
Time-Table Disjunctive Reasoning
for the Cumulative Constraint

Steven Gay, Renaud Hartert, Pierre Schaus

UCLouvain, ICTEAM,
Place Sainte Barbe 2,

1348 Louvain-la-Neuve, Belgium
{firstname.lastname}@uclouvain.be

Abstract. Scheduling has been a successful domain of application for
constraint programming since its beginnings. The cumulative constraint
– which enforces the usage of a limited resource by several tasks – is one
of the core components that are surely responsible of this success. Un-
fortunately, ensuring bound-consistency for the cumulative constraint is
already NP-Hard. Therefore, several relaxations were proposed to reduce
domains in polynomial time such as Time-Tabling, Edge-Finding, Ener-
getic Reasoning, and Not-First-Not-Last. Recently, Vilim introduced the
Time-Table Edge-Finding reasoning which strengthens Edge-Finding by
considering the time-table of the resource. We pursue the idea of exploit-
ing the time-table to detect disjunctive pairs of tasks dynamically during
the search. This new type of filtering – which we call time-table disjunc-
tive reasoning – is not dominated by existing filtering rules. We propose
a simple algorithm that implements this filtering rule with a O(n2) time
complexity (where n is the number of tasks) without relying on complex
data structures. Our results on well known benchmarks highlight that
using this new algorithm can substantially improve the solving process
for some instances and only adds a marginally low computation overhead
for the other ones.

Keywords: Constraint programming, Scheduling, Cumulative Constraint, Time-
table, Disjunctive Reasoning.

1 Introduction

Many real-world scheduling problems involve cumulative resources. A resource
can be seen as an abstraction of any renewable entity – as machinery, electricity,
or even manpower – which is used to perform tasks (also called activities). Al-
though many tasks could be scheduled simultaneously on a same resource, the
total use of a resource cannot exceed a fixed capacity at any moment.

In this paper, we focus on a single cumulative resource with a discrete finite
capacity C ∈ N and a set of n tasks T = {1, . . . , n}. Each task i has a starting
time si ∈ Z, a fixed duration di ∈ N, and an ending time ei ∈ Z such that the
equality si + di = ei holds. Moreover, each task i consumes a fixed amount of

Fig. 1: Task i is characterized by its
starting time si, its duration di, its
ending time ei, and its resource con-
sumption ci.

Fig. 2: Accumulated resource con-
sumption over time. The cumulative

constraint ensures that the maximum
capacity C is not exceeded.

resource ci ∈ N during its processing time. Tasks are non-preemptive, i.e., they
cannot be interrupted during their processing time. In the following, we denote
by si and si the earliest and the latest starting time of task i and by ei and ei
the earliest and latest ending time of task i (see Fig. 1). The cumulative con-
straint [1] ensures that the accumulated resource consumption does not exceed
the maximum capacity C at any time t (see Fig. 2):

∀t ∈ Z :
∑

i∈T : si≤t<ei

ci ≤ C. (1)

Unfortunately, ensuring bound consistency for the cumulative constraint is
already NP-Hard [11]. Therefore, many relaxations were proposed during the last
two decades to remove inconsistent starting and ending times in polynomial time.
Among them, the Time-Tabling filtering rule has been the subject of much re-
search in the scheduling community [4,9,13]. The idempotent algorithm proposed
by Letort in [9] implements Time-Tabling with a O(n2) time complexity and has
been successfully applied on problems with hundreds of thousands of tasks. The
fastest (non-idempotent) known algorithm for Time-Tabling has a time complex-
ity of O(n log n) [13]. Despite its scalability, Time-Tabling suffers from limited
filtering. On the other extreme, Energetic Reasoning [3,10] achieves a strong
filtering at the cost of a prohibitive O(n3) time complexity. Between these two
extremes, several tradeoffs were proposed to balance strong filtering with low
time complexity, e.g., Edge-Finding [6,15], Time-Table Edge-Finding [16], Time-
Table Extended-Edge-Finding [13], or Not-First-Not-Last [14]. All the filtering
rules listed above are subsumed by the filtering achieved by Energetic Reason-
ing at the exception of Not-First-Not-Last that is not comparable with Energetic
Reasoning.

Surprisingly, Disjunctive Reasoning (DR) [3] has only been partially adapted
to the cumulative context. In [2], Baptiste and Le Pape proposed to detect sets
of tasks that cannot overlap in time without exceeding the amount of resource
available initially. However, this approach is limited as it does not take in account
the changes in the amount of resource available over time. This situation is
illustrated in Fig. 3 where a task k has been fixed (by search or propagation).
It is easy to see that tasks i and j cannot overlap in time due to the amount

Fig. 3: Tasks i and j cannot overlap in time due to the amount of resource already
consumed by task k. As j cannot be scheduled before i, j has to be scheduled
after i: ei ≤ sj . This situation is not detected by the approach proposed in [2].

of resource consumed by k. Unfortunately, this situation is not detected by the
approach proposed by Baptiste and Le Pape.

In this work, we propose to improve Disjunctive Reasoning by considering
changes in the amount of resource available. Similarly to the idea of Vilim in [16],
we leverage the time-table – a core concept of Time-Tabling – to detect disjunc-
tive pairs of tasks dynamically. Our new filtering rule – namely Time-Table Dis-
junctive Reasoning – is not subsumed by any known filtering rule. We propose
a simple algorithm that implements this filtering rule with a O(n2) time com-
plexity without relying on complex data structures. We also propose two ways of
improving the filtering of this algorithm. Our results on well known benchmarks
from PSPLIB [7] highlight that Time-Tabling Disjunctive Reasoning is a promis-
ing filtering rule for state-of-the-art cumulative constraints. Indeed, using our
algorithm can substantially improve the solving process of some instances and,
at worst, only adds a marginally low computation overhead for the other ones.

This paper is structured as follows. Section 2 describes the time-table and
the necessary background. Section 3 is dedicated to the Time-Table Disjunctive
Reasoning rule and presents the algorithm and two possible extensions. The
evaluation of our approach is presented in Section 4. This paper concludes on
future works and possible improvements.

2 Mandatory Parts and Time-Table

Even tasks that are not fixed convey some information that can be used by
filtering rules. For instance, tasks with a tight execution window must consume
some resource during a specific time interval known as mandatory part.

Definition 1 (Mandatory part). Let us consider a task i ∈ T . The manda-
tory part of i is the time interval [si, ei[. Task i has a mandatory part only if its
latest starting time is smaller than its earliest ending time.

If task i has a mandatory part, we know that task i will consume ci of resource
during all its mandatory part no matter its starting time. Fig. 4 illustrates the
mandatory part of an arbitrary task i.

Fig. 4: Task i has a mandatory part [si, ei[if its latest starting time si is smaller
than its earliest ending time ei: si < ei. Task i always consumes the resource
during its mandatory part no matter its starting time.

By aggregation, mandatory parts allow to have an optimistic view of the
resource consumption over time. This aggregation is known as the time-table
(also called minimum resource profile).

Definition 2 (Time-Table). The time-table TTT is the aggregation of the
mandatory part of all the tasks in T . It is formally defined as the following
step function:

TTT = t ∈ Z −→
∑

i∈T | si≤t<ei

ci. (2)

The problem is inconsistent if ∃t ∈ Z : TTT (t) > C.

The time-table can be computed in O(n) with a sweep algorithm given the tasks
sorted by latest starting time and earliest ending time [4,9,16].

3 Time-Table Disjunctive Reasoning

In order to explain Time-Table Disjunctive Reasoning, we will use some addi-
tional notations. Let I, J be time intervals. If I ⊆ J , we say that J contains I.
If I ∩ J 6= ∅, we say that I overlaps J , or that I and J overlap.

3.1 Disjunctive Reasoning and Minimum Overlapping Intervals

In [3], Baptiste et al. briefly describe Disjunctive Reasoning in the cumulative
context as a reasoning on all pairs of tasks i 6= j that enforces bound-consistency
on the formula:

ci + cj ≤ C ∨ ei ≤ sj ∨ ej ≤ si. (3)

The filtering rule to update start variables based on this formula is given next.

Proposition 1 (Disjunctive Reasoning). Let us consider a pair of tasks i 6=
j in T , such that ci + cj > C, sj < ei and si < ej. Then, ei ≤ sj must hold.

This rule states that if i and j cannot overlap, and if scheduling j at sj would
make it overlap i, then ei ≤ sj , so the start of j must be at least ei. We say
that task i is a pushing task while task j is a pushed task. A rule for filtering
the ending times can be derived by symmetry.

The rule from Prop. 1 does some of the work of time-table filtering: when ci+
cj > C and i has a mandatory part, the reasoning on pair (i, j) is subsumed by
time-tabling [3]. An additional filtering can be achieved by Disjunctive Reasoning
when task i does not have a mandatory part. This filtering occurs when placing
task j at sj would make it overlap i in every schedule. It is based on the fact that
j cannot contain a time interval that i must overlap. When i has no mandatory
part, there is a minimum such interval.

Definition 3 (Minimum Overlapping Interval). The minimum overlapping
interval of task i, denoted moii, is the smallest time interval that overlaps i no
matter the starting time of i. It is defined by the interval [ei − 1, si]. Task i is
always executed during at least one time point of moii.

The moi of a task i is illustrated in Fig. 5.

Fig. 5: Minimum overlapping interval of task i. Wherever i is placed, i must
overlap moii, and moii is the smallest such interval.

When a task has a mandatory part, we consider that it has no minimum
overlapping interval. Using the concept of minimum overlapping interval, it is
possible to rewrite the part of Prop. 1 that is specific to Disjunctive Reasoning.

Proposition 2 (Restricted Disjunctive Reasoning). Let us consider a pair
of tasks i 6= j such that task i has no mandatory part (ei ≤ si) and that ci +cj >
C. If scheduling task j at its earliest starting time makes it completely overlap
the minimum overlaping interval of i (moii ⊆ [sj , ej [), then ei ≤ sj must hold.

The rule from Prop. 2 is illustrated in Fig. 6. Algorithm 1 directly follows from
this rule.

3.2 Restricted Time-Table Disjunctive Reasoning

One weakness of Disjunctive Reasoning lies in the fact that it does not take into
account the changes in the amount of resource available over time (see Fig. 3).

Fig. 6: On the left, tasks i and j cannot fit together for capacity reasons. Setting
sj to sj would make j contain moii, and placing i would be impossible. On the
right, the inconsistent values of sj are removed, these are t ≤ min(moii). This
filtering is achieved by setting sj to ei.

Algorithm 1: O(n2) algorithm to enforce rule of Prop. 2

Input: a set of tasks T , capacity C
Input: an array s′ mapping i to si
Output: array s′ mapping i to updated starting time

1 for i ∈ T such that ei ≤ si do
2 for j ∈ T − {i} do
3 if ci + cj > C ∧moii ⊆ [sj , ej [then

4 s′j ← max(s′i, ei)

In this section, we show how to exploit the information contained in the time-
table (see Section 2) to propose an enhanced disjunctive filtering rule called
Time-Table Disjunctive Reasoning.1 We first introduce Time-Table Disjunctive
Reasoning for the case where tasks i and j have no mandatory part and thus do
not contribute to the time-table. This particular case saves us from removing the
possible contribution of i or j from the time-table when applying a disjunctive
reasoning. This restricting assumption will be relaxed to any pair of tasks later
on in section 3.3.

Let us consider a pair of tasks i 6= j with no mandatory parts such that
moii ⊆ [sj , ej [. Then Prop. 2 only compares ci + cj to C. However, tasks in
T −{i, j} may not leave C units of resource available during the overlap of i and
j. We derive a new rule that leverages the mandatory part of such tasks.

Proposition 3. Let us consider a pair of tasks i 6= j ∈ T such that i and j have
no mandatory part and that ci + cj + mint∈moii TTT (t) > C. If scheduling task j
at its earliest starting time makes it completely overlap the minimum overlapping
interval of i (moii ⊆ [sj , ej [), then ei ≤ sj must hold.

1 The idea of leveraging the time-table to strengthen an existing filtering rule has
already been applied successfully in [13,16].

Proof. If j contained moii, then j would increase consumption by cj during all of
moii, because j does not yet contribute to resource consumption. Then, placing
i anywhere would increase consumption by ci at some point t of moii, making
consumption at t greater than C. Moreover, since moii ⊆ [sj , ej [, the duration
of j is such that scheduling j before ei makes j contain moii. Hence, these values
are inconsistent, and ei ≤ sj must hold. ut

Using this rule, we can only filter values among tasks with no mandatory
parts. Next section shows how to apply the same reasoning to every task.

3.3 Time-table Disjunctive Reasoning

Using the same idea as in [13,16], we strengthen our rule further by splitting
every task in two parts, a free part and the mandatory part.

Definition 4 (Free part). Let us consider a task i ∈ T such that i has a
mandatory part (si < ei). Its free part, denoted if , is a separate task with the
same earliest starting time and latest ending time as i: sif = si and eif = ei.
The duration of if is equal to the duration of i minus the size of its mandatory
part: dif = di − (ei − si). If i has no mandatory part, then i = if .

Fig. 7: A task i with a mandatory part and its free part if . The free part if
always has a minimum overlapping interval moiif .

Free parts have no mandatory part and always have an moi (see Fig. 7). In
the remainder, we refer to Tf = {if | i ∈ T ∧ dif > 0} as the set of all the free
parts of strictly positive duration (i.e. free parts of not assigned tasks).

Using free parts enables us to use any task in the reasoning, without worrying
whether or not they contribute to the time-table. Notice that while the update
is triggered by computations on free parts of tasks, the actual update should be
made on tasks themselves, here sj .

Proposition 4 (Time-Table Disjunctive Reasoning). Let us consider a
pair of tasks if 6= jf ∈ Tf such that ci + cj + mint∈moiif

TTT (t) > C. If task jf
scheduled at its earliest starting time completely overlaps the minimum overlap-
ping interval of if (moiif ⊆ [sjf , ejf [), then, eif ≤ sj must hold.

Proof. Suppose that the premises are true, and then suppose sj ≤ min(moii).
Since jf contains moiif when left-shifted and dj ≥ djf , placing j before or at
min(moiif) makes it contain moiif . Notice that j does not contribute to the
time-table during moiif , since max(moiif) ≤ ejf = min(ej , sj).

If i has no mandatory part, it does not contribute to the time-table. This
means that ∀t ∈ moiif , TT (t) = TTT −{i,j}(t). Then placing j before or at
min(moii) increases resource consumption on moiif by cj , which prevents i = if
from being placed on its moi, and is contradictory.

If i has a mandatory part, it contributes to the time-table on [min(moiif) +
1,max(moiif) − 1]. Placing j before or at min(moiif) increases resource con-
sumption at min(moiif) and at max(moiif) by cj , This prevents if from being
left-shifted or right-shifted, which in turn means that i itself cannot overlap
these time points. Since it must overlap at least one of these points, this is
contradictory. ut

Algorithm 2 is an easy to implement O(n2) algorithm combining moi and
free parts abstractions. This algorithm enforces the updates of starting times
given by Prop. 4. The tasks Pushing are candidate pusher tasks (taking the role
of i). The tasks Pushed are candidate pushed tasks (take the role of j). For
now, they are both Tf . The time-table is basically an array of pairs (t, c) where
t is a time and c is a consumption, it must be sorted by nondecreasing t. Its
initialization in line 1 can be done in O(n log n), by sorting tasks according to
s and e and sweeping over these time points. In line 3, consumption(i,TT) can
be implemented2 as mint∈moiif

TT(t), it can be computed in linear time on the

time-table. Hence, this algorithm is O(n2). Its correctness follows from Prop. 4.

Algorithm 2: Time-Table Disjunctive filtering algorithm.

Input: sets of tasks T , Pushing ⊆ Tf and Pushed ⊆ Tf , capacity C
Input: an array s′ initially mapping i to si
Output: array s′ with updated starting times

1 TT← initializeT imeTable(T)
2 for if ∈ Pushing do
3 gap← C − ci − consumption(i,TT)
4 for jf ∈ Pushed−{if} do
5 if moi(i) ⊆ [s(j), e(j)[then
6 if cj > gap then
7 s′j ← max(s′j , e(i))

Proposition 5. The filtering of Time-Table Disjunctive Filtering is not sub-
sumed by Energetic Reasoning nor by Not-First-Not-Last.

2 This primitive is voluntarily let abstract to describe further improvements.

1

2

0 41 52 3 6 107 118 9 12 13 14 16 1715 18 19 20

0

3

2

1

Fig. 8: Due to the time-table, tasks j and i cannot overlap. Since j cannot be
scheduled before i, j has to be scheduled after i: ei ≤ sj .

Proof. Figure 8 shows an example where Time-Table Disjunctive Reasoning can
filter some values, but Energetic Reasoning and Not-First-Not-Last cannot. Task
i is defined by (si, ei, di, ci) = (2, 11, 3, 2), task j is defined by (sj , ej , dj , cj) =
(1, 20, 9, 1). Consumption in the resource could come from task k, defined by
(sk, ek, dk, ck) = (2, 11, 9, 1). Tasks i and j have no mandatory part, so if = i
and jf = j. The condition moii = [4, 8] ⊆ [sj , ej [= [1, 10[is satisfied, and the
minimum of TT over moii = [4, 8] is 1. It means that the two tasks i and j,
consuming respectively 2 and 1 unit of resource, are not allowed to overlap over
[4, 8]. Hence sj is updated to min(moii) + 1 = ei = 5. ut

3.4 Improvements

The computation of allowed gap in Prop. 4, reflected at line 3 of Algorithm 2,
can be strengthened in some cases, allowing to filter more values.

Pushing task does not fit inside its moi. When the duration of if is larger
than its moi, we can strengthen the gap allowed by i by taking the minimum of
the time-table on extremities of moiif instead of taking it on the whole interval:

Proposition 6 (Improvement 1). Let if 6= jf ∈ Tf , such that |moiif | − 1 ≤
dif . Suppose moiif ⊆ [sjf , ejf [and

cif + cjf + min(TT(min(moiif)),TT(max(moiif))) > C

Then eif < sj must hold.

Proof. If sj ≤ min(moiif), then j contains moiif , so it contains the extremities
of moiif . Thus, j makes the consumption at min(moiif) and max(moiif) increase
by cj . Because of its duration, if must overlap at least one of min(moiif) and
max(moiif). Doing so would overload the resource, so this is contradictory. ut

1

2

0 41 52 3 6 107 118 9 12 13 14 16 1715 18 19 20

0

3

2

1

Fig. 9: Illustration of Prop. 6

Example 1. We refer to the Figure 9. Task i = if has moii = [4, 7], and 3 =
|moii |−1 ≤ di = 5. Prop. 4 does not cause any update, since mint∈moii TT(t) =
0. However, Prop. 6 would trigger and would compute a smaller gap, since
min(TT(4),TT(7)) = 1. Hence, Prop. 6 allows us to adjust the starting time
of j to 5.

Notice that improving Algorithm 2 using Prop. 6 can be done by changing
consumption(i,TT) at line 3 to compute the minimum only at the extremities
of moii when |moiif | ≤ dif + 1.

Pushing task has a mandatory part When task i has a mandatory part, de-
spite if ’s domain, the consumption of if will not really be scheduled inside moiif .
Thus, we can strengthen the gap in the same way as the previous improvement:

Proposition 7 (Improvement 2). Let if 6= jf ∈ Tf , such that i has a manda-
tory part. Suppose moiif ⊆ [sjf , ejf [and

cif + cjf + min(TT(min(moiif)),TT(max(moiif))) > C

Then eif < sj must hold.

Proof. The argument is the same as for Prop. 6: i must overlap either min(moiif)
or max(moiif), hence computing the gap using only these points is sufficient. ut

Example 2. We refer to the Figure 10. Task i has a mandatory part. Since 4 =
|moiif | − 1 > dif = 2, we are not in the case of application of Prop. 6. We
cannot apply Prop. 4 either, since mint∈moiif

(TT(t)) is 1, allowing i and j to

overlap. Nevertheless, since i has a mandatory part, we can apply Prop. 7 and
use min(TT(4),TT(8)) = 2 to compute the gap, which forbids i and j to overlap
in moiif . Hence, Prop.7 allows us to adjust the starting time of j to 5.

1

1

1

0

3

2

1

0 41 52 3 6 107 118 9 12 13 14

Creation of

the free part

16 1715 18 19 20

Fig. 10: Illustration of Prop. 7

Once more, improving Algorithm 2 using Prop. 7 can be done by changing
consumption(i,TT) at line 3 to compute the minimum only at the extremities
of moii when i has a mandatory part.

Reducing the number of pairs to consider Our algorithm has a theoretical
O(n2) time complexity, but it is possible to reduce it in practice by removing
tasks that cannot push, and by removing tasks that cannot be pushed. Refining
these sets allows to keep the same filtering, while examining much less than the
theoretical O(n2) pairs of tasks.

First, pushing tasks must have a tight enough moi and high enough con-
sumption during their moi to push any other task. After refining Pushing, we
found useful to refine tasks of Pushed according to their time location: a pushed
task must not be schedulable before the minimal earliest start of pushing tasks
mois, and must be updatable at least by their maximal earliest end.

This procedure is formalized in Algorithm 3.

4 Experiments and Results

This section presents the experimental evaluation of Time-Table Disjunctive
Reasoning (TTDR) on several well known benchmarks of the Resource Con-
straints Project Scheduling Problem (RCPSP) from PSPLIB [7]. The aim of
these experiments is to measure the performance of the cumulative constraint
when TTDR is added to a set of filtering rules. To achieve this, we compared
the performance of classical filtering rules with and without TTDR. Here is the
exhaustive list of the compared algorithms:

– Time-Tabling (TT) is implemented using a fast variant of [9];

Algorithm 3: Refinement of Pushing and Pushed with O(n) overhead

Input: a set of tasks T , initialized TT, capacity C
Output: Pushing and Pushed arrays for TTDR input

1 D = max dif , G = max cif
2 Pushing0 = {if ∈ Tf s.t. |moiif | ≤ D}
3 for if ∈ Pushing0 do
4 gapif

← C − ci − consumption(i,TT)

5 Pushing = {if ∈ Pushing0 s.t. gapif
< G}

6 S = minif∈Pushing sif , E = maxif∈Pushing eif
7 Pushed = {if ∈ Tf s.t. sjf < E ∧ S < ejf }

– Time-Table Disjunctive Reasoning (TTDR) implemented as described in this
paper with all proposed improvements;

– Edge-Finding (EF) is implemented as proposed in [6];

– Energetic Reasoning (ER) is the well known implementation proposed by
Baptiste et al. in [3]. We added some improvements proposed by Derrien et
Petit to reduce the number of considered intervals [5];

– Not-First-Not-Last (NFNL) is implemented with a O(n3) variant of the al-
gorithm proposed by Schutt et al. [14].

All the algorithms were implemented in the open-source OscaR Solver [12].The
priorities chosen for cumulative constraints in the propagation queue are such
that TT is executed first, then TTDR, EF, ER and finally NFNL. We used a
classic SetTimes search [8], breaking ties by taking a task of minimal duration.

We used a machine with a 4-core, 8 thread Core(TM) i7-2600 CPU @ 3.40GHz
processor and 8GB of RAM under GNU/Linux. using Java SE 1.7 JVM.

We report the cumulated distribution F (τ) of instances solved within com-
putational limit τ in Fig. 11 and Fig. 13. On the left column, τ refers to time,
on the right it refers to the size of the search tree; the x-axis is logarithmic in
both cases. F (τ) = k means that k instances where solved under τ ms or nodes.
We set a timeout of 90s for every computation.3 Due to a lack of room, we only
display results obtained on instances with 30 and 120 tasks. Results obtained on
instances with 60 tasks are similar. However, we observed that adding TTDR
has a very little effect on instances with 90 tasks in which only two additional
instances were closed using TTDR.

In Fig. 12 and Fig. 14, we report results for destructive lower bound experi-
ments, that compute the best lower bound given by propagation alone.

Despite its O(n2) theoretical complexity, the algorithm for TTDR is more of
a lightweight algorithm. The only computation overhead appears on very small
time limits when TTDR is used with TT. However, the additional filtering of
TTDR quickly takes over, allowing to solve more instances for a given time

3 Which is why time graphs will not show points further than 217ms.

limit τ . The PSPLIB instances are well-known to be rather disjunctive than
cumulative.4 Adding energy-based reasoning on PSPLIB instances is a risky
trade-off. Indeed, energy-based reasoning does not trivialize much the PSPLIB
instances, whereas TTDR does improve on the number of instances solved by TT
alone. This confirms experimentally that TTDR is complementary to existing
energy-based filtering for the cumulative constraint (see Prop. 5)

Finally, we also see that the gain in solved instances does not drop from the
30-task set to the 120-task set. This means that the filtering depends more on
the nature of instances than on their size, and that the O(n2) algorithm for
TTDR scales well.

5 Conclusion

This paper introduces Time-Tabling Disjunctive Reasoning – a new filtering rule
that leverages the time-table to detect disjunctive pairs of tasks dynamically. By
relying on minimum overlapping intervals, this filtering rules achieve a new type
of filtering that is not subsumed by existing filtering rules such as Energetic
Reasoning or Not-First-Not-Last. Besides its novelty, Time-Table Disjunctive
Reasoning can be implemented with a simple O(n2) algorithm that does not
rely on complex data-structures. Benefits of using Time-Table Disjunctive Rea-
soning in combination with other filtering rules were evaluated on well-known
benchmarks from PSPLIB. Our results highlight that Time-Table Disjunctive
Reasoning is a promising filtering rule to extend state-of-the-art cumulative

constraints. Indeed, using our algorithm can substantially improve the solving
process of some instances and, at worst, only adds a marginally low overhead
for the other ones.

Although the strengthening proposed by Time-Table Disjunctive Reasoning
is already a good tradeoff in terms of speed and filtering, it could be improved
further. For instance, its practical complexity could be reduced by using sweeping
techniques to prevent the examination of non-overlapping pairs of tasks. An even
more interesting improvement would be on the filtering side. For instance, one
may be able to strengthen the filtering by considering minimum overlapping
intervals on more than one task at the same time.

Acknowledgments. Steven Gay is financed by project Innoviris 13-R-50 of the
Brussels-Capital region. Renaud Hartert is a Research Fellow of the Fonds de la
Recherche Scientifiques - FNRS. The authors would like to thank Sascha Van
Cauwelaert for sharing his instances and parser, and the reviewers for suggestions
of experiments.

4 A problem is said to be highly disjunctive when many pairs of activities cannot
execute in parallel; on the contrary, a problem is highly cumulative if many activities
can effectively execute in parallel [2].

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 6 8 10 12 14 16 18

TT

TT+TTDR
 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 6 8 10 12 14 16 18 20 22 24

TT

TT+TTDR

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 6 8 10 12 14 16 18

TT+EF

TT+EF+TTDR
 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 6 8 10 12 14 16 18 20 22

TT+EF

TT+EF+TTDR

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 6 8 10 12 14 16 18

TT+ER+NFNL

TT+ER+NFNL+TTDR
 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 6 8 10 12 14 16 18 20 22

TT+ER+NFNL

TT+ER+NFNL+TTDR

Fig. 11: Plots for all instances of PSPLIB30. y-axis is the cumulative number of
solved instances. In the left column, x-axis is log2(t), with t time in ms. In the
right column, x-axis is log2(n), with n the number of nodes to find optimal and
prove optimality.

Stack TT TT+EF TT+ER+NFNL

Score 26364 26712 26765

+TTDR, Score 26543 26815 26845

+TTDR, #Improvements 104 73 65

Fig. 12: Results for destructive lower bound experiments. Score is the sum of
proven lower bounds, with the original stack or with TTDR. #Improvements
shows the number of instances where adding TTDR gives a strictly higher bound.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4 6 8 10 12 14 16 18

TT

TT+TTDR
 0

 20

 40

 60

 80

 100

 120

 140

 160

 4 6 8 10 12 14 16 18 20 22

TT

TT+TTDR

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4 6 8 10 12 14 16 18

TT+EF

TT+EF+TTDR
 0

 20

 40

 60

 80

 100

 120

 140

 160

 4 6 8 10 12 14 16 18 20

TT+EF

TT+EF+TTDR

 0

 20

 40

 60

 80

 100

 120

 140

 4 6 8 10 12 14 16 18

TT+ER+NFNL

TT+ER+NFNL+TTDR
 0

 20

 40

 60

 80

 100

 120

 140

 4 6 8 10 12 14 16

TT+ER+NFNL

TT+ER+NFNL+TTDR

Fig. 13: Plots for all instances of PSPLIB120. y-axis is the cumulative number
of solved instances. In the left column, x-axis is log2(t), with t time in ms. In
the right column, x-axis is log2(n), with n the number of nodes to find optimal
and prove optimality.

Stack TT TT+EF TT+ER+NFNL

Score 58365 69074 69509

+TTDR, Score 58575 69117 69536

+TTDR, #Improvements 132 33 22

Fig. 14: Results for destructive lower bound experiments. Score is the sum of
proven lower bounds, with the original stack or with TTDR. #Improvements
shows the number of instances where adding TTDR gives a strictly higher bound.

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve
complex scheduling and placement problems. Mathematical and Computer Mod-
elling, 17(7):57–73, 1993.

2. Philippe Baptiste and Claude Le Pape. Constraint propagation and decompo-
sition techniques for highly disjunctive and highly cumulative project scheduling
problems. Constraints, 5(1-2):119–139, 2000.

3. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-based scheduling:
applying constraint programming to scheduling problems, volume 39. Springer, 2001.

4. Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives con-
straint with negative heights. In CP, Lecture Notes in Computer Science, pages
63–79, 2002.

5. Alban Derrien and Thierry Petit. A new characterization of relevant intervals for
energetic reasoning. In Principles and Practice of Constraint Programming, pages
289–297. Springer, 2014.

6. Roger Kameugne, Laure Pauline Fotso, Joseph Scott, and Youcheu Ngo-Kateu.
A quadratic edge-finding filtering algorithm for cumulative resource constraints.
Constraints, 19(3):243–269, 2014.

7. Rainer Kolisch, Christoph Schwindt, and Arno Sprecher. Benchmark instances for
project scheduling problems. In Project Scheduling, pages 197–212. Springer, 1999.

8. Claude Le Pape, Philippe Couronné, Didier Vergamini, and Vincent Gosselin.
Time-versus-capacity compromises in project scheduling, 1994.

9. Arnaud Letort, Nicolas Beldiceanu, and Mats Carlsson. A scalable sweep algorithm
for the cumulative constraint. In Principles and Practice of Constraint Program-
ming, pages 439–454. Springer, 2012.

10. Pierre Lopez, Jacques Erschler, and Patrick Esquirol. Ordonnancement de tâches
sous contraintes: une approche énergétique. Automatique-productique informatique
industrielle, 26(5-6):453–481, 1992.

11. Wilhelmus Petronella Maria Nuijten. Time and resource constrained scheduling: a
constraint satisfaction approach. PhD thesis, Technische Universiteit Eindhoven,
1994.

12. OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

13. Pierre Ouellet and Claude-Guy Quimper. Time-table extended-edge-finding for
the cumulative constraint. In Principles and Practice of Constraint Programming,
pages 562–577. Springer, 2013.

14. Andreas Schutt and Armin Wolf. A new O(n2 log n) not-first/not-last pruning
algorithm for cumulative resource constraints. In Principles and Practice of Con-
straint Programming–CP 2010, pages 445–459. Springer, 2010.

15. Petr Viĺım. Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n). In Principles and Practice of Constraint Programming-CP 2009, pages
802–816. Springer, 2009.

16. Petr Viĺım. Timetable edge finding filtering algorithm for discrete cumulative
resources. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 230–245. Springer, 2011.

	Time-Table Disjunctive Reasoning for the Cumulative Constraint

