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Abstract

Models for interval-censored survival data presenting a fraction of “cure” or “immune” patients have
recently been proposed in the literature, in particular extending the mixture cure model to the case of
interval-censoring. However, little is known about the fit of such models to a given data application. We
thus propose to extend the classical Cox-Snell residuals to such models to assess assumptions about the
survival distribution. Moreover, as covariates may, in mixture cure models, impact either the probability
to experience the event, and/or the survival distribution of the uncured patients, we define deviance
residuals allowing to detect non-linearity in covariates in each part of the model. Simulation studies show
the behavior of these residuals; they are then applied to an Alzheimer’s disease database studying the
occurrence of Mild Cognitive Impairment, which may be a precursor of Alzheimer’s disease. This event
is typically detected between two visits, and is thus interval-censored. Furthermore it is known that not
all of the patients will experience this event, leading to a fraction of “cure” or “immune” patients.

1 Introduction

The modelling of “survival data” or more generally “time-to-event data”, for which the response of interest
is the duration of time between a well defined origin and an event of interest, has a predominant place in
medicine. A well known characteristic of these data is that they are typically right-censored, meaning that
some patients have not yet experienced the event of interest at the end of the follow-up period. Besides
right-censoring, it is also quite frequent that data are interval-censored, with the event only known to have
occurred within an interval of time. An example of interval-censored data in Alzheimer’s disease can be the
duration of time needed for an elderly subject to convert from a healthy to a mild cognitive impairment status
(MCI) ([Oulhaj et al., 2009]). Identifying significant risk factors that increase the risk of the conversion from
a healthy to an MCI status and also identifying healthy subjects at high risk of conversion to MCI are
of great interest, as MCI is known to be a possible precursor of Alzheimer’s disease [Ravaglia et al., 2006].
Clearly, such time-to-event data can be both right-censored since some patients have not yet experienced
MCI conversion at the end of the follow-up period, and interval-censored since MCI conversion is typically
known to have occurred between two successive follow-up visits. As pointed out in [Scolas et al., 2015], an
additional feature of these data is that a fraction of the patients will never convert to MCI, whatever the length
of follow-up. In the statistical literature, this kind of patients are referred to as “cured individuals”, or “long-
term survivors” or “non-susceptibles” ([Maller and Zhou, 1996]). Neglecting any of these two particular
features, i.e. interval-censoring and/or the presence of a cure fraction, may lead to incorrect inference
[Lindsey, 1998, Maller and Zhou, 1996].

In the absence of cure, parametric and semi-parametric approaches have been proposed to handle interval-
censoring in the modelling of survival data, see for example [Lindsey, 1998] and [Sun, 2006]. Regarding the
presence of a fraction of cured individuals, a common approach is to assume that the population under
study is a mixture of cured and uncured individuals [Boag, 1949], leading to the mixture cure model. This
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model is constituted of two parts: the incidence part, modelling the probability to be cured, and the latency
part, modelling the survival distribution of the event times for uncured observations. A logistic regression is
frequently assumed in the incidence part, and popular choices for the latency are the Proportional Hazards
(PH) model or the Accelerated Failure Time (AFT) model [Sy et al., 2000, Zhang and Peng, 2012]. Litera-
ture combining both interval-censoring and the presence of cure is rather sparse. [Xiang et al., 2011] extend
the semi-parametric mixture cure model, with a semi-parametric Cox PH model for the latency part, to
the case of interval-censored data and clustered observations. Considering a semi-parametric model leads
to complex and computationally intensive estimation procedures, relying, like [Xiang et al., 2011], on the
Expectation-Maximization algorithm. To avoid this, [Chen et al., 2013] and [Scolas et al., 2015] rather pro-
pose a flexible parametric model assuming an AFT model for the latency along with a flexible distribution for
the error term. These papers discussed the estimation method but do not really address the fit of these mod-
els. [Chen et al., 2013] shortly discuss a graphical procedure to check the fit of their model, comparing, for
fixed covariate values, the fitted global survival curve to a non-parametric estimator, and using standardized
residuals to assess to adequacy of the latency part of the model.

In this paper, we focus our attention on the use of residuals, in the case of interval censored data, to assess
the fit of mixture cure models considering either a parametric PH or AFT model in the latency part. The
inspection of the residuals is indeed one of the usual methods to assess the assumptions of a given model, with
a long tradition in linear models. While the definition of residuals for a linear regression model is unambiguous
[Seber and Lee, 2012], it becomes more complex in the context of time-to-event analysis mainly due to the
presence of censoring. In the context of right-censored data, several types of residuals have been defined with
different goals [Collett, 2003]. The most often used are probably the Cox-Snell residuals and the martingale
or deviance residuals. In short, Cox-Snell residuals are used to check the fit of the survival distribution,
while an inspection of the martingale or deviance residuals may help in detecting if a covariate included in
the model needs a transformation. [Farrington, 2000] extend these residuals to evaluate the goodness-of-fit
of the Cox PH model in the presence of interval-censored data.

In a mixture cure model, the entire population is characterized by an improper mixed survival distribution;
whereas the uncured sub-population follows a proper survival distribution. It therefore seems interesting to
be able to use the Cox-Snell residuals to check both the survival distribution of the entire population and
of the uncured sub-population. However, it is not obvious that the Cox-Snell residuals applied to the global
survival distribution will keep their good properties, due to the improper nature of the distribution. Also,
it is not possible to apply the Cox-Snell residuals as such to assess the survival distribution of the uncured
sub-population since the uncured status is not observed for right-censored individuals. These residuals can
therefore not be computed for all uncured observations. When considering the use of residuals to check the
linearity of the covariates, it is important to keep in mind that in a mixture cure model, non-linearity in
a covariate may appear in the incidence, in the latency, or in both parts of the model. Residuals should
therefore ideally allow a separate diagnostic in the incidence and in the latency component of the model.

In this paper, we aim to extend the use of residuals to perform diagnostic checks in a parametric mixture
cure model with right- and interval-censoring. Our first objective is to discuss how to define the Cox-
Snell residuals intended to check the survival distribution of the uncured sub-population and of the entire
population. To do so, we first study the properties of the Cox-Snell residuals for the entire population.
We then define an approach to estimate the status, cured or uncured, of a right-censored observation. This
allows us to define Cox-Snell residuals aimed to assess hypothesis on the survival for the uncured. Our second
objective is to propose deviance residuals allowing to detect non-linearity in covariates in the incidence and
in the latency part of the model, separately.

This paper is organized as follows: Section 2 describes models and notations. Section 3 develops the Cox-
Snell residuals in mixture cure models with and without interval-censoring. Residuals aiming at detecting
non-linearity are covered in Section 4. Section 5 shows the behavior of the proposed residuals in a simulation
study. Section 6 presents the results of the application of our method to a real data set on Alzheimer’s disease
as mentioned earlier. Finally, our results are discussed in Section 7.

2 The mixture cure model

There are two broad classes of models in the literature that take into account the existence of cured individuals:
the promotion time cure model [Tsodikov, 1998], and the mixture cure model, first introduced by [Boag, 1949].

2



This paper focuses on the latter because of its intuitiveness. The mixture cure model assumes that the entire
population of interest is composed of two sub-populations: the uncured and the cured sub-populations.
The model consists of two parts, called the incidence and the latency part. The incidence part models
the probability to experience the event of interest and the latency part models the event times for uncured
individuals only.

Let t1, · · · , tn be realizations of n independent and non-negative random variables T1, · · · , Tn, denoting the
true, but possibly unobserved, time to the event of interest. Unlike standard survival methods, the survival
time for cured individuals is infinite and consequently P (Ti = +∞) > 0. Moreover, the survival time ti is not
exactly observed: the event either occurs between two censoring time points, i.e. the observation is interval
censored; or occurs later than a censoring time point, i.e. the observation is right-censored. Thus, instead of ti,
an interval (li, ri] such that li < ti ≤ ri is observed. Right-censored observations are covered by allowing ri to
be infinite. Together with (li, ri), the censoring indicator δi is also observed: δi = 1 means that the individual
i experienced the event of interest during the study period, i.e. 0 < li < ti ≤ ri <∞; and δi = 0 means that
the individual i is right-censored, either cured or uncured, i.e. 0 < li < ti ≤ ri = ∞. In the following, let
Yi be the random variable indicating the uncured status of the individual i, i.e. Yi = 1(Ti < +∞). Clearly,
Yi = 1 when δi = 1, but due to right-censoring, Yi is unknown when δi = 0. In fact, in such a case, one only
knows that the true survival time ti is larger than li, but it is impossible to know if the subject in in the
cured or uncured group.

Let S(ti) = P (Ti ≥ ti|Xi = xi,Zi = zi) be the (improper) conditional survival distribution of Ti given the
covariate vector Xi = (1, Xi1, · · · , Xim) ∈ R(m+1) and the covariate vector Zi = (1, Zi1, · · · , Zis) ∈ R(s+1).
The vectors Xi and Zi may share some or all their components. The mixture cure model assumes that

S(t) = piSu(t) + 1− pi, ∀t ∈ [0,∞], (1)

where pi = P (Yi = 1|Zi = zi) denotes the conditional probability to experience the event of interest given
Zi; and Su(ti) = P (Ti ≥ ti|Xi = xi, Yi = 1) denotes the (proper) conditional survival distribution of the
uncured sub-population given Xi. Remark that in the absence of cure, i.e. pi = 1 ∀i, S coincides with Su.
Let νi ∈ R such that

pi ≡ p(νi) =
exp (νi)

1 + exp (νi)
. (2)

In the following, νi will be modelled through a linear relationship νi = z′iγ, where γ = (γ0, γ1, · · · , γs) is a
(s + 1)-vector of unknown coefficients. This is the classical linear logistic regression model. Concerning Su,
two of the most widely used regression models in survival analysis are the Proportional Hazards (PH) model
and the Accelerated Failure Time (AFT). These two models are summarized in the following formula:

Su(ti) =


S0(ti)

exp(µi) (PH) , (3a)

S0

(
log(ti)− µi

σ

)
(AFT). (3b)

In the above equations, S0(ti) ≡ S0(ti, λ) is a given baseline survival distribution assumed to be known up to
some finite-dimensional parameter(s) λ common to all individuals; σ > 0 is a scale parameter; and µi ∈ R is a
location parameter, typically modelled through the linear relationship µi = xi

′β, where β = (β0, β1, · · · , βm)
is a (m+ 1)-vector of unknown coefficients, with β0 = 0 in the PH model to avoid identifiability issues. The
AFT model is a useful alternative to the PH model because it does not require the proportional hazards
assumption and also because it os often said to have a simpler interpretation: a covariate either accelerates
or decelerates the survival time. Although β appears in a linear fashion in µi in both (3a) and (3b), its
interpretation is quite different; see for example [Collett, 2003]. The PH model is commonly written in terms
of the hazard function under the form hu(ti) = exp(µi)h0(ti), where h0(t) = − d

dt logS0(t) is the baseline

hazard function corresponding to the baseline survival function S0(t), and hu(t) = − d
dt logSu(t). The AFT

model is more commonly encountered under the form log(Ti) = µi + σεi, where εi is an error term with
survival function S0(t). Commonly used specifications for S0(t) are the Weibull, the log-Logistic, the log-
Normal and the Extended Generalized Gamma (EGG) distributions. The latter is a very flexible family that
was recently used in the context of mixture cure models by [Scolas et al., 2015].

The vector of all unknown parameters to be estimated is η = (θ,β,γ), with θ = λ for the PH model,
and θ = (λ, σ) for the AFT model. In the following, when no confusion may arise, we will write pi for p(νi)
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and Su(ti) for Su(ti|µi;θ). As shown by [Li et al., 2001], the parametric mixture cure model as given by
(1), (2) and (3a) or (3b) is identifiable. Parameter estimates can be obtained by maximum likelihood. Let
Oi = (δi, li, ri,xi, zi) denote the observed data for i = 1, · · · , n. The log-likelihood function in the mixture
cure model with interval- and right-censored data is given by:

l(η;O) =

n∑
i=1

δi log [pi(Su(li)− Su(ri))] + (1− δi) log [piSu(li) + (1− pi)] . (4)

Maximizing the above likelihood function with respect to η leads to a consistent and asymptotically
efficient estimate η̂ = (θ̂, β̂, γ̂) [Casella and Berger, 2001]. The corresponding asymptotic variance-covariance
matrix can be obtained as usual through the Hessian matrix. The plug-in method then leads to the estimators
ν̂i = z′iγ̂, µ̂i = x′iβ̂, p̂i ≡ p(ν̂i), Ŝu(ti) ≡ Su(ti|µ̂i; θ̂) and Ŝ(ti) = p̂iŜu(ti) + 1 − p̂i of νi, µi, pi, Su(ti) and
S(ti), respectively.

3 Checking the survival functions: Cox-Snell residuals

In this section, Cox-Snell residuals aiming at checking the marginal survival function (S) and the uncured
survival function (Su) in a mixture cure model are defined and studied.

The main idea behind the Cox-Snell residuals is as follows: If a random variable Tu has a proper survival
distribution Su, then W = − log(Su(Tu)) follows an exponential distribution with unit mean. Since the
latter has an identity cumulative hazard function, the plot of − log(SW (t)) against t, where SW is the
survival function of W should reveal points aligned on a straight line with a unit slope and a zero intercept;
see [Collett, 2003] for more details.

For simplicity, let’s temporarily assume that no interval-censoring is present. To assess the validity of
the hypothesized survival distribution Su of the uncured sub-population, the Cox-Snell residuals rCS,u(ti) =

− log(Ŝu(ti)), can be computed for all i with Yi = 1, i.e. only for the uncured observations. Since the uncured
status Yi is unknown for right-censored observations, we propose to replace Yi with its expected value given
the observed data :

E (Yi|Oi) = δi + (1− δi)
piSu(li)

piSu(li) + 1− pi
.

Since pi and Su are unknown, this expectation is estimated by ξi:

ξi = δi + (1− δi)
p̂iŜu(li)

p̂iŜu(li) + 1− p̂i
. (5)

As ξi can take any value between 0 and 1, we need a threshold to predict the uncured status. In this work,
we take 0.5 as a threshold and classify an individual with ξi > 0.5 to the uncured sub-population and classify
an individual with ξi ≤ 0.5 to the cured sub-population. We thus define uncured Cox-Snell residuals as

rCS,u(ti) = − log(Ŝu(ti)) for i : ξi > 0.5.

A plot of the Cox-Snell residuals on the x-axis versus their Kaplan-Meier or Nelson-Aalen estimated cumula-
tive hazard based on the right censored sample (δi, rCS,u(ti)) on the y-axis, should exhibit points aligned on
a straight line with a unit slope and zero intercept. A departure from this line may suggest a model inade-
quacy but, in such a case, no indication of the cause of this inadequacy is provided by the plot. Despite this
drawback, the Cox-Snell residuals plot remains useful, for example, to compare two possible distributions.

The same approach can be used to assess the hypothesized global survival distribution S of the whole
population, cured and uncured. For this purpose, we define the Global Cox-Snell residuals as

rCS(ti) = − log(Ŝ(ti)) = − log
(
p̂iŜu(ti) + 1− p̂i

)
, i = 1, · · · , n.

This definition is motivated by the fact if T has an improper cumulative distribution F (T ) = pFu(T ), where
Fu(T ) = 1− Su(T ) is a proper cumulative distribution, then for 0 ≤ t < p,

P (F (T ) ≤ t) = pP (T ≤ F−1u (t/p)|T < +∞) + (1− p)P (Fu(T ) ≤ t/p|T = +∞) = t,
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and for t ≥ p, P (F (T ) ≤ t) = P (Fu(T ) ≤ t/p) = 1. Consequently, if the global survival function S fitted to
the data is satisfactory, the global Cox-Snell residuals rCS should behave in [0,− log(1− p)) like a censored
sample from a mean one exponential distribution. In this case, as for the uncured observations, a plot of the
global Cox-Snell residuals versus their estimated cumulative hazard should reveal points aligned on a straight
line of unit slope and zero intercept.

The same argument can also be applied to the case of interval-censored data to check the validity
of both Su and S. In the following, only Su is discussed, as the same approach can be applied to S.
From the observed interval-censored data (li, ri], the interval-censored Cox-Snell residuals are obtained:
(− log(Ŝu(li),− log(Ŝu(ri)], for subject i, i = 1, . . . , n. Their cumulative hazard function can be estimated
by the self-consistency algorithm of Turnbull [Turnbull, 1976]. If the model is adequate, a plot of the es-
timated function against the residuals interval endpoints should approximately resembles a straight line of
unit slope and zero intercept. These residuals are not easy to handle given their interval nature. For this
reason, [Farrington, 2000] suggest to replace the interval residuals with their expected values under the unit
exponential distribution, leading to the following adjusted Cox-Snell residuals for Su :

rCS,u(li, ri) =
Ŝu(li)(1− log(Ŝu(li)))− Ŝu(ri)(1− log(Ŝu(ri)))

Ŝu(li)− Ŝu(ri)
. (6)

Once the hypothesis on Su are validated, the validity of the global survival S can also be assessed via the
Cox-Snell residuals rCS(li, ri) obtained from (6) but with Ŝ instead of Ŝu.

4 Detecting non-linearity: Deviance residuals

One way of assessing the adequacy of a model is to compare it with the corresponding saturated model.
This is the model with the same distribution and the same structure as the model under study, but with the
maximum number of parameters of interest that can be estimated (“perfect” estimable model). In our case,
the saturated model allows µi and νi to be different for each observation, whereas the regression hypothesized
model assumes that µi = xi

′β and νi = zi
′γ.

In the mixture cure model, the observed data are Oi = (δi, li, ri,xi, zi). The complete data set is
obtained by augmenting the observed data set by the partially unobserved uncured status, yi: Oi,c =
(δi, li, ri,xi, zi, yi). Based on the complete data set, the complete-data log-likelihood function for the satu-
rated model is defined as

lS(Oc) =

n∑
i=1

li(θ, νi, µi) (7)

where li(θ, νi, µi), i = 1, . . . , n, are the individual log-likelihood contributions given by

li(θ, νi, µi) = yi log(pi(νi))+(1−yi) log(1−pi(νi))+δi log(Su(li|µi;θ)−Su(ri|µi;θ))+(1−δi)yi log(Su(li|µi;θ)).

Following [Nelder and Wedderburn, 1972], we define the “complete” deviance statistic D(Oc) as twice
the difference between the maximum achievable complete-data log-likelihoods under the saturated model
and under the current regression model. Thus,

D(Oc) = 2

n∑
i=1

(li(θ̂, ν̃i, µ̃i)− li(θ̂, ν̂i, µ̂i)),

where µ̃i and ν̃i, i = 1, . . . , n, are the points maximizing the saturated complete-data log-likelihood (7), and

where θ̂ is the maximum likelihood estimator under the current model of the unknown nuisance parameter θ.
Some easy algebra shows that the maximum attainable value for the individual log-likelihood contribution is

li(θ̂, ν̃i, µ̃i) = yi log(p(ν̃i)) + (1− yi) log(1− p(ν̃i)) + δi log
(
Su(li|µ̃i; θ̂)− Su(ri|µ̃i; θ̂)

)
,

where p(ν̃i) = yi and µ̃i is the root of the equation ∂
∂µi

Su(li|µi; θ̂) = ∂
∂µi

Su(ri|µi; θ̂), i = 1, . . . , n. For the
PH model, the solution is such that

exp(µ̃i) =
log(− log(Su,0(ri)))− log(− log(Su,0(li)))

log(Su,0(ri))− log(Su,0(li))
,
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whereas for the AFT model, the solutions depends on the assumed distribution. For example, as the log-
Normal and the Weibull distribution are special cases of the EGG distribution, calculation for the EGG
distribution are given in the Appendix.

Consequently, D(Oc) = 2
∑n
i=1 di(yi), where di(yi) is the contribution of the observation i to the deviance

and is given by

di(yi) =li(θ̂, ν̃i, µ̃i)− li(θ̂, ν̂i, µ̂i)

=yi log

(
yi
p̂i

)
+ (1− yi) log

(
1− yi
1− p̂i

)
+ δi log

(
Su(li|µ̃i; θ̂)− Su(ri|µ̃i; θ̂)

Ŝu(li)− Ŝu(ri)

)
− (1− δi)yi log(Ŝu(li)).

As the uncured status yi is not observed for right-censored observations, we propose to replace it by its
expected value, ξi, defined in Equation (5). This leads to the “observed” deviance D = 2

∑n
i=1 di, where di

is a shortcut for di(ξi). D measures the closeness of the hypothesized model to the saturated model, but
without distinguishing between the latency and the incidence part. A nice feature of this deviance is that it
can be split into two additive parts: an incidence part Dinc and an latency part Dlat. More precisely, D can
be written as:

D = Dinc +Dlat = 2

n∑
i=1

di,inc + 2

n∑
i=1

di,lat,

where

di,inc = ξi log

(
ξi
p̂i

)
+ (1− ξi) log

(
1− ξi
1− p̂i

)
, and

di,lat = δi log

(
Su(li|µ̃i; θ̂)− Su(ri|µ̃i; θ̂)

Ŝu(li)− Ŝu(ri)

)
− (1− δi)ξi log(Ŝu(li)).

Observe that if all the individuals are uncured (ξi = p̂i = 1), then D reduces to Dlat, the classical deviance for
interval and right-censored data. Observe also that Dinc is the deviance for the classical binary logistic model,
with ξi as response variable. A “large” value of Dinc (Dlat) indicates a poorly fitted incidence (latency) part.
This may be caused by a missing covariate or a covariate needing a transformation in the incidence part
(“large” Dinc), in the latency part (“large” Dlat) or in both parts.

As in classical regression models (with or without censoring), we propose to measure the individual
contribution to the deviance via the deviance residuals. In general, they are defined as si

√
2di, where di is

the individual contribution to the deviance. In the classical logistic regression model, si is the sign of the
difference between the observed response and its estimated expected value. In survival analysis, si is the sign
of δi−ri, with ri the Cox-Snell residuals, which can be interpreted as the difference between the observed and
expected number of events for the individual i over the interval (0, ti); see [Collett, 2003, Farrington, 2000]
for more details. Therefore, in our case, for an individual i, we define three types of deviance residuals. One
aiming at checking the global model, one aiming at checking the latency, and the last one aiming at checking
the incidence: :

• Global deviance residuals: rD(li, ri) = sgn(δi − rCS(li, ri))
√

2di,

• Latency deviance residuals: rD,lat(li, ri) = sgn(δi − rCS,u(li, ri))
√

2di,lat,

• Incidence deviance residuals: rD,inc(li, ri) = sgn(ξi − p̂i)
√

2di,inc.

In the above expressions, sgn(·) is the sign function and rCS(li, ri) and rCS,u(li, ri) are the Cox-Snell residuals
for S and Su, respectively; see (6). As in classical survival analysis, deviance residuals can, for example, be
plotted against the estimated linear predictors (µ̂i or ν̂i) or against the explanatory variables in the linear
predictors, and any unusual pattern may indicate an omission of an important covariate or a non linear effect
of one or more covariates in the latency part, in the incidence part, or in both parts.

6



5 Simulations study

With this simulation study, we aim to illustrate the behavior of global and uncured Cox-Snell residuals in
different settings; and to show that incidence and latency deviance residuals allow to correctly detect the
need for a transformation in a covariate in the incidence and/or latency.

5.1 Simulation settings

The time-to-event and uncured status are generated based on four scenarios:

1. Scenario A: All terms are linear, both in the latency and incidence part of the model{
log(Tu) = −0.5 +X1 −X2 −X3 + 0.5ε

p = φ(γ0 −X2 +X3)

2. Scenario B: A quadratic term is included in the latency part of the model{
log(Tu) = 1.5 +X1 −X2

2 −X3 + 0.5ε

p = φ(γ0 −X2 +X3)

3. Scenario C: A quadratic term is included in the incidence part of the model{
log(Tu) = −0.5 +X1 −X2 −X3 + 0.5ε

p = φ(γ0 − 0.5X2
2 −X3)

4. Scenario D: A quadratic term is included in the latency and in the incidence parts of the model{
log(Tu) = −1 +X1 −X2

2 −X3 + 0.5ε

p = φ(γ0 − 0.5X2
2 −X3)

We generate X1 from a Normal distribution with mean 0.5 and variance 1.5, i.e. X1 ∼ N (0.5, 1.5); X2 from
an Uniform distribution with support [−3, 3], i.e. X2 ∼ U [−3, 3]; and X3 from a Bernoulli distribution with
success probability 0.5, i.e. X3 ∼ B(0.5). As for the link function φ, in order to study the impact on residuals
checking of a misspecified link function in the incidence, we generate our data using either a logit or probit
function, while we always use logit in our fitting procedure.

Whenever necessary, we use the notation Al and Ap to distinguish scenario A using φ=logit from scenario
A using φ=probit, and equivalently for scenarios B, C and D. The uncured status is generated from a
Bernouilli random variable with probability p, and γ0 takes different values to reach different proportions of
cured individuals. The error term ε is generated following the extreme-value distribution, so that Tu, the time
to event of the uncured observations, follows a Weibull distribution. Note that in this case, our simulation
study covers both the PH and the AFT model, as the PH and AFT assumptions are verified if the event
times follow a Weibull distribution [Collett, 2003]. The right-censoring distribution is exponential with mean
λ. The values of γ0 and λ have been chosen to reach three different proportions of cured and right-censored
individuals: light (20% cured, 30% right-censored), medium (30% cured, 40% right-censored), and heavy
(50% cured, 60% right-censored). The values of γ0 and λ as well as details about the censoring/cure rate
are given in the Appendix. This simulation setting leads to a total of 24 settings (four scenarios, two link
functions, three right-censoring/cure proportions).

To study the effect of interval-censoring on residuals checking, two other scenarios complement the sim-
ulation study: event times from scenario Bl and Dl are interval-censored, leading to six additional settings:
two scenarios and three levels of cure/right-censoring. To simulate interval-censored data, each patients was
supposed to be followed at regular visits, and we have considered unequally spaced visits, generating the
length between two successive visits from a uniform distribution U [0.25, 0.5]. The lower limit of the interval
is the last visit at which the event has not yet occurred, while the upper limit is the first visit at which
the event occurred. This allows a comparison of the performance of the Cox-Snell residuals with or without
interval-censored event times.

The sample size was set to 500, and we replicated 500 datasets. For obvious reasons of space, only main
results are presented in the paper; further results can be found in the Appendix.
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5.2 Simulation results

5.2.1 Cox-Snell residuals

For each setting, we have fitted a mixture cure model assuming a logistic regression in the incidence; and an
AFT model for the latency part with either a log-Normal, a Weibull or an Extended Generalized Gamma
(EGG) distribution. All covariates (X1, X2 and X3 for the latency and X1 and X2 for the incidence) were
included in the model, assuming a linear effect. The following results are supported by Figures 1, 2, 3 and
4, which show the uncured or global Cox-Snell residuals for 500 datasets. This means that 500× 500 points
are superimposed on each plot.

In the following, it is important to keep in mind that the Weibull and log-Normal distributions are special
cases of the EGG distribution. Therefore, since the true generating distribution is Weibull, the plots of
the Cox-Snell residuals for the models fitted with the EGG distribution is expected to be similar (or better
aligned) to the ones obtained when fitting the models with the Weibull distribution. Furthermore, a plot
of Cox-Snell residuals based on the log-Normal distribution is expected to show more departure from the
straight line than a plot of Cox-Snell residuals based on the EGG or Weibull distribution.

First, we check via simulations whether the use of the indicator function 1(ξi > 0.5) provides a satisfactory
estimation of the uncured status of an observation to compute the Cox-Snell residuals. In a simulation setting,
the uncured status of the observations are known. It is thus possible to compare the Cox-Snell residuals plots
based on the true uncured status with the Cox-Snell residuals plots based on the uncured status estimated
by 1(ξi > 0.5). As seen in Figure 1, both plots lead to identical conclusions about the fitted model. We
therefore conclude that 1(ξi > 0.5) can be used as an estimation of the uncured status in the computation of
the Cox-Snell residuals. Nevertheless, we noticed some discrepancies between the uncured Cox-Snell residuals
based on the true uncured status and those based on the estimated uncured status, with models fitted with
the log-Normal distribution, and if there is a misspecification in latency (scenario B, see plots in Appendix).
This is not an unexpected behavior, since the fitted model are in fact wrongly defined. Plots for other
scenarios are given in Appendix.

Second, since global and uncured Cox-Snell residuals may be impacted in a similar way by a misspeci-
fication in the incidence part, we expect that a plot of the global Cox-Snell residuals will lead to the same
conclusion as a plot of the uncured Cox-Snell residuals. We therefore use simulations to compare the global
and uncured Cox-Snell residuals. In every scenarios, the conclusions are indeed similar: compare for example
Figures 1 and 2, showing uncured and global Cox-Snell residuals for Scenario Cl. In the following, we will
only discuss results using global Cox-Snell residuals.

Third, we investigate the impact of the right-censoring and cure proportion on the ability of the Cox-Snell
residuals to correctly prefer the Weibull distribution as the true generating distribution. In every scenario,
and for the three proportions of cured and right-censored observations, the Weibull distribution is always
correctly chosen over the log-Normal. This conclusion is supported by Figure 2, related to scenario Cl, and
Figures 3 and 4, related to scenario D and discussed hereinafter. However, as the proportion of right-censored
observations increases, the distinction becomes less evident: compare the plots in Figure 2 from left to right,
i.e. from light to heavy censoring.

We have also investigated whether the Cox-Snell residuals can still be used to identify the most appropriate
underlying distribution even in the presence of a misspecification in the incidence or the latency part of the
model. In this simulation study, two misspecifications in the incidence part are covered: assuming a logit link
instead of a probit link, as in scenarios Ap, Bp, Cp and Dp; and assuming linearity in covariates whereas a
transformation is needed, as in scenarios C and D. In the latency part, one type of misspecification is covered:
assuming linearity in covariates whereas a transformation is needed, as in scenarios B and D. The Cox-Snell
residuals plots support the Weibull and EGG distribution over the log-Normal distribution in every settings:
Figure 2 illustrates this conclusion in relation to the non-linear covariate in incidence, Figure 3 in relation to
the non-linear covariates in both latency and incidence, and Figure 4 supports the conclusion in relation to
the non-linear covariate and the wrong link function in incidence. Note also that a misspecification in the
latency part is reflected in the Cox-Snell residuals plot for models fitted with the Weibull distribution (see
Figures 3 and 4 based on scenario D). As the EGG distribution is more flexible, the Cox-Snell residuals plots
for models fitted with the EGG distribution show less departure from the straight line. We conclude that
Cox-Snell residuals in a mixture cure model are effective to distinguish between two possible distributions
even in the case of misspecification in incidence or latency.

8



Finally, the last objective of this simulation study is to discuss the impact of interval-censoring on residuals
checking. Due to the nature of the Turnbull estimator, a Cox-Snell residuals plot for interval-censored data
resemble a step function. For the sake of visibility, we show the Cox-Snell residuals plot for one dataset only.
A comparison is then possible with the equivalent Cox-Snell residuals plot without interval-censored data.
For scenario Cl, Figure 5 (without interval-censoring) can be compared to Figure 6 (with interval-censored
event times): interval-censored residuals show more departure from a straight line. The distinction between
two possible distributions is then more complicated but remains possible.

5.2.2 Deviance residuals

In this subsection, a mixture cure model is fitted to each generated dataset assuming a logistic regression in
the incidence and a Weibull survival distribution in the latency, and assuming that covariates have a linear
effect in both parts of the model. Three types of deviance residuals plots are displayed: global, latency and
incidence deviance residuals, versus the covariate X2, which needs a transformation for scenario B, C and
D. For one dataset, it is common to plot the deviance residuals on the y-axis versus the covariates values
on the x-axis. To help distinguishing a pattern, one generally adds a lowess smoothing curve to the plot
[Cleveland, 1979].

In this simulation study, each plot concerns 500 datasets. This means 500× 500 residuals points and 500
lowess lines are superimposed on each plot. To enhance visibility, points are deleted from the graphs, so that
only the 500 lowess curves are shown on each plot.

Latency deviance residuals are expected to show a quadratic trend for scenarios B and D; and incidence
deviance residuals are expected to show a quadratic trend for scenarios C and D.

First, global, latency and incidence deviance residuals show a trend when appropriate. This can be seen
by looking at Figures 7, 8, and 9, giving deviance residuals for scenarios Bl, Cl and Dp, respectively. Other
plots are given, as said before, in the Appendix. However, when a transformation is needed in both the
latency and the incidence part, a trend may be hidden in the global deviance residuals plot, as can be seen
on the global deviance residuals plot for medium censoring in Figure 9. Hence the importance of checking
the latency and incidence deviance residuals as well.

Second, latency deviance residuals are somewhat affected by the increase of the right-censored proportion:
a high censoring proportion can hide a trend in the smoothing curve (see latency deviance residuals of Figure
7: the lowess lines does not reveal a curve for heavy censoring), or suggest an other transformation than
the true one (see latency residuals of Figure 9, where some curves maight suggest a cubic transformation).
When looking at a deviance residual plot for only one data set, as given in Figure 10 for example, a trend is
highly detectable when right-censored and uncensored observations are plotted in different colors. Plotting
right-censored residuals with a different symbol may thus circumvent the issue, and, following [Collett, 2003],
we recommend to do so.

Third, the same issue may arise with incidence deviance residuals with a too low cured proportion (see
incidence deviance residuals of Figure 8 for light censoring). Indeed, less cured observations implies less
information for the modelling of the incidence part [Scolas et al., 2015].

6 Application on real data: Oxford Project To Investigate Mem-
ory and Aging (OPTIMA)

We apply our approach to a data set related to a study on Alzheimer’s disease [Oulhaj et al., 2009]. As
explained in [Scolas et al., 2015], the main objective of that study was to identify a set of cognitive scores
that predict the probability of conversion from healthy to Mild Cognitive Impairment (MCI) stage in elderly
subjects. MCI often represents the pre-dementia stage of a neuro-degenerative disorder, including Alzheimer
disease (AD), vascular dementia (VaD), or other dementia syndromes (ODS) and hence early detection
of its onset is of great relevance for patients, carers and government. For that study, a cohort of 241
normal elderly volunteers was followed for up to 20 years with regular assessments of their cognitive abilities
using the Cambridge Cognitive Examination (CAMCOG). Among them, 91 converted to MCI (37.8%), and
the other 150 (62.2%) were right-censored. The CAMCOG score ranges from 0 to 107 with high scores
indicating higher abilities. It is comprised of sub-tests including orientation, comprehension, expression,
recent memory, remote memory, learning, abstract thinking, perception, praxis, attention, and calculation.
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Criteria for diagnosis of MCI and control were carried out according to international guidelines. For more
details see ([Oulhaj et al., 2009]). To summarize, conversion to MCI was determined by a neuropsychologist
at each visit, which took place in average every year and a half. The data are clearly interval-censored since
conversion actually occurred between visits, and the exact date was not known.

Furthermore, it is known that a fraction of these individuals will actually never experience MCI conversion.
More details can be found in [Oulhaj et al., 2009] and [Scolas et al., 2015]. The later analyzed these data
using a mixture cure model, with an AFT model with EGG distribution for the error term in the latency part
and a logistic regression in the incidence part. Our analysis evaluates the association between CAMCOG
score and the time to MCI conversion, adjusting for gender, age at baseline, number of folate cells, total
Homo-cysteine (tHcy) rate, Mini-Mental State Examination (MMSE) score, and expression of the APO E4
gene (APOEE4). Maximum likelihood estimates are given in Table 1, and the R-code used to obtain estimates
is available from the first author. We use this EGG-AFT mixture cure model to illustrate the use of the
Cox-Snell and deviance residuals.

The EGG distribution in the latency part is well supported by the data, as seen on Figure 11, but small
departures of the Cox-Snell residuals from a straight line could suggest a missing covariate, for example.
Global deviance residuals do not exhibit strong pattern when plotted against any of the five covariates Age,
CAMCOG, Folate, MMSE or tHcy. The same conclusion is reached for latency and incidence deviance
residuals plots; see Figures 12 and 13.

In conclusion, with data and covariates at hand, and based on Cox-Snell and deviance residuals, there is
no need to reconsider the use of the EGG distribution in the mixture cure model, nor to reconsider linearity
in latency and incidence.

7 Conclusion

Although widely used in linear regression, and also in classical survival analysis, diagnostic checks based
on residuals have not been studied in the context of interval-censored data with a sub-population of cured
individuals. In parametric mixture cure models, assumptions are made on the survival distribution of the
uncured observations, and we discuss the use of Cox-Snell residuals to detect if those assumptions are correct.
It is common to enter the covariates in a linear way, both in the incidence and the latency part of the model
but in practice covariates may have a non-linear effect in either or both parts of the model. We thus also
propose deviance-based residuals allowing to detect if a covariate needs a transformation, and in which part
of the model.

We have shown that global Cox-Snell residuals, based on the improper survival distribution of the entire
population, still follows a mean one exponential distribution if the model is correctly fitted. Furthermore,
we have also defined uncured Cox-Snell residuals, computed based on an estimation of the uncured status
for each observation. Our simulation study demonstrates that global and uncured Cox-Snell residuals can
suitably be used to assess the hypothesis about the survival distribution in the latency part, even if the
incidence part is incorrectly specified.

In addition, we have shown that non-linearity in latency and in incidence is correctly detected by plot-
ting the latency and incidence deviance residuals against a covariate. As expected, a heavy right-censored
proportion may hide a trend in the plot and prevent detecting the need for a transformation in the latency.
A low cured fraction has an identical effect in incidence. Like in other models, such residuals plots should
be interpreted with care since, as stated by [Collett, 2003], no pattern in the residuals plot does not imply a
correct model but rather the absence of reasons to think it is incorrect.

The subjective nature of residual checking techniques is sometimes criticized, and the use of goodness-
of-fit hypothesis test may be advocated. However in practice, these graphical checks are still widely used.
For example, to check the normality of a variable, one generally agrees that a Q-Q plot or a simple his-
togram is more informative than a formal normality test. In classical survival analysis, several authors
stress the importance of residuals checking in the modelling process [Therneau et al., 1990, Collett, 2003,
Klein and Moeschberger, 2003, Lawless, 2003].

To develop a formal test with the same objective as the residuals we have discussed, one could for
example extend the semi-nonparametric (SNP) method proposed by [Nysen et al., 2012] for right and interval-
censored data to the case of a presence of a cure fraction to develop a formal goodness-of-fit test. A simple
graphical check of the Cox-Snell residuals should, however, give a first idea as whether the model is seriously
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wrong or rather adequate enough. Concerning non-linearity of covariates, one could think of extending the
cumulative residuals proposed by [Lin et al., 1993, Lin and Spiekerman, 1996] to provide a formal test to
detect a needed transformation in the presence of a cure fraction, but the extension to interval-censored data
is unclear, as [Sun, 2006] stated. Indeed, these tests are based on counting processes which are, by nature,
not easily extendable to interval-censored data. Furthermore, if the cumulative residuals test conclude to a
needed transformation, a plot of the usual martingale (or deviance) residuals might still be needed to help
in detecting the form of the transformation [Lin et al., 1993]. Moreover, these formal testing methods need
further development, are more complex and will require more computing power.

The residuals presented in this paper have been implemented in parametric mixture cure models, following
the work of [Chen et al., 2013] and [Scolas et al., 2015] on such models. An extension to semi-parametric
mixture cure models should however be straightforward, as only the final estimates of the model are required in
the definition of Cox-Snell and deviance residuals. These residuals can therefore also be used to check a semi-
parametric mixture cure model, such as the ones discussed in [Sy et al., 2000] and [Zhang and Peng, 2012].
However, Cox-Snell residuals are not as useful in a semi-parametric context, due to the fact that the baseline
survival distribution has to be estimated non-parametrically [Collett, 2003], so that the approximation to the
unit exponential distribution is less likely to hold. Deviance residuals on the other hand do not suffer the
same issues and can be used in a semi-parametric context to check the linearity of the covariates.

Lastly, other types of residuals could to be extended to the mixture cure model, with or without interval-
censored data. Residuals to detect outliers and influential values have been extended [Ortega et al., 2008] to
the case of cure models, but the extension of residuals to check proportionality of hazards in a PH mixture
cure model or the assumptions of the AFT in an AFT mixture cure model is subject of future work.
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Figure 1: Uncured Cox-Snell residuals for scenario Cl. Left to right: light to heavy cured/right-censored
proportion; above to bottom: based on log-Normal, Weibull, and EGG(q). Residuals for 500 datasets are
superimposed.
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Figure 2: Global Cox-Snell residuals for scenario Cl. Left to right: light to heavy cured/right-censored
proportion; above to bottom: based on log-Normal, Weibull, and EGG(q). Residuals for 500 datasets are
superimposed.
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Figure 3: Global Cox-Snell residuals for scenario Dl. Left to right: light to heavy cured/right-censored
proportion; above to bottom: based on log-Normal, Weibull, and EGG(q). Residuals for 500 datasets are
superimposed.
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Figure 4: Global Cox-Snell residuals for scenario Dp. Left to right: light to heavy cured/right-censored
proportion; above to bottom: based on log-Normal, Weibull, EGG(q). Residuals for 500 datasets are super-
imposed.
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Figure 5: Global Cox-Snell residuals for scenario Cl, without interval-censored data. Left to right: light
to heavy cured/right-censored proportion; above to bottom: based on log-Normal, Weibull, and EGG(q).
Residuals for one dataset only.
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Figure 6: Global Cox-Snell residuals for scenario Cl, with interval-censored data. Left to right: light to heavy
cured/right-censored proportion; above to bottom: based on log-Normal, Weibull, and EGG(q). Residuals
for one dataset only.
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Figure 7: Deviance residuals for scenario Bl. Left to right: for light to heavy cured/right-censored proportion;
above to bottom: global, latency and incidence deviance residuals. Lowess smoothing curve for 500 datasets
are superimposed.
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Figure 8: Deviance residuals for scenario Cl. Left to right: for light to heavy cured/right-censored proportion;
above to bottom: global, latency and incidence deviance residuals. Lowess smoothing curve for 500 datasets
are superimposed.
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Figure 9: Deviance residuals for scenario Dp. Left to right: for light to heavy cured/right-censored proportion;
above to bottom: global, latency and incidence deviance residuals. Lowess smoothing curve for 500 datasets
are superimposed.
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Figure 10: Deviance residuals for scenario Bl. Left to right: for light to heavy cured/right-censored pro-
portion; above to bottom: global, latency and incidence deviance residuals. Residuals and lowess smoothing
curve for one dataset only.
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Figure 11: Global Cox-Snell residuals for the MCI database, based on EGG-AFT mixture cure model.
EGG(q) distribution is well supported by the data.
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Figure 12: Global, latency and incidence deviance residuals for the MCI database, based on EGG-AFT
mixture cure model, for Age, CAMCOG and tHcy.
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Figure 13: Global, latency and incidence deviance residuals for the MCI database, based on EGG-AFT
mixture cure model, for folate and MMSE.
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Table 1: Parameter estimates and standard errors of the EGG-AFT mixture cure model for the AD database

Parameter Estimate Std. Error

Latency Part: EGG-AFT model

q 1,73 1,44
Intercept Latency -4,92 0,97

Age -0,03 0,01
CAMCOG 0,12 0,03

tHcy -0,02 0,02
Folate -0,01 0,02

MMSE -0,04 0,01
Gender -0,14 0,15

APOEE4 -0,16 0,16
log(σ) -0,82 0,73

Incidence Part: Logistic regression

Intercept Incidence 11,2 58,6
Age 0,08 0,29

CAMCOG -0,28 1,02
tHcy -0,33 0,84

Folate 0,09 0,94
MMSE 0,73 1,91
Gender -1,09 4,22

APOEE4 -0,91 3,54
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