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Abstract 
 
We build a multidimensional value added model to analyze jointly the test scores on 
several outcomes. Using a unique Colombian data set on higher education within a 
seemingly unrelated regression equations (SURE) framework we estimate school-
outcome specific value added indicators. These are used to measure the relative 
contribution of the school on a certain outcome, which may serve as an internal 
accountability measure. Apart from the evident estimation efficiency gains, a joint value 
added analysis is preferable to the unidimensional one. First, unless modeled in a 
multidimensional framework, the comparison of value added estimates for different 
outcomes within a school is not well defined; our model circumvents this issue. Second, 
even in the case of a separate major field of study analysis there still exists unobserved 
heterogeneity due to institutional diversity. This makes it more compelling to employ a 
rich set of outcomes in computing value added indicators. In the end, we aggregate the 
outcome-specific value added estimates to produce a composite value added index that 
reflects the combined value added contribution of all the subjects for each school. 
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1 Introduction

Measuring the quality of higher education is an important but challenging task in policy

analysis. The rationale of its increasing popularity relates to its ability of overcoming

the asymmetric information in the typical principal-agent problem within the educational

provision framework (Figlio & Loeb, 2011). Since governments rely increasingly more on

student academic performance to evaluate school accountability for educational decision

making, the precision in the estimation of accountability measures is of primary impor-

tance. In the literature it is common to analyze separately the test scores of different

subjects or modules, where each is a dependent variable. This leads to a separate value

added analysis for each individual test score. We propose to analyze jointly the test

scores on several subjects. Our primary purpose in this article is to build a value added

model (VAM) that analyzes these dependent variables together by modeling the inherent

correlation among them.

There are several reasons why a joint analysis is preferable to a separate value added

analysis. First, schools contribute to the human capital of the students by developing

several aspects of their cognitive and social skills, which renders the dependent variables

inherently and structurally linked. Usually the researcher is limited to measuring a single

skill of the students by means of a test score, which lacks a complete representation of

the school or teacher effects (Sammons, Nuttall, & Cuttance, 1993; Hill & Rowe, 1996).

Second, the data availability allows us to conduct the value added analysis separately

by major field of study. Due to institutional diversity there is a lot of unobserved het-

erogeneity even within field of study. This is because different schools prepare students

differently based on the weight they put e.g. on theoretical versus practical training. For

instance, some schools within a certain field of study are stronger in developing critical

thinking in students and others invest more effort in developing quantitative skills. To

make a fair judgment in estimating value added indicators for each of these schools it is

preferable to have a score that measures each of the two skills. This is another compelling

rationale on why we need to consider multiple outcomes.

Third, the value added estimates are sensitive to the model used, but they are even

more sensitive to the outcome considered. This issue is raised in Lockwood et al. (2007)

and analyzed further in Papay (2011) for different items of the same test. This is because

each outcome provides to some extent new information from the other and pulls the school-
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effect in a different direction. Hence, there is need to develop a value added estimate that

uses all possible sources of information (test scores on multiple outcomes) about the

student.

Fourth, when comparing value added indicators produced from different outcomes,

the common practice prevailing in VAM literature ignores the fact that the academic out-

comes have an inherent correlation among them. This renders comparison of value added

within school for different outcomes not possible, unless estimated in a joint framework.

Therefore, it is necessary to account for this correlation when compiling value added es-

timates of multiple outcomes, which is an important task that has informative value to

the institutions for internal accountability purposes.

From the above discussion it follows that a joint analysis is desirable because it de-

livers more powerful statistical estimates and produces more powerful tests than in the

unidimensional case. The higher the correlation among the outcomes, the higher is the ad-

ditional power of the test (Snijders & Bosker, 2012, p.283). Finally, the multidimensional

model enables us to compare the values of the parameter estimates. For instance, we can

compare the marginal effect of a certain independent variable on the various dependent

variables used in the model. The statistical comparison on the magnitude of the marginal

effects can be provided by the multidimensional model.

In the literature, it is now well accepted that for a fair comparison of the effective-

ness between schools, it is crucial to condition the estimation on a set of own student

background, among which a prior attainment score that precedes the outcome of inter-

est (Kupermintz, 2003; Ballou, Sanders, & Wright, 2004; Martineau, 2006; OECD, 2008;

Lenkeit, 2012). Another point that we emphasize in this paper is the common practice

of using the lagged dependent variable (or a similar test score taken earlier than the out-

come) as covariates in a hierarchical linear model (HLM), given that both the current

and the lagged test scores are measured during the time that the student was conduct-

ing his/her studies in the same school. Relevant references among many is the popular

TVAAS introduced in Sanders, Saxton, and Horn (1997), McCaffrey, Lockwood, Koretz,

Louis, and Hamilton (2004) and papers reviewed therein and the more recent Rothstein

(2010) and Chetty, Friedman, and Rockoff (2014). In this paper we use a unique admin-

istrative, Colombian data set to estimate a university value added model with multiple

outcomes. In our data, the lagged test score is measured before the students enter the
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institutions for which the value added indicators are being estimated. Our lagged test

score is an entry exam (university admission score) that students take upon graduating

high school, and the outcome is an exit exam score that student write close to completing

the requirements to graduate from a university program. Hence, the school effect in our

case is by construction independent of the lagged test score used as a covariate and as a

measure for students ability.

The multidimensional value added model that we develop allows us to measure two

important quantities for policy purposes: (1) the value added of a university on a single

outcome that we call the outcome-specific value added, and (2) the across-outcome average

value added for a given university that we call the composite value added. The outcome-

specific value added is notably different from those estimated from a single-outcome (or

unidimensional) value added model. The fundamental difference is that it is constructed

after a marginalization of the multidimensional model, and therefore it takes into account

all the available information also coming from the correlation with the other outcomes.

It is important to emphasize that these outcome-specific value added indicators are com-

parable between them and, therefore, provide information that can be used for internal

accountability purposes. The composite value added index that we build is a synthesis of

all the information provided by the outcome-specific value added indicators.

A much discussed issue in VAMs is related to the question of whether the value added

has a causal effect interpretation (Rubin, Stuart, & Zanutto, 2004; Schatz, Von Secker,

& Alban, 2005; Kane & Staiger, 2008; Rothstein, 2010; Koedel & Betts, 2011; Kinsler,

2012; Chetty et al., 2014; Rothstein, 2014; Bacher-Hicks, Kane, & Staiger, 2014). A

comprehensive literature review on causal inference of value added models and beyond

can be found in Koedel, Mihaly, and Rockoff (2015). One factor that is believed to

confound the value added estimates is the self-selection or sorting of the students in the

post-secondary programs and universities. Chetty et al. (2014) and Lenkeit (2012) show

that the prior attainment scores take care of most of the bias in value added indicators.

However we can not rule out the possibility that there may exist unobserved characteristics

of the students and schools in the sorting process (Rothstein, 2009). The administrative

data we use provides information on the age, gender, number of semesters since entry into

the university before the student took the exit test (measure for time to graduation), a

socio-economic status variable known as INSE (Indice de Nivel Socio-Económico), and the
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type of the institution they are attending (whether a university or other institution that

offers vocational, professional training). We incorporate these variables in our estimation

in order to control for the observable heterogeneity of the students and approximate for

its unobserved part.

To our best knowledge, the only paper that also estimates a value added assessment

model using multiple outcomes is Broatch and Lohr (2012). Our model departs from this

paper in several aspects. First, we focus on institution rather than teacher value added

models. Hence the structure of the model is different. Second, in our case all outcomes of

interest are continuous random variables rather than categorical or dummy variables. This

makes the choice of the estimator and the estimation procedure fundamentally different.

As a matter of fact, and despite its apparent simplicity, the hierarchical linear model used

in our approach is not standard and we could not find any implemented procedure in

common statistical softwares (as STATA or SAS) for its estimation. Our approach uses a

two-nested-level model in which the micro-level model is multidimensional. The model can

be seen as the combination of the common two-level hierarchical model together with the

Seemingly Unrelated Regression (SUR) model (Zellner, 1962). We develop an estimation

procedure based on the method of moments.

The case of Colombia is interesting regarding the availability of a national exam at

the end of the undergraduate studies (called “pregrado” in Colombia), and for this reason

it is relevant to discuss briefly the external validity of our value added model. In fact,

the model can be applied to any set of continuous outcomes which are not necessarily

related to the higher education. Through the case study of Colombia we show that there

exist striking differences between the value added estimates produced by the conventional

single-outcome models versus multiple-outcome models. This result encourages the ap-

plication of exit examinations on several domains, if the aim is to evaluate or rank a

multi-field institution such as the tertiary education colleges and universities.

The rest of the paper is organized as follows. In Section 2, we recall the notion of

value added and construct the multidimensional model. We then derive its statistical

properties and the identification of the parameters of interest. We define the value added

estimator in Section 3. Section 4 overviews the identification and estimation procedure.

We present a Monte Carlo simulation exercise in Section 4.2. In Section 5 we review

briefly the Colombian educational system and we describe the data in Section 6. The
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results are presented in Section 7. Section 8 concludes.

2 The Heteroscedastic Multidimensional Hierar-

chical Linear Mixed Model (HMHLM)

2.1 School-outcome effects

In this section we provide the intuition for the structural model that we use to describe

the data. In our data each student is submitted to an entry examination (at the end of

the secondary school) and also writes a national exam upon graduation in his tertiary

institution. Each of the exams contain several outcomes (e.g. quantitative reasoning,

critical reading, language, etc.). In addition, we observe a set of characteristics at the

student and school level. We denote by Yimj the score in the exit exam in test m of student

i who belongs to the school j, with m ∈ {1, . . . ,M}, i ∈ {1, . . . , nj} and j ∈ {1, . . . , J}.

So, in the exit exam we have M tests, nj is the number of students in the university j that

wrote the test, and J is the total number of tertiary institutions in our sample. Similarly,

for every i,m, j we denote by Zimj the column vector of size K that contains the scores

of the entry exam and all other covariates, including the possible intercept.

It should be emphasized that, although three indices are considered in the notation for

Yimj and Zimj , the data is not designed as a three-level nested system. In every university

j, the student outcome is a vector of scores (one for each test of the exit exam). In our

model we assume two hierarchical levels: the coarsest level is the institution, and the

detailed level is the student.

Since a vector of M test scores is observed at the student level, it is possible to identify

a latent source of variation at the school-outcome level. We assume that random variables,

denoted by γmj , model the unobserved heterogeneity arising across schools and outcomes,

that is, the γmj ’s explain the heterogeneity that is present in the M test scores and that it

is not explained by the observed characteristics of students and universities. Consequently,

we assume that the test scores are independent between students conditional on γmj and

the covariates, an assumption typically called axiom of local independence (Lazarsfeld,

1950). If A> denotes the transpose of the matrix A, we construct the nj × K design

matrix of covariates Z>mj = (Z1mj , . . . , Znjmj). The local independence assumption then
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writes

⊥⊥
1≤i≤nj

Yimj | γmj , Zmj

for every test m and institution j. In order to be more specific on the structure of

the model, we assume that the expected final attainment score is individual-wise linearly

dependent on the covariates and the school effect. More precisely, for every testm taken by

a student i belonging to an institution j, we assume there exists a vector of K parameters,

denoted by βm such that

E(Yimj | Zimj , γmj) = Z>imjβm + γmj ,

which can equivalently be rewritten as

Yimj = Z>imjβm + γmj + uimj ,

where the idiosyncratic error uimj is defined as uimj := Yimj − E(Yimj | Zimj , γmj). It is

assumed that the idiosyncratic errors are independent across student, test and institution,

and independent from any Zmj and any γmj . The vector of K parameters, βm, depends

on m meaning that the marginal effect of the prior score or other covariates may differ

for each outcome, but not across schools. The latent variable, γmj , is assumed to be

independent across schools, but a non-vanishing correlation is allowed within school among

two different outcomes. The next subsection summarizes the structural model and the

dependency structure assumed among all variables in the model.

2.2 Structural model

Denote by Ymj = (Y1mj , Y2mj , . . . , Ynjmj)
> the nj-dimensional column vector of final

scores in outcome m in school j. For every school, the multidimensional model can be

written as

E(Ymj | Zmj , γmj) = Zmjβm + γmjιnj (2.1)

where ιnj = (1, 1, . . . , 1)> is a nj-dimensional column vector of ones. The vector umj =

(u1mj , . . . , unjmj)
> of idiosyncratic errors is accordingly defined as umj := Ymj −E(Ymj |
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Zmj , γmj).

Define Yj a vector of size Mnj which contains the stacked data vectors for all tested

outcomes within a school j, i.e., Yj = (Y >1j , . . . , Y
>
Mj)

>. We also define the vector

γj = (γ1j , . . . , γMj)
> and the matrix of covariates at the school level to be the block

diagonal matrix Zj = diag{Z1j , Z2j , . . . , ZMj}. Finally we stack all schools in the vector

Y = (Y >1 , . . . , Y >J )> of dimension MN with N =
∑

j nj , the total number of students.

Similarly, we define the MN ×MK matrix of covariates Z = (Z>1 , . . . , Z
>
J )> and the

vector of parameters β = (β>1 , . . . , β
>
M )> of size MK. The resulting model is

E(Y | Z, γ) = Zβ +H>γ, (2.2)

where H denotes the appropriate matrix of dimension MJ ×MN with entries 0 and 1

(for details, see Technical Appendix section B.2). The idiosyncratic error is finally defined

as u := Y − E(Y | Z, γ). Equation (2.2) is complemented with the following structural

assumptions:

(A.1) Exogeneity. The matrix of covariates Z is independent of the vector of random

effects γ.

(A.2) Independence and Heteroscedasticity of the Random Effects. The school-

outcome random effects are such that (γj | Zj) ∼ ID (0,Λj), where Λj are M ×M

positive definite matrices; that is, the γj ’s are mutually independent and the distri-

bution of each γj have mean 0 and variance-covariance matrix Λj .

(A.3) IID and Homoscedasticity of the idiosyncratic error. The error term is such

that (uj | Zj , γj) ∼ IID (0, σ2IMnj ) for some σ2 > 0; that is, the uj ’s are indepen-

dent and identically distributed with a common distribution that have mean 0 and

variance-covariance matrix σ2IMnj .

(A.4) Local independence. ⊥⊥
1≤i≤nj

Yimj | γmj , Zmj

The exogeneity (A.1) is a common assumption in the context of HLM. In the context

of value added for tertiary education in Colombia, this assumption is reasonable because

the prior attainment score is measured before the students enter university. In other cases,

this assumption is questionable and its violation leads to a more complex interpretation

of the value added. This is discussed in detail in Manzi, San Mart́ın, and Van Bellegem

(2014) and Bates, Castellano, Rabe-Hesketh, and Skrondal (2014). Note that in As-
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sumption (A.2) the variance-covariance matrix of the random effects are allowed to be

school-specific, that is, they are different for every j. This means, in particular, that the

intensity of the correlation between the outcome specific effect may vary from a school to

another. Assumption (A.3) on homoscedasticity can be easily relaxed to take into account

a varying variance according to group of schools. We assume constant variance in order

to simplify the notation. In practice, the variation allowed in the matrices Λj between

schools is already very rich to detect distinct variance structures across schools. It should

be remarked that assumptions (A.2) and (A.3) rest on probability distributions that are

fully known up to their mean and variance-covariance matrix. Finally the assumption

(A.4) on local independence has been discussed above.

2.3 Parameter Identification

The identification of the parameters is a necessary prerequisite for estimation and for an

interpretable empirical analysis using the model. Parameters under interest are the MK

coefficients in vector β, the variance covariance matrices of the outcome-effects within

schools Λ1, . . .ΛJ , and the variance σ2. To check the identification of those parameters,

we need to show that they can all be expressed as a function of characteristics of the

distribution of the observable variables, that is the statistical model bearing on the ob-

servable variables only. The statistical model is, consequently, derived after integrating

out the unobserved multidimensional school effect γj . The following Lemma provides the

joint distribution of (Y >j , γ
>
j )>, from which the statistical model is easily derived; for a

proof, see Technical Appendix B.3.

Lemma 2.1 The structural model specified by (2.2) and the structural assumptions (A.1),

(A.2), (A.3) and (A.4) is such that, conditionally on the explanatory variables Zj, the

vector (Y >j , γ
>
j )> is distributed according to a Mnj + M -multidimensional distribution

such that Yj

γj

∣∣∣∣∣Zj
 ∼ ID


 Zjβ

0

 ;

 Λj ⊗ (ιnj ι
>
nj

) + σ2IMnj Λj ⊗ ιnj

Λ>j ⊗ ι>nj
Λj


 ,

where A⊗B denotes the Kronecker product between two any matrices A and B, and ιnj

is the unit vector, (1, 1, . . . , 1)>, of length nj.
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From Lemma 2.1, we can easily deduce that, for each school, the distribution gener-

ating Yj given the exogenous variable Zj is a Mnj-multivariate distribution of mean Zjβ

and variance-covariance matrix Λj ⊗ (ιnj ι
>
nj

) + σ2IMnj . It follows that β is identified if

the rank of Zj is complete. Furthermore, the variance V (Yj | Zj) has the following typical

elements:

1. Diagonal elements, same school and outcome, and same student:

V ar(Yimj | Zj) = V ar(γmj + uimj | Zj) = Λj;mm + σ2

2. Off-diagonal elements, same school and outcome, different students:

Cov(Yimj , Yi′mj | Zj) = Cov(γmj , γmj | Zj) = Λj;mm

3. Off-diagonal elements, same school and student, different outcome:

Cov(Yimj , Yim′j | Zj) = Cov(γmj , γm′j | Zj) = Λj;mm′

The two last set of moments show that Λj are identified from the intraschool co-

variances of the scores. This, together with the first set or moments, imply that the

idiosyncratic variance σ2 is identified as well.

3 Value Added Analysis

3.1 Outcome-specific value added index

The aim of value added indicators is to provide by institution a measure of student

achievement growth acquired as a result of the school policy or practice. Its definition

varies according to the nature of the school characteristic we want to highlight in the

indicator (e.g. school practice, students group composition policy, student selection, etc.).

It is a relative and data-driven indicator, meaning that the sample average of indicators is

zero and each of them compares the level of the school within a fixed group of institutions

under study (which can be sometimes very large).

The aim of the multidimensional model is to define an M -dimensional school value-

added vector, where each coordinate represents the school value-added of a specific out-
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come. A model-free definition of value added is defined as a difference between conditional

expectations in Manzi et al. (2014) using a uni-dimentional value added model. It extends

straightforwardly to the multidimensional model, with the only difference that it yields

in this case the following M-dimensional vector for each school j instead of a scalar:

V Aj =
1

nj

nj∑
i=1

[E(Yij | Zj , γj)− E(Yij | Zj)] .

Given the assumptions (A.1) to (A.4), the above expression reduces to the random vector

γj . This random effect is predicted by using the empirical Bayes predictor in which the

unknown parameters are replaced by their estimators. Using the following identity, which

is valid under the linearity assumption of the conditional expectations E(Y | Z, γ) and

E(γ) (for a proof, see Florens, Marimoutou, & Péguin-Feissolle, 2007),

E(γj | Yj , Zj) = E(γj | Zj) + Cov(γj , Yj | Zj) [V ar(Yj | Zj)]−1 (Yj − E(Yj | Zj))

we derive an expression to predict the school-outcome specific value-added, as follows:

γ̃j ≡ E(γj |Yj , Zj) = Λ>j ⊗ ι>nj

[
Λj ⊗ (ιnj ι

>
nj

) + σ2IMnj

]−1
(Yj − Zjβ) (3.1)

where γ̃j is a vector of dimension M , that contains all outcome-specific value added

estimates for school j.

As specified in the model, the school-outcome specific value added indicators are cor-

related between them. It is worth noting that the estimation of the outcome-specific value

added indicator, γjm, not only depends on information related to the m-th outcome itself,

but also to the other outcomes. This is due to the term Λj ⊗ (ιnj ι
>
nj

) that contains all

the elements of the covariance matrix Λj . To see this point more explicitly, consider the

following simplified case that without loosing generality illustrates the main contribution

of the multidimentional model in value added models. Suppose that students are tested

on two different outcomes so that M = 2. In this case, equation (3.1) reduces to

 γ̃1j

γ̃2j

 =

 a(Y1j − Z1jβ1) + b(Y2j − Z2jβ2)

c(Y1j − Z1jβ1) + d(Y2j − Z2jβ2)

 ,
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where

a = 1
(njΛj;11+σ2)

[
1 +

n2
j (Λj;12)2

ω12

]
Λj;11 − nj(Λj;12)2

ω12
;

b = −njΛj;12Λj;11

ω12
+

(njΛj;22+σ2)Λj;12

ω12
;

c = 1
(njΛj;11+σ2)

[
1 +

n2
j (Λj;12)2

ω12

]
Λj;12 − njΛj;12Λj;22

ω12
;

d = −nj(Λj;12)2

ω12
+

(njΛj;22+σ2)Λj;22

ω12
,

with ω12 = (njΛj;11 +σ2)(njΛj;22 +σ2)−n2
j (Λj;12)2. It is obvious from the above formulas

that all the elements of the covariance matrix, Λj , are used in the calculation of each

outcome-specific effect.

Now consider the case when the outcome-specific random effects are mutually indepen-

dent, that is the covariace matrix Λj is a diagonal matrix with zero covariance elements.

In that case,

γ̃j =


Λj;11

njΛj;11+σ2 (Y1j − Z1jβ1)

...

Λj;MM

njΛj;MM+σ2 (YMj − ZMjβM )

 .

and each component of γ̃j is equivalently obtained by performing a separate value added

analysis for each outcome separately. This also shows how different the estimation of

the outcome-specific value added is if the correlation between the outcomes is ignored by

performing a separate and independent value added analysis.

3.2 A composite value added index

The outcome-specific value added provides a multidimensional index for each school.

However, an all-information indicator of the school value added may sometimes be in-

dispensable for policymakers. For this purpose we build an index that combines all the

multiple value added indices into a single one. For each school, we first normalize each

M -dimensional vector of VA indices by the inverted square root of the covariance matrix

and then average them. By normalizing the indices we ensure that the averaged quantities

are expressed in the same scale. It also avoids the over-representation of the individual

VA indicators that are highly correlated. Recall that assumption (A.2) specifies that

V ar(γj |Zj) = Λj for every school j. Accordingly, we propose the following definition for
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the composite value added indicator,

θj =
1

M
γ>j Λ

−1/2
j ιM . (3.2)

In the case when the outcome-specific random effects are independent and the covariance

matrix Λj is a diagonal matrix, then we can write the composite value added index as

follows,

θj =
1

M

M∑
m=1

γmj√
Λj,mm

. (3.3)

The independence assumption of the school random effects between the different outcomes

is however a very strong assumption that in reality is difficult to guarantee in any educa-

tional system. Therefore, equation (3.2) represents a synthesis of the school value added

information that best represents the multi-dimensional contribution of the school in the

human capital formation of their students.

4 Estimation Procedure

4.1 Estimation

In order to compute the vector of school-outcome specific value added indicators, γ̃j in

equation (3.1), we need to estimate all the unknown parameters using the data. These are

the vector of regression coefficients β, covariance matrix elements of Λj for each school j

and σ2, the homoscedastic conditional variance of the idiosyncratic error term in equation

(2.2). In this paper we consider a method of moments estimation procedure. In this

section we summarize the estimation procedure using a sample of observations (Y, Z).

From model (2.2) we can write: Y = Zβ +H>γ + u.

An estimator of the σ2 follows from the analysis of the residuals in a within regression,

as we define below. We define a constant matrix of dimension nj such that Jnj = ιnj ι
>
nj
/nj .

Then, we define the within operator for school j as Wj = IMnj − IM ⊗ Jnj . It follows

that the within operator for the panel of schools is W = diag(W1,W2, . . . ,WJ). Then

the within regression is WY = WZβ +Wu since by construction WH> = 0. The within

regression estimator is β̂w = (Z>WZ)−1Z>WY . The residuals, êw = WY −WZβ̂w, are

such that E
[
(êw)>(êw)

]
= σ2M(N − J −K∗), where K∗ ≤ K is the number of non-zero
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covariates in the within regression. Therefore, σ̂2 = (Y − Zβ̂w)>W (Y − Zβ̂w)/M(N −

J −K∗).

The estimation of Λj for each school is more elaborate. We use the least squares

residuals ê = Y − Zβ̂, where β̂ = (Z>Z)−1Z>Y . First, we denote by êjm the sub-vector

of ê for school j in module m. Next, we denote by P jm a matrix such that êjm = P jmê. It

can be shown (see the Technical Appendix for details) that

E
[
(êjm)>(êjm)

]
= σ2tr(P jm′QP

j
m
>

)+Λ1;mm′α
j,1
mm′+Λ2;mm′α

j,2
mm′+· · ·+ΛJ ;mm′α

j,J
mm′ (4.1)

where Q = I − Z(Z>Z)−1Z>, and αj,lmm′ for l = 1, . . . , J are known quantities depending

only on the covariates matrix Z. The estimation of Λj ’s are found as the solution of the

linear system (4.1), after the expectation is replaced by the empirical mean and σ2 is

replaced by its estimate σ̂2 from above. Hence,

1

nj
(êjm)>(êjm) = σ̂2tr(P jm′QP

j
m
>

) + Λ1;mm′α
j,1
mm′ + Λ2;mm′α

j,2
mm′ + · · ·+ ΛJ ;mm′α

j,J
mm′

for all m ≤ m′, and for j = 1, . . . , J . Finally, we estimate the vector β by the Generalized

Least Squares estimator, i.e. β̂ = (Z>Ω̂−1Z)−1Z>Ω̂−1Y , where Ω̂ is the estimator of

Ω = V ar(H>γ + u | Z) = H>ΛH + σ2IMN where Λ and σ2 are replaced by their

estimates. In the Technical Appendix we describe the structure of the Ω matrix and also

explain how we invert it with reduced computational time.

An alternative method of estimation under the Normal assumption is the maximum

likelihood estimation. Analyzing the efficiency of the estimators is beyond the scope of

this paper and it is left for future research. Nevertheless, as a first check in the next

section we provide the Monte Carlo simulation for given and known model.

4.2 Monte Carlo simulation study

In this section we discuss a Monte Carlo simulation that we conduct. First, we describe

the data generating process that we use in this exercise in order to mimic as closely as

possible the structure of the data and the context. This exercise simulates a synthetic

data set with three outcomes indexed by m = 1, 2, 3, so M = 3 ; and for J = 20 schools.

Each school is assigned a fixed, equal number of students. Note that this restriction is

for simplicity purposes and does not affect the performance of the estimator. We do

14



not impose the assumption of equal number of students per school in the VAM and the

estimation procedure we introduce in this paper.

These are the parameters values that we fix:

1. We generate the school random effects for each outcome m such as γ1 , γ2 and γ3

that are three random variables that have a joint normal distribution with a fixed

correlation matrix of


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 and fixed equal variances of τ2 = 0.25.

As a result, the covariance matrix of the school random effects is the following
0.25 0.15 0.15

0.15 0.25 0.15

0.15 0.15 0.25


2. We generate three covariates, that play the role of the pre-attainment scores in this

case, as standard normal variables: X1, X2, X3, such that each Xm ∼ N (0, 1).

3. For each m = 1, 2, 3, we set βm =



β0m

β1m

β2m

β3m


=



5

0.1

0.2

0.3


4. Finally, we generate the outcome variables for each m = 1, 2, 3 as a function of the

covariates, school random effects and an error term such that umj ∼ N (0, 0.04), so

σ2 = 0.04. Then each outcome variable is generated as follows:

Ymj = β0mιnj + β1mX1 + β2mX2 + β3mX3 + γmjιnj + umj .

The results from the simulation exercise are shown in Table 1, where we report the

mean squared error (MSE) for each coefficient. We investigate how this statistic changes

as we change the number of the students per school, and as we change the correlation

coefficient between the three outcomes, Ymj ’s, which comes as a result of the correlation

between the school random effects, γmj ’s.

Between Case 1, 2 and 3, we increase the number of students per school firstly from

30 to 50, and than to 100, respectively. Note that moving between these three cases the

MSE for the estimation of the σ2 improves notably as the number of students per school

increases. Between Case 1, 4 and 5, we increase the correlation coefficient between the

school random effects firstly from 0.1 to 0.5, and then to 0.9. Comparing these three cases
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we notice that there no change in the estimation of the σ2 (given that we keep the number

of students per school equal), but there appears to be improvement in the estimation of

the covariance matrix of the random effect (i.e. in the Λmm′ ’s) and the β’s.

We also provide a display of the Monte Carlo simulation results through a boxplot

distribution of the coefficient values for each of the cases discussed in Table 1. We present

these results in the Appendix in Figures A.1, A.2, A.3, A.4, and A.5. In each figure the top

panel displays the results from the separate unidimensional procedure, and the bottom

panel show results from the joint analysis. This is in particular useful when comparing the

MSE of the Λmm′ ’s between Cases 4 and 5, where the only change is the higher correlation

coefficient between the school-outcome effects. The higher this correlation, the lower the

MSE for the items in the covariance matrix of the school-outcome effects for the case of

the joint multidimensional analysis.

Overall, what we take away from the results of this simulation study are aligned with

our expectations. We observe that the higher the number of observations per school,

the lower the MSE will be for the σ2 and the β coefficients under both estimation pro-

cedures (unidimensional and joint/multidimensional). The MSE for the variances of the

school-outcome effects (Λmm’s) is only moderately affected by a higher number of students

per school. Using the multidimensional/joint estimation procedure, the MSE of Λmm′ ’s

improves significantly once we increase the correlation coefficient of γmj ’s.
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5 Tertiary Education in Colombia

In the 1990s Colombia experienced a dramatic expansion of the tertiary education1 fol-

lowing the introduction of the new Constitution and reforms in the education system that

came with it. The expansion resulted mainly in the widening of the private sector and

abundance of the non-university institutions offering professional and vocational training.

This surge in the supply of tertiary education institutions has made instruction quality a

major issue for Colombia. Consequently, the Colombian government introduced a national

evaluation system whose objectives are described in the 2009 decree2 of the Ministry of

Education. The objectives consisted in assessing the level of development of competencies

in students who are finishing their undergraduate education, producing value added indi-

cators of the higher education programs, and providing information to compare not only

higher education programs and institutions, but also teaching methodologies. In order

to reach these objectives, the state collected test scores of the students at two specific

points in their educational path, upon high school graduation and upon completion of

their undergraduate studies through two national state exams, namely Saber 11 and

Saber Pro .

The Colombian youth leaves compulsory upper secondary education at age 16 (equiv-

alent to US high school). Those that aspire to continue post-secondary education have

to take a national state exam at the last grade (grade 11). This test is formally known

as Saber 11 and includes evaluations in core subjects, such as Spanish, mathematics,

biology, chemistry, physics, philosophy, social sciences, and foreign languages (English).

The score of this test has no effect in the graduation decision from the upper secondary

education but it is the official national admission test into tertiary education since 1980,

and thus compulsory for the students with tertiary education aspirations. Most of the

institutions in Colombia (78%) use Saber 11 results for admission and each institution

decides on the minimum acceptable Saber 11 score which may change each year depend-

ing on the demand. In order to be eligible for entry in tertiary education the Colombian

students need both, the Saber 11 score and the upper secondary education diploma.

Upon completion of their undergraduate degree requirements, the students are sub-

mitted to another mandatory battery of tests, officially known as Saber Pro (former

1Tertiary education in this context will refer to all types of post-secondary education that will include
university and non-university education, vocational and technical education that may not be granting degrees.

2Ministerio de Educación Nacional, Decreto 3963, 14-10-2009.
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ECAES). Saber Pro is an exit examination from tertiary education which became com-

pulsory for graduation as of 2009. It is designed to measure the academic capital that the

students have built in the institution in various domains of competencies and proficiency.

The exit exam, Saber Pro , is for each student a vector of five tests corresponding to the

following modules or subjects: written communication, English, quantitative reasoning,

critical reading and citizenship competencies.

There are four types of tertiary education institutions in Colombia. They are classified

as follows: (1) Universities, which offer academic undergraduate programs and graduate

programmes (master’s or doctoral) with a focus on scientific research ; (2) University

Institutions, which offer undergraduate degrees up to professional degree level and a type

of graduate programme known as “specialisation” that is above a bachelor’s degree but

below a master’s degree; (3) Technological institutions, which offer programmes up to a

technologist level and is distinguishable from professional technical level by their scien-

tific basis; (4) Professional technical institutions, which offer professional/technical level

training for a particular job or career. Both technological institutions and professional

technical institutions provide short term training with relatively lower tuition that respond

to local labour market demand with flexibility to changes. Some of these institutions are

private and some are public. The public ones are funded by the government and are

autonomous in the way they allocate their funds. All tertiary institutions (except SENA

(Servicio Nacional de Aprendizaje) centers) charge tuition to students, which vary a lot

by institution. The private institutions rely on student tuition for most of their income.

By law, all tertiary institutions are required to maintain a non-for-profit status. For more

details, see OECD/International Bank for Reconstruction and Development/The World

Bank (2012).

Given the diverse nature of the post-secondary education institutions described above,

in this paper we focus only on Universities and University Institutions (i.e. type (1) and

(2) above), and drop the other post-secondary education institutions from the sample.

6 Data

Our data are administrative records of the students that wrote the Saber 11 exam,

who then enrolled into a tertiary education program and upon completion also wrote the
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Saber Pro test. The data were generously provided by ICFES.3 It is the two instances

of these examinations that are in the center of our value added analysis. The prior

attainment score considered in this study is a vector of six scores of the Saber 11 tests.

Each student is tested on the following six subjects: Mathematics, Physics, Chemistry,

English, Social Sciences, Spanish. The final attainment score is for each student a vector

of five test scores from the Saber Pro test corresponding to the following competencies:

Quantitative Reasoning, Critical Reading, English, Citizenship Competencies and Written

Communication.

SABER 11 test is compulsory and the students’ performance in this test is the primary

admission criteria for entry in a higher education institution. This feature warranties that

the students take the test seriously and put effort in producing their answers. We may say

the same for the Saber Pro tests written since 2009, which is the year that it became

compulsory in order to graduate, even though its outcome does not affect whether the

student qualifies for graduation.

Initially, the Saber database contains 187,698 observations. We use the data belong-

ing to the students who took the Saber Pro test in 2012 and 2013 (those who took Saber

Pro in 2011 are excluded from the analysis). The sample is restricted further to the stu-

dents who wrote Saber 11 four to six years prior to Saber Pro , i.e. the first group have

written Saber 11 between 2006–2008 and the second group between 2007–2009. This is

a reasonable sample modification since the analysis we perform requires coherence in the

knowledge investment between the two tests. Hence, we will be working with the 2012

and 2013 tertiary education (potential) graduates. The test scores are equated, so we do

not need to worry about test differences across years as a result of difficulty level. After

discarding the above items, our working sample contains 139,205 observations. Apart

from the above sample restrictions, we also have 1,946 missing observations in total in the

test scores data. The test on Written Communication has the majority of the missing en-

tries due to non-response. So, after excluding the missing observations the final database

contains 137,278 observations.

ICFES aggregated the detailed program classification into 18 broader groups, which we

refer to as fields of study. Hence, each student who registered to a program is automatically

classified into one field of study. The fields of study are listed in Table A.1, that also

3ICFES is the abreviation of “Instituto Colombiano para el Fomento de la Educación Superior” (Colombian
Institute for the Promotion of Higher Education).
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documents the number of students studying in each of them. The last column in Table

A.1 shows that a big proportion of students (more than half) in the data graduated from

only four fields of study: Engineering, Administration, Education and Law. Engineering

attracted the highest proportion of the student body which is almost one-fourth of the

student population in the data (23.4%). The fields that attract the least number of

students (less than one percent) are Humanities and Military and Naval Sciences (0.7%

and 0.3%, respectively). The value added model aims to compare institutions within a

single field of study. In favor of space, in what follows we focus on only two major fields

of study: Engineering and Law. In Figures 1 and 2 we show the boxplots of the tests

scores using the original sample before cleaning the data. We also show adjacent to these

plots how the distribution of these variables looks in the final sample that we use for

the empirical analysis. Each box indicates the maximum value, third quartile, median,

first quartile and the minimum value. It is obvious that the sample composition is left

unaffected from the data cleaning.

In addition to the previously introduced variables, the database contains further in-

formation on each student, such as the gender, the residential area of the student at the

time of the Saber 11 and Saber Pro exams were written, the field of study, the number

of semesters in higher education that the student completed till he wrote the exit test,

the inse that is a continuous socioeconomic measure constructed by ICFES4, the name of

the school where the student completed his/her post-secondary education, the type of the

institution, a categorical variable indicating the tuition paid, and the type of degree. In

Table 2 we show summary statistics for all the variables we use in the empirical analysis,

except for the school composition variables. We observe a similar distribution in terms

of outcome variables, with no obvious differences in Saber Pro test scores between the

Engineering and the Law students. However, note that the Engineering student perform

about half a standard deviation better in Saber 11 math score. They also seem to do

better in physics, chemistry and English as a secondary language. The INSE index is

almost the same for both majors, but the proportion of females (0.623) in Law programs

relative to males is much higher than in Engineering programs (0.408). Finally, about 80

percent choose academic track (rather than “Normal” or technical track). The proportion

of students in the higher tuition-paying categories (expressed in million Colombian pesos)

4See the internal report Metodoloǵıa de construcción del indice de nivel socioeconomico de los estudiantes -
INSE - y de la clasificación socioeconómica - CSE - de los colegios, ICFES, Junio 2010.
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Figure 1: Boxplots of the test scores for the Engineering students
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Figure 2: Boxplots of the test scores for the Law students
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is higher for the Law students than for the Engineering students. Table A.2 provides the

correlation coefficients between the pre-attainment scores and the outcome test scores.

7 Results

7.1 Unidimensional versus multidimensional value added

analysis

The conventional approach to the estimation of the VA indicators is to estimate equation

(2.1) separately for each module m. In terms of the regression estimation details, the

vector Y contains all the modules tested in the Saber Pro test. The matrix Z contains

the six domains of the Saber 11 test, namely Mathematics, Spanish, Chemistry, Social

Sciences, English language and Physics. It also includes a unit vector to capture the in-

tercept term. Other covariates include the INSE and a set of school composition variables

that are computed as the average of the Saber 11 test scores of the current peers in

the same university. Tables A.3 and A.4 show the regression results for the two fields of

study, Engineering and Law, respectively. In these two tables each column is a separate

regression.

As also noted earlier in paper, the outcome variables are inherently correlated. We

can see that in Table 3, that shows the correlation coefficients for the raw test scores.

They vary approximately between 0.205 to 0.631 for both Engineering and Law, and the

majority are higher than 0.5.

Moreover, in order to support the claims made elsewhere in the literature about the

sensitivity of value added indicators to the outcome variable used, Table 4 displays the

rank correlation among the unidimensional value added estimates between the five out-

comes. The correlation coefficients are as high as 0.713 (between CR and CC for Law)5,

and as low as 0.270 (between QR and EN for both Engineering and Law). Obviously, the

varying correlation is a reflection of sensitivity.

From a policy point of view, the information provided from the unidimensional value

added model is to some extent different for each of the five outcome variables. So, one faces

the decision of choosing one. The multidimensional model accounts for the correlations

shown in Table 3 and aggregates the information provided by the separate unidimensional

5For a list of acronyms please see Appendix.
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Table 2: Summary statistics by field of study

Variable Mean St.Dev. Min Max

Engineering

Spro WrC 10.185 1.043 6.80 13.10

Spro EN 11.046 1.507 6.00 15.00

Spro CR 10.414 0.954 5.80 14.70

Spro QR 10.891 1.156 5.80 16.30

Spro CC 10.191 1.009 5.70 14.00

S11 Span 52.875 6.832 18.33 99.69

S11 Math 55.512 11.535 14.92 121.49

S11 SocSci 52.033 7.983 12.87 97.35

S11 Chem 51.520 7.070 17.70 93.33

S11 Phys 50.098 8.129 13.60 97.06

S11 Engl 54.754 14.654 12.90 111.94

INSE 54.121 9.482 20.059 73.135

Academic track 0.767 0 1

Female dummy 0.408 0 1

Tuition 1–3 million peso 0.241 0 1

Tuition 3–5 million peso 0.217 0 1

Tuition >5 million peso 0.233 0 1

Law

Spro WrC 10.563 1.099 6.80 13.1

Spro EN 10.551 1.417 6.00 15

Spro CR 10.519 0.979 6.20 14.6

Spro QR 9.984 0.918 6.70 16

Spro CC 10.617 0.993 5.70 14

S11 Span 52.351 7.112 18.21 87.44

S11 Math 49.529 9.744 11.30 110.73

S11 SocSci 51.355 8.035 6.74 81.73

S11 Chem 48.161 6.337 21.83 82.04

S11 Phys 46.646 7.322 11.26 81.64

S11 Engl 51.810 14.403 12.90 111.94

INSE 55.346 9.223 20.024 73.135

Academic track 0.803 0 1

Female dummy 0.623 0 1

Tuition 1–3 million peso 0.333 0 1

Tuition 3–5 million peso 0.275 0 1

Tuition >5 million peso 0.276 0 1
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Table 3: Correlation coefficients among the raw test scores

Field of Study QR CR EN CC WrC

Engineering

QR 1 0.268 0.273 0.205 0.276

CR 1 0.497 0.546 0.468

EN 1 0.557 0.624

CC 1 0.535

WrC 1

Law

QR 1 0.303 0.334 0.257 0.335

CR 1 0.48 0.457 0.47

EN 1 0.495 0.631

CC 1 0.482

WrC 1

Table 4: Rank correlation coefficients among the unidimensional VA estimates

Unidimensional Value Added

Field of Study QR CR EN CC WrC

Unidimensional Value

Added

Engineering

QR 1 0.665 0.27 0.537 0.376

CR 1 0.363 0.663 0.454

EN 1 0.368 0.293

CC 1 0.509

WrC 1

Law

QR 1 0.547 0.27 0.64 0.469

CR 1 0.291 0.713 0.408

EN 1 0.246 0.205

CC 1 0.495

WrC 1
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indicators. Tables A.5 and A.6 show the estimation results of equation (2.2), when the

outcomes are analyzed jointly in a SURE for the field of study of Engineering and Law,

respectively. It can be easily seen that there is a gain in estimation efficiency in the

case of SURE regressions relative to the separate estimation procedure. Moreover, we

are able to compare, say the effect of the mathematics score on Critical Reading versus

Written Communication for the Students of Engineering in Table A.5. As we can see,

the coefficient estimate in the former is almost twice as high as in the latter. Instead, by

referring to Tables A.3 and A.4 we are not able to make a similar comparison because the

inherent correlation between the outcome variables (Saber Pro test scores) is not taken

into account in those regression.

Table 5: Rank correlation coefficients among the unidimensional and multidimensional VA
estimates

Multidimensional Value Added

Field of Study QR CR EN CC WrC ave(θ̂j) w(θ̂j)

Unidimensional Value

Added

Engineering

QR 0.135 0.338 0.299

CR 0.14 0.422 0.209

EN 0.092 0.314 0.042

CC 0.186 0.35 0.151

WrC 0.183 0.328 0.172

Law

QR 0.251 0.470 0.313

CR 0.119 0.474 0.236

EN 0.167 0.346 0.179

CC 0.361 0.563 0.384

WrC 0.269 0.463 0.125

In Table 5 we show the rank correlation coefficients among the value added indicators

produced through the unidimensional and the multidimensional models. The low bilateral

correlation coefficients indicate that these two sets provide very different ranking of the

tertiary institutions. Differently from the separate analysis, the multidimensional model

allows us to combine the information into a single ranking index by averaging (equally

weighted or weighted by the inverse of the covariance matrix) the individual subject VA

estimates. In the last two columns of Table 5 we can see the correlation coefficients of the

combined value added indicators and the unidimensional value added indicators for each

subject. Again, the correlation coefficients are quite low.
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7.2 Within-institution effectiveness comparison

Another advantage of the multidimensional analysis is related to its use for internal ac-

countability purposes for each university. In Figure 3 we plot the VA estimates for each

module, together with their confidence bands based on the following formula for the lower

and upper band:
[
γ̂mj − (

√
Λjmm)tα/2, γ̂mj + (

√
Λjmm)tα/2

]
. In Table 6 we report the

plotted numerical values. Using this information, this particular university, for instance,

can infer that on average for the engineering programs, their students performance in

Citizenship Competencies (CC) and Written Communications (WrC) is much better than

in the other domains of the Saber Pro exam. This is relative to the other institutions in

the sample that also offer programs in the field of Engineering. We should keep in mind

that the universities may not be the same in each major grouping, so the interpretation

is always relative to the universities for each field of study. For the Law majors, this

particular university that we have reported has a much lower VA estimate on its students

for Quantitative Reasoning (QR) and Written Communication (WrC) than for the other

tests.

Table 6: Multidimensional value added estimates and 95% confidence bounds for an unnamed
university

Field of Study QR CR EN CC WrC

Engineering

Lower bound of γmj -0.365 -0.753 -0.113 -0.720 -0.027

γmj 0.249 0.570 0.663 0.309 0.426

Upper bound of γmj 0.863 1.893 1.439 1.337 0.824

Law

Lower bound of γmj -1.613 -1.218 -0.827 -0.872 -1.084

γmj -0.186 0.333 0.099 0.073 -0.284

Upper bound of γmj 1.241 1.883 1.026 1.019 0.515

7.3 Between-institutions effectiveness comparison

Finally, the multidimensional VAM allows us to also make a comparative analysis between

universities for a single test outcome. For example, consider the VA estimates shown in

Table 7 for three anonymous universities for each field of study. We can see that for the

test on Quantitative Reasoning university A is performing better than C, which is better

than B.
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Figure 3: Multidimensional VA estimates and their 95% confidence bands for a single university

Table 7: Multidimensional value added estimates for three unnamed universities

Field of Study QR CR EN CC WrC

Engineering

University A 0.419 1.244 0.261 0.273 0.335

University B -0.390 0.383 0.954 -0.197 0.557

University C 0.217 -0.350 0.148 -0.407 0.171

Law

University A 0.246 -0.058 -0.020 0.219 -0.414

University B -0.319 0.999 -0.149 0.260 0.077

University C 0.017 -0.321 0.125 -0.334 -0.247
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8 Conclusion

Teachers and schools contribute to their students’ learning process by developing several

aspects of their cognitive and social skills. This and other related reasons render the test

scores on different subjects inherently and structurally linked. In the value added litera-

ture it is common to analyze individually the test scores of different subjects. However,

it has been recognized that the unidimensional value added estimates are sensitive to the

outcome used and yield different rankings, yet with some degree of dependency that is

difficult to model (see Lockwood et al., 2007; Papay, 2011). Our contribution to the liter-

ature consists in modeling this dependency and accounting for it in the estimation of the

value added indicators. We do so by developing a multidimensional value added model

within the framework of SURE models. The key idea is that the test scores on different

subjects (or, multiple outcomes) depend on both a set of covariates and a multidimen-

sional school effect, the components of which are correlated among them. Conditional on

the covariates, it is this correlation that induces the conditional dependency between the

different outcomes. We point out in the paper that the value added indicators produced

through the unidimensional and multidimensional value added models are quite different.

We show empirically how different the ranking induced by those two value added analysis

is, the rank correlation coefficients of which are not higher than 0.37 (see Table 5).

In practice, the multidimensional value added model that we propose in this paper

can be exploited in conducting two very informative effectiveness analysis.

1. First, the model allows for a within-school effectiveness comparison. The multidi-

mensional value added model produces value added indicators for each outcomes,

which are comparable between them for the same school. A school or institution can

exploit this information to evaluate its relative performance in different outcomes

and identify areas for improvement.

2. Second, the model also allows for a between-schools effectiveness comparison. This

comparison can be made outcome-by-outcome fashion, or in an all-information level.

For the later we produce the composite value added indicator by weighting each

outcome-specific indicator by the inverted square root of the covariance matrix (see

equation (3.2)). In this way, the composite index takes into account the school spe-

cific inherent dependency of the multiple outcomes and a more informative between-

school comparison can be performed.
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The case study we analyze in this paper deals with the quality of higher education.

The interest on quality assurance in higher education is expanding worldwide, generating

new requirements and international standards for the accreditation of institutions and

programs (Hou, 2011). The accreditation process typically focuses its attention on or-

ganizational aspects on programs and institutions. However, some authors argue that

accreditation should be complemented with internal improvement processes at the stu-

dents level (see Schwarz & Westerheijden, 2004; Dano & Stensaker, 2007). The value

added analysis of the tertiary educational system of Colombia can be considered as an

input of an accreditation process which focuses its attention on students’ progress. Both

the within- and between-institution comparisons provide information relevant to internal

and external accountability processes.
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A Appendix

A.1 Acronyms

Variable names

• QR (or Spro QR): SABER PRO test, Quantitative Reasoning score

• CR (or Spro CR): SABER PRO test, Critical Reading score

• EN (or Spro EN): SABER PRO test, English as a foreign language score

• CC (or Spro CC): SABER PRO test, Citizenship Competencies score

• WrC (or Spro WrC): SABER PRO test, Written Communication score

• Engl (or S11 Engl): SABER 11 test, English score

• Math (or S11 Math): SABER 11 test, Mathematics score

• Phys (or S11 Phys): SABER 11 test, Physics score

• Chem (or S11 Chem): SABER 11 test, Chemistry score

• SocSci (or S11 SocSci): SABER 11 test, Social Sciences score

• Span (or S11 Span): SABER 11 test, Spanish score

Table elements

• VA: Value added

• Qu.: Quartile

• NA: Not Applicable

• # : Number of Observations

• stdev: Standard Deviation

• ave(.): equally-weighted average

• w(.): weighted average, where the weight is the inverse of the variance
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Figure A.1: Distribution of the coefficient estimates from the simulation Case 1
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Figure A.2: Distribution of the coefficient estimates from the simulation Case 2
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Figure A.3: Distribution of the coefficient estimates from the simulation Case 3
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Figure A.4: Distribution of the coefficient estimates from the simulation Case 4
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Figure A.5: Distribution of the coefficient estimates from the simulation Case 5
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Table A.1: Distribution of students in each reference study program

Field of study Number of students Proportion Cumulative

Engineering 32174 0.234 0.234
Administration 24310 0.177 0.411
Education 11877 0.087 0.498
Law 11772 0.086 0.584
Accounting 9025 0.066 0.649
Health 7463 0.054 0.704
Communication Journalism and Publicity 6491 0.047 0.751
Arts and Design 5322 0.039 0.79
Psychology 5092 0.037 0.827
Social Sciences 4412 0.032 0.859
Nursing 3799 0.028 0.887
Economics 3343 0.024 0.911
Medicine 3071 0.022 0.934
Architecture and City Planning 2841 0.021 0.954
Natural and Exact Sciences 2533 0.018 0.973
Agricultural Sciences 2362 0.017 0.99
Humanities 916 0.007 0.997
Military and Naval Sciences 475 0.003 1

Table A.2: Correlation matrix between the Saber 11 and Saber Pro test scores

Engineering

S11 Span S11 Math S11 SocSci S11 Chem S11 Phys S11 Engl
Spro WrC 0.23 0.2 0.25 0.20 0.15 0.25
Spro EN 0.47 0.52 0.46 0.49 0.42 0.77
Spro CR 0.46 0.43 0.5 0.44 0.34 0.45
Spro QR 0.44 0.61 0.48 0.52 0.46 0.50
Spro CC 0.44 0.43 0.51 0.43 0.35 0.42

Law

S11 Span S11 Math S11 SocSci S11 Chem S11 Phys S11 Engl
Spro WrC 0.27 0.21 0.3 0.24 0.16 0.27
Spro EN 0.46 0.45 0.45 0.42 0.33 0.77
Spro CR 0.48 0.36 0.51 0.39 0.26 0.44
Spro QR 0.39 0.47 0.42 0.43 0.34 0.42
Spro CC 0.47 0.38 0.51 0.39 0.27 0.42
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Table A.3: GLS unidimensional regression estimates for Engineering

QR CR EN CC WrC

Intercept 4.302 4.465 3.766 4.765 5.634
(0.508) (0.425) (0.631) (0.439) (0.591)

Mathematics 0.013 0.023 0.014 0.021 0.01
(0.001) (0.001) (0.001) (0.001) (0.001)

Spanish 0.026 0.006 0.006 0.007 0.002
(0.001) (0.001) (0.001) (0.001) (0.001)

Chemistry 0.016 0.027 0.009 0.033 0.013
(0.001) (0.001) (0.001) (0.001) (0.001)

Social Sciences 0.023 0.015 0.012 0.016 0.003
(0.001) (0.001) (0.001) (0.001) (0.001)

English 0.009 0.003 0.005 0.005 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Physics 0.007 0.009 0.052 0.006 0.007
(0) (0) (0.001) (0) (0.001)

INSE 0.002 0.001 0.013 0.001 0
(0.001) (0.001) (0.001) (0.001) (0.001)

Academic track -0.311 0.081 -0.095 0.053 0.263
(0.01) (0.009) (0.011) (0.01) (0.012)

Female dummy 0.001 -0.051 0.039 -0.043 -0.02
(0.018) (0.017) (0.02) (0.018) (0.022)

Tuition 1–3million 0.093 -0.044 0.106 -0.04 -0.023
(0.026) (0.024) (0.029) (0.025) (0.032)

Tuition 3–5million 0.054 -0.031 0.081 -0.053 0.013
(0.024) (0.022) (0.026) (0.023) (0.028)

Tuition >5million -0.087 -0.056 -0.018 -0.075 -0.051
(0.012) (0.011) (0.013) (0.011) (0.014)

Composition Spanish -0.025 0.012 0.031 -0.016 0.03
(0.015) (0.013) (0.019) (0.013) (0.018)

Composition Mathematics 0.027 0.006 0.013 0.01 -0.006
(0.009) (0.007) (0.011) (0.007) (0.01)

Composition Social Sciences 0.089 0.056 -0.007 0.085 0.064
(0.013) (0.011) (0.017) (0.011) (0.016)

Composition Chemistry -0.044 -0.029 -0.012 -0.039 0.013
(0.015) (0.012) (0.018) (0.013) (0.017)

Composition Physics -0.009 -0.011 -0.033 -0.023 -0.045
(0.014) (0.012) (0.017) (0.012) (0.016)

Composition English -0.008 -0.01 0.028 -0.005 -0.007
(0.006) (0.005) (0.007) (0.005) (0.007)

Composition INSE -0.001 0.003 0.002 0.002 -0.001
(0.004) (0.003) (0.005) (0.003) (0.005)

σ̂2 0.649 0.559 0.781 0.639 0.949

Λ̂m 0.010 0.006 0.018 0.006 0.013
mean γ̂m 0.000 0.000 0.000 0.000 0.000

Note: Standard errors in parenthesis. Dependent variable indicated on top of each
column. Sample size for one module is 30857 for 126 schools.
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Table A.4: GLS unidimensional regression estimates for Law

QR CR EN CC WrC

Intercept 5.163 2.903 3.558 4.106 6.237
(0.733) (0.681) (0.775) (0.786) (0.937)

Mathematics 0.01 0.027 0.01 0.025 0.012
(0.001) (0.001) (0.001) (0.001) (0.002)

Spanish 0.019 0.004 0.005 0.007 0.003
(0.001) (0.001) (0.001) (0.001) (0.001)

Chemistry 0.014 0.029 0.008 0.03 0.019
(0.001) (0.001) (0.001) (0.001) (0.002)

Social Sciences 0.023 0.015 0.008 0.015 0.011
(0.001) (0.001) (0.002) (0.001) (0.002)

English 0.009 0.001 0.004 0.003 0.003
(0.001) (0.001) (0.001) (0.001) (0.001)

Physics 0.006 0.009 0.052 0.005 0.006
(0.001) (0.001) (0.001) (0.001) (0.001)

INSE -0.001 -0.002 0.01 -0.003 -0.002
(0.001) (0.001) (0.001) (0.001) (0.001)

Academic track -0.267 0.005 -0.053 -0.029 0.187
(0.014) (0.015) (0.016) (0.016) (0.02)

Female dummy 0.079 0.038 0.116 0.072 0.042
(0.047) (0.048) (0.053) (0.05) (0.064)

Tuition 1–3million 0.063 0.013 0.07 0.003 0.002
(0.043) (0.044) (0.049) (0.047) (0.059)

Tuition 3–5million 0.031 0.054 0.088 -0.006 0.016
(0.04) (0.041) (0.045) (0.043) (0.055)

Tuition >5million -0.064 -0.089 0.003 -0.088 -0.064
(0.018) (0.019) (0.021) (0.019) (0.025)

Composition Spanish -0.018 0.035 -0.001 0.035 0.032
(0.018) (0.016) (0.019) (0.019) (0.023)

Composition Mathematics 0.017 -0.021 0.03 -0.021 -0.002
(0.014) (0.013) (0.015) (0.015) (0.018)

Composition Social Sciences 0.052 0.069 -0.015 0.047 0.057
(0.014) (0.013) (0.015) (0.015) (0.018)

Composition Chemistry -0.049 -0.051 0.004 -0.041 -0.027
(0.024) (0.022) (0.025) (0.026) (0.031)

Composition Physics 0.024 0.041 -0.013 0.025 -0.024
(0.026) (0.024) (0.027) (0.027) (0.033)

Composition English -0.006 -0.02 0.019 -0.004 -0.006
(0.007) (0.006) (0.007) (0.007) (0.009)

Composition INSE -0.001 0.012 0.012 0.004 -0.002
(0.006) (0.006) (0.006) (0.006) (0.008)

σ̂2 0.514 0.582 0.68 0.604 1.012

Λ̂m 0.014 0.011 0.015 0.016 0.021

mean θ̂ 0.000 0.000 0.000 0.000 0.000

Note: Standard errors in parenthesis. Dependent variable indicated on top of each
column. Sample size for one module is 11198 for 73 schools.
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Table A.5: SURE GLS multidimensional regression estimates for Engineering programs

QR CR EN CC WrC

Intercept 10.394 4.931 7.103 -3.383 1.107
(0.273) (0.273) (0.273) (0.273) (0.273)

Mathematics 0.01 0.014 0.023 0.013 0.021
(0.001) (0.001) (0.001) (0.001) (0.001)

Spanish 0.002 0.006 0.006 0.026 0.007
(0.001) (0.001) (0.001) (0.001) (0.001)

Chemistry 0.013 0.009 0.028 0.016 0.033
(0.001) (0.001) (0.001) (0.001) (0.001)

Social Sciences 0.003 0.012 0.015 0.023 0.016
(0.001) (0.001) (0.001) (0.001) (0.001)

English 0.001 0.005 0.003 0.009 0.005
(0.001) (0.001) (0.001) (0.001) (0.001)

Physics 0.007 0.052 0.009 0.007 0.006
(0) (0) (0) (0) (0)

INSE 0 0.013 0.001 0.002 0
(0.001) (0.001) (0.001) (0.001) (0.001)

Academic track 0.262 -0.095 0.078 -0.313 0.05
(0.01) (0.01) (0.01) (0.01) (0.01)

Female dummy -0.017 0.047 -0.025 0.019 -0.023
(0.017) (0.017) (0.017) (0.017) (0.017)

Tuition 1-3million -0.021 0.148 -0.006 0.134 -0.028
(0.023) (0.023) (0.023) (0.023) (0.023)

Tuition 3-5million 0.021 0.114 0.006 0.093 -0.031
(0.02) (0.02) (0.02) (0.02) (0.02)

Tuition >5million -0.051 -0.017 -0.055 -0.085 -0.074
(0.012) (0.012) (0.012) (0.012) (0.012)

Composition Spanish -0.068 0.099 -0.147 0.263 -0.117
(0.009) (0.009) (0.009) (0.009) (0.009)

Composition Mathematics 0.101 -0.132 -0.073 0.034 -0.013
(0.004) (0.004) (0.004) (0.004) (0.004)

Composition Social Sciences 0.035 0.085 0.038 -0.129 0.253
(0.006) (0.006) (0.006) (0.006) (0.006)

Composition Chemistry 0.043 0.29 0.102 0.037 0.086
(0.007) (0.007) (0.007) (0.007) (0.007)

Composition Physics -0.15 -0.338 0.058 0.043 -0.048
(0.007) (0.007) (0.007) (0.007) (0.007)

Composition English -0.037 0.103 0.025 -0.094 -0.093
(0.002) (0.002) (0.002) (0.002) (0.002)

Composition INSE 0.025 -0.116 -0.016 0.025 0.019
(0.002) (0.002) (0.002) (0.002) (0.002)

σ̂2 0.716
mean γ̂qr -0.144
mean γ̂cr 0.287
mean γ̂en 0.05
mean γ̂cc -0.029
mean γ̂wrc 0.175

Note: Dependent variable indicated on the first column of each panel. Sample size
for one module is 30857 for 126 schools.
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Table A.6: SURE GLS multidimensional regression estimates for Law programs

QR CR EN CC WrC

Intercept 5.32 -2.627 -0.487 1.336 -1.636
(0.432) (0.432) (0.432) (0.432) (0.432)

Mathematics 0.012 0.01 0.027 0.01 0.025
(0.001) (0.001) (0.001) (0.001) (0.001)

Spanish 0.003 0.005 0.004 0.019 0.007
(0.001) (0.001) (0.001) (0.001) (0.001)

Chemistry 0.019 0.008 0.029 0.014 0.03
(0.001) (0.001) (0.001) (0.001) (0.001)

Social Sciences 0.011 0.008 0.015 0.023 0.015
(0.002) (0.002) (0.002) (0.002) (0.002)

English 0.003 0.004 0.001 0.009 0.003
(0.001) (0.001) (0.001) (0.001) (0.001)

Physics 0.007 0.052 0.009 0.006 0.005
(0.001) (0.001) (0.001) (0.001) (0.001)

INSE -0.002 0.01 -0.002 -0.001 -0.003
(0.001) (0.001) (0.001) (0.001) (0.001)

Academic track 0.187 -0.053 0.006 -0.266 -0.028
(0.016) (0.016) (0.016) (0.016) (0.016)

Female dummy -0.009 0.083 0.073 0.091 0.068
(0.042) (0.042) (0.042) (0.042) (0.042)

Tuition 1-3million -0.048 0.052 0.035 0.062 -0.013
(0.039) (0.039) (0.039) (0.039) (0.039)

Tuition 3-5million -0.024 0.056 0.076 0.023 -0.023
(0.035) (0.035) (0.035) (0.035) (0.035)

Tuition >5million -0.058 0.006 -0.087 -0.06 -0.085
(0.02) (0.02) (0.02) (0.02) (0.02)

Composition Spanish 0.102 -0.023 0.037 0.131 0.124
(0.01) (0.01) (0.01) (0.01) (0.01)

Composition Mathematics 0.022 -0.186 0.072 -0.074 0.018
(0.008) (0.008) (0.008) (0.008) (0.008)

Composition Social Sciences 0.004 -0.078 -0.004 -0.04 -0.005
(0.008) (0.008) (0.008) (0.008) (0.008)

Composition Chemistry 0.105 0.107 -0.055 -0.026 -0.085
(0.014) (0.014) (0.014) (0.014) (0.014)

Composition Physics -0.157 0.288 0.071 0.116 0.139
(0.014) (0.014) (0.014) (0.014) (0.014)

Composition English -0.028 0.058 -0.049 0.019 -0.042
(0.004) (0.004) (0.004) (0.004) (0.004)

Composition INSE -0.008 0.018 0.064 -0.025 0.013
(0.004) (0.004) (0.004) (0.004) (0.004)

σ̂2 0.679
mean γ̂qr 0.085
mean γ̂cr -0.067
mean γ̂en -0.06
mean γ̂cc -0.017
mean γ̂wrc 0.01

Note: Dependent variable indicated on the first column of each panel. Sample size
for one module is 11198 for 73 schools.
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B Technical Appendix

In this Appendix, we derive the estimation procedure used in the paper. Proofs and
derivations of other specific results established in the main text are also gathered in this
Appendix.

B.1 Notation

In this section we set the notation we use in the Technical Appendix.

• Yimj is the score (scalar) for person i, in school j, in module m, for i = 1, . . . , nj ,
j = 1, . . . , J and m = 1, . . . ,M . The following three vectors are accordingly defined:
Ymj = (Y1mj , Y2mj , . . . , Ynjmj)

>, a vector of dimension nj × 1;
Yj = (Y >1j , Y

>
2j , . . . , Y

>
Mj)

>, a vector of dimension Mnj × 1;

Y = (Y >1 , Y >2 , . . . , Y >J )>, a vector of dimension MN × 1 where N =
∑J

j nj .

• Zimj is a vector of dimension K×1 of K-explanatory variables for person i, in school
j and for module m, including the intercept.
Z>mj = (Z1mj , . . . , Znjmj) a matrix of dimension nj ×K.
Zj = diag(Z1j , . . . , ZMj a matrix of dimension Mnj ×MK.
Z = (Z>1 , . . . , Z

>
J )> a matrix of dimension MN ×MK.

• βm = (β0m, β1m, . . . , βK−1,m)> a vector of dimension K × 1, where β0m corresponds
to the coefficient regression of the intercept.
β = (β>1 , β

>
2 , . . . , β

>
M )> a vector of dimension MK × 1.

• γj = (γ1j , γ2j , . . . , γMj)
> a vector of dimension M × 1.

γ = (γ1, . . . , γJ)> a vector of dimension MJ × 1.

• ιnj = (1, 1, . . . , 1)> a vector of dimension nj × 1 for j = 1, 2, . . . , J .

• Hj = IM ⊗ ι>nj
a M ×Mnj matrix.

• H = diag{H1, . . . ,HJ} a MJ ×MN matrix.

• H> = diag{H>1 , . . . ,H>J } a MN ×MJ matrix.

• Hj = IM ⊗ ι>nj
/nj a M ×Mnj matrix.

• H = diag{H1, . . . ,HJ} a MJ ×MN matrix. This is also known as the “between”
transform.

• Jnj = ιnj ι
>
nj

, a matrix of dimension nj × nj of 1’s.

Jnj = ιnj ι
>
nj
/nj , a matrix of dimension nj × nj of

1

nj
’s.

• W = IMN −H>H a MN ×MN matrix. This is also known as the “within module”
transform. Wj = IMnj−IM⊗Jnj for each school j, and W = diag (W1,W2, . . . ,WJ).

• Note that H>H = diag{H>1 H1, . . . ,H
>
J HJ}, where

H>j Hj = (IM ⊗ ιnj )(IM ⊗ ι>nj
/nj) = IM ⊗ ιnj ι

>
nj
/nj = IM ⊗ Jnj .

So H>H = diag{IM ⊗ Jn1 , . . . , IM ⊗ JnJ}, a matrix of dimension MN ×MN .

• Below we also need to go from a stacked vector to school-level or module-in-school-
level vectors. Denote by P j the (Mnj)× (MN) matrix such that P jY = Yj . Simi-

larly, define by P jm the nj × (MN) that is such that P jmY = Ymj . The matrix P jm,
for instance, is such that

P j
m =

(
0nj×(Mn1) . . . 0nj×(Mnj−1) 0nj×((m−1)nj) Inj

0nj×((M−m)nj) 0nj×(Mnj+1) . . . 0nj×(MnJ )

)
where, for instance, 0nj×(Mn1) is an nj × (Mn1) matrix with only zero entries.
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B.2 Structural model

In order to specify the joint distribution generating (Y,Z, γ), we perform a marginal-
conditional decomposition. Taking into account that we are dealing with J different
schools, it is reasonable to assume that {(Yj , Zj , γj) : j = 1, . . . , J} are mutually indepen-
dent. As an application of Theorem 7.6.9 in Florens, Mouchart, and Rolin (1990), this
condition is equivalent to the following three conditions:

1. ⊥⊥
1≤j≤J

Yj | (Z, γ).

2. For each school j, Yj ⊥⊥ (Z, γ) | (Zj , γj).
3. ⊥⊥

1≤j≤J
(Zj , γj).

Note that the third condition above implies that the school effects γj ’s are mutually
independent. By doing so, the model specification is completed by decomposing the joint
distribution generating (Yj , Zj , γj). The order of the decomposition is accordingly the
following:

1. The exit test scores vector Yj is stochastically determined by Zj (which contains the
entry test scores and other covariates) and the school effect γj . Empirical analysis
reveals a correlation between Yj and Zj . Furthermore, it is expected that, after con-
ditioning on Zj , the school has an impact on the exit test scores. These relationships
are consequently represented by the conditional distribution p(Yj | Zj , γj).

2. The conditional distribution of Zj given γj does not depend on γj because the entry
test scores as well as other covariates were measured before the school’s intervention.
This means that

Zj ⊥⊥ γj , (B.1)

or in other word, Zj are exogenous covariates with respect to γj .

3. γj ∼ (0,Λj); that is, the distribution of γj is known up to the variance-covariance
matrix Λj , which is specific to school j. Furthermore, it is allowed that the school-
outcome specific effects are correlated among them.

4. The distribution of Zj is left unspecified as it is typically done with exogenous
variables; see Engle, Hendry, and Richard (1983).

The conditional model p(Yj | Zj , γj) is specified as follows for each module m =
1, . . . ,M ,

1. Ymj ⊥⊥ (Zj , γj) | Zmj , γmj ; that is, a module-wise relationship between module-exit
scores and covariates.

2. ⊥⊥
1≤i≤nj

Yimj | Zmj , γmj ; that is, the axiom of local independence.

3. For each i = 1, . . . , nj , Yimj ⊥⊥ Zmj | Zimj , γmj ; that is, individual-wise dependency
of the exit score with respect to the covariates.

4. (Yimj | Zimj , γmj) ∼ (Z>imjβm + γmj , σ
2); that is, the conditional distribution of

(Yimj | Zimj , γmj) is known up to its means and variance. Furthermore, E(Yimj |
Zimj , γmj) = Z>imjβm + γmj and V ar(Z>imjβm + γmj) = σ2.

After staking all outcomes, we obtain

E(Yj | Zj , γj) = Zjβ + γj ⊗ ınj , V ar(Yj | Zj , γj) = σ2IMnj ;

and after staking schools, we obtain

(i) E(Y | Z, γ) = Zβ +H>γ,
(ii) V (Y | Z, γ) = σ2IMN ,

(iii) V ar(γ) = diag(Λ1, . . . ,ΛJ).
(B.2)
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B.3 Proof of Lemma 2.1

We compute each element of the distribution separately. Based on the assumptions that
frame our structural model and the Law of Iterated Expectations, it follows that

E(Yj | Zj) = E[E(Yj | Zj , γj) | Zj ] = Zjβ + E(γj ⊗ ınj | Zj) = Zjβ

because Zj is exogenous with respect to γj and E(γj | Zj) = 0 because Zj is exogenous
with respect to γj . For the variance, we compute V (γj | Zj) = Λj by definition. Then,

V (Yj | Zj) = V (E(Yj | Zj , γj) | Zj) + E(V (Yj | Zj , γj) | Zj)
= V (γj ⊗ ιnj ) + σ2IMnj

=


Λj11ιnj ι

>
nj

Λj12ιnj ι
>
nj

. . . Λj1M ιnj ι
>
nj

Λj21ιnj ι
>
nj

Λj22ιnj ι
>
nj

. . . Λj2M ιnj ι
>
nj

...
...

. . .
...

ΛjM1ιnj ι
>
nj

ΛjM2ιnj ι
>
nj

. . . ΛjMM ιnj ι
>
nj

+ σ2IMnj

= Λj ⊗ (ιnj ι
>
nj

) + σ2IMnj .

and

cov(Yj , γj | Zj) = cov(E(Yj | Zj , γj) | Zj)
= cov(γj ⊗ ιnj , γj | Zj)
= cov(γj ⊗ ιnj , γj) by (B.1)

= Λj ⊗ ιnj .

The moments of γj are directly obtained from the model specification.

B.4 Definition of the Value Added

Following Manzi et al. (2014), the definition of value added for each school j and module
m is given by

V Amj =
1

nj

nj∑
i=1

E (Yimj | Zimj , γmj)−
1

nj

nj∑
i=1

E (Yimj | Zimj)

which, upon derivations using the structural model results to be equal to γmj . More
specifically,

E (Yj | Zj , γj)− E (Yj | Zj) = (Zjβ + γj ⊗ ιnj )− E (E (Yj | Zjγj) | Zj)
= (Zjβ + γj ⊗ ιnj )− E(Zjβ + γj ⊗ ιnj | Zj)
= (Zjβ + γj ⊗ ιnj )− Zjβ − E(γj ⊗ ιnj | Zj)
= γj ⊗ ιnj

because E(γj ⊗ ιnj | Zj) = 0 by (B.1).
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B.5 Estimation by the method of moments

B.5.1 Estimation of σ2

Let

Y = Zβ +H>γ + u, (B.3)

where u = Y − E(Y | Z, γ). Applying the transform W -operator to this equation, we
obtain

WY = WZβ +Wu,

where
V ar(Wu) = σ2WW> = σ2W.

Then, using the fact that W is a projection matrix,

β̂w = (Z>WZ)−1Z>WY.

Let define the following residual:

êw = WY −WZβ̂w

= [IMN −WZ(Z>WZ)−1Z>W ]WY, because W is a projection matrix.

:= MWY.

It can be verified that M is idempotent and symmetric (i.e., a projection matrix). Taking
into account that M(WY ) = M(WZβ +Wu) = M(Wu), it follows that

E
[
(êw)> (êw)

]
= E

[
(WY )>M (WY )

]
= tr [M Var(Wu)]

= σ2 tr(MW )

= σ2
[
tr(W )− tr(WZ(Z>WZ)−1W )

]
= σ2 [tr(W )− tr(IMK)]

= σ2 [MN −MJ −MK∗]

= σ2M(N − J −K∗),

where K∗ ≤ K is the number of non-zero covariates in the Within regression. Therefore,
the estimation of σ2 is given by

σ̂2 =
(Y − Zβ̂w)>W (Y − Zβ̂w)

M(N − J −K∗
.

B.5.2 Estimation of Λj

In equation (B.3), define v := H>γ + u as the unobserved component. From the model,
the OLS estimator of β, β̂ = (Z>Z)−1Z>Y , is a consistent estimator. The corresponding
residuals are given by ê = Y − Zβ̂. Let us introduce a partition on the MN -vector of
residuals ê in the following way: Denote by êjm = P jmê the subvector of ê for school j in
module m (the projection matrix P jm has been defined above in Section B.1). Observe
that (êjm)>êjm′ is a biased estimator of Λjmm′ . We need to analyze the bias in order to find
our final estimator.

Let Q = I−Z(Z>Z)−1Z> be the projection onto the vectorial space that is orthogonal
to the columns of Z. We also denote by Πj

mm′ = (P jm)>P jm′ an MN ×MN matrix. Note

that (êjm)>êjm′ = ê>Πj
mm′ ê.
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Using this notation, we can now compute the expectation of the estimator. Using that
γ and u are independent, we obtain the following decomposition:

E
[
(êjm)>êjm′

]
= E

(
γ>HQ>Πj

mm′QH
>γ
)

+ E
(
u>Q>Πj

mm′Qu
)
. (B.4)

Each term is the expectation of a quadratic form, that we derive each below. First,

bjmm′ := E
(
u>Q>Πj

mm′Qu
)

= σ2tr(Q>Πj
mm′Q)

= σ2tr(Q>P j>m P jm′Q)

= σ2tr(P jm′QP
j>
m )

which is known because we have already estimated σ2 in the previous section.
Second,

E
(
γ>HQ>Πj

mm′QH
>γ
)

= tr(Λ1/2HQ>Πj
mm′QH

>Λ1/2) (B.5)

= tr(ΛHQ>Πj
mm′QH

>) (B.6)

and contains the unknown matrix Λ in a tricky expression. Denote by Gjmm′ the known

matrix, HQ>Πj
mm′QH

>, that depends only on the covariates. Observe that

tr(ΛGjmm′) = Λ1
mm′α

j,1
mm′ + Λ2

mm′α
j,2
mm′ + · · ·+ ΛJmm′α

j,J
mm′ (B.7)

for some αj,lmm′ entries of Gjmm′ , for every m,m′ = 1, . . . ,M and every j, l = 1, . . . , J . By
restricting to m 6 m′, (B.4) is, therefore, equivalently rewritten as

E
[
(êjm)>êjm′

]
= bjmm′ + (Λ1

mm′α
j,1
mm′ + · · ·+ ΛJmm′α

j,J
mm′). (B.8)

We now summarize the estimation procedure for Λj .

1. Compute the OLS estimator using all the data : β̂ = (Z>Z)−1Z>Y .

2. Compute the residuals ê = Y − Zβ̂w and define the vector vj of size M(M + 1)/2
that is such that

vj =
(
êj>1 êj1, ê

j>
1 êj2, . . . , ê

j>
1 êjM , ê

j>
2 êj2, . . . , ê

j>
2 êjM , . . . , ê

j>
M êjM

)>
(B.9)

with êjm = P jmê and consider the vector of size JM(M + 1)/2

v =
(

(v1)>, . . . , (vJ)>
)>

. (B.10)

3. Let bj be a vector of size M(M + 1)/2 such that

bj = (bj11, b
j
12, . . . , b

j
1M , b

j
22, b

j
23, . . . , b

j
2M , . . . , b

j
MM )> (B.11)

with bjmm′ = σ̂2tr(P j>m′ QQ
>P jm).

4. Consider the vectors of size JM(M + 1)/2 such that

b =
(

(b1)>, . . . , (bJ)>
)>

. (B.12)
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5. For every school j, denote by diag(αj,l) the diagonal matrix of size M(M + 1)/2
having elements

(αj,l11, α
j,l
12, . . . , α

j,l
1M , α

j,l
22, α

j,l
23, . . . , α

j,l
2M , . . . , α

j,l
MM )>

over the diagonal. Denote by Γj the matrix of size M(M + 1)/2 × JM(M + 1)/2
concatenating the last matrices:

Γj =
[
diag(αj,1), . . . , diag(αj,J)

]
which yields a matrix of dimensions M(M+1)/2×JM(M+1)/2 since j = 1, . . . , J .

6. Stack the Γj for each school j to obtain a JM(M + 1)/2 square matrix

Γ =

 Γ1

...
ΓJ

 .
7. Observe that: v = b+ ΓΛ̃j where Λ̃j is defined in the next item.

8. Denote by Λ̃j = (Λj11, . . . ,Λ
j
1M ,Λ

j
22,Λ

j
23, . . . ,Λ

j
2M , . . . ,Λ

j
MM )> the vector given by

Γ−1(v − b). (B.13)

9. The estimated matrix Λj is an arrangement of the estimated vector Λ̃j (Λ̂jmm′ =

Λ̃jmm′).

B.5.3 Estimation of β

The efficient estimation is given by the GLS estimator β̂g = (Z>Ω−1Z)−1Z>Ω−1Y where
Ω is a consistent estimator of V ar(H>γ + u | Z). A consistent estimator is provided by

Ω̂ = H>Λ̂H + σ̂2IMN .

The practical inversion of that matrix is a difficulty, given its huge size. Two results are
useful to simplify that step. First, observe that Ω̂ is a block diagonal matrix. Since there
is no correlation between two schools, the inversion of Ω̂ simplifies to the inversion of each
by-school block

Ω̂j = HjΛ̂H
t
j + σ̂2IMnj

= Λj ⊗ Jnj + σ̂2IMnj .

For each school, this empirical covariance matrix is of size Mnj×Mnj . The second result
is a recursive method to inverse the matrix in a given school, which is provided in the
next section.

B.6 Inversion of Ωj

It is useful to notice that Ω̂j is decomposed into blocks of size nj × nj :

Ω̂j =


A11 A12 . . . A1M

A21 A22 . . . A2M
...

...
. . .

...
AM1 AM2 . . . AMM


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where

Amm = αmJnj + βmEnj with αm = nj(Λ̂
j
mm) + σ̂2, and βm = σ̂2

and, for m 6= p,

Amp = ζmpJnj with ζmp = njΛ̂
j
mp

and Enj = Inj − Jnj . Note that elements of Amp depend on j (including n = nj). We
skipped the j to simplify the notation.

B.6.1 Inversion when M = 2

In the following, we use recursively the inversion formula for partitioned matrices: If
G = (D − CA−1B)−1 it is easy to check that(

A B
C D

)−1

=

(
A−1(In +BGCA−1) −A−1BG

−GCA−1 G

)
. (B.14)

Using the spectral decomposition6 of A11:

A−1
11 = α−1

1 Jn = β−1
1 En

G2 := A22 −A21A
−1
11 A12 =

(
α2 −

ζ12ζ21

α1

)
Jn + β2En

and therefore

Ωj =

(
1
α1

(
1 + ζ12ζ21

α1α2−ζ12ζ21

)
Jn + 1

β1
En) − ζ12

α1α2−ζ21ζ12Jn

− ζ21
α1α2−ζ21ζ12Jn

α2
α1α2−ζ21ζ12Jn + 1

β 2
En

)
. (B.15)

when M = 2

B.6.2 Recursive inversion: from M − 1 to M

Denote

Ω̂j =


A1M

A A2M
...

A2,M−1

AM1 AM2 . . . AM,M−1 AMM


with

A =


A11 A12 . . . A1,M−1

A21 A22 . . . A2,M−1
...

...
. . .

...
AM−1,1 AM−1,2 . . . AM−1,M−1

 .

Matrix A has just been inverted in step M − 1. For some xm, ym and zm the entries
of A−1 are

A−1
mm = xmmJn + ymEn

A−1
mp = xmpJn (m 6= p)

6The columns of Jn and En are mutually orthonormal and are the eigenfunctions of A11
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and construct the matrixXM−1 = (xmp)
M−1
m,p=1 and the vector ζM−1 = (ζM1, . . . , ζM,M−1)>.

Then using the symmetry of Ωj ,

GM := AMM − (AM,1, . . . , AM,M−1)A−1(A1,M , . . . , AM−1,M )>

= (αM + ζ>M−1XM−1ζM−1)Jn

Now, after some derivations and using the symmetry of XM−1, we obtain

Ω̂−1
j =

 A−1 +
X>M−1ζM−1ζ

>
M−1XM−1

αM+ζ>M−1XM−1ζM−1
Jn − X>M−1ζM−1

αM+ζ>M−1XM−1ζM−1
JM

− ζ>M−1XM−1

αM+ζ>M−1XM−1ζM−1
JM

1
αM+ζ>M−1XM−1ζM−1

Jn + 1
βM
En

 .
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