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Abstract (145 words) 

ER homeostasis alteration contributes to pancreatic beta cell dysfunction and death and favors the 

development of diabetes. In this study, we demonstrate that HDLs protect beta cells against ER stress 

induced by thapsigargin, cyclopiazonic acid, palmitate, insulin over-expression, and high glucose 

concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli 

were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant we show that 

HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability 

of HDLs to protect beta cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking 

blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is 

required for their ability to promote beta cell survival. This study identifies a cellular mechanism 

mediating the beneficial effect of HDLs on beta cells against ER stress-inducing factors. 
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Introduction 

Pancreatic beta cells have a highly developed ER that reflects their physiological function as insulin-

secreting cells. There is ample evidence indicating that alterations in ER homeostasis in beta cells 

affect their physiological function, increase their susceptibility to apoptosis, and contribute to the 

development of diabetes (1;2). Conversely, several of the factors that are involved in beta cell failure, 

including free fatty acids (FFAs), high glucose concentrations, and sustained insulin secretion, are 

known to induce ER stress in these cells (2-5). In response to ER stress, the protein chaperone BiP 

(immunoglobulin heavy chain-binding protein) dissociates from the ER transmembrane proteins ATF6 

(activating transcription factor 6), IRE1α (inositol requiring 1 alpha) and PERK (protein kinase RNA-

like endoplasmic reticulum kinase), allowing BiP to bind to unfolded or misfolded proteins to assist in 

their (re)folding. Dissociation from BiP also leads to IRE1α and PERK stimulation and ATF6 that is no 

longer bound to BiP translocates to the Golgi where it is cleaved and activated. The ensuing signaling 

events turn on UPR genes that encode, on one hand, proteins favoring the export and degradation of 

misfolded proteins and, on the other hand, proteins chaperones, including BiP, to increase the folding 

capacity of the ER. However, if ER stress is too strong and sustained, the transcription factor CHOP 

(C/EBP homologous protein-10) is expressed, leading to apoptosis by decreasing the expression of 

the anti-apoptotic Bcl-2 protein and by turning on the expression of apoptotic inducers such as death 

receptor 5 and Bim (6). In mice, genetic deletion of apoptotic mediators of the ER stress response 

(e.g. CHOP) can delay the development of diabetes (7). In humans, ER stress markers are associated 

with diabetes (8-10).  

HDLs have crucial functions in cholesterol and lipid transport in the blood (11). In addition, HDLs exert 

multiple beneficial actions on cells by inducing anti-oxidative, anti-inflammatory and anti-apoptotic 

responses (12). Reduced levels of HDLs or HDL dysfunctions could therefore represent situations 

where the protective defense of an organism against metabolic stress is compromised. This is 

consistent with the fact that low HDL-cholesterol level is an independent risk factor for the 

development of type 2 diabetes (13;14). Reciprocally, most interventions that lead to increased HDL 

levels in humans are also known to reduce the risk of developing diabetes (15). 

HDLs from diabetic patients display altered composition, notably higher triglyceride content and 

reduced cholesterol esters (16) and they are also more oxidized than HDLs from control subjects (17). 
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HDL modifications can alter their functionality. It has been shown for example that oxidized HDLs lose 

their ability to mediate cholesterol efflux (18). 

The beneficial effect of HDLs against diabetes has been directly observed in humans where infusion of 

recombinant HDLs was found to improve beta cell function (19). This is again in line with the idea that 

HDLs have a positive effect on beta cell function and survival. Additionally, HDLs protect beta cells 

from cytokines and serum deprivation-induced apoptosis (20). Further, HDLs block oxidized LDL-

induced cell death (21;22) and reduce apoptosis induced by high glucose concentrations and ER 

stress inducers (23;24). HDLs have also been reported to favor insulin secretion in vitro (25). 

However, the mechanisms underlying the beneficial effects of HDLs on beta cells remain largely 

unknown.  

Characterizing how HDLs protect beta cells from ER stress is important in the context of the known 

anti-diabetogenic function of HDLs and their capacity to inhibit beta cell apoptosis. In this study, we 

provide evidence that HDLs protect beta cells against ER stress-inducing stimuli by improving protein 

folding and trafficking in the ER. 
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Research Design and Methods 

Western blot analysis, cell transfection, apoptosis determination, immunocytochemistry, RNA 

extraction, reverse transcription, quantitative PCR, lentivirus preparation, 
35S-methionine 

incorporation, and nuclear extract preparation were performed as described (23;26). TUNEL assay on 

rat islets was performed as described earlier (5). 

 

Antibodies 

Antibodies recognizing CHOP and BiP were from Santa Cruz (catalog n°7351 and 13968, 

respectively). Antibodies specific for actin, caspase-3, phospho JNK, total JNK and phospho-PERK 

were from Cell Signaling (catalog n° 4968, 9661, 3179, 9252, 9251, respectively). 1E9 [called I14 in 

(27)] monoclonal antibody recognizing the correctly folded form of VSVG, 17-2-21-4 monoclonal 

antibody recognizing the VSVG protein exoplasmic domain and mouse IgG1κ monoclonal antibody 

specific for GM130 (Golgi matrix protein of 130 kDa) (BD Biosciences, catalog n°610822) were used 

for immunocytochemistry. 

Primers 

18S sense (5’-GCAATTATTCCCCATGAACG-3’), antisense (5’- GGCCTCACTAAACCATCCAA-3’). 

CHOP sense (5’- TTCACTACTCTTGACCCTGCGTC-3’), antisense (5’- 

CACTGACCACTCTGTTTCCGTTTC-3’), spliced XBP1 sense (GAGTCCGCAGCAGGTG), antisense 

(GTGTCAGAGTCCATGGGA), total XBP1 sense (AAGAACACGCTTGGGAATGG), antisense 

(ACTCCCCTTGGCCTCCAC). 

Cells and cell culture 

The MIN6B1 mouse insulinoma cell line (28) (referred here as MIN6) was cultured as described 

previously (23). Human islets were provided through the ECIT Islet for Basic Research program (JDRF 

award 31-2008-413). Islets were obtained from 4 different donors (see Supplemental Table 1 for the 

clinical characteristics of the donors). They were cultured in CMRL-1066 (GIBCO, catalog n°21530) 

medium containing 5 mM glucose, 100 units/ml penicillin, 100 mg/ml streptomycin and 10% FCS. 

Islets were trypsinized with trypsin-EDTA 0.5x for 6 minutes with pipetting every minute and then 

plated at a density of 150’000 cells per well (24-well plates). The following day, islets were treated as 
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indicated in the figures. Male Wistar rat islet isolation was performed as described earlier (5). All 

animal experimentations were approved by the local Institutional Committee on Animal 

Experimentation of the Faculty of Medicine of the Université catholique de Louvain (Project 

UCL/MD/2009/009). 

Lipoprotein preparation and purification 

Plasma lipoprotein fractions from human healthy donor serum were isolated on NaBr gradients by 

sequential ultracentrifugation, as described previously (29;30). The VLDL/IDL fraction (density 1.019) 

is isolated first, followed by the LDL fraction (density 1.063), and finally the HDL fraction (density 1.21). 

The fractions were dialyzed 48 hours against PBS, 100 µM EDTA and stored at 4°C. Before use, 

HDLs were dialyzed twice 24 hours against PBS. The medium used for dialysis (labeled “vehicle” in 

the figures) and HDLs were filtered through 0.22 µm filters. The cholesterol concentration of the 

fractions was measured by an enzymatic in vitro assay from Roche Applied Science (catalog 

n°2016630). The HDL and vehicle fractions were used within a 14 day-period. Experiments using 

HDLs were done with preparations from different donors or with mixed preparations and used at 1 mM 

cholesterol. 

XBP1 mRNA splicing 

Touchdown PCRs were performed using primers XBP1 sense (5’-

AAACAGAGTAGCAGCGCAGACTGC-3’), antisense (5’-GGATCTCTAAAACTAGAGGCTTGGTG-3’) 

and the Taq polymerase from Promega. PCR products were loaded on a 4% agarose gel and run for 

about 6 hours to discriminate the 26 nucleotides difference between the expected spliced and 

unspliced forms (600 bp). For rat islets, XBP1 mRNA splicing was measured as described earlier (5). 

In Figure 2A (middle panel) and in Figure 4B, qPCR was performed using previously described 

primers (31). 

Plasmids 

Plasmids mIns2-GFP (#688) and mIns2(C96Y)-GFP (#689), corresponding to pEGFP-Ins2-WT and 

pEGFP-Ins2-C96Y were described in reference (7), and were sub-cloned into the TRIP-PGK-ATGm-

MCS-WHV* lentiviral vector (#349) generating plasmids mIns2-GFP.lti (#751) and mIns2(C96Y)-

GFP.lti (#752). Plasmid pEGFP-VSVG (#729), obtained from Addgene, was sub-cloned into TRIP-

PGK-ATGm-MCS-WHV* generating plasmid tsVSVG-GFP.lti (#730). 
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siRNA 

siRNA, ordered from Microsynth (Balgach, Switzerland) sequences were the following siSRB1: 5’ AGG 

UCA ACA UCA CCU UCA ATT 3’, siGFP 5' GAC GUA AAC GGC CAC AAG UUG 3'. 

 

Folding assay 

MIN6 cells were plated on coverlips and infected with 2.5 ml of a temperature-sensitive (ts) vesicular 

stomatatis virus glycoprotein (VSVG)-GFP encoding lentivirus. Two days later, the cells were treated 

as mentioned in the figure legends. Cells were then fixed and cells on coverslips were subjected to 

immunocytochemistry labeling to detect correctly folded VSVG. At 32°C, the ts VSVG-GFP is 

synthesized on the ER and transits through the Golgi before reaching the plasma membrane. At the 

restrictive 40°C temperature, this protein is misfolded and accumulates in the ER. In neither case, 

does the protein accumulate in the cytoplasm (32). 

Electron microscopy 

MIN6 cells were plated in poly-L-lysine (0.01%, Sigma, catalog n°P4832)-coated glass slides (LabTek 

Chamber Slides, catalog n°177399) at a density of 110’000 cells per slide (area = 1.8 cm2), cultured 

for 3 days, and finally treated as indicated in the figures. Cells were then fixed 2 hours in 2.5% 

glutaraldehyde (Electron Microscopy Sciences, catalog n°16220) dissolved in 0.1 M phosphate buffer 

(PB), pH 7.4. After 3 washes in PB, MIN6 cells were post-fixed for 1 hour in 1% osmium tetroxide 

(Electron Microscopy Sciences, catalog n°19150) in PB, and then stained with ethanol 70% containing 

1% uranyl acetate (Sigma, catalog n°73943) for 20 minutes. MIN6 cells were dehydrated in graded 

alcohol series and embedded in Epon (Electron Microscopy Sciences, catalog n°13940). Ultrathin 

sections (with silver to gray interference) were cut with a diamond knife (Diatome), mounted on 

Formvar-coated single slot grids and then counterstained with 3% uranyl acetate for 10 minutes and 

then with lead citrate (0.2%, Sigma, catalog n°15326) for 10 minutes. Sections were visualized using a 

Philips CM100 transmission electron microscope. 

Palmitate preparation 

HEPES-buffered Krebs Ringer (KRBH) solution (120 mM NaCl, 4 mM KH2PO4, 20 mM Hepes, 2 mM 

MgCl2, 1 mM CaCl2, 5 mM NaHCO3) was equilibrated in a cell culture incubator at 37°C, 5% CO2 for 1 

hour. The pH was then adjusted to 7.4 and free fatty acid BSA (Sigma; catalog n°A60003) was 
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dissolved to a 5% concentration. The solution was then filtrated. Palmitate sodium salt was finally 

dissolved in the KRBH-BSA solution to a 6.7 mM concentration. 

Oxidized HDL 

HDLs were oxidised at 37°C using 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) as described 

previously (33). The reaction was stopped by placing the mixture on ice and AAPH removed by 

dialysis. Lipoperoxide concentrations were determined using the Fox assay (34). 

Data presentation and statistics 

Results are expressed as the mean ± 95% confidence intervals (CI) of three independent experiments 

unless otherwise stated. The statistical tests used were paired t-test with Bonferroni corrections in the 

case of results derived from independent experiments performed in monoplicate (Figure 1D; Figures 2 

A-B, right panels; and Figure 5) and one way ANOVAs for all other cases. 
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Results 

HDLs protect beta cells against ER stressor-induced apoptosis 

To determine if HDLs antagonize the negative effects of patho-physiological ER stressors or ER 

stress-inducing drugs on beta cells, we first used thapsigargin (TG) on mouse insulinoma cells, as well 

as on human and rat islets. TG is a SERCA (sarco/endoplasmic reticulum Ca
2+

-ATPase) inhibitor that 

induces ER calcium depletion and ER stress (35). Apoptosis induced by TG in primary human islet 

cells was decreased by HDLs (Figure 1A). Similarly, primary rat beta cells were protected by HDLs 

against TG-induced apoptosis (Figure 1B). In the MIN6 mouse insulinoma cell line, HDLs very 

efficiently inhibited TG-induced apoptosis as indicated by a reduction in the number of cells with 

pycnotic nucleus and by a decrease in caspase-3 activation (Figure 1C). HDLs also protected MIN6 

cells against cyclopiazonic acid (CPA)-induced death, another SERCA inhibitor (Supplemental Figure 

1). Free fatty acids contribute to the development of type 2 diabetes by inducing ER stress, beta-cell 

dysfunction and apoptosis (36). Palmitate-induced apoptosis was significantly reduced by HDLs 

(Figure 1D). Hyperglycemia, observed in diabetic patient, is another factor suggested to induce ER 

stress in pancreatic islets (37). One week exposure of rat islets to 30 mM glucose almost quadrupled 

the rate of apoptosis in insulin-expressing cells (Figure 1 E-F). This was fully prevented by HDLs 

(Figure 1 E-F). Altogether, these results indicate that HDLs protect beta cells against a broad range of 

patho-physiological ER stressors.  

In endothelial cells, HDLs activate the anti-apoptotic Akt kinase (38) and this presumably requires 

binding of HDLs to the scavenger receptor class B, type I (SR-BI) (39;40). In beta cells, SR-BI does 

not appear to be involved in HDL-induced suppression of IL1β-mediated apoptosis (24). Whether SR-

BI is involved or not in beta cell protection may depend on the pro-apoptotic stimulus however. We 

therefore tested whether this receptor could mediate the protective effect of HDLs against ER stress. 

MIN6 cells were transfected with siRNA duplexes directed at the SR-BI mRNA. This led to a ~80% 

reduction in SR-BI protein expression levels (Supplemental Figure 2C). In these conditions, HDLs 

were still able to protect beta-cells against both TG and palmitate-induced apoptosis (Supplemental 

Figure 2 A and B). This suggests that SR-BI is dispensable for HDL-mediated beta cell protection. 

Specificity of the HDL-induced protection against TG-induced beta cell apoptosis 
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TG is a lipophilic compound that could potentially bind to HDLs, preventing it from inhibiting SERCA. 

To determine whether HDLs could affect the SERCA inhibitory activity of TG, cytosolic calcium 

concentration was monitored by Fura-2 calcium imaging. Supplemental Figure 3 shows that TG, as 

expected from its ability to induce ER calcium depletion, stimulated an increase in cytoplasmic 

calcium. HDLs did not affect this response, indicating that they do not prevent the inhibitory activity of 

TG on SERCA. We next assessed the specificity of the protective response induced by HDLs in beta 

cells by testing the capacity of another lipoprotein, the low density lipoprotein (LDL), to prevent TG-

induced MIN6 cells apoptosis. LDLs are not toxic for beta cells unless oxidized (22) (compare also the 

first and third bar in Supplemental Figure 4). LDLs were unable to protect MIN6 cells from death 

induced by TG (Supplemental Figure 4). This demonstrates that the ability of HDLs to protect beta 

cells from ER stress is specific for this lipoprotein particle and that it is not a general property of 

lipoproteins. 

To further characterize the protective effects of HDLs, MIN6 cells were subjected to different TG 

incubation protocols prior to HDL addition. Supplemental Figure 5A (grey bars) shows that HDLs 

added 10 minutes after TG still prevented apoptosis of MIN6 cells, indicating that HDLs protect beta 

cells when TG had already started the depletion in ER calcium stores (that occurs within less than a 

minute; see Supplemental Figure 3). However, continuous TG exposure is required to induce efficient 

apoptosis of MIN6 cells as washing TG after a ten-minute incubation period greatly reduced the extent 

of cell death (Supplemental Figure 5A, black bars). Supplemental Figure 5B shows indeed that TG has 

to be present for several hours to induce a clear increase in MIN6 cell death. The same experiment as 

described in Supplemental Figure 5A was then performed but with longer incubation times with TG 

(Supplemental Figure 5C). In each case, HDLs significantly reduced the extent of apoptosis after 

removal of TG. Finally, in conditions where TG was added at the beginning of the experiment and was 

not washed away, addition of HDLs at later times still protected beta cells (Supplemental Figure 5D). 

The degree of protection was still about 70% when HDLs were added 12 hours after the addition of 

TG. Altogether these experiments indicate that HDLs can reverse the pro-apoptotic effects of TG, 

which is consistent with their ability to reverse the ER morphological alterations induced by TG (see 

Figure 3 below). 

HDLs prevent ER stress signaling 
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TG and palmitate induced ER stress in MIN6 cells and primary rat islet cells as assessed by their 

ability to increase XBP1 mRNA splicing (Figure 2A), CHOP mRNA and nuclear protein levels (Figure 

2B and Figure 2C, respectively), BiP protein levels (Figure 2D), and phosphorylation of PERK (Figure 

2E) and JNK (Figure 2F). Induction of all these ER stress markers was significantly inhibited by HDLs. 

Therefore, the ability of HDLs to prevent beta cell death induced by TG and palmitate correlates with 

their capacity to dampen ER stress signaling. 

HDLs reverse TG-induced ER morphology disruption 

As previously reported (41), TG induced extensive dilation of the ER after a 6 hour-incubation period 

(compare the first and second rows in Figure 3A). This was prevented by HDLs (fourth row in Figure 

3A). A 24 hour-treatment with TG, in addition to inducing ER swelling, led to the appearance of 

apoptotic features such as chromatin condensation and pycnosis (Figure 3B). When HDLs were 

added 6 hours after TG - i.e. at a time when ER was extensively dilated (see Figure 3A) - and 

incubated for an additional 18 hour-period in the presence of TG, ER morphology greatly recovered 

and the signs of apoptosis disappeared. Palmitate also induced ER dilation, although to a lesser 

extent than TG, but importantly this was efficiently prevented by HDLs (Figure 3C). These results 

indicate that HDLs not only prevent ER morphology disruption brought about by ER stress, but also 

allow cells with disrupted ER to recover a normal morphology even in the continuous presence of an 

ER stressor. 

HDLs improve protein folding and export capacity of the ER 

The ability of HDLs to inhibit apoptosis induced by ER stressors could result from an augmented 

capacity of the ER to fold proteins and favor their export or from an increased capacity to tolerate a 

given ER stress. As a first approach to distinguish between these two possibilities, we over-expressed 

GFP fusion proteins with wild-type insulin-2 and a mutant form of insulin-2, found in the Akita mouse, 

that cannot fold properly due to a cysteine to tyrosine substitution at position 96. This mutation 

prevents the formation of a disulfide bridge required for insulin maturation (42). Thus the (re)folding 

mechanisms of the cell cannot correct this altered conformation, leading to sustain ER stress and 

apoptosis (7), unless downstream pro-apoptotic effectors, such as CHOP, are inactivated (7). 

Expression of the insulin-GFP fusion protein in MIN6 cells following lentiviral infection led to a ~60% 

increase in total insulin content (i.e. endogenous insulin + insulin-GFP; Supplemental Table 2) and this 

induced a mild but significant apoptotic response (Figure 4A). Expression of the insulin-GFP 
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constructs by transfection similarly induced apoptosis (Supplemental Figure 6). In each case, the 

apoptotic response mediated by insulin over-expression was blocked by HDLs. In contrast, apoptosis 

induced by expression of the insulin C96Y-GFP mutant in MIN6 cells was not antagonized by HDLs 

(Figure 4A and Supplemental Figure 6). Paralleling these responses, XBP-1 mRNA splicing was 

augmented by both wild-type and mutant insulin, but HDLs only inhibited the splicing of XBP-1 mRNA 

induced by wild-type insulin (Figure 4B). This indicates that over-expression of the C96Y insulin 

mutant exerts a stress on the ER that may be more severe (or of a different nature) than the one 

induced by wild-type insulin over-expression, a stress that cannot be tuned down by HDLs. The C96Y 

insulin mutant appears indeed to induce a stronger burden on the ER than wild-type insulin because it 

significantly increased CHOP expression while wild-type insulin did not (Figure 4C). The increased 

CHOP expression following over-expression of the insulin C96Y mutant was not antagonized by HDLs 

(Figure 4C). One interpretation of the above results is that HDLs do not protect beta cells experiencing 

an ER stress response that cannot be alleviated such as when cells express an insulin mutant that 

cannot fold properly. 

HDLs may protect beta cells against ER stress by increasing the functionality of the ER eventually 

dampening the initial ER stress. This is consistent with the ability of HDLs to lower the expression of 

ER stress markers induced by TG and palmitate (see Figure 2). To directly assess the capacity of 

HDLs to favor protein folding and trafficking, we took advantage of a temperature-sensitive mutant of a 

vesicular stomatitis virus glycoprotein (VSVG) fused to GFP (32). This mutant cannot fold correctly at 

40°C and is therefore retained in the ER. However, at the permissive temperature (32°C), it adopts a 

correctly folded conformation, and can then traffic from the ER to the Golgi and finally to the cell 

surface. As expected, cells cultured at 32°C expressed the correctly folded VSVG-GFP fusion protein 

as determined by staining with a conformation-specific anti-VSVG antibody (Cy3-positive cells in 

Supplemental Figure 7). At 40°C, no cells expressed the correctly folded VSVG protein whether HDLs 

were present or not (Supplemental Figure 7). HDLs were not able to increase the VSVG folding 

capacity of the cells at 39°C, a temperature that allowed partial folding of VSVG (Supplemental Figure 

7). Possibly, VSVG misfolding induced by high temperatures is intrinsically irreversible, akin to the 

misfolding of the C96Y insulin mutant. 

To determine whether HDLs can favor protein folding and trafficking in the presence of an ER stressor, 

we evaluated the influence of HDLs on VSVG folding and trafficking in conditions where HDLs can 
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inhibit apoptosis. MIN6 cells were incubated or not with TG in the presence or absence of HDLs 

(Figure 5). A five hour incubation at 40°C led to accumulation of misfolded VSVG in the ER (Figure 

5A, left panel). Releasing this block by placing the cells at 32°C allowed VSVG to be correctly folded 

(Figure 5A, right panel). This was prevented by TG indicating that this SERCA inhibitor impairs protein 

folding. HDLs, however, restored the capacity of the cells to correctly fold the VSVG protein in the 

presence of TG (Figure 5A-B). Protein trafficking was assessed by monitoring the appearance of 

VSVG at the cell surface following the release of the cells from the 40°C block. Figure 5C shows that 

TG did not allow cell surface appearance of VSVG (Figure 5C, right panel). This was reversed by 

HDLs (Figure 5C-D). HDLs can therefore inhibit the capacity of TG to hamper the correct folding of 

VSVG and its trafficking from the ER to the surface of the cells. We also noted that TG decreased the 

expression of the VSVG-GFP fusion protein (Figure 5C-E) indicating that this ER stressor also 

perturbs protein synthesis possibly as a result of ER homeostasis alteration. This again was not 

occurring in the presence of HDLs (Figure 5C-E). 

The causality between the ability of HDLs to efficiently protect beta cells against ER stress and their 

capacity to improve the trafficking of proteins was investigated using brefeldin A (BFA). This 

compound is able to inhibit the trafficking of protein from the ER to the Golgi (43). Hence as expected, 

BFA blocked the translocation of VSVG from the ER to the Golgi (Figure 5F). Figure 5G shows that 

BFA prevented HDLs from inhibiting TG-induced beta cell apoptosis. This indicates that the capacity of 

HDLs to promote protein trafficking in the presence of an ER stress is required for their anti-apoptotic 

ability. 

We next analyzed the ability of HDLs to prevent ER protein export perturbation induced by palmitate. 

Palmitate was shown earlier to impair ER to Golgi trafficking (44). However, palmitate does not reduce 

VSVG folding (44). Thirty minutes following the release from the 40°C block, about 50% of the cells 

had the majority of their VSVG proteins move from the ER to the Golgi (Figure 6). ER export of VSVG 

was reduced by palmitate but this was antagonized by HDLs (Figure 6C). As previously reported, 

palmitate did not affect VSVG folding (Figure 6D). Interestingly, the presence of HDLs alone was able 

to slightly, but significantly, increase the number of correctly folded VSVG. This suggests that HDLs 

contribute to improve beta cell ER homeostasis by favoring both protein folding and trafficking. 
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HDL oxidation is one alteration that is thought to occur in diabetes or in the metabolic syndrome (45). 

Therefore, it was of interest to assess the capacity of oxidized HDLs to protect beta cells against ER 

stress-induced apoptosis. Figure 7 shows that, in contrast to native HDLs, oxidized HDLs were not 

able to antagonize TG-induced apoptosis of MIN6 cells. 
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Discussion 

In the present study, HDLs were found to efficiently inhibit apoptosis induced by several ER stressors 

(Figure 1). This was observed both in insulinoma cells and in primary human and rat islet beta cells. 

This protection was associated with a diminished activation of ER stress markers including XBP1 

mRNA splicing, CHOP induction (both at the RNA and protein level), BiP induction, PERK activation 

and JNK MAPK stimulation (Figure 2). A series of control experiments was performed to assess the 

possibility that HDLs could exert their protective action against the ER stressors (TG in particular) by 

merely sequestering them away from cells. This possibility could be excluded because of the following 

observations. HDLs did not prevent TG from inducing an increase in cytoplasmic calcium 

concentration following its inhibitory action on SERCA (Supplementary Figure 3). LDL, a similar 

amphipathic lipoprotein was unable to mimic the anti-apoptotic properties of HDLs (Supplementary 

Figure 4). Addition of HDLs several hours after TG still inhibited beta cell apoptosis (Supplementary 

Figure 4) and was able to restore a normal ER morphology (Figure 3). HDLs prevented beta cell 

apoptosis and ER stress marker induction in response to chemically unrelated substances and 

treatments (palmitate, CPA, TG, insulin over-expression) (Figures 1, 2, 4 and Supplemental Figure 1). 

Finally, if HDLs sequestered TG away from cells, they would be expected to always protect cells from 

TG-induced apoptosis. However, this is not the case as HDLs do in fact lose their capacity to inhibit 

TG-induced beta cell apoptosis in certain experimental conditions (e.g. when cell are treated with BFA; 

see Figure 5F-G). 

HDLs are known to induce anti-apoptotic pathways in various cell types. This has been well studied in 

endothelial cells where HDLs stimulate the anti-apoptotic Akt kinase (38). EDG receptors and the 

scavenger receptor SR-B1 are likely to mediate HDL effects in these cells (39;40;46). In contrast, the 

signaling pathways mediating HDL-induced anti-apoptotic response in beta cells are not known. 

Further, SR-BI does not seem to be involved in HDL-mediated protection of IL1β-treated beta cells 

(24;47) or against TG- and palmitate-induced death (Supplementary Figure 2). The paucity of 

information on the signaling pathways that are involved in the protective function induced by HDLs in 

beta cells contrasts with the numerous data showing beneficial effects of HDLs against diabetes in 

rodents and humans. 
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Our data show that HDL-mediated beta cell protection correlates with ER morphology preservation, as 

well as maintenance of a functional protein folding in the ER and protein export from the ER. However 

when protein transport from the ER to the Golgi was inhibited with BFA, HDLs lost their protective 

effect (Figure 5F-G), indicating that the maintenance of a proper ER secretory capacity is required for 

HDL-induced inhibition of ER stressor-induced beta cell apoptosis. HDL-mediated protection of beta 

cells via improved protein folding and ER export is the first cellular mechanism to be identified 

explaining how HDLs protect beta cells against pro-diabetogenic factors such as FFAs, high glucose 

concentrations, and ER overload. Improved functionality of the ER could also participate in the known 

capacity of HDLs to ameliorate the insulin secretory capacity of beta cell (19;25). Our data suggest 

that improved ER functionality is an underlying mechanism counteracting the development of diabetes 

during interventions to increase HDL levels in humans exposed to pro-diabetogenic factors. Our 

findings are in line with the notion that alleviating ER stress is a new avenue to treat diabetes (48). We 

have observed that oxidation of HDLs abrogates their ability to protect beta cells against ER stress-

induced apoptosis (Figure 7). Therefore, one of the contributions to accelerated beta cell mass 

decrease in diabetic patients, who have increased levels of oxidized HDLs (45), may be an inefficient 

HDL-mediated protection of beta cells against ER stress. Hence, means of preserving HDLs integrity 

and functionality represent potential avenues of treatments against diabetes. 
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Figure Legends 

Figure 1. HDLs protect beta cells against apoptosis induced by ER stress 

A. Human islets from cadaveric donors were dissociated using trypsin and plated. The next day, islets 

were treated or not with 10 µM TG in the presence or in the absence of HDLs for 24 hours. Cells were 

then fixed and apoptosis was assessed by scoring pycnotic nucleus. B. Cultured rat islets were 

incubated 24 hours in serum free-RPMI containing 5 g/l BSA and 10 mM glucose with the indicated 

combinations of 1 µM TG and 1 mM HDL. Cell death was determined by TUNEL in insulin-expressing 

cells on histological sections of the islets. Results are expressed as the percentage of apoptotic cells 

among insulin-positive cells in a given islet section. A minimum of 2’000 cells from at least 20 islets 

have been scored from two independent experiments. C. MIN6 were treated with 0.5 µM TG in the 

presence or in the absence of 1 mM HDL for 24 h. Cells were then fixed, and apoptosis was 

determined. Alternatively, the cells were lysed and the extent of caspase-3 activation was assessed by 

Western blotting using an antibody recognizing the cleaved active form of the protease. An actin-

specific antibody was also used on the same blot to assess the evenness of loading. D. MIN6 cells 

were left untreated (Ctrl) or treated for 48 hours with 0.3% BSA (BSA) or 0.3% BSA/0.4 mM palmitate 

(P) in the presence or in the absence of 1 mM HDLs. Apoptosis was then scored as in panel A. E-F. 

Cultured rat islets were incubated for a week in serum-free RPMI medium containing 5 g/l BSA and 10 

or 30 mM glucose (labeled G10 and G30 in the figure) in the presence (HDL) or in the absence (VEH) 

of 1 mM HDLs. Apoptosis was then assessed as in panel B. Panel E shows representative examples 

of TUNEL staining (green staining) in insulin-positive cells (red staining; nuclei are stained in blue with 

DAPI). The corresponding quantitation is shown in panel F. 

 

Figure 2. HDLs inhibit the induction of stress markers by TG and palmitate 

MIN6 cells and rat islets were left untreated (C) or treated with 0.5 µM TG during 6 hours (panels A-C 

and E) or 24 hours (panels D and F) in the presence or in the absence of 1 mM HDLs. Alternatively, 

the cells were treated with 0.3% BSA (BSA) or with 0.3% BSA/0.4 mM palmitate (P) in the presence or 

in the absence of 1 mM HDLs for 24 hours (panel A, B) or 48 hours (panel C). The cells were then 

lysed and RNA and proteins were isolated. The extent of XBP1 mRNA splicing was then determined 
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(panel A). The pound sign indicates an unspecific band (see the methods). CHOP mRNA expression 

was determined by quantitative PCR (panel B). Western blot analysis were performed to assess 

protein expression of CHOP (panel C), BiP (panel D), phospho-PERK (panel E), and phospho- and 

total JNK (F). The experiments presented in panels E and F were repeated once and twice, 

respectively, and yielded similar results. 

 

Figure 3. HDLs prevent TG- and palmitate-induced ER morphology alterations 

MIN6 cells were plated on glass slide previously coated with poly-L-lysine and incubated for 6 hours 

with the indicated treatments (panel A). Alternatively, the cells were treated for 6 hours with TG and 

then incubated or not with HDLs for an additional 18 hour-period (panel B). In panel C; the cells were 

incubated for 12 hours with 0.3% BSA, 0.4 mM palmitate, and 1 mM HDLs in the indicated 

combinations. The cells were then processed for EM as described in the methods. 

 

Figure 4. Insulin overexpression-induced beta cell apoptosis is inhibited by HDLs 

MIN6 cells were infected with lentiviruses encoding the indicated constructs. Three days later, cells 

were trypsinized and plated in new culture dishes for 4 days, the last two days in the presence or in 

the absence of 1 mM HDLs. Apoptosis was then determined by scoring pycnotic and fragmented 

nuclei (panel A). Alternatively, 24 hours after the infection, the extent of XBP1 mRNA splicing (panel 

B) and CHOP mRNA expression (panel C) were determined. 

 

Figure 5. HDL-mediated beta cell protection against TG-induced apoptosis is inhibited by BFA 

A-B. MIN6 cells were infected with VSVG-GFP-encoding lentiviruses and treated two days later with 

or without 0.5 µM TG in the presence or in the absence of 1 mM HDLs for 5 hours at 40°C. The cells 

were then incubated or not for an additional 1 hour time period at 32°C. The presence of folded VSVG 

was assessed by immuno-cytochemistry on permeabilized cells using an antibody specifically 

recognizing the correctly folded form of the protein. The percentage of cells expressing folded VSVG 

was quantitated and shown in panel B. C-E. Cells were treated as in panel A except that non-
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permeabilized cells were labeled with an antibody directed against the ectopic part of VSVG. The 

percentage of cells expressing VSVG at the cell surface was quantitated and shown in panel D. 

Quantification of the GFP fluorescence intensity in VSVG-GFP expressing cells is presented in panel 

E. F-G. MIN6 cells infected with VSVG-GFP-encoding lentiviruses cells were pre-incubated or not with 

250 ng/ml BFA for 2 hours before being subjected to the indicated combinations of 0.5 µM TG and 1 

mM HDLs for an additional 22 hour-period. Permeabilized cells were then stained with an antibody 

recognizing GM130, a specific Golgi marker (panel F). Alternatively, apoptosis was assessed by 

scoring cells with pycnotic and/or fragmented nucleus (panel G). Means with different symbol (# or &) 

are significantly different. Nuclei were stained in blue with the Hoechst 33342 dye. 

 

Figure 6: HDLs restore ER to Golgi trafficking in palmitate-treated cells 

MIN6 cells were infected with VSVG-GFP-encoding lentiviruses and treated or no with 0.4 mM 

palmitate in the presence or in the absence of 1 mM HDLs for 48 hours (in each case, BSA was 

present at a 0.3% concentration). The cells were then incubated 5 hours at 40°C. They were then 

treated for 15 minutes with 5 µM cycloheximide before switching the temperature to 32°C for 0 or 30 

minutes (note that the temperature shifts and/or cycloheximide did not induce apoptosis; see 

Supplemental Figure 8). The cells were stained with an antibody recognizing the Golgi marker GM130 

(red staining; left part of panel A) or processed as described in Figure 5A-B (right part of panel A). 

Nuclei were stained in blue with the Hoechst 33342 dye. Representative examples of the different 

locations of VSVG in cells are shown in panel B (VSVG mainly in the ER when the GFP signal does 

not colocalize with GM130 staining; VSVG mainly in the Golgi when these two signals extensively 

colocalize; and intermediate situation when the GFP signal only partially colocalizes with the Golgi 

marker). Panel C depicts the quantitation of the percentage of cells with VSVG mainly localized in the 

Golgi and panel D the quantitation of the percentage of cells with correctly folded VSVG (results 

derived from 5 independent experiments each). Ctrl, control. 

 

Figure 7: Oxidized HDLs do not protect beta cells against TG-induced apoptosis 
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MIN6 cells were treated with 0.5 µM TG in the presence or in the absence of 1 mM non-oxidized or 

oxidized HDLs (oxidation performed during 8 hours or 16 hours) for 24 hours. Cells were then fixed 

and apoptosis was assessed by scoring pycnotic nuclei. 
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Supplemental Table 1 : Human islet quality and clinical characteristics of the donors 

Donor  Age (years)  Gender Cause of 
Death 

Islet cell 
viability 

Islet purity 

1  38  Female Cerebral 
ischemia 

90% 75% 

2  57  Female Vascular 
complication 

90% 60% 

3  52  Female Cerebral 
hemorrhage 

85% 89% 

4  48  Male  Cerebral 
bleeding 

90% 70% 
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Supplemental Table 2: Quantitation of insulin in MIN6 infected with lentiviruses encoding GFP, INS2‐
WT‐GFP and INS2‐C96Y‐GFP. Enzyme immune assay was performed to quantitate the amount of insulin 
in MIN6 cells in the different conditions used in Figure 4. Insulin content was measured using the rat 
insulin EIA kit from SpiBio (Basel, Switzerland; catalog n°A05105) according to the manufacturer’s 
instructions. Results correspond to the mean ± SD (n=3). 

  Insulin enzyme‐immuno‐assay 
  fmoles insulin per cell  fold 

Control (GFP)  0.30 ± 0.12  1.0 
INS2‐WT‐GFP  0.46 ± 0.17  1.6 ± 0.1 
INS2‐C96Y‐GFP  0.36 ± 0.12  1.2 ± 0.1 

 

MIN6 cells were cultured at 25 mM glucose.  In  this condition, the biosynthetic production of  insulin  is 
likely maximal  in  these cells and was calculated earlier  to be about one  femtomole per cell  (1). Here, 
quantitation of insulin in MIN6 cells cultured at 25 mM glucose gave a value of 0.3 femtomoles of insulin 
per  cell.  In wild‐type  insulin‐overexpressing  cells,  the  insulin  content  increased  by  60 %.  Apparently 
therefore, infection with INS‐WT‐GFP‐encoding lentiviruses was able to increase biosynthesis of insulin in 
Min6 cells and this correlated with the  induction of XBP1 splicing (see Figure 4B).  It  is relevant to note 
that  the  insulin‐GFP  fusion  protein  is  targeted  appropriately  to  insulin  granules  (2).  The  calculated 
increase of  insulin content  in mutant  insulin‐overexpressing cells was  lower but  this  likely  reflects  the 
fact that anti‐insulin antibodies may not recognize this mutant form (3). 

 1.  Ishihara,H, Asano,T, Tsukuda,K, Katagiri,H, Inukai,K, Anai,M, Kikuchi,M, Yazaki,Y, Miyazaki,JI, 
Oka,Y: Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin 
secretion similar to those of normal islets. Diabetologia 36:1139-1145, 1993 
 2.  Ohara-Imaizumi,M, Nakamichi,Y, Tanaka,T, Ishida,H, Nagamatsu,S: Imaging exocytosis of single 
insulin secretory granules with evanescent wave microscopy: distinct behavior of granule motion in biphasic insulin 
release. J Biol Chem 277:3805-3808, 2002 
 3.  Wang,J, Takeuchi,T, Tanaka,S, Kubo,SK, Kayo,T, Lu,D, Takata,K, Koizumi,A, Izumi,T: A mutation 
in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 
103:27-37, 1999 
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