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Abstract
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1 The Set-up

Data Enveloment Analysis (DEA) and related approaches like Free Disposal Hull (FDH)

are very popular techniques used in Operations Research (OR) and Management Science

(MS) to evaluate the performance of Decision Making Units (DMUs) operating in a given

sector of activity. The economic underpinnings of these approaches dates back to the work

of Koopmans (1951) and Debreu (1951) on the activity and productivity of firms. In a given

sector of activity, DMUs combine/transform a set of inputs to produce a set of outputs.

In an efficiency analysis, usually the objective is first to consider the space of technically

attainable combinations of inputs and outputs and then to measure the inefficiency of the

units by their distance to the optimal frontier of the attainable set. A nice and detailed

presentation of the economic theory of production can be found, e.g. in Shephard (1970).

Farrell (1957) is the first empirical analysis of productive efficiency. It defines as an

estimate of the attainable set, the free disposal convex closure of the cloud of observed inputs

and outputs, in a sample of DMUs. The OR and MS literature popularized the techniques,

and several variants, with linear programming techniques, as in Charnes, Cooper and Rhodes

(1978), under the heading of DEA. The procedure was extended to non convex attainable

sets by Deprins et al. (1989) introducing the FDH estimators. See e.g. Emrouznejad et al.

(2008) for a survey of the many applications of DEA in OR/MS.

Most of the original approaches were in the spirit of Debreu and Farrell and the distance

of an observed DMU to the efficient frontier was assessed in a “radial” way either in the

input space or in the output space. For instance the input oriented inefficiency score of

a given DMU was measured by the maximal proportionate reduction of the inputs that is

feasible to reach the efficient boundary, given its level of production of the outputs.

After the introduction of Directional Distance Functions (DDF) in the efficiency analysis

context (Chung, Färe and Grosskopf, 1997 and Chambers, Chung and Färe, 1998; Färe and

Grosskopf, 2000), the literature has proposed several directions along which to measure the

inefficiency and investigated their properties. Different fields of applications have used these

flexible DDF e.g. in banking, education, mutual funds (e.g., Kerstens, Mounir and Van

de Woestyne, 2012) and in general also, regulated sectors in which DMUs could complain

about differences in environmental/contextual conditions. The great flexibility is particularly

appreciated when some inputs or outputs are non-discretionary, or not under the control of

the manager. This is also the case when some inputs or outputs are exogenously fixed (see

Banker and Morey, 1986, for practical examples). All these cases are handled by choosing a

direction in the input-output space that does not involve these particular components (see

Daraio and Simar, 2014 for details on how to handle these cases in practice).
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The definition of a direction along which to measure the distance of DMUs from the

efficient frontier is really crucial as it affects the efficiency scores and the evaluation of the

performance (see e.g. Peyrache and Daraio, 2012 or Kerstens et al., 2012). The choice of a

direction implies the selection of an efficiency target. The price to pay is that the efficiency

investigation loose its objectivity and becomes subjective, according to the direction selected

by the analyst. In some cases, the regulator (see e.g. Bogetoft, 1997 on the use of efficiency

analysis tools in a regulatory framework) or the policy maker may have an efficient target or

a set of preferences translated in indicators that wants to impose to the analyzed firms (see

e.g. Korhonen, Tainio and Wallenius, 2001). However, in a lot of situations policy makers

and managers may be interested in avoiding the imposition of targets or paths to the DMUs

they are monitoring and hence they may willing to search for an “objective direction” along

which to compare their performance.

Another problem in this context could be that the analysed units could refuse to be

compared with very different units and may ask for a comparison that takes into account

their specific characteristics. There may therefore be a need to avoid comparing units that

are very different from each other (compare apples with oranges) and then to take into

account the heterogeneity of the units in the comparison of their performance.

Long debates have been discussed in the economic literature on which direction should

be chosen, and many choices are possible, see e.g. Färe, Grosskopf and Margaritis (2008).

On the one hand, we can choose an individual direction specific to each DMU, like e.g. the

direction given by the input (or the output) mix. In such cases, if we keep the outputs fixed

(resp. or the input fixed) we can recover the Farrell-Debreu radial inefficiency scores. On the

other hand, at the other extreme we can choose a common direction for all the DMUs, called

the “egalitarian” strategy in Färe et al. (2008). An example of such common direction is to

take the average input mix and the average output mix, if no particular efficiency target is

selected. We come back to the latter below for suggesting alternate approaches.

When market prices are observed and firms have a profit maximizing behavior, Zofio,

Pastor and Aparicio (2013) suggest to choose the directional distance which projects in-

efficient DMUs towards profit maximizing benchmarks and Färe, Grosskopf and Whittaker

(2013) propose an endogenous choice of the direction obtained by searching the (normalized)

direction which maximizes the output (in an output-oriented framework).

In this paper we propose an automatic data-driven approach which permits the selection

of context specific (or local) directions of DMUs with similar exogenous conditions without

any assumption on the behavior of DMUs (no profit maximizing or cost minimizing behavior,

no information on prices needed). The proposed approach offers a threefold contribution.

Firstly it offers the opportunity to select a “context-dependent (or local)” direction to-
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wards the efficient frontier according to the closeness (or based on the proximity) of the

production mix or of the contextual conditions (factors) faced by the DMUs. The local-

ization can be done according to exogenous or external (contextual) factors (localization on

external conditions) or on the inputs if non discretionary inputs are considered (localization

on inputs rigidity) or on the outputs if non-discretionary outputs are considered (localiza-

tion on outputs rigidity). We introduce heterogeneity factors that may play a role on the

rays or production mix. We will call these heterogeneity factors as W ∈ Rd hereafter. The

procedure will be able to detect irrelevant factors.

Secondly, it allows a reasonable automatic selection of the direction among the two ex-

treme cases: a unique (global average) direction for all DMUs (the empirical egalitarian

approach), or a different direction for each DMU (individual-specific approach). By doing

this we reformulate what would be a reasonable empirical egalitarian direction, addressing

some of the issues linked to the traditional definition of the average directions.

Thirdly, the procedure produces as a byproduct an automatic “peer grouping” of DMUs

with comparable external-environmental conditions and similar levels of their production

mix without having to carry out a clustering exercise in which the choice of the number of

clusters is arbitrary. This allows us to carry out a data-driven benchmarking analysis of

DMUs, paying attention to comparison with comparable units.

From a technical point of view, we will employ up-to-date nonparametric regression on

angular data, analyzed recently in Di Marzio, Panzera and Taylor (2013) to determine the

local averages of the directional vectors.

The paper is organized as follows. In Section 2 we summarize the main concepts for direc-

tional distances and their estimators and we present the basics for nonparametric regression

on angular data in a simplified way (the technical details are given in Appendix B). Section

3 illustrates the advantages of our approach from a benchmarking point of view. Section 4

describes all the practical methodological steps of the procedure and Section 5 reports some

illustrations on simulated and real datasets. Section 6 concludes the paper. Appendix A

clarifies the notations we use for multidimensional polar coordinates.

2 Directional Distances Functions and Searching for

Directions

2.1 Directional DEA

We concentrate our presentation on DEA but all the methodology is valid and can be applied

to FDH, robust and conditional efficiency measures (for an overview, see Daraio and Simar,
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2007). We consider the case where DMUs produce a vector of outputs y ∈ Rq by combining

inputs x ∈ Rp.1 We will denote by Ψ the attainable set, which is the set of (x, y) technically

achievable:

Ψ = {(x, y) ∈ Rp+q|x can produce y}. (2.1)

Given a directional vector dx ≥ 0 for the inputs and a directional vector for the outputs

dy ≥ 0 the DDF of a unit operating at level (x, y) is defined as (see Chambers et al. 1996,

1998)

δ(x, y; dx, dy) = sup{β > 0|(x− βdx, y+βdy) ∈ Ψ}, (2.2)

indicating that we measure the distance of unit (x, y) from the efficient boundary of Ψ in

an additive way along the path defined by (−dx, dy). Obviously when dy = 0 and dx = x if

x > 0, we recover the input-oriented efficiency measure of (x, y) (the same for the output

orientation when dx = 0 and dy = y if y > 0).

Note that, as pointed out and proven in the literature (see e.g. Appendix A in Simar

and Vanhems, 2012), when the units of the directional vectors are the same as the units

of the inputs/outputs, the DDF is unit free in the following sense, for all a ∈ R
p
+ and all

b ∈ R
q
+ we have δ(x, y; dx, dy) = δ(a.∗x, b.∗y; a.∗dx, b.∗dy), where .∗ denotes the Hadamard

product between vectors (component wise). This is particularly useful when the units of the

components of x and/or of y are quite different.

Sometimes researchers prefer to work with normalized distances, i.e. such that ||d|| = 1

where d′ = (d′x, d
′

y) ∈ Rp+q (see e.g. Färe et al., 2008). This has the effect of rescaling

the DDF by the length of d. To be explicit, denoting d̃x = dx/||d|| and d̃y = dy/||d|| we

have δ(x, y; d̃x, d̃y) = ||d||δ(x, y; dx, dy). The advantage is that this measure gives directly the

euclidean distance between (x, y) and its target on the efficient frontier, but the drawback

is that this measure of DDF is no more unit free. Both approaches can be used, but the

interpretation of the DDF has to be adapted.

These distances can be estimated from a sample of observed units X = {(Xi, Yi)|i =

1, . . . , n} to obtain δ̂(x, y; dx, dy). Simar and Vanhems (2012) describe the way to proceed

for the FDH estimator of Ψ, including their robust versions (order-m and order-α). They

also provide all the statistical properties of the resulting estimators. Daraio and Simar (2014)

gives all the practical details for computing δ̂, in particular when some of the elements of dx

and/or of dy are set to zero.

If we assume the convexity of Ψ we can rather employ the DEA estimator of δ(x, y; dx, dy)

as follows:

δ̂(x, y; dx, dy) = sup{β > 0|(x− βdx, y + βdy) ∈ Ψ̂DEA}, (2.3)

1Since we will consider DDF, which are additive, we note that the inputs and/or the outputs can take
negative values, see e.g. Kerstens and Van de Woestyne (2011).
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where Ψ̂DEA is the well known free disposal and convex hull of X . For instance, if the

Variable Returns to Scale (DEA-VRS) version is used we have :

Ψ̂DEA = {(x, y) ∈ Rp+q|y ≤
n∑

i=1

λiYi, x ≥
n∑

i=1

λiXi, for some λi ≥ 0 with
n∑

i=1

λi = 1},

(2.4)

where a version of the latter admits Constant Returns to Scale (DEA-CRS) if we delete

the last constraint
∑n

i=1 λi = 1. Simar, Vanhems and Wilson (2012) derive the statistical

properties of this estimator. To save space we limit our presentation to the DEA estimator,

but once a direction vector is chosen, any nonparametric estimator can be used, including

the FDH, their conditional versions and/or the robust partial order efficiency measures (see

Simar and Wilson, 2014 for a recent survey on the statistical properties of nonparametric

estimators of frontiers, including all the estimators listed before).

2.2 Selection of a Data-Driven Direction: the basic idea

Suppose we have to choose a direction in the input space x ∈ Rp. Choosing a direction

is equivalent to choosing an angle, for instance, if Xi > 0, the individual specific direction

dXi
= Xi corresponds to the angle defining the input mix Xi. Mathematically, a direction

x in the input space Rp is described by its angles in polar coordinates (see the Appendix

A on polar coordinates in multidimensional spaces). Denote by r = ||x|| the modulus and

θ = (θ1, . . . , θp−1) with −π/2 < θj ≤ π/2 for j = 1, . . . , p − 2 and −π < θp−1 ≤ π the

angles defining the direction x. By using the notations introduced in Appendix A for the

traditional “à la Farrell” specific radial direction, we have dXi
= φ(ri, θi) (or dXi

= φ(1, θi)

if we want to use normalized directions).

A commonly used direction in the literature is the empirical egalitarian direction (i.e. an

egalitarian direction based on the data) which consists in defining dx = X̄ = n−1
∑n

i=1Xi

(which may be normalized afterwards, if needed). This approach will give more weights to

angles corresponding to observed units having larger values of Xi, either because they are big

units or maybe because they are very input-inefficient. We suggest instead a more objective

average of directions given by the averages of the angles θ̄ = n−1
∑n

i=1 θi. In this case, the

normalization is left at our choice. We may choose dXi
= φ(1, θ̄) if we want normalized

directions or dXi
= φ(ri, θ̄) if a direction rescaled in original units is preferred. In this case,

we observe that the resulting direction is obtained by a rotation of Xi to reach the average

angle θ̄. Note that this approach based on averaging the angles is identical to the classical

mean of the inputs X̄ if and only if all the original data Xi have the same length, which is of

course quite improbable. Working with polar coordinates makes more clear the consequences
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of this choice. To the best of our knowledge, this fact was never recognized in the existing

literature.

Now, our idea is to consider cases where imposing the same direction (the same angle)

to all the units being evaluated might be unreasonable due to contextual exogenous factors

that may influence the choice of a particular input mix by the DMUs. The idea of taking

a context-dependent direction is attractive. We look for a local direction that accounts

for possible heterogeneity measured by some exogenous contextual factors, that we denote

by W . Note that these variables could also be some inputs and/or outputs not under the

control of the manager (see our comment above). The idea of our approach is to find a

kind of local average of directional vectors where “local” is measured (or approximated) by

these contextual factors. By applying our approach it may turn out, in extreme cases, when

these factors have no effect on the production process, that the egalitarian average direction

(that is the same direction for all the DMUs) will be reasonable; or, on the contrary, on the

other extreme, we may find that these factors are so important that they justify the use of

individual specific directions (that is a different direction for each DMU). What is appealing

is that this choice will be the result of our data-driven technique. It will be, in fact, our

approach that will tell us where we are between these two extreme cases.

In this section, we present the concept in a simplified case and for a direction in the

input space. In Appendix B we give all the technical details for more general cases and the

references for the statistical properties.

What we need is a regression model for finding E(θ|W = w). Undoubtedly, to avoid

too restrictive assumptions in the model, we will use a nonparametric regression framework.

Suppose for simplicity that θ is univariate (the case x ∈ R2) and W is univariate, we will

use the regression model:

θ = m(W ) + ε, (2.5)

where the random angle ε has zero mean, finite dispersion and is independent of W , so that

E(θ|W = w) = m(w). In Appendix B we explain how to estimate m(·) from a sample of

n observations (wi, θi), i = 1, . . . , n including the case of multivariate θ and W . Roughly

speaking, we could say that the resulting m̂(w) at any given value w of the contextual

factors, is a weighted average of the angles θi corresponding to observations i such that Wi

is not too far from w. This neighborhood of w is identified by a window width called the

bandwidth and denoted by h and by a density function called the kernel function (like, e.g., a

normal density centered on w and with standard deviation h) which is used to determine the

weights in the average to be given at the angle θi, i = 1, . . . , n as a function of the differences

(Wi−w). It is very similar to regular nonparametric regressions (see Li and Racine, 2007 or

Pagan and Ullah, 1999), but with some changes due to the angular nature of the dependent
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variable and so the notion of distance has to be adapted to this case. The details are given

in Appendix B.

It is important to note the great flexibility of our approach: some elements of the direction

vector dx could be fixed for strategic reasons, or set equal to zero, then the angular regression

above could be used only for the input mix that are not fixed.

Hence, we end-up with a very natural concept of “local” direction, determined by the

nearest neighborhoods DMUs, where the proximity is measured according to the variable

W . The choice of the kernel function is not so important in contrast with the choice of the

bandwidth. Hopefully the theory of nonparametric regressions applies and, as explained in

Appendix B, optimal bandwidths are selected by data-driven techniques (Least-squares cross

validation). As recalled above, a great advantage of our approach is its flexibility and its

ability to cover the two extreme cases mentioned above for choosing the direction. It has been

shown in Hall, Li and Racine (2007) that if a variable W is irrelevant and has no effect on

the dependent variable, h → ∞ and so the “local” average is done over a window of infinite

width, i.e. over all the data points and we are back to the overall mean (egalitarian case) as

the resulting direction: m̂(w) = n−1
∑n

i=1 θi for all w. If the effect of W is very strong, the

value of the bandwidth will be small, at the limit h → 0, and for estimating m(Wi), we will

take an average using only the single angle θi, so m̂(Wi) = θi for all i = 1, . . . , n going back

to the individual-specific direction case.

The same reasoning applies also for the output space y ∈ Rq, with the same and/or other

contextual factors as well as to more general input-output space analyses. The practical

implementation of this approach in our frontier estimation context is described in Section 4.

3 Benchmarking

The idea of benchmarking is very common in the literature of productivity analysis ( see

e.g. Thanassoulis et al., 2008 and the references cited therein). It is indeed one of the key

outcomes of efficiency analysis the identification of targets and efficient peers to benchmark

the DMUs under evaluation. Benchmarking activity is also important to support strategic

decision making (see e.g. Dyson, 2004 for a link with swot, -strengths, weaknesses, oppor-

tunities and threats-, analysis and resource-based planning). In most of the existing works,

the target is the “virtual” unit obtained by the radial projection of the unit under evaluation

on the DEA frontier, along the ray defined by their input (or output) mix. Traditionally,

efficient peers are usually “best practice” units lying on the DEA efficient frontier that are

in a sense not too different in terms of their inputs and outputs compositions from the unit

being evaluated. They are identified by the units defining the efficient facet of the DEA fron-
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tier where the benchmarked unit is radially projected. Often, radar plots are then provided

where the inputs and the outputs of the benchmarked unit are compared to the inputs and

the outputs of the target and of the observed efficient peers. The idea is that the comparison

is done with existing units “not too far” from the benchmarked unit in terms of inputs and

outputs mixes but being “efficient” (see Thanassoulis et al. pp 357–359 for some examples).

When directional distance functions are used the target is then defined as the virtual

unit obtained by the projection of the evaluated unit to the DEA frontier, along the chosen

direction. Again, this point belongs to one of the facets of the DEA efficient frontier which

could be chosen for identifying the efficient peers against which the unit could be bench-

marked. However, these units may not be the most appropriate ones, in particular if some

contextual, specific external factors (like the W introduced above) may influence the chosen

input and/or output mixes. In such a case, the procedure introduced in the preceding section

offers a nice way to identify better efficient units to serve as benchmark for an inefficient

unit.

Indeed, we can decide to consider in the benchmarking process of a unit facing the value

w for these contextual factors, only units facing “similar” conditions. These units have

already been identified by our approach. This was done in the phase determining the local

average direction for the evaluated unit: they are those units such that |Wi − w| ≤ ch,

where c ≤ 1 is a constant tuning the chosen neighborhood.2 In our application below we

choose c = 1/2 for getting units with values Wi within a range of one bandwidth around the

current value w and the value of h is obtained by the data driven method described in the

Appendix B, see equation (B.8). Among these points, it is easy to identify those lying on the

DEA frontier (having values δ̂(Xi, Yi; dXi
, dYi

) = 0). Finally, among the remaining points

we select the benchmarked units as being the, say 3 to 5, nearest neighbors in the p + q

full dimensional space of inputs and outputs, where for variables such that d = 0 (inactive

variables in the optimization), original euclidean units are used, but for those with positive

directional elements d > 0 (active variables in the optimization) only the mix is important,

so we use normalized units (see step [5.2] of the practical algorithm in the next section).

Finally, for visual inspection, as done in the literature, we can show radar plots repre-

senting the input and output values of the evaluated DMU, of the target virtual unit and of

one of the few benchmark units selected above.

There are two main differences of our approach with the traditional benchmarking ap-

proach. First of all, in our approach, the radar plots will never use as benchmark units those

units facing too different external-environmental conditions. Secondly, the benchmarking

2When W is multivariate, this inequality has to be understood component wise: |W j
i −wj | ≤ chj where

the relative notation is introduced in Appendix B.
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within our approach is fully data-driven, based on the optimal selected bandwidths, and is

automatically done without having to carry out an ad hoc clustering exercise.

In Section 4 we give the practical details on how to implement our procedure which is

illustrated with some examples in Section 5.

4 Practical Methodological Steps

In this section we describe the main steps of our approach. To avoid complexity in notation

and presentation, we will refer hereafter to an input orientation case where the direction

vectors in the input space is dx ≥ 0 and for the output space we have dy = 0. As above

x ∈ Rp, y ∈ Rq and the heterogeneity conditions that may influence the rays (input and or

output mixes) of DMUs are denoted W ∈ Rd. The approach can easily be adapted when

the directions are “active” in the output case only (dy ≥ 0 and dx = 0) but also when both

input and output directions have “active” components. The main phases are as follows.

[1] We transform each observed p-dimensional input Xi in polar coordinates (ri, θi), for

i = 1, . . . , n, where ri > 0 and θi = (θ1i , . . . , θ
p−1
i ) (see Appendix A for details).

[1.1] Eventually, look at the histograms of θj , j = 1, . . . , p− 1 over the n data points

to have a descriptive idea of the heterogeneity of the input mixes (note that this

can be done in radians or in degrees). Note also that for p = 3, most softwares

produce 3D-Histograms for the 2 angles.

[2] Perform the polar nonparametric regression for each component θj on W to estimate

E(θj |W ). For this we use for each regression j, j = 1, . . . , p−1 the set of data (θji ,Wi),

i = 1, . . . , n.

[2.1] The bandwidth selection for each regression is computed by cross-validation (see

(B.8)). Note that here we use rather Local-Constant Least-Squares estimates to

ensure that the fitted values will stay in the same quadrants as the original values,

which could not be the case when using Local-Linear Least-Squares.

[2.2] By applying (B.9) and (B.10) we obtain (B.5) and hence we obtain for each angle

j = 1, . . . , p− 1 and for each data point, the local average estimator

θ̂ji = Ê
[
θj |Wi

]
= m̂(Wi). (4.1)

Note that a natural measure for the Quality of the Fit (QF ) can be given by the

average of the angular distances between θ̂ji and the original θji :

QF =
1

n

n∑

i=1

[
1− cos(θ̂ji − θji )

]
, (4.2)
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where a value of 0 indicates a perfect fit.3

[2.3] We now have for each i = 1, . . . , n the angles θ̂i = (θ̂1i , . . . , θ̂
p−1
i )

[2.4] Optionally, we can provide some partial plots of the resulting angles θ̂i as a func-

tion of Wi, to investigate the effect of each component of W on the resulting

directions. For instance if W is bivariate, we can provide 3D plots of the surface

determined by an angle θ̂j as a function of the two components of W .

[3] From the polar coordinates (ri, θ̂i) we go back to cartesian coordinates giving the

directional vector dXi
so we have dXi

= φ(ri, θ̂i) (or dXi
= φ(1, θ̂i) if we prefer to work

with normalized directional vectors).

[4] Compute the DDFs for each DMUs. In our illustration we chose to do it with the 3

following options for the distance vectors:

i) individual specific distance dXi
= Xi = φ(ri, θi);

ii) our data-driven local averages dXi
= φ(ri, θ̂i); and

iii) the egalitarian approach where dXi
= φ(ri, θ̄) corresponding to the angle θ̄ =

n−1
∑n

i=1 θi.

Undoubtedly, for the 3 cases we can use their normalized version if desired.

[4.1] Clearly our approach will give results in-between the two extreme cases. As a

matter of fact, this will depend on the data through the data-driven selected

bandwidth. If h is large, θ̂i ≈ θ̄ and if h is very small, θ̂i ≈ θi. The flexibility

of our approach, which uses product kernels, allow us to analyze the influence of

each W j, component wise.

[4.2] Undoubtedly, subsequently the traditional efficiency analysis is applied for the

3 cases; that is, efficiency measures δ̂(Xi, Yi; dx, 0) for each DMU as well as the

gaps in original units of the inputs (or in percentage of the inputs), given by

δ̂(Xi, Yi; dx, 0)× dx, to reach the efficient frontier, are calculated.

[5] Benchmarking analysis. For any particular DMU of interest, characterized by the data

value (x, y, w) (typically any observation (Xi, Yi,Wi) in the original sample), we can

apply the benchmarking procedure described in Section 3. The procedure may be

summarized as follows:

3In nonparametric regressions, for assessing the goodness of fit, Racine (2008) motivates also the use of

R2 =
[∑n

i=1
(θi − θ̄)(θ̂i − θ̄)

]2
/
∑n

i=1
(θi− θ̄)2

∑n

i=1
(θ̂i− θ̄)2. We have R2 ∈ [0, 1] with the value 1 for perfect

fit and value 0 for no predictive power of the model.
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[5.1] Identify the units in aW -neighbor of w by selecting units i with |W j
i −wj| ≤ 0.5hj,

j = 1, . . . , d. Suppose we have nw such units. Among these nw units select the

efficient ones lying on the DEA frontier (having δ̂(Xi, Yi; dx, 0) = 0). Now we have

n∂
w such points.

[5.2] Now we will select the nearest neighbors of the ray x among the n∂
w selected

points. By doing this we also take into account for the output levels y and Yi.

[5.2.1] For doing this we project the inputs x and Xi of the n∂
w points on a sphere

of radius one. This defines xs and Xi,s. It is important to note that we are

doing this because in the input oriented case, only the mix of the inputs are

important and not the values.

[5.2.2] Compute the Euclidean (or Mahalanobis, if preferred) distances between

(xs, y) and the n∂
w points (Xi,s, Yi), and select the nB nearest points according

to this metric (in practice nB is limited to a few points).

[5.3] Make a radar plot of (x, y) against the efficient target (its projection on the efficient

frontier) and the nB units selected for the benchmarking. Usually we will provide

nB radar plots to facilitate the analysis. Also we chose to standardize at 1, the

unit to be evaluated, (x, y), to facilitate the interpretation in terms of percentage

of increase or decrease of the p+ q inputs and outputs to reach the target or the

selected benchmarked unit.

In the next section we illustrate this methodology with a simulated sample and two empirical

examples with real data.

5 Applications

5.1 Simulated example

We first present some results in a simulated sample with two inputsX , two outputs Y and two

external factors W . We select an output orientation, so we fix dX = 0 and we will illustrate

the choice dYi
= φ(1, θ̂i) obtained by the nonparametric angular regression (local average) and

compare afterwards the obtained results with the two extreme choices, individual specific

dYi
= Yi/||Yi|| = φ(1, θi) and the egalitarian dYi

= φ(1, θ̄)) (note that we normalize the

directions). To simplify the notation we denote by W1 and W2 the two components of W .

An external factor (W1) will be influential in the determination of the output mixes while the

other (W2) will be completely independent with respect to the production process. We will

consider the case of a sample of size n = 100 which is not big with respect to the dimension

11



of the problem considered because the idea is to see if we are able to recover by our approach

the DGP used in our simulated scenario.

The simulation scenario can be described as follows.

We simulate random output mixes by generating an angle θ ∈ [0, π/2] which is dependent

on the variable W1 through a logistic model plus noise. We define

θ = (π/2)
exp(W1)

1 + exp(W1)
+ ε, (5.1)

where W1 ∼ Beta(3, 3) rescaled so that W1 ∈ (a, b) with a and b fixed such that the factor

exp(W1)/(1 + exp(W1)) ∈ (0.025, 0.975) and ε is a censored N(0, 0.22), censored such that

θ ∈ [0, π/2].4 We have to truncate the normal to avoid generated values of θ outside [0, π/2]

due to the random noise. To fix the ideas, we display in Figure 1 the histogram of the

simulated output mixes. Figure 2 (right panel) display the true logistic regression and show

such a simulation for n = 100 where it appears clearly that W1 has a “strong” influence on

the output mix (high heterogeneity). Then we simulate value of W2 independently from the

production process by means of the uniform W2 ∼ Unif(1, 10).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

2

4

6

8

10

12

14

16
Histogram of Output angles in the sample (in radians)

θ

Figure 1: Histogram of the observed output mixes (angles) θ = (θ1, . . . , θn) in the Simulated
Example 1, with n = 100.

The angular nonparametric regression procedure selected the bandwidths h1 = 1.0359,

roughly 1/6 of the range of W1, and h2 = 2.9768, roughly 1/3 of the range of W2, indicating

clearly less influence for the latter in the variations of the angle. The fit appears very good

as displayed in Figure 2 (left panel): we are able to recover the logistic influence of W1 and

the “no-influence” of W2. The right panel of Figure 2 is a marginal view of the left panel

from an orthogonal viewpoint to the axis W1. The red squares are the obtained fit at the

observed W1,i (they are very near the true logistic function) whereas the blue triangles are

4It is easy to show that this is achieved by choosing a = log(0.025/(1− 0.025)) and b = log(0.975/(1−
0.975)).
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the observations. The good quality of the fit can be measured by R2 = 0.8649 and a very

low angular distance, defined in (4.2) (see also Appendix B) with value 0.0142, between the

observations and the fits.
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Figure 2: Fitted values of the angle θ by the nonparametric regression of θ on W = (W1,W2),
in Simulated Example 1, with n = 100.

For simulating the production process, we fix the modulus of production frontier as being

of a Cobb-Douglas form R = X0.3
1 X0.4

2 , where both inputs are independently generated by

the uniform Unif(10, 20). Finally the two outputs generated on the frontier are determined

by the simulated angle θ, where we chose the formulation in (A.2), i.e.
{

Y1 = R sin θ × exp(−U)
Y2 = R cos θ × exp(−U),

where the last factor accounts for radial inefficiencies (U ≥ 0). We have chosen U ∼

Expo(1/3) which implies E(exp(−U)) = 0.75 as average level of Farrell Debreu output

inefficiency.

The resulting directional distances have been computed using the 3 methods proposed

above (individual specific direction; our W-local averages and the global average direction or

egalitarian common direction). In Table 1 we report the averages DDF for the n = 100 units

and the averages of the gaps to reach the efficient frontier in the two output components. As

expected by our scenario, due to the great heterogeneity introduced by a strong dependence

between the angles θ and the variable W1, we obtain, by our data-driven technique a solution

which is not too different from the one where a “full” heterogeneity is allowed, i.e. using

individual specific directions. Note the great difference between the gaps when using the

egalitarian distance and the two other approaches. Our data-driven procedure warns the

research analyst that here egalitarian distance is inappropriate due to the impact of the
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external specific factors (here W1 on the selection of the output mixes. In the next simulated

case we will have an opposite conclusion.

dYi
= φ(1, θi) dYi

(Wi) = φ(1, θ̂i) dYi
= φ(1, θ̄)

DDF 0.9810 1.0054 1.1053
GapY1

0.7006 0.7321 0.8410
GapY2

0.5414 0.5830 0.7172

Table 1: Simulated Example 1 with n = 100. Averages DDFs, and average of the gaps in the
two outputs for reaching the efficient frontier. The transformation φ(1, ·) is the one defined
in Appendix A.

We now modify slightly the scenario above by letting both components of W be in-

dependent of the production process. So these two components have no influence on the

determination of the output mixes. We simulate now the angles by θ ∼ Unif(0, π/2). Ex-

cept for that, all the elements of the scenario remain the same.

Our data-driven procedure provides the bandwidths h1 = 6.2809 and h2 = 8.7472, both

being of the same order than the range of W , indicating clearly no influence for the latter in

the variations of the angle. The goodness of fit is now very bad giving R2 = 0.0146 and an

angular distance equal to 0.0885. The result of the fit of the angles by the nonparametric

regression on W is displayed in Figure 3, with the two marginal views. This confirm that our

procedure automatically detect the “no-influence” of W on θ, as it should. Since there is no

heterogeneity due to W , an egalitarian approach seems more reasonable and this is not far

from what we obtain by looking at Table 2. The mean of efficiencies and the averages of the

gaps for the two outputs derived from our procedure are quite similar to the ones obtained

by taking the egalitarian direction dy = φ(1, θ̄). The nice feature (aspect) is that we let the

analysis (i.e. the data) to derive the chosen directions, and it is not decided a priori (data

driven approach).

dYi
= φ(1, θi) dYi

(Wi) = φ(1, θ̂i) dYi
= φ(1, θ̄)

DDF 1.2662 1.3914 1.3910
GapY1

0.7737 0.9199 0.9224
GapY2

0.8697 1.0438 1.0412

Table 2: Simulated example 2 with n = 100. Averages DDFs, and average of the gaps in the
two outputs for reaching the efficient frontier.
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Figure 3: Fitted values of the angle θ by the nonparametric regression of θ on W = (W1,W2),
in Simulated Example 2 with n = 100.

5.2 Illustration with real data on education

We illustrate the usefulness of our approach as a tool for selecting an objective (data driven)

direction by analyzing a “production process” with the popular data set from Charnes,

Cooper and Rhodes (1981) where the performance of 70 schools is analyzed, 49 of them

having benefited from Program Follow Through (PFT) and 21 called Non-Follow Through

(NFT). The paper gives the data on 3 outputs (achievement of students on “Reading Score”

(READ), ”Mathematics Scores” (MATH) and a measure of “Self-Esteem” (SELF)). The

only real input is the number of teachers. The paper uses also 4 variables as inputs. In

fact these variables are not inputs under the control of the School but rather describe 4

characteristics of the family (in units of 100 students). These are the “Education Level of

the Mother” (ELM), an index for the “Highest Occupation of a family member” (HOFM),

a “Parental Visit Index” (PVI) and a “Parent Counseling Index” (PCI). These four latter
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variables are highly correlated so for ease of presentation we keep only ELM and PVI, the

lowest correlated pair (0.7936). Note that HOFM and PCI have a correlation above 0.98

with PVI, so they do not bring useful additional information.

We will use an output orientation to see how the schools are performing in using their

only input, the number of teachers. The variables describing the profile of the family (level of

education and involvement in the following-through of the children, as measured by ELM and

PVI) may be viewed in our approach as describing contextual specific environment (profile

of the family) and we analyze if they have any influence on the output mix of the school,

described here by the two angles. If yes, and if the influence is large, this could justify the

use of a school-specific direction for assessing and comparing the efficiencies (as done in the

original study of Charnes et al., 1981), but if not and if no particular direction is desired, a

natural direction might be a common-egalitarian direction for all the schools. Our approach

will determine where we are between these two extremes.

In our analysis we eliminate two schools (unit # 44 and unit #59) because they are really

outliers (as detected in many studies, including Wilson, 1993 and Simar, 2003). In fact these

units have values above the mean plus three times the standard deviation (for both ELM

and PVI for #59 and for PVI for #44), making not available a reasonable non-parametric

estimate of the regression below because these two points are too isolated in the W space.

So we end up with 68 units.

The distribution of the two angles defining the output mixes is described in degrees in

Figure 4. The analysis is interesting because the figure indicates that there are no real big

differences in the output mixes (this fact was already noticed in preceding studies and con-

firmed by the high correlation between the three outputs), but still there is some dispersion

and we can pursue our analysis. The angle θ1 ranges roughly between 25 and 42 degrees

and the angles θ2 between 43 and 63 degrees. Looking at Figure 9 in Appendix A, we see

that increasing values of θ1 indicates a school that “select” as individual target to increase

proportionally more the READ variable Y1 relative to the two others. A decreasing value of

θ2 indicates a school targeting a proportional increase of more the variable SELF (Y3) than

MATH (Y2).
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Figure 4: Histogram of the observed output mixes (angles) θ = (θ1, . . . , θn) in the CCR-School
Example, with n = 68.

The results of the nonparametric polar regression of these two angles on the variables W1

(ELM) and W2 (PVI) are displayed in Figure 5. We see that as expected from the beginning

(small variations in the output mixes), the two surfaces are rather flat, indicating a low level

of influence of W on the output mixes. Still, we see some effect (with interaction) of both

variables in the following sense. For schools where the level of education of the mother is

higher, the visiting parental effect is null; on the contrary, for schools where the level of

education of the mother is low there is some negative effect of IPV on both angles. We see

also that only for schools where the IPV index is high (many parental visits), the role of the

level of education is more important and positive. Due to the interpretation of the angles

done above we could say (being careful because the analysis relies on a small sample) that

higher ELM will slightly increase the weight of the reading scores in the school, but more

for school where the IPV is relevant (important). On the other hand, higher IPV values

increase the weight of the self-esteem index (relative to the mathematics and reading scores)

but mainly for schools where the education level of the mother is the lower. This kind of

analysis can have its own interest, even before speaking about performance of the schools

themselves.

The technical results of these two nonparametric regressions are quite similar: the two

bandwidths in both regression are rather high but still significant (of the order of 1/4 of the

range of W1 and 1/3 of the range for W2). The R2 is 0.36 for θ̂1 (angular risk 0.0012) and

0.23 for θ̂2 (angular risk 0.0032). So a relatively good fit in angular distance measure.
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Figure 5: Fitted values of the angle θ by the nonparametric regression of θ on W = (W1,W2),
in the CCR-School example with n = 68.

In our illustration here, the individual efficiency scores of each school are not of central

interest, but we provide the averages below according to the chosen direction (remember that

efficient units have an efficiency score equal to zero). We expect in this particular example

very small differences according the 3 directions (individual specific, W -local averages or

global common average) but still we can observe some differences with our data driven

approach being this time very similar to the egalitarian (global average direction) which is

not a big surprise due to the “flatness” of both surfaces in Figure 5. The results are given

in Table 3. With the model chosen here (one input and 3 outputs), there might be some

significant differences between the two groups of schools. Formal tests as those suggested by

Simar and Wilson (2011) using the bootstrap or by Kneip, Simar and Wilson (2013) using

asymptotic results could be used to check the significancy. This is not the focus here.

dYi
= φ(1, θi) dYi

(Wi) = φ(1, θ̂i) dYi
= φ(1, θ̄)

DDF 20.9507 22.0725 22.0725

DDFPFT 17.0682 18.1488 18.1488
std (2.2046) (2.3952) (2.3952)

DDFNFT 30.2687 31.4894 31.4894
std (3.6993) (3.8283) (3.8283)

Table 3: CCR-example. Averages DDFs, and average for the two groups of schools, with
standard deviations of within group averages.

To save place we do not give more detailed results (like individual measures or evaluation

of the gaps), because the main interest of this illustration is to see the usefulness of the
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analysis of the angles as a function of the contextual variables, here the profile of the families

in each school. Here also benchmarking is not our focus, although in a real application, as

illustrated in the next example, this might be of interest.

5.3 Empirical application in Banking

The original data set contains three inputs (purchased funds, core deposits and labor) and

four outputs (consumer loans, business loans, real estate loans, and securities held) for banks.

Aly et al.1990 considered, among others, two continuous environmental factors, the size of

the banks, and a measure of the diversity of the services proposed by the banks (see Aly. et

al.,1990, for details). This data set has also been used in Simar and Wilson (2007) where

the measure of the size of the banks is given by the log of the total assets, rather than

the total deposits as in Aly et al. We will illustrate our procedure with the subsample of

322 banks used in Simar and Wilson (2007). We will use the input orientation (that is

dy = 0 and dx ≥ 0. Hence, we will have two angles defining the input mixes and we will

use the two contextual variables W1 (SIZE) and W2 (DIVERSITY) to see if they have some

influence on the determination of the input mixes, and so justifying, at some level, individual

specific directions for the DMUs. We will also illustrate our benchmarking procedure for one

particular inefficient bank.

In our sample, the distribution of the input mixes is represented in Figure 6. We see

from the start that the angle θ2 has almost no variations (most of the data points have an

input mix near and below 90 degrees. This is due of the chosen units for X3, number of

workers and X2, core deposit in dollars. However, we see a greater dispersion of the angle θ1,

between 0 and 60 degrees, with most of the data with an angle below 40 degrees. Here an

increasing angle corresponds to a more important weight of purchased funds mainly relative

to core deposit (due to the low weight of labor in the available units). In this application,

due to the huge differences between the units of the input components, we will use vector of

distances in the units of the inputs to obtain a measure that is free of the chosen units.

With no surprise, the nonparametric regression of θ2 on (W1,W2) is almost flat as shown

in Figure 7 (the bandwidths are h1 = 1.11 and h2 = 1.12 with R2 = 0.05 and the angular

risk is below 0.00005). However we find some structure in the same figure, left panel, where

the expectation of θ1 is changing with the variables (W1,W2) (here h1 = 2.05 and h2 = 0.28

with R2 = 0.27 and angular risk is very low 0.0102). Here we see that banks with higher size

and lower diversity index, have on the average higher values of θ1 in their input mix, which

can be interpreted here as proportionally more purchased funds than core deposit (again the

labor has little weight in determining the angles). The effect of diversity is more important

for bigger banks.
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Figure 6: Example on Banks: histogram of the input mixes in the sample of 322 banks.
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Figure 7: Fitted values of the angle θ for the example on banks.

The efficiency analysis with the three approaches (individual specific, local average and

egalitarian) are reported in Table 4 for 20 units drawn at random. The mean at the bottom

row is the mean over the full sample of 322 units. The differences between the 3 approaches

seem to be not so important (remember that most banks share the same input mix, angle

θ2) but remember that these DDF are applied to directional distances in the same units as

the original inputs. So even small differences of δ could have important consequences on the

distance to the efficient frontier (as measured in gaps). This is shown by Table 5 giving the

gaps in each inputs, in original units, for the same 20 units. We see here that changing the

orientation matters, when we measure the effort to reach the efficient frontier (see e.g. unit

#56). Table 6 gives the same gaps in percentage of the inputs.
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Units dxi
= φ(ri, θi) dx(Wi) = φ(ri, θ̂i) dx = φ(ri, θ̄)

204 0.0544 0.0563 0.0566
189 0.0000 0.0000 0.0000
127 0.0446 0.0403 0.0388
78 0.0736 0.0713 0.0696
299 0.0398 0.0362 0.0358
190 0.0000 0.0000 0.0000
82 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
56 0.0364 0.0277 0.0331
301 0.0565 0.0544 0.0525
152 0.0000 0.0000 0.0000
148 0.0253 0.0225 0.0223
92 0.0000 0.0000 0.0000
173 0.0729 0.0754 0.0756
225 0.0014 0.0011 0.0011
321 0.0244 0.0258 0.0254
157 0.0300 0.0305 0.0306
68 0.0000 0.0000 0.0000
139 0.0104 0.0101 0.0102
155 0.0000 0.0000 0.0000

meann 0.0335 0.0328 0.0323

Table 4: Example on banks: DDFs for 20 units.

dxi
= φ(ri, θi) dx(Wi) = φ(ri, θ̂i) dx = φ(ri, θ̄)

Units GapX1
GapX2

GapX3
GapX1

GapX2
GapX3

GapX1
GapX2

GapX3

204 6283.10 10829.04 9.3030 3712.71 12411.30 6.9617 3516.82 12531.89 7.0932
189 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000
127 166.05 1335.03 0.7576 275.45 1183.78 0.6906 316.34 1127.26 0.6380
78 707.71 3576.17 2.5033 834.93 3428.75 1.9101 930.98 3317.45 1.8777
299 237.43 1034.41 0.3980 200.88 944.02 0.5544 257.60 917.94 0.5196
190 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000
82 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000
2 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000

56 591.99 2867.83 1.1290 1069.82 1952.19 1.0457 718.99 2562.07 1.4502
301 138.08 945.24 0.7913 190.19 899.60 0.5470 239.66 854.00 0.4834
152 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000
148 163.04 1180.34 0.8085 273.81 1026.49 0.5722 284.06 1012.24 0.5729
92 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000
173 5302.65 10881.98 5.6137 3549.95 12002.22 6.6818 3392.42 12088.59 6.8423
225 10.54 114.69 0.0698 22.54 92.21 0.0505 24.73 88.11 0.0499
321 781.93 1296.94 1.1239 370.85 1552.57 0.8548 426.06 1518.23 0.8593
157 3349.24 3514.01 2.1602 1436.93 4713.46 2.6148 1339.83 4774.37 2.7024
68 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000
139 372.11 1475.69 0.7625 420.26 1412.62 0.7774 401.73 1431.51 0.8103
155 0.00 0.00 0.0000 0.00 0.00 0.0000 0.00 0.00 0.0000

meann 893.92 2807.85 1.7285 824.85 2796.33 1.5554 794.22 2830.13 1.6019

Table 5: Example on banks: Gaps for 20 units.
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dxi
= φ(ri, θi) dx(Wi) = φ(ri, θ̂i) dx = φ(ri, θ̄)

Units GapX1
GapX2

GapX3
GapX1

GapX2
GapX3

GapX1
GapX2

GapX3

204 0.0544 0.0544 0.0544 0.0321 0.0624 0.0407 0.0305 0.0630 0.0415
189 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
127 0.0446 0.0446 0.0446 0.0739 0.0395 0.0406 0.0849 0.0376 0.0375
78 0.0736 0.0736 0.0736 0.0869 0.0706 0.0562 0.0969 0.0683 0.0552

299 0.0398 0.0398 0.0398 0.0337 0.0363 0.0554 0.0432 0.0353 0.0520
190 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
82 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
56 0.0364 0.0364 0.0364 0.0658 0.0248 0.0337 0.0442 0.0325 0.0468

301 0.0565 0.0565 0.0565 0.0779 0.0538 0.0391 0.0981 0.0511 0.0345
152 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
148 0.0253 0.0253 0.0253 0.0424 0.0220 0.0179 0.0440 0.0217 0.0179
92 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

173 0.0729 0.0729 0.0729 0.0488 0.0804 0.0868 0.0466 0.0810 0.0889
225 0.0014 0.0014 0.0014 0.0029 0.0011 0.0010 0.0032 0.0011 0.0010
321 0.0244 0.0244 0.0244 0.0116 0.0292 0.0186 0.0133 0.0286 0.0187
157 0.0300 0.0300 0.0300 0.0129 0.0402 0.0363 0.0120 0.0408 0.0375
68 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

139 0.0104 0.0104 0.0104 0.0118 0.0100 0.0106 0.0113 0.0101 0.0111
155 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

meann 0.0335 0.0335 0.0335 0.0362 0.0332 0.0323 0.0392 0.0326 0.0319

Table 6: Example on banks: Gaps for 20 units in percentages of inputs.

For the benchmark analysis we selected the unit #7 only for illustrative purposes. There

were 56 units with similar contextual values W and among these, there were 11 efficient

units. Table 7 gives the list of the 4 nearest neighbors in the input-output space where the

inputs are projected on the sphere of radius 1.

Units DDFs Euclid. dist. Angul. dist.
7 0.0711 0 0

174 0.0000 4991.46 0.000046
46 0.0000 8787.05 0.000010
245 0.0000 9100.66 0.000145
219 0.0000 9415.60 0.000025

Table 7: Selected efficient benchmark units for unit #7. The Euclidean distance between
units is in Rp+q, original outputs and inputs projected on the Sphere of radius 1. The angular
distance is between the input mixes.

The radar plots of the 4 nearest efficient banks selected by the procedure described above

are given in Figure 8. The analysis of these pictures could help the manager to see where

efforts could be put for improving its performance. The availability of several benchmark
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units offers the possibility to choose among them possible targets, having similar profile for

their contextual factors, similar input mixes and similar output values but being efficient.

The current DMU #7 in black solid line is put at one for each input/output component, so

the differences are in percentages.
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Figure 8: Radar Plots for unit #7. From left to right and top to bottom we have the bench-
mark efficient units #174, #46, #245 and #219.

6 Conclusions

In this paper we have introduced an empirical approach to endogenously determine the

direction along which to assess the performance of DMUs without needing information about

prices and without assuming any profit maximizing or cost minimizing behavior of the DMUs.

When there are no economic or managerial reasons for imposing a specific path towards the

efficient frontier, our approach is able to provide a data driven (local) direction which is

able to account for the heterogeneity of DMUs and their contextual factors. The data
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driven (local) direction provided by our approach lies between an egalitarian (global average)

direction and an individual (specific) direction for each DMU and is able to detect irrelevant

contextual factors. From a technical viewpoint, by introducing state of the art techniques in

nonparametric regression for angular responses in an efficient frontier analysis framework,

we detailed a procedure that allows us to automatically identify benchmarking peers for each

DMU according to their specific context, without having to carry out an ad hoc clustering

exercise. The usefulness of our approach has been illustrated with simulated as well as with

real data sets on education and banking sectors.
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A Appendix: Multidimensional Polar Coordinates

We present here precise and flexible formulae to transform cartesian multidimensional coor-

dinates in polar coordinates and the inverse transformation. These results, in such general

form are not so easy to find in the literature and this fix also the transformation we used in

the paper.

A.1 Basic Definitions

There are many ways to define multidimensional polar coordinates. A popular one can be

found in Anderson (2003, p.302). The definition is very general and is able to handle all the

cases (with cartesian variables able to be in any orthant with some potential zero compo-

nents). Let x ∈ Rp, the modulus, or length, of x is given by r = ||x|| =
√
x2
1 + x2

2 + . . .+ x2
p.

The polar coordinates are then completed by introducing the p− 1 components of the angle

θ.

x1 = r sin θ1

x2 = r cos θ1 sin θ2

x3 = r cos θ1 cos θ2 sin θ3
...

xp−1 = r cos θ1 cos θ2 . . . cos θp−2 sin θp−1

xp = r cos θ1 cos θ2 . . . cos θp−2 cos θp−1, (A.1)

where −π/2 < θj ≤ π/2 for j = 1, . . . , p− 2 and −π < θp−1 ≤ π. Note that the particular

case p = 2 is covered by the above definition; it particularizes as

{
x1 = r sin θ
x2 = r cos θ,

(A.2)

with −π < θ ≤ π for covering all the 4 quadrants of x ∈ R2 (see Figure 9).

The above formulae can be seen as allowing to recover the cartesian variables x ∈ Rp

from the knowledge of the polar coordinates (r, θ) where θ has p− 1 components with range

defined the line after (A.1). We denote through the paper this transformation by x = φ(r, θ).

A.2 The inverse transform

Let us start with the 2-dimensional problem. It can be seen from (A.2) that the angle θ has

to satisfy the relation

θ = arctan(x1/x2), (A.3)
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but we have to cover the 4 quadrants depending on the values of (x1, x2). The inverse

function ‘arctan’ has to be defined accordingly.5

When p > 2, we first note from (A.1) that for all j = 1, . . . , p− 2,

||x||(j) :=
√
x2
j+1 + x2

j+2 + . . .+ x2
p = |r|| cos θ1|| cos θ2| . . . | cos θp−2|

= r cos θ1 cos θ2 . . . cos θp−2, (A.4)

where the last equality holds because r > 0 and cos θj > 0 since −π/2 < θj ≤ π/2 for

j = 1, . . . , p− 2. Now we obtain directly the values of the first p− 2 angles, j = 1, . . . , p− 2:

θj = arctan

(
xj

||x||(j)

)
, (A.5)

where the inverse function arctan is defined so that it takes its values in the range [−π/2, π/2]

(see the footnote 5 for practical use with Matlab or R). The last angle is simply given by

θp−1 = arctan
(
xp−1/xp

)
, (A.6)

where here, we use the version of arctan having range [−π, π], as required by (A.1).

P=(x
1
,x

2
,x

3
)

B=x
3

A

x
2

O
x

1

Figure 9: An illustration of polar coordinates in 3-D: The point P = (x1, x2, x3) with modulus

r = |OP |. The angles are θ1 = P̂OA and θ2 = B̂OA = arctan(x2/x3), we have |AP | = x1 =
r sin(θ1) and |OA| =

√
x2
2 + x2

3 = r cos(θ1).

5The Matlab (and R) build-in function atan(a) will give an angle η in [−π/2, π/2] with a = tan(η). To
cover the range [−π, π] we have to use the Matlab build-in function atan2(x1,x2) to obtain our angle θ as
defined by (A.3). It must be noticed that indeed in our general p-dimensional formulation, x1 corresponds
to the sine of the angle and x2 to the cosine whereas it is often the contrary for the simple 2-dimensional
case.
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B Appendix: Nonparametric Regression for Angular

Responses.

Circular or directional or angular data in a plane or in the space have been analyzed in

the statistical literature. When trying to regress angular data on real-valued predictors or

regressors, classical methods are not appropriate. This is because averaging over the values

of a variable is not suited when using angles. Therefore, we have to define the regression

of the angle, say θ on a real exogenous regressor, say W . Parametric approaches include

Gould (1969), Fisher and Lee (1992) and Presnell et al. (1998). In the latter, maximum

likelihood techniques are involved, and so von Mises-Fisher distributions for multivariate

angle are used to model random angles. These approaches involves very restrictive and very

strong assumptions that are made to make the procedures easy to use. Much more flexible

approaches have not been developed so much, until recently. Di Marzio et al. (2013) (and

the references therein) provide a nice framework for our goal and all the required theoretical

properties of the resulting estimators have been derived within it. We will adapt hence their

approach in our context.

To summarize, we are in the setting where a random angle θ may depend on a set of

real-valued variables W ∈ R. In what follows, we measure angles in the range [−π, π]

and use the standard anti-clockwise direction as positive. We define the function m on R

with values in [−π, π], as the minimizer of the expectation of the usual angular distance

d(θ,m(W )) = 1 − cos(θ − m(W )). Following Di Marzio et al. (2013), for any w ∈ R we

define

m1(w) = E [sin(θ)|W = w] (B.1)

m2(w) = E [cos(θ)|W = w] , (B.2)

and gj(w) = mj(w)fW (w), j = 1, 2. The minimizer of the risk E [d(θ,m(W ))] is then given

by

m(w) = arctan(g1(w)/g2(w)), (B.3)

where the inverse function arctan has domain [−π, π] (see Footnote 5 for practical use with

Matlab or R). This approach corresponds to the regression model

θ = m(W ) + ε, (B.4)

where the random angle ε has zero mean, finite dispersion and is independent of W .

Now, if we have a sample of observations (Wi, θi), i = 1, . . . , n, we can use regular

nonparametric regression techniques (like local constant or local linear, see Li and Racine,
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2007 or Pagan and Ullah, 1999 for details) for estimating the functionsmj(w) and the density

fW (w). We end up with the Di Marzo et al. (2013) nonparametric estimator

m̂(w) = arctan(ĝ1(w), ĝ2(w)), (B.5)

where the two components ĝj are given, e.g., by the smoother6

ĝ1(w) =
1

nh

n∑

i=1

sin(θi)K

(
Wi − w

h

)
(B.6)

ĝ2(w) =
1

nh

n∑

i=1

cos(θi)K

(
Wi − w

h

)
, (B.7)

where K(·) and h are respectively the kernel and the bandwidth appearing in most of the

nonparametric kernel smoothers. Kernels are symmetric densities with support on [−1, 1]

(like Epanechnikov or quartic kernels) or any other symmetric density with finite second

moment (like the standard normal) and the bandwidth, that is the smoothing parameter,

controls for the localization, tuning the bias and the variance of the estimators.

The statistical properties of the estimator are established in Di Marzio et al. (2013)

for Kernel with support [−1, 1]. To summarize, they show that the asymptotic properties

of ĝj and of m̂ are very similar to those shared by the classical nonparametric regression

estimators. In particular, and as usual, these properties assume that h → 0 with nh → ∞

when n → ∞. The selection of the optimal bandwidth that balance (bias)2 and variance

produces an asymptotic mean squared error (AMSE) of the order O
(
n−4/5

)
which is standard

in nonparametric regression. For well-behaved parametric approaches we generally achieve

the better order O
(
n−1
)
, but at a cost of restrictive parametric assumptions.

In practice, the optimal bandwidth is selected by leave-one-out cross-validation, like in

the classical cases, except that here we have to use the appropriate risk function. The

bandwidth is determined by the value h which minimize the criterion

CV (h) = −
1

n

n∑

i=1

[
cos(θi − m̂(i)(Wi))

]
, (B.8)

where m̂(i)(Wi) is the estimator m̂(·) evaluated at Wi by using all the observations except

the pair (Wi, θi). We note that at a constant, CV is an empirical estimates of the risk.

When W is multidimensional, the technique can be adapted by using multivariate ker-

nels. As suggested by Li and Racine (2007) we will use product kernels with a vector of

6We describe the estimator for the local constant case, because in our setup, we must ensure the resulting
estimate of the angle is in the same quadrant as the original observations. Local linear fit, also described in
Di Marzio et al. (2013), could provide in finite sample inappropriate quadrants.
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bandwidths: this allows to handle automatically relevant and irrelevant regressors in a flex-

ible way. Practically, when h is as big as the range of W , this means that W is irrelevant

for the choice of the direction (see Hall, Li and Racine, 2007 for details).

To fix the notations, suppose W ∈ Rd and denote by (h1, . . . , hd) a vector of bandwidths.

The two components ĝj are now given for any w ∈ Rd by

ĝ1(w) =
1

n
∏d

j=1 hj

n∑

i=1

sin(θi)

d∏

j=1

K

(
W j

i − wj

hj

)
(B.9)

ĝ2(w) =
1

n
∏d

j=1 hj

n∑

i=1

cos(θi)

d∏

j=1

K

(
W j

i − wj

hj

)
, (B.10)

where for any vector a ∈ Rd, aj denotes its jth component. Then (B.5) gives the estimate

m̂(w). The properties of the resulting estimator are similar to the ones described in Di Marzio

et al. (2013), except that here the AMSE will be of the order O
(
n−4/(d+4)

)
showing that the

estimator suffers from the usual “curse of dimensionality” common in most nonparametric

approaches. That is, when the dimension d increases, we need more data to reach the same

precision.

When we have to regress several angles (θ1, . . . , θp) on a vector W ∈ Rd, as will be the

case when using polar coordinates for the input x ∈ Rp, it is common to use the approach

just described component by component, by regressing each θj on W , for j = 1, . . . , p. The

same procedure applies, mutatis mutandis, when we work in the output space y ∈ Rq.
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[18] Färe, R., Grosskopf, S. and D. Margaritis, (2008), Efficiency and Productivity:

Malmquist and more, in: The measurement of productive efficiency and productivity

30



growth, edited by Fried H.O., Lovell C.A.K. and Schmidt S.S., Oxford University Press,

pp. 522–622.
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