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We are not simply in the universe, we are part of it. We are
born from it. One might even say we have been empowered by the

universe to figure itself out.

by Neil deGrasse Tyson
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Abstract

In this PhD dissertation, we investigate how to solve some classical combi-
natorial optimization problems and applications using secure multiparty com-
putation. Our study highlights the differences between traditional and secure
adaptations of some algorithms to later test its implementation. It also explores
various trade-offs between performance and security. We provide protocols that
can be used as building blocks to solve more complex problems. Additionally,
we report on practical applications, more specifically, we study the problem of
securely building auction mechanisms with transmission constraints. We focus
on improving performance for real life applications. We report on the design of
a specific Object Oriented implementation of the necessary secure multiparty
computation protocols used for the experimentation on practical applications.
Areas of interest for our work can be found in: auction markets, communica-
tion networks, routing data from rival company hubs, distribution problems,
amongst others.
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It’s a dangerous business, Frodo, going out your door. You
step onto the road, and if you don’t keep your feet, there’s no

knowing where you might be swept off to.

by J.R.R. Tolkien
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Introduction
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Chapter 1

Generalities

1.1 Motivation

Imagine a setting where computations that involve private data from several
sources cannot be done without fear of disclosing this information to your direct
competition. Now, consider that such computations are done over some kind
of finite set for a problem that is combinatorial in nature, and that problem
has to be solved to optimality. Moreover, the data from calculations is pro-
vided by competing agents that could use the information coming from other
participants in the process for their own advantage.

It is easy to imagine such scenario in various environments, from Informa-
tion Technology (IT) platforms where competing agents have to configure their
appliances (e.g. routers, switches or satellites) to improve traffic speeds and
avoid any type of collisions, to day-ahead electricity markets, where demand
and supply bids from competing parties with different interests have to be ac-
cepted and rejected.

A solution approach would require for these agents to trust a third party
such that they can transfer to this party all private information, and in ex-
change, it would return to all the parties the result of the computation. This
ideal approach would create the need of finding such agent, and elements like
security and fairness (parties learn about the results at the same time) to be
its responsibility. Note that this is not always possible in practice. In many
cases such third party could be coerced to modify the calculations in favor of
any other party or disclose sensible information to other agents. Detection of
such corruption is not always obvious.

Secure Multiparty Computation (MPC) is the theoretical answer to the
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Chapter 1

absence of this ideal third party. Roughly speaking, MPC allows the parties
involved in the computation to simulate the third party functionality, such that
the computations can be done between the competing agents alone. MPC can
guarantee different levels of security and fairness in various models. The basic
concept of the problem was introduced by Yao’s [1] paper in 1982 with the
millionaires problem. Basically, two millionaires want to find who is richer.
The caveat is that none of them wants to disclose inadvertently any informa-
tion to the other about its wealth. The question Yao’s raises refers to how such
conversation should be carried out (a solution can be achieved using 1-2 obliv-
ious transfers, which is a way to obtain an entry from a data collection such
that the receiver does not learn anything from the other entries and neither
the sender about the element that was queried). Nowadays, this question has
muted towards a field of itself, embodied by two-party computation. MPC,
tries to answer similar questions regardless the number of players.

In this dissertation we discuss how to solve a series of combinatorial prob-
lems to optimality using MPC protocols. We introduce some trade-offs between
efficiency, and security and provide some computational experimentation. Our
conclusions on the more theoretical aspects of the thesis, inspired us to investi-
gate a more practical approach. We not only use available software tools, but
also build customizable implementations of the MPC functionality needed by
our protocols, not only to accelerate performance, but to provide modularity,
adaptation capabilities and scalability. They are later used to solve real life
combinatorial problems in auctions of the type encountered day-ahead electric-
ity markets.

It is our belief that, since the early 80’s, the study of MPC has evolved from
a purely theoretical endeavor towards real and practical applications. This is
the reason why we focus our attention not only in providing theoretical results
but practical implementations as well. This dissertation gives emphasis to both,
a theoretical outlook where polynomial time algorithms are adapted to provide
security and correctness, and a practical approach, with experimentation and
prototyping.

1.1.1 Theoretical Perspective

The selected combinatorial problems studied, can be solved to optimality by
theoretically efficient algorithms (i.e polynomial time) that guarantee correct-
ness. In many of these algorithms, the flow of the algorithm depends on the
data (non data-oblivious). Thorough adaptation is needed for these algorithms,
such that they can correctly calculate their outputs using MPC protocols and
methods (primitives). We introduce secure protocols that are adaptations of
such algorithms and provide polynomial bounds with some level of security,
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(typically perfect security). We provide a proof of their correctness, complex-
ity estimate, and their security.

1.1.2 Practical Perspective

The performance of theoretically efficient algorithms is affected by several fac-
tors in real life scenarios. Topics of implementation and the design of the ap-
plications and protocols, as well as available resources, including CPU power,
have great influence on their behavior. State of the art MPC protocols have an
associated computational cost, and they pose challenges on design and work-
load distribution. For instance, an MPC addition would be less expensive in
terms of performance than a multiplication, and in the same way, a multiplica-
tion would be less expensive than a comparison. We have adapted our secure
protocols to this reality. Moreover, we have built prototypes of our secure pro-
tocols such that we can measure and evaluate their performance. In addition,
we have extended our research to realistic life scenarios, and provided custom
compact and modular MPC tools to our prototypes.

Finally, note that our work centers on the multiparty case, where our secure
protocols provide security to any number of parties to securely solve some
combinatorial problems to optimality. Moreover, our secure protocols could be
easily adapted to be used in the two-party case.

1.2 Thesis Structure

This dissertation is organized as follows: Chapter 2 introduces some basic
concepts on security and combinatorial optimization that are universal to the
thesis. Problem specifics, like mathematical formulations, are described in de-
tail in further chapters.

Part II introduces theoretically efficient protocols to some known Network
Flow Problems. We provide complexity bounds and perform some computa-
tional experimentation over the Virtual Ideal Functionality Framework (VIFF)
[2]. Part II is divided as follows: we first address the shortest path problem
in Chapter 3. We begin by introducing different algorithmic solutions for the
problem as well as some variations of Dijkstra’s algorithm to provide secu-
rity with different information access levels and asymptotic bounds. We later
present the numerical results of our experimentation. Secondly, in Chapter 4
we discuss the Maximum Flow Problem, Minimum Mean Cost Cycle Problem
and the Minimum Cost Flow Problem. We present algorithms to solve these
three problems and report on computational experimentation. Finally we in-
clude some conclusions in Chapter 5.
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Inspired by the results of the experimentation of Part II, we introduce in
Part III secure algorithms to real-life problems using MPC protocols. We
include novel secure algorithms for such problems, emphasizing practicality,
performance analysis and experimentation, with a novel set of custom tools
specifically created for this purpose. We have also structured this Part in
three chapters as follows: Chapter 6 introduces a secure implementation of
the primitives that will be needed by results introduced by following chapters.
Previous experimentation raised the need to introduce an architecture based
on software composition, modular, adaptable, scalable and relatively efficient
(when benchmarked with VIFF) Toolkit, implemented in C++ using an Object
Oriented paradigm approach. The toolkit can be used as a third party library
in custom-software applications, and its modular design allows easy expansion
and code accessibility. Chapter 7 introduces a secure protocol for auctions with
transmission constraints inspired by day-ahead electricity markets. We model
it as a combinatorial optimization problem. We report on primitive adaptations
as well as trade-offs to obtain better performance. We provide computational
experimentation with our MPC Toolkit and realistic data scenarios. Finally,
Chapter 8 presents some conclusions.
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Chapter 2

Foundations

2.1 Secure Multiparty Computation: Security
Model

We use the terms ”securely” and ”privacy preserving” indistinctly. We can
succinctly formalize their notion as follows:

Definition 1. Parties P1, ..., Pn want to jointly and correctly compute the func-
tion y = f(x1, ..., xn) where xi is Pi’s secret input. The security constraints
are as follows: only y is allowed to be revealed to all parties. In other words,
the security constraint is such that each player Pi learns y and what can be
inferred from y, but no more. In particular, any information given during
the computation process should not allow him to infer information about other
secret inputs.

Consider the case where there is trust and confidence between parties, or
external parties in charge of such computation. Definition 1 can be satisfied
by the direct exchange of messages between parties. When such confidence
and trust is missing, however, such process might be simulated by a subset of
untrusted parties. Several models describe the scenarios where similar results
to the previously described naive case can be achieved. In other words, the
conditions on which distrustful parties can obtain similar results in terms of
definition 1.
As mentioned earlier, Yao [1] introduced the millionaires problem, and with
it the concept of securely solving a function amongst mutually distrustful par-
ties. This, combined with the work of many early researchers e.g. [3, 4, 5, 6],
cemented the basis of secure multiparty computation. To mention an example,
we could imagine competing agents forced to exchange information in a com-
puter network, they still want to know what is the best way to send information
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between 2 points, without disclosing sensible information about their network
configuration. In this case the parties would have to build routing algorithms
that are capable to use MPC protocols to calculate the shortest path. This kind
of problems arise naturally in several contexts, from distribution networks to
different market configurations.
A simplified security notion could be as follows: secure protocols should only
disclose the same information to adversary A than what it might learn when a
trusted ideal (no corruptible) third party computes the functionality. For the
latter ”ideal” setting, it suffices to execute a trivial (non-secure) version of such
protocol. We say a protocol is secure if what the adversaries can learn from
both settings is the same. In other words, the secure setting can emulate the
trusted third party. This conceptualization is true for a variety of adversarial
and communicational models.

2.1.1 Communicational Model

The model defines environmental capabilities for the adversary like whether all
channels are or not tamper-free. It also defines the behavior of the network as
a such. We explore some scenarios based on the categorization made by [7].
A more detailed treatment can be found in [7, 8].
In this context we can talk about two basic models of communication:

Private-Channel. When adversaries are not allowed to tap the communi-
cations between parties, this is called the private-model channel [4, 9], also
referred to as the Information Theoretic Model [1]. This restricted model
can describe some abstract scenarios and is useful for some applications
that might not need encrypted communications. In many security configu-
rations, it can provide a clean model without cryptographic questions on the
side of the communicational channels, and deliver possible solution paths
for the unrestricted model. It also assumes that all parties are connected
directly to each other, and the adversary is not allowed to capture or modify
incoming messages from parties that have not been corrupted. An exam-
ple could be a set of competing agents that need to exchange information
and securely compute some functions e.g. (Shortest Path Problem) using a
Wide Area Network (WAN) where they extend point to point connections
using optic fiber.

Standard Cryptographic Model. The adversaries are allowed to tap
the communications from the parties involved in the computations (com-
putational parties), this is a standard assumption in cryptography. Note
that, in many scenarios and configurations, a solution on the private-channel
model can be emulated by this scenario. This model has to consider the
security of the channel and not only the protocol to guarantee security.
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Furthermore, in MPC, the algorithm designer can introduce some additional
characteristics to the communicational model:

Broadcast Channel. In some contexts, the existence of a broadcast chan-
nel for the parties might be suggested as well [10]. The results from Ben-Or,
Goldwasser and Wigderson [4] (BGW) postulate its use against malicious
adversaries.

Network Behavior. This is whether or not the transmission of the data
is synchronous or asynchronous. Simply explained, parties have immediate
access to the communicational channels and data do not have to be tem-
porally stored to be later processed. This allows them to have immediate
message exchange, this model is typically used when designing MPC proto-
cols [7]. Asynchronous communications consider the opposite and assume
that, for some reason, online calculations are not implementable. Temporal
secrets have to be stored and mechanisms for offline processing have to be
implemented e.g. [11].

2.1.2 Adversarial Behavior

The security model of any problem depends on the behavior of the computa-
tional parties involved in the calculations. Corrupted parties may do whatever
is in their power to learn additional information. Their behavior and capabili-
ties can be classified as follows:

Computational Limitations

In MPC, adversaries could either be computationally-bounded by a polynomial
function with some probability, usually referred to as probabilistic polynomial
time adversaries (PPT), or they can also be computationally unbounded. The
latter is possible under the private-channel model. Moreover, any protocol
that is secure against computational unbounded adversaries is trivially secure
against computational bounded ones. Our protocols consider unbounded ad-
versaries, unless we explicitly estate the opposite.

Adaptive and Non-Adaptive

A more general characteristic classifies adversaries on its ability to corrupt
other parties during the protocol execution. It selects corruptible parties based
on partial information that it has collected from the process. This behavior
is usually called Adaptive. Moreover, in some settings it suffices to fix in
advance the set of corrupted parties from the start of the process, this more
restrictive model is called Non-Adaptive. Note that the set of dishonest players
is not known by the honest computational parties. Our protocols consider the
adaptive case.
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Passive

This restricted model is reserved for corrupted players that do not deviate
from the secure protocol. Although passive adversaries are allowed to collude
amongst themselves, they respect all the algorithmic steps. Instead, they try to
learn any additional information about other player’s secret from the exchanged
messages, the environment and the outputs. This model is usually called the
semi-honest model or honest-but-curious. Finally, this restricted model is often
used given that it provides methodological focus to the secure protocols.

Active

This model refers to the corrupted party that might take active steps to go
against the protocol’s behavior. In the case at hand, this implies sending
messages that were not calculated by the secure protocol. His interest might be
not only to learn extra information but to falsify or interrupt the computations.
Corrupted parties are commonly referred to as malicious. If a protocol is secure
against active adversaries (unrestricted model), it is also secure against passive
adversaries.

2.1.3 Achievable Security under MPC

Different security properties can be achieved under these models by conven-
tional MPC primitives. Secure protocols can be categorized by how difficult it
would be for an adversary to reconstruct the information from honest parties.
The following is a classical security classification based on [12]:

Perfect Security: In terms of security, the results of the secure protocol
exactly reflect those of the ideal functionality (third party). The adversary does
not learn any additional information that it would not learn under the ideal
setting. This security level considers computational-unbounded adversaries
under the information theoretic model.

Statistical Security: Similarly to perfect security, the adversary does not
learn more than it would in the ideal setting, but this time only with a statistical
probability. Typically the scenario where the adversary can effectively learn
additional information is described by some negligible function. Once again
this model considers computational - unbounded adversaries and the private
channel model.

Computational Security This setting considers a probabilistic polynomial
time adversary (PPT) instead of unlimited computational power. Roughly
speaking To achieve security under this setting, secure schemes rely on some
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not deterministic polynomial-time problem such that a polynomial bounded
adversary cannot break it e.g. factor decomposition.

Finally, it has been shown by Ben-Or et al. [4] and Chaum et al. [9]
that any functionality can be computed securely against active and passive
adversaries under the private-channel model. The security level (perfect or
statistical) depends solely on the functionality. Moreover, the results of BGW
[4], made use of different sharing mechanisms (Shamir Sharing [13] and VSS
[14]) to provide security against passive and active adversaries. It has to be
noticed that different MPC protocols of similar characteristics have been pro-
posed since the advent of BGW e.g. [15, 16, 17]. Most notably, work by
[18] included an improvement of the multiplication protocol from BGW, that
is still used by many state of the art MPC implementations e.g [19]. This
multiplication mechanism is later used in this dissertation.

2.2 Secret Sharing

Secret sharing mechanisms are one of the basic tools used by the MPC pro-
tocols. Although secret sharing has its own research path and development
outside multiparty computation, its application and use in the field is vast.
Our work pays special attention to Shamir’s secret sharing scheme [13] which
uses modulo arithmetic over a field Z greater than the number of players. For
a detailed analysis on secret sharing mechanisms we refer the reader to [20].
The secret sharing mechanism is simple in nature. Imagine that you split your
values into a set of shares, typically as many as your computational parties.
These shares can be seen as randomized representations of the value with no
meaning by themselves. Later, when a computation is at hand, you distribute
these shares amongst the other computational players, usually a share (differ-
ent) per player. It can be seen why such a scheme fits so well in a multiparty
computation scheme. In the following pages, we focus our attention on the
multiparty case, where the number of players n, is greater than 2 (n > 2). It
has to be noticed that for the two-party computation case, homomorphic en-
cryption is typically preferred over sharing mechanisms where, similar to CPU
outsourcing, one player provides data and the other executes the calculation.
Some sharing mechanisms require all inputs to reconstruct the problem, mean-
while some others let a subset of players do so, these mechanisms are usually
referred to as threshold sharing schemes. In the literature, t is the number of
inputs needed to reconstruct the problem (the threshold), and n, the number
of players who interact with each other. We present the following definition of
threshold schemes provided by Asharov and Lindell [8]:

Definition 2. A (t,n) secret sharing scheme takes a secret input s and output
n shares, such that any subset of t shares is capable to reconstruct s, but any
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subset of less than t elements does not learn anything about s.

It has to be noticed that s has to belong to a finite field Zp where p is a
prime number bigger than n. Applications typically make use of considerably
big prime numbers (much bigger than the inputs) to define the field size to
avoid overflows. Moreover si correspond to the share of i ∀i ∈ {1, .., n}.

2.2.1 Finite Fields

A field Z can be of finite or infinite nature. This algebraic object allows univer-
sal multiplication and addition (and their respective inverses) of its elements.
Examples of infinite fields are for instance the rational numbers, or the real
numbers. In this thesis, we make use of finite fields also known as Galois
Fields, where their size is also referred to as the order of the field. A Galois
field is usually defined as GF (pm) where p is any prime integer and n is any in-
teger bigger or equal than 1 and pm = q. Our interest however centers specially
in the case where m = 1. Roughly speaking, that way a field is equal to all
integers mod p, then it suffices to calculate the modulo p after any addition
or multiplication. This is specially useful given that it suffices to use the Stan-
dard Arithmetic and Logic Unit (ALU) of the CPU to perform basic sharing
operations. It’s worth noticing that secret sharing schemes like Shamir’s Secret
Sharing can work with any finite field.
Fields are a suitable tool to provide perfect security in many cryptographic
mechanisms including secret sharing. This is because whenever a party re-
ceives a share from its counterparts that was correctly randomized from an
integer secret, the probability is uniformly distributed over all elements of Zp .

2.2.2 Shamir’s Secret Sharing

Adi Shamir introduced a secret sharing scheme [13] in 1979. A simple method
to share a secret [s] ∈ Zp between n players by giving each party Pi a share
si ∈ Zp ∀i ∈ {1, .., n}. In Shamir’s secret sharing scheme, the bit length of
the shares is the same as the longest secret [s] to be shared. As mentioned,
this scheme was later used by Ben-Or et al. work [4], in conjunction with the
arithmetic circuit paradigm to securely solve any functionality. Remember that
in this case the objective is for any party to secretly share its input amongst n
parties.

Shares Process

The basic idea of Shamir’s sharing mechanism is to calculate shares si of secret
s over some polynomial f(x) of degree of at least t−1. It can be seen that in case
of a threshold scheme (t, n), such polynomial can only be reconstructed with

12



Chapter 2

at least t shares. The following definition provided by Resitad [21] introduces
such principle:

Definition 3. Let s be the secret over Zp and coefficients ri ∀i ∈ 1, ..., t− 1
random values on Zp. Shamir’s secret sharing is a (t, n)−threshold scheme over
Zp where each si corresponds to f(i) ∀i ∈ 1, ..., n and f(x) is a polynomial of
degree t− 1 such that:

f(x) = s+ r1 · x+ ...+ rt−1 · xt−1 mod p (2.1)

Notice that f(0) = s. The sharing process consists on each individual party
calculating shares and then distributing them amongst the other parties. The
degree t − 1 of the polynomial requires at least t parties to reconstruct the
secret. To secure that no minority coalition can learn s, the threshold has to
be at least n

2 . In other words, the adversary would need to corrupt at least
t < n

2 parties to learn the secret s. We would like to illustrate the sharing
procedure with the following example:

Example: A player holds a secret value s = 6 and wants to share it amongst
three parties such that no minority coalition can reconstruct the secret (t, n) =
(2, 3). All parties have previously agreed to work over Z11 and use Shamir’s
Secret Sharing. It proceeds to randomly select r1 = 2 and then construct the
polynomial f(x) = 6 + 2 · x mod 11. Then, following definition 3, shares
have to be calculated. Table 2.1 shows that process:

Pi f(x) = 6 + 2 · x mod 11 si
P1 f(1) = 6 + 2 · 1 mod 11 8 mod 11 = 8
P2 f(2) = 6 + 2 · 2 mod 11 10 mod 11 = 10
P3 f(3) = 6 + 2 · 3 mod 11 12 mod 11 = 1

Table 2.1: Sharing Example
To reveal the secret, given that all the ri are unknown to the parties, it

is necessary to interpolate the polynomial. First, all the shares related to the
value are sent to the party or parties in charge of reconstructing the value.
Then, such party could use an interpolation method such as the Lagrangian’s
method. Polynomial f(x) can be redefined as follows:

f(x) = L(x) =

t∑
i=1

si · li(x) mod p (2.2)

Where polynomial li(x) is defined as:

li(x) =

t∏
j=1
j 6=i

x− xj
xi − xj

(2.3)
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Note that it suffices to evaluate f(0) to obtain the secret, hence further
simplification on li is possible. Other simple interpolation processes like the
use of the Vandermonde Matrix can be used as well.

Continuing with our example, to reconstruct the secret s = 6 we replace all
the si in 2.2:

f(0) = 8 · l1(0) + 10 · l2(0) + 1 · l3(0) mod 11

= 8 · −2

−1
· −3

−2
+ 10 · −1

1
· −3

−1
+ 1 · −1

2
· −2

1
mod 11

= 8 · 3− 10 · 3 + 1 · 1 mod 11

= −5 mod 11

= 6

Addition

A natural extension of this process is the addition of secret values e.g. Some
subset of parties would like to add the values that they have previously shared.
This linear operation can be calculated locally by simply having each player
adding locally the corresponding shares. Later, these individual results can be
interpolated to reconstruct the result of the addition following equation (2.2).

Consider secrets sa and sb, both secretly shared using polynomials fa(x)
and fb(x). When each player adds locally si,a + si,b ∀i ∈ {1, ..., n}, in our
scenario, this is equivalent to say fa+ fb. Such operation does not increase the
degree of the polynomial and the reconstruction of the resulting share can be
performed without further information exchange. This can be easily extended
to any number of secret values. We illustrate such a process with the following
example:

Example: Consider the following three secret values sa = 4, sb = 2, sc = 9
over Z31. We would like to secretly share these values using Shamir’s scheme
and calculate sa+sb+sc, such that no minority coalition could reconstruct the
secret. Parties Pi ∀i ∈ {1, ..., n} are in charge of the secret sharing, addition
process and reconstruction.

First, we have to randomly construct the polynomials as previously ex-
plained, and then calculate the corresponding shares. In this case linear poly-
nomials would suffice. Once this process has been completed they have to be
”transmitted” to the corresponding parties. Table 2.2 illustrates such process:

Pi fa(x) = 4 + 1 · x fb(x) = 2 + 3 · x fc(x) = 9 + 0 · x
P1 fa(1) = 4 + 1 · 1 mod 31 = 5 fb(1) = 2 + 3 · 1 mod 31 = 5 fc(1) = 9 + 0 · 1 mod 31 = 9

P2 fa(2) = 4 + 1 · 2 mod 31 = 6 fb(2) = 2 + 3 · 2 mod 31 = 8 fc(1) = 9 + 0 · 1 mod 31 = 9

P3 fa(3) = 4 + 1 · 3 mod 31 = 7 fb(3) = 2+3 · 3 mod 31 = 11 fc(3) = 9 + 0 · 3 mod 31 = 9

Table 2.2: Addition Example: sharing phase
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The randomly selected polynomials are illustrated by figure 2.2.1:

0 1 2 3
0

2

4

6

8

10

12

Pi

f
(x
)

fa(x) = 4 + 1 · x
fb(x) = 2 + 3 · x
fc(x) = 9 + 0 · x

Figure 2.2.1: Example: Secret Polynomials

Each player then proceeds to add the shares it received from this process
as follows:

Pi Addition
P1 5 + 5 + 9 = 19 mod 31
P2 6 + 8 + 9 = 23 mod 31
P3 7 + 11 + 9 = 27 mod 31

Table 2.3: Addition Example: parties privately add shares

Notice that the results of the addition can be interpolated to obtain the
secret. Figure 2.2.2 shows the newly calculated shares and the result of their
interpolation where coordinates (x, f(x)) = (0, 15) are the result of the secure
addition: sa + sb + sc.
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fa(x) = 4 + 1 · x
fb(x) = 2 + 3 · x
fc(x) = 9 + 0 · x
fa(x) + fb(x) + fc(x)

Figure 2.2.2: Example: Secure Addition
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Other Linear Operations

Operations that involve secret shares and public scalars over Zp, namely addi-
tion and multiplication are linear operations. It suffices for all parties to add
up or multiply their secret share by such number. The operation can be seen
as a linear displacement of the secret functions that encode the secret.

2.2.3 Other Sharing Mechanisms

Different methodologies for secretly share information can be used with var-
ious forms of MPC (others than Shamir’s Secret Sharing). We examine two
commonly mentioned flavors, although they are not the subject of study in this
thesis.

Additive Secret Sharing Scheme. A simple mechanism, that usually
illustrates the basic principles of secret sharing: the shares have to be as big
as the secret, they have to be generated randomly and parties need all shares
to reconstruct the secret. The scheme works well on any finite field i.e. Zq
providing statistical security, and perfect security against passive adversaries.
The intuition of the scheme is as follows: A party that wants to secretly share
its input would select n − 1 random numbers on Zq and would compute the

last share as sn = s −
∑n−1
i=1 si. In other words, the secret is expressed as the

addition of all the individual shares. To reconstruct the secret the only thing
that is needed is to add all the shares. It can be observed why this is acceptable
in case the adversary does not deviate from the protocol (does not alter the
value of the shares), but not in case of malicious adversaries where the effect
of changing the content of the shares could be predicted.

Paillier Cryptosystem The scheme was initially introduced by Paillier [22],
a later generalization was introduced by Damg̊ard et al. [23]. The Paillier
scheme is considered to be partially homomorphic, this is because it can add
cyphertexts and multiply by plaintexts. However it can be used for secure
multiparty computation [23]. This is especially true for the two party case.
Paillier’s cryptosystem is commonly used in multiparty literature, and pro-
vides easy formulation for addition and multiplication in MPC. Its security is
based on the Decisional Composite Residuosity Assumption [22]. Moreover,
fully homomorphic solutions can satisfy the basic security definition we have
described, and are suitable candidates for MPC, especially for two-party com-
putation. However, for the multiparty case, literature usually prefers sharing
mechanisms specially because of their performance and security properties. A
detailed treatment of the cryptosystem in MPC can be found in [23].
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2.3 Secure Multiparty Computation: Applica-
tions and Primitives

The results by Ben-Or et al. (BGW) [4] and Chaum et al. [9] bolstered
the MPC perspectives on applications, proving that any functionality can be
calculated with perfect security against passive and active adversaries with
MPC. More specifically, BGW proposed the use of Shamir’s Secret Sharing
and a Verifiable Secret Sharing Scheme (VSS) [14] to achieve perfect security.
Moreover, they were the first to propose a VSS scheme with perfect security.
Their results allow to calculate a function f as an arithmetic circuit where
inputs are connected to addition and multiplication (shares with shares or
publicly available scalars with shares) gates that are subsequently the inputs
of other gates.

2.3.1 Secure Multiplication

The BGW contribution includes a secure multiplication protocol that was later
improved by Gennaro et al. [18]. Moreover, multiplication is considered as
a basic arithmetic gate, and it is used to build complex applications such as
comparisons. The process is somewhat similar to the secret addition protocol,
only this time, information exchange between the players is needed. Each time
parties exchange information amongst themselves is called a communicational
round. We consider operations that do not require communicational rounds to
be computationally negligible. This additional processing is needed because of
the following: given that we work with secrets shared by polynomials of degree
t− 1, the polynomial resulting from the multiplication will be of degree 2t− 2.
Thus, the number of shares that such polynomial needs to be reconstructed
is 2 · t − 1. Following the arithmetic circuit paradigm, the degree of such
polynomial will only increase by each multiplication, and with it the number of
parties (shares) needed to reconstruct it. The information exchange is used to
reduce the polynomial from its 2t−2 form to the original t−1 degree, avoiding
this issue. The process can be described as follows:
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Prerequisites. Parties (P ) secretly share inputs using, for instance,
Shamir’s secret sharing as showed in previous sections: Share(a),
Share(b). This place the inputs on the following polynomials:

fa = a+ r1,ax+ ...+ rt−1,ax
t−1 (2.4)

fb = b+ r1,bx+ ...+ rt−1,bx
t−1 (2.5)

.

1. Each party (Pi) locally computes the product by multiplying the shares
they hold of inputs a and b i.e. fa(Pi) · fb(Pi). Note that, if we were
to interpolate the resulting values of the multiplications obtained by the
parties, the resulting polynomial would be the following:

fa·b = a · b+ a · r1,b + ...+ rt−1,a · rt−1,bx
2t−2 (2.6)

2. Parties (P ) secretly share the result of their last computation:
Share(fa(Pi) · fb(Pi)).

3. Next, the polynomial fa·b of degree 2t− 2 has to be reduced to a t− 1
polynomial. Note that, at this point, parties hold shares of the polynomial
fa·b (the results of all fa(Pi) · fb(Pi) multiplications in shared form), it
suffices for each party to apply the first line of the inverted Vandermonde
Matrix to the shares of fa·b they hold to obtain such reduction. This
requires linear operations only i.e. secure share addition and scalar share
multiplication.

4. (Optional) Open the resulting share of the reduction, interpolating
the resulting t− 1 polynomial.

Algorithm: 1: Secure Multiplication

We refer the reader to [24] for a detailed revision of the process.

2.3.2 Secure Comparison

As any other functionality, secure comparisons can be built from an arith-
metic circuit based on ”costless” addition and multiplication gates. Work by
Damg̊ard et al. [25] introduced comparisons mechanisms with perfect secu-
rity that include bitwise decomposition of shares amongst other useful tools.
Since then many methods have been introduced, building upon their results,
several include some level of bit decomposition, and the use of other protocols
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for random bit generation, amongst others. Work by Limpaa and Toft [26]
introduces comparison methods with sub-linear complexity on the online phase
(where randomization is previously calculated by an offline phase). Cantrina
and Hoogh’s method [27] offers constant complexity using a novel secure mod-
ulo algorithm. these methods can offer a wide range of security properties
from statistical to perfect, against active and passive adversaries. Unlike ad-
dition and multiplication on MPC, the performance of comparisons in real life
scenarios (because of its common dependence on boolean arithmetics and bit
representation of some of its temporal results) its tied to the bit-size of the
shares, and the parallelization capabilities of the implementation. Given that
the equality test (a == b) can be reduced to a zero test (a − b = 0) many of
these protocols show how to solve the zero test instead. The same applies to
the inequality test. There exist several comparison protocols, the selection of
one by the algorithm designer depends not only on the asymptotic complexity
of the algorithm but in properties like parallelization dependence and message
size.

Latter chapters of this thesis make use of Catrina and Hoogh’s method
[27] to provide the comparison functionality. We have included the following
algorithm, which is a high level description of the method inner works.

Input: The size of the field p, a secret shared value [a] and the bit size of
the input m.

Output: Shared bit [d] (if a < 0 then [d] == [1], otherwise [d] == [0]).

1. ([r′′], [[r′], [r′m−1], ..., [r′0])← PRandM(m);

2. c← [a] + 2m[r′′] + [r′];

3. c←open(c);

4. c′ ← c mod 2m;

5. [u]←BitLT(c′, ([r′m−1], ..., r′0);

6. [a′]← c′ − [r′] + 2m[u];

7. [d]← ([a]− [a′])(2−m mod Zp);

8. return: −[d];

Algorithm: 2: Catrina and Hoogh’s Secure Comparison (values between
square brackets e.g. [d] are considered secret)

The algorithm itself makes use of known results to generate random bits
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and random numbers. In our description, function PRandM encapsulates these
functionality. Additionally, the algorithm needs of any bit level comparison
protocol, capable to compare integer numbers against secretly shared numbers
in bit form. This functionality is represented in our case by the function BitLT,
and can be achieved, for instance, by using simple bitwise arithmetic i.e. bitwise
subtraction. In other words for for bitwise values a and b of size m, if c =
a− b < 0, then 1− cm+1 == 1 and 0 otherwise. Algorithm 2.3.2 shows a naive
approach to isolate the bit. Note that this is not the only method suggested in
the literature. Details and implementation of these protocols, (random number
generations and bit level comparison) can be found in [25, 27].

Input: A public integer a, a secret shared value [b] and the bit size of the
input m.

Output: Shared bit [c] (if a < [b] then [c] == [1], otherwise [c] == [0]).

1. (am, .., a1)← Bits(a,m);

2. for each i ∈ 1, ...,m do [b′i]← 1− [bi];

4. [c]← [1];

5. for each i ∈ 1, ...,m do

6. [c]← ai + [c]− 2 · (ai · [c]);

7. [c]← [b′i] + [c]− 2 · ([b′i] · [c]);

8. End For

9. return: 1− [c];

Algorithm: 3: Complement 2 BitLT Algorithm (values between square brack-
tes e.g. [b] are considered secret)

2.3.3 Software Frameworks

Some frameworks have been designed and implemented to provide basic MPC
functionality to algorithm designers such that they can build complex appli-
cations. The approach and scope varies with each different software solution.
Different flavors can be found for security level, accessibility, software compo-
sition, usability, scalability and performance. For multiparty computation, the
BGW [4] results opened the door to an array of functionality waiting to be
implemented and these frameworks provide the basic tangible building blocks
for that endeavor. We provide a more detailed comparison with our own imple-
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mentation of MPC protocols further in Chapter 6. However, we now present
a short overview of their basic characteristics.

Fairplay - FairplayMP First introduced in 2004, Fairplay [28] and its later
multiparty version FairplayMP [29] provides an interesting approach to the
problem despite being the first to provide, to the best of our knowledge, open
access to a general purpose multiparty framework. Initially the functionality
was designed to solve the two party case, making use of garbled circuits. Later
multiparty extensions kept working with garbled circuits instead of the use of
sharing mechanisms, which had great impact on its general performance. On
usability, Fairplay provides a meta-language on which the algorithm designer
writes secure protocols.

Sharemind This product from the University of Tartu (Estonia) and AS Cy-
bernetica, is an optimized 3-party computation tool that can be used online.
Their development has been centered on optimizations for the 3-party case,
and some sections of its source code are programmed in Assembly [19]. How-
ever, the implementation of such optimizations for the multiparty case are not
obvious. Moreover, student access is limited and commercial applications need
licenses. The source code for the Sharemind Server is not available. These fac-
tors limit greatly scalability and malleability. Sharemind itself is an application
server, which means that applications run over Sharemind, which somewhat
limits its integration with standalone applications. A detailed treatment on
Sharemind functionality can be found in [30].

VIFF The Virtual Ideal Functionality Framework by Martin Geisler [2] is a
compact set of MPC tools programmed on Python, using the Twistter Frame-
work to manage communications and GMPY (GNU Multiple Precision arith-
metic library Python extension) for the precision arithmetic. VIFF uses an
asynchronous approach that takes into account possible delays on share de-
liveries such that operations can be processed upon arrival of the shares they
depend on. This results in a extensive use of parallelization in the form of
deferred method callbacks. Basically, each new operation is assigned a new
deferred that can be considered a thread by itself. Note that this is done in a
platform with limited thread support such as Python. Although logically this
would mean the existence of as many threads as active operations, this is not
the same as saying they might be executed by different physical CPUs. Under
the deferred approach, threads in Python do not make use of other CPUs. As
a consequence, the thread scheduling scheme becomes a burden for the pro-
cess itself in terms of performance. Nevertheless, even though VIFF is not the
fastest of all the frameworks hereby explained, it grants total access to the
algorithm designer to edit the source code, and provides a variety of security
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configurations that are useful in various settings e.g. [31]. The readability with
Python as interface language is also an important point to consider. Part II of
this thesis reports on experimentation with VIFF. However, our results point
out the necessity of an accessible compact toolkit without the issues posed by
VIFF design poses, not only in terms of performance, but also memory man-
agement (relatively fast monotonic increase of memory consumption prompted
by its asynchronous model).

Other MPC Solutions There are several other constructions and MPC
compilers that are dedicated to provide access to MPC primitives. Some of
these center their attention on bringing access to Oblivious Random Access
Memory data-structures or fast parallelization such as [19, 32]. Recent work
has been done on specifications for MPC frameworks such as SPDZ [33] but
currently, there is no implementation that is publicly available. Given that
aspects such as performance analysis, memory consumption and functionality
are tied to the implementation itself rather than to the specification, it is
difficult for us to comment on such aspects.

2.4 Combinatorial Optimization

Combinatorial optimization studies the problem of efficiently arranging discrete
sets of objects through the use of various algorithms. Briefly speaking an
algorithm can be defined as follows:

Definition 4. It is any well defined computational procedure or sequence of
steps, that takes a value, or set of values as an input, and produces some value,
or set of values as an output.

A comparative characteristic of an algorithm is its complexity time. Korte
and Vygen [34] define it as follows:

Definition 5. Let A be an algorithm which accepts inputs from a setX, and
let f : X −→ R+. If there exists a constant α > 0 such that A terminates its
computation after at most α ·f(x) elementary steps for each input x ∈ X, then
we say that A runs in O(f). In other words the time complexity of A is O(f).

It is in the interest of the field to find feasible bounds to complexity times
e.g. polynomial times. This can be defined as follows:

Definition 6. An algorithm with rational input is said to run in polynomial
time if there is an integer k such that it runs in O(nk) time, where n is the
input size, and all intermediate computations can be stored with O(nk) bits.

In this section we include some basic useful concepts for combinatorial op-
timization, as well as succinctly review some classical problems. We refer the
reader to [35, 34, 36, 37, 38] for a detailed treatment.
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2.4.1 Graph Theory Preliminaries

We briefly describe some general notions on graph theory taken from [38, 36]
that are often used during the following chapters.
A Directed Graph G = (V,E) consists of a set of vertices V and a set of
edges E whose elements are an ordered pair of distinct vertices i.e. E ⊆ V ×V .
A Directed Network is a directed graph, where the vertices and/or edges
have a numerical value associated to them e.g. costs, capacities, supply, de-
mands or any combination of these values.
An Undirected Graph G = (V,E), consist of a set of vertices V and a set of
edges E whose elements are unordered pairs of distinct edges. In other words
we can refer to edge (v, w) as (w, v) indistinctly.
Furthermore, a Undirected Network is a undirected graph with values as-
sociated to its elements.
A vertex v has associated 3 concepts of degree:

- The indegree is the number of incoming edges towards the vertex.

- The outdegree is the number of outgoing edges from the vertex.

- The degree is the addition of the indegree and the outdegree.

A Network Flow is an assignment of flows: E −→ R+ such that flow
conservation (difference between incoming and outgoing flow towards vertex v
is 0) at each vertex is satisfied. It is called capacitated if the numerical value
associated to each edge i.e. capacity, is respected.
An Adjacency List E(v) of vertex v is the set of edges emanating from v,
that is E(v) = {(v, w) ∈ E : w ∈ V }. From the definition it follows that |E(v)|
is equal to the outdegree of vertex v.
An Adjacency Matrix A of size |V |x|V |, stores the graph G = (V,E) where
each existing entry aij is equal to 0 in case (i, j) /∈ E and 1 otherwise. It is
weighted if the matrix stores the edge associated value.
Strong Connectivity is a property of a directed graph G = (V,E) where
there is at least one path from every vertex to any other vertex. Moreover, a
Simple Graph is a graph having no loops.
The Residual Capacity of a network is the difference between the capacity
of an edge (v, w) ∈ E and the flow circulating over it.
A Residual Network is the associated network defined by the edges with
positive residual capacities.
A Walk is a list v1, (v1, v2), v2, (v2, v3), v3, ..., vk of vertices and edges such that
, for 1 ≤ i ≤ k, the edge (vi−1), vi has endpoints vi−1 and vi.
Moreover, a Path can be defined as a simple graph whose vertices can be
ordered such that 2 vertices are adjacent if and only if they are consecutive.
Thus, it can be said that all paths are walks but not all walks are paths.
A Cycle is a graph with an equal number of vertices and edges whose vertices
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can be placed around a circle so that 2 vertices are adjacent if and only if they
appear consecutively along the circle.

2.4.2 Some Classical Network Flow Problems

We briefly describe the problems studied by this thesis, namely the Shortest
Path Problem and Max-Flow and Minimum Cost Flow Problem. In this sec-
tion, we present a quick overview of the problems based on the definitions
provided by [38]. Each of these problems are reviewed more in detail in the
following chapters:

Shortest Path Problem

The shortest path problem is often used as sub-routine, a sub-protocol, part of
algorithms to solve more complex problems. In this case we want to find the
shortest path in a network e.g. (minimum cost or length) from a source vertex
s towards a sink vertex t using for that purpose an associated numerical value
of the edges. Simple applications of the problem include the determination of
the path of minimal length between any pair of vertices of the network or the
shortest time to traverse the network. Other more complex applications can be
found in communication systems e.g. message routing, cash flow management,
project scheduling, supply chain and many others. A more detailed treatment
can be found in Chapter 3.

Maximum Flow Problem

Is the problem of finding a capacitated directed flow that maximizes the amount
of flow from a source vertex s towards sink vertex t. This problem can be seen
as a complementary model for the shortest path problem. Indeed, the shortest
path models the case where the flow is constrained by some kind of associated
cost, but is not restricted by any capacity. In contrast the maximum flow
problem studies the case where the flow is not constrained by costs, but the
flow is restricted by capacity bounds. Applications can be found in petroleum
or gas pipeline networks, routing messages in communication networks, road
networks, electricity networks, amongst others. We refer the reader to Chapter
4 for a detailed treatment.

Minimum Cost Flow Problem: In this case the network does not only
have a capacity associated to the edges but also a cost (a price for allocating
a unit of flow). Moreover, the vertices in V can allocate or consume units of
such flow. When a vertex injects flow onto the network is called a source, and
sink vertices if it does the opposite. They can be seen as supply and demand
entities. Vertices with 0 input on the network are called neutral vertices. The
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problem is that of finding the minimum cost of moving flow under this new
set of constraints. In this way, the problem includes aspects from the shortest
path and maximum flow problems. It restricts the flow to a certain capacity
and minimizes the associated costs of the flows. See Chapter 4.

2.4.3 Matroids

Since its initial introduction and development by Hassler Whitney [39, 40],
the use of matroid theory has expanded to several different fields. Applications
can be found in graph theory, lattice theory and the topic at hand. Moreover,
many combinatorial problems can be described as matroids. This is an im-
portant result given that greedy algorithms solve optimization problems over
matroids.

To define a matroid we first need to illustrate what is an independence
system. Korte and Vygen [34] provide the following definitions:

Definition 7. Consider a set system (E,F) i.e. a finite set E and some
F ⊆ 2E is an independence system if:

∅ ∈ F; (2.7)

if X ⊆ Y ∈ F then X ∈ F . (2.8)

The elements of F are called independent, the elements of 2E \F dependent.

Then, a matroid then can be defined as follows:

Definition 8. An independence system is a matroid if X,Y ∈ F and |X| >
|Y |, then there is an x ∈ X \ Y with Y

⋃
{x} ∈ F .

The same authors provide some examples of independence systems that are
matroids:

- Let us consider matrix A where E is a set of columns of A over some field
and F := {F ⊆ E :} such that all columns in F are linearly independent
over the same field.

- Consider some undirected graph G where E is a set of edges of G, then
F := {F ⊆ E : (V (G), F ) is a forest}

2.4.4 Submodular Functions

Also known as submodular set functions, we briefly make use of them in Chap-
ter 7. Alexander Schrijver [41] provides the following definition, note that
this is not the only valid description of a submodular function, rather is the
one that suffices the purposes of this thesis:
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Definition 9. Let f be a set function on a set S, that is a function defined on
the collection P (S) of all subsets of S. The function f is called submodular if:

f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U) for all subsets T , U of S.

Complete lists, definitions and proofs of both, matroids and submodular
functions can be found in [35, 34, 41].
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Chapter 3

Securely Solving The
Shortest Path Problem

3.1 Introduction

The computation of the single source shortest path is a well studied problem
and a frequently used subroutine in various applications and different problems
in combinatorial optimization. It is the problem of finding the shortest given
path from one vertex to another in a network and its use is not limited to
theoretical aspects but to real life applications. Interest areas of study include
communications and networking, as well as transportation routes, amongst
many others. Many real life problems use day to day applications that may
need, at some point, to solve a shortest path problem. In many cases, data
related to the computation, like the topology of the network or the associated
length, is distributed amongst competing and distrustful parties. We can imag-
ine for instance, a collaboration between distribution networks from competing
companies, each one holding information about the warehouses they cover and
rout costs. In this setting none of the parties is willing to disclose its network
composition nor its costs, but still want to compute the cheapest way to go be-
tween 2 different warehouses. In such environments, adversarial parties would
gain competitive advantages from any information that is disclosed. In this
cases mechanisms have to be put in place to provide factors like correctness
and fairness into the calculations.

Secure Multiparty Computation (MPC), introduces tools to facilitate in-
teraction between distrustful agents providing security. Although initially re-
garded as a theoretical result, since Yao’s introduction of the millionaire prob-
lem [1], the field has evolved to provide answers to complex problems and real
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life applications with the years [31, 33]. Nowadays it is possible to find MPC
protocols that are secure against various different adversarial models using se-
cret sharing techniques or homomorphic encryption, in two-party or multiparty
settings.

We use MPC to solve the shortest path problem providing security in a dis-
tributed environment. Furthermore, our study shows the differences between
traditional and secure implementations of some algorithms used to solve the
problem, to later test its implementation. We also report on various trade-
offs between performance and security. Additionally, we provide protocols that
can be used as building blocks to solve more complex problems. Applications
of our work can be found in competitive environments like: communication
technologies, and satellite routing; retailer/supplier selection in multi-level sup-
ply chains that want to share routes without disclosing sensible information;
amongst others.

The contents introduced on this Chapter come from the following papers:

2013 Securely Solving Simple Combinatorial Graph Problems (Ab-
delrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, Mathieu
Van Vyve), In Financial Cryptography, pp. 239-257, 2013.

2014 Securely Solving Classical Network Flow Problems (Extended
Treatment) (Abdelrahaman Aly, Mathieu Van Vyve), In CORE Discus-
sion series Vol:2014/57, 2014.

2014 Securely Solving Classical Network Flow Problems (Abdelra-
haman Aly, Mathieu Van Vyve), LNCS 8949 ICISC, 2014.

3.1.1 Our Contribution

We introduce a series of data-oblivious protocols designed to work in conjunc-
tion with MPC protocols such that they are able to solve the single source
shortest path problem correctly and in a secure manner. Moreover, we selected
and adapted the Bellman-Ford and Dijkstra’s algorithms and introduce cor-
rectness and security analyses. Further on, we provide complexity bounds con-
sidering black box operations and introduce trade-offs to augment efficiency.
Additionally, we report on prototyping with the Virtual Ideal Functionality
Framework (VIFF) [2] and the results of computational experimentation. We
also introduce a novel exchange technique to hide the vertex selected at each
iteration of Dijkstra’s algorithm, avoiding the overhead caused by the use of
special data structures e.g. oblivious data structures. This is particularly rele-
vant on dense graphs. We refer the reader to Section 3.1.2 for further analysis.
The use of secure primitives, in our case, limits the use of some typical data
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structures such as Fibonacci heaps [42], which are not trivial to replicate. This
is specially relevant in the case of Dijkstra.

On the input data, we consider the following information related to the
graph to be secret: the graph topology and edges weights/length. We assume
that the number of vertices or at least an upper bound to be public. We also
consider the case when the topology of the graph is publicly known, this is
specially relevant for our Bellman-Ford protocol where its complexity bound
can be improved. The distribution of secret information is settled beforehand,
according to the parties’ preferences. The result of the computation is the
length of the path and/or the path composition at the discretion of the parties.
The players have the faculty to determine whether or not the path is disclosed
as well as part of the solution. Moreover, all parties involved in the computation
learn the result at the same time (fairness).

Setting examples include several scenarios, for instance: given a graph,
each party involved in the computation is represented by vertices and owns
all edges with an associated length (different than zero) exiting such vertex
where this information is consider to be private; given a a graph, each edge
with an associated length is owned by some party involved in the computation,
and the calculation needs to be performed without revealing these lengths. As
mentioned, there is no restriction on how information is distributed amongst
the parties. This is true for all the algorithms presented in this Part, hence we
will not come back to it.

We make use of a slightly extended version of the arithmetic black box
introduced by Damg̊ard and Nielsen [23], to abstract the algorithm designer
from the primitive selection and focus on the protocol itself. It also makes our
algorithms dependent on the security properties of the underlying primitives
that implement the black box functionality. This means in practice that our
algorithms will be as secure as the primitives they rely on e.g. information
theoretic security with Shamir’s secret Sharing [13], Ben-Or et al. [4] and
[25]. Note that an homomorphic encryption method such as [22, 43] would
only bring computational security.

Complexity on MPC applications is typically measured by communicational
rounds (a coordinated exchange of messages between parties). Additions can
be performed without any message exchange and are assumed to be costless,
multiplications and sharing operations require a single round [4]. Although
results on comparisons with constant round time have been introduced e.g.
[27], it has to be noticed that in practice a comparison has higher constant
time than a multiplication. As an example, a comparison in VIFF is ≈ 160
times slower than a multiplication. Our secure protocols reduces the use of
comparisons such that better practical results can be achieved.

Table 3.1 showcases the complexity bounds of the main results of this work:
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Advance Impl. Simple Impl. Complete
Graphs

Privacy Pre-
serving

Secure Com-
parisons

Bellman-Ford |E| · |V | |E| · |V | |V |3 |V |3 |V |3

Dijkstra |E| + |V | ·
log(|V |)

|V |2 |V |2 |V |3 |V |2

Table 3.1: Worst-case bounds of Original and Privacy-Preserving algorithmic
versions

Finally, our experimentation assesses the influence and effects of the secure
primitives on performance, as well as the adaptations of our secure protocols.
Moreover, VIFF was the tool selected for experimentation given its status of
open source tool, and its easy readability in Python. VIFF provides a range of
functionalities with security against passive adversaries, and methods like the
Orlandi protocol [44] for the active setting. Our prototyping includes vanilla
implementations of Bellman-Ford and Dijkstra algorithms in Python, similar
to what a trusted third party would use to compute the shortest path, for
benchmarking.

3.1.2 Related Works

Extensive effort has been made on comparisons and equality tests under MPC
e.g. [45, 46, 47, 27]. The most efficient, to the best of our knowledge, are the
comparison methods proposed by Limpa and Toft [26], with a sub-linear com-
plexity bound on the online phase. Nonetheless, work has also been proposed
for other kinds of applications using various MPC techniques.

Branching Programs. Branching mechanisms study the case where the algo-
rithm flow is determined by certain parametrization and the nature and value of
the input. Several authors have considered a two-party setting where the user
does not want to reveal its input and the server wants to privately compute the
branching e.g. [48, 49, 50]. While security is maintained, leakage of information
e.g. branching length, can compromise the security of the algorithms.

Graph Theory Problems. Different alternatives to solve some graph theory
problems have been studied by Aly et al. [51], namely the shortest path and
maximum flow problems. They provide bounds on the Dijkstra algorithm us-
ing a different strategy than the results introduced by this thesis. Moreover,
we slightly improve its worst-case bound. Indeed, [51] uses a searching array
technique, similar to the indexation technique proposed by Launchbury et al.
[52], to keep track of a secret shared index. Our proposed Dijkstra implemen-
tation does not require the use of this technique, eliminating its overhead. For
the maximum flow problem: Edmonds-Karp and push-relabel bounds are also
provided. Their implementation is secure in the information-theoretic model
relying on the same arithmetic black-box. Moreover, Brickell and Shmatikov
[53] have addressed the shortest path problem on the two-party case, limited
to the honest but curious model. Their protocol reveals, at each iteration, the
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newly selected edge of the shortest path. Our approach attacks the problem in
a different fashion by eliminating this requirement. Moreover, our algorithms
assume the capabilities the arithmetic black-box used, and are not limited to
the two-party case. Furthermore, our algorithms offer data-oblivious alter-
natives that can be used not only in the context of MPC but asynchronous
applications that need to schedule operations before data is made available.
Finally, Blanton et al. [54] have proposed data-oblivious alternative for the
Breath-First-Search (BFS) algorithm, which is later used to solve the special
case of the shortest path problem where distance is measured in the number
of edges of the path. We consider instead the use of a general version of Dijk-
stra’s algorithm to solve the conventional shortest path problem where distance
is measured by the added length of the path. We achieve this by conveniently
exchanging the information contained in the data containers. Additionally,
they use their BFS algorithm to provide bounds for the Max-Flow problem,
where weighted edges with a positive residual capacity are mapped as 1 and
its counterparts as 0, extending the definition of an existing edge.

Oblivious data structures over ORAM (Oblivious Random Access Memory).
Data structures are used to speed-up Dijkstra’s algorithm and achieve its op-
timal complexity. ORAM has been viewed as a suitable mechanism to build
oblivious distributed data structures with some overhead and specific configu-
ration e.g. The work of Wang et al. [55] designed to work on a client(s)-server
configuration. Moreover, secure two-party computation protocols have been de-
veloped to take advantage of the recent advances on ORAM e.g. [56, 57]. The
two-party tool and algorithmic implementations of Liu et al. [32] securely ad-
dress the shortest path and other combinatorial problems by using these kinds
of data structures. More recently, Keller and Scholl [58] show how to use obliv-
ious data structures on a multiparty setting, where none of the players have
to fulfill the role of the server. Furthermore, they use their data structures
to implement Dijkstra’s algorithm. Their experimentation shows how some
MPC protocols in the absence of ORAM can perform better for certain kinds
of graphs than their proposed counterparts i.e samples of smaller-to-medium
sizes and complete graphs of any size. This is easily explained by the fact that
the overhead coming from the ORAM exceeds the asymptotic advantage of the
algorithms. Indeed, we address the problem differently, our Dijkstra algorithm
is designed to work on plain vectors and matrices and does not require any
secure data structure construction, slightly improving the bounds proposed by
Aly et al. [51], who’s work is later used in Keller and Scholl’s analysis. This
allows us to avoid any overhead caused by the use of ORAM or static secret
sharing arrays. We refer to [58] for details.
Other Alternatives. The shortest path problem can be formulated as a linear
program and solved using the simplex algorithm. MPC implementations of
Simplex have been introduced by the following authors [59, 60, 61].

33



Chapter 3

3.1.3 Overview

Section 3.2 presents some of the cryptographic principles as well as basic sub-
routines constantly used across this Chapter. We introduce the shortest path
problem in Section 3.3. In Sections 3.4 and 3.5 we illustrate our privacy
preserving Bellman-Ford and Dijkstra’s protocols. Finally, in Section 3.6 we
report on the results of our experimentation.

3.2 Preliminaries

3.2.1 Security

Succinctly speaking, we use the formalized notion of security from definition
1. Moreover, all our protocols are designed to work under the information-
theoretic model in the presence of passive or active adversaries over an arith-
metic black box FABB (see section 3.2.3). This implies that as long as the
corrupted parties do not have access to other private data but their own, un-
bounded computing power would not allow them to obtain any additional in-
formation. In practice, this means that they will be as secure as the underlying
MPC functionality and crypto-primitives they rely on.

3.2.2 Cryptographic Assumptions

Modulo arithmetic for some M or ring arithmetic allows to simulate secure
integer arithmetic. Indeed, several multiparty computation protocols have been
designed to work on modulo arithmetic for an appropriate M e.g. a sufficiently
big prime number (transforming the ring in a finite field over some M, ZM ),
such that no overflow occurs. This is true for secret sharing schemes the likes
of Shamir [13] sharing or additive sharing, as well for homomorphic threshold
public key encryption.

Primitives like addition between secret shared inputs, as well as additions
and multiplications of shares by public values, are linear operations and do not
require any information transmission between players. When data is commu-
nicated between players it is called a communication round or just round. For
complexity analysis purposes, we require constant-round protocols for multi-
plications. Sharing and reconstruction are done in one round as well. There
are still local operations involved with all the primitives, but the performance
cost is mainly determined by the communication processes, as explained by
Maurer [62]. We assume that the execution flavor i.e. sequential and parallel,
does not compromise the security of the private data.

34



Chapter 3

3.2.3 The Arithmetic Black-Box

Multiparty computation, by secretly sharing inputs, can be performed in dif-
ferent ways, (using homomorphic encryption techniques e.g. [22, 43, 17], or
secret sharing formulations, like the one introduced by Shamir [13]). The con-
cept of the arithmetic black-box FABB [15] embeds this behavior and makes the
process transparent for the algorithm designer. It creates an abstraction layer
between the protocol construction and functionality specificities, and at the
same time it provides the security guarantees desired. Following [15, 47, 51],
we assume the following functionalities are available: storage and retrieval of
ring ZM elements, additions, multiplications, equality and inequality tests.

Several MPC schemes for all of these operations have been proposed in the
last 30 years. Multiplications have been addressed by [3, 9, 63] amongst others.
As mentioned, comparisons with statistical security and sub-linear complexity
on the on-line phase have been explored in [47, 26], and perfect security in
constant rounds by [25, 46, 27, 26].

3.2.4 Notation

We use the traditional square brackets e.g. [x], to denote secretly shared or
encrypted values contained in the FABB . This notation is commonly used by
secure applications [25, 27, 51]. The value [>] is used to designate a sufficiently
large constant smaller than M (the size of the field) but much bigger than
the values of the inputs. Its value depends on the application on which the
protocol is going to be used as well. It has to be noted that some comparison
protocols require a security parameter on the size of M that has to be taken
into account when defining its size. Moreover, secure operations are described
using the infix operation e.g. [z]← [x] + [y] for secure addition into the FABB
and [z] ← [x] · [y] for secure multiplication. The secret result of any secure
operation primitive is stored in [z] and onto the FABB . This notation covers
all operations performed with secret values, including those performed with
public scalars and secret values.

We use only weighted adjacency matrices with our Dijkstra protocol. That
is because adjacency lists, where each vertex has a list of its neighbors and
the corresponding length of the connecting edges, is another traditional way
to represent graphs. Although It would allow us to save memory but it would
also leak the degree of each vertex i.e. the size of the corresponding list. In
an iterative process where the order of the vertices is shuffled for security rea-
sons, it serves as an identifiable label compromising the security of the protocol.

We define two subroutines that are repeatedly used, to improve readability
and simplify expressions. They only use the primitives available in the FABB
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and work under the same general assumptions.

conditional assignment : Overloaded functionality of the assignment op-
erator represented by [z]←[c] [x] : [y]. Much like in [32, 60, 51], the behavior
of the assignment is tied to a secretly shared binary condition [c]. If [c] is
one, [x] is assigned to [z] and [y] otherwise. Our version employs a single
multiplication for that purpose. Protocol 1 shows the implementation of
the conditional assignment, using only supported FABB operations. The
subroutine can be extended for other mathematical structures i.e. vectors,
matrices.

Protocol 1: Implementation of secure conditional assignment.

Input: Binary expression [c], assignment values [x] and [y].
Output: Value [z] containing [x] if 1 and [y] if 0, evaluated according

the binary expression [c]
1 [a]← [c] · ([x]− [y]);
2 [z]← [y] + [a];

conditional exchange : We define the operator condexch([c], i, j, [v]). It
exchanges the values held in position i and j of secretly shared vector [v] if
a secretly shared binary condition [c] is 1 and leaves the vector unchanged
otherwise. We describe the algorithm as protocol 2. We also extend this
operator to work with matrices. In that case both ith and jth rows and
columns are swapped.

Protocol 2: condexch: Exchanges the values of 2 different vector posi-
tions

Input: Binary condition [c]. Any vector [v]. Indexes i, j
Output: The vector [v] with values i,j swapped if [c] true.

1 [a]← [c] · ([v]j − [v]i);
2 [v]i ← [v]i + a;
3 [v]j ← [v]j − a;

3.3 Shortest Path Problem

Consider the connected graph G = (V,E) where V is the set of vertices
and E the set of edges. Furthermore, cv,w is the associated length of edge
(v, w) ∀(v, w) ∈ E. Let s be the designated source vertex. The single source
shortest path problem (SSSP) can be defined as the problem of finding the
directed path of shortest length form s towards v ∀v ∈ V − {s}.

In case a negative cycle is found in G, the solution becomes unbounded
given that an infinite amount of flow can be allocated in the cycle. Indeed, the
problem of finding the shortest path in a graph that contains negative cycles
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is an NP-complete problem.
Note that the problem of finding the shortest path is not limited to the formu-
lation hereby presented. This is in fact a generalization of the common single
source shortest path problem. There are several polynomial time algorithms
for this problem, amongst them, the two adaptations we report on, Bellman-
Ford and Dijkstra’s algorithms. With Dijkstra it is necessary for the graph G
to have non-negative edges, meanwhile for Bellman-Ford it suffices that more
classical assumption of non-negative cycles be present.
For a detailed treatment of the problem we refer the reader to [38, 37].

3.4 Bellman-Ford’s Algorithm

The algorithm of Bellman-Ford is particularly simple, making it a natural target
for building a secure version. This algorithm proceeds by repeatedly scanning
all edges, in search of adding edges that decrease the ongoing distance from
the source to the various vertices. If a pass over the edges did not improve the
current solution, or if the edges were scanned |V | times, the algorithm halts. An
interesting feature of this algorithm is that its flow of operations only depends
on the structure of the graph but not on the length of the edges. Its drawback
is its time-complexity: its classical implementation runs in O(|V ||E|) time.

The original algorithm is presented as Algorithm 3.

Algorithm 3: Classical Bellman-Ford algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list
of edges, a list of weights-lengths we for each e ∈ E, and a
source vertex s ∈ V .

Output: The list of immediate predecessors p and/or total distances d.
1 d← >, ds ← 0
2 for i← 1 to |V | do
3 for e← 1 to |E| do
4 if dt(e) + we < dh(e) then
5 dh(e) ← dt(e) + we
6 ph(e) ← t(e)

7 end

8 end
9 If no update during the last pass, terminate early , solution is

optimal.
10 end
11 If there was an update during the very last pass, solution is unbounded

(∃ negative cycle).

Protocol 4 presents our secure shortest path protocol based on Bellman-
Ford. Note that h(e) and t(e) represent the head and tail vertex of an edge
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e respectively. Finally, note that in case the source vertex is also secretly
shared, parties can make use of any of the secret index assignment techniques
documented by the literature e.g. [47, 52, 58]. The protocol differs from the
original algorithm only in a limited number of aspects: a) the branching
corresponding to the discovery of a shorter path is handled on Lines 8–10
through arithmetic as in Protocol 2, b) the early termination condition of the
Bellman-Ford algorithm, which is triggered if the inner loop happens to have
no effect during one pass, is removed as it could leak information.

Protocol 4: protocol based on Bellman-Ford’s algorithm

Input: A graph G = (V,E) where V is the list of vertices and E the list
of edges, a set of shared weights [w]e for each e ∈ E, and a share
of the source vertex [s] ∈ V .

Output: The list of immediate predecessors [p] and/or total distances
[d].

1 for i← 1 to |V | do
2 pi ← [0]; di ← [>];
3 end
4 [d][s] = 0
5 for i← 1 to |V | do
6 for e← 1 to |E| do
7 [y]← [d]t(e) − [d]h(e) + [w]e;
8 [x]← [y] < 0;
9 [d]h(e) ← [d]h(e) + [x] · [y];

10 [p]h(e) ←[x] t(e) : [p]h(e);

11 end

12 end
13 If there was an update during the very last pass, solution is unbounded

(∃ negative cycle). Open required output.

The structure of this algorithm makes it easy to implement with either
of the two graph representations discussed above (list or matrix), making it
possible to fully exploit the sparsity of graphs when it is public (we use the
matrix representation if it has to be kept secret).

It can be seen that our implementation requires |V ||E| secure comparisons,
dominating the time required to perform 2|V ||E| secure multiplications and
5|V ||E| additions. These complexities grow to O(|V |3) when the graph struc-
ture is secret, as the graph is then treated as complete (i.e., augmented with
edges of infinite weight). Very interestingly, this algorithm is the only one
amongst those we analyzed in this dissertation in which our privacy-preserving
algorithm does not cause any asymptotic overhead on its complexity bounds
(when the structure is public).
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Security. No leakage originates from the protocol process. Moreover the
FABB provides secure functionality for the +, · and ! = operations. In other
words, security follows from the call of such operators in a given order, oblivious
to the data, where their quantity depends exclusively from public available
information. In this case the size of sets |V | and |E| if the structure of the
graph is publicly known or only |V | in case the structure is secret. This can be
seen as an execution list of operations predefined in advance and agreed by all
parties. This is also true for all algorithms introduced in this dissertation.

3.5 Dijkstra’s Algorithm

The algorithm provides a greedy way to find the shortest path from a source
vertex s in a directed connected graph with non-negative lengths. Basically, it
selects the vertex with the smallest accumulated distance and then propagates
the path forward until all vertices have been explored. This ensures to get the
shortest path from a source vertex to all other vertices in the graph. To find
the shortest path to a single vertex is also possible. Our secure implementation
can be adapted to detect at each iteration whether the target vertex has been
reached to stop the algorithm.

Adapting Dijkstra to MPC. The input data in our case is a weighted adjacency
matrix [U ] where non existing edges are represented by [>]. Dijkstra’s algo-
rithm treats the vertices of the graph in an order that depends on the length
of the edges. The main challenge is to hide this order. Earlier work [51] has
proposed to hide the position of the vertex accessed by using a secretly shared
unary vector [0, 0, ..., 0, 1, 0, ..., 0]. We introduce a different technique. The
basic idea is to exploit the symmetry in the data structure. More precisely,
the numbering of the vertices or equivalently, the position of a vertex in the
data structure is indifferent for the algorithm. We exploit this by positioning
at iteration i, the vertex with the lowest distance in position i. That way we
align the vertex exploration of our protocol with the secret data stored in all
the structures. This enables us to gain in the number of operations performed
because we can avoid considering edges pointing to vertices already explored.
The algorithm is detailed as Protocol 5.

Correctness Because the algorithm constantly reshuffles the positions of the
vertices in all matrices and vectors used, we need to (secretly) track the position
of the vertices. This is the role of the vector π. Throughout the algorithm πj
holds the node number that is currently in position j.

The loop on lines 5-8 determines the untreated vertex with current minimum
distance. This vertex is brought to position i in all data structures. Loop on
lines 9-14 scans all edges leaving node in position i to all other untreated
vertices (positioned after i). If the edge improves the current best path (Line
11), the current best distances and predecessors are updated (Lines 12-13). The
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Protocol 5: Shortest Path Protocol based on Dijkstra’s algorithm

Input: A matrix of shared weights [U ]i,j for i, j ∈ {1, ..., |V |} and a unit
vector [S] encoding the source vertex.

Output: The vector of predecessors [P ] and/or the vector of distances
[d]i.

1 for i← 1 to |V | do
2 [π]i ← i; [d]i ←[Si] [0] : [>]; [P ]i ← i[S]i;
3 end
4 for i← 1 to |V | do
5 for j ← |V | to i+ 1 do
6 [c]← [d]j < [d]j−1;
7 ([π], [P ], [d], [U ])← condexch([c], j, j − 1, [π], [P ], [d], [U ]);

8 end
9 for j ← i+ 1 to |V | do

10 [a]← [d]i + [U ]i,j ;
11 [c]← [a] < [d]j ;
12 [d]j ←[c] [a] : [d]j ;
13 [P ]j ←[c] [π]i : [P ]j ;

14 end

15 end

predecessor of node i is recorded as Pj . If the path needs to be kept secret and
subsequently used in a parent protocol, then it would be more suitable to record
this information in a matrix with Pi,j = 1 indicating that the predecessor of i
is j (and 0 otherwise). It is easy to adapt the algorithm for this case.
Security. Following the correctness analysis, the protocol does not need to leak
intermediate values on any inner process. Moreover, Operations are provided
by the FABB . Additionally, The number of operations depends solely on the
upper bound on the number of vertices (we assumed this to be public), therefore
the same follows for the execution CPU time and memory usage. These adheres
to our definition of security, no player learns anything but the output.
Complexity. The algorithm performs |V |2 + O(|V |) comparisons (at Lines 6

and 11) and 4·|V |3
3 + O(|V |2) multiplications, dominated by Line 7 (the 4/3

factor is 4 times the sum of the square of the integers 1 to |V |). This distinc-
tion is important for small graph instances where the comparison complexity
dominates over round complexity.

The performance of our privacy preserving version of Dijkstra has an extra
factor of |V | when compared with a vanilla implementation. Brickell [53] elim-
inates this overhead by revealing at each iteration the current shortest path.
Our approach does not leak any information but the final shortest path. More-
over, it can also be extended to obtain the shortest path between any pair of
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vertices (v, w) ∈ V . It can also be seen that no special data-structure is needed,
giving the FABB autonomy on the MPC-primitive selection.

3.5.1 Partial Data-Oblivious Adaptation

Data oblivious algorithms can be used in several contexts, including non secure
applications. For example, imagine an asynchronous scenario, where operations
have to be scheduled in advance, before the information arrives to the compu-
tational station. The private preserving protocol introduced in the previous
section, can be used in such a context as well. However, it is possible, under
the correct circumstances, to adapt the behavior of the protocol such that some
decisions can be made in function of the data, improving the asymptotic com-
plexity of the protocol with a simple adaptation.

When the information to be disclosed to the public is not only the length
of the path but the path composition itself, the protocol complexity can be re-
duced to O(|V |2). We propose to follow algorithm 5 and identify the minimum
not treated vertex, but to do this without exchanging data with condExch. The
vertex is part of the shortest path and can be opened without the risk of leaking
extra information. Then, it suffices then to swap the information as before, but
without the necessity of the condExch method, and more importantly, outside
the loop of lines 5-8. This will achieve the reduction of the asymptotic com-
plexity.

However, sometimes the algorithm designer would rather prefer to disclose
the complete shortest path at the end of the computations or not disclose it at
all. In this case, it suffices to securely and randomly permute the vertex asso-
ciated data before the start of the computation e.g. the rows of the weighted
adjacency matrix that describes the graph instance. A pseudo-label is used to
identify the permuted information. In this way, the original vertex identifiers
can be disclosed at the end of the computation, while the pseudo-labels can be
used during the process.

Note that, this changes would limit the applicability of the algorithm on
other non-oblivious applications.

3.6 Computational Experimentation

We conduct our experimentation over the open source MPC Framework VIFF
[2]. This tool brings MPC functionality for the multiparty case with an easy
user interface ( prototypes are written directly in Python) and provides all the
basic functionality from the FABB . Furthermore,we provide results on how
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such a framework and its characteristics affect the instance sizes we are able
to solve. We analyze the performance of our prototypes and compare them
with our theoretical results. Additionally, we compare these results between
our protocols with and without VIFF, such that we can measure the overhead
between our private-preserving protocols and MPC primitives. This gains im-
portance given that some real life applications use trusted third parties to for
their secure computations, executing non-secure versions of the protocols and
only revealing the final output. Note that in such single-point failure cases, if
the trusted party is corrupted, then all private information might be compro-
mised.

VIFF provides security under various security models. In our experimenta-
tion we consider only security against passive adversaries under the information
theoretic model. VIFF also provides access to two different comparison mecha-
nisms that were introduced by Tomas Toft [64, 45]. Our experimentation was
conducted using the second [45]. Our tests were conducted using randomly gen-
erated complete graphs under the more classical semi-honest adversarial mode.
In this setting, several instances for each of the tested graph sizes were exe-
cuted and averaged. All prototypes executed outside VIFF use Python as well,
and were executed one hundred thousand times and their CPU performance
averaged to normalize the noise between executions. We experiment with 3
and 4 computational parties. Finally, we use a single workstation (server) with
an Intel Xeon CPUs X5550 (2.67GHz) and 42GB of RAM memory, running
Mac OS X 10.7. It has to be noted that all processes had the same amount of
CPU power available for their use.

To provide means of analysis, our experimentation included the following
prototype implementations:

Standard non-secure version (SNSV). Solves the shortest path problem with a
vanilla implementation of the Bellman-Ford and Dijkstra algorithms. Indeed,
these algorithms could effectively be used by a trusted third party to compute
the shortest path problems. We use them for benchmarking against other
implementations.

Secure version with VIFF (VVIFF). These are the implementations of our
data-oblivious shortest path protocols over VIFF.

Secure version zero-cost Functionality (ZCOST). We assume the performance
cost added by the secure functionalities of our FABB to be 0. We build our
secure protocols using nothing but Python. The goal is to differentiate between
the overhead introduced by the FABB itself, and the overhead introduced by
everything else in VIFF. Under this paradigm, we measure, once again, the
performance of our Bellman-Ford and Dijkstra implementations. We use the
data for benchmarking against our algorithm’s realistic times obtained with
VIFF, and the standard prototype. Another strong motivation comes from how
VIFF manages its memory and its strong effect on performance. Indeed, this
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is clearly visible when a relatively large amount of operations are performed.
Moreover, it can be seen in our experimentation.

3.6.1 Bellman Ford

We conducted our experimentation with 4-vertex to 20-vertex graph instances.
Given that we only test complete graphs, we chose a weighted adjacency matrix
representation instead of adjacency lists. The vanilla implementation used by
the SNSV prototype includes the standard notion that in case no change
was registered in the iteration the algorithm stops before reaching its worst
case complexity. Table 3.2 shows the results of the experimentation with the
VVIFF prototype.

Number of vertices 4 8 12 16 20

Execution times (in Seconds)
3 Players 3.5 38 140 350 697
4 Players 4 38 165 405 809

Table 3.2: CPU Time from Secure Bellman-Ford protocol
Additionally, we extend our trial to 64-vertex graphs with 4096 edges. In

this case, the computational time needed to solve such an instance was of 7
hours and 59 minutes. Because of VIFF memory issues, there is a monotonic
increase on the CPU time needed to execute the MPC functionality. This
explains the spike on the CPU time for such large instances. Figure 3.6.1
shows the ratio analysis and performance results of the experimentation.

From these, we derive the following conclusions:

- The privacy-preserving Bellman-Ford protocol can solve small to medium
graph sizes instances using VIFF in reasonable time.

- While increasing operational cost, the number of the parties involved does
not alter the behavior of the algorithm performance.

- Although our secure protocol posses the same complexity bounds of the
original Bellman-Ford algorithm, the intuitive adaptation of the stopping
condition from the SNSV prototype influences the growth of the ratio be-
tween ZCOST and SNSV prototypes. It monotonically increases by a con-
stant factor, approximately smaller than 20%. If such condition were to be
implemented it would leak the iteration where the algorithm converges, and
allow the adversary to adapt its input accordingly.

- When MPC-primitives are involved, the VVIFF prototype scored ≈ 2·105

higher times than its ZCOST counterpart. It has to be noted that although
theoretically comparisons can achieve single round complexity, this is not
the case for VIFF where a comparison can be ≈ 160 times slower than a
multiplication. In smaller instances such operations dominate the spectrum
but this is not the case when the sizes of the instances increase.
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Figure 3.6.1: Bellman-Ford CPU Times and Ratio Analysis

3.6.2 Data-Oblivious Dijkstra

Experimentation was conducted with our main result for the Dijkstra algo-
rithm. Once more, we consider complete graphs and represent them by weighted
adjacency matrices, and various sizes of instances were solved using our Data-
Oblivious Dijkstra protocol.

Additionally, we were able to run 64-vertex instances, using adjacency ma-
trices, with a total of 4032 edges/matrix entries, taking around 18 minutes.
The spike in computing time when working with bigger instances follows the
fact of VIFF’s difficulty to manage the memory for large graph instances. Ta-
ble 3.3 shows the results obtained by our VVIFF shortest path prototype.

Number of vertices 4 8 12 16 20

Execution times (in Seconds)
3 Players 0.9 5 14 28 48
4 Players 1 7 17 34 57

Table 3.3: CPU Time from Secure Dijkstra protocol

Figure 3.6.2 also shows the CPU time and respective ratios calculated from
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our different implementations:
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Figure 3.6.2: Dijkstra CPU Times and Ratio Analysis

From this we can conclude the following:

- We can solve securely, in reasonable time, shortest path problems on
complete graphs of sizes up to 64 vertices over VIFF.

- As expected, the number of players, have little incidence on the general
behavior, given that in VIFF performance cost increases linearly in the
number of players [2].

- Compared to the standard implementation, roughly a factor of 5000|V |
is needed to securely solve the Dijkstra algorithm on VIFF.

- Roughly an extra factor of 1.4|V | is needed when executing MPC-primitives
have 0 cost, to solve the problem securely.

- Combining the two previous remarks, we conclude that out of the 5000|V |
overhead of our MPC implementation, the factor |V | is explained by al-
gorithmic design, a factor 1.4 is due to non-MPC issues like algorithmic
changes, and the rest (a factor of a few thousands) is due to the MPC-
related VIFF implementation.
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- Finally, for larger graphs, the ratio between execution time of VVIFF
and ZCOST decrease. This can easily be explained by the fact that it
is the number of multiplications that gains importance as opposed to the
number of comparisons, and that multiplications are substantially cheaper.
A similar phenomena can be appreciated with our Bellman-Ford algorithm,
in that case because multiplications and comparisons share their asymptotic
complexity, it increases by a sub-linear factor.

A general conclusion is that security in our implementation comes at a very
high cost, but not so high as to make the approach completely out of question
in practice.
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Securely Solving the Max
Flow, Minimum Cost Flow
and Other Related
Problems

4.1 Introduction

Secure Multiparty Computation (MPC), studies the problem where several
players want to jointly compute a given function without disclosing their inputs;
this problem was first addressed by Yao [1]. Different adversary models can be
considered. A semi-honest setting, where corrupted players try to learn only
what can be inferred from the information they have been provided with; or
an active setting, where they manipulate the data in order to learn from any
possible leakage caused. Several cryptographic primitives for secret sharing and
homomorphic encryption, e.g. Shamir scheme [13] and Paillier encryption [22],
have been proposed to address the problem.

Applications have emerged naturally in different fields, for instance, where
all the secret information is sent by the players to a third trusted party who
only reveals the final output. For example, in auctions, the auctioneer can be
seen as a trusted third party. We study the scenario where no trusted third
parties are allowed.

Since 1982, MPC has been in constant development [65, 3, 66, 29]. At
first MPC was regarded as a theoretical research project. Later, the advent
of frameworks like Fairplay [29], SEPIA [67] or the open source tool Virtual
Ideal Functionality Framework (VIFF) [11], complemented by an improvement
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in performance bounds, fostered the appearance of real life applications e.g.
Damg̊ard et al. [31]. Faster MPC protocols immediately followed [33], widening
the spectrum for application development. Classical network flow problems
arise in real life applications in several areas e.g. project planning, networking,
supply chain management, production scheduling. Combinatorial optimization,
dynamic programing and mathematical programming have yielded polynomial-
time algorithms for many of these problems (a detailed treatment can be found
in Ahuja et al. [38]).

Our central objects of study are the Maximum Flow Problem (MF), the
Minimum Mean Cycle problem (MMC) and the the minimum cost flow problem
(MCF). We present algorithms that address privacy preserving constraints on
these problems and solve them in polynomial time. We also empirically test
the performance of our implementations. Finally, we explain our protocols
as building blocks to solve more complex problems. For example, a WLAN
network constructed by competing agents that want to securely compute, in
a distributed fashion, their routing tables and the network flow configuration
that supports its maximum traffic volume at the minimum cost possible. The
routing algorithms could use our shortest path protocol introduced in Chapter
3, to securely define the routing tables. Moreover, a combination of the max
flow algorithm [51] with our minimum cost flow protocol could be used to obtain
the desired flow distribution securely. Note that for these types of application
the number of vertices e.g. routers, is not necessarily very large.

The contents of this Chapter are taken from the Following Papers:

2013 Securely Solving Simple Combinatorial Graph Problems (Ab-
delrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, Mathieu
Van Vyve), In Financial Cryptography, pp. 239-257, 2013.

2014 Securely Solving Classical Network Flow Problems (Extended
Treatment) (Abdelrahaman Aly, Mathieu Van Vyve), In CORE Discus-
sion series Vol:2014/57, 2014.

2014 Securely Solving Classical Network Flow Problems (Abdelra-
haman Aly, Mathieu Van Vyve), LNCS 8949 ICISC, 2014.

4.1.1 Our Contributions

We provide algorithmic solutions to three classical network flow problems in
a multiparty and distributed setting: the Maximum Flow Problem (MF), the
minimum mean cycle using Karp’s protocol and the Minimum Cost Flow using
the Minimum Mean Cycle Canceling (MMCC) algorithm. To the best of our
knowledge, this is the first time the last two problems have been studied under
MPC security constraints. Moreover, we introduce polynomial bounds for all
three problems relying only on black box operations, discussed in detail in the
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following sections. The secret information can be distributed as pleased by the
parties. Our work considers input data to be secret except for a bound in the
number of vertices of the graphs, hiding the weights and costs of the edges as
well as the topology of the graph.
First, we identify the best and more efficient algorithms that are suitable to
work with the limited FABB functionality. Then, we introduce secure versions
of these algorithms, guaranteeing their correctness and provide their complex-
ity bounds. We also report on computational experiments on running imple-
mentations using Python and VIFF (given its status as an open source tool,
capabilities, performance and availability).
Protocol Design. Performance is highly tied to the capabilities of the FABB .
How crypto-primitives are implemented and their scalability i.e. number of
players, determine the general overhead of the protocols. Factors like the
communicational round (a simultaneous exchange of information between all
parties involved in the computation) complexity of the arithmetic methods,
performance of the comparison protocol used and parallelization capabilities,
influence the overall process. Just as we do, traditional works abstract these
details and focus solely in the algorithm design.
Security and Correctness. The security of our algorithms comes from the fact
that we use arithmetic black-box operations only and prevent any information
leakage. This implies that the protocols are as secure as the MPC primitives
they rely on e.g. information-theoretic secure (see also Section 13). Further-
more the correctness of our algorithms is essentially inherited from the correct-
ness of the classical algorithms from which they are derived. More specifically,
we modify the previously known and correct algorithms to avoid, in general,
information leakage, while working on secret data, showing that these modifi-
cations do not alter their output.
Complexity. We use atomic communication rounds as our main performance
unit to determine the complexity (round complexity) of our protocols. Al-
though there exist protocols for comparisons with similar theoretical round
complexity i.e. constant round, because of strong differences in real life scenar-
ios performance-wise between comparisons and multiplications motivate trade-
offs, limiting the use of comparisons in favor of more arithmetic operations. i.e.
additions and multiplications.

Table 4.1 presents the complexity bounds we have obtained. In all cases, the
number of comparisons matches the complexity of their simple implementations
on complete graphs. However, we need to introduce additional multiplications
to hide the branchings involved in the algorithms.
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Advance Impl. Simple Impl. Complete
Graphs

Privacy Pre-
serving

Secure Com-
parisons

MF |E| · |V | ·

log(
|V |2

|E|
)

|V |3 |V |3 |V |4 |V |4

MMC |E| · |V | |E| · |V | |V |3 |V |5 |V |3

MMCC |V |2 ·
|E|3log(|V |)

|V |2 ·
|E|3log(|V |)

|V |8 ·log(|V |) |V |10 ·
log(|V |)

|V |8 ·log(|V |)

Table 4.1: Worst-case bounds of Original and Privacy-Preserving algorithms

Prototyping. VIFF, provided the functionality needed to evaluate our proto-
cols and measure their performance. Details on the framework can be found in
[2]. VIFF delivers by default security against honest-but-curious adversaries,
and can be configured to provide certain protections against active attacks
e.g. [44]. Our tests show the effects, in terms of performance, that the imple-
mentations of the MPC primitives can have in our protocols. Single rounded
primitives, like multiplications can be consider to have a low performance cost
(whatever it takes to send on a piece of secret shared or encrypted information
towards other players on single round). Depending on the bit-size of the data
processed, a more complicated operations such as Toft’s comparison method
used by VIFF [45], is ≈ 160 times less efficient than a multiplication. Current
state of the art comparisons protocols [26] are still significantly more costly
than multiplications.

4.1.2 Related Work

Sorting. Various sorting algorithms have been proposed using MPC, for in-
stance Goodrich [68] introduced an approximated data-oblivious version of
shell-sort that can be used to securely sort items. Jónsson et al. [69] show how
to securely implement Batcher’s odd–even mergesort sorting network. More
recent work by Hamada et al. [70] introduced practically efficient sorting algo-
rithms using a permutation step before sorting. Later work by Hamada et al.
[71] on combinatorial sorting algorithms has been also proposed. Recently a
data-oblivious version of a variant of the shell-sort called ”zig-zag” sorting [72]
by Goodrich has also been presented.

Privacy Preserving Graph Theory Protocols. Blanton et al. [54] introduced
a data-oblivious algorithm to solve the maximum flow problem with a slightly
bigger asymptotic complexity than our privacy preserving protocol i.e O(|V |5 ·
log(|V |)). Their algorithm uses an adaptation of the Breath-First Search (BFS)
algorithm to identify and saturate viable paths (path augmentation). We,
however, use an adaptation of the FIFO Push/Relabel algorithm, to achieve
O(|V |4) complexity. Additionally, Aly et al. [51], presents a privacy-preserving
adaptation of the Edmonds-Karp algorithm for the MF problem. Such imple-
mentation matches the original complexity of the algorithm i.e. O(|V |5). The
algorithm uses augmenting paths to saturate the graph until a maximum flow is
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allocated. This is of course considering complete graphs. As it can be observed
one of the main differences with the work hereby introduced is better complex-
ity bounds. This can be explained by the fact that traditionally push/relabel
algorithms present better bounds than their augmenting path counterparts in
theory and practice.
Linear Programming. Protocols to securely solve linear programming prob-
lems have been reported on: [59, 60, 61]. All three solve the problem by
using the simplex algorithm. Toft in [60] revises security weaknesses on Li and
Atallah [59] propositions and presents termination conditions and methods for
the algorithm, given that simplex has no polynomial-time complexity. Catrina
and Hoogh [61] method implements simplex as well but includes an optimized
support for rational numbers.
Other Constructions. Oblivious Random Access Memory has been used to
solve some related problems, namely the shortest path problem e.g. [32, 58].
This is true for the client-server model and the multiparty setting as well.
Privacy-preserving protocols to other graph theory problems are also provided.
There are also applications that require privacy preserving protocols, involving
some level of graph theory and make use of MPC for that matter e.g. [73].
Similar applications can be considered using the contributions of this thesis,
where routing processes use MPC to provide privacy.

4.1.3 Overview

Section 4.2 describes the notation we use, as well as the cryptographic prim-
itives. It also serves to introduce ”building blocks” i.e. small algorithmic
procedures that are regularly used. We begin our treatment of the maximum
flow problem on Section 4.3 and introduce a privacy preserving algorithms in
Section 4.4. Section 4.5 introduces the minimum mean cycle problem. Sec-
tion 4.6 then explains the implementation using MPC limited functionality.
Section 4.7 gives an overview of the minimum flow problem and the minimum
mean cycle-canceling algorithm. In the sections ahead, details on the algorithm
are presented. Following this, Section 4.8 specifies the secure formulation of
the problem and gives some general remarks, it also provides the body im-
plementation of the algorithm with MPC primitives and contemplate early
termination conditions. Section 4.9 shows the results of our computational
experimentation.

4.2 Preliminaries

4.2.1 Cryptographic Foundations

As in previous chapters, we make use the formalized notion of security in-
troduced in Chapter 2. Our algorithms provides security against active and
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passive adversaries with no leakage under the information theoretic model.
We simulate integer arithmetic using modulo arithmetic over some finite field
of size M . The underlying condition is that such an M has to be sufficiently big
to avoid overflows. Basic primitives of MPC such that Shamir’s secret sharing
[13], linear addition and multiplication rely on modulo arithmetic [4, 18]. The
field can be defined as ZM where M is a sufficiently big prime number. This
holds as well for threshold homomorphic encryption mechanisms like Paillier
encryption [22, 43].

MPC functionality can be instantiated by many different protocols and
primitives’ flavors, their use depends on many factors like the adversarial model
or the number of parties involved in the computation. We want to abstract this
primitive selection process and make it transparent for the algorithm designer
by the use of the arithmetic black-fox FABB of Damg̊ard and Nielsen [23] [15].
We assume that the FABB provides the algorithm designer with secure storage
and retrieval of secret inputs over ZM , as well as secure addition, multiplica-
tions. Following [47, 51] we extend the functionality to provide comparisons.
In practice, this implies that our protocols will be as secure as the underlying
primitives that instantiate the MPC functionality of the FABB . Moreover the
data-oblivious characteristics of the protocols provide no information about the
specific instance being solved. Our approach also takes into account the arith-
metic circuit paradigm where results of any of such operations can be used as
inputs for others.

4.2.2 Notation

We use square brackets [x] to denote any secretly shared value stored in the
FABB . This is a common convention in the field e.g. [70, 26, 71]. Moreover
[>] denotes a sufficiently large constant i.e. (greater than all inputs) that is
used by our protocols, its size depends on the application at hand. Further-
more, it has to be sufficiently small to avoid any overflow ZM . Additionally,
some inequality tests provide statistical security on some parameter k. All of
these characteristics have to be taken into account when choosing the size of M .

We use the infix notation to represent the secure operations from the FABB
functionality. Additions can be expressed as follows [z] ← [x] + [y], where the
result of the addition of [x] and [y] is assigned into [z], and stored in the FABB .
Such values can only be made public through the agreement of a majority of
parties. The same stands for operations between scalars and secret values.
Negative numbers are represented as usual in the natural way: M −x ∈ ZM .

Sets are denoted by capital letters e.g. L. Moreover |L| is the number of
elements of such set and Li is the i − th element in the set. Furthermore [L]
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denotes a set where all its elements are secretly shared, however this does not
necessarily imply that the size of such set is private.

Finally we review the sub-routine or building block constantly used by our
protocols:

conditional assigment: Overloaded functionality of the assignment op-
erator represented by [z] ←[c] [x] : [y]. Much like in [51], [58], the behavior
of the assignment is tied to a secretly shared binary condition [c]. If [c] is one,
[x] is assigned to [z] or [y] otherwise. The operation can be characterized as
follows: [z] ← [y] + [c] · ([x] − [y]). The subroutine can be extended for other
mathematical structures i.e. vectors, matrices.

4.2.3 On Network Flows and Matrix Representation

The number of vertices in the graph or at least an upper bound of them are
assumed to be publicly known. As in previous chapters, there is no restrictions
on how the information is distributed amongst the players. Following [51, 54,
58] we assume our protocols to work with complete graphs, as an instrument
to hide the graph structure. This is why an adjacency matrix representation of
the graph, using the vertices upper bound as its size, is preferred. Capacities
and/or costs of the edges are represented as elements in adjacency matrices.
This allows the algorithm designer to decouple the graph representation from
its topology. The application designer has to define how the information about
the topology is distributed and what should be hidden. For instance, if its
known that each player owns at most a single vertex, then, each player has to
secretly share a row of a capacity adjacency matrix where he places a [0] at
each unconnected vertex position or [>] if its a cost matrix.

4.3 Maximum Flow Problem

Let us consider the connected directed network G = (V,E) where edge (v, w)
has an associated non-negative integer capacity uv,w∀(v, w) ∈ E. Moreover
fv,w is the flow circulating over edge (v, w)∀(v, w) ∈ E. Vertex s and t are the
source and sink of the network. The maximum flow problem refers to finding
the maximum flow that can be allocated from vertex s towards vertex t such
that the capacities of the edges and balance constraints in the vertices are
respected. The problem can be defined as follows:
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max
∑

(s,w)∈E(s)

fs,w (4.1)

subject to
∑

(v,w)∈E(v)

fv,w =
∑

(w,v)∈E(v)

fw,v ∀v ∈ V − {s, t} (4.2)

fv,w ≤ uv,w ∀(v, w) ∈ E (4.3)

fv,w ≥ 0 ∀(v, w) ∈ E (4.4)

An important assumption of the problem is that network G should not con-
tain a directed path from s to t composed solely of edges of infinite capacity.
Moreover, we assume that whenever we have an edge (v, w) ∈ E, then (w, v) is
in E, this is a non restrictive assumption given that such edges can have zero
capacity.
We investigate how to securely solve the maximum flow problem using the
push/relabel algorithm such that no information leakage is produced. Push/re-
label algorithms are typically seen as more general and powerful than aug-
menting path alternatives. The algorithm, in its intermediate steps pushes
flow through individual edges that still have available residual capacity. This
briefly violates the balance constraints of the vertices, the algorithm keeps mov-
ing the flow until such constraints are respected. When vertices have a positive
excess of flow, these are called active. By convention, source and sink vertices
are never active. The algorithm continues pushing flow until no active vertices
are left.
Generally speaking, a generic push/relabel algorithm can be defined as follows:

1. Identify active vertices.

2. Select and active vertex v.

3. Push and Relabel flow in vertex v.

4. In case there are still active vertices, goto to 2.

Note that a pre-process phase takes place where flow is pushed from the
source towards adjacent vertices causing them to have some excess.
We investigate the FIFO variant of such algorithm also called relabel-to-front.
It introduces two additional attributes to the vertices, the height (initially
defined as the distance of the vertex from the source) and the excess. An
adjacent edge is categorized admissible if it goes from a higher to a lower
vertex. The algorithm alternatively pushes the excess along admissible edges
and increases the height of the vertices until all excess has been pushed to the
sink or back to the source.
The problem has several applications in various fields from electricity markets
to telecommunications. Further details on the problem and its characterization
can be found in [38].
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4.4 Privacy-Preserving FIFO Push/Relabel Al-
gorithm

For simplicity, we assume our privacy-preserving adaptation of the Push-Relabel
algorithm works with complete graphs represented by a capacitated adjacency
matrix. The algorithm can be easily adapted for the case when topology is pub-
licly available. The same stands for the other problems studied in this Chapter.
In practice, for a complete graph containing m vertices and m · (m− 1) edges,
we build the capacity matrix and the flow matrix [C], [F ] of dimension n × n
where an entry (i, j) corresponds to the edge between the labeled vertices i and
j. The flow matrix is initially empty. Two additional lists maintain the values
of excess and height for each vertex and are noted [e], [h] of dimension 1 × n.
These two lists are initially empty.

The core operation of the original algorithm is the Push/Relabel phase, that
is applied to a given vertex. This operation pushes all the excess through inci-
dent admissible edges (updating the excesses of incident vertices accordingly).
Finally, in case not all the excess has been pushed, then the elevation of the
vertex is minimally increased so as to create at least one more admissible edge,
and Push/Relabel terminates.

Throughout the algorithm a list L with vertices with positive excess (except
the source and the sink) is maintained. At each iteration, one vertex of L is
selected and Push/Relabel is applied. The algorithm terminates when the list
is empty. In the FIFO implementation, the next vertex of L to be treated
is selected in the FIFO order. The original FIFO Push/Relabel algorithm
terminates in O(|V |3) operations.

Our privacy-preserving protocol for the Push-Relabel phase is presented in
Protocol 6. The main differences between this protocol and the traditional
Push/Relabel algorithm are as follows : a) when Push/Relabel is applied to
a vertex with zero excess, no update of the elevation is performed at the end,
b) in each phase, treat all vertices except the source and the sink, in a fixed
order agreed between the players, and c) during each Push/Relabel operation
applied to a vertex i, the order in which the edges (i, j) are considered is fixed
and agreed in advance between the players. It is clear that these changes do
not modify the correctness of the original algorithm.

Moreover, it can be verified that the relabel-to-front algorithm terminates
in maximum 4|V |2 − 10|V |+ 12 complete phases. Hence, it suffices to execute
protocol 6 to such bound to guarantee correctness. From this, we can obtain
an ”all-cases” complexity of O(|V |4), both in comparisons and multiplications.
Note that this does not match the FIFO complexity, because we scan all edges
at each pass, even when the excess of the tail vertex is zero. The complexity
of this algorithm remains lower than the one of the original Edmonds-Karp
from [51] Experiments showed that the use of a traditional halting criterion
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Protocol 6: A phase of the protocol based on Push/Relabel

Input: A complete graph G = (V,E) where V is the list of vertices and
E the list of edges. A vertex i to be treated, a vector of
elevations [h], a matrix of residual capacities [R] and a vector of
excesses [e].

Output: Update of the elevations [h], the residual capacities [r] and
the excesses [e].

1 [δ]← 2|V | ;
2 for j ← 1 to |E| do
3 [α]← [h]i > [h]j ;
4 [x]← min([e]i, [R]i,j);
5 [y]← [α].[x];
6 [R]i,j ← [R]i,j − [y];
7 [R]j,i ← [R]j,i + [y];
8 [e]i ← [e]i − [y];
9 [e]j ← [e]j + [y];

10 [δ]← min([δ], [h]j + 2|V | · [α]);

11 end
12 [α]← [e]i > 0;
13 [h]i ← [h]i · (1− [α]) + ([δ] + 1) · [α];

at the end of each phase (i.e. nothing has been pushed) results in dramatic
running time improvements. However it also demonstrated a huge variability
(the algorithm may halt after a single phase), which suggests that a substantial
amount of information could be derived from it. Quantifying this information
is left for future work, and its impact is likely to depend on the application.

4.5 Minimum Mean Cycle Problem

The Minimum Mean Cycle problem (MMC) is to determine (on a directed
graph G = (V,E) with edge costs C) the cycle W with the minimum averaged
cost (total cost divided by the number of edges in W ). The original description
of the problem and algorithms can be found in [74, 75, 76, 77].

Our interest on the MMC problem comes from the fact that it is used as
a subroutine to solve the minimum cost flow problem by the minimum mean
cycle canceling algorithm [78]. It is also used by other algorithms of the same
nature. More details like applications, proofs and algorithms can be found in
[38]. The following analysis assumes strong connectivity on G. In case a graph
instance does not provide enough edges to fulfill this requirement, edges with
a very large cost can be added to the graph.
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The algorithm introduced by Karp [77] can be divided in two steps. First,
we arbitrarily define a vertex s to be the origin of all paths to all vertices in V .
Let dk(i) be the smallest weighted walk from s to the vertex i that contains
exactly k edges. The walk obtained might contain one or several cycles. Then,
we calculate dk(v) ∀v ∈ V with k from 1 to |V |. The following shows how to
compute this recursively:

dk(j) = min
{i:(i,j)∈E}

{dk−1(i) + cij}, (4.5)

where d0(s) = 0 and d0(v) = > ∀v ∈ {V − s}. Second, we calculate the cost of
the minimum mean cycle as:

µ∗ = min
j∈V

max
0≤k≤|V |−1

[
d|V |(j)− dk(j)

|V | − k

]
(4.6)

This expression can be intuitively explained as follows. Let j∗ and k∗ the
indexes achieving µ∗. Then d|V |(j∗) is the cost of a walk containing the cycle
W and dk

∗
(j∗) is the cost of the same walk with the cycle removed. The

difference between the two yields the cycle cost. Proofs can be found in [77].
A strictly positive or negative µ∗ means that at least a positive/negative cycle
is present with µ∗ as its mean. A case where the answer is 0 might also mean
no cycle was found in the graph. The algorithm can be extended to find the
cycle W as part of the answer. Overall algorithmic complexity is O(|V ||E|).

4.6 Privacy-Preserving Minimum Mean Cycle

The privacy-preserving protocol we introduce follows the steps provided by the
previous section. Moreover, each step and the whole protocol are designed to
be used as sub-routines. As usual, our approach assumes all input data, but
an upper bound on the number of vertices, is in secret form, including the ad-
jacency matrix of costs [C], where non-existing edges are represented by [>]-.
Additionally, all quantities are integers bounded by some M i.e. bigger than
the greatest quantity to be analyzed, but still much smaller than the size of the
field ZM to avoid overflows, and the edge costs as an adjacency matrix. The
final goal of the protocol is to obtain not only the mean cost of the minimum
cycle, but the cycle itself as well. We use the function getmincycle to refer to
the protocol.

Correctness. First, we have to replicate the result of equation (4.5). We select
node 1 as the source node s. Implementing the recursion is fairly straightfor-
ward as the order in which the edges are scanned does not depend on the input.
The more difficult task is to encode the walks. To that end, we define the 4-
dimensional matrix [walk] where [walk]i,j,k,l is the number of times the edge
(i, j) is traversed by the shortest walk of length k from s to l. Also, because of
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the specific way we want to use our secure version of the MCC algorithm as a
sub-routine, we define an additional argument [b] to the protocol. Specifically,
[b]i,j = 1 indicates that the edge (i, j) is forbidden, i.e. cannot be part of the
solution. The algorithm is detailed as Protocol 7.

Protocol 7: First step of: MMC protocol based on Karp’s algorithm

Input: A matrix of shared costs [C]i,j for i, j ∈ {1, ..., |V |}, a binary
matrix on viable edges [b]i,j for i, j ∈ {1, ..., |V |}.

Output: A matrix of walk costs [A]i,k for i ∈ {1, ..., |V |} and
k ∈ {0, ..., |V |}, a walk matrix walksij for i, j ∈ {1, ..., |V |}
encoding these walks.

1 [A]← [>]; [A]00 ← [0]; [C]← [C] + [>](1− [b]);
2 for k ← 1 to |V |+ 1 do
3 for j ← 1 to |V | do
4 for i← 1 to |V | do
5 [c]← [A]ik−1 + [C]ij < [A]jk;
6 [A]jk ←[c] [A]ik−1 + [C]ij : [A]jk;
7 [walks]··kj ←[c] [walks]··k−1i : [walks]··kj ;
8 [walks]ijkj ←[c] [walks]ijkj + 1 : [walks]ijkj ;

9 end

10 end

11 end

Loop 5-8 checks whether edge (i, j) improves the walk of length k from s
to j. This is done by comparing the best one found so far with cost [A]jk to
[A]ik−1 plus the cost of edge (i, j). Depending on the result, the best costs and
walks are updated.

Second, we adapt (4.6) to obtain the value of the minimum mean cycle, as
well as the encoding of the cycle. We achieve it by iterating over the matrices
[A] and [walks] generated in the first step. The only difficulty is to workaround
the non-integer division. In place of any costly procedure, we keep track of
the numerators and the denominators separately, and compare only the cross
multiplication instead. The minimum mean cost cycle is encoded as a |V | ×
|V | matrix [min − cycle] where [min − cycle]ij = 1 if the edge (i, j) is part
of the minimum mean cycle. The rest of the algorithm is a straightforward
implementation of (4.6). The details are provided as Protocol 8.

Security. Like with our previous results, no intermediate data is released and
the operations are provided by the FABB , following our definition of security.
Complexity. In total (Protocols 4 and 5), our implementation of MMC requires
O(|V |3) (Line 5 of Protocol 4) and O(|V |5) multiplications or communication
rounds (from the conditional assignments of Lines 7 and 8 of Protocol 4). One
might ask whether this could not be brought down to O(|V |4) by encoding the
walks in Protocol 4 as a 3-dimensional matrix holding the predecessor node of
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Protocol 8: Second step of: MMC protocol based on Karp’s algorithm

Input: A matrix of walk costs [A]i,k for i ∈ {1, ..., |V |} and
k ∈ {0, ..., |V |}, a walk matrix walksij for i, j ∈ {1, ..., |V |}
encoding these walks.

Output: The cost of the minimum mean cycle [min− cost]. A matrix
with the minimum mean cycle [min-cycle]i,j for
i, j ∈ {1, ..., |V |}.

1 for j ← 1 to |V | do
2 [max-cycle], [max-cost]← ∅;
3 for k ← |V | to 1 do
4 [a-num]← [A]j(|V |+1) − [A]jk;
5 [a-den]← |V | − k;
6 [c]← [k-num] · [k-den] < [a-num] · [k-den];
7 [k-num]←[c] [a-num] : [k-num];
8 [k-den]←[c] [a-den] : [k-den];
9 [max-cycle]←[c] [walks]··|V |j − [walks]··kj : [max-cycle];

10 [max-cost]←[c] [A]jk : [max-cost]

11 end
12 [c]← [j-num] · [k-den] > [k-num] · [j-den];
13 [j-num]←[c] [k-num] : [j-num];
14 [j-den]←[c] [k-den] : [j-den];
15 [min-cycle]←[c] [max-cycle] : [min-cycle];
16 [min-cost]←[c] [max-cost] : [min-cost]

17 end

each node. However, reconstructing the walks for the operation performed at
Line 9 of Protocol 5 would then need O(|V |5) conditional assignments instead
of the currently O(|V |4). So we prefer to stick with our simple and as efficient
approach.

4.7 Minimum Cost Flow Problem

The Minimum-Cost Flow problem (MCF) is of finding a feasible flow in a capac-
itated directed graph G = (E, V ) that minimizes the costs (proportional to the
magnitude of the flows). The problem can be modeled as a linear program but
there exists more efficient strongly polynomial time combinatorial algorithms,
see [38, 79]. The more traditional minimum capacitated cost flow problem
can be shown to be equivalent to the transshipment and the minimum-cost
circulation (MCC) problem.

Formally, the MCC problem is of finding a capacitated flow in a symmetric
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graph G = (E, V ) of minimum cost. The problem can be modeled as follows:

min
∑

{v,w}∈E

Cv,wfv,w (4.7)

subject to fv,w ≤ Uv,w ∀(v, w) ∈ E (4.8)

fv,w = −fw,v ∀(v, w) ∈ E (4.9)∑
v∈E(w)

fv,w = 0 ∀w ∈ V (4.10)

Here the graph is assumed to be symmetric, i.e. for every (v, w) ∈ E there
is an edge (w, v) ∈ E. Each edge (v, w) has a maximal capacity Uv,w and
a cost Cv,w per unit of flow. Additionally, all costs are antisymmetric, i.e.
c(v, w) = −c(w, v) ∀(v, w) ∈ E. The variable f represents the amount of flow
passing through an edge. Using this notation, the residual capacity can be
formally defined as rv,w = Uv,w − fv,w.

Constraints (4.8) are the capacity constraints. Constraints (4.9) are the
flow antisymmetry constraints. Constraints (4.10) are the flow conservation
constraints at each node. This characterization of the problem is the same used
by Goldberg and Tarjan [78] for their description of the MCC problem using
the Minimum Mean Cycle-Canceling algorithm (MMCC). It can be seen as a
variant of the non-polynomial cycle-canceling algorithm proposed by Klein in
[80], but where the next cycle to be canceled is chosen by finding the minimum
mean cost cycle. The change makes the algorithm strongly polynomial, i.e. its
complexity depends only on |V | and |E| and not on other parameters.

The algorithm is based on the finding of Busacker and Saaty [81], which
asserts that a circulation with no residual negative cost cycles is of minimal
cost. Moreover, the algorithm can be characterized as follows:

1. Initialize the feasible circulation to 0.

2. Obtain the minimum mean cycle W in the associated residual graph.

3. Set δ ← min{(v, w) ∈Wrv,w}.

4. Augment the flow by δ along the cycle W .

5. If there are still negative cycles goto 2.

Basically, we compute the cycle with the minimum negative average cost W
in the associated residual graph. Then, we augment the flow along this cycle
until an edge reaches its capacity. This process is repeated until no negative
cycle is found. Its complexity is O(|V |2 · |E|3 · log |V |).
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4.8 Privacy-Preserving Minimum-Cost Flow

The input data are the capacity and cost adjacency matrices [U ] and [C], where
non-existing edges are represented by [0] on the capacity matrix and by [>] on
the cost matrix. As usual, all input data is secretly shared, except the bound
on the number of vertices. We assume all values are integer and of a bounded
size much smaller than M to avoid overflows in the field ZM . The solution
is to be provided as the flow matrix [F ] and total cost [totcost]. The final
composition of [F ] might leak some details on the graph’s topology depending
on the answer. The protocol can be used as a sub-routine for more complex
applications in case the final output is kept private. Once the MMF problem
is modeled as a MCC problem, it is sufficient to securely solve the minimum
circulation problem using a privacy-preserving implementation of the MMCC
algorithm to obtain a flow of minimum cost.

Adapting the MMCC algorithm. If one wants to avoid any leakage of informa-
tion, an important difference between a standard implementation and a secure
one is that the augmenting flow process has to be repeated as many times
as the worst case analysis guarantees, instead of stopping it as soon as no
negative cycle is detected. We call each flow augmentation along the cycle a
phase/iteration. We use the bound provided by Goldberg and Tarjan on [78]:
|V ||E|2 log |V |+ |V | · |E| flow augmentations at most. Note that this is not an
asymptotic bound. Given that we also hide the graph structure, |E| has to be
replaced by |V |2 in our complexity estimates. Our secure protocol requires to
perform that many iterations to guarantee correctness with no leakage. Possi-
ble stopping conditions to reduce the number of iterations are considered later
in this section.
Protocol 9 shows our privacy-preserving alternative for the MMCC algorithm,
which is a straightforward translation of the algorithm outlined above.
Correctness. The initial solution is set to zero at Line 1. The body of the main
loop is one flow augmentation phase. It starts by calling our secure implemen-
tation of the Min Mean Cycle problem, leaving out saturated edges. Loop 5-9
computes the maximum augmentation possible along the cycle identified. If
the cycle has non-negative cost, this augmentation is set to zero at Line 10,
before updating the cost of the solution. Then the flow itself is augmented at
Loop 12-17.
Security. Following the previous protocols, the current algorithm does not leak
intermediate values and uses FABB operations to calculate secret data, respect-
ing our definition of security.
Complexity. The most costly operation during one augmentation phase is
the call to getmincycle with O(|V |3) comparisons and O(|V |5) communi-
cation rounds. The overall complexity is O(|V |8 log |V |) comparisons and
O(|V |10 log |V |) communicational rounds. As mentioned above, one main dif-
ference between our secure Minimum Cost Flow algorithm described above and
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Protocol 9: Privacy-preserving MMCC

Input: |V | × |V | matrices of shared capacities [U ]i,j and shared costs
[C]i,j .

Output: The |V | × |V | matrix of flows [F ] and the associated total cost
[totcost].

1 [F ], [b], [totcost]← 0 ;
2 for k ← 1 to |V |5 log |V |+ |V |3 do
3 [cost], [cycle]← getmincycle([C], [b]);
4 δ ← [>];
5 for (i, j) ∈ [U ] do
6 [r]← [U ]ij − [F ]ij ;
7 [c]← [cycle]ij · ([δ] > [r]);
8 [δ]←c [r] : [δ];

9 end
10 [δ]← [δ] · ([cost] < 0);
11 [totcost]← [totcost] + [δ] · [cost];
12 for (i, j) ∈ [F ] do
13 [c]← [cycle]ij ;
14 [F ]ij ←c [F ]ij + [δ] : [F ]ij ;
15 [F ]ji ←c [F ]ji − [δ] : [F ]ji;
16 [b]ij ← [U ]ij − [F ]ij > 0;

17 end

18 end

a standard implementation is that, to guarantee no leakage of information, we
have to execute as many iterations as in the theoretical worst case. This makes
the practical performance of the algorithm much worse than a standard im-
plementation because, in most practical applications, it is expected that the
number of iterations needed to find the optimal solution is much smaller than
the theoretical upper bound. Of course, one could easily publicly reveal the
outcome of the test performed at Line 10 of Protocol 6 and stop the algorithm
if the cost of the cycle is non-negative. But some information would be leaked.

To limit the amount of information leaked, several strategies are possible.
One is to open the test every K iterations, with K being a publicly known
integer. Another alternative is to multiply the result of the test by a random
bit (for = 1 with probability p) to statistically hide the result. These two would
also be combined. In both cases, the parameters (K and/or p) would control
the trade-off between performance and information leaked.
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4.9 Computational Experiments

Although we can determine theoretical bounds for our protocols, processing
time is also constrained by a variety of phenomena; the way on which the secure
arithmetic functionality is implemented and the infrastructure were prototypes
are executed affect their running time in real life applications. Therefore, we
also want to empirically test the performance of these algorithms. More specif-
ically we want to analyze the following aspects.

Measure the size of solvable instances using currently available MPC framework
e.g. (VIFF). The theoretical bounds only give a rate of increase with the size
of the instance. They do not say anything about the actual computing time.
Also, the scalability on VIFF is a concern. Our interest is to determine what
is the size of the instances that can be solved in a “reasonable” amount of
time. Moreover, we want to determine the impact that the number of players
and the size of the graph instances have on CPU time performance. As it
was mentioned VIFF was chosen, given its availability (open source) and easy
coupling with larger applications.

Comparison between complexity bounds and practical behavior. Implementing
the protocols described is a good way to check and demonstrate that no aspect
of the problem has been neglected in our analysis.

Overhead of secure vs. non-secure implementations. Real life applications, in
many cases, employ a trusted third party to share and compute their infor-
mation. It executes a non-secure implementation of an algorithm solving the
problem, and then reveals to the players the final output only. In this context,
we try to determine the real overhead in performance of an implementation
with secure and a non-secure implementation of the protocols studied.

To answer these questions, we have run the following implementations :

Standard non-secure version (SNSV). We provide a vanilla implementation for
both problems: the push/relabel algorithm to solve the maximum flow problem
and the minimum mean cycle canceling algorithm to solve the minimum capac-
itated cost flow problem. In both cases such implementations could be used by
a trusted third party to compute the answers instead of our private preserving
protocols. We benchmark its performance against our other prototypes.

Secure version with VIFF (VVIFF). We use VIFF to implement our privacy-
preserving MF and MMCC algorithms, to use them for benchmarking.

Secure version zero-cost Functionality (ZCOST). Performance is somehow in-
fluenced by the implementation of the FABB functionality itself. This is spe-
cially evident with VIFF, where overhead is induced not only by the intrinsic
cost of the functionality but for implementation factors like memory consump-
tion. We pursue to analyze the behavior of our algorithms assuming that such
functionality have no performance-cost. That way we can differentiate be-
tween the overhead that comes from the FABB and its implementation and
our privacy preserving protocols. We have implemented our privacy-preserving
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algorithms using Python. We use these results to benchmark the performance
of our algorithms against vanilla implementations of non-secure versions and
VIFF implementations.

We benefit from VIFF’s passive security under the information theoretic
model on the multiparty case. VIFF provides access to Shamir secret sharing
[13] and BGW multiplications [4] optimized by Gennaro et al. [18]. For compar-
isons we use the most recent Toft comparison method implemented [45]. VIFF
was selected because it is freely and openly accessible. Additionally, for our
experiments we use randomly generated complete graphs. All results presented
are averaged over 20 instances of the same size with 3 and 4 players.

All trials used the same workstation, an Intel Xeon CPUs X5550 (2.67GHz)
and 42GB of memory, running Mac OS X 10.7. Additionally, every single
process had the same amount of CPU power and memory available. Execu-
tion times obtained from the non-secure implementations are in the order of
microseconds. This means that the times can be highly influenced by noise
during the tests. To normalize this noise, we execute the standard non-secure
implementations one hundred thousand times and then report the averages.

4.9.1 Maximum Flow Problem

For the privacy preserving push relabel algorithm, we evaluate the CPU time it
takes for a single Push/Relabel iteration to be executed. Stopping conditions
with some leakage can reduce computational times. We can imagine real life
applications, where trade-offs between security and performance are put in
place. This gives relevance to measure phase times. Full execution times can
be extrapolated from such values. All instances represented complete graphs.
We experiment with various graph sizes to later derive some conclusions. Table
4.2 shows the experimentation results.

Number of vertices 4 5 6 7 8 9

Execution times (in Seconds)
MF Phase - 3 Players 2.7 5.3 8.2 12.3 16.9 22.1
MF Phase - 4 Players 3.2 6.1 9.7 14.5 20 26.2

Table 4.2: Execution times per phase Secure Max Flow Algorithm for a com-
plete graph.

Furthermore, figure 4.9.2 shows the results of the ratio analysis based on
the various results obtained from our different prototypes.

From the results we conclude the following remarks:

- When executed to the worst complexity and no stopping condition is
involved, computational cost is relatively ”high” for any graph size.

- As with previous results, increasing the number of parties involved in
the computation caused some increase in the computational times by some
constant factor.
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Figure 4.9.1: Secure Max Flow CPU Times and Ratio Analysis

- When we compared our VVIFF vs SNSV prototypes, we found that the
overhead is around 106 · |V |2, which is justified by the cost associated to
the MPC-primitives and algorithmic adaptations. Moreover, factors like
early termination of the SNSV prototype (when a solution is found before
reaching worst case complexity) is also influential.

- The influence of comparisons on the behavior of the ratio between VVIFF
and ZCOST prototypes tends to be dominated by the multiplications, when
the size of the instance grows. this reduces the monotonic increase of the
ratio in the cases we have observed.

- There is a relatively small monotonic increase of the ratio between the
ZCOST and SNSV prototypes. This is due to the early termination condi-
tions that can be met by the SNSV prototype. The adaptations made to
avoid information leakage, as well as the increase on the complexity bounds
have also influenced the results.
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4.9.2 Minimum Cost Flow Problem

For the minimum flow problem, we measure the time a single phase (one it-
eration of Protocol 9) takes to be executed, given that stopping conditions
with some leakage can substantially reduce the number of phases needed e.g.
A graph with a single cycle would only take one phase to be completed. To
estimate the execution time of the full algorithm, it suffices to multiply this by
the known number of phases needed. Our analysis includes the ratio between
the time it takes the SNSV prototype to find an answer and the execution time
of privacy preserving versions without stopping conditions. The results of these
experiments can be found in Table 4.3 and Figure 4.9.2.

Number of vertices 4 5 6 7 8 9

Execution times (in Seconds)
MMCC Phase - 3 Players 11 21 35 56 84 125
MMCC Phase - 4 Players 13 24 42 65 100 147

Table 4.3: Execution times per phase MMCC Algorithm for a complete graph.
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Figure 4.9.2: Secure MMCC CPU Times and Ratio Analysis

From these we can conclude the following:

- The fully secure version of our implementation is highly costly in terms
of performance even for very small instances. This highlights the necessity
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of using termination conditions.

- Once again, the influence of the extra player has little incidence on the
overall performance time.

- The overhead of our secure implementation versus a standard one is of the
order of 2.5 · 108|V |2. Note that both algorithms have different complexity
functions and vanilla versions of the algorithm typically converge towards
an answer before reaching its worst case complexity.

- Again, one can observe that the multiplications absorb a larger fraction
of the computing time as the size of the instances increases.
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Conclusions

Strongly polynomial-time algorithms are appealing for MPC implementations
because, as the worst-case complexity is polynomial, it is possible to obtain
fully secure (i.e. no leakage) and theoretically efficient algorithms and imple-
mentations. We have demonstrated this for three classical network problems:
Shortest Path, Minimum Mean Cycle and Minimum Cost Flow, as well as
for Minimum Mean Cycle Problem. However, our computational experiments
demonstrate that the price to pay for such security is very high for the simplest
problem (Shortest Path) and extremely penalizing for the more complicated
ones.

This research raises several questions for further work. A first one is whether
theoretically more efficient algorithms can be obtained for these problems. An-
other one is related to the development of more efficient MPC platforms com-
pared to the one we used for our computational experiments. Also one could
consider other classical optimization problems. Obvious candidates are the
Matching problem and Linear Programming. From a theoretical point of view,
Linear Programming is probably more interesting as no fully combinatorial
theoretically efficient algorithm is known for this problem. The efficient algo-
rithms known (i.e. interior point methods and the volume algorithm) require
linear algebra and it is not clear that they can be fully adapted to the general
MPC constrains we report on.

More complex applications are also possible, using our protocols as building
blocks, for instance: Imagine you have calculated the maximum flow of your
network, and now want to obtain the configuration, equivalent to the maximal
flow, at the minimal cost possible. As we estated, this can be achieved by
obtaining the maximal flow using our MF Push/Relabel secure implementation
from algorithm 6, immediately followed by out MMCC protocol described in
9.
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Chapter 6

A Modular and Compact
MPC Toolkit

6.1 Introduction

This Chapter covers the design and construction of the MPC primitives in-
troduced in part I in a compact, modular MPC Toolkit codenamed ”Edge
Runtime”. Through our experimentation with our protocols and VIFF, we
have been able to see the deep impact that the implementation of the MPC
primitives has on the performance of the prototypes. To better estimate the
behavior of possible real life applications, we need a streamlined set of tools
that provide the basic MPC functionality that our algorithms need. Currently,
the tools that we have at our disposal are either too general or too specific and
their availability and adaptability is limited. The Toolkit has been conceived
not only to be a tool to achieve practically efficient times on the algorithms
introduced by this thesis, but also to provide the protocol designers a good
prototyping tool. It has been conceived to achieve better CPU times and lower
memory consumption than its open source counterparts against semi-honest ad-
versaries. Additionally, we test its performance with our secure Bellman-Ford
algorithm from Chapter 3 and some atomic operations i.e sharing, multipli-
cations. The content of this Chapter is based on the following Technical and
User Reports of the application delivered to the Walloon Region as part of the
CAMUS project and others:

2014 Edge Runtime Technical Manual (Abdelrahaman Aly, Mathieu
Van Vyve), CAMUS Report, 2014.

2014 Edge Runtime User Manual (Abdelrahaman Aly, Mathieu Van
Vyve), CAMUS Report, 2014.
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One of the goals of our implementation is modularity. We have chosen C++
and an Object Oriented Architecture because it allows us to keep low coupling
levels and it is easily adaptable for realistic life problems. Moreover, the selected
set of primitives and applications implemented are essential building blocks for
more complex problems and solutions described in this thesis. The design
of the Toolkit was thought to support future extensions and expansions that
could include state of the art developments without the necessity of radical
changes in the existing code. We have eliminated the burden of an interpreted
language like Python or Java and its performance, and we use the available
tools in C++ to build the Toolkit, respecting the principles of the Object
Oriented Programing (OOP) paradigm. This is not a replacement for more
complete frameworks similar to PICCO [19] or VIFF [2]. It is instead a
set of streamlined functionality compiled into a single library that, thanks to
its modularity and software composition, can be easily used and improved to
obtain specific results on custom developed software.

The Toolkit implements standard protocols for MPC and different algorith-
mic solutions to well known problems like inequality tests. Furthermore, the
Toolkit can solve ≈ 16500 multiplications per second and a comparisons in a
bit more than 8 milliseconds. To put this in contrast, this is between 8 to 10
times faster than VIFF under the same configuration.

6.1.1 Related Work

Relevant work has been done for two and multiparty computation frameworks
that support standard share mechanisms and are secure under various adver-
sarial and communicational models. Although their design provides in many
cases robust functionality in terms of security, factors like simplicity, adaptabil-
ity and component based design have been overlooked. Our general goal is to
build a modular MPC application that works efficiently providing the security
levels required in a streamlined process. Moreover, we pursue the following
differentiating characteristics:

Software Composition. Modular design, where new elements can re-
place old ones without a code overhaul. We achieve this by following OOP
principles and using a component driven architecture.

Simplicity. Only the tasks that are indispensable are built into the ap-
plication. Our goal is efficiency and not functionality.

Adaptability. We have limited greatly the use of third party libraries.
This is specially true for the communications support, where we have de-
signed our own modular components to data transmission and recollection.
That way we have unrestricted access at almost every component level of
the code.
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Some of these frameworks, like Fairplay [28] and TASTY [82], are special-
ized in two-party computation using, amongst other things, garbled circuits
and at times homomorphic encryption mechanisms. Fairplay was later im-
proved and transformed into FairplayMP [29], to solve the multiparty case,
although it did not directly implement linear secret sharing. We have focused
our attention on the multiparty case (current version supports 3 computational
and designed for n players) and the use of standard sharing mechanisms and
not garbled circuits in general.

Frameworks like Sharemind [30] or VIFF [2] focus on the multiparty case.
Sharemind is considered an efficient tool for the three party case and have
implemented some of their functionality directly into Assembly to improve its
performance. However, they do not rely on conventional sharing mechanisms
to obtain faster results in the three party case. Despite the benefits in terms
of performance, these techniques do not automatically work with n parties.
This is the main reason why Sharemind is mainly promoted as a three party
computational tool. Component adaptability is also limited with Sharemind,
given that it is a commercial tool, and the access to its source code is lim-
ited. On the other hand, VIFF is an open source tool designed to work for
the multiparty case with no restriction in the number of players, secure against
passive adversaries and functionality for the active case. It has been used in
academic e.g. [51] as well as in commercial environments [31]. This is not only
because of its large set of functionalities, but also of its availability and code
adaptability (the source code is available online). VIFF is also a Python based
application, which means it is interpreted by a Just In Time compiler. We
can see how using Python as a platform facilitates code readability and allows
better access to the general public, Python is a 4th generation programming
language, easy to understand and program with. However, the cost of having
these nice properties is performance. The fact of working over an interpreted
language has had an impact on VIFF’s performance output. VIFF was built to
make up for this performance difference with a strong parallelization process-
ing with the use of deferreds and asynchronous scheduling of operations. This,
in return, has caused a high memory consumption and added extra processing
time to the tasks given its sometimes unnecessary parallelism. Basically, VIFF
tries to parallelize all operations although there is no support for physical par-
allelism for Python deferreds (logically deferreds are given individual threads,
but the original Python Virtual Machine can only use a single CPU). Moreover,
given that VIFF is designed to not to forget shares (this is necessary because
of the architecture devised to solve the asynchronous scheduling), memory use
increases monotonically, and the indexation of many small objects stored in
memory causes high latency and reduces its performance.
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Sharemind and VIFF can be pictured as two opposite design options, where
the first one tries to optimize by reducing functionality the other diversifies.
Our Toolkit, instead, tries to occupy the practical middle ground. Although
this work introduces a version of the Toolkit that works with three parties, we
use conventional sharing mechanisms that could be easily generalized to sup-
port more players. We have also tried to improve readability by introducing
strong coding standards and strictly following the OOP paradigm, but have not
sacrificed performance using a more suitable OOP tool like Java or Python. We
have centered our efforts instead, on exploiting the properties of OOP while
working with C++, a less suitable but undoubtedly more efficient tool. The
same arguments can be made about our Toolkit’s modularity. Finally, we have
reduced our memory footprint to avoid latency problems allowing us to com-
pute millions of operations with little to no variation in memory consumption.

Finally, although our work shares some of the same goals with other mul-
tipurpose compilers like PICCO [19] or the ORAM tool introduced by Liu
et al. [32], we have followed a different approach. They have chosen to use
compilers instead of libraries in C, to empower some specific functionality, like
easy and intuitive parallelization or access to ORAM data-structures, but more
importantly to enhance readability. We focus on building a compact and simple
streamlined process. Although these factors are also important, our approach
is centered on software composition, where the pieces can be improved with-
out any general overhaul of the Toolkit. The availability of these frameworks
is also a factor. Furthermore, the Toolkit is thought out to be used essen-
tially as an prototyping mechanism where the cost of atomic operations can be
evaluated and contrasted. This makes component adaptability an important
characteristic as well.

6.1.2 Application Features

The MPC Toolkit is capable of solving functions in a collaborative setting with
MPC primitives using Shamir Secret Sharing, BGW [4] and other protocols
and applications, in a secure fashion. It currently supports 3 parties and it
has a structure in place to support n ≥ 3 computational parties. It minimizes
memory consumption, manages its own communications and uses the powerful
GMP (GNU Multiple Precision)library for core field operations on NTL (Num-
ber Theory Library). The following is a description of some of its features. A
detailed treatment can be found in [83].

Security Model. Our interest in terms of security has been focused on pro-
viding a solution for the classic setting of semi-honest adversaries and threshold
corruption using the findings first introduced by BGW [4]. In this case perfect
security can be achieved as long as the adversary does not corrupt more than
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half of the computational parties. For the multiplication protocol we use the
traditionally improved version from Gennaro et al. [18]. The Toolkit uses, as
a sharing mechanism, the Shamir Secret Sharing scheme [13]. We also assume
parties are connected through secure and authenticated channels. The task
of building the channels is decoupled from the Toolkit itself. In case this is
not an alternative for the algorithm designer, the Toolkit supports the use of
custom-developed sockets that allow the use of cryptographic mechanisms to
protect the communication channels. This is possible thanks to the custom
communicational support built specifically for the Toolkit’s functionality.

Synchronous Execution Model. It is in our interest to minimize the im-
pact of repetitive tasks on the Toolkit’s performance. Memory indexation, for
instance, is a factor that has weighed heavily on typical MPC implementations
such as VIFF [2]. A synchronous model allows us to avoid the storage of
great volumes of shares during processing of MPC tasks, minimizing the use of
memory. Moreover, it prevents complicated orchestration mechanisms in order
to successfully coordinate the shares handling. Our library adapts the clas-
sical clock approach of some synchronous MPC constructions and replaces it
by an operation counter that acts much like an authorization flag. Only when
all shares of the previous iteration have arrived, the Toolkit is authorized to
increment the counter for the next operation. This approach, although bene-
ficial in terms of performance, would also have impact on the security of the
applications, it would give the adversaries the ability to exert control over the
transmission times and scheduling of their own shares. Moreover. The impli-
cations of such a phenomena could incur on waits in case the attacker decides
to hold its shares. The Toolkit is designed to process incoming information as
fast as possible, which implies that no legacy data from previous iterations is
stored implicitly by the Toolkit nor is it expected to do so.

Low Coupling, High Specialization and Wide Software Composition.
The Toolkit strictly follows the OOP paradigm to facilitate software composi-
tion. Our design was oriented towards low coupling and high cohesion. More-
over, the application is built on layers, this allows to separate functionality by
class families that fulfill specific tasks. Principles such as encapsulation are used
throughout the toolkit allowing modularity to be a reality. The Toolkit can be
seen as some kind of block construction. When some functionality needs to be
changed, it is sufficient to replace the block responsible of the task at hand.
Polymorphism is also used to reduce coupling between components and classes.
C++ is a portable language that respects the OOP principles and provide the
tools of the paradigm. Indeed, any method in our classes that parameterizes
abstract objects, is enforced to work with pointers. In this way, the coding
logic would also respect OOP principles. This forces us to be extremely care-
ful with the management of object instances, not only to avoid memory leaks,
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but also to prevent accidental deallocations. The principle of extending OOP
practices is the corner stone of the application modularity and easy software
composition.

6.1.3 Overview

This Chapter is divided as follows: Section 6.2 introduces the Toolkit internal
design. Technical characteristics and a general specification of its capabilities
can be found in Section 6.3. Section 6.4 is a revision of the functionality
provided by the Toolkit. We introduce the results of the computational exper-
imentation in Section 6.5. Finally, we explore future improvements and the
Toolkit’s development road map.

6.2 Architecture and Design

The MPC Toolkit is a compact collection of 64 files containing several classes
written in C++ distributed in 21 different namespaces. They cover various
aspects, from the implementation of the Shamir sharing scheme [13] to several
comparison methods and code examples. It has a built-in support for numbers
of up 63 bits in length. The application was compiled and tested for Mac OS
X 10.7. The minimum requirements are 500 KB in RAM Memory and 2 CPU
Cores per engine instance.
Furthermore, GMP has been placed at the core of the mathematical operations.
This powerful library has been used to compile the NTL libraries that are used
to perform the modulo arithmetic.
Following the OOP paradigm, no method nor any functionality has been im-
plemented outside a host class. The 34 classes that comprise the application
are structured as follows: a header file to declare the class and a .cpp file that
implements it. Both use the class name as its file name. These classes have
been logically organized in namespaces, and physically in class groups. Follow-
ing the same logic than the class structure, namespaces correspond to those of
the class groups. We have in total 21 different groups that host 68 headers and
.cpp files.
At the core of the Toolkit, there is a portable engine tied to a sharing mecha-
nism. It provides the basic and core MPC functionality. The current version of
the Toolkit implements a Shamir sharing engine, although future versions could
include different sets of engines. There is a structure put in place to support
future implementations. Additionally, this version hosts a series of examples
and applications. They typically make use of the engine, either by instantiating
it or as a parameter during their instantiation. Figure 6.2 shows the invocation
scheme of one method that uses the engine functionality, towards and from the
engine, and how application classes use the engine functionality.
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Applications::ShortestPath
::BellmanFord::obtainSecureShortestPath

Utils::List::getLength

SmcEngines::ShamirShares
Engine::buildShare

SmcEngines::ShamirShares
Engine::addShares

SmcEngines::ShamirShares
Engine::greaterThanToftShares

SmcEngines::ShamirShares
Engine::assigmentOperationShares

Utils::List::add

Utilities::ShareUtil
::wrapStandardShare

Shares::StandardShare
::setPlayerId

Shares::StandardShare
::setValue

Shares::StandardShare
::getValue

Shares::StandardShare
::getPlayerId

Figure 6.2.1: SmcEngines:ShamirSharesEngine Invocation Diagram

The structure corresponds to the Bellman Ford application and its main
functionality method hosted by the ::ShortestPath:: BellmanFord class.
The engine then proceeds to call lower level functionality to continue the calling
chain.

6.2.1 Architecture and Task Division

The MPC Toolkit was built with scalability, modularity and specialization in
mind. Architecturally, the application has been divided in several layers. In
accordance with the OOP paradigms, these layers fulfill a specific set of tasks
that are divided by classes. Data moves along each of the layers in different
forms accordingly. The process can be seen as a series of small factories capa-
ble to do some transformations on the data that later is fed to the next layer.
These elements or layers can be reorganized at will, to provide with new forms
of functionality, as long as their data inputs and outputs are respected.

The Toolkit uses this layer architecture as the basis of its 2 main com-
ponents. The communicational support provided by the Listener:: Shares

Listener class, and an MPC engine, in our case the ShamirSharesEngine.
Both can be seen as stand-alone functionalities that are capable to exchange
information. They can be understood as two different interfaces. One in charge
of communicating the Toolkit with other computational parties, and the other
with the user. Figure 6.2.2 shows the communicational relationship between
the Toolkit and its environment.
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Figure 6.2.2: MPC Toolkit Component Architecture

An additional support section has been put in place as well, to provide
services to both components. For instance, both use similar classes for data
structures and data flow between different layers, the same is true for util-
ity methods. Because of their different nature and the specialization level,
they also have function specific layers. The Toolkit’s most basic data unit is
std::string. More complex objects are ”serialized” into character streams
and then exchanged in between the engine and the communications. Figure
6.2.3 shows this data movement, as well the different layers that are part of
both components.

Figure 6.2.3: MPC Toolkit Logical Architecture

Amongst the transversal functionality, the Utilities fulfill a vital role. These
are non-instantiated classes by definition, and provide basic and repetitive func-
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tionality. From basic arithmetic operations to data conversions. Tasks that are
related to specific data types, but are static by definition, are also placed here.

Communicational Component. From the Computational Component’s
point of view, the Listener layer is in charge of sending the information needed
to reconstruct the respective Share Objects to other players. From the side
of the computational parties, with whom it is exchanging information, it is a
socket transmitting information through a serialized data protocol e.g. UDP,
TCP. The engine can ask to send some data, in this case it is delivered as
std::String objects, following a previously established format. The Listener
asks the sockets pool layer to provide a socket and later uses it to exchange
information with the parties.

Computational Component. From the perspective of the algorithm de-
signer, the engine is in charge of providing the basic functionality. But the
engine is not in charge of the mathematical construction of the shares nor in-
teracting with the Listener. Lower layers take up these responsibilities. From
the perspective of the listener, it provides information to the Data Access Ob-
jects (DAOs) of the engine. They are in charge of the data transformation from
strings to shares and vice-versa. From there, information is transmitted to the
data managers to redirect the information in such a way that it can fulfill the
functionality requested by the engine.

6.2.2 Information Movement and Operation Counter

The Toolkit has been conceived to work on a synchronous environment. Many
things can be said about the advantages or disadvantages of such an approach.
This communicational environment allows us to reduce tasks such as memory
administration and simplifies the data flow process. It has to be noticed that
whatever the approach is, the speed of the computation is going to be given by
the slower element on the chain i.e. the slower computational party.

The scheme also raises a new challenge: all parties have to agree on an op-
eration counter. Synchronous does not imply that all parties work at the same
speed. At a given moment in time one of the parties could still be processing
some previous computation while already receiving the result from concurrent
parties. That is why we have added to the Shares an operation identification.
This sort of operation counter is added to the share just before it is sent to the
computational parties, and increment by one immediately after. The engine,
in this case, is responsible to keep track of the counter, which is binded to the
engine instance.
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The fact that there is no global operation counter in the application, but
individual counters per engine instance, facilitates, amongst other things, the
coexistence of concurrent engine instances in host applications, but no paral-
lelization inside the engine itself.

However, every operation that requires a communicational round would
need to manipulate the counter. To minimize the risk of errors, and avoid code
repetition, we have centralized this functionality. Given that communicational
tasks have been transferred from the Engine towards lower layers, we have
established a single point of communication with them. Any operation with
shares that requires a communicational round, calls the ShamirSharesEngine::
shareValue method. We have included the implementation of the method in
the following snippet:

Utils::List <Shares :: StandardShare > *

ShamirSharesEngine :: shareValue(long value)

{

..

this ->generator_ ->generateShares

(value , players_ ->getLength (),list);

//it invokes it directly because saving RAM memory ,

//given that no modification is needed.

Utils::List <Shares :: StandardShare > * aux =

this ->shareManager_ ->transmitShares

(list , Buffers :: EngineBuffers :: operationCounter_ +1);

Buffers :: EngineBuffers :: operationCounter_ ++;

Utilities :: ShareUtil :: destroyList(list);

return aux;

};

First, shares are generated by a specialized class and the operation counter is
added to the shares that are about to be transmitted. Then, the lower layers
have to manipulate the data coming from the listener, and build all the corre-
sponding shares from other computational parties. Once the listener and lower
layers have sent and then collected the shares of the current operation counter,
they are transmitted back to this method. Then, the operation counter is
increased and temporal data destroyed. Finally, the method returns a list con-
taining the shares transmitted towards him by all other computational parties.

Furthermore, to keep with task specialization, methods that serve the pur-
pose of making secret information publicly available, manage a similar but
separated process, where shares are not generated.
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6.2.3 Communications Support

The communicational component of any MPC implementation is a key ele-
ment in terms of efficiency. Previous works have relied heavily on third party
libraries that provide several configuration alternatives. Our approach, instead,
its based on simplicity. Our aim is to reduce the footprint of the processes re-
lated to communications, thus, improving performance.

We have taken 2 steps in this direction. The first was to build our own com-
municational structure without relying on third party platforms. We created
the sockets, established the connection and then transmitted our formatted
strings. This allows us to eliminate lengthy intermediate processes for data
standardization and streaming. Secondly, we exploited the autonomy of the
Listener and have placed it on an individual thread. That way the listener is
capable of constantly hearing any incoming transmission from the other com-
putational parties, and later process it, without interfering with other compu-
tational tasks. An additional advantage of such separation is that it allows us
to monitor communicational time individually. The process only waits when
shares from other parties have not still arrived.

The Toolkit can support any socket class that implements the library’s in-
terface IStandardSocket. Socket classes are specialized entities that manage
the lower level communications. They specify buffer sizes and transmission pro-
tocols. Our class Sockets:: UdpSocket implements this interface and provides
functionality to connect to other players using UDP as transmission protocol.
This construction allows for different socket implementations. Our goal is to
empower the algorithm designer with the ability to put in place its own con-
nection mechanisms according to his needs.

Once all computational parties are running, their respective communica-
tional supports, embodied by their Listener instances, will automatically start
a synchronization process. They will verify whether all other players are online,
and then synchronize their operation counters. After that, the Listeners will
signal the end of this process and allow the computational component to start
the information exchange and crypto-calculations.

6.2.4 Parametrization

In general, many behavioral characteristics, can be administered by the user
through parametrization. Currently, the Toolkit provides the algorithm de-
signer with the possibility to change basic administration settings through the
use of a parameters class. Support is included to allow future versions the possi-
bility to have an external properties file that is uploaded to the parametrization
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class at the beginning of the execution. This is a common practice for software
applications of this nature. Parametrization classes upload these values as con-
stants to avoid any modification in runtime. In our case the parametrization
can be done by directly changing these parameters in the class Utilities::

Constants. The following snippet shows an example of such parametrization:

const long Constants :: SYSTEM_P =9182237390125665823L

const int Constants :: SYSTEM_L =32;

This class is also used as a container of the identifiers of parameterizable
functionality and, in general, system constants. This is for consistency through-
out the application, and eases readability. For instance, when a functionality in
a socket has failed, it uses the constant Constants::TRANS FAILURE, instead of
some raw value. If the value of the flag has to change for any reason, it suffices
to change the value of this constant instead of directly modifying the code.

6.2.5 MPC Functionality

The toolkit offers a wide range of functionality and applications to the al-
gorithm designer. They depend on a basic set of methods for the common
primitives and some general tasks. Each engine implementation has to pro-
vide, at least, some implementation of such functionality. Our SmcEngines::

ShamirSharesEngine is not the exception, table 6.1 shows some of the more
important of these methods:

Primitive Algorithm For Scalar
Share Value Shamir [13]
Reconstruct Share Interpolation

Table 6.1: Basic MPC functionality provided by the ToolKit
Many of these functionalities are available by direct access through any

instance of the engine, since, they have to be constantly used by the algorithm
designer. That is the case of the share value method and the reconstruct share
method. The first is used when the user wants to share a value using Shamir’s
sharing scheme. The second provides the functionality to open secret shared
values. There are many other methods that provide simpler functionality, like
the ability to send shares amongst players without reconstructing them.

6.3 Prototype Capabilities and Technical Char-
acteristics

Third Party Libraries. The Toolkit limits the use of third party libraries.
External function oriented components may provide many unnecessary func-
tionalities, that in exchange influence the performance. The main exception
is the use of the Number Theory Library (NTL) for modulo arithmetic. The
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NTL library was introduced by Shoup in 2001 [84], and since then, it has been
improved and used by many applications that need not only of modulo arith-
metic but other topics in number theory. NTL can be compiled with the GNU
Multiple Precision Arithmetic Library (GMP), a powerful arithmetic library
to improve its efficiency. Our core arithmetical processes use the methods and
data types provided by NTL (in conjunction with GMP) for the modulo arith-
metic. Although we are satisfied with the results we have obtained from NTL
in terms of efficiency and precision, the lack of some conversion methods and
some type issues, limit some further planned bit size tolerance. For instance,
this is the case of the support for unsigned long numbers that would allow us
to expand the bit tolerance of the Toolkit to 64 bits.

Parallelism and Concurrent Execution. Current state of the art in sev-
eral applications has been focused on the reduction of communicational rounds
to exploit the advantages of parallelization. This topic has been examined and
explored in detail by previous works with different visions. Several support, up
to some level, concurrent executions while a number of other limit its scope or
unnecessarily extends its use. While it is true that parallelization improves the
performance of certain applications, this is not possible in many environments.
This is why the goal of this work is not to promote parallelization, but to give
the algorithm designer the tools to assess the impact and the distribution of the
workload with atomic operations such that it could be used by real time appli-
cations. Given the strong object oriented architecture chosen for the Toolkit,
parallelization is possible but is left as a responsibility to the developer/final
user.

Data-types Handling. Secure shares have their own data type support.
The basic share type is called Shares::StandardShare. It can be used to
interact with the SmcEngines:: ShamirSharesEngine, and allows data flow
from lower application layers towards the final user applications. It can be
extended in the case that different sharing mechanisms with specific needs are
implemented. It also provides a clone method that allows users to duplicate
the share instance with the same values.

Open data are returned as variables of type long. No implicit casting
is allowed between secret shared and public data. If the algorithm designer
decides to manually create a share, it would have to be built by the method
provided by the engine and not be manually instantiated. The SmcEngines::

ShamirSharesEngine provides a method to instantiate shares. When used,
all players involved in the computation should provide the same input. The
following snippet exemplifies this procedure:
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Shares :: StandardShare * zero = this ->engine_ ->buildShare (0);

In this case, the parties had to previously agree on the raw value placed in
the share. In this case the reconstruction of the zero share would yield 0. No
computational round is needed for this procedure.

Memory Access. Memory access and array management with secret share
indexes are left at the discretion of the user. Techniques and their applicability
to solve the problem vary from different types of applications. Sometimes the
user might want to use ORAM strategies e.g. [58] or to avoid completely array
management e.g. [85]. Management of arrays with public index access can be
conducted as usual on C++. To facilitate readability, we have constructed our
own List data-type (Utils::List). This is a wrapper of the std::vector, and
it includes some typical list functionality, e.g. remove, set. We provide several
methods to safely destroy the object and its contents. The list type is also
based on generics, which allows it to be used by the user as well as in other
scenarios. Following the OOP paradigm, this list is conceived to store pointers
only. Other containers i.e. Utils::Matrix, with the same characteristics are
also provided.

Naming Standards. To improve readability, we have adopted simple nam-
ing standards. We have tried to maintain an intuitive approach on naming,
such that a collaborative and open environment to further develop the Toolkit
can later be put in place. The rules are simple: types including classes, struc-
tures and namespaces use camel case style naming and always start with a
capital letter. A suffix (e.g. Engine, Manager) has to indicate its belonging
to a specific classification. Notice SmcEngines:: ShamirSharesEngine for in-
stance. It follows camel case style on both the namespace and the class type
itself. The prefix Engine tells the user what kind of class it is. Interfaces how-
ever, should always start with an I. Adjectives are preferred to name interfaces,
because they usually signal a capability to be implemented rather than a type
or a functionality.

On functions and methods, it is preferred to use verbs to signal actions on
naming. Moreover, they should use camel case and start with a lower case.
Variables, depending on the context, should try to use camel case as well and
start with a lower case. Constants, on the other hand, should be written in cap-
ital letters and use an underscore in case they have composed names. Finally,
data members of classes should finish by underscore and have to be private in
nature. Getters and Setters should be provided to grant access to them. Other
C++ standards are also considered and encouraged. The general goal is to
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maintain uniformity, that way we also facilitate code maintenance tasks and
bug detection.

Protocol Building. This Toolkit can be used by the algorithm designer as
a standalone application, using the main.cpp file to develop his protocols or as
a external library added to the users source code. Following [86], we introduce
a step-by-step process on how to build a basic protocol using the MPC Toolkit.

1. Instantiate the players, they could be provided by any I/O mean, in-
cluding a configuration file if desired:

int ip1 []= {192 ,168 ,1 ,1};

int ip2 []= {192 ,168 ,1 ,2};

int ip3 []= {192 ,168 ,1 ,3};

Players :: StandardPlayer * p1=

new Players :: StandardPlayer (1,3000,ip1);

Players :: StandardPlayer * p2=

new Players :: StandardPlayer (2,3001,ip2);

Players :: StandardPlayer * p3=

new Players :: StandardPlayer (3,3002,ip3);

2. Instantiate the engine and configure it also indicating who is the local
player:

SmcEngines :: ShamirSharesEngine *engine =

new SmcEngines :: ShamirSharesEngine

(list ->get(player -1),list);

3. Proceed to share your secret value or values, you will in response receive
the corresponding list of all shared values by other players in shared form.
We remind you that the procedure being executed has to be the same for
all players, that is how this list is obtained:

Utils::List <Shares :: StandardShare > *shares;

//first value sharing

shares=engine ->shareValue(secret );

4. Implement the chosen protocol, in our case, the product between all
shared values:

prod= engine ->multiply(shares ->get(0), shares ->get (1));

prod=engine ->multiply(prod , shares ->get (2));

5. Finally the result can be opened and used as desired:

Utils::List <Shares :: StandardShare > * localOpenShares=

new Utils::List <Shares :: StandardShare >(1);

localOpenShares ->add(prod);
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response =

engine ->reconstructShares(localOpenShares );

std::cout << "The Result is: " <<response [0]<<"\n";

6. If the secret value and the identification of the computational party are
introduced by the initial arguments of the application, then all players have
to access the directory where the executable is located and run the following
command:

bellman -secure -55: toolkit aaly$ ./ edgeRuntime 3 5

Here, the first number stands for the player id and the second the secret to
be processed (in this case, multiplied by the other shares).

Program Flow and Control Sentences. As expected, user applications
are allowed to use any control sentence on public available data. This is not
the same for private shares. Although they can interact with any control sen-
tence, they should not be used to control the program flow. No method for
implicit transformation of private data is provided by the Toolkit. In other
words, private data has to be explicitly open to direct the program flow. It has
to be taken into account that our approach on the Toolkit is to treat private
shares variables as pointers to the memory. Given that logical operations can
be performed with pointers, this could be misleading. Take for example the
following snippet:

Shares :: StandardShare * c= engine ->multiply(a,b);

Shares :: StandardShare * d= engine ->multiply(a,b);

if(c==d)

{

std::cout <<"They are Equal"<<endl;

}

else

{

std::cout <<"They are Different"<<endl;

}

In this case, what is being compared by the logic operation are the pointer
addresses and not their intrinsic values. The output in this case would be:

"They are Different"

In case the algorithm designer desires to implement such an if, he must first
open c and d. The same stands for any other control sentence.
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6.4 Engine Functionality

Our efforts have been centered on providing a set of basic functionality tools
on the engine such that the algorithm designer could take it as a starting point
on building its own application. Moreover, in some cases we have implemented
more than one protocol per functionality. This was necessary for 2 reasons:
to keep up with the state of the art, and to provide alternative solutions with
different security levels. This gives the algorithm designer a variety of flavors
to choose from. Its worth to notice that typically in our benchmarks and
computational tests, we have used the best performing methods implemented.

Moreover, many of these functionalities are designed to work not only on
Share to Share operations but with scalars (of type long) whenever possible.
To improve readability, we have overloaded the invocation methods of the func-
tionality. Take for example the following snippet of code:

Shares :: StandardShare * c= engine ->multiply(a,b);

The functionality used by this method depends solely on the types of a and
b. The correct overload will take up the method call on either case (Share to
Share or Share to Scalar).

Additionally, we have maintained standardized code patterns to access these
functionalities. Non overload versions of each of these methods can also be
invoked, for instance:

Shares :: StandardShare * c= engine ->multiplyScalar(a,b);

In this case, the compiler will expect b to be an scalar. The same is true if the
operation is Share to Share:

Shares :: StandardShare * c= engine ->multiplyShare(a,b);

None of these methods is static by definition. This means they can only be
accessed once the engine is instantiated. Additionally, they guarantee data
integrity, which means its functionality does not alter the content of the ob-
ject. As it might be expected from our object oriented approach, function
parametrization are passed by pointers. This means they might be referenced
by other variables at the same time. This is why it is important, to ensure that
none of their content is manipulated during the execution of the functionality.

The user has to be aware of the fact that each of these operations cre-
ate a new StandardShare instance. As mentioned before, memory has to be
managed carefully in a C++ environment to avoid any possible memory leak.
To help the algorithm designer with this task, we have included a memory safe
invocation for some of the most used and most basic functionality. This invoca-
tion destroys one of the parameters of the function and returns a new instance
with the result of the operation. This is helpful in self assigned operations,
where the variable on the parameter is immediately assigned to the answer.
The following is an example of such scheme:
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Shares :: StandardShare * c= engine ->multiply(a,b);

c= engine ->multiplyTo(c,b);

In this case c is the shared value of a · b and then immediately after is
multiplied by b again. Without this formulation we would have lost track of
the first assigned instance of c, which constitutes a memory leak. We avoid this
scenario thanks to multiplyTo implicit functionality. It destroys c just before
assigning it again. We can see multiplyTo code’s in the following snippet:

Shares :: StandardShare *

ShamirSharesEngine :: multiplyTo

( Shares :: StandardShare * a, Shares :: StandardShare *b )

{

//any normalization here

Shares :: StandardShare *result =this ->multiply(a, b);

delete a;

return result;

};

Using a similar principle of that of encapsulation, our method wraps such
functionality, avoiding a possible memory leak point and facilitating readability.
We have provided also overloaded versions of the same method for when scalars
are involved.

6.4.1 Arithmetic Operations

Table 6.2 shows the arithmetic functionality included in the toolkit. It also
shows whether or not the functionality can be used between Shares and Scalars.
When standard conventions for negative numbers are adopted i.e. dividing the
field in half to differentiate positive from negative, special addition overloads
can be used, namely subtraction. The overloads of the functionality include all
the variants explained in the previous section.

Primitive Algorithm Scalar
Addition No Round
Multiplication Gennaro et al [18]
Conditional Assignment Single Round
Fan In Multiplication Successive Multiplications N/A

Mod Catrina and Hoogh [27] N/A

Power Successive Multiplications N/A

Table 6.2: Secure Arithmetic Operations on MPC ToolKit
We have also included some naive implementations of some functionality

that might be used by some more complex applications either in the engine or
by the algorithm designer. These are the Fan In Multiplications and Exponen-
tiation. In both cases a share is multiplied by its corresponding value as many
times as indicated by a public long number.
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For the case of the conditional assignment. It replicates the C++ ternary
operator z = c?a : b. Such functionality uses this typical construction: [z] ←
[b] + [c] · ([a]− [b]). The parameter [c] is a binary flag that selects the value to
be assigned to [z].

Finally, the mod operation allows us to obtain the modulo of a secret share
when divided by a power of 2. The exponent is publicly available, in this case
the divisor is public. The method is later used by the the comparison method
from the same authors.

6.4.2 Bitwise Operations

Table 6.3 contains a revision of the main methods provided for secure bitwise
operations in the Toolkit:

Primitive Algorithm Scalar
Addition Damg̊ard et al [25]
Xor [a] + [b]− 2 · ([a] · [b])
Comparison Damg̊ard et al [25], Adp.
Random Bit Damg̊ard et al [25]
Bitwise Random Number Damg̊ard et al [25] N/A

Bit Decomposition Damg̊ard et al [25] N/A

Table 6.3: Secure Bitwise Operations on MPC ToolKit
We have included a variety of bit related functionality. Some applications

like comparisons are dependent on bitwise operations, such as bit decomposition
of shares and random numbers. Many others might need to use, for instance,
the bit generation sub-routine, when the toss of a coin is needed.

On the random bit generation, we have also included an additional naive im-
plementation of such a method, where each player generates a random bit and
then they are xor against each other. This methodology, under our configura-
tion, employs the same number of communicational rounds than its Damg̊ard
counterpart. That would no longer be the case with either a PRSS [87] imple-
mentation or when more than 3 players are involved.

On the bit addition and bit decomposition, we have implemented sub-
routines to help with this process, namely the carry bit (secure) amongst others.
These methods are also available at any engine instance. Furthermore, there
are other different mechanisms that can be implemented to securely obtain the
carry bits for an addition computation. A support scheme for more methods
has been put in place as well. Using the parameterization principles of the
Toolkit, the addition of shares can identify the carry mechanism the algorithm
designer has selected. The following snippet provides a call example of the
method with such parameterization:

*bitwiseNumber=this ->bitwiseAdditionShares

(* bitwiseNumber , bitShares ->get(i),

Utilities :: Constants :: SHAREMIND_CARRY );
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The MPC Toolkit provides by default a xor gates chain to generate the carry
vector. In case the algorithm designer would want to add additional flavors
to such computation, it would suffice to add a new type on the parameters
class (Utilities::Constants) and add its invocation to the bitwise addition
method, linked to the corresponding parameter.

6.4.3 Logical Operations

Logical applications in several flavors have been incorporated into the Toolkit
as well. The table 6.4, showcase the main implementations we report on:

Primitive Algorithm Scalar
Equality Test / Zero Test Catrina and Hoogh [27]
Equality Test / Zero Test Limpaa and Toft [26]
Inequality Test Damg̊ard et al [25]
Inequality Test Catrina and Hoogh [27]
Inequality Test Limpaa and Toft [26]

Table 6.4: Secure Logic Operations on MPC ToolKit
These applications are all available on the engine. Moreover, we have

included several flavors with different security approaches and performance.
We provide 2 logic tests: zero test (EQZ:[a] == 0) and less than zero test
(LTZ:[a] < 0). Equality tests and inequality tests can be built from these basic
two tools without any additional computational round. Trade-offs on perfor-
mance and security allows us three basic flavors on comparisons. We have
expanded the inequality functionality of the application by providing methods
to access all inequality tests using Catrina and Hoogh method.

Furthermore, table 6.5 shows how Catrina and Hoogh use the LTZ test to
compute other inequalities and the inequality tests provided by the Toolkit.
We use the same principle with Catrina and Hoogh inequality test.

Primitive Algorithm Scalar
[a] < [b] LTZ(a− b)
[a] > [b] LTZ(b− a)
[a] ≤ [b] 1− LTZ(b− a)
[a] ≥ [b] 1− LTZ(a− b)

Table 6.5: Secure Catrina and Hoogh Comparison Formulations on MPC
ToolKit

It has to be noticed that the Damg̊ard inequality test, provides perfect
security something that Catrina and Hoogh’s method does not. The latter
provides statistical security that can be adjusted to the discretion of the al-
gorithm designer. On the other hand, Damg̊ard’s inequality test is relatively
slow in comparison, because of the bit decomposition involved in the process.
This is the main motivation to use Catrina and Hoogh’s method to provide
this extra functionality. In their case, the security parameter k and bit size of
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the input l would dictate the terms of the statistical security. Default values
in our application are k = 29 and l = 32. They can vary across the 63 bits
available for them. A secure implementation of Limpaa and Toft method with
statistical security has been provided as well. This method, to the best of our
knowledge, is the latest approach to compute the inequality test. Both equality
tests provide statistical security and are regulated by the same parameters.

6.5 Computational Experimentation and Net-
work Benchmarking

We provide the results of our computational experimentation with the MPC
Toolkit. We report on, stress, performance tests and network benchmarking.
We also have included experimentation with user program implementations
i.e. the secure Bellman-Ford formulation introduced in previous chapters. Our
tests are aimed to evaluate the behavior of the Toolkit over aspects like memory
usage and CPU Time, over extended periods of time. We analyze the results
and present some observations based on our experimentation. We run our tests
on an Intel Xeon CPUs X5550 (2.67GHz) workstation with 42GB of memory,
with Mac OS X 10.7. All our tests used a single engine running on standalone
applications with 2 threads assigned to each computational party and unlim-
ited access to the RAM. All parties ran their applications on the same machine
(except our latency tests for network benchmarking) and the same amount of
resources was available for them at any given moment in time.

Basic algorithmic elements e.g. multiplications and comparisons, need com-
municational rounds for their execution. Typically, the cost of other primitives
like addition, are consider to be ”free” given that no information exchange is
needed to perform them. This is a clear indicative that the overall performance
of any MPC application relies heavily in the cost of executing a communica-
tional process or round. Complex applications e.g. comparisons are made
entirely of a mixture of this basic ”costless” primitives with elements in need
of at least one communicational round e.g. multiplications or to open shares.
Typically, because of complexity and implementation issues a comparison needs
more computational time than a multiplication.

Our goal is to analyze what is the behavior of these two primitives in our
MPC Toolkit. Not only determine how fast these primitives can be executed,
but how parameters like memory consumption change with time. Taking aside
the fact that RAM is not an infinite resource, it is clear that bad memory
management has a high impact on performance as well.

We have executed large batches of these operations (108 multiplications and
106 comparisons) and compiled the results in Figure 6.5.1. We have selected
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our implementation of Gennaro et al. [18] for multiplications and Catrina and
Hoogh [27] comparison method for our experimentation.
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Figure 6.5.1: MPC Toolkit Multiplication and Comparison Life Cycle

The experimentation on multiplications is interesting because it only needs
a single computational round. Besides that, it uses little algorithmic elements
that we can consider negligible in terms of performance. Moreover, it is an es-
sential building block for more complex applications and it is continuously used
in the comparisons primitives we have implemented. Comparisons, are more
complex protocols, that need several intermediate steps to be built over the
multiplication, addition and sharing primitives. Comparisons are also essential
for more complex constructions and user programs.

The results showed that our engine is capable to execute ≈ 16500 multipli-
cations per second. The average RAM consumption never exceeds a Megabyte.
Moreover, it can be seen that memory consumption was stable thought our
tests and the velocity on which multiplications were being solved was con-
stant throughout the experiment. On comparisons, the engine solved 117 per
second, in other words a comparison each 8.4 milliseconds. To put that in con-
trast a comparison under the same configuration and environment took around
9 times more ( 70 milliseconds) in VIFF. This is also true for multiplications
where our results were 9 to 10 times faster. RAM memory consumption when
the comparisons were tested registered a little but monotonic growth, smaller in
average than 200 Kilobytes at the end of the test batch. This can be explained
by the following: memory fragmentation. Because of the Object Oriented Ar-
chitecture we adopted, thousands of objects are allocated and then destroyed
by the application each second, in the case of multiplications, these objects
are in large majority of the same size. With comparisons, however, that is no
longer the case, several different sized objects are needed during the computa-
tions, specially data containers of different sizes. This causes a slow but steady
memory fragmentation in smaller and ”un-allocable” memory spaces. Hence,
this small growth in memory consumption after 8540 seconds that took for the
experiment to be completed (a bit more than 2 hours). Other possible causes
for this increase include a sufficiently small memory leak for the increase that
has not yet been detected.

92



Chapter 6

Network Latency. We have performed additional tests to measure the im-
pact of latency in Local Area Networks (LAN) using Ethernet and Wireless con-
nections. Our benchmarking included, in this case, atomic operations i.e. mul-
tiplications and comparisons, that are the basic building blocks of the Toolkit
that require exhaustive information exchange. We carry out this experiment
using two standard computers with different processing capabilities running the
same operative system i.e. OS X 10.10.3. A machine equipped with a processor
with 2 cores and 2 GB in RAM memory (machine A) and another machine with
4 cores and 8 GB in RAM (machine B). As expected running times are faster
on the latter. Finally, to determine the impact of the latency, we first execute
each operation batch with two client process (two parties) in our 2 processor
machine, later, we execute the same batch having one process (one party) in
our 2 core machine. That way we can measure any increment on running times
caused by the newly added communicational costs, while the other parties run
in our 4 core machine. Note that the speed of the system is given by the slowest
processing party plus the latency of each connexion. Our experimentation on
Ethernet included Gigabit connections through a smart switch. Additionally,
some of our tests where carried out on Wireless networks using standard 802.11
routers.
Multiplications. Several operations batches comprising 20000 multiplications
were executed using the aforementioned configuration (Ethernet connections).
We have tabulated some of the results on table 6.6.

Mach. A - 2 Parties Mach. A - 1 Party Margin

Mult. CPU Time Com. Time CPU Time Com. Time

2000 35.52 35.38 37.83 37.5 6.00%
2000 29.81 29.61 40.15 39.79 34%
2000 30.25 30.02 38.92 38.59 26.56%
2000 30.53 30.28 36.56 36.267 19.74%
2000 30.21 29.96 39.2 38.86 29.68%

Table 6.6: CPU Time in Seconds from Multiplications over LAN Ethernet

Moreover, tests were also carried out with Wireless connections. The ex-
perimentation on the datasets shown in these case, an increment in time of
≈ 27.4% in average for each new Wireless connection.

Comparisons. Following our experimentation with multiplications, we ex-
ecuted batches of 100 comparisons each, and measured computational times
using the same configuration. Our results are shown in table 6.7:

93



Chapter 6

Mach.A - 2 Parties Mach. B - 1 Party Margin

Mult. CPU Time Com. Time CPU Time Com. Time

100 21.86 21.43 32.17 31.72 32.46%
100 21.32 20.95 26.04 25.63 18.28%
100 19.35 18.86 22.32 21.95 14.05%
100 20.35 19.97 23.6 23.236 14.56%
100 20.18 19.79 23.045 22.66 12.65%

Table 6.7: CPU Time in Seconds from Comparisons over LAN Ethernet

Our Experimentation using Wireless connections shown an increment of
around ≈ 32.4% computational time per each new connection. Note that be-
cause of the transmission protocol selection i.e. UDP, package loss is frequent
on Wireless connections, which in this case was a constant challenge during the
different tests.

From these benchmarking we can conclude the following:

- Given that computational time, is highly dependent on the speed on com-
munication transmission, as the data suggests, the results shown consider-
able variations between different test batches.

- Given the high susceptibility to latency on the network, the increase in
CPU time of adding additional Ethernet link is around 30%.

- A possible configuration to avoid the added administration and transmis-
sion costs of LAN connections is to use machines with exclusive transmission
channels between parties i.e. individual network cards connected through
optic fiber. It is our believe that these kind of dedicated connections would
provide similar results than our tests in a single machine i.e 16500 multi-
plications per second. Sadly because of the cost of such infrastructure we
were not able to test such set-up.

- Additionally, we have experimented in this specific setting with the Bellman-
Ford MPC algorithm introduced in previous chapters. The results show that
it took 14.18 seconds to solve a 4 vertices graph with one Ethernet LAN
connection, and 15.48 seconds with 2 connections. These results are similar
to the times obtained by previous latency experimentation.

Bellman-Ford We provide experimental results on user programs, specifi-
cally the secure Bellman-Ford protocol by Aly et al. [51] introduced in previ-
ous chapters. The algorithm is an iterative construction of complexity O(|V |3)
that makes use of a comparison and multiplications to find the shortest path
of a complete graph of size |V |. We have omitted the source code for facilitate
readability. Instead, we report on full results of our experimentation including
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running times for relatively large graph instances. Table 6.8 shows the results
on different graph instances.

Vertices CPU Time (Toolkit) CPU Time (VIFF) Communicational Rounds

4 0.51856 Sec. 3.5 Sec. 7815
64 2240.67 Sec. ≈ 8 Hours 335 46 495
128 17823.5 Sec. N/A 301 965 949
256 ≈ 40 Hours N/A ≈ 2181 038 080

Table 6.8: Secure Logic Operations on MPC ToolKit
Note that we extrapolate the values that correspond to the graph of 256

vertices. A similar experiment was carried out by Aly et al. [51], on V IFF
and reported in this thesis as well. Under a similar environment i.e. same
machine and security model, our solution outer perform VIFF’s by a 8:1 ratio
in small instances (some tens of vertices). This is not true for bigger instances
where the differences widen. A clear example is the 64 vertices graph instance.
With our MPC Toolkit the problem was solved in a bit more than 37 minutes,
meanwhile, the same instance, with VIFF took more than 8 hours to be solved
(1 : 16 ratio). On the other hand the 4 vertices graph instance was solved
by VIFF in 3.5 seconds versus the 0.5 seconds for the MPC Toolkit (1 : 8
ratio). This variation on behavior is highly tied to a memory consumption
issue. As mentioned before, because of VIFF issues with big data instances,
memory indexation starts to affect its running times at the longterm. This
is also visible with the 64 vertices graph experiments. At the end of the life-
cycle of both, the MPC Toolkit used less then 1 Megabyte while its VIFF
counterpart already surpassed half a Gigabyte of use. Figure 6.5.2 shows the
results obtained by our MPC Toolkit with different graph sizes.
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Figure 6.5.2: MPC Toolkit Bellman-Ford Test CPU Times

From the results we make the following comments:

- Memory does not limit the performance of the MPC Toolkit. More-
over, our trials showed that memory increases slightly (probably because of
fragmentation issues) during long runs on specialized primitives i.e. com-

95



Chapter 6

parisons, and the increment never surpassed the 200KB after a million of
comparisons. On basic operations, however, no such increase was detected.

- There is a clear difference on performance in comparisons with other
open source frameworks like VIFF. The cost of a communicational rounds
have been improved by the use of a non-interpreted language. Further
improvements could be obtained by the use of lower level languages i.e.
Assembly.

- A single MPC Toolkit engine can solve in a fraction of a millisecond (0.6
mill.) a communicational round with limited CPU capacity. Although our
testing environment provided us with better computational power and RAM
memory than a typical personal computer, it is also true that it is possible
to find better CPU benchmarks on commercial computers. This is also true
for server lines and cloud computing. The Toolkit could benefit from this
extra CPU power and produce better results. In terms of RAM memory,
however, given the engine’s low consumption, its has little impact whatever
the environment.

- The ”free” and ”costless” operations like secure addition and other al-
gorithmic processes actually present a cost although small to the overall
performance of the application. This can be inferred from our experimenta-
tion: In average the MPC Toolkit was able to solve 16500 communicational
rounds when little processes were involved i.e. multiplications. But when
we did the same experiment with comparisons this number was reduced to
15200 rounds per second. That is because comparisons have more complex
algorithmic processes involved between communication rounds.

6.6 Road Map and Future Work

A collaborative scheme, and open source licensing could open the possibility of
incremental functionality iterations. A natural next step includes support for
active players, as well as improvements on random number generation through
the use of PRSS [87]. We have compiled the following list with general goals
for the application road map and future work:

- Incorporate PRSS [87] to the basic functionality of the engine. This would
reduce the communicational rounds needed to generate random numbers,
as well as other advantages concerning share instantiation.

- Introduce support for VSS [14] protocols. This would allow to pave the
way to have support for security against active adversaries under the private
channel model. When incorporated, an additional engine that supports on
VSS will have to be built, and basic arithmetic primitives recreated. Shared
functionality, like comparisons could be re-utilized.

96



Chapter 6

- Include exception/error control in the functionality. We have seen that in
complex applications a clear guide on where and why errors occurred can
facilitate the work of the algorithm designer. This can quickly accelerate
development times, and ease the bug detection.

- At the moment the application has been tested with 3 players. Changes
for bigger sets of players does not introduce structural changes on the ap-
plication and its architecture.

- Augment the bit-size support of the application. Although 63 bit size
numbers are sufficient for many applications this is not true fro all. An
expansion on the bit-size tolerance, would augment the toolkit scope and
reach. This would forcibly mean to abandon NTL as the mathematical
core of the application and adopt stable (maybe commercial) ring arith-
metic implementations that can manage efficiently bigger data-types. The
application should allow the algorithm designer to choose the arithmetic
core to use.

- Introduce parametrization by properties file. The Toolkit would be able
to upload the application parameterization using an external file in coordi-
nation with other players.

- Provide a variety of default socket alternatives. Hence, the socket pool
support has to be improved to give support to classified sockets.
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Practically Efficient Secure
Auctions with Transmission
Constraints

7.1 Introduction

Auctions have a deep history in our economic system. They have long been
regarded as an intelligent allocation mechanism. In recent years, with the ad-
vent of larger scale markets e.g. online commerce and commodities, factors like
secrecy, integrity and fairness have grown to be an essential need of the process.
Parties need adequate incentives to bid truthfully, without the risk of loosing
competitive advantages in future interactions. This problem arises in many
market settings where a variety of auctions mechanisms have been proposed.
This is the case of the problem at hand, which was inspired by day-ahead
electricity markets. Our aim is to solve the problem where a commodity is to
be transported between the different markets up to a given capacity limit. In
our setting, buyers, sellers, markets and control agencies may have to interact
in a competitive environment where information about prices and volume can
reveal much more of what any party is willing to disclose. Simple procedures
like sealed-bids have evolved to provide a higher level of confidence to all the
players involved in the process. But with the rise in consumption and produc-
tion, the need for better privacy-preserving auction protocols has become more
relevant.

Traditional solutions include a neutral third party in charge of all computa-
tions and responsible to exert secrecy, integrity an fairness in his own processes.
However, such a third party is in general hard to find, and would concentrate
all attacks making it especially vulnerable, a single failure point.
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We report on a mechanism where this third party can be replaced. We seek
to maintain the basic properties from previous auction methods and change
the centralized confidence scheme for a mechanism that makes all players part
of this process. Having in mind practicality, we suggest adaptations and novel
techniques to improve performance.

Our virtual third party uses Secure Multiparty Computation (MPC) and
can be composed by any subset of players. MPC is a secure mechanism that
allows several players to compute a function in a distributed environment.
From Yao’s original result in 1982 [1], to the current state of the art, secure
multiparty computation has evolved from a theoretical object of study, to a
field that is used in real life applications. MPC offers a variety of techniques,
primitives and applications that provide security under diverse models, and in
a distributed environment.

Our aim is to merge these two horizons, not only providing some algorith-
mic tools, but the analytical means to improve their performance. This is why
our prototyping implements the necessary MPC primitives using conventional
methodologies i.e. Object Oriented Programming (OOP), with a 3rd genera-
tion language.

The content of this Chapter is based on the following:

2015 Practically Efficient Secure Auctions with Transmission Con-
straints, (Abdelrahaman Aly, Mathieu Van Vyve).

7.1.1 Our Contribution

We introduce a novel greedy algorithm and its secure formulation, for auctions
with several geographical markets where exchange between them is possible.
We present a series of mechanisms and some adaptations needed by our proto-
cols. Later, we analyze and introduce variations and trade-offs of these building
blocks to obtain efficient times, addressing the privacy-preserving protocol im-
plementation and its security and performance constraints. Additionally, we
report on the computational experimentation on electricity markets, running
our secure algorithm against real life data. To the best of our knowledge, this
is the first time the problem of secure auctions with transmission constraints,
has been addressed in detail. We focus our attention in the following:
Algorithm Design. We provide a polynomial time algorithm for the problem
at hand and its respective adaptation for an MPC environment. We introduce
proofs of correctness and security analysis. Given that in real life cases changes
in the number of markets is less common than changes in the amount of bids,
our efforts were centered on maintaining complexity growth linear in the num-
ber of bids. The result is a simple algorithm capable of managing bigger sets
of bids with little effect on its performance.
Prototype. Our prototyping introduces the advantages of a modular application
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and allow us to present an analysis and drive conclusions about the workload’s
distribution of the application throughout its lifetime. We discuss bottle-necks
and possible improvements. Although perfectible, it is a tool from which the
algorithm designer can devise further improvements based on the application
at hand.
Complexity and Correctness. As similar works in the field, we use communi-
cational rounds (exchange of messages between parties involved in the com-
putation) as a complexity measurement unit in our secure protocol. It has to
be noticed that our work centers over the possibility of practical use, which
is why our work minimizes the use of comparisons. This is because although
bounds in some cases are theoretically close, multiplications and comparisons
have rather different performance outputs. This is explained in detail in fur-
ther sections. Even if asymptotic bounds are maintained, little changes on the
number of comparisons and multiplication can have an important impact on
overall performance of any prototype. We also offer a correctness analysis of
our algorithm, and adaptations associated to the building blocks we use in our
secure protocol.
Alternative Formulations. This problem can find a general solution on the min-
imum cost flow problem. Known secure solutions of this problem are expensive
in terms of performance as shown in Chapter 4. It would also require an elab-
orated construction where vertices represent bids. Given that the complexity
function from Chapter 4 grows in the number of vertices of the graph. A rela-
tively large number of bids would cause an explosion in terms of performance
(polynomial growth). As mentioned, we propose a specialized greedy algorithm
and its secure counterpart that, in our case, have linear growth in the number
of bids.

7.1.2 Related Work

Secure Auctions have been studied from different perspectives, both in terms
of security and configuration. In all cases questions on topics like performance,
fairness and integrity have been raised. In this section we cover some of the
works with similar characteristics and explore their differences with our contri-
butions.

Auctions with Secure Multiparty Computation. Work on the field of
efficient real life auctions with secure multiparty computation, comes from
Bogetoft et al. [31]. A descriptive work on a real life case with MPC. In
their setting, Danisco, the only sugar beet processor of the danish market,
and several thousand farmers settled clearance market prices in a secret and
distributed fashion using MPC. Their case, which takes into account a single
market, provides a secure protocol for such a problem, without transmission
constraints. In this paper, we explore a different setting, where several markets
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can exchange commodities up to an operative limit. This case cannot find a
solution with the results introduced by [31]. Moreover, our setting is more
realistic for other types of markets e.g. European electricity markets. Addi-
tionally, they built their protocols using VIFF [2], which proved to be reliable
for the size of their problem. In our case, however, previous experimentation on
equivalent problem formulations (Chapter 4), suggest that this is not true in
our case. This is the reason why our prototype does not makes use of existing
MPC frameworks e.g. VIFF. We explore the behavior of a dedicated applica-
tion, using the flexibility of C++ and OOP. That way we are capable to use a
compact set of secure MPC primitives that provide security and are reasonably
fast in more realistic scenarios, as shown in our computational experimentation
and in Chapter 6.

Secure Auction Mechanisms with Secret Sharing. Several authors have
studied the properties of secure auctions with secret sharing e.g. [88, 89, 90, 91].
These works explore several different auction mechanisms in various environ-
ments. Recently, Nojoumian and Stinson [92], introduced algorithms for
second-price and combinatorial auctions. Their protocols offer security against
active and passive adversaries, using amongst others, Shamir secret sharing
[13] and a verifiable secret sharing schemes (VSS). They model their auction
problems as graphs, and device theoretically efficient algorithms. It has to be
noticed that no experimentation is reported.

Secure Second Price Auctions. Work has been done on cryptographic
alternatives to guarantee security in second price auctions. Recent work, in-
troduced by Catane and Herzerg [93] presents some answers for secure second
price auctions. They provide a requirement framework for second price auctions
and introduce an auction scheme that makes use of some known cryptographic
principles. They achieve this by trusting computations to a supervisor entity
and using randomization. Their goal however is to keep the bids secret from
other players. Our decentralized approach allows us to get rid of the supervisor
as a central entity on the security scheme. Given that a supervisory entity can
be enforced by the environment, our protocol allows the participation of a con-
trol entity for instance in the process. In our setting, when a supervisory entity
is involved in the process, its input would be necessary, but not sufficient to
actually leak any information to such entity. Our privacy-preserving protocol
provides security and fairness without relying on any third party. Finally, their
approach does not take into account the transmission exchanges that are es-
sential for our model. Similar to [31], this solution would work for one market
but needs to be adapted for a multi-market scenario.
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7.1.3 Overview

The paper is organized as follows: Section 7.2 introduces the problem defini-
tions. Section 7.3 presents a different network flow formulation of the problem
and introduces our polynomial algorithm and its correctness proof. In Section
7.4, we describe the security constraints, building blocks and technical tools for
later use in our secure protocol. We also explore the possible trade-offs of these
mechanisms in terms of security and performance. Section 7.5, makes use of
previously presented techniques to securely solve the problem. In this section
we provide an analysis on complexity, security and correctness. Experimenta-
tion and prototyping are described in Section 7.6. We also explore various
workload distributions for realistic applications.

7.2 Problem Overview

We first proceed by introducing the problem definitions i.e. the design of the
auction, goals and notation.

7.2.1 Auction Mechanism

The treatment of our secure auction is as follows: a reverse auction scheme
with several sellers or bidders. Markets or auctioneers adjudicate orders to
supply and demand bids that maximize social welfare. A control agency may
be part of the process, to supervise and guarantee the integrity of the result.
The security follows from the use of Secure Multiparty Computation with no
leakage for information theoretic security. We provide a security analysis.

Furthermore, a secure implementation of the auction would be aimed at
protecting the interests of all players involved.

Individual interests and involvement level are the following:

Markets and Transmission Network: The set of markets and the ca-
pacity of the transmission network are assumed to be public. The trans-
mission network is represented by a capacitated network flow, i.e. pairs
of markets are binded by bidirectional transmission lines. Thus giving an
upper limit to the flow i.e. capacity. Notice that in this case, markets are
geographically separated.

Sellers/Buyers or Bidders: The set of players interested in acquiring or
selling auctioned bids i.e. negative or positive quantity. Each Bidder can
submit non-related bids to several markets. Bids are composed by a certain
quantity Q and a price P . All bids are enclosed and final i.e. no re-bidding is
allowed. The bid placed by the player can be partially or totally adjudicated
to the Bidder depending on what maximizes social welfare. One of their
interests is the secrecy of the information contained on each bid towards
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any other player e.g. other bidders and markets, for as long as the auction
takes place. Their concerns are also correctness (the result of the auction is
correct) and fairness (all players receive the same information at the same
time).

Automated Auctioneer: Is the proxy entity in charge of managing the
auction. Our work proposes that the role of the auctioneer is to be taken by
the computational parties representing markets, bidders and control agen-
cies, in a distributed and secure fashion. A virtual ideal functionality ca-
pable of determining the set of accepted supply bids and rejected demands
guaranteeing correctness, without disclosing nor operating over secure data.

Control Agency: Is a regulatory entity or any institution trusted by the
Markets and Bidders alike. By the parties choosing, or environmental en-
forcement, it participates to add confidence to the process. Because of the
nature of MPC, our secure protocol allows active participation of the Con-
trol Agency as a computational party, their presence would be necessary for
the correct and secure operation of the protocols in conjunction with the
model. It has to be noticed that in some configurations its presence might
not be required.

On Computational parties. It is possible to have as many computational
parties as considered necessary by the algorithm designer to guaranty security
and bring confidence to the process. Although many of the building blocks re-
quire a minimum of three parties, the algorithm itself can be adapted to be used
with two-party computation. As estated many auctions require the presence of
an external supervisor. A basic configuration would include a computational
party representing the bidders, another the markets, and a third one for the
supervisor or control agency. If a larger number of computational parties are
considered, the trade - off in this case is performance.

7.2.2 Problem Definition

Similar to [94, 95], suppliers and consumers first submit bids that are binded
to a specific market i.e. (individual day-ahead markets). All bids are com-
posed of a quantity and a unique associated price. The goal is to determine
which bids to accept to maximize social welfare. This has to be done in real-
istic times (if possible) with the sufficient capacity that satisfies the accepted
demand bids and external demand coming from adjacent markets. As previ-
ously mentioned, markets are interconnected by a transmission network with
capacitated transmission lines with zero cost.

We keep the information contained in all bids secret from other players
until the end of the auction process. Additionally, we seek to eliminate the
need of any trusted auctioneer (Typically, a single entity with access to the
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secret information included in the bids and who decides the outcome of the
bidding e.g. power exchange in the European market) carrying the process.
In this case, the responsibility of the execution of the auction itself is moved
unto the control of the players (including the control agency) involved in the
process. Detailed treatment on working solutions for these markets can be
found in [96, 97].

Input Data. The problem considers all information contained in bids to be
private. This includes the prices, production quotas, and the markets to which
they are linked. Much like in real life, the topology and the capacities of the
transmission network are assumed to be public. Data is formulated as integer
values over a finite field Zq where input values are much smaller than q such
that no overflow occurs. Its size is tied to the application in hand. Bids can be
partially adjudicated as well. Note that when they are secretly shared we can
not differentiate between a demand bid and a supply bid.

7.2.3 Problem Formulation

Consider the set of all markets M , the set L containing all transmission lines
between markets in M . D is the set of all the Demand Bids where dm∀m ∈M
is the set of demand bids of market m. K is the set of all Supply Bids where
km∀m ∈M is the set of supply bid of market m. Parameters Pi, Qi correspond
to the price and volume of the bids (Qi < 0 for supply bids and Qi > 0 for
demand bids) ∀i ∈ K ∪D. The variable qi∀i ∈ K ∪D is the accepted quantity
of bid i. Variables fv,w stands for the flow through the line (v, w) ∈ L, with
capacity Cv,w. The problem is defined as follows:

max
∑
i∈D

Piqi −
∑
i∈K

Piqi (7.1)

s.t.
∑
i∈km

qi +
∑

j:(j,m)∈L

fj,m =
∑
i∈dm

qi +
∑

j:(m,j)∈L

fm,j ∀m ∈M (7.2)

0 ≤ fv,w ≤ Cv,w ∀(v, w) ∈ L (7.3)

0 ≤ qi ≤ |Qi| ∀i ∈ K ∪D (7.4)

7.3 Network Flow Formulation

The problem (7.1) - (7.4) can be modeled as a minimum cost capacitated
network flow problem on graph G = (V,A) as shown by figure 7.3:
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Using this kind of characterization, we model the problem as follows: con-
sider that V = M ∪ {s, t} where s and t are artificial source and node vertices.
For each bid (supply and demand) i ∈ K ∪ D, there is an arc s,m where m
is the market of the bid i, with capacity |Qi| and cost Pi. Set S contains all
edges exiting s. For each pair of markets (m,m′) there is an edge with capacity
Cm,m′ associated to the capacity of the corresponding line Lm,m′ and no cost.
Moreover, for each market m, edges that represent its demands can be replaced
by an edge (m, t) with capacity Tm =

∑
i∈dm Qi and zero cost. For simplicity,

let us consider B to be the set of all bids K ∪D.

7.3.1 Greedy Algorithm

As it was previously noted, we can identify the sets of accepted and rejected bids
that would satisfy global demand by solving this Minimum Cost Flow (MCF)
problem. Secure protocols to solve the MCF problem have been studied in
Chapter 4. Their results provide polynomial computational bounds. Although,
the protocol is theoretically efficient, in practice, its applicability seems to be
limited not only by the high degree of the polynomial from the complexity
function, but also for the MPC framework used for its testing. For instance, the
experimentation shows that with their privacy-preserving algorithm running
over VIFF [2], it would take around a year to solve the problem with perfect
security in a 10 vertex complete graph. On this setting, each bid has to originate
from an individual source vertex (instead of a unique source) connected to his
respective market through an edge of the capacity of the bid. In a realistic
settings, like the ones we report on our experimentation, with around ≈ 1500
bids in average, that would compromise its overall performance.
A more practical approach is taken into account. An algorithm, greedy in
nature, that uses the less expensive bids from set B first, and allocates sufficient
flow to satisfy all demand and obtain an optimum, one edge at the time. We
achieve this, thanks to a series of iterative sorting and max flow sub-routines.
The following algorithm shows its construction:
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1. ν ← 0

2. B ← sort-price:B

3. ci ← 0 ∀i ∈ S

4. for all: i ∈ B :

5. ci ← |Qi|

6. ν′ ← maxflow: G(V,A)

7. ci ← ν′ − ν

8. ν = ν′

9. End

Algorithm: 4: Iterative Greedy Algorithm for Auctions with Transmission
Constraints

First, we sort the set of all bids B in function of their price and set the
capacities of edges in S to 0. Second, we restore the capacity of the edge
associated to bid i to its original value |Qi| and calculate then max-flow on
G. We then set the capacity of such edge to the flow variation with respect
to the max-flow calculated in the previous iteration. We repeat this process
for all bids in the order of prices. Once this process is completed, the volume
provided by demand bids is then automatically rejected and accepted for the
supply bids.

7.3.2 Correctness

We now prove that the greedy algorithm described above is correct. To do this
let us disaggregate each bid as a collection of bids of capacity 1 e.g. 1 Mw
each and with identical prices. This obviously does not modify the problem.
For a given set of bids I, let r(I) be the maximum amount of demand that
can be satisfied using the bids of I only. This can be seen as a maximum flow
problem on the graph G.

Proposition 1. The set function r : 2S → R+ is the rank function of a
matroid.

Proof We use a characterisation of Whitney [40] for a function to be the rank
function of a matroid:

(a) r(∅) = 0.
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(b) r(I) ≤ r(I + i) ≤ r(I) + 1 for I ∈ S and i ∈ S \ I,

(c) for all I ⊆ S, i, j ∈ S \I, if r(I+ i) = r(I+ j) = r(I), then r(I+ i+ j) =
r(I).

The set of arcs associated to the bids themselves is a cut separating the
source from the sink in the associated max-flow problem so r(J) ≤ |J | for any
J , proving (a). Moreover (b) comes from the fact that adding one bid i to
I amounts to increase the capacity of one arc by one unit in the associated
max-flow problem. Therefore the capacity of any cut increases by at most 1,
and the size of the minimum cut will certainly increase, but by one unit at
most.

We now prove (c). Let SI denote the set of nodes containing the source s
defining a minimum cut associated with the max-flow problem of computing
r(I). In other words, r(I) = c(δ+(I)).

Note first that since r(I + i) = r(I), there exists SI+i such that the as-
sociated cut does not contain (s, i) the arc associated to the bid i. Similarly
there exists SI+j such that the associated cut does not contain (s, j) the arc
associated to the bid j. This implies also that δ+(SI+i∪SI+j) does not contain
the arcs (s, i) and (s, j).

By submodularity of cut functions in directed graphs (Theorem (2.4.4),
section 2), we obtain that r(I + i) + r(I + j) = c(δ+(SI+i)) + c(δ+(SI+j)) ≥
c(δ+(SI+i ∪ SI+j)) + c(δ+(SI+i ∩ SI+j)).

Since δ+(SI+i ∪SI+j) is an s− t cut that does not contain (s, i) and (s, j),
if c(δ+(SI+i ∪ SI+j)) ≤ r(I), statement (c) holds (the strict inequality case is
ruled out by (b)). If c(δ+(SI+i∪SI+j)) > r(I) then c(δ+(SI+i∩SI+j)) < r(I).
But this would contradict the minimality of SI since δ+(SI+i∩SI+j) is an s−t
cut.

The last proposition directly implies that we can solve the auction problem
greedily: it suffices to use the cheapest supply bids first, as long as the trans-
mission network allows the use the bid to satisfy some demand, and until all
demand is satisfied.

7.4 Cryptographic Preliminaries

7.4.1 Security Model

Ben-Or et al. [4] showed, amongst other things, how (with Shamir’s secrete
sharing for passive adversaries or Verifiable Secret Sharing (VSS) [14] for ac-
tive adversaries) every functionality can be computed under the information
theoretic model. However, that does not necessarily imply efficiency in terms
of performance. In our secure algorithms, variations can be included, to accel-
erate some functionality, at the price of providing statistical security and/or
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some leakage. Moreover, changes in the communicational or adversarial mod-
els would yield different security levels as well. Our protocols follow the same
line of thought. Our privacy-preserving protocols can achieve the same level of
security, than the underlying primitives (our algorithms have no leakage). A
careful sub-routine selection can yield statistical security, with a significantly
improvement in terms of performance. We study both aspects of the imple-
mentation of our secure protocols.

7.4.2 Basic Building Blocks

Secret Sharing. Important contributions on secret sharing have been pro-
posed during the last 4 decades. Threshold secret-sharing schemes like Shamir’s
secret-sharing [13], provided an important tool to future results like BGW [4].
Shamir’s Secret sharing, is a scheme that allows n parties to share information
amongst each other, to later be reconstructed by a subset of the players. Sev-
eral MPC protocols use Shamir secret sharing as a viable tool for multi-player
environments, this is our case. Note that many protocols can rely on some
kinds of homomorphic encryption e.g. Paillier encryption [22], instead of tra-
ditional sharing mechanisms, this is specially true for the two-party case. For
a detailed treatment of Secret Sharing Schemes we refer the reader to Beimel
survey paper [20] on the topic.

Multiplications. Unlike addition, multiplication on secret shared informa-
tion has a communicational cost associated. Ben-Or et al. [4] showed the
difference between secret addition and multiplication on shares. Indeed, secret
additions on shares (Shamir’s secret-sharing) are ”cheap”, they do not require
any additional information exchange between the players. Indeed, they can be
computed locally, this is not the case for multiplication. In their paper Ben-
Ot et al. came across an interesting formulation to solve the problem. The
method was later improved by Gennaro et al. [18]. These mechanisms allow
us to bring multiplications with perfect security (tied to the communicational
model) into the scene.

Comparisons. Methods for secure comparisons like [25], for the equality
and inequality test have been introduced through the years. Recent work by
Limpaa and Toft [26], introduced methods with sub-linear complexity on their
online phase. Moreover, amongst the variety of existing protocols, there are
methods that bring both, perfect and statistical security with efficient bounds
and simple algorithms, this is the case of Catrina and Hoogh [27] inequality
test. It uses a secure modulo operation and is capable to solve the inequality
test problem with an intuitive protocol. The overall complexity of their method
is constant. Catrina and Hoogh method is later used in our prototype. For
equality test, however, we have used the Limpaa and Toft protocol (based on
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the hamming distance).
Although, theoretically speaking, these methods can achieve constant complex-
ity bounds, in practice, they are typically much slower than multiplications. If
we take for example Catrina and Hoogh’s inequality method (O(1)) to compare
2 secretly shared numbers of 32 bits each. To use up to 4 computational rounds
we would need to parallelize 32 threads per player. This might be proven to
be a challenge on some limited environments. To achieve practical results in
terms of performance, is still important to minimize the use of comparisons.

7.4.3 Complex building Blocks

Our privacy-preserving protocol requires to adapt existing secure applications
for solving more complex combinatorial problems. The methods used to solve
these problems have to guarantee correctness and security while at the same
time minimize their impact over the performance. This includes a practically
efficient vector shuffling protocol, sorting and max-flow mechanisms.

Vector Permutation Mechanism. Securely permuting a vector, implies
that for any vector E, the resulting configuration is uniformly distributed in
the space of all permutations |E|!.
The state of the art describes several mechanisms for vector permutation also
known as oblivious shuffle. Leur et al. [98] introduced several permutation
mechanisms that work with secret sharing, amongst them the multiplication
of the vector for a zero/one matrix (permutation matrix Mπ where π([E]) is
a permutation of vector [E]). In other words π([E]) = Mπ × [E]. The overall
complexity of the method: is O(|E|2) and can grant perfect security. They also
offer other alternatives, amongst them, the use of sorting methods instead of
the matrix multiplication, to improve complexity. There exists other sorting
methods, with better asymptotic complexity, namely the oblivious shuffling
by Keller and Scholl [58] which introduced the use of the Waksman network.
These last two mechanisms are indeed asymptotically faster than the matrix
multiplication mechanism, in practice they have to face some challenges. For
example, the shuffle by the sorting method introduced by Leur et al. [98]
depends on your sorting capabilities. It is true that current state of the art on
sorting methods offer faster bounds, but they depend on building blocks like
comparisons that can greatly affect performance. That is not the case for the
Keller and Scholl method, instead, the speed of the algorithm depends on the
way the Waksman network is built and the aggregation mechanism, suffering
of many of the same issues than Leur et al protocol. Additionally, in all the
permutation methods described above, the protocols have to be executed sev-
eral times to guarantee secrecy.
One advantage of the sorting approach is the use of sorting networks, that are
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by nature, data-oblivious. Similar to Leur et al. method, we propose to make
use of sorting network techniques where instead of comparison gates, we use
exchange gates (exGate). An exchange gate can be defined as a probabilis-
tic switch mechanism, in our case each gate uses the random bit generation
method of [25], instead of the comparison to decide the switch. Moreover, an
exGate network i.e. a sorting network composed of exGates where the space
of all gate combinations is 2|[E]|×log(|[E]|).

Note that log(|[E]|!) = θ(|[E]| × log(|[E]|) and |[E]|×log(|[E]|)
2 ≤ log(|[E]|!) ≤

|[E]| × log(|[E]|). Thus, it can be said that |[E]|! = θ(2|[E]|×log(|[E]|)). Czumaj
et al. [99] have shown how to build such a network with 1

2 probability exGates.
The result is a permutation with (almost) uniform probability in the space of
all possible permutations. Such an exGate network for a sufficiently large [E]
would be able to provide a gate combination per each vector permutation, or
a close approximation.
On the practical implementation of such a mechanism: to achieve perfect se-
curity, we would require an exact match between the size of the space of all
permutations and gate combinations. Instead, statistical security with negligi-
ble probability can be achieved using an exchange network. There are sorting
networks with O(|E| × log(|[E]|)). e.g. AKS. Its usability, however, is rela-
tive given the weight of its constants. A more standard sorting network e.g.
Batcher even-odd merge sort, Bitonic sort, should provide enough confidence
on a practical level. Furthermore, the use of a randomized sorting network such
as [68], with a complexity of O(|E| × log(|E|)) could also be considered for
real-life applications. Note that the latter method would not be able to reach
some smaller sub-set of permutations of E.
An additional option also arises. The use of simplified mechanisms that are
capable to choose uniformly a random permutation amongst a sub-set of the
set of all possible permutations. For instance, an example could be, if |[E]| is
a power of 2, the use of a sorting network where each element is exchanged
with a different element at least log(|[E]|) times. Such a step is usually called,
in sorting networks theory, a Merge step. This will guarantee that we have
selected a random permutation, but only amongst a subset of all the permu-
tations of the vector. As with the randomized shell sort, this of course would
leak the sub-set of possible configurations from which this permutation comes.
To conclude, we propose the following three options in terms of an exGate

network. i) Get an (almost) uniform distribution. To get a close approxima-
tion through the use of AKS or Czumaj et al construction. This might also be
unrealistic for many data configurations. Constraints related to performance
are also present. ii) A more realistic approach, using sorting networks and
being subject to the distribution it provides for its solutions e.g. Batcher’s
odd-even merge sort. iii) The use of a merge step, this in case performance is
a bigger constraint that the leakage produced. The decision on which method
to use, belongs solely to the algorithm designer and its tied to the application
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implementing them.

Sorting Mechanisms. Sorting protocols are necessary building blocks of
various complex solutions, including ours. Efficient secure sorting algorithms
have been studied for several years, yielding interesting results.
In fact, various protocols for data-oblivious sorting have been proposed to an-
swer this question. Naive approaches can achieve |V |2 complexity e.g. bubble
sort. As mentioned before, work by Goodrich [68] introduces a data-oblivious
randomized shell-sort protocol. Although, with a relative low complexity bound
for a sorting network (O(|V | × log(|V |))), it does not guarantee correctness.
Other data-oblivious approaches have used the same principle, an oblivious con-
struction for the Batcher even-odd sorting network was introduced by Jónsson
et al. [69] with a higher complexity bound than the Goodrich method but
guarantees correctness. In the literature, however, data-oblivious sorting al-
gorithms tend to report higher complexity bounds than their data dependent
counterparts.
Hamada et al. [71] introduced a different approach to the problem. They sug-
gested a mechanism with which non data-oblivious methods could still be used
keep and maintain the same asymptotic bounds. The approach called shuffling
before sorting allows to transform data dependent sorting algorithms into se-
cure versions of themselves with little adaptation. The technique requires the
algorithm designer to secretly shuffle the input data before the sorting proce-
dure. Secure comparisons, are used just as in their data-oblivious counterparts,
but in this case, their output is revealed. This allows the protocol to choose
the data-flow that suits the original method instead. Results show not only
competitive theoretical bounds but also practical efficiency. They additionally
report on an intuitive adaptation to quick-sort using this technique, obtaining
practical running times is a goal of ours with our current work, which makes
this technique suitable for our protocols.

Max Flow Mechanisms. Network flow problems have been recently stud-
ied by [51, 19, 85] and reported in this thesis. The most efficient method with
a O(|V |4) is based on the push-relabel algorithm for the max-flow problem and
was introduced in Chapter 4. It also suggests the use of stopping conditions
(some leakage) to accelerate performance.
Our problem contemplates public knowledge of the transmission network con-
figuration. This can also be contemplated by the original problem introduced
by this dissertation to accelerate its performance. Our max-flow algorithm can
be adapted to ignore non-existing edges. At its core, the algorithm there is
a push/relabel phase where all edges are considered. A flag signaling edges
to be ignored and others to be considered would suffice. Moreover, this flag
evaluation can be done publicly. Thus, this adaptation is also present in our
prototype, we also make use of a stopping condition. Indeed, we use the tracked
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non-existence of excess to be allocated on any vertex, as the tool to determine
when to stop the algorithm. We are aware that this may cause some leakage
(number of iterations were necessary to allocate the flow). This is at the very
end a trade-off. Perfect security can be achieved running the algorithm to its
complexity bound as shown by the authors, however, the price to pay is per-
formance. The stopping condition can be altered to assert the condition after
a certain number of iterations to bring more confidence to the process. This
last approach also has to be taken into account by the algorithm designer in
accordance with the application’s necessities.

7.5 Secure Auction Mechanism

We extend the results of section 7.3 and introduce a secure variant of algorithm
7.3.1. We assume the configuration of the transmission network to be public,
and all inputs to be integer.
First, all information is gathered in shared form, randomly permuted and
loaded by the parties in charge of the computation. Our protocol uses amongst
others, the shuffle before sorting technique introduced by Hamada et al. [70]
to do an initial bid sorting, and the Max Flow protocol from Chapter 4. Our
protocol complexity grows linearly with respect of the number of bids |B| and
polynomially by the number of markets |M |.

7.5.1 Notation

Our protocol uses the traditional square brackets notation employed by several
secure applications in distributed environments e.g. [25, 60, 51]. For instance,
a secure assignment and secure addition are denoted by the use of the infix
notation and the corresponding square brackets e.g. [z]← [x] + [y]. The same
treatment is extended to any other operation. Vectors are denoted by capital
letters e.g. E where |E| denotes the number of elements in E and Ei is the
i-th element and |Ei| is the absolute value of the i-th element. To represent
negative numbers we use the typical approach of using the lower half of the
field for positive values and the upper half of the field for negative values. It
has to be noticed that on shared form a negative value is indistinguishable from
a positive one. And that in our approach all information related to the bids is
kept secret including whether or not it is a supply or demand bid.

On the bid tuples (price and quantity). The algorithm requires additional
data for tractability. A market identifier m and a bid identification b. The
collection of data from a tuple is completed with its price p and volume q
(negative for supply bids and positive for demand bids). The vector of bids
is defined as follows: ([b], [m], [p], [q])|B|. Moreover, the weighted adjacency
matrix N is used to define the graph G.Finally note that for simplicity reasons,
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we have aggregated the edges originated in s towards the same market m ∈M
into a single edge (s,m).

Furthermore, we provide the definitions of 2 sub-routines we made constant
use of, throughout our protocol. These definitions contribute to an easy reading
and simplify the expressions. Both of these sub-routines can be built using the
elements enumerated in section: 7.4.

- conditional assignment : This functionality serves as a replacement of
a flow control instruction for branching. Although branching on encrypted
data is not possible, the functionality can be emulated for assignment tasks.
Following [85] we represent the operator by : [z]←[c] [x] : [y]. Where much
like in previous works e.g. [85, 32, 51, 60] [z] would take the value [x] if [c]
is 1 and [y] otherwise. This can be achieved simply by doing the following
[z]← ([x]− [y])× [c] + [y].

- market identification : Part of the data that composes a bid is the
identification of the market it belongs to. Users are required to input a
single identification tag. Later, this tag has to be transformed into the
vector Zi ∀i ∈ B of size |M |, a zero-one list where its element Zi,m = 1 if
and only if Bi is binded to market m ∈ M . It serves to provide a reusable
mechanism to evaluate the market identification, and reduce the amount of
inequality tests. This transformation can be achieved following protocol:

Protocol 10: vector transformation for market identification
Input: vector of all markets M , bid [i] ∈ B.
Output: zero-one vector [Z]ofsize|M |

1 for i← 1 to |M | do
2 [Z]i ← mi == [m]i;
3 end
4 return [Z];

7.5.2 Secure Auction with Transmission Constraints

Prerequisites. Data is presented to the computational parties: the Secret
Shared and permuted vector of all Bids. The number of Bids or at least an
upper bound on the size of the vector is assumed to be public. We assume the
topology and capacities of the transmission network to be public.

1. Bids are sorted in ascending order according to their price.

2. Graph G = (V,A) is processed as follows: Set the capacity of edges in
S to 0. Capacities of edges from G towards t are fixed to the following:∑
i∈[d]m

[Q]i ∀m ∈M . To achieve this, all bids have to be explored and its
volume is added in case it is a demand bid. At this stage matrix Zij where
vector Zi∀i ∈ [B] is produced using the market identification protocol 10.
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3. Evaluate the viability of each of the bids from the recently sorted vector
[B] in ascending order. We do that by setting the capacity of the corre-
sponding edge to the value of |QBi

|, and then calculating the max flow on
the graph G = (V,A) to determine whether the bid can improve the solu-
tion. If that is the case the amount of flow that can be allocated from the
bid is stored and added to the capacity of the edge connecting its source
to the transmission network. That way subsequent iterations can take this
value into account. We repeat the process ∀i ∈ B. Protocol 11 shows a
detailed description of this procedure.

4. The bids then are permuted randomly, to hide their order. This step is
necessary to avoid leaking the result of the initial sorting from step 1.

Protocol 11: Implementation of secure auction.

Input: Adjacency Matrix [N ]ij . Vector of Bids [B]. Matrix of market
identification [Z]ij ∀i ∈ [B] and ∀j ∈M

Output: Flow Matrix F , the list of bids and they accepted capacities
1 [ν]← [0]
2 for i← 1 to |[B]| do
3 for j ← 1 to |M | do
4 [N ]sj ←[Z]ij [N ]sj + |[QBi ]| : [N ]sj ;

5 end
6 [ν′]← maxflow([N ]);
7 [φ]← ([ν]− [ν]);
8 for j ← 1 to |M | do
9 [N ]sj ←[Z]ij [N ]sj − |[QBi

]| : [N ]sj ;

10 [N ]sj ←[Z]ij [N ]sj + ([φ]) : [N ]sj ;

11 [QBi
]←[Z]ij ([φ]) : |[QBi

]|;
12 end
13 [ν]← [ν′];

14 end

Analysis. On the prerequisites, several parties constantly submit bids in
shared form, we believe it is safe to assume this will not occur simultane-
ously. Precomputed permutation matrices can be generated. A simple vector
multiplication of the corresponding row of the matrix would suffice in this case
to place the incoming data in their corresponding permuted position in the
vector. Once all data is received, the existing vectors can be easily combined,
the result is a single permuted vector. In case this approach is not feasible,
the algorithm designer could make use of one of the suggested permutation
mechanisms instead.
Permuted bids allows us to make use of Hamada et al [70] technique of
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shuffling before sorting. This improves considerably the performance of
sorting protocols and allows them to achieve O(|E| × log(E)) complexity.
Step 3. can be seen as a preprocessing step. where data is transformed to
fit to the necessities of the next phases, where volume is selected. Moreover,
it synthesizes processes that would be constantly repeated otherwise. Given
that our emphasis is to achieve practically efficient times, this constitutes an
important gain in terms of performance.
We called these previous steps: Data Generation and Preprocessing Phase.
Step 3. however, serves as an evaluation and allocation mechanism. We called
this step the Iterative Augmentation phase. It can be seen as some heuristic
tool that allows us to identify the impact of the bid on the result. Note that
the public transmission network also contributes to accelerate the process. As
mentioned in previous sections, known algorithms for the max flow problem like
the one introduced by this thesis can improve running times when the topology
of the graph is public. Stopping conditions, however, because of the leakage
associated to them, are left at the discretion of the algorithm designer.
Protocol 11 let us explore the inner works of this step into detail. Line 2
allows us to explore all previously sorted bids in order. Lines 3 to 5 augment
the corresponding edge capacity from the source to the corresponding market
with the volume of the bid. On Line 6, ν stores the maximum amount of
flow that can be allocated with the new volume. On the final section of the
protocol ( Lines 7 to 13 ) the difference between previous and present flow gap
is calculated. Moreover, the flow added to the graph at the beginning of the
iteration is replaced by the gap variation. This value has to be stored as well
as the amount of capacity assigned to the bid and the value of the maximum
flow for future iterations.
Finally, the last and 4. step is also called the presentation phase. At this
stage, data can be edited at will by the algorithm designer. What information
is taken to later be presented depends solely on the application’s nature. The
permutation, although capable to hide the sorting should be ignored in case
the final answer also contemplates to open the prices of the bids as well. This
is because any party could later sort the bids accordingly.

Complexity. Step 1. depends entirely in the selection of the sorting al-
gorithm. Hamada et al. technique allows us to use non-oblivious sorting
mechanisms with lower complexity bounds. Quick-sort, or merge-sort are suit-
able options. This phase requires as many rounds as the method selected.
i.e. O(|E| × log(|E|)) or in our case O(|B| × log(|B|)). On step 2. how-
ever,complexity does not only depend on the size of the bids vector. Protocol
10 has to be executed with all bids i.e. O(|B|×|M |). Step 3. calculates the max-
flow of the extended graph G = (V,A). Previous sections analyze algorithms to
the max-flow problem suitable to our work. To the best of our knowledge, the
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method introduced by Aly et al. offers the best asymptotic bound to the secure
problem formulation i.e. O(|V |4). When this method is used, the complexity
of this step can be defined as follows: |B| × (|M | + |M | + O((|M | + 2)4)) or
simply like: O(|B| × |M |4).
Lastly, step 4. its also tied to the method for the permutation. Its round com-
plexity can vary from O(|B| × log(|B|)) to O(|B|2). In any case the general
complexity of the protocol is dominated by step 4.
In our secure protocol the number of markets influence performance greatly.
The impact of having more markets to analyze has a polynomial impact in the
number of operations. Whereas the size of the bids only lineal. It can be also
seen why we allow this phenomena in our algorithm. This is primarily because
of the impact that a polynomial algorithm could have over large sets of bids
(In our study case we saw ≈ 1500 bids per instance). In comparison, a smaller
number of markets are involved in the computations. This can be translated in
overall improved performance, specially when variations in the number of bids
are common, but the number of markets is relatively small in comparison and
the set stays the same size for extended periods of time.

7.5.3 Security and Correctness

The protocol itself can achieve perfect security, this is because our privacy-
preserving algorithm can be implemented with no leakage. In this case, its
security depends solely on the primitives that implement the sharing, secure
arithmetic operations, comparison algorithms and the security model. How-
ever, trade-offs in performance have to be considered. This is the case of the
stopping conditions for the maximum flow calculation, where some leakage is
produced on the number of iterations needed to move the newly added flow, as
well as, the vector permutation. The impact of such leakage has to be evalu-
ated by the protocol designer. Furthermore, some complex building blocks, in
this case some comparison protocols, only offer statistical security. When that
is the case, security is given as a function of parameters k and l. Where k is a
security parameter on the bit size of the input and l is the inputs bit size. This
is because in general terms, randomized elements of the solutions are chosen
up to a threshold, smaller than the finite field they were generated upon. The
word size of the threshold depends on both parameters. That is why the bigger
the size of k the better in terms of security. Furthermore our secure protocol
is an implementation of algorithm 7.3.1, and thus guarantees correctness.

7.6 Computational Experimentation

We have tested our protocol with the MPC Toolkit reported on Chapter 6.
The library implemented all the primitives and building blocks we report on,
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including the underlying MPC crypto-primitives. It also provide our own com-
municational support and use NTL (Number Theory Library) [84] and GMP
(GNU Multiple Precision Library) libraries for the underlying modulo arith-
metic.
An Advantage of ”from the scratch” implementations is that they can satisfy
punctual necessities, in this case the use of C++ and an object oriented archi-
tecture. This allows us to keep low coupling levels and easy adaptability to real
life problems. Moreover, the library provides us with the primitives that are
essential building blocks for more complex problems e.g. sorting, max-flow and
oblivious permutation. Future extensions could include state of the art devel-
opments without the necessity of radical changes on the existing code thanks
to the properties of encapsulation. This is not a replacement for more complete
frameworks e.g. PICCO [19], SPDZ [33] or VIFF [2]. But it is indeed a set of
libraries of easy access that can be intuitively improved or modified to obtain
specific results with custom developed software.
We run tests with realistic data of electricity markets. We estimate the number
of operations and the time needed by the collection of tools we report on to
securely solve instances of the auction. Once the answer is found, we quantify
the results and propose strategies to improve running times.

7.6.1 Prototype Capabilities and Technical Characteris-
tics

Our prototype makes use of the building blocks and secure protocols we report
on, as well of other well known results. Table 7.1 showcases the different ver-
sions of primitives and functionality used as building blocks in our application:

Building Block Algorithm
Sharing Shamir Secret Sharing [13]
Multiplication Gennaro et al [18]
Equality Test Limpaa and Toft [26]
Inequality Test Catrina and Hoogh [61]
Random Bit Gen. Damg̊ard et al [25]

Table 7.1: List of Primitives used by the Secure Auction protocol implementa-
tion

These are considered core functionalities. The architecture from the library
is to provide a basic and decoupled processing unit similar to a small engine.
This small core implements the functionalities from table 7.1, amongst oth-
ers, note that this is also the functionality used in our tests. Furthermore, it
separates computational and cryptographic tasks from communicational tasks.
Each engine runs these two sets of tasks in different threads that communicate
with each other to coordinate. Basic conditions to obtain the best performance
from the engine, include 2 CPU threads and ≈ 500 KB in RAM for the basic
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use of the primitives. Our configuration gives each computational party 2 sim-
ilar CPU threads with unlimited access to a memory pool of up 42 GB with
each player having a single engine’s instance.

About the more complex elements of our protocol namely secure sorting and
secure max-flow: On the first, thanks to Hamada et al. technique introduced in
[70], it sufficed to implement the quick-sort adaptation. On the latter, we used
the secure adaptation of Aly et al. protocol [51] mentioned by previous sections
(public topology with stopping condition in this case when no excess is left to
allocate in the graph). Finally, on permutations, two flavors were implemented.
We use an exGates exchange network, with either a merge network or batcher
even-odd merge-sort network.

On Security. The library and prototype were built under the private channel
model. Depending on the functionality used, the library provides statistical and
perfect security against semi-honest adversaries with minority coalition. For
instance, the inequality test used in our tests brings statistical security mean-
while addition and multiplication perfect security.
As mentioned, statistical security for such method is a function of parameter k
and the bit-size of the input by parameter l. The prototype was pre-configured
to use k = 29 and l = 32. However, because of technical issues, shares them-
selves can only use up to 63 bits. This means in practice that under the scenario
where only primitives with perfect security are used, the size of l could grow
up to 63 bits.

7.6.2 Numerical Results

We experiment with realistic data from electricity markets. Our study case
was composed of a total of 1945 bids (demand and supply). The origin of the
data is one hour of a typical day trade from the Belpex market (12 pm). Ad-
ditionally, the transmission network considers the existence of 2 and 4 markets
interconnected amongst them by bidirectional lines under the same restrictions
than the real life problem. Finally, we measure the time, memory and work-
load distribution it takes our protocol to find an answer from the start of the
protocol.
We run our tests on an Intel Xeon CPUs X5550 (2.67GHz) and 42GB of mem-
ory, running Mac OS X 10.10. All processes have the same computational
power at their disposal (memory and CPU power). We consider the case with
3 computational parties. Table 7.2 shows the average amount of operations of
a single test case.
From these tests, ≈ 21 × 106 communicational rounds were dedicated to ran-
domization processes for the comparison mechanisms e.g. random bit gener-
ations. The use of well studied results like PRSS [87] would limit the use of
these communicational rounds and in general terms would allow us to achieve
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even better computational times. Furthermore, Catrina and Hoogh comparison
method depends on the computation of l random bits for its calculations. An
offline phase can be considered where this random numbers are pre-computed
before the bids arrive to the server, and then distributed to the computa-
tional parties for its use. In this case the Secure Auction Mechanism would
be executed in an online phase that no longer has to care about random num-
ber generation improving the performance specially of comparisons. Table 7.2
shows our numerical results and estimated the impact of the use of online/of-
fline phases.

Markets and Perm. Method Com. Rounds Comparisons CPU Time. Online Phase

2 Markets
Batcher ≈ 31.4 · 106 226021 2056 s. 613 s.
Merge ≈ 31.4 · 106 226021 2049 s. 606 s.

4 Markets
Batcher ≈ 71.9 · 106 537627 4702 s. 1276 s.
Merge ≈ 71.9 · 106 537627 4694 s. 1268 s.

Table 7.2: Overall Results
When we simulate an environment where these bids are distributed amongst

4 different markets instead of 2, the performance test shows an increase of
around twice the number of rounds and comparisons. The same follows on
computational time, taking in average around 4700 seconds to complete exe-
cution.

On memory, the application did not surpass in average the 2.5 MB per
execution. During its life-cycle, some increment in memory consumption levels
was registered during data generation phases. The phenomenon is specially
evident in the data preprocessing phase. This is of course, because some data
is generated and stored for later use. Less significantly changes are also present.
This is explained by the continuous fragmentation of the memory throughout
the evaluation and selection phase (Iterative Augmentation), where objects of
different sizes are continuously created and then destroyed. Nonetheless, these
noise variations never grow more than 100 KB in average. Figure 7.6.1 shows
the typical behavior of the application during its life-span.
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Figure 7.6.1: Secure Auction Protocol Life Cycle

Finally, we found that the bottleneck of the application is communications.
In average, data transmission and related tasks are responsible of the 1705
seconds (83%) of the total computational time. Only a fraction of the time,
351 seconds (17%), was dedicated to other tasks e.g. share generation, basic
arithmetic operations and other algorithmic and programmatic tasks.

From these assertions we can estate the following:

- Realistic computational times were indeed achieved for the data in ques-
tion, with limited computational power. With the online/offline case, an
hour of trade was solved in less than an hour of computations for all cases.
Given that many of the processes of our protocol are sequential in nature,
a computer with a better benchmarked CPU under the same basic config-
uration would yield better results.

- Memory is not a decisive factor in this case. Memory increases monoton-
ically during the execution because of noise, but in a reduced proportion.
As it was previously estated this change is smaller than 100 KB, product of
the continuous memory allocation and deallocation of different sized objects.
In general terms memory use only grows significantly when information is
stored for later use.

- The process can be further accelerated by pre-computing the random val-
ues that are needed by the protocol. In our case 3

4 of communicational
rounds that are used for comparisons are dedicated to randomization pro-
cesses. Even with the use of PRSS, these operations would represent an
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important proportion of the workload. This is why an offline phase where
these values are preprocessed could be proven useful. For instance, to have
dedicated servers calculating in share form random bits and numbers and
store them, such that they can just be fetched when any online process
needs them. This would imply a reduction in the 2 markets case of ≈ 1450
seconds in average. This would allow us to solve the problem in ≈ 610
seconds in average, a little more than 10 minutes. When 4 markets are
consider instead, the times are reduce to ≈ 1270 which is little more than
20 minutes.

- Moreover, even though we have put in place a light and dedicated commu-
nications setting, the prototype looses performance because of the cost that
data transmission implies. The cryptographic primitives in our case are not
dragging the bulk of the workload to their side. In fact it was 4.8 more
expensive to transmit the data than to generate, reorganize and calculate
it.
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Conclusions

Our experimentation has shown that cryptographic procedures are no longer
the bottleneck in performance. Communications have taken the major hurdle
performance-wise. Questions about future work on the topic raise the need to
minimize the use of communications. The study of specific cases where changes
of workload distribution can accelerate the performance can be assessed as well.

Polynomial time algorithms for auctions with transmission constraints, com-
bined with MPC could be possible in realistic scenarios, although more exten-
sive experimentation is needed to evaluate its applicability in real environments.
The same stands for other combinatorial problems that arise in these settings.
Secure protocols with no leakage and polynomial bounds can be obtained, al-
though relaxations, i.e. some leakage, in some cases, are necessary to achieve
realistic times. Trade-offs between security and performance are necessary.
But in realistic settings, only the algorithm designer is capacitated to deter-
mine when and were to apply such changes.

When MPC is involved, note that much work is still needed to be able to
provide real solutions on electricity markets. The tools and current state of
the art on MPC have allowed us to work towards practical implementations.
Currently, our applications needs little more than half an hour for the two
markets case and less one hour and a half with 4 markets. This is reduced
to a bit more than 10 and 20 minutes respectively, when offline/online phases
are considered. The performance in our case is strongly tied to the size of the
market.

Finally, we can see that well thought systems that use our protocols must
be well adapted to the circumstances of the application. A good design would
take into account online and offline phases, leakage levels or computational
players to maximize the security and guaranteeing practically efficient running
times.
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