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Abstract Stokes’ hypothesis states that the bulk viscosity of a Newtonian fluid can be set to zero. Although
not valid for many fluids, it is common practice to invoke this hypothesis in the study of low-Mach-number,
variable-density flows. Based on scaling arguments, we provide a necessary condition for neglecting the bulk
viscous pressure from the governing equations. More specifically, we show that the Reynolds number defined
with respect to the bulk viscosity must be very large. We further show that even when this condition is not
satisfied, the bulk viscous pressure does not need to be taken explicitly into account in the computation of the
velocity field because it can be combined with the hydrodynamic pressure.
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1 Introduction

One of the fundamental results of non-equilibrium thermodynamics is that for simple and linearly isotropic
(Newtonian) fluids, the bulk viscous pressure is proportional to the divergence of the velocity field, with the
bulk viscosity of the fluid being the proportionality coefficient [14,16,21]. As the name suggests, the work
performed by the bulk viscous pressure is irreversible, i.e., it is dissipated thereby increasing the entropy of
the fluid. By contrast, the work performed by the fluid pressure is reversible. For constant-density flows, the
velocity field is divergence-free and, therefore, the bulk viscous pressure is identically zero.

According to the kinetic theory of gases, the bulk viscosity of monoatomic gases is zero [2]; hence in this
case, the bulk viscous pressure vanishes too. This is explained by the fact that the bulk viscosity is related to the
rotational and vibrational modes of the molecules and, as such, it becomes zero for molecules without internal
molecular structure. Besides this special case, the bulk viscosity is not zero or even small when compared with
the shear viscosity. For many common gases (e.g., N2, O2 and light hydrocarbons) the bulk viscosity is of the
order of the shear viscosity, while for others (e.g., H2, water vapor and CO2) it is significantly higher than the
shear viscosity [3,11,15]. For instance, the bulk viscosity of CO2 is three orders of magnitude higher than its
shear viscosity [3]. Similarly, the bulk viscosity of liquids is not small either; see, for example, [3,6].

Still, in the study of fluid flows it is common practice to set the bulk viscosity equal to zero and neglect
the bulk viscous pressure. This is the well-known Stokes’ hypothesis, and its validity has been the subject
of extensive debate; see, for example, [8,11] and references therein. However, given the large values of the
bulk viscosity for many fluids, this hypothesis may introduce errors in the prediction of compressible flows of
practical relevance, such as those encountered in power plants, propulsion devices and elsewhere. For example,
in their recent numerical study, Pan and Johnsen [19] predicted that the bulk viscosity has a non-negligible effect
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on turbulence decay for gases with high bulk-to-shear viscosity ratios. Similarly, for such gases, theoretical
[5] and numerical [4] studies have shown that it can influence the structure of supersonic boundary layers.

The present communication is concerned with the role of the bulk viscosity and bulk viscous pressure
in low-Mach-number, variable-density flows. These are encountered in technological applications and natural
phenomena involving heat transfer or chemical reactions. Therein, theMach number is much smaller than unity
so that compressibility effects are negligible, but density gradients are induced due to spatial variations in the
temperature or in the chemical composition of the fluid. Further, the density gradients are sufficiently large so
that the Boussinesq approximation is no longer applicable. Then, due to mass conservation, the divergence of
the velocity is not zero and, consequently, the bulk viscous pressure cannot a priori be neglected. The analysis
provided herein is based on the low-Mach-number approximation of the compressible Navier–Stokes–Fourier
equations. Essentially, our study examines the effect of the velocity divergence∇·u on the dissipative properties
of low-Mach-number flows in the context of classical hydrodynamics. The effect of∇ ·u on systems described
by extended hydrodynamics [12,13,22] lies beyond the scope of the present study.

2 Scale analysis

For Newtonian fluids, the viscous stress tensor τ relates linearly to the rate-of-strain tensor V =
1
2

(∇u + (∇u)�
)
. More specifically, by virtue of the representation theorem for isotropic tensors [21], τ

is given by the following constitutive relation,

τ = 2μV + β (∇ · u) I , (1)

the velocity divergence being the first invariant (trace) of V. In the above equation, μ stands for the shear
viscosity coefficient and β for the second viscosity coefficient, while I is the identity tensor. By decomposing
the rate-of-strain tensor V into a deviatoric and a diagonal component, τ can be written as the sum of a
deviatoric tensor and a diagonal component that describes bulk viscous stresses,

τ = 2μ

(
V − 1

3
(∇ · u) I

)
+ ζ (∇ · u) I . (2)

In the above equation, ζ is the bulk viscosity and is defined by

ζ = β + 2

3
μ . (3)

In turn, the bulk viscous pressure pv is identified as

pv = ζ∇ · u , (4)

and the deviatoric stress tensor τ d is identified as

τ d = 2μV − 2

3
μ (∇ · u) I . (5)

We remark that both the pressure p and the bulk viscous pressure pv cause isotropic dilatation, whereas τ d

causes different types of deformation, namely anisotropic dilatation and shear. Further, both μ and ζ take
nonnegative values so as to satisfy the 2nd axiom of thermodynamics (entropy inequality).

The low-Mach-number approximation results from the singular perturbation of the compressible Navier–
Stokes–Fourier equations at low-Mach numbers, see, e.g., [17,18,20]. According to this procedure, first all
flow quantities are made dimensionless with respect to reference values: lr, ur, ρr, pr, μr, ζr etc. The reference
values of the state variables, ρr and pr, correspond to a reference thermodynamic state that is relevant to the
flow under study, e.g., the initial state of the fluid. Since the transport coefficients are functions of the state
variables, their reference values (μr, ζr and so on) are taken at the same reference thermodynamic state.

Upon non-dimensionalization, the parameter ε = ρru2r p
−1
r , which is proportional to the square of the

Mach number of the flow, emerges as a multiplicative factor of certain terms of the governing equations.
In other words, ε arises naturally as the perturbation parameter of the equations at the low-Mach numbers.
Accordingly, all flow quantities and transport coefficients are expanded in asymptotic power-series in terms
of ε. For example, the expansion of the non-dimensionalized pressure reads,

p = p0 + ε p1 + O(ε2) . (6)
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It is noted that this is not an expansion around a particular equilibrium point or the reference thermodynamic
state. Instead, it is an asymptotic expansion for the perturbation of the compressible Navier–Stokes–Fourier
equations around the singular zero-Mach-number limit, i.e., when the flow velocity is negligible compared to
the speed of sound.

Accordingly, we insert ansatz (6) in the governing equations and collect terms of the same order. Then,
by retaining only terms up to O(1), we recuperate the low-Mach-number approximation of the compressible
Navier–Stokes–Fourier equations. In dimensional form, the resulting system reads,

∇ p0 = 0 , (7)
dρ

dt
+ ρ∇ · u = 0 , (8)

ρ
du
dt

+ ∇ p1 = ∇ · (2μV) − ∇
(
2

3
μ∇ · u

)
+ ∇ (ζ∇ · u) + ρg , (9)

ρcp
dT

dt
= ∂p0

∂t
+ ∇ · (κ∇T ) . (10)

For reasons of notational simplicity, in the above equations and henceforth we have dropped the subscript
0 from the leading-order terms of all quantities except for p0. Also, the symbol d

dt stands for the material
derivative of a given quantity, g is the gravity vector, while cp and κ stand for first-order terms of the fluid’s
isobaric specific heat and conductivity, respectively.

System (7)–(10) is closed with the low-Mach-number approximation of the thermal equation of state,
which in general is written as

ρ = f (T, p0) . (11)

We observe that p0, which scales with pr, is uniform in space by virtue of (7). Also, it enters the low-Mach-
number approximation of the energy and state equations but not of the momentum equation. In the literature
of low-Mach-number flows, p0 is usually referred to as the “thermodynamic pressure,” in the sense that it
appears in the low-Mach-number approximation (11) of the thermal equation of state.

By contrast p1, which scales with ρru2r and is referred to as the “(hydro)-dynamic pressure,” enters the low-
Mach-number approximation of themomentum equation but not of the energy equation or the equation of state.
Moreover, since it is only the gradient of p1 that appears in (9), the value of p1 itself needs to be known only
up to a constant, i.e., its exact value is inconsequential. Further, the work of the viscous stresses is negligibly
small compared to heat diffusion and, therefore, does not appear in the low-Mach-number approximation of
the energy equation either.

It has been argued in [1] that an equivalent condition to Stokes’ hypothesis is to assume that the absolute
value of ζ∇ · u is negligible compared to the fluid pressure p. By virtue of definition (4), this is identical to
|pv| � p. It is also remarked in [1] that, no matter how small μ may be, one cannot neglect the components
of τ d by comparing their magnitude to p because τ d and p cause different types of deformation. On the
other hand, it is meaningful to compare pv with p because, as mentioned above, they cause the same type of
deformation.

In the case of low-Mach-number flows, the condition |pv| � p is automatically satisfied. Indeed, since
pv scales with ρru2r and p scales with pr, their ratio scales with the square of the Mach number.

We note, however, that since the various stresses enter the momentum equation via their gradients, it is
more appropriate to compare the magnitude of the gradients of these stresses. Accordingly, in the general case
of the compressible Navier–Stokes–Fourier equations, the following condition should be fulfilled if the bulk
viscous pressure is to be neglected,

|∇ pv| � |∇ p| , (general case). (12)

For low-Mach-number flows, by virtue of (7) we have that in dimensional form,∇ p = ∇ p1. Then, by inserting
this result and expression (4) into (12), we obtain the following condition,

|∇(ζ∇ · u)| � |∇ p1| , (low-Mach-number case). (13)

This result makes sense because, after all, it is ∇(ζ∇ · u) and ∇ p1 that enter the momentum Eq. (9). It is
also noted that this is a local criterion and, as such, it should hold everywhere in the flow domain for the bulk
viscous pressure to be neglected.
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We next observe that: (i) the velocity divergence scales with url−1
r , (ii) p1 scales with ρru2r , and iii) the

gradient operator scales with l−1
r . In view of these scalings, condition (13) yields

ζ

μr
� Re , (14)

with Re being the relevant Reynolds number of the flow.
Equivalently, we may define a Reynolds number Reζ based on the bulk viscosity,

Reζ = ρrlrur
ζr

. (15)

Then, criterion (14) translates to
Reζ � 1 , (16)

with Reζ = ∞ corresponding to Stokes’ hypothesis.
There are many examples of low-Mach-number flows where this condition is fulfilled. However, there are

also cases where this condition is not fulfilled even though pv is orders of magnitude smaller than p. For
example, in premixed combustion, the relevant length scale is the flame thickness, which renders the Reynolds
number Reζ small so that condition (16) may no longer be fulfilled.

Regarding the applicability of condition (16),we remark the following. In general, fluidflow is characterized
by the presence of a multitude of length scales. Then, the removal of a term from the governing equations
should be based on an appropriate scale analysis. In turn, when applied to pv, this procedure necessarily relies
on bounds for the velocity divergence and its gradient. However, such bounds are hard to establish except for
very specific cases. For this reason, it is more appropriate to consider (16) as a necessary but not sufficient
condition for neglecting the bulk viscous pressure.

3 Combining the hydrodynamic and bulk viscous pressures

In this section, we demonstrate that in the computation of the velocity field of low-Mach-number flows, the
bulk viscous pressure does not need to be taken explicitly into account, even in cases when condition (16) is not
fulfilled. To this end, we first observe that both p1 and pv enter the momentum Eq. (9) only via their gradients.
Then, under the hypothesis that the components of u are twice differentiable so that (9) makes sense, we can
define a modified pressure p′ as follows,

p′ = p1 − ζ∇ · u . (17)

It is noted that p1 is a non-dissipative pressure, whereas pv is a viscous dissipative one. We argue however
that, for the particular case of low-Mach-number flows, it is legitimate to combine them for the following
reasons. First, as mentioned above, they cause the same type of deformation, namely isotropic dilatation.
Second, the work of both p1 and pv is negligible and does not enter the low-Mach-number approximation
(10) of the energy equation. Finally, p1 does not enter the low-Mach-number approximation of either the
state equation or the Gibbs relation and, therefore, the effect of p1 on the thermodynamic state of the fluid is
negligible.

Then, by substituting (17) into (9), the momentum balance law takes the following form,

ρ
du
dt

+ ∇ p′ = ∇ · (2μV) − ∇
(
2

3
μ∇ · u

)
+ ρg , (18)

Accordingly, Equation (18) can replace (9) in the governing system (8)–(10) without modifying either (8)
or (10). Indeed, this substitution has been employed by Georgiou & Papalexandris [9,10], albeit without any
elaboration.

This approach is applicable provided that p′ can be assigned the same boundary conditions as those
assigned to p1. Typically, in numerical computations, p1 is assigned zero-Neumann data at outflow boundaries
and at solid walls. We examine therefore if the same boundary condition can be assigned to pv = ζ∇ · u and,
by extension, to p′. Let n stand for the unit normal to a boundary plane. Then, since ζ is a function of the
temperature T and thermodynamic pressure p0, ζ = ζ(T, p0), the normal derivative of pv can be written as

∇ pv · n = ζ∇(∇ · u) · n + (∇ · u)
∂ζ

∂T
∇T · n + (∇ · u)

∂ζ

∂p0
∇ p0 · n . (19)
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The last term on the right-hand side of the above equation is zero, by virtue of Eq. (7). Therefore, Eq. (19)
reduces to

∇ pv · n = ζ∇(∇ · u) · n + (∇ · u)
∂ζ

∂T
∇T · n . (20)

The first term on the right-hand side of (20) involves the second-order derivative of the normal velocity
component in the direction of n. By setting this term equal to zero, one introduces at most a second-order
numerical error at the boundary. However, such an error is introduced anyway by standard second-order
discretization schemes. Therefore, setting this term equal to zero is compatible with second-order accurate
numerical algorithms.

Regarding the second term on the right-hand side of (20), it vanishes at adiabatically isolated walls and at
outflow boundaries because in these cases the normal derivative of the temperature becomes zero. This term
also vanishes when a given temperature is specified at a wall of an open domain because, in this case, the
velocity divergence vanishes by applying mass continuity (8) at the wall. In fact, enforcing continuity at solid
walls is a common technique in numerical methods for the constant-density Navier–Stokes–Fourier equations
[7].

In summary, specifying zero-Neumann data for the bulk viscous pressure introduces at most a second-order
numerical error at the boundary, thereby ensuring the applicability of the aforementioned approach, i.e., using
(18) instead of (9). The proposed combination of the hydrodynamic and bulk viscous pressures allows for the
computation of the velocity field in low-Mach number flows when the value of the bulk viscosity is not known
with sufficient accuracy.
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