
Simple and Scalable Time-Table
Filtering for the Cumulative Constraint

Steven Gay, Renaud Hartert, Pierre Schaus

UCLouvain, ICTEAM,
Place Sainte Barbe 2,

1348 Louvain-la-Neuve, Belgium
{firstname.lastname}@uclouvain.be

Abstract. Cumulative is an essential constraint in the CP framework,
and is present in scheduling and packing applications. The lightest filter-
ing for the cumulative constraint is time-tabling. It has been improved
several times over the last decade. The best known theoretical time com-
plexity for time-table is O(n logn) introduced by Ouellet and Quimper.
We show a new algorithm able to run in O(n), by relying on range min
query algorithms. This approach is more of theoretical rather than prac-
tical interest, because of the generally larger number of iterations needed
to reach the fixed point. On the practical side, the recent synchronized
sweep algorithm of Letort et al, with a time-complexity of O(n2), requires
fewer iterations to reach the fix-point and is considered as the most scal-
able approach. Unfortunately this algorithm is not trivial to implement.
In this work we present a O(n2) simple two step alternative approach:
first building the mandatory profile, then updating all the bounds of
the activities. Our experimental results show that our algorithm out-
performs synchronized sweep and the time-tabling implementations of
other open-source solvers on large scale scheduling instances, sometimes
significantly.

Keywords: Constraint programming, Large-Scale, Scheduling, Cumulative Con-
straint, Time-table.

1 Preliminaries

In this paper, we focus on a single cumulative resource with a discrete finite
capacity C ∈ N and a set of n tasks Ω = {1, . . . , n}. Each task i has a start time
si ∈ Z, a fixed duration di ∈ N, and an end time ei ∈ Z such that the equality
si + di = ei holds. Moreover, each task i consumes a fixed amount of resource
ci ∈ N during its processing time. Tasks are non-preemptive, i.e., they cannot be
interrupted during their processing time. In the following, we denote by si and
si the earliest and the latest start time of task i and by ei and ei the earliest and
latest end time of task i (see Fig. 1). The cumulative constraint [1] ensures that
the accumulated resource consumption does not exceed the maximum capacity
C at any time t (see Fig. 2): ∀t ∈ Z :

∑
i∈Ω : si≤t<ei ci ≤ C.

Fig. 1: Task i is characterized by its
start time si, its duration di, its end
time ei, and its resource consumption
ci.

Fig. 2: Accumulated resource con-
sumption over time. The cumulative

constraint ensures that the maximum
capacity C is not exceeded.

Even tasks that are not fixed convey some information that can be used by
filtering rules. For instance, tasks with a tight execution window must consume
some resource during a specific time interval known as mandatory part.

Definition 1 (Mandatory part). Let us consider a task i ∈ Ω. The manda-
tory part of i is the time interval [si, ei[. Task i has a mandatory part only if its
latest start time is smaller than its earliest end time.

If task i has a mandatory part, we know that task i will consume ci units of
resource during all its mandatory part no matter its start time. Fig. 3 illustrates
the mandatory part of an arbitrary task i.

Fig. 3: Task i has a mandatory part [si, ei[if its latest start time si is smaller
than its earliest end time ei: si < ei. Task i always consumes the resource during
its mandatory part no matter its start time.

By aggregation, mandatory parts allow us to have an optimistic view of the
resource consumption over time. This aggregation is known as the time-table.

Definition 2 (Time-Table). The time-table TTΩ is the aggregation of the
mandatory parts of all the tasks in Ω. It is defined as the following step function:

TTΩ = t ∈ Z −→
∑

i∈Ω | si≤t<ei

ci. (1)

The capacity of the resource is exceeded if ∃t ∈ Z : TTΩ(t) > C.

The time-table of a resource can be computed in O(n) by a sweep algorithm
given the tasks sorted by latest start time and earliest end time [2,11,15].

The time-table filtering rule is formalized as follows:

(t < ei) ∧ (ci + TTΩ\i(t) > C) ⇒ t < si. (2)

Observe that this filtering rule only describes how to update the start time of a
task. End times are updated in a symmetrical way.

Let j be a rectangle denoted 〈aj , bj , hj〉 with aj ∈ Z (resp. bj ∈ Z) its start
(resp. end) time, hj ∈ N its height, and bj − aj its duration (length). The time-
table TTΩ can be represented as a contiguous sequence of rectangles

TTΩ = 〈−∞, a1, 0〉, 〈a1, b1, h1〉, . . . , 〈am, bm, hm〉, 〈bm,∞, 0〉 (3)

such that bi = ai+1 and that the following holds:

∀〈aj , bj , hj〉 ∈ TTΩ , ∀t ∈ [aj , bj [: TTΩ(t) = hj . (4)

We assume that the sequence is minimal, i.e., no consecutive rectangles have the
same height. The maximum number of rectangles is thus limited to 2n+ 1.

Definition 3 (Conflicting Rectangle). For a task i, a left-conflicting rectan-
gle is a rectangle 〈aj , bj , hj〉 ∈ TTΩ\i such that (aj < e)∧(bj ≥ si)∧(hj > C−ci).
We say that the task is in left-conflict with rectangle j. Right-conflicting rectan-
gles are defined symmetrically.

The time-table filtering rule can thus be rephrased as follows:

∀i ∈ Ω, ∀〈aj , bj , hj〉 ∈ TTΩ\i : j is in left-conflict with i⇒ bj ≤ si. (5)

Definition 4 (Time-Table Consistency). A cumulative constraint is left (resp.
right) time-table consistent if no task has a left (resp. right) conflicting rectangle.
It is time-table consistent if it is left and right time-table consistent.

2 Existing algorithms for Time-Tabling

Using the notion of conflicting rectangles, one can design a naive time-tabling
algorithm by confronting every task to every rectangle of the profile. The fol-
lowing algorithms improve on this, mainly by avoiding fruitless confrontations
of rectangles and tasks.

Sweep-line algorithm. The sweep-line algorithm introduced by Beldiceanu et al.
[2] introduces tasks from left to right, and builds the mandatory profile on-the-
fly. This allows to confront tasks and rectangles only if they can overlap in time.
It can factorize confrontations of a rectangle against several tasks, by organizing
tasks in a heap. It pushes tasks to the right until they have no left-conflicting
rectangle, as pictured in Figure 4(c). This algorithm runs in O(n2).

Idempotent sweep-line algorithm. The sweep-line algorithm by Letort et. al [11]
improves on building the profile on-the-fly, by taking in consideration mandatory
parts that appear dynamically as tasks are pushed. It reaches left-time-table
consistency in O(n2), or O(n2 log n) for its faster practical implementation.

Interval tree algorithm. The algorithm of Ouellet and Quimper [14] first builds
the profile, then introduces rectangles and tasks in an interval tree. Rectangles
are introduced by decreasing height, tasks by increasing height. This allows tasks
and rectangles to be confronted only when their heights do conflict. For each
task introduction, the tree structure decides in log n if its time domain conflicts
with some rectangle. Its filtering is weaker, since it pushes a task i only after
left-conflicting rectangles that overlap [si, ei[, as pictured in Figure 4(b). The
algorithm has time complexity O(n log n) .

Fig. 4: Filtering obtained for (a) our linear time-tabling (b) Ouellet et al [14] and
(c) Beldiceanu et al [2].

New algorithms. In this paper, we introduce two new algorithms for time-tabling.
The first one is of theoretical interest and runs in O(n). It uses range-max-
query algorithms to determine whether a task has a conflicting rectangle. As the
algorithm of Ouellet et al [14], it confronts task i only with rectangles overlapping
[si, ei[, but only chooses the one with the largest height instead of the largest
end. Thus, it prunes even less, as depicted in Figure 4(a).

The second algorithm is practical, and runs in O(n2). It separates profile
building from task sweeping. To locate tasks on the profile, it exploits residues
from previous computations, and incrementally removes fixed tasks that cannot
lead to any more pruning. It uses sweeping, thus pruning as much as [2] per call,
but it updates both the earliest start and latest end times of the tasks in a single
execution.

3 A linear time-table filtering algorithm

In order to obtain linear time complexity, we will confront task i to only one
well-chosen rectangle, for every task i.

Proposition 1. Suppose the mandatory profile does not overload the resource.
Let i be a task, and j∗ be a highest rectangle of the profile overlapping [si,min(ei, si)[:
j∗ = argmaxj {hj | 〈aj , bj , hj〉 ∈ TTΩ and [aj , bj [∩[si,min(ei, si)[6= ∅} .

Then j∗ is in left-conflict iff hj∗ + ci > C; otherwise i has no rectangles in
left-conflict.

Proof. If i has a mandatory part, we only need to look for conflict rectangles
overlapping [si, si[, since the profile already includes the mandatory part of i.
Otherwise, we need to look at [si, ei[. If rectangle j∗ is not in left-conflict with
i, then no other rectangle can, since it would need to be higher than j∗.

To retrieve the index j∗, we must answer the question: given a vector of values
and two indices on this vector, what is the index between those two indices that
has the highest value? This kind of query corresponds to the range max query
problem1, it can be done in constant time, given a linear time preprocessing [7].

Example 1. Assume the vector is values = [5, 4, 2, 1, 4, 3, 0, 8, 2, 3]. The range
max query between index 4 and index 7 is 5, denoted rmq(values, 4, 7) = 5.
This is indeed at index 5 that there is the maximum value on the subvector
[1, 4, 3, 0].

In our case the vector is composed of the heights of the rectangles of the
profile heights = [h1, h2, . . . , hm]. The two indices of the query are respectively:

– j1(i) is the index j of the rectangle 〈aj , bj , hj〉 s.t. si ∈ [aj , bj [.
– j2(i) is the index j of the rectangle 〈aj , bj , hj〉 s.t. min(ei, si)− 1 ∈ [aj , bj [

The whole algorithm is given in Algorithm 1. An example of the filtering is
given in Figure 4 (a). Notice that the task is pushed after a highest conflicting
rectangle, which is not as good as the filtering of [14] (Figure 4 (b)).

Algorithm 1: MinLeftTTLinearTime(Ω,C)

Input: A set of tasks Ω, capacity C.
Output: true iff propagation failed, i.e. if the problem is infeasible.

1 initialize TTΩ // 〈aj , bj , hj〉∀i ∈ {1 . . .m}
2 if maxj∈[1;m] hj > C then return true
3 heights ← [h1, h2, . . . , hm]
4 ∀i ∈ Ω compute j1(i), j2(i)
5 initialize rmq(heights)
6 for i ∈ Ω such that s < s do
7 j∗ ← rmq(heights, j1(i), j2(i))
8 if hj∗ + ci > C then si ← bj

9 return false

1 a straightforward variant of the well-known range min query problem

Time Complexity. As in [6], we assume that all the time points are encoded
with w − bit integers and can thus be sorted in linear time. Given the sorted
time points the profile TTΩ can be computed in linear time using a sweep line
algorithm, and all the indices j1(i), j2(i) can be computed in linear time as well.
The range min/max query is a well studied problem. Preprocessing in line 5
can be done in linear time, so that any subsequent query at Line 7 executes in
constant time [7]. Thus, the whole algorithm executes in O(n).

Discussion. Although the linear time complexity is an improvement over the
O(n log n) algorithm introduced in [14], we believe that this result is more of
theoretical rather than practical interest. The linear time range max query ini-
tialization hides non-negligible constants. The range max query used in Line 7
to reach this time complexity could be implemented by simply iterating on the
rectangles from j1(i) to j2(i). On most problems, the interval [si,min(si, e)− 1]
only overlaps a few rectangles of the profile, so the O(n) cost is not high in
practice. Another limitation of the algorithm is that (as for the one of [14]) it
may be called several times before reaching the fix-point (although it does not
suffer from the slow convergence phenomenon described in [3]) either. It may
be more efficient to continue pushing a task further to the right as in [2] rather
than limiting ourselves to only one update per task per call to the procedure.
This is precisely the objective of the algorithm introduced in the next section.

4 An efficient O(n2) time-table filtering

In this section, we introduce a practical algorithm for time-table filtering. It
proceeds in two main phases: first the computation of the mandatory profile,
then a per-task sweeping from left to right and from right to left. This modular
design makes the algorithm simple, and its scalability comes from being able to
exploit structures separately, for instance using sorting only on few tasks. We
review the main phases of Algorithm 2 in execution order.

Building the profile. Line 2 computes the mandatory profile as a sequence of
rectangles. We process only those tasks in Ω that have a mandatory part. We
will try to reduce that set of tasks further ahead, reducing the work in this part.

Computing profile indices. Line 4 computes, for all unfixed tasks i, the pro-
file rectangle containing si. This value is saved between consecutive calls in a
residue2; most of the time, it is still valid and we do not have to recompute it, if
not, a dichotomic search is performed, at a cost of O(log n). Note that [2] sorts
tasks by s to locate tasks on the profile, at a theoretical cost of O(n log n) .
Here we pay O(log n) only for tasks where the residue is invalid. Similarly, line
5 computes the rectangle containing the last point of i, ei − 1.

2 this is similar to residual supports for AC algorithms [10]

Per-Task Sweeping. The loop in line 6 looks for left and right-conflicting rect-
angles for i linearly. The main difference with the global sweeping in [2] is that
our method does not factorize sweeping according to height, wagering that the
cost of moving tasks in height-ordered heaps is higher than that of pushing every
task until no conflict remains. This main part has a worst case cost O(n2).

Fruitless fixed tasks removal. After the main loop, line 24 removes fixed tasks
at profile extremities that can no longer contribute to pruning. This filtering is
O(n). Note that Ω is kept along the search tree using a reversible sparse-set [5].

Algorithm 2: ScalableTimeTable(Ω,C)

Input: A set of tasks Ω, capacity C.
Output: true iff propagation failed, i.e. if the problem is infeasible.

1 Ωu ← {i | si < si} // unfixed tasks

2 initialize TTΩ // 〈aj , bj , hj〉,∀j ∈ {1 . . .m}
3 if maxj∈[1;m] hj > C then return true
4 ∀i ∈ Ωu, compute j1(i) such that si ∈ [aj1(i); bj1(i)[
5 ∀i ∈ Ωu, compute j2(i) such that ei − 1 ∈ [aj2(i); bj2(i)[
6 for i ∈ Ωu do
7 j ← j1(i)
8 s∗i ← si
9 while j ≤ m and aj < min(s∗i + di, si) do

10 if C − ci < hj then
11 s∗i ← min(bj , si) // j in left-conflict

12 j ← j + 1

13 if s∗i > si then si ← s∗i
14

15 j ← j2(i)
16 e∗i ← ei
17 while j ≥ 1 and bj ≥ max(e∗i − di, ei) do
18 if C − ci < hj then
19 e∗i ← max(aj , ei) // j in right-conflict

20 j ← j − 1

21 if e∗i < ei then ei ← e∗i

22 sumin ← mini∈Ωu si
23 eumax ← maxi∈Ωu ei
24 Ω ← Ω \ {i ∈ Omega | ei ≤ sumin ∨ eumax ≤ si}
25 return false

5 Experiments

We have tested our ScalableTimeTable filtering against the time-table filtering
of or-tools [12], Choco3 [4] and Gecode [9] solvers. The algorithm in Choco3

and Gecode solver is the one of [2]. Similarly to our algorithm, or-tools also
builds the time-table structure before filtering. To the best of our knowledge, no
implementation of Letort et al [11] algorithm is publicly available. We have thus
implemented the heap-based variant of the algorithm, faster in practice, with the
same quality standard as our new ScalableTimeTable [13]. In the models used
for this experiment, cumulative propagators enforce only the resource constraint,
precedences are enforced by separate propagators

We have generated randomly n (ranging from 100 to 12800) tasks with dura-
tion between 200 and 2000 and heights between 1 and 40. The capacity is fixed to
100. The search is a simple greedy heuristic selecting the current tasks with the
smallest earliest possible start, hence there is no backtrack. The search finishes
when all the tasks have been placed. This simple experimental setting guaran-
tees that every solver has exactly the same behavior. The results are given on
Figure 5. As can be seen, the time-table implementation of Choco3 and Gecode
are quickly not able to scale well for more than 1600 tasks. The algorithm of
or-tools, Letort et al and our new algorithm are still able to handle 12800 tasks.
Surprisingly, our algorithm outperforms the one of Letort et al despite its sim-
plicity.

OscaR Scalable

OscaR Letort

OR-Tools

Choco 3

Gecode

12800640032001600800400200100

0.0 s

298.2 s

234.8 s

175.6 s

128.8 s

47.8 s

Fig. 5: Comparison of Time-Table implementations.

6 Conclusion

We have introduced an O(n) time-table filtering using range min queries. We
believe that the usage of range min query may be useful for subsequent research
on scheduling, for instance in time-table disjunctive reasoning [8]. We introduced
simple but scalable O(n2) filtering for the cumulative constraint. Our results
show that despite its simplicity, it outperforms current implementations of time-
table constraints in some open-source solvers and also the recent synchronized
sweep algorithm. The resources related to this work are available here http:

//bit.ly/cumulativett.

http://bit.ly/cumulativett
http://bit.ly/cumulativett

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve
complex scheduling and placement problems. Mathematical and Computer Mod-
elling, 17(7):57–73, 1993.

2. Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives con-
straint with negative heights. In CP, Lecture Notes in Computer Science, pages
63–79, 2002.

3. Lucas Bordeaux, Youssef Hamadi, and Moshe Y Vardi. An analysis of slow
convergence in interval propagation. In Principles and Practice of Constraint
Programming–CP 2007, pages 790–797. Springer, 2007.

4. Xavier Lorca Charles Prud’homme, Jean-Guillaume Fages. Choco3 documentation.
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2014.

5. Vianney le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and
Christophe Lecoutre. Sparse-sets for domain implementation. In CP workshop on
Techniques foR Implementing Constraint programming Systems (TRICS), pages
1–10, 2013.

6. Hamed Fahimi and Claude-Guy Quimper. Linear-time filtering algorithms for the
disjunctive constraint. In Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, 2014.

7. Johannes Fischer and Volker Heun. Theoretical and practical improvements on the
rmq-problem, with applications to lca and lce. In Combinatorial Pattern Matching,
pages 36–48. Springer, 2006.

8. Steven Gay, Renaud Hartert, and Pierre Schaus. Time-table disjunctive reasoning
for the cumulative constraint. In International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR15). Springer, 2015.

9. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

10. Christophe Lecoutre, Fred Hemery, et al. A study of residual supports in arc
consistency. In IJCAI, volume 7, pages 125–130, 2007.

11. Arnaud Letort, Nicolas Beldiceanu, and Mats Carlsson. A scalable sweep algorithm
for the cumulative constraint. In Principles and Practice of Constraint Program-
ming, pages 439–454. Springer, 2012.

12. Or-tools Team. or-tools: Google optimization tools, 2015. Available from
https://developers.google.com/optimization/.

13. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

14. Pierre Ouellet and Claude-Guy Quimper. Time-table extended-edge-finding for
the cumulative constraint. In Principles and Practice of Constraint Programming,
pages 562–577. Springer, 2013.

15. Petr Viĺım. Timetable edge finding filtering algorithm for discrete cumulative
resources. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 230–245. Springer, 2011.

	Simple and Scalable Time-Table Filtering for the Cumulative Constraint

