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1 Introduction

It is now well known that time series observed over a long period are subject to structural

breaks. Evidence can be found in Stock and Watson (1996) and in Bauwens, Koop, Kori-

bilis, and Rombouts (2015) for macroeconomic series, and in Pastor and Stambaugh (2001)

for financial series. Since break dates are unknown, models allowing for the possibility of

changing their structure or parameters have been developed over the last two decades. Nev-

ertheless, to date these models forecast generally not much better than simple techniques.

Indeed, Bauwens, Koop, Koribilis, and Rombouts (2015) find no significant improvements

in forecasting a wide variety of US macroeconomic time series when comparing cutting edge

structural break models to simple forecasting techniques like rolling least squares. A poten-

tial explanation is that the existing specifications have the unattractive feature of forcing all

parameters to change after a break creating models with an artificial high number of parame-

ters. For example, a structural break model fitted to US GDP data implies a change in mean

and variance due to the great moderation.

This paper proposes a new approach to model time series subject to multiple structural

breaks. We extend the literature in two important directions. First, we relax the assumption

that all parameters need to change when there is a structural break. This is done by shrink-

ing irrelevant break-parameters towards zero in our estimation procedure which is based on a

sampling scheme tailored to change-point (CP) models. In addition, our shrinkage methodol-

ogy alleviates the search of an optimal number of regimes and does only rely on one estimation

output. We propose two new shrinkage priors based on a finite mixture of respectively uniform

and Gaussian distributions. In contrast to existing shrinkage priors which are typically used

for high dimensional regression problems, our new priors satisfy desirable properties when

working with structural break models.

The second main contribution of our paper is that we allow for rich and parsimonious

within regime dynamics thanks to an autoregressive moving average (ARMA) type structure

in the model. The current literature has at most an autoregressive (AR) structure in the

conditional mean of each regime. In fact, ARMA type dynamics in the conditional mean or

variance introduce more complexity in the estimation and model selection procedure because

of the path dependence problem. Therefore, apart from the standard ARMA model, our

approach also allows to estimate break dates and parameter changes in time varying variance
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and correlation models, specifications which are intensively employed in empirical economics

and finance.

The classical reference that initiated much of the research on regime models is Hamilton

(1989). He considers a linear AR model the parameters of which are allowed to switch

according to a Markov-switching discrete process. The latent states are recurrent as the

process can move from one state to any other state at any date. This approach being proposed

for regime switches in a stationary time series has been adapted to the change-point or

structural break specification. As in this paper, this specification has non-recurrent states

so that the process can only stay in the same state or move to the next one. This implies

a restricted probability transition matrix and is therefore a particular case of the classical

switching model.

Inference on CP models has been introduced by Chib (1998). Apart from parameter

estimation, he also tackles the computation of the marginal likelihood which is required to

estimate the number of breaks. More recently, new specifications and inference have been pro-

posed by Pesaran, Pettenuzzo, and Timmermann (2006), Koop and Potter (2007), Giordani

and Kohn (2008), Maheu and Gordon (2008) and Geweke and Jiang (2011). These mod-

els adopt a hierarchical prior for regime coefficients, which allows for the coefficients of one

regime to be informative about coefficients of other regimes. This permits to compute fore-

casts that contain information on the size and frequency of past breaks instead of neglecting

observations prior to the most recent break-point.

While the recently proposed papers are quite general in their model specification, they

have the feature that a break triggers abrupt changes in all parameters indexed by the latent

state variable. This holds also for another standard procedure to deal with structural breaks.

This procedure consists of first detecting the break dates by testing, see for example Andrews

(1993) and Bai and Perron (1998), or by implementing an efficient LASSO algorithm as for

example proposed by Chan, Yip, and Zhang (2014). Then given the detected break dates,

independent locally stationary models typically from the same model class are fitted. When

subsets of parameters are invariant over regimes, such an approach looses efficiency.

Using new shrinkage priors suited for CP configurations, we allow for changes in subsets of

model parameters that are virtually zero, implying that only relevant parameters break. We

state clear rules with respect to the choice of the hyper parameters of the prior distributions.
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In fact, a novelty of our approach is that we can state explicitly how much in terms of

log-likelihood it has to take for triggering a parameter break. Shrinkage priors, proposed

by Mitchell and Beauchamp (1988) and George and McCulloch (1993) in discrete form, are

popular in high-dimensional regressions to select relevant explanatory variables (e.g. Inoue

and Kilian (2008) and Stock and Watson (2012) for time series applications). Continuous

shrinkage priors like the spike and slab of Ishwaran and Rao (2005) or the Normal-Gamma

of Griffin and Brown (2010) consist of mixtures of parametric distributions that exhibit a

high density around zero in order to shrink non-relevant parameters to this value. Although

extendible beyond linear regressions, see for example Scheipl, Fahrmeir, and Kneib (2012),

we show that those standard shrinkage priors are not performing well when applied to CP

models.

The existing literature considers models with at most an AR structure in the conditional

mean of each regime. Adding a moving average part is a major obstacle for inference because of

the path dependence problem. This occurs because the conditional mean at time t depends on

the entire sequence of regimes visited up to time t. When computing the likelihood function

one needs to integrate over all possible regime paths which grow exponentially with t, see

Billio, Monfort, and Robert (1999) for an example of a two regime ARMA model. In this

paper, we do inference and compute the marginal likelihood using a Metropolis-type MCMC

sampler. Our flexible approach is based on an approximate model of the CP-ARMA process

which is used to generate a candidate that is accepted/rejected according to the Metropolis-

Hastings ratio. The inference is adapted from Dufays (2012) and Billio, Casarin, and Osuntuyi

(2014) who develop an efficient MCMC sampler to infer CP and MS-GARCH models, see also

Bauwens, Carpantier, and Dufays (2015). We further innovate by incorporating the MCMC

scheme into a Sequential Monte Carlo sampler (see Del Moral, Doucet, and Jasra (2006)). In

fact, as shown by Jasra, Stephens, and Holmes (2007) and Herbst and Schorfheide (2012), a

MCMC sampler based on one single Markov-chain are less appropriate than SMC methods to

explore distribution supports that are multi-modal, which is typically the case when dealing

with shrinkage priors.

We apply our model to two macroeconomic time series. First, for the quarterly US GDP

growth, rate we find the typical change point highlighting the great moderation. This induces

a change in the variance of the time series but not in its mean. However, the global financial
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crisis changes both the dynamics in the mean and uncertainty in the variance. The second

application fits the monthly US 3 Month Treasury Bill rate. We find evidence of eight change

points all caused by changes in the variance of the time series rather than its mean. In terms

of forecasting performance, it turns out that for the two applications our new sparse CP time

series model performs particularly well both in terms of predictive likelihood as well as root

mean squared error.

The rest of the paper is organized as follows. Section 2 introduces the desirable properties

of shrinkage priors dedicated to CP settings and discusses popular shrinkage priors. We

present our new priors specially designed for CP time series models, and discuss in detail how

hyper parameters can be chosen. Section 3 defines the base-line model on which the Sparse

CP is applied. We sketch the algorithms used for estimation. Two empirical applications are

documented in Section 4. A forecasting exercise is provided in Section 5. Section 6 concludes.

Appendices A and B give precise details on the implementation of the estimation and online

forecasting algorithms.

2 Shrinkage priors for CP models

We provide new shrinkage priors tailored to time series CP models. In the applications

below, we estimate models with several parameters in each regime. However, to simplify

the exposition here, we focus only one of its parameters that we denote µ. A CP model

always starts in the first regime with parameter µ1. When a break happens, the parameter

changes to µ2 and the break size is given by ∆µ2 = µ2 − µ1 and subsequent breaks are

measured analogously by ∆µ3,∆µ4, etc. For ease of notation, we work with ∆µ in this

section. Shrinkage means that a substantial part of the prior density on ∆µ is concentrated

around zero implying no structural break.

In the next section, we discuss desirable features of CP shrinkage priors that are not

necessarily shared with existing shrinkage priors. In Section 2.2 we propose two new shrinkage

priors suited for CP models. Section 2.3 compares in more detail with existing priors and

Section 2.4 proposes some ways for choosing the hyper parameters.
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2.1 Desirable features of CP shrinkage priors

Existing CP models assume that all the parameters of the model change when a structural

break occurs. Although investigating which parameters are affected by a break seems a nat-

ural idea, this has rarely been done in practice. Considering all the switching possibilities for

each number of regimes and determining the best specification following a criterion such as

the marginal likelihood (e.g. Eo (2012)) is burdensome in many cases. This is because the

possibilities grow exponentially with the number of regimes, and the marginal likelihood is

sensitive to the prior distributions. For instance, considering our US Treasury bond illustra-

tion below, this approach would have required 410 model estimations if we want to consider

an upper bound of 10 regimes. Based on shrinkage priors, our method achieves the same goal

in one estimation.

Two popular choices of continuous shrinkage priors are the spike-and-slab of Mitchell and

Beauchamp (1988) and the Normal-Gamma of Griffin and Brown (2010) extending the double

exponential prior of Park and Casella (2008), see also the scale mixture of normals in West

(1987). The normal-Gamma prior is defined in hierarchical form as follows

∆µ|Ψµ ∼ N(0,Ψµ)

Ψµ ∼ G

where G is a Gamma distribution G(λ, 1
2ν2

). The marginal density of ∆µ has variance and

kurtosis respectively equal to 2λν2 and 3
λ . The hyper-parameters λ, ν2 allow to generate

sparsity when most of the density mass is close around zero as shown in the left panel Figure

1. The right panel shows the variance distribution Ψµ.

The spike and slab prior is hierarchically defined as

∆µ|Ψµ ∼ N(0,Ψµσ
2
µ)

Ψµ ∼ (1− ω)δΨµ=c + ωδΨµ=1

σ2
µ ∼ IG(a, b)

with mixing probability ω. The point mass c is chosen close to but different from zero with

appropriate hyper-parameters to generate sparsity. Figure 2 presents an illustration of the

marginal distribution as well as the distribution of the variance (Ψµσ
2
µ).
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(a) Marginal distribution of ∆µ (b) Variance distribution Ψµ

Figure 1: Normal-Gamma shrinkage prior. Solid line λ = 0.5, dotted line λ = 3 (ν = 1)

(a) Marginal distribution of ∆µ (b) Variance distribution Ψµσ
2
µ

Figure 2: Spike and slab prior. Solid line ω = 0.4, dotted line ω = 0.8 (c = 0.01, a = 6b = 10)

The sparsity implied by those priors highly depends on the hyper-parameters and therefore

some guidance have been proposed to select them, see Ishwaran and Rao (2005) and Griffin

and Brown (2010). So far, these shrinkage distributions have typically been used to generate

sparsity in high-dimensional regression models (see also Kalli and Griffin (2014) for an example

for models time varying sparsity). However, we will argue that these priors are not suited

for CP models. We state next three desirable properties of shrinkage priors in sparse CP

configurations:

P1 The prior should be able to distinguish a clear change from a small variation in the

model parameter.
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P2 When there is a break, the prior should not distinguish between a small or a large break.

P3 The hyper-parameters of the prior distributions should depend on the user’s likeness of

having breaks and should be derived from a simple rule.

The first property is not shared by the existing shrinkage priors since they are not able

to distinguish sharp changes from small deviations of the previous parameter value because

the density functions are continuous and the mixture components are centered at zero. More

details are given in Section 2.3. The second property can be validated by the existing priors

as explained below. For the third desirable feature, we work with a penalty in terms of

log-likelihood. For example, a penalty of -3 implies that any new regime has to improve

the log-likelihood function of at least 3 to be detected. The smaller the penalty, the lesser

the number of detected breaks and the more parsimonious is the model. To implement this

simple rule, we choose a threshold value which defines a significant change in the parameter

value. A deviation above this threshold is evidence of a new regime. The hyper-parameters of

the prior distributions are derived such that the difference of the prior log-density evaluated

at the threshold minus the prior log-density evaluated at zero is exactly equal to the user-

defined penalty. Such an approach is inconvenient for the existing shrinkage priors exhibiting

hierarchical layers.

2.2 Finite mixture shrinkage priors

We present two priors which comply with all the desirable conditions. They are both charac-

terized by a finite mixture instead of the existing continuous mixtures priors defined above.

Mixture of two uniform distributions (2MU)

∆µ ∼ ω U [
−a
2
,
a

2
] + (1− ω) U [

−b
2
,
b

2
]

f(∆µ) =
ω

a
δ∆µ∈[−a

2
,a
2

] +
1− ω
b

δ∆µ∈[−b
2
, b
2

]

where ω is the mixture probability and the bounds a and b verify a < b. If we denote P the

penalty on the log-likelihood function for detecting a new regime and by x, any point in the

wider uniform component (i.e. |x| > a
2 ), then log f(x)− log f(0) = P yields

ω =
a(1− eP )

beP + a(1− eP )
(1)
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which belongs to [0,1] for any positive values of a,b and any negative value of P . In practice,

we define a very small and b very large. This is in line with the first desirable property.

Furthermore, in accordance with the second property, a and b do not depend on P . From

Equation (1), the distribution verifies the third property. In the following, the distribution

is denoted by 2MU(a, b, P ). Figure 3 displays examples of the density function for different

values of P, a and b. Note also that when the penalty is set to 0, the 2MU reduces to a

Uniform distribution with support [− b
2 ,

b
2 ] which is equivalent to the standard CP model with

diffuse priors.

(a) P = −1, a = 0.1, b = 10 (b) P = −3, a = 0.1, b = 10

(c) P = −3, a = 1, b = 10 (d) P = −5, a = 1, b = 10

Figure 3: Mixture of two uniform distributions with different values of P , a and b.

Mixture of three Normal distributions (3MN)

The 2MU prior fulfills all the desirable properties but displays a compact support which might

not always be adequate. We also propose a distribution with support on the real line based
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on a Normal mixture with three components specified by

∆µ ∼ ω

2
N(−x̄, σ̄2)δ∆µ<−x̄ +

ω

2
N(x̄, σ̄2)δ∆µ>x̄ + (1− ω) N(0, σ2),

f(∆µ) =
ω

σ̄
φ(
|∆µ| − x̄

σ̄
)δ|∆µ|≥x̄ +

1− ω
σ

φ(
∆µ

σ
),

where the parameter ω is the mixture probability, φ( ) denotes the standard Normal density

function and the parameters σ and σ̄ define the standard deviations of the mixture components

and verify the condition σ < σ̄. The interpretation of the variable P remains the minimum

penalization on the log-likelihood function of adding a new regime and the value x̄ stands for

a threshold from which (in absolute value) the change in the parameter value is significant.

Then from log f(x̄)− log f(0) = P , the mixture probability ω is given by

ω =
σ̄(eP − φ(x̄/σ)

φ(0) )

σ + σ̄(eP − φ(x̄/σ)
φ(0) )

, (2)

implying ω ∈ [0, 1] if P ≥ log φ(x̄/σ) − log φ(0). Note that this condition does not depend

on σ̄. In the empirical section, σ is fixed to 0.1x̄ implying that P should be larger than

-50 which is a sufficiently high penalization for our purpose. The distribution is denoted by

3MN(x̄, σ, σ̄, P ) hereafter. Note that in contrast to the 2MU prior, when P = 0, the 3MN

prior does not collapse to a diffuse Normal prior.

The mixture of Normal distributions prior displays the three qualities of a CP shrinkage

prior. Indeed, the first property is fullfilled because the Normal components are truncated

at x̄. Regarding the second desirable feature, the arbitrary large density mass at the left

of |x̄| is almost uniform for a wide range of values and for any penalty P. When a break is

detected, a large deviation from the previous parameter value is therefore not more penalized

than a small one. Finally, given equation (2), the penalty value determines the weights of

the components which verifies the last property. Figure 4 illustrates the prior distribution for

different values of the parameters.

2.3 Why not using the existing shrinkage priors?

The 2MU and 3MN priors being introduced, we can further motivate why the existing priors

are inappropriate for CP models. As emphasized earlier, the hierarchy implied by the Normal-

Gamma and the spike and slab priors make their dependence on the penalty parameter

difficult to interpret. However, for the particular case of the spike and slab prior with σ2
µ ∼
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(a) P = −1, σ̄ = 2 (b) P = −3, σ̄ = 1

(c) P = −3, σ̄ = 2 (d) P = −5, σ̄ = 2

Figure 4: Mixture of three Normal distributions with different values of penalization and σ̄.
The other hyper-parameters are fixed to x̄ = 1 and σ = 0.1x̄.

IG(v2 ,
v
2 ) the dependence on the penalty parameter can be made explicit. Indeed, under this

specification, the marginal density of ∆µ is given by

∆µ ∼ (1− ω)X
√
c+ ωX

where X ∼ tv denotes a random variable following a Student distribution with v degrees of

freedom and density denoted by ft( |v). To set the weight according to a chosen penalty P ,

one can solve the equation log f(x̄)− log f(0) = P which leads to

ω =
eP ft(0|v)− ft(x̄/

√
c|v)

ft(0|v)eP (1−
√
c) +

√
cft(x̄|v)− ft(x̄/

√
c|v)

. (3)

Nevertheless, the relation (3) only verifies property P3. Instead, property P1 implies a

discontinuous density function which is not satisfied by the spike and slab prior. More specif-
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ically, the density function of the existing continuous shrinkage priors evaluated at any point

between the threshold value and zero may drastically depend on the user’s break sensitivity.

Figure 5 makes clear that different penalty values affect the density function between zero

and the threshold value for the spike and slab prior whereas they do not impact the 3MN pri-

ors. Consequently, the spike and slab prior implies that the model parameters are allowed to

smoothly change from one regime to another for some penalties. In such a case, the detection

of abrupt switches in their values is more delicate.

(a) Spike and slab prior, P = −1 (b) 3MN prior, P = −1

(c) Spike and slab prior, P = −3 (d) 3MN prior, P = −3

Figure 5: Mixture of two Student distributions centered at zero with σ̄ = 1, v = 50, c = 0.1
and different values of penalizations on the left. 3MN priors with σ̄ = 1,σ = 0.1 and different
values of penalizations on the right. The threshold value is fixed to x̄ = 1.

2.4 Choosing the threshold and the penalty values

So far, we have developed two prior distributions for shrinking non-relevant parameters to-

ward zero in the CP context. However, these distributions depend strongly on the penalty P
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and on the threshold value x̄ in the case of the 3MN prior. We propose next some ways for

choosing these parameters.

2.4.1 The penalty value P

Consider a model M1 without abrupt switches in the parameters and M2 the same model

but with one break in one of its parameters. The latter model therefore contains at least

two additional parameters, i.e. the parameter modifying the process dynamics and the one

controlling when this change occurred. As suggested by Kass and Raftery (1995), model M2 is

strongly preferred when its marginal probability p(M2|y1:T ) is higher or equal to 95%. Ideally,

the penalty value P should be chosen such that a break is detected only if it implies such

a marginal posterior probability. Assuming equal model prior probabilities, the ratio of the

posterior odds simplifies into the ratio of marginal likelihoods, also known as Bayes factor.

Instead of using the marginal likelihood, we use as approximation the easier to compute

Bayesian information criterion (BIC) to obtain a rule to select P . More precisely, we have

that

P (M2|y1:T )

P (M1|y1:T )
≥ 0.95

1− 0.95

≈ e−0.5(BICM2
−BICM1

) ≥ 0.95

1− 0.95

log f(y1:T |{Θ̂, Σ̂}M2)− log f(y1:T |{Θ̂, Σ̂}M1)− 0.5(kM2 − kM1) log T ≥ log
0.95

1− 0.95

log f(y1:T |{Θ̂, Σ̂}M2)− log f(y1:T |{Θ̂, Σ̂}M1) ≥ log
0.95

1− 0.95
+ log T

where y1:T = {y1, ..., yT } is a time series of T observations, kMi stands for the number of

parameters in model i and Θ̂ and Σ̂ denote the maximum likelihood estimates of the corre-

sponding model. In fact, the maximum log likelihood of the model exhibiting a break in one

parameter should be at least higher than log 0.95
1−0.95 + log T to have a posterior probability

higher than 95% if the BIC approximation holds. A natural value for the penalty parameter

is therefore P = −(log 0.95
1−0.95 + log T ).

The previous rule to select P assumes that the BIC provides a good approximation of the

marginal likelihood. Because CP models are non-stationary by nature this assumption might

be questionable. Hence, an alternative strategy would consist of estimating P by considering
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it as a random variable with a non-informative Uniform prior. In such a case, the shape of

the posterior distribution of P is illustrated in the following example.

Example

We compute the posterior distribution for P under the following conditions: (i) only one

parameter ∆µ can be shrunk, (ii) the shrinkage prior is 2MU with upper bound b ten times

the lower bound a, (iii) the prior distribution of P is Uniform on [u1,u2] (u1 < u2 ≤ 0).

Under these conditions, we can easily compute the posterior distribution of P in the case

when |∆µ| < a
2 (no break) and when |∆µ| ≥ a

2 (break).

• When no break exists (|∆µ| < a
2 ), the posterior density of P is given by

f(P | |∆µ| < a

2
) =

1

(1 + 9eP )(u2 − u1 + log(9eu1 + 1)− log(9eu2 + 1))
δP∈[u1,u2]

≈ 1

(1 + 9eP )(|u1| − log(10))
δP∈[u1,u2] if u1 << 0 and u2 = 0.

• When a break exists (|∆µ| > a
2 ), the posterior density of P is given by

f(P | |∆µ| > a

2
) =

9eP

(1 + 9eP )(log(eu1 + 1
9)− log(eu2 + 1

9))
δP∈[u1,u2]

≈ 3.8989
eP

1 + 9eP
δP∈[u1,u2] if u1 → −∞ and u2 = 0.

Figure 6 displays both posterior densities when u1 = −15 and u2 = 0. To ensure that the

break is detected, the log-likelihood has to increase by 5 since P has most density mass in the

[-5,0] range. On the other hand, when there is no break in the parameter, the posterior has

the undesirable feature that P is still likely to be in the [-5,0] range. Moreover, the problem

becomes even more severe when u1 increases.

Since a Uniform prior on P implies an undesirable posterior density, in our empirical

applications, we use an informative prior centered at the BIC (i.e. P ∼ N(PBIC , 0.5)). By

so-doing, the uncertainty on the parameter P is reflected in the posterior distribution of the

model parameters whereas its fluctuation is under control.

Finally, we emphasize that one cannot choose the same parameter P for all the parameters

of the model. To illustrate the issue, Figure 7 displays posterior densities of P for a wide range
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(a) Break in the parameter (b) No break in the parameter

Figure 6: Posterior densities of P under two different cases of a break in one model parameter.

of model parameters that either breaks or not. The upper left panel assumes an increasing

number of parameters (from 1 to 20) that is not significantly different from zero. We see that

whatever the number of parameters, the posterior density of P remains more or less identical

and centered around the BIC value. The right panel of Figure 7 shows posterior densities of

P for an increasing number of parameters which are all deviating significantly from zero. We

observe that the distributions shift gradually towards zero, i.e. the required change in the

log-likelihood to detect a new break decreases. This feature is not desirable as we loose the

interpretation of the penalty parameter. Moreover, for the 3MN shrinkage prior, the implied

penalty for an increasing number of breaks will also depend on the threshold x̄. By including

one penalty variable per model parameter, we avoid these issues as the marginal posterior

distribution of each penalty is less sensitive to breaks in the parameters. This is a common

solution in the literature on the standard shrinkage priors including the normal-gamma and

the discrete or continuous spike and slab priors. Note that in the application below, we also

estimate the models with nonrandom P and find only minor differences.

2.4.2 The threshold value in the 3MN prior

The threshold value x̄ is the required deviation of a parameter from its previous value to be

considered as a new regime. Above this value, the parameter is no longer shrunk toward zero

and a new regime is allowed. Since the scale of the model parameters as well as their stan-

dard deviations are data dependent, a different threshold value is used per parameter. For

instance, in the case of an ARMA(1,1) process, four thresholds values are needed. Choosing
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No break in the parameters Break in the parameters

Figure 7: Posterior densities of P when the prior is a Normal distribution with PBIC = −5
and with the shrinkage distribution 2MU(0.2, 2, P ). The horizontal axis indicates the number
of parameters in the model. The vertical axis indicates the [−15, 0] support of P . The upper
left panel assumes an increasing number of parameters (from 1 to 20) that is insignificantly
different from zero. The right panel shows the densities for an increasing number of parameters
that deviating from zero.
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an appropriate value requires knowledge of the possible variation of the model parameters

within a regime. To this purpose, we first perform inference on a model without a break.

Then we use the parameter draws to define the threshold value by the difference between the

median and the 2.5%-th quantile. Therefore, if a new regime appears, the value of a model

parameter in this regime will be more or less significantly different from its previous value at

5% level (similar to a two-sided test). Other quantiles are tested in the application to assess

the sensitivity with respect to this parameter.

3 Sparse change-point models

3.1 A baseline change-point model

Let y1:T = {y1, ..., yT } be a time series of T observations and let s1:T = {s1, ..., sT } denote

discrete random variables taking values in [1,K + 1]. Our baseline CP model with K + 1

regimes is defined (for t > 1) by

yt = µst + βstyt−1 + φstεt−1 + εt with εt ∼ N(0, σ2
st) for st = 1, . . . ,K + 1.

A more involved conditional mean or non Gaussian innovations (εt) can be introduced. Also,

the variance in each regime is kept constant, though time varying variance models like GARCH

specifications can be readily incorporated. The structural breaks or change-points are modeled

by discrete variables s1:T driven by a Markov-chain with (K+1)×(K+1) probability transition

matrix P given by

P =


p1 1− p1 0 ... 0

0 p2 1− p2 ... 0

...

0 0 ... 0 1

 .

In order to apply our new shrinkage priors, we write the CP model relative to the first regime

as follows

yt = (µ1 +

st∑
i=2

∆µi) + (β1 +

st∑
i=2

∆βi)yt−1 + (φ1 +

st∑
i=2

∆φi)εt−1

+εt with εt ∼ N(0, σ2
1 +

st∑
i=2

∆σ2
i ) for st = 2, . . . ,K + 1, (4)
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where the operator ∆ stands for the difference of two consecutive regime parameters, e.g.

∆µ2 = µ2 − µ1. Therefore, the parameters in levels can be simply obtained by µst = (µ1 +∑st
i=2 ∆µi) for st = 2, . . . ,K + 1 and similarly for the other parameters. Working with dif-

ferences of consecutive regime parameters allows applying the shrinkage priors that encourage

sparsity in our specification. To alleviate the notation in the next section, we define the con-

tinuous mean parameter set as Θ = (µ1, β1, φ1,∆µ2,∆β2,∆φ2, ...,∆µK+1,∆βK+1,∆φK+1),

the variance parameter set as Σ = {σ2
1,∆σ

2
2, ...,∆σ

2
K+1} and p1:K = {p1, ..., pK}, the set of

transition probabilities.

3.2 Estimation of the Sparse CP ARMA model

For a given number of breaks K, inference is done by drawing sequentially from the following

posterior distributions π(Θ|y1:T , s1:T , p1:K ,Σ),π(Σ|y1:T , s1:T , p1:K ,Θ), π(p1:K |y1:T , s1:T ,Θ,Σ)

and π(s1:T |y1:T , p1:K ,Θ,Σ). Chib (1998) develops efficient Bayesian inference of CP models

that relies on the forward-backward algorithm, see also Rabiner (1989). This latter algorithm

is applicable for models without path dependence since it assumes that the likelihood of an

observation yt given the model parameters and the current state can directly be evaluated.

The baseline CP model in (4) does not belong to this class since the likelihood at time t

requires the computation of the current error term which, in turn, depends on the states prior

to the current one. To solve the problem, Bauwens, Dufays, and Rombouts (2013) substitute

the forward-backward algorithm by a Sequential Monte Carlo (SMC) algorithm. Since such

an approach is time-consuming, we follow Dufays (2012) by adopting a Metropolis-Hastings

method.

Regarding the unknown number of breaks K, our approach is to estimate a CP model

exhibiting a high number of regimes and shrink the parameters of non-relevant regimes to zero.

By so-doing, we save computational resources and coding efforts since only one estimation

is required and computation of the marginal likelihood is avoided. In fact, the standard

procedure is to maximize the marginal likelihood by estimating CP models with different

numbers of regimes.

Algorithm 1 documents the MCMC scheme that is applied to infer the Sparse CP ARMA

model. More details are given in Appendix A. The scheme exposed in Algorithm 1 is theoret-

ically sufficient to draw from the posterior distribution. Nevertheless, the complexity of our
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model conjugated with the shrinkage priors that typically lead to multi-modal posterior dis-

tributions and the Metropolis-Hastings updates used in the MCMC approach make that the

algorithm is bound to badly mix. As a result, the realizations of the Markov chain could be

trapped in a single mode of the posterior distribution or simply not converge to the targeted

distribution in a reasonable amount of time.

To solve these issues, we simulate the posterior distribution of the parameters by com-

bining Markov-Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods,

a technique called SMC sampler (see Del Moral, Doucet, and Jasra (2006)). This method

exhibits several advantages compared to the standard MCMC approach. First, as the realiza-

tions of the SMC (termed ’particles’, hereafter) evolve independently, the algorithm can be

easily parallelized (e.g. Durham and Geweke (2012)). Secondly, as shown by Jasra, Stephens,

and Holmes (2007) or Herbst and Schorfheide (2012), MCMC samplers based on one single

Markov-chain usually mix slower than SMC methods to simulate multi-modal distributions.

Furthermore, the SMC sampler delivers an estimate of the marginal likelihood while addi-

tional computations are required with MCMC algorithms. The sampler is also less sensitive

to the initial values and rules out the difficult choice of the burn-in sample size. A final

advantage of the SMC sampler is that it updates its particles in the light of new observations

without requiring a new estimation as the MCMC would, a feature that refers to the on-line

property of the SMC method with respect to the off-line MCMC approach.

Naturally, the SMC sampler also comes with its own disadvantages, the most important

being the number of user-specified parameters to tune in order to run the algorithm. There-

fore, inference is carried out by the Time and Tempered (TNT) algorithm (see Dufays (2014)),

i.e. a variant of the Sequential Monte Carlo sampler (Del Moral, Doucet, and Jasra (2006)),

which automates the choice of the SMC parameters. The algorithm sequentially iterates by

producing realizations from a prior distribution without shrinkage (denoted f̄ in the algo-

rithm 2) to the posterior distribution by combining many importance sampling and MCMCs.

The auxiliary distribution f̄ is important as it allows to sequentially introduce the shrinkage

feature (and thus the multimodality of the posterior distribution). The SMC sketch, when

the number of observations is fixed, is detailed in Algorithm 2. More information is given

in Appendix B which details how to estimate the model with a newly arriving of time series

observations. The Matlab code is available on Arnaud Dufays’ website.
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Algorithm 1 MCMC scheme

Set initial values to s1:T , p1:K ,Σ,Θ

for i = 1 to N where N denotes the number of MCMC iterations do

[1] - Sample Θ ∼ f(Θ|y1:T , s1:T , p1:K ,Σ) by the DREAM algorithm.

[2] - Sample Σ ∼ f(Σ|y1:T , s1:T , p1:K ,Θ) by the DREAM algorithm.

[3] - Sample p1:K ∼
∏K
i=1Beta(αp +

∑T
t=1 δst=i, βp + 1) with αp and βp hyper-parameters.

[4] - Sample s1:T ∼ f(s1:T |y1:T , p1:K ,Θ,Σ) by the Metropolis-Hastings algorithm (Appendix A)

end for

3.3 Prior elicitation

We display the prior distributions of our CP-ARMA parameters in Table 1. Besides the

ARMA parameters that are driven by one of the two new shrinkage priors, the other param-

eters follow standard distributions. In particular, the transition probabilities and the state

vector are specified as in Chib (1998) and Pesaran, Pettenuzzo, and Timmermann (2006).

The shrinkage priors are characterized by the penalty parameter P and a fixed threshold x̄.

The penalty parameter is taken as random and driven by a Normal distribution centered at

the penalty value implied by the BIC, see the discussion in Section 2.4. While in principle

no threshold is needed to specify the 2MU distribution, the support a of the inner Uniform

component a is made dependent on the threshold x̄ to avoid numerical problems that could

occur if the bound a was chosen too small to be handled by the computer. Finally, the maxi-

mum number of breaks K is chosen to be large (in the application equal to five for quarterly

macroeconomic time series). In fact, this number is not relevant as long as it is above the

observed number of breaks in the time series.

4 Applications

In this section, we present two applications of our approach, namely the quarterly US GDP

growth rate and the monthly US Treasury Bill rate.
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Algorithm 2 SMC algorithm with fixed number of observation (off-line)

Sample M particles from the prior distribution without shrinkage : {Θi}Mi=1, {Σi}Mi=1

Sample M particles from the prior distributions : {pi1:K}Mi=1, {si1:T }Mi=1

Set the tempered function φ = 0, the normalized weights Wi = 1/M ∀i ∈ [1,M ] and ESS = M

while φ < 1 do

A - Correction step :

Find φ̃ > φ such that M/(
∑N

i=1 w̃
2
i ) = 0.95ESS

where w̃i ∝Wi[f(y1:T |si1:T , p
i
1:K ,Θ

i,Σi)f(Θi,Σi)]φ̃−φf̄(Θi,Σi)φ−φ̃

∀i ∈ [1,M ]; Set wi = Wi[f(y1:T |si1:T , p
i
1:K ,Θ

i,Σi)f(Θi,Σi)]φ̃−φf̄(Θi,Σi)φ−φ̃

∀i ∈ [1,M ]; Compute the normalized weights Wi = wi/
∑N

j=1wj and ESS = M/(
∑N

i=1W
2
i )

Set φ = min(φ̃, 1)

B - Re-sample step if ESS < 0.75M

Re-sample the particles by stratified sampling (Carpenter, Clifford, and Fearnhead (1999))

C - MCMC step with targeted distribution :

fφ(s1:T , p1:K ,Θ,Σ|y1:T ) ∝ [f(y1:T |s1:T , p1:K ,Θ,Σ)f(Θ,Σ)]φf̄(Θ,Σ)1−φf(s1:T , p1:K ,Θ,Σ)

for i = 1 to M do

for j = 1 to N do

[1] - Sample Θi ∼ fφ(Θ|y1:T , s
i
1:T , p

i
1:K ,Σ

i) by the DREAM algorithm.

[2] - Sample Σi ∼ fφ(Σ|y1:T , s
i
1:T , p

i
1:K ,Θ

i) by the DREAM algorithm.

[3] - Sample pi1:K ∼
∏K
r=1Beta(αp +

∑T
t=1 δsit=r, βp + 1) with αp and βp hyper-parameters.

[4] - Sample si1:T ∼ fφ(s1:T |y1:T , p
i
1:K ,Θ

i,Σi) by the Metropolis-Hastings algorithm

end for

end for

end while
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Table 1: Prior distributions and hyper-parameters.

Prior Distributions of the mean parameters

{µ1, β1, φ1}′ ∼ N(
(
0 0 0

)′
, I3)

2MU: For each regime k ∈ [2,K + 1], {∆µk,∆βk,∆φk}′ ∼
∏3
j=1 2MU(x̄j , 5, P

k,j
Mean)

3MN: For each regime k ∈ [2,K + 1], {∆µk,∆βk,∆φk}′ ∼
∏3
j=1 3MN(x̄j , 0.1x̄j , 0.5, P

k,j
Mean)

Prior Distributions of the variances

σ−2
1 ∼ G(1,1)

2MU: For each regime k ∈ [2,K + 1], ∆σ2
k ∼ 2MU(x̄σ, 10, P kσ )1σ2

k>0

3MN: For each regime k ∈ [2,K + 1], ∆σ2
k ∼ 3MN(x̄σ, 0.1x̄σ, 2, P

k
σ )1σ2

k>0

Prior Distribution of transition probabilities

p1:K ∼
∏K
i=1 Beta(100, 1)

Prior Distribution of the latent state vector

s1 = 1, for t > 1, st = st−1|st−1, p1:K ∼ pst−1 and st = st−1 + 1 otherwise

Prior Distribution of the Penalty parameters

For each parameter j ∈ [1, 3] in each regime k ∈ [2,K + 1] P k,jMean ∼ N(PBIC , 0.5)
For each regime k ∈ [2,K + 1] P kσ ∼ N(PBIC , 0.5)

The d-dimensional identity matrix is denoted by Id, (x̄1, x̄2, x̄3) = (x̄µ, x̄β, x̄φ). The uniform
mixture and Normal shrinkage priors are respectively denoted by 2MU( ) and 3MN( ). The
Gamma distribution is written G( ) and Geo( ) means the Geometric distribution.

4.1 US GDP growth rate

We study quarterly US GDP growth from 1959Q2 to 2011Q3 (210 observations). Researchers

have highlighted the presence of one structural break in the mid-1980s followed by the ’great

moderation’ era. The volatility substantially drops during this episode while GDP growth

remains unchanged. As can been seen from Table 2, fitting a standard ARMA model over

the full sample gives an autoregressive parameter of 0.46, a non-significant MA parameter,

and a variance of 0.70.

We first estimate a CP-ARMA model without shrinkage prior, meaning that all parameters
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Table 2: GDP growth: preferred CP-ARMA model with 3 regimes

Sparse CP-ARMA-2MU Sparse CP-ARMA-3MN
Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3

Dates →1983Q2 →2007Q3 → 2011Q3 → 1983Q2 → 2007Q4 → 2011Q3

µk 0.26 no-change no-change 0.28 no-change no-change
(0.10) (0.09)

βk 0.59 no-change no-change 0.60 no-change no-change
(0.14) (0.11)

φk -0.09 no-change no-change -0.21 no-change no-change
(0.15) (0.13)

σ2
k 1.13 0.32 no-change 1.16 0.32 no-change

(0.16) (0.05) (0.17) (0.04)

CP-ARMA (no shrinkage) Standard ARMA
Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3

Dates →1983Q2 →2007Q3 → 2011Q3 →2011Q3

µk 0.58 0.33 -0.01 0.40
(0.20) (0.15) (0.29) (0.14)

βk 0.30 0.57 0.46 0.46
(0.21) (0.19) (0.31) (0.17)

φk -0.06 -0.32 0.67 -0.15
(0.20) (0.19) (0.48) (0.17)

σ2
k 1.13 0.27 0.57 0.70

(0.17) (0.10) (0.49) (0.07)

Posterior means and standard deviations in brackets for the CP-ARMA model estimated
on GDP growth data between 1959Q2 and 2011Q3. Break dates are defined by the pos-
terior modes of the state variables.
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change after a structural break. This model is the natural extension of the CP-AR model

proposed by Pesaran, Pettenuzzo, and Timmermann (2006). The optimal number of breaks

is inferred by maximizing the marginal likelihood. This requires separately estimating the

model with zero, one, two,... breaks and computing each time the marginal likelihood. For

the GDP growth data we find two breaks, in 1983Q2 and 2007Q3. The estimation results in

Table 2 confirm the sharp decline from 1.13 to 0.27 in the variance parameter after the first

break. Since by construction all model parameters are required to change, the overall level

and dynamics of GDP growth are modified as well. For example, the autoregressive parameter

before and after the break has posterior means respectively equal to 0.30 and 0.57. However,

given their posterior standard deviations of respectively 0.21 and 0.19 these parameters are

not that different. A second break is detected around 2007Q3, indicating the end of the great

moderation period, starting a zero growth rate new regime with again a substantially higher

volatility. Note that the MA parameters are estimated with little precision in each of the

three regimes.

Table 3: GDP growth: Parameter configurations of CP-ARMA models

CP-ARMA-2MU CP-ARMA-3MN CP-ARMA

{µ, β, φ, σ2} configuration {1,1,1,2}-89% {1,1,1,2}-44.4% {3,3,3,3}-100%
{1,1,2,2}-7.5% {1,1,2,2}-43.2% —
{1,1,1,3}- 2.5% {1,1,1,3}-8% —

Posterior probabilities for the most likely break date configurations. The probabilities
do not add up to one since there are several configurations associated with very small
probabilities.

We next estimate sparse CP-ARMA models by using the 2MU and 3MN shrinkage priors.

We fix the maximum number of regimes K equal to 5. Since irrelevant regimes are shrunk

to zero, this number is not that important as long as it exceeds the actual number of breaks

in the sample. Sparse CP-ARMA models can comprise different configurations of structural

breaks. In fact, for both shrinkage priors the ”active” number of regimes is either two or three

as documented by the most likely break configurations in Table 3. Interestingly, the model

with changes only in the variance dominates for the two priors while the configurations with

no break in the parameters or breaks only in the mean parameters do not appear at all in

Table 3 since they are associated with very low probabilities. Table 2 reports the posterior

means and standard deviations under the preferred configuration (i.e. two regimes). For
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GDP growth rate

Intercept time variation AR time variation

MA time variation Variance time variation

Figure 8: US GDP growth rate with the 3MN shrinkage prior - Posterior means of the
parameters over time and their corresponding 95% confidence intervals (in dashed line).
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that specific case, only the variance parameter changes once at 1983Q2 from 1.16 to 0.32 for

the 3MN shrinkage prior and from 1.13 to 0.32 for the other prior. When three breaks are

detected (56% of the time for the 3MN and 10% for the 2MU), their dates coincide with those

of the CP-ARMA model. In terms of model parameters, the sparse CP-ARMA model yields

quite different results than the standard change-point one. Indeed, the intercept and the AR

parameters remain constant over the full sample while the variance parameter unquestionably

changes at the beginning of the great moderation era. Furthermore, depending on the break

configuration, the MA parameter as well as the variance starts evolving at the beginning of

the global financial crisis. The time variation of model parameters are displayed in Figure 8

for the 3MN shrinkage prior. We observe the break in the variance parameter at the beginning

of the great moderation era. A sharp increase of the 95% posterior regions at the end of the

sample indicates the uncertainties on the break of the MA and the variance parameters.

Since the sparse CP-ARMA model has less parameters than the CP-ARMA model (5 or

6 depending on the configuration instead of 12), they can be estimated with more precision.

Obviously, by taking multiple break specifications into account, our approach allows for direct

model combination without resorting to Bayesian model averaging. Not surprisingly, this

more efficient use of data to estimate the model parameters also improves forecasting as

demonstrated in Section 5 below.

The 3MN shrinkage priors necessitates the choice of threshold values. We reported results

of a threshold value given by the difference between the median and the 5%-th quantile.

In order to assess the sensitivity with respect to this choice, we also estimate the model

with thresholds computed with the 10%-quantile and the 1%-quantile. These choices exactly

deliver the same breaks and parameter values. The results are available on request.

Table 4: GDP growth: Parameter configurations of CP-ARMA models

CP-ARMA-2MU CP-ARMA-3MN

{µ, β, φ, σ2} configuration {1,1,2,2}-36% {1,1,2,4}-15%
{1,1,1,2}-18% {1,1,2,3}-12%
{1,1,1,3}- 11% {1,1,1,4}-9%

Posterior probabilities for the most likely break date configurations when the penalty
parameter is fixed to -5. The probabilities do not add up to one since there are several
configurations associated with very small probabilities.

The penalty parameter controls the number of breaks detected in the process. As long
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as its value increases, more regimes are identified and therefore more parameters have to be

estimated. To illustrate its effect, Table 4 documents the best break configurations when

the penalty parameter is fixed to -5 (instead of being random around the BIC value equal

to -8.28). As expected, more breaks are detected and no configuration is clearly preferred as

the model probabilities have sharply dropped. One can go a step further by estimating the

model given several values of the penalty in order to assess its sensitivity with respect to each

parameter. Figure 9 shows the posterior mode of the number of regimes observed for each

parameter for a range of penalty values for both the 2MU and 3MN priors. As expected,

when the penalty decreases, the breaks disappear in the parameters. Interestingly, the two

priors provide very similar results. One can notice that the break of the variance is present

even when the penalty is set to -20. The presence of a break in the MA term is also likely

as it disappears only when the penalty amounts to -9. The full probabilities of the number

of breaks per parameter for several penalties are displayed in Figure 10. Besides the variance

and the MA term, the probability of having only one regime rapidly goes to one as the penalty

decreases.

4.2 Monthly US 3-Month Tbill - 08/1947 – 12/2002

We revisit the empirical application of Pesaran, Pettenuzzo, and Timmermann (2006) (PPT).

They estimate a CP-AR model on the Monthly US 3M Treasury Bill from August 1947 to

December 2002 (we update the data later in the forecasting exercise). In their setting, all the

parameters have to change after a break. Estimating several break models, PPT find that the

Marginal Log-likelihood (MLL), is highest for a model with 7 regimes (K = 6). This leads

to a process exhibiting 21 parameters. Table 5 documents the posterior means and standard

deviations of the parameters. We observe that the intercept parameters µk are insignificant

and that the AR parameter βk indicates a unit root in each regime. Therefore, the principal

regime changes are due to the variance which moves from values as small as 0.015 to levels

up to 2.558.

We next estimate the Sparse CP-ARMA model with a potential number of breaks amount-

ing to 13. As opposed to the standard CP model, the Sparse ARMA model has the advantage

of encompassing multiple numbers of breaks during the estimation process. Table 6 docu-

ments the most frequent configurations in the posterior draws. In line with PPT, we observe
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Intercept AR coefficient

MA coefficient Variance

Figure 9: US GDP growth rate - Posterior mode of the number of regimes per parameters for
several values of the penalty. The result of the 2MU prior is detailed in blue while the 3MN
prior is given in white.
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Intercept AR coefficient

MA coefficient Variance

Figure 10: US GDP growth rate - Probabilities of the number of regimes per parameters for
several values of the penalty. The 2MU prior is displayed on the left Graphic while the 3MN
prior is provided on the right one.
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Table 5: PPT’s results (US 3M Tbill)

PPT’s result: CP-AR model with 7 regimes

Dates → 1957 → 1960 → 1966 → 1979 → 1982 → 1989 → 2002
µk 0.021 0.252 0.017 0.220 0.412 0.246 -0.004

(0.034) (0.208) (0.067) (0.161) (0.521) (0.211) (0.054)
βk 1.002 0.895 1.006 0.969 0.958 0.968 0.992

(0.020) (0.071) (0.020) (0.026) (0.045) (0.27) (0.011)
σ2
k 0.023 0.256 0.015 0.260 2.558 0.161 0.048

(0.003) (0.068) (0.003) (0.031) (0.671) (0.027) (0.005)

Posterior means and standard deviations for the CP-AR model of PPT.

that the mean parameters hardly vary over time and that the regimes are mainly generated

by switches in the variance. Figure 11 displays the marginal probabilities of having a specific

number of breaks for each model parameters given the two shrinkage priors. Besides a likely

break in the AR dynamics in the 3MN prior case that is not detected by the 2MU prior case,

the two models lead to very similar results.

Table 6: Parameter configurations of CP-ARMA models (US 3M Tbill)

CP-ARMA-2MU CP-ARMA-3MN CP-AR

{µ, β, φ, σ2} configuration {1,1,1,9}-85% {1,1,1,9}-54% {7,7,7,7}-100%
{1,1,1,10}-12% {1,2,1,9}-36% —
{1,1,2,9}-1% {1,1,1,10}-3% —

Posterior probabilities for the most likely break date configurations. The probabilities
do not add up to one since there are several configurations associated with very small
probabilities.

Tables 7 report results of the Sparse CP-ARMA model with the two different priors given

the most likely setting (8 breaks in the variance). The two prior distributions lead almost

identical results. Although richer in model dynamics by allowing for MA terms, our two

specifications are more parsimonious than PPT. In fact, the number of model parameters

amounts only to 12. In contrast to the CP-AR model, the Sparse-ARMA model shows

explicitly that the US 3M Tbill series behaves as an heteroskedastic random walk. Also, the

fact that the MA parameter is significant indicates the relevance of using a richer dynamics

that typically involve path dependence. Interestingly, all the breaks detected by PPT are

also identified by the Sparse CP-ARMA model. Since the conditional mean parameters are
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2MU - Intercept 3MN - Intercept

2MU - AR coefficient 3MN - AR coefficient

2MU - MA coefficient 3MN - MA coefficient

2MU - Variance 3MN - Variance

Figure 11: US 3M Tbill - Posterior probabilities of the number of breaks per parameters.
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Table 7: Sparse CP-ARMA model (US 3M Tbill)

2MU shrinkage prior

Intercept 0.09
(0.04)

AR(1) Coeff. 0.99
(0.01)

MA(1) Coeff. 0.15
(0.05)

Period → 08-1957 → 10-1960 → 06-1966 → 03-1973 → 01-1975
Variance 0.02 0.24 0.01 0.17 0.86

(0.01) (0.05) (0.00) (0.06) (0.23)
Period → 07-1979 → 08-1982 → 06-1989 → 12-2002

Variance 0.12 1.87 0.17 0.04
(0.03) (0.34) (0.03) (0.01)

3MN shrinkage prior

Intercept 0.05
(0.02)

AR(1) Coeff. 0.99
(0.00)

MA(1) Coeff. 0.16
(0.04)

Period → 07-1957 → 02-1961 → 06-1966 → 03-1973 → 01-1975
Variance 0.02 0.22 0.01 0.17 0.87

(0.00) (0.03) (0.00) (0.03) (0.18)
Period → 07-1979 → 08-1982 → 06-1989 → 12-2002

Variance 0.13 2.12 0.16 0.04
(0.03) (0.27) (0.02) (0.01)

Posterior means and standard deviations for the regimes of the most likely
Sparse CP-ARMA model.

estimated on longer window sizes, the Sparse CP-ARMA model is expected to provide also

better forecasts. This feature is documented in Section 5.

For respectively the 3MN and 2MU priors, Figures 12 and 13 display the posterior means

of the model parameters over time and their corresponding 95% confidence intervals. Again,

the time-varying variance behaves analogously for the two shrinkage priors. The differences

between the 3MN and 2MU priors arise in the short AR regime at the end of the sample that

comes up in the second best configuration. We also observe that the intercept slowly evolves

over time indicating some smooth transition behavior.
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US 3M Tbill

Intercept time variation AR time variation

MA time variation Variance time variation

Figure 12: US 3M Tbill with the 3MN shrinkage prior - Posterior means of the parameters
over time and their corresponding 95% confidence intervals (in dashed line).
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US 3M Tbill

Intercept time variation AR time variation

MA time variation Variance time variation

Figure 13: US 3M Tbill with the 2MU shrinkage prior - Posterior means of the parameters
over time and their corresponding 95% confidence intervals (in dashed line).
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5 Forecasting performance

The Sparse CP-ARMA model exhibits the appealing feature of detecting which parameter of

the model evolves when a structural break occurs. Since the approach encompasses ARMA

and CP-ARMA models as special cases and therefore strikes a nice balance between fit and

parsimony, the Sparse CP-ARMA model potentially produces also more precise predictive

densities. To investigate this, we provide a small forecasting exercise for the US GDP and

(updated) US 3M Tbill series. A comparison with other models using time varying parameters

combined with regressor variables, see for example Belmonte, Koop, and Korobilis (2014), is

beyond the scope of this paper.

Forecasting using the Sparse CP-ARMA model is straightforward as for the ARMA and

CP-ARMA models used here. For each of the M posterior draws of the model parameters, one

can simulate the distribution of the future observations by assuming that the model remains

in the last regime. More specifically, to sample the marginal posterior distribution of the

h-ahead forecast, we have that

f(yT+h|y1:T ) =
∑
s1:T

∫
f(yT+1:T+h|y1:T , s1:T , p1:K ,Θ,Σ)f(s1:T , p1:K ,Θ,Σ|y1:T )dyT+1:T+h−1dPdΘdΣ,

where the sum is over all the possible state vectors and f(yT+1:T+h|y1:T , s1:T , p1:K ,Θ,Σ) can

be recursively decomposed into h products as follows
∏h
q=1 f(yT+q|y1:T+q−1, s1:T , p1:K ,Θ,Σ).

Consequently, for each of the M posterior draws of the model parameters, one can simulate a

h-ahead prediction by simulating sequentially for q = 1, ..., h as follows

yT+q|y1:T+q−1, s1:T , p1:K ,Θ,Σ ∼ N(µK+1 + βK+1yT+q−1 + φK+1εT+q−1, σ
2
K+1).

Note that as in Pesaran, Pettenuzzo, and Timmermann (2006) we can also implement fore-

casting subject to future breaks. Since our sparse CP model performs very well, the empirical

forecasting performance of incorporating out-of-sample breaks is left for future research.

Following the same forecasting setup as in Bauwens, Koop, Koribilis, and Rombouts

(2015), our study consists in starting with the first forty percent of the observations, esti-

mating each model on this time-span, producing forecasts and then iterates this operation

by adding one by one the remainder of observations. For example, considering the inflation

time series (646 observations), this procedure requires 389 model estimations for the ARMA

and the Sparse CP-ARMA processes while it amounts to 389*(Kmax+1) estimations of the
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Table 8: Forecast exercise : RMSEs and Average of predictive densities for different horizons

given three models (ARMA(1,1), CP-ARMA(1,1) and the Sparse CP-ARMA(1,1)).

Forecast horizon 1 2 4 8 12 16

US GDP growth rate - forecasting from 1973Q3 to 2014Q1

Average predictive likelihood

ARMA 0.3068 0.2821 0.2658 0.2602 0.2592 0.2593

CP-ARMA (Kmax = 3) 0.4041 0.3837 0.3618 0.3570 0.3553 0.3619

Sparse CP-ARMA - 3MN 0.4141 0.3965 0.3732 0.3641 0.3629 0.3673

Sparse CP-ARMA - 2MU 0.4111 0.3926 0.3732 0.3692 0.3693 0.3665

RMSE

ARMA 0.6505 0.7577 0.8826 0.9467 0.9651 0.9585

CP-ARMA (Kmax = 3) 0.6425 0.7119 0.8241 0.8347 0.8561 0.8324

Sparse CP-ARMA - 3MN 0.6090 0.6776 0.7440 0.7899 0.8035 0.8108

Sparse CP-ARMA - 2MU 0.6110 0.6630 0.7314 0.7688 0.8051 0.7979

US 3M Tbill - forecasting from 1978M11 to 2008M12

Average predictive likelihood

ARMA 0.6911 0.3990 0.2562 0.1729 0.1448 0.1285

CP-ARMA (Kmax = 8) 1.0373 0.5643 0.3458 0.2115 0.1619 0.1346

Sparse CP-ARMA - 3MN 1.1506 0.6558 0.4058 0.2449 0.1872 0.1560

Sparse CP-ARMA - 2MU 1.1495 0.6506 0.4003 0.2410 0.1856 0.1552

RMSE

ARMA 0.2625 0.8159 1.7240 2.8194 3.9539 4.5659

CP-ARMA (Kmax = 8) 0.2815 0.8747 1.8326 2.9876 4.4173 5.4948

Sparse CP-ARMA - 3MN 0.2437 0.7493 1.5383 2.5882 3.7698 4.6421

Sparse CP-ARMA - 2MU 0.2381 0.7289 1.5284 2.6056 3.6621 4.4835
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CP-ARMA model (where Kmax denotes the maximum number of breaks allowed in the se-

ries). Note that the Sparse CP-ARMA model limits the number of estimations compared to

the CP-ARMA one although its specification is more general. The feasibility of this forecast

exercise is due to the SMC sampler which allows to update the posterior realizations in light

of adding new observations without having to run an entire estimation procedure each time.

More details are given in Appendix B.

We consider several forecast horizons (1,2,4,8,12,16), e.g. in the case of the quarterly US

GDP growth rate, the horizons correspond to one quarter, two quarters and one, two, three

and four years. We updated the US 3M Treasury bill time series up to until 12-2008 so that it

includes the global financial crisis. Table 8 documents the average of the predictive densities

obtained at the different horizons (i.e. ∀h ∈ {1, 2, 4, 8, 12, 16} ,
∑T−h

t=τ f(yt+h|y1:t)/(T − h−

τ + 1) with τ indicating the first out-of-sample date) as well as the root mean squared error

(RMSE) derived from the posterior predictive median.

For both applications, the Sparse CP-ARMA model dominates in terms of average pre-

dictive density and RMSE and this holds for all horizons. For example, the US 3M Treasury

bill results show that the average predictive likelihood for the single regime ARMA model

amounts to 0.6911 for the one step ahead forecasts (horizon 1). Taking into account breaks by

forecasting using a CP-ARMA model, the average predictive likelihood improves to 1.0373.

The sparse CP-ARMA model allows the average predictive likelihood further increase to

1.1506.

6 Conclusion

This paper introduces the Sparse change point time series model, a new model class in the

change point framework, that detects which parameters of the model change when a struc-

tural break occurs. The proposed approach has several advantages compared to the current

methodology.

First, it solves the over-parametrization issue exhibited by all the CP models assuming

that all the parameters vary when a break is detected. Moreover, our method requires only

one estimation of the model to select the number of regimes and does not rely on the marginal

likelihood. This leads to a substantial gain in computational time and coding efforts. Finally,

the detection of breaks depends on a controlled parameter that penalizes the log-likelihood
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function, the advantage being its simple interpretation compared to a selection based on the

marginal likelihood. All these improvements are obtained by using shrinkage priors on the

standard CP parameters. As the existing priors are not appropriate to our methodology,

we introduce new shrinkage ones, detail their properties and discuss selection of their hyper

parameters.

The empirical exercise based on an ARMA model with path dependence emphasize the

ability of our framework to detect which parameters change when a break occur. It also

highlights that standard CP models lead to an over-parametrization issue that is ruled out

with the sparse approach. As a result, we also obtain sizeable improvements in the predictive

densities compared to the ARMA and the CP-ARMA models.

This paper uses the new shrinkage priors to model univariate time series. Given the recent

developments of time varying parameter vector autoregressive models, it would be interesting

to extend the approach to multivariate time series.

A MCMC for CP-ARMA estimation

As shown in Algorithm 1, each MCMC iteration consists in four steps: sampling from

π(Θ|y1:T , s1:T , p1:K ,Σ), from π(Σ|y1:T , s1:T , p1:K ,Θ), from π(p1:K |y1:T , s1:T ,Θ,Σ) and finally

from π(s1:T |y1:T , p1:K ,Θ,Σ). Since the first two full conditional distributions are nonstan-

dard, we employ the DREAM method of Vrugt, ter Braak, Diks, Robinson, Hyman, and

Higdon (2009) which basically is a Random-Walk Metropolis Hastings algorithm with adap-

tive covariance matrices. More precisely, given M parallel MCMC chains, a candidate for the

parameter of the chain j is given by (omitting subscripts referring to MCMC iterations):

• Sample Θj ∼ Θ|y1:T , s
j
1:T , p

j
1:K ,Σ

j :

– Draw a proposal Θ̃ from

Θ̃ = Θj + 2.38/
√

2δd(
δ∑

g=1

Θr1(g) −
δ∑

h=1

Θr2(h)) + ζ

with ∀g, h = 1, 2, ..., δ, i 6= r1(g), r2(h); r1(.) and r2(.) stand for random integers

uniformly distributed on the support [1,M ]−j with the requirement that r1(g) 6=

r2(h) when g = h; ζ ∼ N(0, η2
ΘId); and d is the number of elements in Θ. The
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standard deviation ηΘ is set to 0.00001 and δ is randomly taken from [1, 4]. As the

dimension of Θ can be high, we apply the DREAM on sub-blocks of random size

as in Chib and Ramamurthy (2010) and in Dufays (2012).

– Accept or reject the draw according to the Metropolis probability:

min

{
π(Θ̃|y1:T , s

j
1:T , p

j
1:K ,Σ

j)

π(Θj |y1:T , s
j
1:T , p

j
1:K ,Σ

j)
, 1

}
.

The conditional distribution π(Σ|y1:T , s1:T , p1:K ,Θ) is also sampled by the DREAM algorithm

as Σ = {σ2
1,∆σ

2
2, ...,∆σ

2
K} is a vector of variance parameters. The third posterior distribution

π(p1:K |y1:T , s1:T ,Θ,Σ) is naturally conjugated and is given by the Beta distribution. Sampling

from (s1:T |y1:T , p1:K ,Θ,Σ) is challenging due to the path dependence issue exhibited by the

CP-ARMA model. We use an approximate model without path dependence which enables

the use of the forward-backward algorithm. This approximation is given by

yt = µst + βstyt−1 + φst ε̃t−1,st + εt with εt ∼ N(0, σ2
st)

where ε̃t−1,st =
∑K+1

i=1 (yt−1 − µi + βiyt−2 + φiε̃t−2,i)f̃(st−1 = i|y1:t, st, p1:K+1,Θ,Σ) with f̃( )

denoting the filtering density of the approximate model. The draw obtained from this method

is accepted or rejected using the Metropolis-Hastings ratio, see Dufays (2012) for details.

B Time and Tempered algorithm

The TNT sampler, see Dufays (2014), is a combination of the SMC sampler (Del Moral,

Doucet, and Jasra (2006)) and the Re-sample Move (RM) algorithm (see Gilks and Berzuini

(2001)). It decomposes the posterior distribution into the product :

π(s1:T , p1:K+1,Θ,Σ|y1:T ) = π(s1:τ , p1:K+1,Θ,Σ|y1:τ )
f(yτ+1:T , sτ+1:T |s1:τ , p1:K+1,Θ,Σ, y1:τ )

f(yτ+1:T |y1:τ )
(5)

where yi:j = {yi, ..., yj} for i ≤ j and τ stands for a user-defined parameter belonging to [1,T].

The TNT sampler uses the SMC sampler for numerically approximating the first term of

(5) and then switches to the RM for estimating the sequence of posterior distributions from

π(s1:τ , p1:K+1,Θ,Σ|y1:τ ) to π(s1:T , p1:K+1,Θ,Σ|y1:T ). The TNT sampler is therefore well-

suited for estimating many posterior distributions by keeping updating previous estimations.

Moreover, since the first distribution of interest π(s1:τ , p1:K+1,Θ,Σ|y1:τ ) is approximated by
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a SMC sampler, we avoid particle degeneracy issues in the early stages that can arise in stan-

dard SMC samplers that only iterate on time.

The SMC sampler relies on an increasing tempered function φ(z) : [1, ..., p] → [0, 1] such

that φ(p) = 1 to build a sequence of artificial distributions πn(s1:τ , p1:K+1,Θ,Σ|y1:τ ) ∝

[f(y1:τ |s1:τ , p1:K+1,Θ,Σ)f(Θ,Σ)]φ(n)f̄(Θ,Σ)1−φ(n)f(s1:τ , p1:K+1,Θ,Σ) which coincides with the

targeted posterior distribution when φ(n) = 1. The auxiliary density f̄(Θ,Σ) allows to intro-

duce step by step the shrinkage prior into the sequence of importance sampling. The aux-

iliary distribution of the mean parameters is given by {µ1, β1, φ1}′ ∼ N(
(

0 0 0
)′
, 0.5I3)

for the first regime and by {∆µk,∆βk,∆φk}′ ∼ N(
(

0 0 0
)′
, 0.5I3) for each other regime

k ∈ [2,K + 1]. The auxiliary variance distribution is set to σ−2
1 ∼ G(1,1) and to ∆σ2

k ∼

N(0, 0.5)1σ2
k>0 for k ∈ [2,K + 1].

The TNT algorithm is initiated by drawing M particles from the prior distributions with

associated uniform weights {xi0,W i
0}Mi=1 where xi0 = {si1:τ , p

i
1:K+1,Θ

i,Σi} ∼ f̄(Θ,Σ)f(p1:K)f(s1:τ |p1:K)

and then iterates from n = 1, . . . , p, p+ 1, ..., p+ (T − τ) + 1 as follows

• Correction step: ∀i ∈ [1,M ], Re-weight each particle with respect to the nth posterior

distribution

– If in tempered domain (n ≤ p) :

w̃in = [f(y1:τ |xin−1)f(Θi,Σi)]φ(n)−φ(n−1)f̄(Θi,Σi)φ(n−1)−φ(n) (6)

– If in time domain (n > p) : Set xin = {Θi,Σi, pi1:K , s
i
1:τ+n−p−1, sτ+n−p} with

sτ+n−p = K + 1, i.e. the last regime and compute the weights

w̃in =
f(y1:τ+n−p|xin)f(xin)

f(y1:τ+n−p−1|xin−1)f(xin−1)
(7)

Compute the unnormalized weights : W̃ i
n = w̃inW

i
n−1.

Normalize the weights : W i
n = W̃ i

n∑M
j=1 W̃

j
n

• Re-sampling step: Compute the Effective Sample Size (ESS) as

ESS =
M∑M

i=1(W i
n)2
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– If ESS ∈ [λ1, λ2] where λ1 and λ2 are user-defined thresholds then apply a stratified

re-sampling (see Carpenter, Clifford, and Fearnhead (1999)) on the particles and

reset the weight uniformly.

– if ESS < λ1
1, re-run a TNT sampler with τ = τ + max(n− p, 0) .

• Mutation step: ∀i ∈ [1,M ], run N steps of the MCMC kernel presented in Appendix

A with invariant distribution πn(xn|y1:τ ) for n ≤ p and π(xn|y1:τ+n−p) for n > p.

The user-defined parameters are set to λ1 = 0.25M , λ2 = 0.75M , M = 2.000 and N = 50.

The function φ is adapted at each iteration to insure that the sequential artificial distributions

are similar (see Algorithm 2, more details in Jasra A., Doucet, and Tsagaris (2011)).
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