longer than for transport. Nevertheless, UrbanSim assumes
a construction time of zero for new real estate developments (see chapter 5).
The practice of running the travel model only after a certain interval of land-
use model iterations (generally due to computation time constraints) is also
counter-factual with the theoretical framework. Finally, if land-use processes
are really slow to react, an equilibrium model (adjusting land-use for five or
ten year into the future) is sufficient and there is no need for (quasi)-dynamic
models. Therefore, a gap appears between the theoretical foundations of LUTI
models and the trends observed in their practical implementations and applic-
ations.

The third reason is that a link appears between the spatial resolution of the
model and the economic, demographic, or environmental process that can (or
should be) accounted for. The spatial resolution affects the processes relevant to
predict agents’ location choices (see chapters 4 and 5) resulting in variations of
the feedback effects implemented in location choices sub models. For instance,
the employment location choices sub models of the Brussels case study (see
Cabrita et al., 2015) often include, as an independent variable, the population
density or the surface occupied by a given activity sector. Chapter 4 suggests
that such variables may have counter intuitive influence for small areal units
(such as statistical wards) used in the model.
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Figure 7.1 – Systematics of land use models (adapted from Zollig Renner et al.,
2015)

Overall, LUTI models exhibit a complicated relationship with their theor-
etical foundations. Various conceptual frameworks are called as justifications
for the development towards dynamic, micro-simulation, models. The practices
observed are, nevertheless, sometimes contradictory. We believe that there is
a need to reinforce the theoretical foundations of modelling choices made in
operational applications of LUTI models.
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Hidden feedback and consistency

LUTI models attempt to be holistic, i.e. to account for every potential process
occurring in metropolitan areas. Nevertheless, they often remain a modular
system, in the sense that each sub model is estimated and calibrated independ-
ently (Wegener and Furst, 1999b). It causes various methodological issues.

Let us illustrate by an example taken from the Brussels case study of the
SustainCity project (see Cabrita et al., 2015). The car accessibility is used
as independent factor in both the households’ location choice sub model (see
Table F.3) and the real estate price sub model. The gains in accessibility are
thus compensated, in the utility-level perceived by households, by the increase
of houses’ price that this gain induces. Overall, the specifications of both sub
models make sense when considered independently, but result in the inclusion of
counter-factual hidden feedback effects in an integrated modelling framework.

On the contrary, urban economics models consist in a set of equations and
the feedback effects implemented in the model are, therefore, perfectly explicit.
Various applications of micro-economic urban models with a spatially explicit
output exist. Former works (e.g. Allen and Sanglier, 1981a; Allen and Sanglier,
1981b; Weidlich and Munz, 1990; and Munz and Weidlich, 1990) focused on
the formation of population or employment centres. More interestingly, dif-
ferent recent developments have a scope very similar to the issues tackled by
LUTI models:Caruso et al. (2007) and Caruso et al. (2015) have explored the
influence of the preference for green spaces leading to suburbanisation. Other
examples include the social segregation between rich and poor (Lemoy et al.,
2010), the influence of relocation on price formation (Ettema, 2011), the emer-
gence of employment centres (Yang et al., 2012), air pollution and residential
location choices (Schindler and Caruso, 2014), or agglomeration economies and
transport costs (Delloye et al., 2015).

These spatially explicit urban economics models can provide interesting
insight on the feedback effects that should be accounted for in LUTI models.
Currently, UrbanSim allows the user to define by itself the independent factor
of econometric sub models, without guidance. One could imagine an alternative
approach consisting in the pre implementation of different feedback effects (e.g.
the influence on households’ utility level of the real estate prices or of the
accessibility to jobs), with either a user-defined intensity (corresponding to
the parameter estimate) or fixed relative intensities (e.g. null, low, medium,
high). Incompatibilities could also be defined. For instance, going back to
the Brussels case study example, the activation of the "accessibility to jobs"
factor in the households’ location choice sub model could trigger its automatic
exclusion from the real estate price sub model. To our opinion, the gain in
internal consistency is worth the reduction of the flexibility of LUTI models
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Agents’ characteristics Buildings
Priority Households Jobs characteristics
Mandatory Number per zone Number per zone Prices
High Income class or

level
Local versus non-
local activity sec-
tor (as in Lowry,
1964)

Maximal number
of dwellings and
employment floor
space per zone

Medium Size or presence of
children

Further refinement
into activity sec-
tors

Dwellings’ type
(houses versus
flats)

Low Age, car’s owner-
ship

Home-based status Dwellings’ charac-
teristics

Table 7.2 – Priorities in land use modelling

7.4.2 A faster, more flexible, modelling strategy
Spatial biases excepted, the main message of this thesis is that current state-
of-the-art LUTI models are somewhat too complex for practical uses. Hence,
we would like to conclude this thesis by a proposal to develop "feasible LUTI
models". The research needed to meet this objective can be summarised by the
following research question: "what level of detail is required in the database of
a LUTI model to reach a precision level compatible with policy evaluation?"

Chapters 2 and 6 show that the most cumbersome tasks, in the development
of LUTI models’ operational application, are the data collection and processing
steps (see also Wagner and Wegener, 2007; Nguyen-Luong, 2008). As a result,
the simulations are often performed only at the very end of a LUTI model
project, reducing the policy evaluation to the bare minimum (see section 6.2
and Wegener, 2011a). Reaching an operational stage earlier during the project
would, to our opinion, help modellers in two different ways: (1) allowing to
run simple sensitivity analyses to assess the influence of the chosen spatial
extent and resolution on the outputs, and (2) shortening the data processing
– simulation – policy evaluation loop, to integrate more closely policy makers
and other local stakeholders. This need for a better involvement of these actors
is frequently put forward in the literature (e.g. Borning et al., 2008; Hull et al.,
2011; Waddell, 2011).

The "feasible LUTI models"’ idea combines assumptions grounded in eco-
nomic geography literature with the automated database generation developed
for our synthetic case study (chapter 5). This approach allows generating a
"ready-to-use" database in an automated way, as described in section 5.3. It
can be applied to real-world metropolitan areas with only limited modifications,
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by feeding the initial number of households and jobs per zone to the second
part of the script described in Table D.3. The usefulness of this proposal should
be assessed by three complementary questions.

First, is the loss of precision in the results (compared to a fully disaggregated
approach) acceptable? Patterson and Bierlaire (2010) and Patterson et al.
(2010) have used aggregated data readily available to build an UrbanSim model
of Brussels and Lyon. Although their results cannot be easily compared to
those of Cabrita et al. (2015), they are "surprisingly good" (Patterson et al.,
2010; pp. 28). The use of aggregated data "introduces sufficient noise that only
the most robust relationship will manifest themselves in analyses" (Patterson
et al., 2010; pp. 29). Meaning that only the variables grounded in the economic
geography literature does have an influence on the agents’ location choices. The
significant factors for households are the real estate prices, the travel time to
the Brussels’ CBD, a dummy location for Flanders, and an interaction term
of the share of high (or low) income’ households with the income level of the
household. All these variables are consistent with the Alonso (1964) model.
Hence, the work of Patterson and Bierlaire (2010) and Patterson et al. (2010)
show that aggregated data can produce a reasonably precise UrbanSim’ model.

The second question is an application of the Occam’s razor principle: which
characteristics of agents and land use should be included into the model to reach
a sufficiently high goodness-of-fit? Starting from an aggregated model similar
to our synthetic city or to the model of Lowry (1964), we attempt to synthesise
our answer in Table 7.2. It can be related to Wrigley (1985), who proposes
a nested structure of residential location choice model consisting in (a) where
to live, then (b) what type of dwelling, and (c) what type of occupant status.
One could imagine implementing only the first level in the aggregated version
of the case study. The remaining two could be added if the goodness-of-fit is
insufficient, or if the required data become available. Note also that the location
choices factors emerging from the papers of Patterson and Bierlaire (2010) and
Patterson et al. (2010) are consistent with economic geography literature, which
is less the case for those implemented by Cabrita et al. (2015), at least for jobs
(see Table F.3). Hence providing a further insight that a more disaggregated
model may obfuscate the main process driving agents’ location choice rather
than increasing the goodness-of-fit.

Finally, does a model based on aggregated data, and limited agents’ char-
acteristics, produce indicators detailed enough for proper policy evaluation?
The social welfare (SW) approach proposed by Proost et al. (2015) relies on
four components: net income, housing cost, travel cost of the residents, and
global environment. The primary variables used in compute these components,
and their availability for the three case studies of the SustainCity project, are
given in Table F.4. Most of these factors are actually exogenous to the model
system. Hence, according to this framework, there is no clear need for more
disaggregated or more comprehensive LUTI models than those already existing.
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Overall, the "feasible LUTI models" approach appears worth further invest-
igations.

7.5 Concluding words

In this chapter, we proposed recommendations to control or, at least, reduce
this influence of the spatial extent and resolution on the behaviour and outputs
of LUTI models. To conclude, we would like to review the relative priority that
should be devoted to each of these potential future works.

The first option is to fill the gaps of our experiment plan (see Figure 1.1),
i.e. assessing the influence of the boundary effect on DCM, and on policy
evaluation based on LUTI models’ outputs. In a second step, similar analysis
to those performed in chapter 6 could be repeated for other LUTI models.
DELTA and PECAS appear to be the more relevant candidate, thanks to their
various operational applications and their inclusion of some of the desirable
feature identified in section 7.2. Such incremental studies are certainly needed.
There is, however, little interest in an exhaustive description of the symptoms
if no treatment is available.

A more practical approach, therefore, would be to test if the "best spatial
practices" proposed in section 7.1. Two main difficulties appear to assess their
efficiency. On a practical point of view, it requires for the spatial extent to
define the optimal extension of the case study, then building an operational
application on a study area that exceeds it. Without saying anything of the
spatial resolution that, as indicated in section 7.1, is difficult to generalise. On
a theoretical point of view, we have to define indicators by which this efficiency
may be assessed. In other words, performing a calibration procedure far more
complete than those conducted in chapters 5 and 6, and probably than those
realised in real-world application of LUTI models.

Despite these limitations, the "best spatial practices" are the most spatial
of the recommendations detailed in this chapter. It is remarkable that, for a
geographer, they are absolutely not groundbreaking. For the rather subjective
reason of putting back geography into land use and transport modelling, we
would, therefore, recommend assessing in priority their efficiency in any future
work devoted on the sensitivity of LUTI models to space.

Section 7.3 highlights various technical developments that could reduce the
sensitivity of LUTI models to spatial biases. Their implementation would,
however, require much more effort than the adoption of the "best spatial prac-
tices". On different occasions, this thesis has pointed out that spatial biases
were only one of the various difficulties raised by operational applications of
LUTI models. Prior to increasing their internal complexity, one should rather,
in our opinion, question the relevance and consistency of LUTI models.

174



7.5. Concluding words

This lead us to the paths for future research proposed in section 7.4. They
are essentially speculative. Nevertheless, their key factor is that they do not
address spatial biases per se, but rather aim at reducing either the degree
of freedom left to the user or the complexity of the model. This thesis has,
indeed, confirmed the many flaws of LUTI models already identified in the
literature (see Lee, 1973; Lee, 1994; Wagner and Wegener, 2007; and Nguyen-
Luong, 2008). Once again, we do not believe that there is a need for more
comprehensive (i.e. with a larger number of endogenous process) or more dis-
aggregated models. The main priority in the field of LUTI model should be to
develop more intelligent modelling practice, and more theoretically consistent
models.

In the epigraph of this thesis, we reproduced a quote from the French film-
maker Pierre Schoendoerffer saying that, depending on the type of work pro-
duced (novel, film, documentary), an artist is alternatively God, king, or slave.
The same is true for modellers. Geographers, because they "follow and pick-up
the traces left behind", may be more prone to the latter role than other discip-
lines. The important point, however, is that one should accept to adapt his role
to the context. Modellers can play God when building the internal principles of
their model. Nevertheless, as a king is serving its subject, LUTI models should
serve their operational applications rather than the opposite. The modelling
framework has, therefore, to be the slave of the scope of the study and of data
availability. Trespassing these limits is a manifestation of hubris.
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Appendices of Chapter 2

A.1 The Lowry model

The Lowry (1964) model relies on spatial interactions to forecast the location of
future human activities (residential and workplaces). The central assumption
is that regional/urban growth is a function of the expansion of a basic sector,
that includes all activities meeting non-local demand (practically speaking, all
jobs except those in retail). Since the good and services produced by this basic
sector are exported outside the study area, it’s location and it’s evolution over
time is assumed to be exogenous and must be given (Rodrigue et al., 2009).
Other activities within the study area consist in a retail sector (i.e. the jobs
that meet local demands) and a residential sector (i.e. the population). Two
nested spatial interaction models (A.1 and A.2) are used to forecast the location
of these sectors:

Tij = Ri × e−βcij∑
iRi × e−βcij

× Ej (A.1)

Sij = Wj × e−βcij∑
iWj × e−βcij

× Pi (A.2)

With Tij the work trips from i and j and Sij the shopping trip from i
to j. Ej is the number of jobs in j, Pi the number of inhabitants in i, Ri
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the number of housing units in i, Wj the shopping facilities in j and cij the
travel cost between i and j (Wegener, 2014). Hence, the core of this model is a
spatial-interaction model based on the gravity equation, and the main spatial
component is the size (conversely the number) and shape of the BSU among
which retail and residential sector are distributed.

A.2 MEPLAN

The MEPLAN model has been developed since the seventies and applied to
different case studies (see Echenique, 2001; Hunt and Echenique, 1993). Es-
sentially (Figure A.1), MEPLAN refines the Lowry model by incorporating
economic theories and adding a transport sub model with modal choice and
assignment (Rodrigue et al., 2009; Echenique, 2001). The Land Use Sub model
of MEPLAN predicts the location of employment and residential activities
and, as a result, the transport fluxes between the BSU. Employment is divided
between two components (exogenous and endogenous), conceptually identical
to the basic and retail sector into the Lowry (1964) model. An input - output
sub model and an elastic consumption sub model are used to determine the
demand for all factors (employment by activity sector and population) in the
consumption zones (i.e. the BSU of the model). The spatial allocation process
takes this demand as given, and distributes it among all supply sources (Eche-
nique, 2001). The main difference with the Lowry model is that the spatial
allocation module uses utility maximization methods to allocate demand to
supply (Timmermans, 2003), based on the living cost, the disutility of travel,
and the availability of land or floor space in all BSU (Echenique, 2001). This
process is summarized by the core equation of the MEPLAN model (A.3):

Xsij = Xsi ×Asi × f(csi + gsij) × Zsj (A.3)

With Xsin fluxes from region i to region j in the industry sector s, Xsi the
supply of s in i, Zsi the demand for s in j, csi the production cost of s in i
and gsij the unit transport cost of s between i and j. Asi is a factor ensuring
that total trade flows from i are equal to the production in i (Wegener, 2014).
When the fluxes between BSU have reached equilibrium, the model system calls
the Transport Sub model. This step is conceptually the three last stage of a
classical four-step model: modal split, route assignment and capacity restraint
(Wegener, 2014; see Figure A.1).

A.3 IRPUD

The IRPUD model (see Wegener, 2011b) has been developed for the Dortmund
region since 1977. This is a dynamic model, which predicts for each simulation
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Figure A.1 – The MEPLAN model (figure from Rodrigue et al., 2009)

period (i.e. iteration) location change of households, jobs and real estate de-
velopments. For all iterations, IRPUD calls a sequence of sub models (Figure
A.2). (1) The transport sub model computes travel time and cost to activit-
ies, for different socio-economic groups and by different mode. This transport
model is essentially a four-step model with an additional sub model to pre-
dict car ownership. The travel demand is determined by a spatial interaction
model, as in the Lowry (1964) model but with disaggregation of trips between
activities (e.g. to work, for shopping) and socio-economic groups. The other
sub models are the following: (2) the ageing sub model estimates the change
in the stock of jobs, population and household characteristics for the study
area. These evolutions are based on macro-economic trends. Then, (3) the
public program sub model is used to implement exogenous events (defined by
the user) such as public policy or transport infrastructure investments. These
exogenous events are characterized the changes of employment, population or
infrastructure that they induce. The (4) private construction sub model sim-
ulates the regional land and construction market. Locations of new workplace
and dwellings are estimated by random utility maximization. Prices are adjus-
ted at the end of the simulation period, based on observed prices in t− 1 and
on the change in the stock of developable land (by category). (7) The labour
market sub model uses a doubly constrained spatial interaction model to fore-
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cast job’s changes between zones. The decision of changing jobs is a function
of the home-to-work trip utility.

Finally, (8) the housing market sub model forecasts the changes of location
of the households and the corresponding adjustments in housing prices and
rents. A Monte-Carlo micro simulation framework models the housing search
process by households. This process is divided into four steps. Multinomial lo-
git models are used to predict if a household looks for a new dwelling (sampling
phase) and if yes, in which zones and which types of dwelling he will look for
(search phase). The choice of one of the visited dwellings is based upon a
threshold in the change of utility. The aggregation phase then multiplies the
changes of location by the sampling factor (see Wegener, 2011b for further de-
tails). Prices in t+ 1 are adjusted by multiplying the prices in t by the relative
change in the stock of vacant dwellings.

A.4 TRANUS

The TRANUS model, developed since 1982, is extensively described in de la
Barra (1989). It retains the concept of exogenous production, which corres-
ponds to the basic sector of the Lowry (1964) model, and a spatial input-output
model is used to compute the demand of each consumption zone for each sec-
tors. However, as in MEPLAN, the distribution of fluxes to a consumption
zone, from production zones, is based on a discrete choice model. The util-
ity (u) of transport, for the sector s, between a consumption zone i and a
production zone j is given by:

usij = λs(psj + hsj) + tsij (A.4)

Where psj is the price of the sector s in the production region j, hsj the
shadow price of the sector s in the region j, tsin the transport disutility (or cost)
for goods s between zone i and j, and λs a parameter of the relative importance
of price compared to transport cost. Note that other characteristics of the zones
can be added in the utility function. Another improvement of TRANUS is the
representation of prices. At the end of all iterations, an adjustment of prices is
performed: if the production within a region i exceeds the maximal production
in this region, the prices are increased at the next iteration. Note that TRANUS
is an equilibrium model: the convergence in price and production is evaluated
at the end of all iterations and the model stops when convergence is reached.
As in MEPLAN, the assignation of production to consumption zone is followed
by the execution of a transport model to estimate transport cost, modal split
and other transport indicators (de la Barra, 1989).
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A.4. TRANUS

Figure A.2 – The IRPUD model (figure from Wegener, 2011b)
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A.5 DELTA

DELTA is a quasi-dynamic modeling package whose development started in
1995. It is based on the START package (see Bates et al., 1991) and is main-
tained by a consultancy company, David Simmonds Ltd (Timmermans, 2003).
A description of the model system can be found in Simmonds and Feldman
(2005) and Simmonds et al. (2013).

In the complete version, the DELTA model system calls successively 10 sub
models (Figure A.3). Note that DELTA only model land use and have to be
interfaced with a travel model that takes land use and computes generalised
cost indicators. The sub models are the following: (1) accessibility, which
computes the accessibility to different types of work or shopping activities,
using logsum (Timmermans, 2003). (2) Development forecasts the location of
new real estate. (3) Transition sub model determines the number of new or
moving households. (4) Investment performs the same task for employment.
(5) Production sub model is a spatial input - output model. (6) Migration
predicts long distance change of location among households. (7) Car ownership
probability is forecasted by a logit model. (8) Household and Employment
location sub models predict the location choices of mobile jobs and households
(determined by the transition and investment sub models), using a multinomial
logit model. (9) Employment status and commuting sub model use the spatial
distribution of households and jobs to predict commuting flows. (10) The
housing quality sub model updates the quality of the existing housing stock.

A.6 MUSSA

This model was developed for Santiago de Chile (Martinez and Donoso, 2010).
It is described in Martinez (2003) and Martinez and Donoso (2004). MUSSA
uses bid-rent and market equilibrium to forecast the location of agents (house-
holds, firms). Macro-economic assumptions are used to predict the growth of
population and firms over time. MUSSA then forecasts the location of agents
for a given point of time in the future, using a static demand-supply equilib-
rium with location externalities. The model is interfaced with an external travel
model that provides accessibility indicators. A multinomial logit model is used
to estimates the probability that an agent of cluster h locates in a building of
type v in the zone i, conditional to the supply of this building type v in the zone
i. The utility is function of a cluster specific constant obtained from the equi-
librium solution and of consumer’s valuation of the location attributes, either
endogenous of exogenous to the model. One particularity of MUSSA is the use
of an auction process to distribute the available real estate to the best bidder.
The bid represent the consumer’s willingness-to-pay and is distributed, within
a given cluster of agents, as the utility of a given location plus an identical and
independent stochastic term following a Gumbel distribution.
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A.7. PECAS

Figure A.3 – The DELTA modelling package (figure from Bosredon et al., 2009)

A.7 PECAS

As MEPLAN and TRANUS, the PECAS model (which stands for Production,
Exchange and Consumption Allocation System) relies on a spatial interaction
model to determine the location of human activities (Wegener, 2014). Its de-
velopment started in 2005, making it the most recent of the LUTI models
reviewed here. The model system is detailed in Hunt et al. (2005) and Hunt
et al. (2009a). Up to date, it has been applied (by chronological order) on
Calgary, Oregon, Atlanta, Baltimore, Sacramento, San Diego, California and
Alberta . A private consultancy company, HBA SPECTO INCORPORATED,
supports the development and applications of the model.

PECAS is a quasi-dynamic model operating though a succession of discrete
time steps (typically one year). It combines two internal sub models, Space
Development (SD) and Activity Allocation (AA), with two external modules
(a transport model, TR, and an economic demographic aggregate forecasting
model, ED). Figure A.4 shows the structure of the model. The TR sub model
predicts travel time and cost. The choice of the travel model is left to the
user (practically speaking, a classical four-step model is sufficient). The ED
sub model provides the future number of households and jobs (by category).
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This sub model can either consists in static forecast or be able to adjust its
prediction to the evolutions simulated by the SD and AA sub models.

Activities (jobs, households) are distributed between Land Use Zones (LUZ)
by the AA sub model, using a three-level nested logit model. The first nest
allocates a given quantity of each activity to each LUZ. The second nest distrib-
utes this quantity between different technological options (i.e. specific produc-
tion and consumption rates of goods per unit of the activity). The third nest
allows to affect’s production and consumption to exchange locations. Hence,
the share of the activity s allocated to a zone i is a function the location utility
of i. In PECAS, it depends on (1) an a priori expected share of i in the total
of s, (2) the share of i in s on the previous time-step, (3) an alternative (i.e.
LUZ) specific constant, (4) the utility level of each technological options and
(5) a set of zonal attributes (i.e. various amenities). Note that in the current
implementation of the model, the utility level of these zonal attributes is as-
sumed to be constant over time (see Hunt et al., 2009a; Hunt et al., 2009b, for
details).

The SD sub model is available in two versions (aggregated, SD-A, or disag-
gregated, SD-D). In the SD-A version, each LUZ has a given quantity of land,
divided among categories (e.g. high-density residential land, industrial land,
etc.), each category being itself divided between developed and vacant space.
Space is allocated to category using a multinomial logit function where the util-
ity level is a function of the prices and of the current and available quantity of
land. In the disaggregated version (SD-D) of the space development sub model,
each LUZ is divided into parcels. A nested logit process is used to select the
development events (e.g. no change, new construction, renovation, etc.) affect-
ing each parcel and then the characteristics of this development event (type
and quantity of space added or removed). The utility of each development
event is a function of the characteristics of the parcel: total area, quantity of
developed space, zoning rules defining the allowed category of land use in the
parcel, construction cost and prices (or rents).
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A.7. PECAS

Figure A.4 – The PECAS model (figure from Hunt et al., 2009b)
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A.8 Additional tables and figures

Model Application(s) W
eg
en
er

(1
99
4)

So
ut
hw

or
th

(1
99
5)

W
eg
en
er

an
d
Fu

rs
t
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99
9b

)

W
eg
en
er

(2
00
4)

H
un

t
et

al
.
(2
00
5)

Si
m
m
on

ds
et

al
.
(2
01
3)

W
eg
en
er

(2
01
4)

Total

MEPLAN Various (10+) 1 1 1 1 1 1 1 7
TRANUS Various (10+) 1 1 1 1 1 1 1 7
IRPUD Dortmund 1 1 1 1 0 1 1 6
MUSSA Santiago de Chile 1 0 1 1 1 1 1 6
ITLUP Various (5-10) 1 1 1 1 1 0 0 5
METROSIM Various (5-10) 1 1 1 1 1 0 0 5
URBANSIM Various (10+) 0 0 1 1 1 1 1 5
BOYCE Chicago 1 1 1 1 0 0 0 4
DELTA Various (10+) 0 0 1 1 0 1 1 4
KIM Chicago 1 1 1 1 0 0 0 4
LILT Leeds 1 1 1 1 0 0 0 4
POLIS San Francisco 1 1 1 1 0 0 0 4
RURBAN Sapporo 1 0 1 1 0 0 0 3
CUFM California 1 0 1 1 0 0 0 3
PECAS South. California 0 0 0 1 0 1 1 3
HUDS ? 1 0 1 0 0 0 0 2
IMREL Stockholm 0 0 1 1 0 0 0 2
STASA ? 0 0 1 1 0 0 0 2
AMERSFOORT Amersfoort 0 1 0 0 0 0 0 1
CALUTAS Tokyo, Nagoya 0 1 0 0 0 0 0 1
HAMILTON Hamilton 0 1 0 0 0 0 0 1
ILUTE Toronto 0 0 0 1 0 0 0 1
MARS Austria 0 0 0 0 0 1 0 1
MASTER Leeds 0 1 0 0 0 0 0 1
OSAKA Osaka 0 1 0 0 0 0 0 1
PSCOG Puget Sound 0 1 0 0 0 0 0 1
TLUMIP Ohio 0 0 0 1 0 0 0 1
TOPAZ Australia 0 1 0 0 0 0 0 1
TRANSLOC Stockholm 0 1 0 0 0 0 0 1
TRESIS Sidney 0 0 0 1 0 0 0 1

Total 13 17 17 20 6 8 8 30

Table A.1 – LUTI model reviewed over time (1 if the model is reviewed, 0
otherwise)
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Model Sub systems modelled Model theory Policies modelled

POLIS Employment, Popula-
tion, Housing, Land use,
Travel

Random utility, Loca-
tional surplus

Land-use regulations,
Transportation improve-
ments

CUFM Population, Land use Location rule Land-use regulations,
Environmental policies,
Public facilities, Trans-
portation improvements

BOYCE Employment, Popula-
tion, Networks, Travel

Random utility, General
equilibrium

Transportation improve-
ments

KIM Employment, Popula-
tion, Networks, Goods
transport, Travel

Random utility, Bid
rents, General equilib-
rium, Input-Output

Transport improvements

METROSIM All subsystems except
goods transport

Random utility, Bid rent,
General equilibrium

Transportation im-
provements, Travel cost
changes

ITLUP Employment, Popula-
tion, Land use, Networks,
Travel

Random utility, Network
equilibrium

Land use regulations,
Transportation improve-
ments

HUDS Employment, Popula-
tion, Housing

Bid-rent Housing programs

TRANUS All subsystems Random utility, bid rent,
Network equilibrium,
Land use equilibrium

Land-use regulations,
Transportation improve-
ments, Transport cost
changes

5-LUT Population, Housing,
Network

Random utility, Bid rent,
General equilibrium

Transportation improve-
ments

LILT All subsystems except
goods transport

Random utility, Network
equilibrium, Land use
equilibrium

Land-use regulations,
Transportation improve-
ments, Transport cost
changes

MEPLAN All subsystems Random utility, Network
equilibrium, Land use
equilibrium

Land-use regulations,
Transportation improve-
ments, Transport cost
changes

IRPUD All subsystems except
goods transport

Random utility, Network
equilibrium, Land use
equilibrium

Land-use regulations,
Housing programs,
Transportation im-
provements, Travel cost
changes

RURBAN Employment, Popula-
tion, Housing, Land
use

Random utility, Bid rent,
General equilibrium

Land-use regulations,
Transportation improve-
ments

Table A.3 – LUTI models’ internal principles (summary adapted fromWegener,
1994)
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Figure B.1 – Number of real estate transactions (developable land plot, 2006
- 2008)
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Figure B.2 – Urban region in Belgium (based on the 2001 population census;
definition from Van Hecke et al., 2009)
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Figure C.2 – Probability of location by cluster for the Monocentric case
study (box-plots width is function of the number of observations)
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Figure C.3 – Probability of location by cluster for the Monocentric case
study (box-plots width is function of the number of observations)
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C.1. Additional tables and Figures

p-value
BSU Variable Spec. Monocentric Polycentric

Municipalities TIME_BXL (4) 0.002 ***
(5) *** 0.004

DIST_TRAIN (1) *** 1
(2) *** ***
(4) 0.9 ***
(5) *** 1

DIST_HGW (1) *** 1
(2) *** ***
(4) 1 1
(5) *** 1

Former muni. TIME_BXL (4) *** ***
(5) *** ***

DIST_TRAIN (1) *** 1
(2) *** ***
(4) *** ***
(5) *** 1

DIST_HGW (1) *** 0.01
(2) *** ***
(4) *** 1
(5) *** 0.02

Section TIME_BXL (4) 0.1 ***
(5) *** ***

DIST_TRAIN (1) *** 0.4
(2) *** ***
(4) 1 ***
(5) *** 1

DIST_HGW (1) *** ***
(2) *** ***
(4) 1 0.08
(5) *** ***

Statistical wards TIME_BXL (4) *** ***
(5) *** ***

DIST_TRAIN (1) *** 0.02
(2) *** ***
(4) *** ***
(5) *** ***

DIST_HGW (1) *** ***
(2) *** ***
(4) 1 ***
(5) *** ***

Table C.4 – Variations of parameter estimates through specifications (pair-
wise t-test; significance level: *** = α ≤ 0.001; Bonferroni adjustment of p-value)
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Figure D.6 – Workflow of UrbanSim (figure from Waddell, 2000)

223



D. Appendices of Chapter 5
D
.3

A
dd

it
io
na

l
ta
bl
es

an
d
fig

ur
es

St
ep

D
es
cr
ip
ti
on

In
pu

ts
O
ut
pu

ts
Im

po
rt

R
ea
d
us
er
-d
efi

ne
d
pa

ra
m
et
er
s

fr
om

th
e
in
di
ca
te
d
cs
v
fil
e

Pa
th

to
th
e
cs
v
fil
e

G
en

er
al

Pr
od

uc
e
"g
en
er
al
"
ta
bl
es

bu
il

di
ng

ty
pe

s;
ho

m
e

ba
se

d
st

at
us

;
em

pl
oy

-
m

en
t

se
ct

or
;

bu
il

di
ng

sq
ft

pe
r

jo
b

M
ac
ro

Pr
od

uc
e

ta
bl
es

su
m
m
ar
isi
ng

m
ac
ro

ec
on

om
ic

as
su
m
pt
io
ns

N
um

be
r
of

ho
us
eh

ol
ds

in
t 0
;

Po
pu

la
tio

n
gr
ow

th
an

d
re
lo
-

ca
tio

n
ra
te
,

ta
rg
et

va
ca
nc

y
ra
te

an
nu

al
ho

us
eh

ol
d

co
n-

tr
ol

to
ta

ls
;

an
nu

al
ho

us
eh

ol
d

re
lo

ca
ti

on
ra

te
s;

an
nu

al
em

pl
oy

-
m

en
t

co
nt

ro
l

to
ta

ls
;

an
nu

al
jo

b
re

lo
ca

ti
on

ra
te

s;
ta

rg
et

va
ca

nc
ie

s
G
rid

C
re
at
e

th
e

gr
id

of
th
e

sy
n-

th
et
ic

ci
ty

N
um

be
ro

fr
ow

sa
nd

co
lu
m
ns
;

su
rf
ac
e
of

th
e
zo
ne

s;
lo
ca
tio

n
an

d
re
la
tiv

e
siz

e
of

th
e
C
B
D
s

Eu
cl
id
ea
n

di
st
an

ce
to

th
e

C
B
D
s;

zo
ne

s;
tr

av
el

da
ta

Po
te
nt
ia
ls

C
om

pu
ta
tio

n
of

th
e

po
te
n-

tia
ls

of
ea
ch

zo
ne

,
fo
r
ho

us
e-

ho
ld
s

an
d

no
n-
ho

m
e-
ba

se
d

jo
bs

D
ist

an
ce

to
th
e

C
B
D
(s
);

di
st
an

ce
-d
ec
ay

pa
ra
m
et
er
s

P
i(
h

);
P
i(
j)

C
on

tin
ue

d
on

ne
xt

pa
ge

...

224



D.3. Additional tables and figures
...

co
nt
in
ua

te
d
fr
om

pr
ev
io
us

pa
ge

St
ep

D
es
cr
ip
ti
on

In
pu

ts
O
ut
pu

ts

H
ou

se
ho

ld
s

G
en

er
at
io
n
of

ho
us
eh

ol
ds

N
um

be
r
of

ho
us
eh

ol
ds

in
t 0
;

P
i(
h

)
ho

us
eh

ol
ds

Jo
bs

G
en
er
at
io
n
of

jo
bs

N
um

be
r
of

ho
us
eh

ol
ds

in
t 0
;

P
i(
j)

jo
bs

Pe
rs
on

s
C
re
at
io
n
of

pe
rs
on

s
ho

us
eh

ol
ds

;j
ob

s
pe

rs
on

s
B
ui
ld
in
gs

G
en
er
at
io
n
of

bu
ild

in
gs

zo
ne

s;
ho

us
eh

ol
ds

;
jo

bs
bu

il
di

ng
sq

ft
pe

r
jo

b;
ta

rg
et

va
ca

nc
ie

s

bu
il

di
ng

s;

D
ev
el
op

m
en
t

ev
en
ts

C
re
at
io
n

of
(p
as
t)

de
ve
lo
p-

m
en
t
ev
en
ts

bu
il

di
ng

s
de

ve
lo

pm
en

t
ev

en
t

hi
s-

to
ry

N
et
w
or
k

C
re
at
io
n
of

th
e
M
AT

si
m

ne
t-

w
or
k

zo
ne

s
xm

ln
et
w
or
k
fil
e

Ex
po

rt
W
rit

es
th
e
ta
bl
es

as
cs
v
fil
es

A
ll
ta
bl
es

Pa
th

to
th
e
ex
po

rt
di
re
ct
or
y

T
ab

le
D
.3

–
G
en

er
at
io
n
of

th
e
sy
nt
he

ti
c
ci
ty

(o
ut
pu

ts
in

sm
al

l
ca

pi
ta

ls
in
di
ca
te

th
e
U
rb
an

Si
m

ta
bl
es
)

225



D. Appendices of Chapter 5

Extent Variable Case study
Equal-size CBDs Small W. CBD Large W. CBD

Complete Ph (10−6) -4.26* (2.07) -0.39 (0.37) -1.63*** (0.37)
Ai 0.053 (0.03) 0.07*** (0.02) 0.008 (0.021)
Dcbd -0.005 (0.01) 0.02** (0.006) -0.007 (0.006)

AIC 106 577 106 473 1064 71
LLratio 0.0002 0.0001 0.0002

E50 Ph (10−6) -2.28*** (0.54) -0.71 (0.58) -0.61 (0.36)
Ai 0.022* (0.011) 0.045*** (0.013) 0.006 (0.005)
Dcbd -3.21e-06 (0.0007) -0.001 (0.001) -0.002 (0.001)

AIC 88 683 82 967 94 288
LLratio 0.0002 0.0002 0.0002

E45 Ph (10−6) -1.91** (0.59) -1.57 (1.30)
Ai 0.006 (0.012) 0.01 (0.03) 0.003 (0.005)
Dcbd 0.002 (0.001) 0.004 (0.002) 0.0007 (0.001)

AIC 75 397 65 394 85 413
LL ratio 0.0002 0.0002 0.0002

E40 Ph (10−6) -2.67*** (0.66) -3.06** (1.08) -1.14 (1.10)
Ai 0.012 (0.014) 0.008 (0.03) 0.015 (0.024)
Dcbd -0.0007 (0.003) 0.0006 (0.005) -0.002 (0.003)

AIC 64 195 50 620 77 736
LLratio 0.0002 0.0004 0.0003

E35 Ph (10−6) -1.0 (1.4) -10.1*** (1.6) -3.35** (1.05)
Ai 0.003 (0.045) 0.13*** (0.03) 0.008 (0.006)
Dcbd -0.006 (0.01) 0.0009 (0.007) -0.023** (0.008)

AIC 57 231 41 679 72 730
LLratio 0.0002 0.0004 0.0003

E30 Ph (10−6) -2.89 (2.83) -0.71 (3.86) -0.65 (2.12)
Ai 0.05 (0.04) 0.013 (0.034) 0.001 (0.006)
Dcbd 0.001 (0.02) 0.014 (0.017) -0.015 (0.019)

AIC 53 287 37 136 69 320
LLratio 0.0002 0.0006 0.0002

E25 Ph (10−6) -1.20 (4.63) -7.81 (7.89) -6.3* (3.1)
Ai 0.11* (0.044) 0.006 (0.03) 0.0004 (0.007)
Dcbd 0.034 (0.035) -0.026 (0.038) -0.06* (0.03)

AIC 49 338 33 725 64 780
LLratio 0.0003 0.0006 0.0002

Table D.4 – Households location choices sub model (with Ph the price of
houses; AI the car accessibility to jobs in i; Dcbd the Euclidean distance to the CBD;
AIC the Akaike Information Critetion; and LLratio the Log-Likelihood ratio)
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Extent Variable Case study
Equal-size CBDs Small W. CBD Large W. CBD

Complete Po (10−7) -11.2*** (0.07) -0.003 (0.05) 27.8*** (0.03)
Ai 1.82*** (0.01) 1.38*** (0.009) 0.96*** (0.007)

AIC 110 236 113 000 117 307
LLratio 0.46 0.45 0.43

E50 Po (10−7) 50.6*** (0.03) 30.7*** (0.03) 69.4*** (0.02)
Ai 0.58*** (0.004) 0.86*** (0.005) 0.08*** (0.002)

AIC 125 750 120 787 132 646
LLratio 0.37 0.38 0.34

E45 Po (10−7) 80.5*** (0.05) 30.3*** (1.33) 77.4*** (0.03)
Ai 0.22*** (0.005) 1.26*** (0.01) -0.04*** (0.002)

AIC 69 470 47 711 86 513
LLratio 0.37 0.39 0.39
Obs. 16 287 11 589 20 922

E40 Po (10−7) 65.5*** (0.05) 2.81*** (1.36) 5.91*** (0.05)
Ai 0.38*** (0.006) 1.14*** (0.01) 1.42*** (0.01)

AIC 63 575 40 042 74 505
LLratio 0.38 0.42 0.45

E35 Po (10−7) -10.1*** (1.0) 24.6*** (1.36) 70.1*** (0.03)
Ai 1.80*** (0.02) 1.21*** (0.01) -0.029*** (0.002)

AIC 54 789 40 449 86 061
LLratio 0.47 0.41 0.37

E30 Po (10−7) -14.4*** (1.03) 29.3*** (1.29) 69.2*** (0.03)
Ai 1.88*** (0.02) 1.16*** (0.01) -0.008** (0.003)

AIC 54 389 40 104 86 060
LLratio 0.47 0.42 0.37

E25 Po (10−7) -1.92* (0.88) 30.0*** (1.3) 69.2*** (0.03)
Ai 1.59*** (0.01) 1.14*** (0.01) -0.012*** (0.003)

AIC 56 582 40 141 86 126
LLratio 0.45 0.42 0.37

Table D.5 – Employment location choices sub model (with Po the price of
offices; AI the car accessibility to jobs in i; AIC the Akaike Information Critetion;
and LLratio the Log-Likelihood ratio)
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Extent Variable Real estate prices
Equal-size CBDs Small W. CBD Large W. CBD

Complete Constant 6.21 (0.08) 5.61 (0.06) 5.60 (0.06)
Job density 0.35 (0.004) 0.32 (0.004) 0.32 (0.004)
Pop. Density 0.39 (0.01) 0.51 (0.01) 0.51 (0.01)

Adj. R2 0.95 0.95 0.95
Obs. 1 500 1 500 1 500

E50 Constant 6.27 (0.08) 5.71 (0.07) 5.72 (0.07)
Job density 0.36 (0.005) 0.34 (0.005) 0.33 (0.004)
Pop. Density 0.38 (0.01) 0.48 (0.01) 0.49 (0.01)

Adj. R2 0.95 0.95 0.95
Obs. 1 250 1 250 1 250

E45 Constant 5.87 (0.08) 5.52 (0.07) 5.41 (0.07)
Job density 0.32 (0.005) 0.30 (0.004) 0.31 (0.005)
Pop. Density 0.46 (0.01) 0.53 (0.01) 0.55 (0.01)

Adj. R2 0.95 0.95 0.96
Obs. 1 125 1 125 1 125

E40 Constant 5.86 (0.08) 5.54 (0.08) 5.62 (0.07)
Job density 0.33 (0.005) 0.31 (0.005) 0.33 (0.005)
Pop. Density 0.46 (0.01) 0.52 (0.01) 0.51 (0.01)

Adj. R2 0.96 0.94 0.96
Obs. 1 000 1 000 1 000

E35 Constant 5.98 (0.09) 6.14 (0.1) 5.68 (0.07)
Job density 0.34 (0.006) 0.34 (0.006) 0.33 (0.005)
Pop. Density 0.44 (0.01) 0.39 (0.02) 0.50 (0.01)

Adj. R2 0.96 0.95 0.96
Obs. 875 875 875

E30 Constant 6.21 (0.11) 6.38 (0.12) 6.10 (0.11)
Job density 0.35 (0.006) 0.35 (0.006) 0.34 (0.006)
Pop. Density 0.39 (0.02) 0.34 (0.02) 0.42 (0.02)

Adj. R2 0.95 0.95 0.96
Obs. 750 750 750

E25 Constant 6.94 (0.16) 6.93 (0.16) 7.13 (0.16)
Job density 0.37 (0.007) 0.37 (0.007) 0.38 (0.007)
Pop. Density 0.26 (0.03) 0.23 (0.03) 0.24 (0.03)

Adj. R2 0.94 0.94 0.94
Obs. 625 625 625

Table D.6 – Non-residential buildings real estate price sub model (popula-
tion and job density expressed in log; all parameters significant for α ≤ 0.001)
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E.1 Additional tables and figures



E. Appendices of Chapter 6

a. Statistical wards b. Section

c. Former municipalities

     (Observed − Predicted)/Observed, in %

Lower than −58.06]
]−51.34 to −19.69]
]−19.69 to 0]
]0 to 1.21]
]1.21 to 16.19]

]16.19 to 33.86]
]33.86 to 63.01]
]63.01 to 100]
No obs. inhabitants in 2011
Municipalities boundary

d. Municipalities

     (Observed − Predicted)/Observed, in %

Lower than −58.06]
]−51.34 to −19.69]
]−19.69 to 0]
]0 to 1.21]
]1.21 to 16.19]

]16.19 to 33.86]
]33.86 to 63.01]
]63.01 to 100]
No obs. inhabitants in 2011
Municipalities boundary

Figure E.1 – Calibration (relative variations of the inhab/km2; observed data from
the 2011 population census; predicted data from the Baseline scenario)
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E. Appendices of Chapter 6

Statistical wards level
Variable Units Min. Mean Max. SD
(Log of) Pop. Density Hab/km2 0.00 8.16 10.75 1.52
(Log of) Job Density (total) Job/km2 0.00 7.75 11.26 1.97

- in Industrial activities 0.00 8.03 12.22 1.67
- in Services 0.00 8.84 13.70 1.58
- in Retail 0.00 7.28 11.84 1.34

- in Hotel/Restaurant/Bar 0.00 7.11 13.17 1.49
- in Government/Public sector 0.00 8.63 14.12 1.71

- in Education 0.00 6.99 11.25 1.30
- in Health 0.00 7.08 11.76 1.29

- in Leisure activities 0.00 6.22 11.03 1.25
Car Accessibility to Jobs Logsum -3.72 7.41 11.25 2.22
(Log of) Dist. to CBD Meters 4.54 9.44 10.61 0.84
High income Households % 0.00 11.33 100 8.53
Low income Households % 0.00 6.64 100 5.97
HH with univ. degree holder % 0.00 9.01 100 7.27
(Log of) Houses prices 1 000 e 11.37 11.68 11.92 0.10
Local taxes % 4.00 6.25 8.00 0.78
Green Amenities score 0 to 1 0.00 0.60 1.00 0.18

Table E.2 – Variables of the econometric sub models (at the Statistical wards
level; SD = Standard deviation)
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Appendices of Chapter 7

F.1 Additional tables and figures

Category Criteria
Physical Population density/threshold

Built-up areas continuity
Dwelling market

Socio-Economic Employment threshold
Jobs/Inhabitants ratio
Median Income
Primary sector share

Attractiveness and transport Home-to-work commuting
Home-to-school commuting

Dynamic Population growth
Built-up areas growth
In/out migrations

Table F.1 – Criteria used for cities’ delineations (adapted from Dujardin et al.,
2007)



F. Appendices of Chapter 7

Urban core Urban region Extended urban
area

Main cri-
teria

Morphological
(built-up areas
contiguity)

Socio-economic
(population and
jobs density), dy-
namic (population
or jobs growth)

Attractivity
(home-to-work
commuting)

Area in-
cluded

Narrow: densely
built city centre

Medium-sized:
city centre, sub-
urbs and periurban
areas

Large: all areas
having functional
relation with the
CBD

Examples Pole urbain
(France), Mor-
phological agglom-
eration (Belgium),
Central counties
(US)

Urban region (Bel-
gium)

Anneau peri
urbain (France),
Metropolitan
labour area (Bel-
gium), Outlying
counties (US)

Table F.2 – Typology of cities’ functional delineations
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