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Stability of wall bounded, shear flows of dense
granular materials: the role of the Couette gap,
the wall velocity and the initial concentration
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In this paper, the stability of a plane, unidirectional Couette flow of a dense granular
material is investigated via the means of a normal mode stability analysis. Our studies
are based on a continuum mechanical model for the flows of interest coupled with
the constitutive expressions for the normal and the shear stresses of the granular
material induced by the µ(I)-rheology. According to our analysis, both the Couette
gap and the wall velocity play a destabilizing role in the flows of interest as opposed
to the initial concentration that acts as stabilizer. For sufficiently high Couette gaps
and wall velocities, unstable modes are recovered. The predicted instability manifests
itself through shear-induced dilatancy that, in turn, engenders particle migration and
the formation of bulbs, similar to the ones that have been acquired through molecular
dynamics simulations.
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1. Introduction

Being reminiscent of both solids and fluids, but still enjoying properties that
differentiate them from these states of matter, granular materials exhibit substantially
complex behaviours. However, these behaviours remain elusive to understand and
continue to puzzle scientists and engineers alike, despite the numerous efforts that
have been devoted to their study.

The rich phenomenology of granular materials can be evidenced even in deceivingly
simple flows. Indeed, experimental measurements and numerical predictions on
granular shear flows have demonstrated the manifestation of phenomena such as
particle clustering, segregation, pattern formation, stress fluctuations, etc. (Hopkins &
Louge 1991; Ottino & Khakhar 2000; Goldhirsch 2003). Such phenomena, which are
absent from shear flows of simple fluids, are associated with density inhomogeneities
and hint that granular shear flows might be susceptible to hydrodynamic instabilities.
In turn, these findings have prompted the investigation of the stability of such flows,
identified as steady-state solutions to continuum equations of motion.
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The majority of studies that have examined the stability of either bounded or
unbounded granular shear flows have utilized continuum models derived from kinetic
theories of granular gases. According to this modelling approach, governing equations
are derived by employing aspects of kinetic theory, appropriately modified to account
for the dissipative interparticle collisions, (Jenkins & Savage 1983; Lun et al. 1984;
Jenkins & Richman 1985; Savage 2008). As regards unbounded shear flows, Savage
(1992) and Babić (1993) investigated the linear stability of a steady base flow
to time-dependent perturbations (‘Kelvin modes’), as predicted by the governing
equations of Lun et al. (1984). Both authors reported the existence of unstable
modes. Further insight in this direction was provided by Schmid & Kytömaa (1994),
Alam & Nott (1997) and the systematic review of Goddard (2003). A notable disparity
was raised by Chen, Lai & Young (2010) who, based on a viscoplastic constitutive
model that also accounts for dilatancy effects, reported that the flow of interest is
unconditionally stable. This disparity was subsequently resolved by Chen, Lai &
Young (2012). Additionally, these authors exemplified the critical differences between
disturbances with and without a streamwise component.

As regards bounded shear flows, Wang, Jackson & Sundaresan (1996) examined the
linear stability of a plane, rapidly sheared granular layer, confined between two plates
moving in opposite directions. They documented the existence of unstable modes
that, in turn, explicated the discrepancies between the bounded and the unbounded
case. Also, these authors reported that the properties of the walls appear to have
little impact on the stability properties of the flow. Alam & Nott (1998) performed a
similar analysis and demonstrated an inconsistency in the study of Wang et al. (1996)
related to the shape of the base-flow profile. Upon rectifying it, the authors concluded
that the properties of the walls are of considerable importance to the determination
of the stability properties and found novel travelling and stationary wave instabilities.
A more detailed study concerning the role of boundaries, that put this matter at rest,
was carried out by Nott et al. (1999). In a subsequent work, Alam et al. (2005),
motivated by the fact that a Squire-type theorem is unlikely to hold for granular
materials, performed a three-dimensional stability analysis for the flows of interest.
The results of that study corroborated the suspected differences between planar and
three-dimensional granular flows concerning both the magnitude and the cardinality of
the unstable growth rates. More recent contributions include those of Shukla & Alam
(2011a,b) and Alam & Shukla (2013) that are, however, concerned with nonlinear
stability analyses.

All the afore-cited studies have focused on either dilute or ‘rapid dense’ granular
flows, i.e. on collision-dominated flows where equations of motion derived from
kinetic theory are formally valid. For dense granular flows, where frictional effects
become important, the assumptions that kinetic theory models predicate on become
questionable. In this regime, a continuum mechanical framework is deemed better
adapted, (Drew & Passman 1999). This approach invokes principles of continuum
mechanics and rests upon the exploitation of the entropy inequality for the derivation
of constitutive relations for the dissipative processes that occur in the medium,
(Goodman & Cowin 1972; Wang & Hutter 1999c; Massoudi & Mehrabadi 2001;
Kirchner 2002; Fang, Wang & Hutter 2006b; Fang 2008a).

However, to date, stability analyses of dense granular flows as predicted by
continuum mechanical models are notably scarce. This constitutes a critical gap
in the extant literature primarily for three reasons: (i) these types of model have been
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documented to enjoy a good predictive capacity, (Savage 1979; Gudhe, Yalamanchili
& Rajagopal 1994; Wang & Hutter 1999c; Kirchner & Teufel 2002; Massoudi &
Phuoc 2005; Fang, Wang & Hutter 2006a; Fang 2008b), (ii) recent phenomenological
expressions for the granular rheology that accord very well with experimental
measurements, (Jop, Forterre & Pouliquen 2006; Henann & Kamrin 2013), can
be rigorously accommodated in the theoretical framework of continuum mechanical
models and in a way that conforms with the entropy law, and (iii) in the absence
of theoretical results for dense granular flows, our picture concerning their stability
properties remains incomplete.

The objective of the present study is to perform the first step towards closing
this gap in the literature. More specifically, we investigate the asymptotic stability
of a plane Couette flow of a dense granular material as predicted by the dry limit
of the continuum theory for coexisting and interacting continua with microstructure
of Papalexandris (2004). The governing equations are further endowed with the
constitutive relations induced by the µ(I)-rheology of Jop et al. (2006) for the
normal and the shear stresses and with suitable experimentally acquired correlations
for the intergranular and the Korteweg stresses. The resulting, post-constitutive model
is general enough to account for both compaction and dilatational effects.

This paper is organized as follows. In § 2, we present and elaborate on the
governing equations, their non-dimensionalisation and the choice of the base flow.
Section 3 is devoted to the linear stability analysis and the delineation of the algorithm
that is utilized for the computation of the stability modes. The results of our analysis
are reported and analysed in § 4. Finally, § 5 concludes.

2. Governing equations

We consider an isotropic granular material of incompressible, monodisperse grains.
We further assume that the role of the interstitial fluid can be neglected during the
evolution of the flow. Also, the contribution of gravitational forces is ignored.

Continuum mechanical models for dense dry granular flows can be derived either
directly, as done, for instance, in Savage (1979) and in Kirchner (2002) or via the
systematic reduction of models for fluid-saturated granular materials to their single-
phase (dry) limit, as done, among others, in Svendsen & Hutter (1995) and Bdzil
et al. (1999). In the present study, we opt for the latter option and employ the mixture
theory of Papalexandris (2004) as the starting point.

The derivation of the dry limit of mixture theoretic models is a subtle procedure
that is exemplified in detail in Bdzil et al. (1999). It involves an order-of-magnitude
analysis that rests upon and utilizes the smallness of the ratio of the mass fraction,
density and of partial normal stresses of the granular material to those of the
interstitial fluid. With these assumptions, terms that describe interphase interactions,
e.g. interphasial drag, become negligible in the governing equations of the granular
material thus allowing for their formal removal. Accordingly, the evolution of the
granular material becomes independent from that of the interstitial fluid. However,
the converse is not valid because the governing equations of the latter still depend
on the dynamics of the granular material; in this respect, the dry limit is markedly
different from the pure-fluid limit (Navier–Stokes) which is identified by the absence
of the granular material.
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Upon application of this procedure to the mathematical model of Papalexandris
(2004), we arrive at the following system of (dimensional) equations,

∂φ

∂ t̂
+ ∇̂ · (φû)= 0, (2.1)

∂ρ̂φû
∂ t̂
+ ∇̂ · (ρ̂φûû)+ ∇̂(p̂φ)=−∇̂(p̂vφ)+ ∇̂ · (τ̂φ)− ∇̂ · (Γ̂ ∇̂φ∇̂φ), (2.2)

∂φ

∂ t̂
+ û · ∇̂φ = 1

ν̂c

(
p̂− β̂ + ∇̂ · (Γ̂ ∇̂φ)

)
. (2.3)

Physically, (2.1) and (2.2) describe the balance of mass and linear momentum of the
granular material. Equation (2.3) is the compaction equation that governs the evolution
of the granular material’s volume fraction φ. In the present theory, the compaction
equation results directly from the constraints imposed by the entropy law on the
entropy production rate. It is worth noting that, although there is no unequivocal
consensus on the form of (2.3), the bulk of existing compaction equations are either
rate equations, (Baer & Nunziato 1986; Bdzil et al. 1999; Papalexandris 2004), or
wave-type equations, (Goodman & Cowin 1972; Passman et al. 1980; Passman,
Nunziato & Bailey 1986).

In (2.1)–(2.3), and throughout this paper, the hat symbol (‘ˆ’) denotes a dimensional
variable. The quantities ρ̂, φ and û= (û, v̂, ŵ) designate the density, volume fraction
and velocity vector of the granular material, respectively. The terms p̂, p̂v and τ̂

constitute the components of the granular material’s stress tensor Σ̂ with respect to
the classical decomposition,

Σ̂ =−(p̂+ p̂v)I + τ̂ . (2.4)

In this respect, p̂ and p̂v are the reversible hydrostatic pressure and the irreversible
isotropic part of the stress tensor, respectively, whereas τ̂ is its deviator. In the
constant-density regime, p̂ reduces to the ‘dynamic’ pressure, completely equivalent
to the pressure term appearing in the incompressible Navier–Stokes equations. A
formal demonstration of this equivalence can be found in Varsakelis & Papalexandris
(2011) and for a connection to the representation theorem for isotropic functions we
refer to the classical treatise of Truesdell & Noll (1965). For granular materials, the
irreversible isotropic pressure p̂v is further decomposed into a bulk viscous pressure
and a particle pressure, namely a surface force due to particle collisions.

The term β̂ appearing in the right-hand side of the compaction equation (2.3)
is the intergranular stress or configuration pressure; see, for example, Goodman
& Cowin (1972), Josserand, Lagrée & Lhuillier (2004) and Josserand, Lagrée &
Lhuillier (2006) for dry granular flows and Passman et al. (1986), Wang & Hutter
(1999a,b) and Cochran & Powers (2008) for fluid-saturated ones. Physically, β̂
describes the continuum manifestation of contact stresses resulting from strains due
to intergrain interaction. Bdzil et al. (1999) and Powers (2004) illustrated that, in
the mixture theory of interest and its variations, the intergranular stress β̂ emerges
due to the inclusion of the volume fraction as an internal thermodynamic variable
for the description of the granular microstructure. In particular, it constitutes the
force conjugate to the volume fraction. As such, it is defined as the thermodynamic
derivative of the granular material’s free energy ψ̂ , with respect to the volume fraction
φ, i.e. β̂ = ρφ ∂ψ̂/∂φ.
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The term Γ̂ that appears as a coefficient in the second-order differential operator
in the right-hand side of the compaction equation (2.3), and in the tensor involving
the volume fraction gradients in the right-hand side of the momentum equation (2.2),
is the equilibrated stress coefficient; this is the terminology originally introduced
in Goodman & Cowin (1972). In analogy to β̂, this term emerges due to the
inclusion of ∇̂φ as an additional internal variable for the description of the granular
materials interfacial area density. Accordingly, Γ̂ is the force conjugate to ∇φ and
Γ̂ = ρφ ∂ψ̂/∂|∇̂φ|2, (Ván 2004; Fang et al. 2006a,b; Varsakelis 2015). The rationale
for the inclusion of ∇̂φ as an internal variable is the following. The interface
between a granular material and an interstitial fluid (or void) has a macroscopic
thickness and thus bears stronger resemblances to a thin transition layer than to a
sharp discontinuity. Within this transition layer, steep gradients of concentration are
developed that give rise to a Korteweg stress, i.e. a weak, transient interfacial tension
that mimics the surface tension effect. As shown in Dunn & Serrin (1985), the
rationalization of such stresses within thermodynamically consistent theories requires
that the free energy of the material is a function of the volume fraction gradient as
well. Then, the diffusion operator appearing in the right-hand side of the compaction
equation (2.3) models the tendency of the granular material to suppress concentration
inhomogeneities. Further, the tensor that involves the volume fraction gradients in
the right-hand side of the momentum equation (2.2) is the so-called Korteweg tensor
and models the aforementioned interfacial tension. Note that the Korteweg tensor
constitutes a non-dissipative component of the granular material’s stress tensor and
in the presence of concentration inhomogeneities does not vanish at thermodynamic
equilibrium. In fact, Ván (2004) showed that, at thermodynamic equilibrium, the
presence of the Korteweg tensor yields that normal and shear stresses are related via
a Mohr–Coulomb criterion.

Finally, the coefficient ν̂c is the so-called compaction viscosity, introduced by
Baer & Nunziato (1986), and measures the strength of dilatational effects. Indeed,
as ν̂c → ∞ dilatancy effects become redundant and the compaction equation (2.3)
predicts that the volume fraction φ is conserved along the streamlines or equivalently
that the motion of the granular material is isochoric; thus, the motion of the granular
material resembles that of an incompressible fluid-like body (Málek & Rajagopal
2006; Varsakelis & Papalexandris 2015a).

Equations (2.1)–(2.3) share minor differences with other existing continuum
mechanical models for the flows of interest. More importantly, as dictated by the
principle of phase separation, (Truesdell 1984), these differences do not stem from the
fact that the continuum theory of Papalexandris (2004) utilizes a two-phase framework.
Rather, they can be traced to the methodology that each of these models employs
for the exploitation of the entropy inequality, e.g. the Coleman–Noll approach, the
Müller–Liu approach, the Theory of Irreversible Processes approach, etc., (Wang &
Hutter 2001; Kirchner 2002).

Besides the compaction equation, an important difference between (2.1)–(2.3), and
continuum mechanical models in general, and kinetic theoretical models is the absence
of the granular temperature from the former. Although it is possible to introduce it as
an additional variable so that quadratic (Bagnold) stresses are modelled, this is not a
necessity but rather a convenience since such nonlinear effects can be accounted for
via theories for second-order fluids, (Savage 1979).
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2.1. Constitutive expressions and closure relations

In order to close (2.1)–(2.3), suitable expressions for the terms p̂v, τ̂ , β̂ and Γ̂
have to be employed. For the irreversible isotropic pressure p̂v and the deviator
τ̂ we opt for the constitutive expressions derived from the µ(I)-rheology. This
is a phenomenological rheology law that combines a fluid-like, rate-dependent
approach with a yield criterion. It is consistent with dimensional analysis and its
predictions compare favourably against experimental measurements in a multitude
of configurations; see, for example, MiDi (2004), Jop et al. (2006) as well as the
more recent review article of Forterre & Pouliquen (2008). Herein, we employ the
three-dimensional extension of the µ(I)-rheology law of Jop et al. (2006) in the
volume fraction representation. Then, the constitutive relations for p̂v and τ̂ read,

τ̂ = µ̂(φ) |
ˆ̇γ | d̂2

pρ̂

I2
ˆ̇γ , p̂v = |

ˆ̇γ |2 d̂2
pρ̂

I2
, (2.5a,b)

I = φmax − φ
φmax − φmin

, µ(φ)=µ1 + µ2

I0

I
+ 1

. (2.6a,b)

In the above equations, γ̇ = (∇u+∇uT)− (2/3)∇ · u is the deviator of the strain-rate

tensor whilst | ˆ̇γ | =
√
( ˆ̇γij ˆ̇γij)/2 designates its second invariant (written in the Einstein

summation convention). Also, I = | ˆ̇γ |d̂p/
√
(p̂+ p̂v)/ρ̂ is the inertial number, with d̂p

standing for the particle diameter. As illustrated by da Cruz et al. (2005), I describes
the ratio between the macroscopic time scale, induced by deformation due to shear,
to the inertial time scale associated with the pressure force. Further, φmin and φmax
stand for the minimum and maximum particle concentration whereas µ1, µ2 and I0
are constants whose value is acquired though experimental measurements.

According to (2.5) and (2.6), both p̂v and τ̂ diverge as φ→ φmax. This divergence
describes the jamming transition that grains experience upon attaining their maximum
concentration. In other words, in the volume fraction representation, the µ(I)-rheology
gives rise to Krieger–Dougherty type laws for both the normal and shear viscosities.
It is also interesting to observe that I is a decreasing function of φ and is maximized
at φ = φmin with maximum value I(φmin) = 1. This inverse correlation describes the
fact that an increased concentration should translate into larger frictional effects.
Moreover, the value of unity is also not coincidental. The µ(I)-rheology predicts a
shear-thickening behaviour through (i) the inverse dependence of the shear stresses
on the inertial number I, and (ii) the nonlinear dependence of the shear stresses on
the shear rate. Therefore, when I = 1, shear thickening can only happen through the
second term whilst for I > 1, the shear-thickening behaviour is not guaranteed since
there is a competition between (i) and (ii). In this respect, the value I = 1 is the
borderline value upon which the behaviour of the µ(I)-rheology changes qualitatively.

At this point, a comment on the appropriateness of the employed rheology law is
relevant. Strictly speaking, the µ(I)-rheology and its incarnations have been developed
for and measured in steady granular flows. Consequently, the presumed validity of
this law for transient flows constitutes more of an ad hoc postulate than a documented
fact. Nevertheless, we stress that the µ(I)-rheology has been already exercised in the
description of transient flows with a notable success. For instance, Lagrée, Staron
& Popinet (2011) combined the µ(I)-rheology with the two-phase Navier–Stokes
equations for the investigation of a granular column collapse. The resulting numerical
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predictions accorded reasonably well with experimental data. Thus, on the premise
that the limitations are acknowledged, the utilization of the µ(I)-rheology for the
flows of interest can be justified.

It is also important to note that, as mentioned above, p̂v is in general decomposed
into a bulk viscous pressure and a shear-induced pressure. The µ(I)-rheology provides
expressions only for the latter component since it based on the assumption that the
flow is isochoric. A more complete constitutive expression for p̂v would read,

p̂v = |
ˆ̇γ |2d̂2

pρ̂

I2
− ζ̂ (φ, | ˆ̇γ |)∇̂ · û, (2.7)

where ζ̂ (φ, | ˆ̇γ |) is a bulk viscosity coefficient. However, since we are not acquainted
with any systematic measurements for ζ̂ (φ, | ˆ̇γ |), we will assume that, for the flows
of interest,

ζ̂ (φ, | ˆ̇γ |)∇̂ · û�min

{
| ˆ̇γ |2d̂2

pρ̂

I2
,
µ̂(φ)| ˆ̇γ |d̂2

pρ̂

I2
ˆ̇γ
}
, (2.8)

which practically amounts to invoking a Stokes-type hypothesis.
For the intergranular stress β̂, we adopt the empirical correlation of Powers, Stewart

& Krier (1989) which is based on the experimental measurements of Elban & Chiarito
(1986). This correlation assumes the following form,

β̂ = k̂1

(
φ

2− φ
)2

log
(

1
1− φ

)
. (2.9)

Here, k̂1 is a strictly positive, material dependent, constant. Equation (2.9) is clearly a
monotonically increasing, convex function of the volume fraction. As mentioned
in Powers et al. (1989), the monotonicity reflects the fact that, as the particle
concentration and thus the intergranular stress increase, an increased hydrostatic
pressure is required to offset β̂; see also the earlier discussion of Carroll & Holt
(1972). Convexity, on the other hand, is welcomed from the mathematical point of
view because it ameliorates technical difficulties associated with the establishment of
the existence of solutions, (Varsakelis & Papalexandris 2014a).

As regards the equilibrated stress coefficient Γ̂ , we utilize a φ-weighted variation
of the functional relation proposed by Passman et al. (1986),

Γ̂ = k̂2φ

(φmax − φ)2 , (2.10)

where k̂ is a material-dependent, positive constant. Equation (2.10) represents a form
of Krieger–Dougherty type relation and, as such, diverges to infinity as φ → φmax
but additionally converges to zero as φ → 0. Passman et al. (1986), who based
their selection on the experimental measurements of Savage (1979), argued that the
divergence at the maximum concentration is consistent with the behaviour of (2.5)
and (2.6) at this limit.

The last quantity that needs to be determined is the compaction viscosity ν̂c. This is
somewhat problematic because, as remarked by Powers, Stewart & Krier (1990) and
much later by Lowe & Greenaway (2005), reliable empirical correlations for ν̂c are
not available in the literature. In the absence of any further guidance, we adopt the
heuristic analysis of Baer & Nunziato (1986), and assume that ν̂c can be approximated
by a constant.
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2.2. Non-dimensionalisation and base-flow profile
In a plane, unidirectional Couette flow, the granular material is placed between two
infinite parallel planes, in the x̂–ŷ Cartesian plane, that are kept at a constant distance
Ĥ (Couette gap). Further, the line ŷ= 0 is assumed to coincide with the lower plane.
The upper plane is presumed to move at a constant velocity Ûw > 0 in the x̂-direction.

In the context of a linear stability analysis, it is advantageous to utilize the
non-dimensional form of the governing equations. For this, we first determine the
(dimensional) reference values that will be denoted with the subscript ‘r’.

As is typically the case in the study of Couette flows, the reference velocity ûr

is taken equal to the wall velocity Ûw. However, due to the explicit presence of the
particle diameter d̂p in the expressions for the deviator and the irreversible isotropic
pressure, there is an ambiguity in the choice of the reference length. Herein, we
employ the Couette gap Ĥ as the reference length L̂r. With these choices, velocity
vectors, length vectors, and time are non-dimensionalised as follows,

ui = ûi

ûr
, x= x̂

L̂r

, t= t̂r
ûr

L̂r

. (2.11a−c)

The reference values for the granular density and the pressure p̂ are taken equal to
ρ̂r = ρ̂, p̂r = ρ̂rû2

r hence the non-dimensional density and pressure read,

pi = p̂
p̂r
, ρ = ρ̂

ρ̂r
= 1. (2.12a,b)

As regards β̂ and Γ̂ , based on the order-of-magnitude analysis of Varsakelis &
Papalexandris (2011), we non-dimensionalise them with respect to ρ̂rû2

r and ρ̂rûrL̂2
r ,

respectively. Then,

β = β̂

ρ̂rû2
r

, Γ = Γ̂

ρ̂rûrL̂2
r

. (2.13a,b)

Subsequently, by introducing the expressions for p̂v, τ̂ β̂ and Γ to (2.1)–(2.3), and
by performing the above non-dimensionalisation, we arrive at the non-dimensional
form of the governing equations which reads

∂φ

∂t
+∇ · (φu)= 0, (2.14)

∂φu
∂t
+∇ · (φuu)+∇(pφ) = −∇

( |γ̇ |2dp
2

I2
φ

)
+∇ ·

(
µ(φ)|γ̇ |dp

2

I2
γ̇φ

)
−∇ ·

(
k2φ

(φmax − φ)2∇φ∇φ
)
, (2.15)

∂φ

∂t
+ u · ∇φ = 1

Rec

(
p− k1φ

2 +∇ ·
(

k2φ

(φmax − φ)2∇φ
))

. (2.16)

Equations (2.14)–(2.16) have four dimensionless groups, namely dp, k1, k2 and Rec.
The quantity dp describes the ratio between the particle diameter and the height of
the domain. We remark that the validity of the continuum hypothesis requires that
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dp ∼ O(10−k), for some k ∈ Z, however, the exact value of k is problem dependent,
(Hutter & Rajagopal 1994). Further, k1 and k2 measure the ratio between compaction
to inertia effects and between intergranular surface variation to inertia effects. Finally,
Rec is the ‘compaction Reynolds number’ which measures the ratio of viscous forces,
due to compaction, to inertia.

Next, we advert to the choice of the base-flow profile. We invoke the time-
independent, quasi-parallel flow assumption and search for profiles of the following
form,

u0 = u0(y), v0 = v0(y), p0 = p0(y), φ0 = φ0(y). (2.17a−d)

Note that, although it is sufficient to impose that the base-flow is one-dimensional,
the quasi-parallel flow assumption is more general. According to both experimental
measurements and numerical predictions, expounded in Forterre & Pouliquen (2008),
a base-flow profile that conforms with our postulates reads,

φ0(y)= φ0 = constant, (2.18)
u0(y)= y, (2.19)
v0(y)= 0, (2.20)

p0(y)= k1

(
φ0

2− φ0

)2

log
(

1
1− φ0

)
. (2.21)

It is straightforward to verify that the above relations constitute solutions to the non-
dimensionalised (2.14)–(2.16).

Finally, the governing equations have to be endowed with suitable boundary
conditions which, due to the quasi-parallel flow postulate, are required only for the
upper and the lower planes. For the sake of simplicity, and keeping in mind the
restrictions that arise from such a choice, a no-slip boundary condition is imposed
on the granular velocity at both planes u(0)= (0), v(0)= 0 and u(1)= 1, v(1)= 0.

For the volume fraction, we first note that, in weakly non-local theories that involve
gradients as internal variables such as the one that (2.1)–(2.3) have been based upon,
the prescription of boundary conditions cannot be circumvented, unless the flow under
consideration enjoys multiple symmetries, (Massoudi 2007). For the problem at hand,
the presence of the second-order differential operator in the right-hand side of the
compaction equation in conjunction with the quasi-parallel flow postulate, imply that
two boundary conditions are needed for the volume fraction as well. Following Wang
& Hutter (1999a,b), a Dirichlet boundary condition is assigned to the volume fraction,
i.e. φ(0)= φ(1)= φ0. A plausible rationale of physical origin in favour of this choice
is offered by Massoudi & Mehrabadi (2001) and Massoudi & Phuoc (2005).

As regards the pressure p, a comment is in order. For general flowing conditions,
e.g. transient, multi-dimensional flows, boundary conditions for the pressure are
inherited from the momentum equation (2.14) as dictated by the Helmholtz
decomposition and Ladyzhenskaya’s decomposition theorem, (Ladyzhenskaya &
Solonnikov 1978; Lions 1996; Chorin & Marsden 2000). For such cases, the pressure
p is computed as the solution to an appropriate Neumann problem by taking the
divergence of the momentum equation and upon combination with the continuity
equation, Varsakelis & Papalexandris (2014b), Varsakelis, Monsorno & Papalexandris
(2015). This is actually the exact analogue for the computation of the pressure field in
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the variable density Navier–Stokes equations. Importantly, as shown in Ladyzhenskaya
(1969) for the Navier–Stokes equations and in Varsakelis & Papalexandris (2010) for
the equations at hand, imposing additional boundary conditions to the pressure field,
results in an overdetermined problem. For the particular case at hand, however,
the prescription of boundary conditions is trivial since p is uniform throughout the
domain; assuming that p is continuous at the boundary, then a zero Neumann as
well as the Dirichlet condition p(0) or p(1) = k1(φ

0/(2− φ0))2 log(1/(1− φ0)) work
equally well.

Additionally, we assume that the base-flow profiles u0 and φ0 satisfy the same
boundary conditions as u and φ, respectively,

u(0)= u0(0)= 0, u(1)= u0(1)= 1, (2.22a,b)

v(0)= v0(0)= 0, v(1)= v0(1)= 0, (2.23a,b)

φ(0)= φ0(0)= φ0, φ(1)= φ0(1)= φ0. (2.24a,b)

3. Linear stability analysis
In this section, we investigate the stability of the base flow, given by (2.18)–(2.21),

to infinitesimal perturbations. We formally seek for solutions that can be expressed as
the sum of the base-flow profile plus a disturbance (denoted by the superscript ‘1’),
i.e.

u(x, y, t)= u0(y)+ u1(x, y, t), (3.1)

v(x, y, t)= v1(x, y, t), (3.2)

φ(x, y, t)= φ0(y)+ φ1(x, y, t), (3.3)

p(x, y, t)= p0(y)+ p1(x, y, t). (3.4)

Under the assumption that disturbances are small, the solutions can be searched from
the governing (2.14)–(2.16), linearized with respect to the base-flow profile (2.18)–
(2.21).

Although the linearization procedure is standard, the resulting expressions of the
linearized governing equations are too lengthy and cumbersome to reproduce here
without distorting the continuity of reading. For this reason, and for the sake of
completeness, we have opted to include them in the appendix A of this paper.

The formal validity of the above linearization presumes that disturbances are small
(infinitesimal) but of otherwise arbitrary form. In the present study, we opt for a
normal mode analysis, (Drazin & Reid 2011). With this ansatz, disturbances are given
by the following expressions,

(φ1, u1, v1, p1)= ei(αx−ct)(φ(y), u(y), v(y), p(y)), α ∈R, c ∈C. (3.5)

Here, u(y), v(y), p(y), φ(y) are the amplitudes of the disturbances. Further, α is the
prescribed wavenumber and c= cR+ icI is the complex frequency. Unstable modes are
associated with frequencies c such that cI > 0.

Upon substitution of (3.5) to the linearized governing equations (see appendix A)
and following a series of tedious, albeit straightforward, calculations we arrive at the
following set of equations that govern the evolution of the disturbances,

3∑
j=1

3∑
i=0

(
Aφi,j

diφ

dyi
+ Au

i,j
diu
dyi
+ Avi,j

div

dyi
+ c

(
Bφi,j

diφ

dyi
+ Bu

j,j
diu
dyi
+ Bvi,j

div

dyi

))
= 0. (3.6)
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In the above equations, di·/dyi stands for the ith-order derivative with respect to y
with the usual notation convention d0f /dy0 ≡ f , for every function f . The coefficients
Aφ , Au, Av, Bφ , Bu and Bv are 4 × 3 nonlinear algebraic operators that depend the
base-flow profiles and the dimensionless groups k1, k2, Rec and dp.

This is a generalized eigenvalue problem with c being the eigenvalue and (φ, u, v)
the eigenvector. The analytic expression of the generalized eigenvalue problem is
reported in the appendix B of this paper.

It is interesting to observe that the amplitude of the pressure’s disturbance p does
not appear in (3.6). The reason for performing this decoupling is that the governing
equations of the amplitudes of the disturbances are not of the same order with respect
to all variables. They are second order with respect to φ, u and v, but only first order
with respect to p. This is exactly the same rationale that is employed in the derivation
of the Orr–Sommerfeld equation for the Navier–Stokes equations which also does not
explicitly contain the pressure term. Actually, in view of the compaction equation, it
is also possible to remove the φ as well and thus end up with a novel system with
respect to u and v. However, in this case, the resulting eigenvalue system is quadratic
and thus extra caution should be exercised in its approximation.

In the course of our study, we have solved all three eigenvalue problems. According
to our numerical experiments, however, (3.6) was the one for which the numerical
method that we employed, outlined in the next subsection, was more robust. The same
experiments showed that the quadratic eigenvalue problem was the most problematic
as the resulting matrices turned out to be very badly conditioned. Although a rigorous
mathematical proof for this behaviour is not at our disposal, we may attribute this
deterioration to presence of poles 1/(φ − φj)

n, n ∈ N that when coupled with the
expression that connects φ with u and v, engender quite convoluted expressions that
may be singular.

The boundary conditions for the amplitude of the disturbances follow directly from
the assumption that the boundary conditions for the base-flow variables are identical
to those for the total flow variables. Consequently, the disturbances are required to
approach zero at both boundaries, that is,

u1(0)= u1(1)= 0, v1(0)= v1(1)= 0, (3.7a,b)

φ1(0)= φ1(1)= 0. (3.8)

3.1. Numerical method
Due to the complexity of the generalized eigenvalue problem (3.6), the analytical
computation of the spectrum and the eigenfunctions is a formidable task. For this
reason, we have resorted to the numerical approximation of these quantities. The
voluminous literature on the numerical aspects of the Orr–Sommerfeld equation,
arising in the study of the linear stability of the Navier–Stokes equations, corroborates
that the accurate computation of the spectra and the eigenfunctions requires a
judiciously chosen numerical method, (Orszag 1971; Huang & Sloan 1994; Dongarra,
Straughanb & Walker 1996). Thus, since the eigenvalue problem (3.6) is markedly
more complex than the one induced by the Orr–Sommerfeld equation, its numerical
approximation requires an elaborate numerical scheme as well.

In the present study, the generalized eigenvalue problem (3.6), along with the
boundary conditions (3.7) and (3.8), is approximated via a Chebyshev collocation
method. A detailed description of this algorithm is given in Varsakelis & Papalexandris
(2015b) and herein only its flowchart is presented.
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(i) Primitive algebraic functions, i.e. the components of the base flow and the
disturbances, are approximated via Chebyshev interpolation or equivalently by
expansion in series of Chebyshev polynomials.

(ii) Algebraic differential operators are computed via applying a pseudo-spectral
collocation method to the Chebyshev representation of the various quantities.

(iii) Boundary conditions are evaluated with the help of ghost cells to maintain the
structure of the approximation throughout the computational domain.

(iv) The resulting discretized eigenvalue problem is computed via the QR-decomposi-
tion. The computation of the eigenvalues and the corresponding eigenvectors
is performed in a series of adapted (denser) grids so that spurious modes are
excluded and higher accuracy is achieved.

(v) All Chebyshev approximations require a very strict convergence criterion, close
to machine precision.

All computations have been carried with the Chebfun computational suite, (Hale &
Trefethen 2014). The robustness and accuracy of Chebfun have been assessed in a
multitude of cases, including the computation of the spectrum of the Orr–Sommerfeld
operator.

4. Numerical results

We choose to investigate the Couette flow of dry monodisperse sand. The grains
are assumed to be spherical with particle diameter d̂p = 0.001 m and density
ρ̂ = 2500 kg m−3. As regards the constants k̂1 and k̂2 appearing in (2.9) and (2.10),
guided by the numerical study of Varsakelis & Papalexandris (2010) who computed
the stresses acting on a granular material at equilibrium, we set k̂1 = 0.1 kg m−1 s−2,
and k̂2 = 0.1 kg m s−2. Additionally, following Jop et al. (2006), we set µ1 = 0.38,
µ2 = 0.26 and I0 = 0.279. For the maximum and the minimum concentrations we fix
φmax = 0.65 and φmin = 0.15. Finally, based on the order-of-magnitude arguments of
Kapila et al. (2001), the compaction viscosity is set equal to ν̂c = 10 kg m−1 s−1.

For our reference configuration, we set the initial concentration φ0= 0.55, i.e. 15 %
less than the maximum packing. Further, we fix the Couette gap to Ĥref = 0.1 m
and the wall velocity to Ûw,ref = 0.01 m s−1. The initial dimensional wavenumber is
set equal to α̂ = 1/Ĥ, so that its dimensionless value α is unity. Accordingly, the
dimensionless groups that the equations depend upon, assume the values dp = 0.01,
k1 = 0.4, k2 = 0.04 and Rec = 0.25.

Prior to proceeding to the presentation and discussion of the numerical results, a
comment on the magnitude of α is pertinent. It should be reiterated that continuum
models for the flows of interest are subject to scale limitations stemming from the
continuum hypothesis, i.e. their validity is limited to scales larger than the grain
diameter. Consequently, very small, and equally very large, wavelengths cannot be
appropriately accounted for in the framework of this study.

Figure 1 portrays the growth rate σ = max{cI} against the wavenumber α for
the reference configuration. The growth rate remains negative and thus the flow is
predicted to be linearly stable for all wavenumbers considered herein. Moreover, σ
is found to positively correlate with α and following a rapid increase, its rate of
change reduces significantly so that it remains majorized by the line σ =−0.3. Still,
we stress that the line σ = −0.3 does not constitute an asymptote because σ is not
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FIGURE 1. Growth rate σ plotted against the wavenumber α for the reference
configuration. The superimposed dash-dotted line (— · —) σ =−0.3. The flow is predicted
to be linearly stable for all wavenumbers 0.02 6 α 6 1. Further, the growth rate is
monotonically increasing with α. However, its curve remains beneath the line σ =−0.3
which acts as an upper bound.

constant but continues to increase monotonically with α, albeit very slowly. It is,
therefore, conceivable that, for large enough α where the validity of the model breaks
down, an unstable mode appears.

In order to examine the range of the detected stability, we have carried a series of
parametric studies. Although the governing equations (2.14)–(2.16) depend analytically
on four dimensionless groups, dp, k1, k2 and Rec, only two degrees of freedom can
be modified without changing the material under study; the wall velocity Ûw and the
Couette gap Ĥ, both of which explicitly appear in (3.6). Moreover, the dependence of
these dimensionless groups on Ûw and Ĥ implies that changes in Ĥ, with other things
constant, cannot be always recovered by changes in Ûw and vice-versa. Consequently,
a complete parametric study should examine the effects of both these degrees of
freedom. On the other hand, it is well documented that the initial concentration plays
a pivotal role in the determination of the stability properties of the flows of interest,
(Wang et al. 1996).

In view of the above, in our parametric studies we have examined the effect of
modifying the initial concentration φ0, the Couette gap Ĥ and the wall velocity Ûw.
In particular, we have confined ourselves to the study of two-dimensional parametric
studies, so that a dyad drawn from the set {Ĥ, Ûw, φ

0} is modified and the remaining
variable maintains its value with respect to the reference configuration.

We note that since Ĥ and Ûw have been chosen as reference variables in the non-
dimensionalisation of the governing equations, their dimensionless values are equal
to unity. In order to continue the presentation of the results in dimensionless form,
as is customary in stability analyses, all figures that involve Ĥ and Ûw are written
with respect to a Couette gap ratio Ĥ/Ĥref , and a wall velocity ratio Ûw/Ûw,ref . Thus,
comparison is performed with respect to the reference configuration that has been
predicted to be linearly stable.
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FIGURE 2. Selected growth rates σ plotted against the Couette gap ratio Ĥ/Ĥref , for
various initial concentrations φ0 and for α = 1 and Ûw = Ûw,ref = 1. The flow remains
linearly stable for 1 6 Ĥ/Ĥref 6 30 and 0.4 6 φ0 6 0.55. Further, according to our
predictions, shear flows at higher Couette gaps and with lower concentrations correspond
to higher growth rates.

It is interesting to note that Alam & Nott (1998) employ dp as a measure of the
Couette gap. There is no difficulty in doing so in our study as well, however, we are
not acquainted with any similar representation of the wall velocity. Thus, for the sake
of consistency, we have opted to employ the aforementioned ratio variables.

4.1. Parametric study with respect to Ĥ and φ0

For the scopes of this parametric study we modify Ĥ and φ0 while the remaining
variables have maintained their values with respect to the reference configuration.
Figure 2 shows representative growth rates σ versus the Couette gap ratio Ĥ/Ĥref for
different initial concentrations and for α = 1, Ûw = Ûw,ref = 1. For all values of these
parameters considered herein, namely 1 6 Ĥ/Ĥref 6 30, the flow is predicted to be
linearly stable.

As asserted by figure 2, the Couette gap plays a destabilizing role in the flows
of interest. Indeed, it correlates positively with the growth rate, however, its rate of
change experiences a significant decrease. Therefore, shear flows confined in very
wide channels, and at the limit unbounded ones, might be susceptible to instabilities.
On the other hand, the magnitude of the initial concentration is found to have a
stabilizing effect. This is not surprising since, as the concentration increases, frictional
forces become dominant and render relative motion between the grains more difficult.
As a consequence, disturbances in the form of travelling waves that conform with
the governing equations at hand correspond to increasingly smaller growth rates and,
therefore, decay faster.

The combined effect of modifying both the Couette gap and the initial concentration
does not yield any additional information about the interplay of these two parameters.
Indeed, the simultaneous modification of both parameters amounts to simply shifting
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the curves depicted in figure 2 accordingly. Nonetheless, although the magnitude of
the growth rate is predicted to be a complicated function of Ĥ and φ0, its sign remains
invariant.

Previous stability analyses that have reported the (Ĥ, φ0) diagram have also affirmed
the destabilizing and stabilizing role of the Couette gap and the initial concentration,
respectively, (Wang et al. 1996; Alam & Nott 1998; Nott et al. 1999). Most notably,
however, these studies have reported the existence of unstable modes. We now
examine whether this disparity is expected and justified.

As mentioned in the introduction, extant studies in the linear stability of the flows
of interest have focused on either dilute or rapid granular flows. These flows belong
to the collisional regime, where collisions between grains dominate over frictional
effects. In turn, this is reflected in the functional form of the governing equations
and in particular in the constitutive expressions for the normal and the shear stresses
that act on the granular conglomerate. By contrast, the focus of the present study
pertains precisely to the regime where frictional effects are important. In the context
of the employed theory, these effects are accounted for by embodying appropriate
viscous terms to the granular material’s stress tensor. In other words, even if we
ignore compaction effects, the differences between the stress tensor employed in
kinetic theoretical models and herein are large enough to lead to different stability
diagrams.

Being dissimilar, however, does not imply that the two stability diagrams are
in contradiction to each other. Rather, it reflects the fact that the dynamics of
granular materials in the aforementioned two regimes bear strong differences as well.
Consequently, reconciling the findings of the present study with those obtained from
kinetic theoretical models requires a ‘hybrid’ theory that is predicated on continuum
mechanics but additionally incorporates aspects of kinetic theory of granular gases in
a consistent manner. Nevertheless, to the best of our knowledge, a widely accepted
theory with the above characteristics has yet to appear in the literature.

4.2. Parametric study with respect to Ûw and φ0

For this parametric study, we have kept the value of the Couette gap fixed and
have modified the wall velocity and the initial concentration. More specifically, we
have considered values 1 6 Û/Ûw,ref 6 100 and 0.4 6 φ0 6 0.55. The results of this
parametric study are presented in figure 3, that portrays representative growth rates
σ versus the wall velocity ratio Û/Ûw,ref for various initial concentrations. Two
conclusions can be directly drawn. First, the flow remains linearly stable for all
values of Û/Ûw,ref and φ0 considered herein, and second, the effects of increasing the
initial concentration are stabilizing, in line with what was observed in the previous
parametric study; clearly, the latter conclusion is nothing but a sanity test for the
self-consistency of the acquired results.

By contrast, the role of Ûw and its interplay with φ0 are substantially more intricate.
According to figure 3, the curves of the growth rates comprise three segments. In the
first segment, increasing Û/Ûw,ref translates into gradually decaying growth rates. This
segment spans from the start of the horizontal axis until the point where a minimum
value has been attained in the cavity. Once this minimum value is crossed, the sign
of the correlation changes and this marks the onset of the second segment. Here, σ
experiences a rapid increase and reaches a local maximum that designates the border
of the second segment. The third segment extends from this local maximum until the
end of the horizontal axis. The shape of σ in this segment depends explicitly on φ0
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FIGURE 3. Representative growth rates σ plotted against the wall velocity ratio Ûw/Ûw,ref ,
for various initial concentrations and for α = 1, Ĥ/Ĥref = 1. The flow remains linearly
stable for 1 6 Ûw/Ûw,ref 6 100 and 0.4 6 φ0 6 0.55. Increasing Ûw/Ûw,ref initially
translates into lower growth rates which is subsequently followed by an abrupt increase
and the presence of a local maximum. The post-maximum behaviour of σ switches from
monotonically increasing to decreasing as φ0 increases.

and signifies the competition between φ0 and Ûw. For lower values of φ0, σ correlates
positively with Û/Ûw,ref suggesting that the increasing magnitude of the applied shear,
induced by the wall velocity, eventually acts as a destabilizing factor. As φ0 increases,
this correlation appears to progressively change sign. However, it should be stressed
that, according to our numerical experiments, the negative correlation does not hold
for arbitrary high wall velocities. As a matter of fact, our results conclusively show
that for each concentration φ0 there exists a threshold wall velocity upon which σ

becomes a monotonically increasing function of Û/Ûw,ref . In other words, increasing
the concentration amounts to translating the borderline from where the destabilizing
effects of the applied shear gradually counterbalance the frictional forces, accordingly.

One of the anonymous referees of this paper remarked that the complex, non-
monotonous dependence of the growth rate σ on Û/Ûw,ref , depicted in figure 3, can
be partially attributed to the interplay between the shear-thickening behaviour that
the µ(I)-rheology predicts and the destabilizing role of the applied shear. Indeed,
as Û/Ûw,ref increases so do (i) the magnitude of the frictional forces and hence of
the (stabilizing) dissipation, and (ii) the strength of the applied shear. With these
in mind, we observe that, in the first of the aforementioned three segments that
the growth rate curves consist of, increasing Û/Ûw,ref renders the flow more stable;
hence in this regime the stabilizing effect of dissipation dominates. Nevertheless, as
Û/Ûw,ref increases further, the (still increasing) dissipation is progressively offset by
the destabilizing effect of the (also increasing) applied shear. Although this offset is
oscillatory, hinting that secondary concentration-dependent mechanisms also influence
the flow, our numerical predictions suggest that the shear-thickening behaviour induced
by the µ(I)-rheology can only transiently stabilize the flows of interest.
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4.3. Parametric study with respect to Ĥ and Ûw

This parametric study concerns the effects of the combined modification of Ĥ and Ûw
on the stability properties of flow. Figure 4(a) depicts the predicted stability diagram
for 16 Ĥ/Ĥref 6 30 and 16 Û/Ûw,ref 6 100 while the initial concentration is φ0= 0.55.
It can be readily inferred that, for values of Ûw/Ûw,ref and Ĥ/Ĥref inside the domain
defined by the neutral stability curve, the flow becomes linearly unstable. Accordingly,
the maximum growth rate is σmax = 0.0054179 and corresponds to a wall velocity
Ûw = 0.67 m s−1 and Couette gap Ĥ = 3 m. We remark that σmax corresponds to
the eigenvalue with the largest real part and not to the first eigenvalue with positive
real part. In this respect, σmax is associated to a cutoff frequency, similar to the one
obtained by Forterre (2006), i.e. the spectrum is not unbounded as is the case of
Barker et al. (2015). Another interesting finding concerns the magnitude of σmax as
a function of the initial concentration φ0. According to our results, in the unstable
regime, σmax is negatively correlated to φ0 suggesting a reversal in the behaviour
depicted in figures 2 and 3.

The prediction of an instability regime for values of Ĥ/Ĥref , Ûw/Ûw,ref and φ0 that
have been employed in the previous parametric studies is not at odds with the results
of these studies. Rather, it reflects the aforementioned fact that, due to the particular
dependence of the dimensionless groups dp, k1, k2 and Rec on L̂r = Ĥ and Ur =
Ûw, changes of Ĥ cannot be represented by changes in Ûw. Thus, as confirmed by
our numerical predictions, a combined modification of these parameters is necessary
for the appearance of an unstable mode. This is further confirmed by figure 4(b,c)
that illustrate the same stability diagram but for different concentrations. From these
figures, we can additionally infer that modifying the concentration shifts the instability
regime along the main diagonal of the axes, accordingly.

The stability diagrams portrayed in figure 4(a–c) assert that for small values of the
Couette gap and of the wall velocity, the flow is linearly stable. As far as the Couette
gap is concerned, this finding is routinely recovered in stability analyses based on
kinetic theoretical models. However, as regards the wall velocity, this appears to be
a novel, consistent result. The scarcity of results in this direction may be attributed
to the dimensionless groups that kinetic theoretical models admit. In general, they
are markedly different from the ones discussed in the previous section and do not
incorporate the reference velocity.

Subsequently, we shift our focus to the manifestation of the detected instability and
its effects on the granular concentration and velocity fields. From the various unstable
modes that we acquired, we opt to study the case corresponding to the maximum
growth rate σmax = 0.0048 (Ûw/Ûw,ref = 67, Ĥ/Ĥref = 30, φ0 = 0.55). Figure 5 shows
contour plots of the granular concentration φ(x, y),

φ(x, y)= φ0 + φ1(x, y, t)= 0.55+Re(φ(y) ei(x−σmaxt)), (4.1)

at t = 0.1. Superimposed in this figure is a vector plot of the corresponding
(normalized) velocity field so that the motion of granular material can be pictured.

The initial uniform concentration φ0= 0.55 has been substantially modified and two
granular bulbs of high and low concentration have emerged, with the former preceding
the latter in the streamwise direction. These bulbs arise due to the interaction between
the disturbance φ1(x, y, t) and the base-flow concentration φ0, i.e. they constitute the
manifestation of the predicted instability. We remark that the second bulb constitutes a
mirror image of the first one, stemming directly from the fact that we have employed a
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FIGURE 4. Contour plot of growth rates σ for 1 6 Ûw/Ûw,ref 6 100 and 1 6 Ĥ/Ĥref 6
30. (a) φ0 = 0.55, (b) φ0 = 0.53 and (c) φ0 = 0.5. The wavenumber is α = 1. The thick
line (–) designates the neutral stability curve where σ = 0 and the filled diamond (�)
the maximum growth rate for each case. For values of Ûw/Ûw,ref and Ĥ/Ĥref inside the
region defined by the neutral stability curve, the flow is predicted to be linearly unstable.
For case (a) the maximum growth rate is predicted to be σ = 0.0054179 and corresponds
to the point Ûw/Ûw,ref = 67, Ĥ/Ĥref = 30. As the concentration decreases, the instability
regime is shifted downwards along the diagonal of the axes asserting that offsetting the
stabilizing effect of the frictional forces requires a lower wall velocity and Couette gap.
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FIGURE 5. (Colour online) Contour plots of the granular concentration at t = 0.1 for
Ûw/Ûw,ref =67, Ĥ/Ĥref =30 and σ =0.0048. The concentration is φ0=0.55. Superimposed
is a vector plot of the velocity field. The predicted instability manifests itself through the
formation of two granular bulbs of high and low concentration that move away from and
towards the upper wall, respectively. In turn, this results in particle migration.
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FIGURE 6. (Colour online) Contour plots of the granular vorticity at t = 0.1 for
Ûw/Ûw,ref = 67, Ĥ/Ĥref = 30 and σ = 0.0048. The concentration is φ0 = 0.55. As a
consequence of the predicted instability, two counter-rotating vortices have appeared that
are stretched in the streamwise direction by a factor of 3.5. The relative position with
respect to the granular bulbs of figure 5 indicates a form of preferential concentration.

normal mode analysis. The same observation applies to the velocity and vorticity fields
as well. Thus, it suffices to adhere to the examination of the first (high concentration)
bulb and the associated velocity and vorticity structures.

The motion of the first bulb takes place along curves of clockwise orientation and
shows a vertical displacement of particles from the upper plane towards the middle
of the domain. In other words, the instability gives rise to a shear dilatancy that, in
turn, induces particle migration.

At this point it is useful to note that the prediction of bulbs in granular shear flows
is not without precedence. Indeed, Conway & Glasser (2004) and Conway, Liu &
Glasser (2006), who studied granular shear flows via molecular dynamics simulations,
documented the formation and propagation of elongated and oscillatory structures of
high particle concentration located in the middle of the domain. These structures are
qualitatively similar to those predicted by our linear stability analysis; cf. Figure 5,
and provide further evidence on the appropriateness of continuum mechanical models
to describe the primary properties of the flows of interest.

Further insight to the properties of the predicted instability can be obtained upon
examination of the vorticity field of the fluid. Figure 6 depicts contours of the
granular vorticity at t = 0.1. We observe that, following the onset of the instability,
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two counter-rotating vortices are formed that are stretched in the streamwise direction
by a factor of, approximately, 3.5. More important, however, is the positioning of
these vortices relative to the bulbs. In particular, the maximum concentration of the
first bulb coincides with the area of minimum vorticity and vice-versa. Therefore, the
manifestation of the instability through particle migration is also accompanied by a
form of preferential concentration.

4.4. The role of the intergranular stress and the equilibrated stress coefficient

As mentioned above, the exact form of the compaction equation for granular flows
remains a subject of debate. Moreover, the experimental validation or refutation of
existing forms is a cumbersome task due to the multitude of assumptions that the
derivation of these equations is based upon and the presence of terms for which
experimental correlations are difficult to be acquired. It is, therefore, appropriate to
comment on the predictions of the stability analysis concerning the effect of the
intergranular stress β and the equilibrated stress coefficient Γ on the flow properties.

Summing up, the results of the stability analysis assert that large Couette gaps,
high wall velocities and low concentrations are destabilizing mechanisms whilst the
converse is also true. On the other hand, by virtue of (2.9), (2.10) and (2.13), we
can infer that as Ĥ, Ûw increase and φ decreases, then the magnitude of β and Γ

decrease. In other words, as the configuration of the flow approaches the region of
instability, the strength of both the intergranular stresses and of the tendency of the
granular material to suppress inhomogeneities are accordingly reduced. By contrast,
the exact opposite scenario is observed following the decrease of Ĥ, Ûw and the
increase of φ. Collectively, these observations suggest that the intergranular stress
β and the equilibrated stress coefficient Γ play a stabilizing role in the flows of
interest.

5. Conclusions

In this paper, the susceptibility of shear flows of dense granular materials to
hydrodynamic instabilities has been investigated via the means of a linear stability
analysis. Our studies have been based on a continuum mechanical model for the
flows of interest coupled with the constitutive expressions for the normal and shear
stresses predicted by the µ(I)-rheology. A classical normal mode analysis has been
carried that has resulted in a generalized eigenvalue problem, with the eigenvalues and
eigenfunctions being the complex frequency and the amplitude of the disturbances.
Due to the complexity of the problem, both the spectra and the eigenfunctions have
been approximated numerically and detailed parametric studies with respect to the
Couette gap, the wall velocity and the initial concentration have been performed.

According to our analysis, the Couette gap and the wall velocity play a destabilizing
role in the flows of interest whereas the initial concentration is found to act as a
stabilizer. The results concerning the Couette gap and initial concentration are in line
with extant literature on the stability of shear granular flows predicted by kinetic
theoretical models. However, our findings concerning the role of wall velocity are
novel. For the range of parameters considered herein, increasing either the Couette
gap or the wall velocity is insufficient to offset the stabilizing effects of the frictional
forces associated with the high concentration. Consequently, the spectrum lies in
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the left half of the complex plane and the flow is predicted to be linearly stable.
However, the simultaneous modification of these two quantities is shown to engender
the presence of unstable modes. The predicted instability modifies the homogeneous
initial concentration via the formation of a granular bulb the motion of which induces
particle migration. The predicted bulbs are qualitatively similar to those reported in
Conway & Glasser (2004) and Conway et al. (2006), that have been obtained through
molecular dynamics simulations.

Stability analyses based on continuum mechanical models are notably scarce. This
study constitutes the first step towards closing this gap and thus obtaining a more
complete picture of the stability properties of the flows of interest. In this respect,
a natural next step concerns the extension of the present stability analysis to three-
dimensional flows and additionally investigate more involved disturbances. We intend
to pursue this in a subsequent study.
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Appendix A. The linearized governing equations
In this appendix, we present the governing equations, linearized with respect to

the base-flow profile (2.18)–(2.21) and for arbitrary, albeit small, disturbances. By
dropping the explicit dependence of the base-flow profiles and the disturbances to their
arguments since there is no danger of confusion, we arrive at the following system of
equations:

Continuity equation

∂φ1

∂t
+ u0 ∂φ

1

∂x
+ φ0 ∂u1

∂x
+ φ0 ∂v

1

∂y
= 0. (A 1)

Momentum equation (streamwise component)

u0 ∂φ
1

∂t
+ φ0 ∂u1

∂t
+ (u0)2
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+ 2
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∂x2
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pρ

2φ0

(
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2
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−I0(φmax − φmin)(−φmax + φ0)+ (−φmax + φ0)2
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+ φ
0
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. (A 2)

Momentum equation (normal component)
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Compaction equation
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Appendix B. The generalized eigenvalue problem
The linear stability analysis performed in § 3 has resulted in a generalized

eigenvalue problem the symbolic form of which reads,

3∑
j=1

3∑
i=0

(
Aφi,j

diφ

dyi
+ Au

i,j
diu
dyi
+ Avi,j

div

dyi
+ c

(
Bφi,j

diφ

dyi
+ Bu

j,j
diu
dyi
+ Bvi,j

div

dyi

))
= 0, (B 1)

where Aφ , Au, Av, Bφ , Bu and Bv are 4 × 3 matrices. Before reporting the exact
expressions of these quantities, in order to obtain more succinct formulas, we
introduce the following notation convention,
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Besides the above, all the remaining components of these matrices are identically
equal to zero.
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