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• We study the formation of trading networks when link costs are infinitesimally small.
• Sellers and buyers are randomly selected to bargain through a chain of intermediaries.
• We determine both the trading path and the allocation of the surplus at equilibrium.
• With patient and impatient agents, core–periphery networks with all impatient agents in the core are stable.
• Once there is private information, core–periphery networks may not be stable.
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a b s t r a c t

We study a model in which heterogeneous agents first form a trading network where linking costs are
positive but infinitesimally small. Then, a seller and a buyer are randomly selected among the agents
to bargain through a chain of intermediaries. We determine both the trading path and the allocation
of the surplus among the seller, the buyer and the intermediaries at equilibrium. We show that, under
the initiator bargaining protocol, a trading network is pairwise stable if it is a core–periphery network
where the core consists of all impatient agents who are linked to each other and the periphery consists
of all patient agents who have a single link towards an impatient agent. Once agents do not know the
impatience of other agents, each bilateral bargaining session may involve delay. Then, core–periphery
networks may not be pairwise stable because agents may prefer to add links for reducing the length of
trading paths and so avoiding costly delays in reaching a global agreement.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Weare interested inmarketswhere trades between a buyer and
a seller can occur through intermediaries and where each agent
can be some day the buyer, some other day the seller, and the day
after acting as an intermediary.1 In such cases it is natural tomodel
the market using a network where only pairs of connected agents
may engage in trade. Which trading networks are likely to emerge
when agents can be either patient or impatient and the division of
the surplus between the seller, the buyer and the intermediaries is
determined through a series of bilateral bargaining sessions?

∗ Corresponding author at: CORE, University of Louvain, Louvain-la-Neuve,
Belgium.

E-mail addresses: mikel.bedayo@uclouvain.be (M. Bedayo),
ana.mauleon@usaintlouis.be (A. Mauleon), vincent.vannetelbosch@uclouvain.be
(V. Vannetelbosch).
1 See Goyal (2007), Jackson (2008), Easley and Kleinberg (2010) for a

comprehensive introduction to the theory of social and economic networks.

http://dx.doi.org/10.1016/j.mathsocsci.2016.02.007
0165-4896/© 2016 Elsevier B.V. All rights reserved.
We develop a model where agents having different discount
rates first form a trading network with link costs being infinites-
imally small. Second, a seller and a buyer are randomly selected
among the agents. The seller owns an indivisible good and the
buyer has a valuation normalized to one for the good. The buyer
can obtain the good from the seller if and only if they are con-
nected to each other. Agents on a given path between the seller and
the buyer can act as intermediaries if trade occurs along this path.
Third, the trading path and the allocation of the surplus among the
seller, the buyer and the intermediaries are determined following
the so-called initiator procedure. The buyer first chooses one of her
predecessors, say the first intermediary, on a path from the seller
to the buyer to negotiate bilaterally a partial agreement. Each bi-
lateral negotiation proceeds as in Rubinstein’s (1982) alternating-
offer bargaining model. Once a partial agreement is reached, the
buyer exits the game and the first intermediary chooses one of
her predecessors, say the second intermediary, on a path from the
seller to the first intermediary. Once a partial agreement is reached
between the first intermediary and the second intermediary, the

http://dx.doi.org/10.1016/j.mathsocsci.2016.02.007
http://www.elsevier.com/locate/econbase
http://www.elsevier.com/locate/econbase
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mailto:vincent.vannetelbosch@uclouvain.be
http://dx.doi.org/10.1016/j.mathsocsci.2016.02.007
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first intermediary exits the game; and so on until a partial agree-
ment is reached between the last intermediary and the seller. Each
agent receives her share of the surplus once all partial agreements
have been reached.

In each bilateral session the agent who can exit the bargaining
is the one who selects her partner to negotiate her share to exit
with a partial agreement and makes the first proposal. One could
object that this bargaining protocol is extreme giving much more
power to the agent who can exit. In addition, the buyer and the
intermediaries close to her get a share of the surplus substantially
larger than the one obtained by the seller and the intermediaries
close to him. However, Suh and Wen (2009) have shown that the
initiator procedure can emerge endogenously from a multi-agent
bilateral bargaining model where, in each period of a bilateral
bargaining session, the proposer can choose between demanding a
share to exit the bargaining or offering the responder a share to exit
the bargaining. Moreover, each agent decides the links she wants
to form with other agents, and she has ex-ante an equal likelihood
of being the seller or the buyer.

Suppose that the population of agents is partitioned in two
types of agents: patient agents and impatient agents. Our main
result is that a trading network is pairwise stable if it is a
core–periphery network where the core consists of all impatient
agents who are linked to each other and the periphery consists
of all patient agents who have a single link towards an impatient
agent. Intuitively, agents have first incentives to create and share
some surplus, and so any pairwise stable trading network consists
of only one component connecting all agents. Agents have also
incentives to occupy a position in the trading network that enables
them to extract more rents from intermediation. In addition,
agents have incentives to negotiate a partial agreement with an
impatient agent to exit with a larger share of the surplus.2 Hence,
in any pairwise stable trading network each agent is linked to
an impatient agent. This result is not immediate. Indeed, when
an agent links to an impatient agent she loses from trades (for
instance, when she is the seller) that before were going more
straightforwardly to her and now go through a longer chain of
intermediaries including the impatient player she is linked to.
However, those losses are compensated by the gains she makes
when she is the buyer.

Each impatient agent will also try to circumvent intermediaries
to obtainmore of the surplus for her. It follows that in any pairwise
stable trading network all impatient agents are linked to each
other. Each patient agent will then destroy links to other patient
agents because those links are never used or are harmful (more
intermediaries lie on the trading path when she is the seller).
Finally, in any pairwise stable trading network, each patient agent
is linked to exactly one impatient agent to avoid sharing the
surplus with more intermediaries when she is the seller. Thus,
core–periphery networks are the unique pairwise stable trading
networks.3

Our paper introduces heterogeneous agents in Goyal and Vega-
Redondo (2007) model of trading networks. In Goyal and Vega-
Redondo (2007), agents are homogeneous and the surplus is

2 Xiao (2015) has shown that it is optimal for a real estate developer to bargain
first with requisite landowners having smaller opportunity cost for their land. In
Manea (2015), the manufacturer prefers dealing with the costliest suppliers in the
last stages.
3 The labels of buyers and sellers can be reversed without consequence for our

main results. In fact, agents are traders who can exchange goods. This exchange
creates a surplus of 1 and it can be carried out only if both traders know each
other personally (i.e. they are linked to each other) or there is a sequence of
personal connections (i.e. there is a path which indirectly links the two traders).
If both traders have equal probability of initiating the negotiation, core–periphery
networks are the unique pairwise stable trading networks.
shared equally among the buyer, the seller and the essential
intermediaries. An intermediary is essential if she lies on all paths
between the seller and the buyer. This way of dividing the surplus
implicitly assumes that bargaining is multilateral rather than
consisting of a series of bilateral bargaining sessions. In addition,
some intermediaries will get no surplus because they are not
essential even though they may become essential once trade and
exchange reach some intermediary on a path between the seller
and the buyer. They find that, if the formation of links is costly, a
star network where a single agent acts as an intermediary for all
transactions and enjoys significantly higher payoffs is the unique
non-empty equilibrium architecture. We go further their analysis
by considering heterogeneous agents and allowing them to hold
private information about their bargaining strength. In addition,
we endogenize the trading path and we show that, with two types
of agents (patient and impatient), a core–periphery architecture
can emerge even when link formation is infinitesimally costly. In
our model, the bargaining with the initiator procedure consists of
a finite series of bilateral negotiations along the trading path and
the identity of the player who can exit in each bilateral sessions
is determined by the trading path, two features which are more
realistic for the markets we are interested in (e.g. real estate,
antiques, drugs, over-the-counter, etc.).

We also explore the limits of our main result and we find that
relaxing the main conditions (two types of agents/complete in-
formation/initiator procedure) can destabilize the core–periphery
networks. For instance, once agents become homogeneous, there
is a unique pairwise stable architecture, namely the complete net-
work. In addition, once agents do not know the discount rate of
the other agents, each bilateral bargaining sessionmay involve de-
lay, but not perpetual disagreement, in equilibrium. We find that
the maximum delay time in reaching an agreement can be sub-
stantial and is increasing with the amount of private information.
Hence, when an agent chooses another agent on a path from the
seller to the buyer to negotiate bilaterally a partial agreement, her
choice now depends both on the type of this other agent and on
how much time the preceding agents will need to reach their par-
tial agreements. Therefore, core–periphery networks are likely to
be pairwise stable only if impatient agents are quite less patient
than patient agents. Otherwise, agents may prefer to add links for
reducing the length of trading paths and so avoiding costly delays
in reaching a global agreement.

Most of the literature on decentralized trade in networks
has focused on the exchange of goods in networks with no
intermediation. See, among others, Abreu and Manea (2012),
Calvo-Armengol (2003), Condorelli and Galeotti (2012), Condorelli
et al. (2015), Corominas-Bosch (2004), Elliott (2015), Kranton and
Minehart (2001), Manea (2011), Mauleon et al. (2011), Polanski
(2007) and Wang and Watts (2006). There are a number of
papers where intermediation is present. Blume et al. (2009) have
analyzed a complete information model where buyers and sellers
are connected through intermediaries who strategically choose
bid and ask prices to offer to the sellers and buyers they are
connected to, and where the exogenously given network structure
determines the amount of competition among intermediaries.4
Siedlarek (2015) has studied a stochastic model of bargaining and
exchange with common discount factor and intermediation on
an exogenously given network. In Siedlarek (2015), bargaining
is multilateral instead of having a series of bilateral negotiations

4 Gale and Kariv (2009) have done an experimental study of trading networks
where each trader can only exchange assets with a limited number of other traders
and intermediation is used to transfer the assets between initial and final owners.
Gofman (2014) has studied a reduced-formmodel of bargaining in over-the-counter
markets where intermediaries receive an exogenous share of the surplus.
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along the trade route. It is close as if in each period a coalition of
agents is drawn and has to divide some surplus and if they do not
reach an agreement, then a new coalition is drawn to bargain over
the division of some surplus, and so forth until an agreement is
reached. We rather adopt a finite series of bilateral negotiations
along the trade route and we make endogenous the trade route,
two features which are more realistic for the markets we are
interested in. Babus and Hu (2015) have studied over-the-counter
markets where bargaining along a given trading path consists
of a finite series of bilateral bargaining sessions with a common
discount factor.5 If links are costly and agents are forward-looking,
then a star network that connects all agents is an absorbing state of
a dynamic network formation process. Recently, Manea (2015) has
investigated how competing paths of intermediation determine
the terms of trade between buyers and sellers in exogenously
given networks. He has found that trade does not always proceed
along the shortest path between the seller and buyers, and that
the sharing of the surplus depends on the complete collection of
competing path available to each intermediary.

The paper is organized as follows. In Section 2 we consider the
series of bilateral bargaining sessions with complete information
and we determine both the equilibrium trading path and the
equilibrium shares of the surplus to be divided. In Section 3 we
characterize the pairwise stable trading networks. In Section 4
we discuss the limits of our main result by relaxing some main
conditions.

2. Multi-agent bilateral bargaining in networks

Let N = {1, 2, . . . , n} denote the set of players. A network g is
a list of which pairs of players are linked to each other and ij ∈ g
indicates that i and j are linked under g . The network obtained by
adding link ij to an existing network g is denoted g + ij and the
network that results from deleting link ij from an existing network
g is denoted g − ij. Let N(g) = {i | ∃ j such that ij ∈ g} be
the set of players who have at least one link in the network g .
A path in a network g between i and j is a sequence of players
i1, i2, . . . , iK−1, iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1}
with i1 = i and iK = j, and such that each player in the sequence
i1, . . . , iK is distinct. We say that player i is connected in g to j if
there is a path between i and j in g . A subnetwork h ⊆ g is a
component of g , if for all i ∈ N(h) and j ∈ N(h) \ {i}, there exists a
path in h connecting i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈

g implies ij ∈ h.6 We denote by C(g) the set of components of g .
Players participate in the market and can be active either as

a seller or as a buyer or as an intermediary. A pair of players is
randomly selected. The probability that the pair (s, b) is selected,
where s is the seller and b is the buyer, is 1/ (n (n − 1)). The seller
owns an indivisible good and the buyer has a valuation v = 1
for the good. The buyer can obtain the good from the seller if and
only if the two are connected. In other words, the buyer and the
seller can trade the good if and only if they belong to the same
component. Players on a path between the seller and the buyer
can act as intermediaries if trade occurs along the path. When

5 Recent empirical evidence suggests that financial networks exhibit a
core–periphery network structure (see e.g. Craig and von Peter, 2014). in’t
Veld et al. (2014) have found that for sufficiently large differences between large
and small banks, a core–periphery network with large banks in the core becomes
stable. Our main result seems consistent with such findings. Financial institutions
resell assets over the counter and big traders often occupy a central role in the
network but have less time to devote to each financial transaction. Core–periphery
networks can also emerge in models of communication network formation (see
Hojman and Szeidl, 2008).
6 Throughout the paper we use the notation⊆ for weak inclusion and for strict

inclusion. Finally, # will refer to the notion of cardinality.
there is no path between the randomly selected pair, no surplus
will be realized and both players receive 0. One central question
is how the surplus is shared among the buyer, the seller and the
intermediaries when trade is feasible.

Suppose that (s, b) is a pair randomly matched with s being the
seller and b being the buyer and s and b are connected in the trading
network g . Since for a given network g there may exist more than
one path connecting s and b, we need to determinewhich sequence
(i1, i2, . . . , ik) of intermediaries between s and b is going to emerge
at equilibrium as well as how the surplus is shared.

We assume that the negotiation starts with the buyer b who
first chooses one of her predecessors, say intermediary ik, on a
path from s to b to negotiate bilaterally a partial agreement.7 In
the bilateral bargaining session (ik, b), the negotiation proceeds as
in Rubinstein’s (1982) alternating-offer bargaining model where
players make alternate offers, with ik making offers in even-
numbered periods and b making offers in odd-numbered periods.
The length of each period is ∆. The negotiation starts in period 0
and ends when one of the players accepts an offer and leads to
a partial agreement. No limit is placed on the time that may be
expended in bargaining and perpetual disagreement is a possible
outcome. In case of perpetual disagreement, all players get 0.

Under the initiator procedure, only the player who selects her
partner to negotiate and makes the first proposal in the bilateral
bargaining session can exit. Hence, a partial agreement specifies
the share of the surplus, 0 ≤ xb ≤ 1, for b to exit the game. Players
have time preferences with constant discount rates, ri > 0. Once a
partial agreement is reached, b exits the game and ik chooses one of
her predecessors, say intermediary ik−1, on a path from s to ik such
that b does not lie on the path. In the bilateral bargaining session
(ik−1, ik), the negotiation proceeds as in Rubinstein’s alternating-
offer bargaining model to specify the share of the surplus, 0 ≤

xik ≤ 1, for ik to exit the game. Once a partial agreement is reached
between ik and ik−1, ik exits the game. Then, ik−1 chooses one of her
predecessors, say intermediary ik−2, on a path from s to ik−1 such
that ik and b do not lie on the path. Once a partial agreement is
reached between ik−1 and ik−2, ik−1 exits the game; and so on until
a partial agreement is reached between i1 and s.

An outcome consists of a sequence (i1, i2, . . . , ik) of interme-
diaries between s and b and (k + 1) partial agreements that
specify player i’s share of the surplus, 0 ≤ xi ≤ 1, for i ∈

{s, i1, i2, . . . , ik, b}, such that xs +xi1 +· · · xik +xb = 1. Each player
only receives her share once all (k + 1) partial agreements have
been reached. Under complete information it does not matter in
our model whether a player can exit and obtains her share imme-
diately or only at the end of the process. Players anticipate that
an agreement will be reached immediately in all subsequent bilat-
eral negotiations. Proposition 1 provides the unique subgame per-
fect equilibrium (SPE) outcome under the initiator procedure (see
Appendix A for details).

Proposition 1. As the interval between offers and counteroffers
shortens and shrinks to zero, there is a unique limiting subgameperfect
equilibrium outcome under the initiator procedure given by

x∗

b =
rik

rik + rb
,

x∗

ik =
rik−1

rik−1 + rik


1 −

rik
rik + rb


,

7 In our model, each player has the same probability of being the seller or the
buyer. Hence, all the results we obtain are robust to the alternative order where
first the seller would negotiate with an intermediary i1 .
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x∗

ik−1
=

rik−2

rik−2 + rik−1


1 −

rik−1

rik−1 + rik

 
1 −

rik
rik + rb


, (1)

...

...

x∗

i1 =
rs

rs + ri1


1 −

ri1
ri1 + ri2

 
1 −

ri2
ri2 + ri3


. . .

1 −
rik−1

rik−1 + rik

 
1 −

rik
rik + rb


,

x∗

s =


1 −

rs
rs + ri1

 
1 −

ri1
ri1 + ri2

 
1 −

ri2
ri2 + ri3


. . .

1 −
rik−1

rik−1 + rik

 
1 −

rik
rik + rb


,

where s is the seller, b is the buyer and (i1, i2, . . . , ik) is the
equilibrium sequence of intermediaries that facilitate the transaction
in this order.8 All (k+1) partial agreements are reached immediately
so that delay cannot occur in equilibrium.

Notice that once a partial agreement is reached between ik−l
and ik−l−1, ik−l exits the game and ik−l−1 chooses one of her
predecessors, say intermediary ik−l−2, on a path from s to ik−l−1
such that ik−l, ik−l+1, ik−l+2, . . . , ik and b do not lie on the path.
Then, ik−l−1 and ik−l−2 negotiate bilaterally a partial agreement for
ik−l−1 given that (1 − xb − xk − · · · − xk−l) is the surplus left to be
shared after intermediaries ik−l, . . . , ik−1, ik and buyer b have taken
their shares. The bilateral negotiation leads to a share xik−l−1 =

(1−xb−xk−· · ·−xk−l)rik−l−2(rik−l−2 + rik−l−1)
−1 for ik−l−1, and this

share only depends on ik−l−1’s own discount rate, the discount rate
of her predecessor ik−l−2, and the discount rates of the players who
have already exited the game with a partial agreement. Therefore,
when ik−l−1 chooses her predecessor on a path from the seller
to her for a bilateral negotiation, she chooses her most impatient
predecessor (i.e. the one with the highest discount rate). In case
a player is indifferent between two or more predecessors, she
chooses to negotiate with the predecessor leading to the shortest
path between the seller and herself because of a positive but
infinitesimally small probability that a link fails to deliver the good
once an agreement is reached.9

Lemma 1. The path (s, i1, i2, . . . , ik, b) in g is an equilibrium trading
path under the initiator procedure if and only if

(i) for each player j ≠ s in (s, i1, i2, . . . , ik, b) the discount rate
of her predecessor in (s, i1, i2, . . . , ik, b) is greater than or equal
to the discount rate of her predecessor in any other paths in g
between s and j such that her successors in (s, i1, i2, . . . , ik, b)
do not lie on those paths, and

(ii) there is no strictly shorter path in g connecting s and b than
(s, i1, i2, . . . , ik, b) that satisfies (i).

The trading network depicted in Fig. 1 illustrates the lemma.
Suppose that r4 > r5 and r3 > r1. After having negotiated
with player 7 the share of 7 to exit the bargaining, player 6 can
choose between players 4 and 5 to negotiate her share to exit.

8 The subgame perfect equilibrium outcome under the initiator procedure
converges to ((1/2)k+1, (1/2)k+1, . . . , 1/8, 1/4, 1/2) for (s, i1, . . . , ik, b) when
players have the same discount rate and the equilibrium path involves k
intermediaries.
9 In case there are more than one predecessor leading to the shortest path

between the seller and herself, then she chooses them with equal probability.
From players 4 and 5 there is some path leading to the seller
and neither 6 nor 7 lie on the path. Player 6 chooses 4 instead of
5 because 4 is less patient than 5. Similarly, player 2 chooses 3
instead of 1 because 3 is less patient than 1. Finally, player 3 can
only negotiate with the seller (player 1) and (1, 3, 2, 4, 6, 7) is the
unique equilibrium trading path. The driving force for obtaining
such equilibrium trading path is the initiator procedure where in
each bilateral session the player who can exit the bargaining is the
one who is selecting her partner to negotiate her share to exit.

Suppose now that r4 = r5 and r3 > r1 = r2. Then,
(1, 3, 5, 6, 7) is the unique equilibrium trading path. Player 6 is
indifferent between players 4 and 5. Player 6 chooses 5 as her
predecessor, because of the shortest path assumption for breaking
ties, anticipating perfectly that player 3 will choose to negotiate
with player 1. The trading path (1, 3, 5, 6, 7) involves five players.
If player 6 had chosen 4 as her predecessor then the trading path
would have been (1, 3, 2, 4, 6, 7) and would have involved six
players.

3. Pairwise stable trading networks

Players form a trading network before knowing which pair of
players will be randomly selected to become the seller and the
buyer. Let ui(g, (s, b)) be player i’s SPE payoff (or share) in the
trading network g with player s being the seller and player b being
the buyer, and let Ui(g) be player i’s SPE expected payoff in the
trading network g before knowing which pair of players will be
randomly selected. For instance, suppose that the trading network
is a star network {12, 13} where player 1 is the center. Player 1’s
expected payoff will be equal to

U1({12, 13}) =
1
6
u1({12, 13} , (2, 1)) +

1
6
u1({12, 13} , (3, 1))

+
1
6
u1({12, 13} , (1, 2))

+
1
6
u1({12, 13} , (1, 3)) +

1
6
u1({12, 13} , (2, 3))

+
1
6
u1({12, 13} , (3, 2)).

That is,

U1({12, 13}) =
1
6

r2
r2 + r1

+
1
6

r3
r3 + r1

+
1
6


1 −

r1
r1 + r2


+

1
6


1 −

r1
r1 + r3


+

1
6

r2
r2 + r1


1 −

r1
r1 + r3


+

1
6

r3
r3 + r1


1 −

r1
r1 + r2


.

As our interest is in understanding which networks are likely
to arise in trading networks when bargaining is with complete
information and players are heterogeneous, we need to define a
notion which captures the stability of a network. We suppose that
there are positive but infinitesimally small costs to forming links.
Hence, the cost of any link is always less important than any effect
it may have on the expected payoff from the bargaining, and so,
as in Goyal and Joshi (2003) or Polanski and Vega-Redondo (2014)
we use a strict version of Jackson and Wolinsky’s (1996) notion of
pairwise stability. A network is pairwise stable if no player does
not lose from severing one of her links and no other two players
strictly benefit from adding a link between them.10

10 Players are not farsighted in the sense that they do not forecast how others
might react to their actions. Dutta et al. (2005), Herings et al. (2009) and Page and
Wooders (2009) have recently developed notions to predict which networks are
likely to be formed among farsighted players.
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Fig. 1. Equilibrium trading paths.
Definition 1. A network g is pairwise stable if

(i) for all ij ∈ g , Ui(g) > Ui(g − ij) and Uj(g) > Uj(g − ij), and
(ii) for all ij ∉ g , if Ui(g) < Ui(g + ij) then Uj(g) ≥ Uj(g + ij).

Part (i) reflects that if any player cuts one of her links, she incurs
a loss frombargaining that could not be compensated by the saving
of the infinitesimally small linking cost. Part (ii) reflects that no pair
of players benefit from creating a link between them. If one of them
would like to add the link, then the other one would incur a loss.
Even if her expected payoff from the bargaining would not change,
her linking cost would infinitesimally increase.11

Our first result is that, in the presence of infinitesimally small
costs for forming links, any pairwise stable trading network will
consist of only one component connecting all players in N . Indeed,
linking two players belonging to two different components (or
being isolated) would not affect the outcome of any previously
feasible trade but would allow for new possible trades.

Lemma 2. A network g such that #C(g) > 1 or N(g)  N is never
pairwise stable.

Suppose now that we have two types of players: impatient
players and patient players. Let I = {1, 2, . . . ,m} be the set of
impatient players and rI be the discount rate of impatient players.
Let P = {m + 1,m + 2, . . . , n} be the set of patient players and
rP be the discount rate of patient players. Obviously, rI > rP . Let
gT be the collection of all subsets of T ⊆ N with cardinality 2.
Then, g I is the complete network among the impatient players.
The degree of i is the number of players that i is linked to. That is,
di(g) = #{j | ij ∈ g}. Which trading networks are pairwise stable?

Our main result is that pairwise stable networks are core–
periphery networks where the core only consists of impatient
players who are linked to each other and the periphery only
consists of patient players who are linked to one impatient player.
Fig. 2 illustrates a core–periphery network where I = {1, 2, 3} and
P = {4, 5, . . . , 11}.

Proposition 2. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m} and
rj = rP for j ∈ P = {m + 1, . . . , n} and rP < rI . Under the initiator
procedure, a network g is pairwise stable if and only if

(i) g I
⊆ g;

(ii) di(g) = 1 for all i ∈ P;
(iii) #C(g) = 1.

Proposition 2 tells us that, under the initiator procedure, a
trading network g is pairwise stable if and only if (i) all impatient
players are linked to each other, (ii) each patient player has exactly
one link (and so, each patient player is only linked to one impatient

11 This definition of pairwise stability incorporates the fact that if player i is
indifferent between g and g − ij she will delete the link ij because of infinitesimally
small linking costs. Hence, links which are never used at equilibrium in trading
networks are going to be deleted.
Fig. 2. A core–periphery network.

player), and (iii) g consists of only one component connecting all
players in N . Part (iii) follows from Lemma 2. The proof of part (i)
and part (ii) of Proposition 2 proceeds in five steps. First, we show
that networks that can be pairwise stable are such that each patient
player is linked to at least one impatient player.

Lemma 3. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m}

and rj = rP for j ∈ P = {m + 1, . . . , n} and rP < rI . Under the
initiator procedure, a network g cannot be pairwise stable if there is
some patient player that is not linked to at least one impatient player.

All the proofs not in the main text can be found in Appendix B.
Suppose that g consists of one component connecting all players
and that there is some patient player i ∈ P that is not linked to
at least one impatient player j ∈ I in g . The patient player i has
incentives to add the link ij because, as a buyer or intermediary or
seller, she will get a larger share of the surplus when bargaining
with the impatient player j rather than having to bargain with
another patient player. Moreover, she will endorse more often the
role of intermediary in g + ij. Precisely, in g + ij player i is winning
when she is matched as a buyer to the impatient player j or to one
of the patient players on the geodesic between i and j or to any
other player l such that player j lies on a path between i and l in
g .12 Indeed, player i will choose to negotiate with the impatient
player j to obtain a larger share than the one she would get when
bargaining with patient players. Player j is indifferent between g
and g + ijwhen he is the buyer. In g + ij player i is winning when
she is matched as a seller to a player l such that player j was lying
on the trading path in g since the trading path in g + ij will be
shorter and jwill end the sequence of bilateral bargaining sessions
negotiatingwith i. In addition, in g+ij player i is winningwhen she
is matched as a seller to a player l such that player j was not lying
on the trading path in g and the length of the geodesic between
l and j is shorter than the length of the geodesic between l and i.
When j is the seller, he is either better off or equal off depending if

12 The distance between two nodes is the length of (number of links in) the
shortest path or geodesic between them.
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the length of the equilibrium trading path becomes shorter or not
in g + ij. When i was an intermediary in g for some match then
she is still an intermediary for the same match in g + ij and she is
either better off or equal off. Finally, it may happen that i was not
an intermediary in g for somematch and now becomes in g + ij an
intermediary for the samematch. Similarly, for player j. Thus, both
players i and j have incentives to add the link ij.

Lemma 4. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m} and
rj = rP for j ∈ P = {m + 1, . . . , n} and rP < rI . Under the initiator
procedure, a network g cannot be pairwise stable if g I

⊈ g.

Lemma 4 follows from two observations. Firstly, two impatient
players i, j ∈ I having a common impatient player l ∈ I as neighbor
(i.e. il, jl ∈ g but ij ∉ g) have incentives to link to each other
in g to form g + ij. Both i and j never make losses by adding the
link ij. When i is the buyer, her payoff does not change since she
is already linked to another impatient player l (that is linked to
j) with whom she can negotiate first. When i is the seller or an
intermediary, her payoff increases for all trades such that player
j is either the buyer or a preceding intermediary in g since the new
equilibrium trading path in g + ij will be shorter than the one in
g avoiding one intermediary, namely player l. Similarly for player
j. Next, we proceed from g + ij by adding a link between any two
impatient players having a common impatient player as neighbor
until we cannot add such links and we end up with the new
network g ′ where the set of impatient players can be partitioned
into coalitions such that all impatient players within each coalition
are linked to each other and no impatient player from a given
coalition is linked to an impatient player from another coalition.
Secondly, two impatient players i and j of different coalitions have
incentives to add the link ij to form the network g ′

+ ij. When i is
the seller she iswinning for all tradeswhere j or one of his coalition
partner is the buyer or an intermediary since the new equilibrium
trading path in g ′

+ ij will be shorter than the one in g ′ avoiding
one patient intermediary. When i is the buyer she is indifferent.
When i is an intermediary in g ′ she is also an intermediary in g ′

+ ij
and she is either equal off or better off. Similarly for player j. Next,
we repeat the process until we end up with a network where all
impatient players are linked to each other and all patient players
have exactly the same links as in g .

Lemma 5. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m} and
rj = rP for j ∈ P = {m + 1, . . . , n} and rP < rI . Under the initiator
procedure, a network g cannot be pairwise stable if there is some link
between two patient players that are linked to the same impatient
player.

Here, the main point is that, when in g there is a link between
two patient players i, k ∈ P that are linked to the same impatient
player j ∈ I , either the link ik is never used or one of the patient
players is better off in g − ik. For instance, suppose that i is only
linked to one impatient player j. If k is only linked to i and j then the
link ikwill never be used. If k is only linked to i and j and to another
impatient player then player i has incentives to delete the link ik
because when the match is (i, j) player j will choose to negotiate
first with the other impatient player instead of negotiating directly
with i.

Lemma 6. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m} and
rj = rP for j ∈ P = {m + 1, . . . , n} and rP < rI . Under the initiator
procedure, a network g cannot be pairwise stable if there is some link
between two patient players that are not linked to the same impatient
player.
Suppose that in g there is a link between two patient players
that are not linked to the same impatient player: ik ∈ g , jl ∈ g and
ij ∈ g with i, j ∈ P and k, l ∈ I . Depending on the other links in g ,
either player i (or j) has incentives to delete the link ij or player i (or
j) has incentives to add a linkwith another impatient player (≠k, l).
For instance, if i and j do not have other links then i has incentives
to delete the link ij. By deleting ij she is only losing the payoff she
obtains as an intermediary for the match (j, l). This loss is largely
compensated by the gains she makes by shortening the trading
path for the match (i, k) in g − ij. If j is linked to another impatient
player (saym ∈ I) then iwould have evenmore incentives to delete
ij since otherwise shewould earn less from thematch (i, k) and she
would get nothing from the matches (j, l) and (j,m).

Lemma 7. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m}

and rj = rP for j ∈ P = {m + 1, . . . , n} and rP < rI . Under the
initiator procedure, a network g cannot be pairwise stable if some
patient player is linked to more than one impatient player.

We already know that the candidates for being pairwise stable
are networks g such that (i) #C(g) = 1 and N(g) = N , (ii) g I

⊆ g ,
(iii) ij ∉ g if i ∈ P and j ∈ P . Suppose that in g player i ∈ P is linked
to two impatient players k, l ∈ I . Clearly, player i is indifferent
when she is the buyer and she is never an intermediary. When she
ismatched to an impatient player (≠k) or to a patient player that is
not linked to player k she is better off by deleting the link ik since
the equilibrium trading path is shortened of one link. Hence, we
obtain our main result that a network g is pairwise stable if and
only if g I

⊆ g , di(g) = 1 for all i ∈ P , and #C(g) = 1.13
Core–periphery networks, where the core consists of impatient

players who are linked to each other and the periphery consists of
patient players who are only linked to the same impatient player,
give to the patient players (and to player i ∈ I for which di(g) =

n− 1) their best payoffs among pairwise stable networks. In those
core–periphery networks the payoff of a patient player may be
greater or smaller than the payoff of the impatient player i ∈ I for
which di(g) = n − 1 depending on the discount rates, the number
of impatient players (m) and the number of patient players (n−m).
In fact, the SPE expected payoff for a patient player i ∈ P in such
core–periphery trading network g is equal to

Ui(g) =
1

2(n − 1)
rI

rI + rP


n +

m − 1
2

+ (n − m − 1)
rP

rI + rP


,

and the SPE expected payoff for the impatient player j ∈ I who is
linked to all patient players is equal to

Uj(g) =
1

2(n − 1)


m − 1 +

rP
rI + rP

(n − m)

×


m + 1 + 2 (n − m − 1)

rP
rI + rP


.

For instance, suppose m = 1. If 2(n − 1)rP > nrI then the SPE
expected payoff for the impatient player j ∈ I who is linked to all
patient players is greater than the SPE expected payoff for a patient
player i ∈ P .

4. Discussion

4.1. Ranked or homogeneous players and imperfect reliability

Consider the case where there can be more than one player
of each type and more than two types of players. Core–periphery

13 Linking costs are assumed to be positive but infinitesimally small. Increasing
costs would destabilize the core–periphery networks up to disconnecting the
trading networks if costs become very large.
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networks where the core only consists of the most impatient
players i ∈ I who are linked to each other and the periphery
consists of all other players who are linked to one player in I are
pairwise stable.

Proposition 3. Suppose that ri = r1 > 0 for i ∈ I = {1, 2, . . . ,m},
ri = r2 > 0 for i ∈ {m + 1, . . . , l}, ri = r3 > 0 for i ∈

{l + 1, . . . , k} , . . . , with r1 > r2 > r3 > · · · . Under the initiator
procedure, the network g such that g I

⊆ g, di(g) = 1 for i ∈

{m + 1, . . . , n} and #C(g) = 1 is pairwise stable.14

However, there might be other pairwise stable networks. For
instance, take N = {1, 2, 3} and r1 > r2 > r3. The star network
{12, 23} with the second most impatient player being the center
is pairwise stable when r2 is close to r1. In fact, player 3 has no
incentive to link to player 1 because the gains player 3 would
obtain when he is the buyer (3 would negotiate with 1 instead of
2) do not compensate the losses he would incur when player 2 is
the buyer and player 3 is the seller.15

Suppose now that players are homogeneous in terms of their
discount rates: r1 = r2 = · · · = rn. From Lemmas 2 and 4 we
have that there is a unique pairwise stable architecture, namely
the complete network.16

Corollary 1. Suppose that ri = r for all i ∈ N. Under the initiator
procedure, the complete network gN is the unique pairwise stable
network.

Suppose now that players have the same discount rate (ri = r
for all i ∈ N) but there is a positive probability that a link fails
to deliver the good/money once an agreement has been reached.17
The delivering reliability of a link is measured by a parameterµij ∈

[0, 1). Here, µij is the probability that an established link between
i and j fails in delivering the good, while 1 − µij is the probability
that it succeeds. Link reliability across different pairs of agents is
assumed to be independent. For instance, let µij < µik = µ <
µkl = µ for i, j ∈ L = {1, 2, . . . ,m} and k, l ∈ H = {m+1, . . . , n}.
Then, the network g such that gL

⊆ g , di(g) = n − 1 for i ∈ L and
dk(g) = m for k ∈ H is pairwise stable if and only if (1 − µ)/2 <
(1 − µ)2/2. In such a core–periphery network, the most reliable
players are linked to all players but the less reliable ones are not
linked to each other. Thus, once some nodes/links aremore reliable
than others to deliver the good/money, core–periphery networks
can emerge in the long run even if all players are equally patient.
However, when players can be patient or impatient, a trade-off
is likely to occur between linking to either impatient players or
reliable ones.

14 Hence, if r1 > r2 > · · · > rn−1 > rn then the star network with the most
impatient player, namely player 1, being the center is pairwise stable.
15 An alternative protocol is Suh andWen (2006) multi-agent bilateral bargaining
model with the demand procedure, where the proposer demands a share to exit
the bargaining game. Under such procedure, the discount rates of all players on the
trading path between the seller andher predecessor nowmatter for her share to exit
the bargaining game, and so, any player always prefers to negotiate with a patient
player instead of negotiatingwith a less patient player and adding at least onemore
intermediary on the trading path between the seller and the buyer. Therefore, the
complete network gN is the unique pairwise stable network under the demand
procedure. Other bargaining protocols leading to similar outcomes can be found in
Chae and Yang (1994), Krishna and Serrano (1996), Vannetelbosch (1999), Huang
(2002), and Li (2010) among others.
16 Babus and Hu (2015) have shown that, if the formation of links is costly, players
are homogeneous but forward-looking, and players incur monitoring costs for each
transaction along the trading path, then a star network that connects all players is
an absorbing state of Dutta et al. (2005) dynamic network formation process.
17 Bala and Goyal (2000) have analyzed the impact of imperfect link reliability in
endogenous communication networks.
4.2. Private information

Under complete information, agreement is reached immedi-
ately in each bilateral bargaining session. We now suppose that
players do not know the impatience of the other players. It is com-
monknowledge that player i’s discount rate lies in the range [r i, r i],
where 0 < r i ≤ r i and i ∈ N , and that types are independently
drawn from the set [r i, r i] according to some probability distribu-
tion pi. Each bilateral bargaining sessionmay involve delay, but not
perpetual disagreement, in equilibrium. In fact, delay is positively
related to the distance between the discount rates of the most and
least patient types of the players. If the range of types is reduced,
then this leads to a smaller range of possible payoffs and less de-
lay. Delay can occur evenwhen the game is close to one of complete
information (as the type distributions converge to point mass dis-
tributions).

We propose to analyze the maximum delay time in reaching an
agreement. Only on average is thismeasure a good proxy for actual
delay.18 In each bilateral bargaining session (i, j), the maximum
real time player j would spend bargaining is the time D(i, j) such
that player j is indifferent between getting her lower bound perfect
Bayesian equilibrium (PBE) payoff at time 0 and getting her upper
bound PBE payoff at time D(i, j). In Appendix C we derive the
expression for the maximum delay in equilibrium which shows
that an agreement is reached in finite time and that delay time
equals zero as incomplete information vanishes (in that r i and r j
converge to r i and r j, respectively).

Proposition 4. Under the initiator procedure, the maximum real
delay time in reaching a partial agreement in each bilateral bargaining
session (i, j) is given by

D(i, j) = −
1
r j

· log

r i
r i

·
r i + r j
r i + r j


.

In fact, D(i, j) is the maximum real time player j would
spend negotiating if she were of the most patient type. We have
∂D(i, j)/∂r j < 0, ∂D(i, j)/∂r j > 0, ∂D(i, j)/∂r i < 0 and
∂D(i, j)/∂r i > 0. Given the trading path (s, i1, i2, . . . , ik, b), the
maximum real delay time in reaching k + 1 partial agreements
is equal to D(s, i1, i2, . . . , ik, b) = D(s, i1) + D(i1, i2) + · · · +

D(ik−1, ik) + D(ik, b).
We now provide an example of the maximum delay. Suppose

that (s, i1, i2, i3, b) is the trading path and let r i = r , r i = r ,
r = 0.33 − r with r ∈ [0.04, 0.17], i ∈ {s, i1, i2, . . . , ik, b}.
Table 1 gives the integer part of the maximum delays for ∆ =

1/365. So, we can interpret r as the annual discount rate and the
numbers in Table 1 as the maximum number of days needed to
reach an agreement. We observe that many bargaining rounds
may be needed in equilibrium before an agreement is reached and
this number is increasing with the amount of private informationr − r

.
When a player chooses one of her predecessors on a path

from the seller s to the buyer b to negotiate bilaterally a partial
agreement once there is private information about the impatience
of the players, her choice still does not depend on how the
predecessors are going to share the rest of the surplus but now
depends on how much time the predecessors will need to reach
their partial agreements. Suppose that N = {1, 2, 3}, g =

{12, 23, 13} and that r2 = r2 = r3 = r3 < r1 < r1. That
is, it is common knowledge that player 1 is an impatient player

18 It is not uncommon in the literature on bargaining to analyze the maximum
delay before reaching an agreement. See, for instance, Cramton (1992) and Cai
(2003).
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Table 1
Maximum delay in reaching an agreement.

r 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04
‘‘Partial delay’’ 0 1 2 3 4 5 7 9 12 15 20 26 36 51
‘‘Total delay’’ 0 4 8 12 16 20 28 36 48 60 80 104 144 204
and players 2 and 3 are patient players. Suppose first that player
1 is the seller and player 3 is the buyer. Since player 3’s worst PBE
payoff when she negotiates directly with player 1, r1/(r1 + r3),
is greater than her best PBE payoff when she negotiates first with
intermediary 2, r2/(r2 + r3) = 1/2, she will choose to negotiate
directlywith player 1. Suppose nowplayer 2 is the seller and player
3 is the buyer. Since player 3’s PBE payoff when she negotiates
directly with player 2, r2/(r2 + r3) = 1/2, can be greater or
smaller than her worst PBE payoff when she negotiates first with
intermediary 1, r1/(r1 + r3) exp(−r3D(1, 2)) where D(1, 2) is the
maximum real delay time in reaching a partial agreement between
1 and 2, it is not excluded that player 3 would choose to negotiate
directlywith player 2 instead of going through the impatient player
1. Player 3 will choose to bargain with player 2 instead of player
1 if the expected delay for reaching an agreement in a negotiation
between player 1 and player 2 is large enough. Hence, player 3may
now have incentives to be linked to both players 1 and 2 although
it is commonly known that player 2 is more patient than player 1.

We now provide sufficient conditions such that core–periphery
networks are still pairwise stable when players have private
information.

Proposition 5. Suppose that ri = rI > 0 for i ∈ I = {1, . . . ,m}

and rj ∈ [rP , rP ] for j ∈ P = {m + 1, . . . , n} (0 < rP ≤ rP) and
that it is common knowledge that any player i ∈ I is less patient than
any player j ∈ P : rP < rP < rI . Under the initiator procedure, if

(i) D(i, j) <
−1
rP

log

rP
rI

rI + rP
rP + rP


and

(ii) D(j, i) <
−1
rI

log


2rP
rI + rP


,

then a network g such that g I
⊆ g, di(g) = 1 for all i ∈ P and

#C(g) = 1 is pairwise stable.

Condition (i) in Proposition 5 is a sufficient condition for player
j ∈ P for not adding a link to another player k ∈ P in a
core–periphery network g . It implies that if j ∈ P and k ∈ P are
matched then buyer j prefers to negotiate with the player i ∈ I is
linked to rather than building the link jk and negotiating directly
with k. For condition (i) to holdwe need that rI −rP is large enough
(for the right-hand side of the inequality being positive) and rP −rP
is not too large (for D(i, j) being small enough). Condition (ii) in
Proposition 5 is a sufficient condition for player j ∈ P for not adding
a link to another impatient player l ∈ I (l ≠ i) in a core–periphery
network g because if i ∈ I is an intermediary (or the buyer) in a
match where j ∈ P is the seller then i prefers to negotiate with
player l ∈ I rather than negotiating directly with j. For condition
(ii) to hold we need that rP − rP is not too large (for D(j, i) being
small enough) and rI −rP is large enough. Similar conditions can be
provided in case only impatient players have private information
and it is commonly known that they are less patient than any
patient player.

So, a core–periphery network is likely to be pairwise stable if all
players do not have too much private information and impatient
players are quite more impatient than patient players. Otherwise,
players may prefer to add links for reducing the length of trading
paths and so avoiding longer costly delays in reaching a global
agreement.
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Appendix A. Bargaining with complete information

We consider the initiator procedure. Suppose that (s, b) is a
pair randomly matched with s being the seller and b being the
buyer and s and b are connected in the trading network g . The
negotiation starts with the buyer b who first chooses one of
her predecessors, say intermediary ik, on a path from b to s to
negotiate bilaterally a partial agreement. In the bilateral bargaining
session (ik, b), the negotiation proceeds as in Rubinstein’s (1982)
alternating-offer bargaining model where players make alternate
offers, with ik making offers in even-numbered periods and b
making offers in odd-numbered periods. The length of each period
is ∆. The negotiation starts in period 0 and ends when one of the
players accepts an offer and leads to a partial agreement. In case of
perpetual disagreement in some bilateral session, all players get
0. Players have time preferences with constant discount factors,
δi ∈ (0, 1). A partial agreement specifies the share of the surplus,
0 ≤ xb ≤ 1, for b to exit the game. Once b exits the game, ik chooses
one of her predecessors, say intermediary ik−1, on a path from ik to
s such that b does not lie on the path. In the bilateral bargaining
session (ik−1, ik), the negotiation specifies the share of the surplus,
0 ≤ xik ≤ 1, for ik to exit the game. Once a partial agreement is
reached between ik and ik−1, ik exits the game. Then, ik−1 chooses
one of her predecessors, say intermediary ik−2, on a path from
ik−1 to s such that ik and b do not lie on the path. Once a partial
agreement is reached between ik−1 and ik−2, ik−1 exits the game;
and so on until a partial agreement is reached between i1 and s.
An outcome consists of a sequence (i1, i2, . . . , ik) of intermediaries
between s and b and (k+ 1) partial agreements that specify player
i’s share of the surplus, 0 ≤ xi ≤ 1, for i ∈ {s, i1, i2, . . . , ik, b},
such that xs + xi1 + · · · xik + xb = 1. Each player only receives her
share once all (k + 1) partial agreements have been reached. This
multi-agent bilateral bargaining model is solvable by backward
induction.

Let yt be the surplus left to be shared among the remaining
players after t bilateral bargaining sessions. So, y0 is the initial
surplus to be shared and is equal to 1; y1 is the surplus left to be
shared after buyer b has taken her share; y2 is the surplus left to be
shared after intermediary ik and buyer b have taken their shares; y3
is the surplus left to be shared after intermediary ik−1, intermediary
ik and buyer b have taken their shares; yk is the surplus left to
be shared after intermediary i2, intermediary i3, . . . , intermediary
ik−1, intermediary ik and buyer b have taken their shares.
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Consider first the pair (s, i1). Intermediary i1 chooses to
negotiate with s only if there is no other player less patient than
s linked to i1 such that there is a path from this other player
to s and players {i2, i3, . . . , ik, b} do not lie on the path. The
SPE partial agreement of the bilateral bargaining session (s, i1) is
xi1 = ykδi1 (1 − δs) /


1 − δsδi1


. Consider next the pair (i1, i2).

Intermediary i2 chooses to negotiate with i1 only if there is no
other player less patient than i1 linked to i2 such that there is
a path from this other player to s and players {i3, . . . , ik, b} do
not lie on the path. The SPE partial agreement of the bilateral
bargaining session (i1, i2) is xi2 = yk−1δi2


1 − δi1


/

1 − δi1δi2


;

and so forth. Consider finally the pair (ik, b). Buyer b chooses to
negotiate with ik only if there is no other player less patient than ik
linked to b such that there is a path from this other player to s. The
SPE partial agreement of the bilateral bargaining session (ik, b) is
xb = y0δb


1 − δik


/

1 − δikδb


. Since y0 = 1, buyer b will obtain

at equilibrium

x∗

b =
δb(1 − δik)

1 − δikδb
.

Since y1 = y0 − x∗

b , intermediate ik will obtain at equilibrium

x∗

ik =
δik(1 − δik−1)

1 − δik−1δik

1 − δb

1 − δikδb
.

Since y2 = y1 − x∗

ik
, intermediate ik−1 will obtain at equilibrium

x∗

ik−1
=

δik−1(1 − δik−2)

1 − δik−2δik−1

1 − δik

1 − δik−1δik

1 − δb

1 − δikδb
;

and so on. Since yk = yk−1 − x∗

i2
, intermediate i1 will obtain at

equilibrium

x∗

i1 =
δi1(1 − δs)

1 − δsδi1

1 − δi2

1 − δi1δi2

1 − δi3

1 − δi2δi3
· · ·

1 − δik

1 − δik−1δik

1 − δb

1 − δikδb
;

and seller swill obtain at equilibrium

x∗

s =
1 − δi1

1 − δsδi1

1 − δi2

1 − δi1δi2

1 − δi3

1 − δi2δi3
· · ·

1 − δik

1 − δik−1δik

1 − δb

1 − δikδb
.

It is customary to express the players’ discount factors in terms of
discount rates, r1 > 0, r2 > 0, . . . rn > 0, and the length of the
bargaining period, ∆, according to the formula δi = exp (−ri∆).
As ∆ approaches zero, using l’Hopital’s rule, the SPE outcomes
x∗

b, x
∗

ik
, x∗

ik−1
, . . . , x∗

i1
, x∗

s tend to the equilibrium outcomes given in
Proposition 1.

Appendix B. Pairwise stable trading networks

Proof of Lemma 3. (i) First, we show that a patient player always
wants to link to an impatient player if in the current network there
are at least two patient players as intermediaries on the geodesic
between the patient player and the impatient player. Remember
that a geodesic between players i and j is a shortest path between
these nodes; that is, a path with no more links than any other path
between these nodes.

Suppose that 1 ∈ I and {2, 3, 4} ⊆ P . Take any network g1 such
that {12, 23, 34} ⊆ g1, the path 1, 2, 3, 4 is a geodesic between 1
and 4, and the distance between player 4 and any other impatient
player is greater than 3.We now show that 1 and 4 have incentives
to add the link 14 to form g2 = g1 + 14.

Player 4 is winning when she is matched as a buyer to the
impatient player 1 or to one of the patient players 2 and 3 or
to any other player j such that in g1 players 2 or 3 were on the
equilibrium trading path between 4 and j. Notice that 4 is strictly
winning because she will get a larger share of the surplus when
bargainingwith the impatient player 1 rather than bargainingwith
the patient player 3 or 2 depending to whom she is matched. If 4
is matched to a player j such that in g1 players 2 or 3 are not on
the equilibrium trading path between 4 and j, then 4 is indifferent
between g1 and g2 because the link 14 will not be used. So, when
4 is the buyer she is never losing by adding the link 14 to g1. When
4 is the seller, she is always better off when she is matched to a
player j such that player 1 was lying on the trading path in g1 since
the trading path in g2 will be shorter and 1 will end the sequence
of bilateral bargaining sessions negotiating with 4. In addition, in
g2 player 4 is winning when she is matched as a seller to a player j
such that player 1 was not lying on the trading path in g1 and the
length of the geodesic between 1 and j is shorter than the length of
the geodesic between 4 and j. Otherwise, she is equal off. When 4
was an intermediary in g1 for some match (i, j) then she is still an
intermediary for the match (i, j) in g2 and she is either better off
or equal off depending if the equilibrium trading path is passing or
not through the impatient player 1. Finally, it may happen that 4 is
strictly winning in case she was not an intermediary in g1 for some
match (i, j) and now becomes in g2 an intermediary for the match
(i, j).

Player 1 is indifferent between g1 and g2 when he is the buyer
because in both networks he has to negotiate with one patient
player.When player 1 is the seller, he is either better off or equal off
depending if the length of the equilibrium trading path becomes
shorter or not in g2. When 1 was an intermediary in g1 for some
match (i, j) then he is still an intermediary for the match (i, j) in g2
and he is either better off or equal off depending if the length of the
equilibrium path between him and the buyer becomes shorter or
not. Finally, it may happen that 1 is strictly winning in case he was
not an intermediary in g1 for some match (i, j) and now becomes
in g2 an intermediary for the match (i, j). Thus, we conclude that
both players 1 and 4 have incentives to add the link 14.

(ii) Second, we show that a patient player having links with
at least two other patient players that are linked to the same
impatient player has always incentives to link to the impatient
player.

Suppose that 1 ∈ I and {2, 3, 4} ⊆ P . Take any network g1
such that {12, 13, 24, 34} ⊆ g1, the paths 1, 2, 4 and 1, 3, 4 are
geodesics between 1 and 4, and the distance between player 4 and
any other impatient player is greater or equal than 2.Wenow show
that 1 and 4 have incentives to add the link 14 to form g2 = g1+14.

Player 4 is strictly winning when she is matched as a buyer to
the impatient player 1 or to one of the patient players 2 and 3 or
to any other player j such that there is a path between players 1
and j and player 4 does not lie on the path. The reason is the same
as before. By adding the link 14 she will get a larger share of the
surplus when bargaining with the impatient player 1 rather than
bargaining with the patient player 3 or 2 depending to whom she
is matched. Otherwise, if 4 is matched to a player j such that in g1
players 2 or 3 are not on the equilibrium trading path between 4
and j, she is equal off because the link 14 will not be used. Player 4
is winning when she is matched as a seller to a player j such that
player 1 is on the equilibrium trading path in g1 since the trading
path in g2 will be shorter and 1 will end the sequence of bilateral
bargaining sessions negotiating with 4. Otherwise, she is equal off.
Player 4 is winning when she is an intermediary on trades whose
equilibrium trading paths are passing through the impatient player
1 in g1. Otherwise, player 4 is equal off.

Player 1 is equal off when he is the buyer because in both
networks he has to negotiate with one patient player. However,
player 1 is better off or equal off when he is the seller or an
intermediary depending if the length of the equilibrium path
between him and the buyer becomes shorter or not. Thus, we have
that both players 1 and 4 have incentives to add the link 14.

(iii) Third, suppose that 1 ∈ I and {2, 3} ⊆ P . In any network
g1 such that {12, 23} ⊆ g1, the path 1, 2, 3 is a geodesic between 1
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and3 in g1, d2(g1) = 2, and the distance between the patient player
3 and any other impatient player is greater or equal than 2, players
1 and 3 have incentives to add the link 13 to form g2 = g1 +13. For
player 1, the reason is the same as in (i) or (ii). For player 3, simple
computations allow us to show that the sum of the equilibrium
payoffs when she is the buyer and the seller in the matches with
players 1 and 2, are bigger in the network g2 than in the network
g1. When matched with any other player j ≠ 1, 2 such that there
is a path between players 1 and j, player 3 as a buyer is better
off because by adding the link 13 she will get a larger share of
the surplus when bargaining with the impatient player 1 rather
than bargaining with the patient player 2. Otherwise, she will be
indifferent as a buyer. Player 3 is winning when she is matched as
a seller to a player j ≠ 1, 2 such that player 1 is on the equilibrium
trading path in g1 since the trading path in g2 will be shorter and 1
will end the sequence of bilateral bargaining sessions negotiating
with 3. Otherwise, she is equal off. Finally, notice that player 3 is
never an intermediary.

(iv) Fourth, suppose that 1 ∈ I and {2, 3, 4} ⊆ P . In any network
g1 such that {12, 23, 24} ⊆ g1, the path 1, 2, 3 is a geodesic
between 1 and 3, the path 1, 2, 4 is a geodesic between 1 and 4,
and the distance between the patient player 3 (4) and any other
impatient player is greater or equal than 2, the patient players 3
and 4 have first incentives to add the link 34 to form g2 = g1 + 34
because players 3 and 4 will win as sellers when matched with
4 and 3 respectively. Adding the link 34 does not affect players 3
and 4 in the other matches. Once the link 34 is formed, the patient
player 4has now incentives to link to the impatient player 1 to form
thenetwork g2+14. The reason is that now, at g2, player 4 as a seller
can never be worse off, even when she is matched with player 3
because player 3 will bargain directly with her instead with player
2. Notice that without adding first the link 34 to g1, player 4 in the
match with player 3 would have been worse off as a seller if the
link 14 is added to g1, because the equilibrium path would have
been (3, 2, 1, 4) (with the link 14) instead of (3, 2, 4) (without the
link 14). Notice that player 1 is equal off when he is the buyer, but
he is better off or equal off when he is the seller or an intermediary
(the reason is the same as in (i) or (ii)). Thus, player 1 agrees to add
the link 14 to the network g2.

From (i)–(iv) we conclude that a network g cannot be pairwise
stable if there is some patient player that is not linked to at least
one impatient player. �

Proof of Lemma 4. Consider any network g such that #C(g) =

1, N(g) = N and each patient player is linked to at least one
impatient player.

(i) First,wewill show that two impatient players i, j ∈ I having a
common impatient player l ∈ I as neighbor (i.e. il, jl ∈ g but ij ∉ g)
have incentives to link to each other in g to form g+ij.When i is the
buyer, her payoff does not change by adding the link ij since she is
already linked to another impatient player l (that is linked to j)with
whom she can negotiate first. When i is the seller, her payoff does
not change by adding the link ij for all trades such that player j is not
the buyer nor an intermediary in g since the equilibrium trading
path in g + ijwill be the same as the one in g . When i is the seller,
she iswinning by adding the link ij for all trades such that player j is
either the buyer or an intermediary in g since the new equilibrium
trading path in g + ij will be shorter than the one in g avoiding
one intermediary, namely player l. When i is an intermediary, she
is winning by adding the link ij for all trades such that player j is
either the buyer or a preceding intermediary in g since the new
equilibrium trading path in g + ij will be shorter than the one in
g avoiding one intermediary, namely player l. Finally, when i is an
intermediary, her payoff does not change by adding the link ij for
all trades such that player j is not on the equilibrium trading path
in g or is not a preceding intermediary in g . Similarly for player j.
Hence, players i and j have incentives to add the link ij.
(ii) Next, we proceed from g by adding a link between any two
impatient players having a common impatient player as neighbor
until we cannot add such links and we end up with the new
network g ′

= gI ∪ gP where

gI =

ij ∈ gN

| there is a path between i and j in g \ gP


and gP = {ij ∈ g | i ∈ P or j ∈ P}. Let Π(gI) be the partition of I
induced by gI . That is, π ∈ Π(gI) if and only if either there exists
h ∈ C(gI) such that π = N(h) or there exists i ∉ N(gI) such that
π = {i}. The set of impatient players is partitioned into coalitions
such that all impatient players within each coalition are linked to
each other and no impatient player from a given coalition is linked
to an impatient player from another coalition.

We want now to prove that, in g ′, two impatient players i and j
of different coalitions πi and πj in Π(gI) (i ∈ πi and j ∈ πj) of fully
connected players that are not linked to any patient player on the
path between these two coalitions πi and πj have incentives to add
the link ij to form the network g ′

+ ij. When i is the seller she is
winning for all trades where j or one of his coalition partner in πj
is the buyer or an intermediary since the new equilibrium trading
path in g ′

+ ij will be shorter than the one in g ′ avoiding at least
one patient intermediary; otherwise she is indifferent. When i is
the buyer she is indifferent between g ′

+ ij and g ′. When i is an
intermediary in g ′ she is also an intermediary in g ′

+ ij and she
is either equal off or better off (when the new equilibrium trading
path in g ′

+ ij is shorter than the one in g ′ and avoids one patient
preceding intermediary). Similarly for player j.

In addition, in g ′, two impatient players i and j of different
coalitions πi and πj in Π(gI) (i ∈ πi and j ∈ πj) of fully connected
players that are linked to a patient player on the path between
these two coalitions πi and πj have also incentives to add the
link ij to form the network g ′

+ ij. When i is the buyer or the
seller she is either better off or equal off between g ′

+ ij and
g ′ depending to whom she is matched. For instance, as a seller,
she is better off when matched to someone such that the new
equilibrium trading path in g ′

+ ij will be shorter than the one
in g ′ avoiding at least one patient intermediary; otherwise she is
indifferent. As a buyer, she is better off when matched to a player
such that j was in the equilibrium trading path in g ′ and i was
forced to bargain first with some patient player in g ′ while, now, in
g ′

+ ij she can bargain directly with j avoiding the patient player;
otherwise she is indifferent. When i is an intermediary in g ′ she is
also an intermediary in g ′

+ ij and she is either equal off or better
off or worse off. However, the losses she makes as an intermediary
in some matches are easily compensated by the gains she makes
as an intermediary in other matches. Precisely, player i can only
make losses when she is an intermediary in matches between two
patient players who are linked to impatient players both in πi and
in πj, and these losses are compensated by the gains she makes
when she is an intermediary inmatches between those two patient
players (as sellers) and impatient players (as buyers) from πj.

(iii) Next, we repeat the process of step (ii) until we end upwith
network g I

∪gP where all impatient players are linked to each other
and all patient players have exactly the same links as in g . �

Proof of Lemma 5. From Lemmas 2–4 we know that the can-
didates for being pairwise stable are networks g such that
(i) #C(g) = 1 and N(g) = N , (ii) g I

⊆ g , (iii) for each i ∈ P
there is j ∈ I such that ij ∈ g . We now show that g cannot be
pairwise stable if there is some link between two patient players
that are linked to the same impatient player. Five cases have to be
considered.

(a) In g the patient player i is only linked to one impatient
player j. Suppose that we add the link ik to g to form g + ikwhere
i, k ∈ P . (a.1) If k is only linked to i and j then the link ik will
never be used. Remember that the definition of pairwise stability
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incorporates the idea of infinitesimally small linking costs and
implies that links never used are deleted. (a.2) If k is only linked to i
and j and to another impatient player l then player i has incentives
to delete the link ik because when the match is (i, j) player j will
choose to negotiate first with the other impatient player l instead
of negotiating directly with i. (a.3) If k is only linked to i and j and
to another patient player that is only linked to j then the link ik
will never be used. (a.4) If k is only linked to i and j and to another
patient player that is linked to another impatient player (≠j) then
player i has incentives to delete the link ik for the same reason as
in (a.2).

(b) In g the patient player i is only linked to impatient players
j, k ∈ I (at least two). Suppose that we add the link il to g to form
g + il where i, l ∈ P . (b.1) If l is only linked to i and j then player
l has incentives to delete the link il because when the match is
(l, j) player jwill choose to negotiate first with the other impatient
player k instead of negotiating directlywith l. (b.2) If l is only linked
to i and j and to another impatient player then the link il will
never be used. (b.3) If l is only linked to i and j and to another
patient player m ∈ S that is only linked to j, then this patient
player m has incentives to delete the link lm because when the
match is (m, j) player jwill choose to negotiate first with the other
impatient player k instead of negotiating directly with m. (b.4) If
l is only linked to i and j and to another patient player m ∈ S
that is linked to another impatient player n (≠j), then the link lm
is never used if n ≠ k and player m has incentives to delete the
link lm if n = k because when the match is (m, k) player k will
choose to negotiate first with the other impatient player j instead
of negotiating directly withm.

(c) In g the patient player i is only linked to one impatient player
j ∈ I and to a patient player k ∈ P that is only linked to i and j.
Suppose that we add the link il to g to form g + il where i, l ∈ P .
(c.1) In g+il player k has incentives to delete the link ik since player
k is in the position of player i in case (a.4) if the patient player l is
linked to an impatient player m ≠ j. (c.2) Otherwise, if the patient
player l is linked to the impatient player j, the link ik in g + il will
never be used (like in case (a.3)).

(d) In g the patient player i is only linked to one impatient player
j ∈ I and to a patient player k ∈ P that is only linked to i and to
another impatient player m ≠ j (kj ∉ g). Suppose that we add the
link il to g to form g + il where i, l ∈ P . (d.1) In g + il player l
has incentives to delete the link il if he is only linked to j because
when the match is (l, j) player j will choose to negotiate first with
the other impatient playerm instead of negotiating directly with l.
(d.2) In g+ilplayer lhas also incentives to delete the link to another
impatient player n if this link exists in g+ ilwith lj ∈ g+ il because
when l is the seller there will always be an additional impatient
intermediary on the trading path.

(e) In g the patient player i is only linked to one impatient player
j ∈ I and to a patient player k ∈ P that is linked to i and j and to
another impatient player m ≠ j (kj ∈ g). Suppose that we add the
link il to g to form g + il where i, l ∈ P . (e.1) If l is linked only to
j and i then l has incentives to delete the link il to avoid this link
being used when l is the seller (notice that l is never intermediary
in g + il). (e.2) If l is linked only to j and i and to another impatient
player n, then i has incentives to delete the link il either to avoid
this link being used when i is the seller in case n = m, or because
this link is not used in case n ≠ m, j. �

Proof of Lemma 6. Wenow show that g cannot be pairwise stable
if there is some link between twopatient players that are not linked
to the same impatient player. From Lemmas 2–5 we know which
networks are the candidates for being pairwise stable networks.
Hence, take any network g such that (i) #C(g) = 1 and N(g) = N ,
(ii) g I

⊆ g , (iii) for each i ∈ P there is j ∈ I such that ij ∈ g ,
(iv) ij ∉ g if i, j ∈ P and there is some k ∈ I such that ik ∈ g and
jk ∈ g .
(a) Suppose that ik ∈ g , jl ∈ g and ij ∉ g where i, j ∈ P and
k, l ∈ I . Suppose that we add the link ij to g to form g + ij where
i, j ∈ P . (a.1) If i and j do not have other links then i has incentives
to delete the link ij. By deleting the link ij she is only losing the
payoff she obtains as an intermediary for the match (j, l) in g + ij.
This loss is compensated by the gains she makes by shortening the
trading path for the match (i, k) in g . (a.2) If j is linked to another
impatient player (say m ∈ I) then i would have more incentives
than in (a.1) to delete ij since she would earn less from the match
(i, k) in g + ij and she would get nothing from the matches (j, l)
and (j,m). (a.3) If j is linked to another patient player (≠i) then i
has more incentives than in (a.1) to delete ij. (a.4) If i is linked to
at least two impatient players then (i) if j is also linked to at least
two impatient players then ij is not used, (ii) if j is linked to one
impatient player then j has incentives to delete ij since j is in the
position of i in case (a.2).

(b) The last case to be considered is when in g patient players
are linked to all of them (that is, gP

⊆ g) but each patient player is
linked to a different impatient player. Suppose that il ∈ g , jm ∈ g
and kn ∈ g where i, j, k ∈ P and l,m, n ∈ I . Suppose that we add
the link im to g to form g+ im. For player i the link im onlymodifies
her payoff from thematch (i, l). With the link im the trading path is
shorter and so, player i has incentives to add the link im. By adding
the link im, player m makes additional gains from the matches
(m, i) (i will bargain directly with him) and (k, i) for k ≠ j, k ∈ P ,
(because, without the link im, player m will always be the second
intermediary in the trading path while, with the link im, player m
could be the first intermediary in the trading path) but he makes
losses from the matches (i, k) for k ≠ j, k ∈ P (because, without
the link im, playermwill always be the second intermediary in the
trading path while, with the link im, player m could be the third
intermediary in the trading path). However, the losses are much
smaller than the gains. In all other matches nothing changes for
player m. Hence, player m has also incentives to add the link im
to g , and so we have that g is not pairwise stable. Once we have
added the link im to g , we have obtained a network g + im where
two strong players i and j are linked to the same weak player m
andwe know from Lemma 5 that such network cannot be pairwise
stable. �

Proof of Lemma 7. From Lemmas 2–6 we know that the can-
didates for being pairwise stable are networks g such that
(i) #C(g) = 1 and N(g) = N , (ii) g I

⊆ g , (iii) ij ∉ g if i ∈ P
and j ∈ P . We now show that g cannot be pairwise stable if some
patient player i ∈ P is linked to more than one impatient player.
Suppose that in g player i ∈ P is linked to two impatient players
k, l ∈ I . When i is the buyer she is indifferent between g and g − ik.
Notice that player i is never an intermediary in g nor in g − ik.
Suppose now that i is the seller. When she is matched to an impa-
tient playerm ≠ k she is better off by deleting the link ik since the
equilibrium trading path is shortened of one link, and when she is
matched to the impatient player k she is indifferent between g and
g − ik. When player i (as a seller) is matched to a patient player
that is not linked to player k she is better off by deleting the link
ik since the equilibrium trading path is shortened of one link, and
when she is matched to a patient player that is linked to the im-
patient player k (and not to player l) she is indifferent between g
and g − ik. Finally, when player i (as a seller) is matched to a pa-
tient player that is linked to player l she is better off by deleting the
link ik since the equilibrium trading path is shortened of one link
between two impatient players. �

Appendix C. Private information and maximum delay

Consider again the path (i0, i1, i2, . . . , ik, ik+1) that connects
seller s (player i0) to buyer b (player ik+1). Players negotiate how to
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split the surplus via successive bilateral bargaining sessions in the
following order: (ik, ik+1), (ik−1, ik), (ik−2, ik−1), . . . , (i1, i2), (i0, i1).
Suppose now that the players have private information. They are
uncertain about each others’ discount factors. Player i’s discount
factor lies in the range [δi, δi], where 0 < δi ≤ δi < 1. The types
are independently drawn from the interval [δi, δi] according to the
probability distribution pi, i ∈ N .

Lemma 8. Consider the sequence (ik, ik+1), (ik−1, ik), (ik−2, ik−1),
. . . , (i1, i2), (i0, i1) of k+1 bilateral bargaining sessionswith private
information inwhich the probability distributions are common knowl-
edge and in which the period length shrinks to zero. Under the initia-
tor procedure, for any perfect Bayesian equilibria, the payoff of player
ik+1−l in each bilateral bargaining session (ik−l, ik+1−l) belongs toδik+1−l


1 − δik−l


1 − δik−lδik+1−l

yl,
δik+1−l


1 − δik−l


1 − δik−l

δik+1−l

yl

 ,

for l = 0, . . . , k, where yl is the surplus left to be shared after players
ij (j > k + 1 − l) have taken their shares.

This lemma follows fromWatson (1998, Theorem1).19 Sincewe
allow for general probability distributions over discount factors,
multiplicity of perfect Bayesian equilibria (PBE) is not an exception
(even when the game is almost with complete information).

In each bilateral bargaining session (i, j), the maximum real
time player j would spend bargaining is the time D(i, j) such
that player j is indifferent between getting her lower bound PBE
payoff at time 0 and getting her upper bound PBE payoff at time
D(i, j). Hence, the maximum number of bargaining periods player
ik+1−l would spend negotiating in the bilateral bargaining session
(ik−l, ik+1−l), I (m(ik−l, ik+1−l)), is given by

δik+1−l


1 − δik−l


1 − δik−lδik+1−l

yl =

δik+1−l

m(ik−l,ik+1−l)
δik+1−l


1 − δik−l


1 − δik−l

δik+1−l

yl,

from which we obtain

m(ik−l, ik+1−l)

=
1

log(δik+1−l)
log


δik+1−l

δik+1−l

1 − δik−l

1 − δik−l

1 − δik−l
δik+1−l

1 − δik−lδik+1−l


.

Notice that I (m(ik−l, ik+1−l)) is simply the integer part of
m(ik−l, ik+1−l). It is customary to express the players’ discount
factors in terms of discount rates, ri > 0, and the length of the
bargaining period, ∆, according to the formula δi = exp (−ri∆).
With this interpretation, player i’s type is identified with the
discount rate ri, where ri ∈ [r i, r i]. We thus have that δi =

exp(−r i∆) and δi = exp(−r i∆). Note that r i ≥ r i since greater
patience implies a lower discount rate. As∆ approaches zero, using
l’Hopital’s rule we obtain that

D(ik−l, ik+1−l) = lim
∆→0

(m(ik−l, ik+1−l) · ∆)

= −
1

rk+1−l
· log


rk−l

rk+1−l
·
rk−l + rk+1−l

rk−l + rk+1−l


,

19 Watson (1998) has characterized the set of perfect Bayesian equilibrium (PBE)
payoffs which may arise in Rubinstein’s alternating-offer bargaining game and
constructed bounds (which are met) on the agreements that may be made. The
bounds and the PBE payoffs set are determined by the range of incomplete
information and are easy to compute because they correspond to the SPE payoffs
of two bargaining games with complete information. These two games are defined
by matching one player’s most impatient type with the opponent’s most patient
type.
which is a positive, finite number. Notice that D(ik−l, ik+1−l) con-
verges to zero as r i and r i become close. We have ∂D(ik−l, ik+1−l)/
∂r ik+1−l

< 0, ∂D(ik−l, ik+1−l)/∂r ik+1−l > 0, ∂D(ik−l, ik+1−l)/∂r ik−l
<

0 and ∂D(ik−l, ik+1−l)/∂r ik−l > 0. Given the equilibrium trading
path (s, i1, i2, . . . , ik, b), the maximum real delay time in reaching
a global agreement is D(s, i1, i2, . . . , ik, b) = D(s, i1) + D(i1, i2) +

· · · + D(ik, b).

References

Abreu, D., Manea, M., 2012. Bargaining and efficiency in networks. J. Econom.
Theory 147, 43–70.

Babus, A., Hu, T.W., 2015. Endogenous Intermediation in Over-the-Counter
Markets. Mimeo, Northwestern University, USA.

Bala, V., Goyal, S., 2000. A strategic analysis of network reliability. Rev. Econ. Des. 5,
205–228.

Blume, L.E., Easley, D., Kleinberg, J., Tardos, E., 2009. Trading networks with price-
setting agents. Games Econom. Behav. 67, 36–50.

Cai, H., 2003. Inefficient Markov perfect equilibria in multilateral bargaining.
Econom. Theory 22, 583–606.

Calvo-Armengol, A., 2003. A decentralized market with trading links. Math. Social
Sci. 45, 83–103.

Chae, S., Yang, J.-A., 1994. An N-person pure bargaining game. J. Econom. Theory
62, 86–102.

Condorelli, D., Galeotti, A., 2012. Endogenous Trading Networks. Mimeo, University
of Essex, UK.

Condorelli, D., Galeotti, A., Renou, L., 2015. Bilateral Trading in Networks. Mimeo,
University of Essex, UK.

Corominas-Bosch, M., 2004. Bargaining in a network of buyers and sellers.
J. Econom. Theory 115, 35–77.

Craig, B., von Peter, G., 2014. Interbank tiering and money center banks. J. Financ.
Intermed. 23, 322–347.

Cramton, P.C., 1992. Strategic delay in bargaining with two-sided uncertainty. Rev.
Econom. Stud. 59, 205–225.

Dutta, B., Ghosal, S., Ray, D., 2005. Farsighted network formation. J. Econom. Theory
122, 143–164.

Easley, D., Kleinberg, J., 2010. Networks, Crowds and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York, NY, USA.

Elliott, M., 2015. Inefficiencies in networked markets. Amer. Econ. J.: Microecon. 7,
43–82.

Gale, D.M., Kariv, S., 2009. Trading in networks: a normal form game experiment.
Amer. Econ. J.: Microecon. 1, 114–132.

Gofman,M., 2014. ANetwork-based Analysis of Over-the-CounterMarkets.Mimeo,
University of Wisconsin, USA.

Goyal, S., 2007. Connections: An Introduction to the Economics of Networks.
Princeton University Press, Princeton, NJ, USA.

Goyal, S., Joshi, S., 2003. Networks of collaboration in oligopoly. Games Econom.
Behav. 43, 57–85.

Goyal, S., Vega-Redondo, F., 2007. Structural holes in social networks. J. Econom.
Theory 137, 460–492.

Herings, P.J.-J., Mauleon, A., Vannetelbosch, V., 2009. Farsightedly stable networks.
Games Econom. Behav. 67, 526–541.

Hojman, D.A., Szeidl, A., 2008. Core and periphery in networks. J. Econom. Theory
139, 295–309.

Huang, C.-Y., 2002. Multilateral bargaining: conditional and unconditional offers.
Econom. Theory 20, 401–412.

in’t Veld, D., van der Leij, M., Hommes, C., 2014. The formation of a core periphery
structure in heterogeneous financial networks. Tinbergen Institute Discussion
Paper 2014-098, The Netherlands.

Jackson, M.O., 2008. Social and Economic Networks. Princeton University Press,
Princeton, NJ, USA.

Jackson, M.O., Wolinsky, A., 1996. A strategic model of social and economic
networks. J. Econom. Theory 71, 44–74.

Kranton, R.E., Minehart, D.F., 2001. A theory of buyer–seller networks. Amer. Econ.
Rev. 91, 485–508.

Krishna, V., Serrano, R., 1996.Multilateral bargaining. Rev. Econom. Stud. 63, 61–80.
Li, D., 2010. A multilateral telephone bargaining game. Econom. Lett. 108, 43–45.
Manea, M., 2011. Bargaining in stationary networks. Amer. Econ. Rev. 101,

2042–2080.
Manea, M., 2015. Intermediation and Resale in Networks. Mimeo, MIT, USA.
Mauleon, A., Sempere-Monerris, J.J., Vannetelbosch, V., 2011. Networks of

manufacturers and retailers. J. Econ. Behav. Organ. 77, 351–367.
Page Jr., F.H., Wooders, M., 2009. Strategic basins of attraction, the path dominance

core, and network formation games. Games Econom. Behav. 66, 462–487.
Polanski, A., 2007. Bilateral bargaining in networks. J. Econom. Theory 134,

557–565.
Polanski, A., Vega-Redondo, F., 2014. Bargaining and Arbitrage in Endogenous

Trading Networks. Mimeo, Bocconi University, Italy.
Rubinstein, A., 1982. Perfect equilibrium in a bargaining model. Econometrica 50,

97–109.
Siedlarek, J.P., 2015. Intermediation in Networks. Mimeo, University of Manheim,

Germany.

http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref1
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref2
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref3
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref4
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref5
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref6
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref7
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref8
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref9
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref10
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref11
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref12
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref13
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref14
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref15
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref16
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref17
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref18
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref19
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref20
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref21
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref22
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref23
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref25
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref26
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref27
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref28
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref29
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref30
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref31
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref32
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref33
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref34
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref35
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref36
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref37


82 M. Bedayo et al. / Mathematical Social Sciences 80 (2016) 70–82
Suh, S.-C., Wen, Q., 2006. Multi-agent bilateral bargaining and the Nash bargaining
solution. J. Math. Econom. 42, 61–73.

Suh, S.-C., Wen, Q., 2009. A multi-agent bilateral bargaining model with
endogenous protocol. Econom. Theory 40, 203–226.

Vannetelbosch, V., 1999. Rationalizability and equilibrium in N-person sequential
bargaining. Econom. Theory 14, 353–371.
Wang, P., Watts, A., 2006. Formation of buyer–seller trade networks in a quality-
differentiated product market. Canad. J. Econom. 39, 971–1004.

Watson, J., 1998. Alternating-offer bargaining with two-sided incomplete informa-
tion. Rev. Econom. Stud. 65, 573–594.

Xiao, J., 2015. Bargaining Order in a Multi-person Bargaining Game. Mimeo,
Department of Economics, University of Melbourne, Australia.

http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref38
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref39
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref40
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref41
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref42
http://refhub.elsevier.com/S0165-4896(16)00018-4/sbref43

	1_cover2738
	2_address
	3_MSS2016
	Bargaining in endogenous trading networks
	Introduction
	Multi-agent bilateral bargaining in networks
	Pairwise stable trading networks
	Discussion
	Ranked or homogeneous players and imperfect reliability
	Private information

	Acknowledgments
	Bargaining with complete information
	Pairwise stable trading networks
	Private information and maximum delay
	References



