

4th Workshop on
Distributed User Interfaces and

Multimodal Interaction

ICWE 2014 Workshop
1st July 2014

Toulouse, France

The Association for Computing Machinery
2 Penn Plaza, Suite 701

New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2014 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,
or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page,
copying is permitted provided that the per-copy fee indicated in the code is paid

through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
+1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or
other material previously published by ACM. If you have written a work

that was previously published by ACM in any journal or conference proceedings
prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work

to appear in the ACM Digital Library, please inform permissions@acm.org,
stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-60558-724-0

mailto:permissions@acm.org

4th Workshop on Distributed User Interfaces and Multimodal
Interaction

ICWE 2014 Workshop
1st July 2014

Toulouse, France

This Workshop is the fourth in a series on Distributed User Interfaces. On this occasion,
the workshop is focused on DUIs and Multimodal interaction. The main goal is to join
together people working in extending the Web and other user interfaces to allow multiple
modes of interaction such as GUI, TUI, Speech, Vision, Pen, Gestures, Haptic interfaces,
etc. Multimodal interaction poses the challenge of transforming the way we interact with
applications, creating new paradigms for developers and end-users. Through active group
discussion, participants will have the chance to share their knowledge and experience to
advance in this field.

These articles were submitted to the 4th Workshop on Distributed User Interfaces and
Multimodal Interaction at ICWE 2014 that was held on July 1st, 2014 in Toulouse,
France.

Editors

Prof. Dr. María Dolores Lozano Prof. Dr. Jean Vanderdonckt
University of Castilla-La Mancha Université catholique de Louvain
Computing Systems Department Louvain School of Management
Campus Universitario, s/n Place des Doyens, 1
02071, Albacete, Spain B-1348, Louvain-la-Neuve, Belgium
maria.lozano@uclm.es jean.vanderdonckt@uclouvain.be

Prof. Dr. Habib M. Fardoun Prof. Dr. Ricardo Tesoriero
King Abdulaziz University University of Castilla-La Mancha
Information Systems Department Computing Systems Department
Faculty of Computing and Information Campus Universitario, s/n
Technology 02071, Albacete, Spain
Jeddah, Saudi Arabia ricardo.tesoriero@uclm.es
hfardoun@kau.edu.sa

Prof. Dr. José A. Gallud Prof. Dr. Víctor M. R. Penichet
University of Castilla-La Mancha University of Castilla-La Mancha
Computing Systems Department Computing Systems Department
Campus Universitario, s/n Campus Universitario, s/n
02071, Albacete, Spain 02071, Albacete, Spain
jose.gallud@uclm.es victor.penichet@uclm.es

mailto:hfardoun@kau.edu.sa

WORKSHOP PROGRAMME COMMITTEE

Jose Luis Garrido (Universidad de Granada, Spain)
Fabio Paterno (CNR-ISTI, Italy)
Carmen Santoro (CNR-ISTI, Italy)
Silvia Abrahao (Universidad Politécnica de Valencia, Spain)
Christopher Kolski (University of Valenciannes, France)
Gaelle Calvary (University of Grenoble, France)
Kris Luyten (Hasselt University, Belgium)
Toni Granollers (Universitat de Lleida, Spain)
Peter Forbrig (University of Rostock Germany)
Aaron Quingley (University of St. Andrews, Scotland)
Miguel Nacenta (University of St. Andrews, Scotland)

Cover designed by Gabriel Sebastián (Photo: Shutterstock)

Table of Contents

Distributing User Interfaces ... 1
Ricardo Tesoriero

Towards User-Centered Distributed Mashups ... 11
Oliver Mroß, Klaus Meißner

Interacting with Tangible Objects in Distributed Settings ... 15
Elena de La Guía, María Dolores Lozano and Victor M. R. Penichet

User-aware Distributed User Interface for Tiled-display Environments 19
Vít Rusňák and Lukáš Ručka

Context-sensitive and Collaborative application for distributed user interfaces on tabletops 23
Amira Bouabid, Sophie Lepreux, Christophe Kolski and Clémentine Havrez

Fault-Tolerant User Interfaces for Critical Systems: Duplication, Redundancy and Diversity as
New Dimensions of Distributed User Interfaces.. 27
Camille Fayollas, Célia Martinie, David Navarre, Philippe Palanque and Racim Fahssi

Improving Surgery Operations by means of Cloud Systems and Distributed User Interfaces 31
Habib M. Fardoun, Abdullah Alghamdi and Antonio Paules Cipres

12 + 1 Questions in the Design of Distributed User Interfaces ... 37
Victor M. R. Penichet, Maria-Dolores Lozano, Jose A. Gallud and Ricardo Tesoriero

Performance Evaluation of Proxywork .. 42
Pedro González Villanueva, Ricardo Tesoriero and Jose A. Gallud

 Real Time Public Transport Location and Time Services for mobile users 46
 Lorenzo Carretero González, Habib M. Fardoun and Daniyal M. Alghazzawi

Interaction Modality Mapping Service for devices in a P2P network ... 50
Joao Paulo Preti and Lucia Filgueiras

Non-functional Requirements for Distributable User Interfaces using Agile Software
Development .. 54
Mohamed Bourimi, Ricardo Tesoriero

Distributing User Interfaces
Ricardo Tesoriero

University of Castilla-La Mancha
Campus Universitario de Albacete

(02071) Albacete, Spain
ricardo.tesoriero@uclm.es

ABSTARCT
The distribution of user interfaces is a reality. To represent
this reality this paper presents a metamodel to characterize
user interface distribution capabilities and states. This
metamodel allows analyzers/designers to manipulate user
interface distribution models by the means of two model
editors in order to calculate their capabilities and states.
Based on these characteristics, five cases of study are
analyzed and as result of this analysis, we redefine the
distributed user interface concept as a user interface state,
and define the distributable user interface concept as a user
interface capability. Finally, we present the Proxywork
system to illustrate the distributable user interface concept.

Author Keywords
Human-Computer Interaction; Distributed User Interfaces;
Distributable User Interfaces; Web-based User interfaces.

ACM Classification Keywords
H.5.2 User Interfaces. Theory and methods; D.2.2 Design
tool and techniques. User Interfaces;

INTRODUCTION
The popularity and diversity of devices that are available to
users is rising. They can be classified as multi-purpose
devices and specific devices. Among multi-purpose devices
we have mobile devices and stationary devices.

On the one hand, Mobile devices such as laptops, tablets,
smartphones and even Smartwatches are affordable and
easy to acquire. They can be controlled in different ways
according to the peripheral devices that are available on
them. While, laptops employ keyboards, mouse and
trackpads; Smartphones, tablets, Smartwatches, and so on,
employ touchscreens, accelerometers, gyroscopes, GPSs,
RFID, etc.

On the other hand, stationary devices such as SmartTVs,
projectors connected to desktop computers, game consoles
and so on are controlled with novel interaction devices such
as the Microsoft Kinect, the PlayStation Move jointly with
the PlayStation Eye or the Wii-mote.

Specific purpose devices such as RFID-based panels, plane
cockpits, advertisement panels, etc., are also interesting
applications that are part of the interaction environment that
is available to users.

In the beginning, all these devices were used separately.
And they were unaware of the existence of other devices
even if they were in the same interaction environment.

However, this tendency has changed in recent years and the
concept of user interface ecosystem is being adopted
gradually.

The concept of ecosystem of coupled displays was defined
by Terrenghi in [1]. Under this configuration, a set of
displays is connected/synchronized to each other to enrich
users’ experience.

In this paper, we present a conceptual model to characterize
the distribution of user interfaces that are part of an
ecosystem. Besides, we present a Web application that is
capable of distributing components that are part of Web
applications.

This work is organized as follows. Next section presents
five user interface ecosystem scenarios to analyze the
characteristics of user interfaces ecosystem characteristics.
Afterwards, we propose a metamodel as well as a model
editor to derive the ecosystem properties and possible states
it may reach. Later, we present five models to illustrate user
interface ecosystem characteristics. Then, we expose the
Proxywork system as an example of distributable user
interface where we present the implementation of a set of
distribution primitives applied to Web application
environments. Finally, we present conclusions and future
work.

THE USER INTERFACE DISTRIBUTION DICHOTOMY
This section presents a set of five scenarios of user interface
ecosystems. These scenarios show different distribution
characteristics of the user interface.

The first example is about the use of a Smartwatch jointly
with a Smartphone where the Smartwatch notifies the user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

4th Workshop on Distributed User Interfaces and Multimodal Interaction
DUI’14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07$15.00
http://dx.doi.org/10.1145/2677356.2677669

1

about an event (i.e. an email has arrived, an incoming
phone call is in progress, a Skype call, etc.) Then, the user
is able to retrieve relevant information regarding the event.
For instance, if it is an email, s/he is able to retrieve the
sender address, the subject, and first lines of the mail
contents. As the capabilities if the Smartwatch display are
limited, the user is not able to answer the email from the
Smartwatch; therefore s/he employs the “See on device”
action to synchronize the application user interface
associated to the event on the Smartwatch (i.e. email client)
with the version of the application running in the
Smartphone automatically (i.e. activating the mail client
user interface and opening the mail that is being observed
on the Smartwatch).

The coupled user interface concept is not only applicable on
mobile devices. This concept is also valid on stationary
displays and even on mixed scenarios. For instance, the
Samsung AllShare1 service allows users to distribute
information among different devices that are compatible
with the service. Through this service users are able to
distribute photos, videos, music etc. among PCs, TVs,
mobile phones, tablets, digital cameras, etc. by the means of
a wireless network.

Previous scenarios describe two User Interface Ecosystems
that support Distributed User Interfaces where users
“transfer” information from one device to another one.
However, users interact with two independent user
interfaces that share information.

The question is “Are we really sharing the user interface?”
Or we are just sharing the information between two
different user interfaces.

Let analyze the following hypothesis. Suppose that you are
browsing information on the Internet using your
Smartphone. You go to your favorite Web Site and you
start reading an interesting article while you are on the bus,
train or metro on your way home. When you arrive home
you find your flatmates watching the Smart TV. As soon as
you tell them about the article you have read, they suddenly
got interested in it. To quickly share this information with
them, you “transfer” the article from the Smartphone to the
SmartTV as can be observed in Figure 1.

Note that we are not “transferring” or “synchronizing” the
information on both displays; instead we are only
“distributing/moving” the article HTML tag from the
Smartphone to the Smart TV and not the whole page.

In this case, we have overcome the Smartphone display size
limitations by employing the display of a device in the same
ecosystem that overcomes the size limitations of the first
device.

1 Samsung AllShare service. URL =

 http://www.samsung.com/es/experience/allshare/pcsw/ http://www.samsung.com/es/experience/allshare/pcsw/

Figure 1: Distributing the ARTICLE HTML tag of a Web
page.

As consequence of the synergy that emerges from the
combination of the characteristics of both devices (mobility
vs. display size), users take advantage of the intrinsic
advantages of both devices.

Although the article HTML tag was distributed from one
user interface to another one; the control (i.e. scrolling the
article contents) is also transferred to the TV. It is coherent
since the scrolling capabilities depend on the display size.
However, it is not always the case.

Let analyze the following scenario. Suppose that you are
projecting a Web page on the Wall to show participants
information about a Web site. To address the site, you use
the laptop keyboard and trackpad. Once the page has been
loaded, you have a navigation menu on the left to navigate
through the site; therefore, the keyboard and the trackpad
are not required any more to show the contents of the Web
site. To make the presentation more dynamic, you decide to
distribute the nav HTML tag from the Web page projected
on the wall to the Smartphone. Thus, you are able to
navigate through Web site pages using the Smartphone.
This scenario is depicted on Figure 2.

Note that unlike the first scenario, actions on the
Smartphone affect the projection (i.e. when you click on a
link in the Smartphone menu, the contents on the projection
change accordingly). It is worth to highlight that the
information is not the only entity to be distributed because
the behavior of the Web component is also distributed to
the target device.

2

Figure 2: Distributing the NAV HTML tag of a Web page.

The last two scenarios show how the application
information as well as the behavior of the Web components
are distributed across different devices.

Finally, we expose a new scenario that adds a new aspect to
be taken into account, the user interface state continuity.
Suppose that you are filling a Web form using your Laptop,
but it is getting late to catch the train. As you have filled
many fields of the form, you decide to “transfer/distribute”
the Web form of the Web page to the Smartphone to
continue the task. In this particular case, the distribution
action also involves the transference of Web component
states. Thus, the information that was introduced using the
laptop is not lost during the transition (see Figure 3).

Figure 3: Information continuity

As result of the analysis of these scenarios, we can state
that:

1. The first two scenarios (Smartwatch - Smartphone
and Smartphone - SmartTV) define two user
interface ecosystems. Each ecosystem is composed
by two user interfaces, which are coupled to show
shared information.

2. The last three scenarios (article component
distribution, nav component distribution and
continuity) define three user interface ecosystems.
As in the first two scenarios, each ecosystem is
also defined by two user interfaces; however, these
scenarios besides sharing information, they share
components (i.e. actions performed on the nav
Web component in the fourth scenario, which was
distributed from the laptop to the Smartphone,
affects laptop user interface)

While the first two scenarios define distributed user
interfaces, the last three scenarios define user interfaces that
allow users to distribute user interface components among
devices.

The need for the characterization of user interface
ecosystems leaded us to analyze different user interface
models, such as Cameleon Reference Framework (CRF) [2]
based models (i.e. UsiXML), or the Interaction Flow
Modelling Language [3]. Most of these models employ
tree-based structures to describe the user interface structure
(i.e. all interaction objects, except for the root, have a single
parent).

Therefore, these models are not suitable to characterize user
interface ecosystems where components can be hosted by
mode that one container.

CHARACTERIZATION OF THE USER INTERFACE
DISTRIBUTION
This section describes the user interface distribution
metamodel to characterize user interface ecosystems where
components can be hosted in more than one container.

The metamodel is defined using the ECORE EMOF [4]
dialect enriched with Object Constraint Language (OCL)
[5]. It is depicted on Figure 4 and allows users to define
user interface ecosystems as graphs (represented by the
UISystem metaclass). This graph is defined by two types of
nodes: interaction objects (represented by the
InteractionObject metaclass) and platforms (represented by
the Platform metaclass). Besides, it defines three types of
edges: interaction dependencies (represented by the
InteractionDependency metaclass), hostings (represented by
the Hosting metaclass) and implementations (represented
by the implementation metaclass).

The Platform metaclass defines the combination of
Hardware and operating system that supports the user
interface. For instance, tablets or Smartphones running the
Android or iOS operating systems, or laptops running the
Microsoft Windows or Linux Operating systems.

3

Figure 4: The user interface distribution metamodel

The Web as a platform generates several dilemmas. After
analyzing the pros and contras, we consider the Web
browser as a platform itself. However, although two Web
browsers running in the same machine define two different
platforms; two Web browser tabs (even in separate
windows/frames) define a single platform. Another
controversial issue regarding the platform is related to the
use of multiple monitors connected to the same device.
From our perspective, monitors are considered peripheral
input/output devices (no operating system runs on a
monitor). Therefore, N monitors connected to the same
computer belong to a single platform.

The InteractionObject metaclass plays a similar role to the
Abstract Interaction Object [8] defined in the CRF [2].
According to how an interaction object is related to the rest
of the user interface, it plays one of the following roles:
Interaction Component, Interaction Container or Interaction
Surface. Some concrete examples of Interaction Objects
are: frames, windows, dialogs, panels, text fields, buttons,
labels, etc.

The Hosting metaclass defines a relationship between two
Interaction Objects, the host and the guest. It represents that
the guest Interaction Object can be hosted in the host
Interaction Object during the execution of the user
interface. Therefore, a guest Interaction Object can be
hosted in more than one host Interaction Object. Besides,
all guest Interaction Objects must be hosted in at least one
host Interaction Object during the user interface lifetime
(note that the host of a guest Interaction Object may change
during the user interface lifetime).

If an Interaction Object does not host any Interaction Object
then it becomes an Interaction Component (i.e. a button, a
text field, a menu item, a NFC tag, etc.). However, if an

Interaction Object hosts another Interaction Object then it
becomes an Interaction Container (i.e. a panel, a layout, a
menu, a submenu, a table, etc.). Note that all interaction
containers must be contained in another Interaction
Container.

The Implementation metaclass defines a relationship
between an Interaction Container and a Platform. It
represents that an Interaction Container is supported by a
Platform. An Interaction Container is implemented by at
most one Platform.

An Interaction Container, which is implemented by at most
one Platform, turns into an Interaction Surface. The main
difference between an Interaction Surface and an
Interaction Container lays on the capability of the
Interaction Surface of not being hosted on any other
Interaction Object. Some examples of Interaction Surfaces
are: Windows, Activities, NFC Panels, Pages, Views, etc.

Finally, the InteractionDependency defines a relationship
between two Interaction Surfaces (master and slave). It
represents that the lifetime of the slave Interaction Surface
depends on the lifetime of the master Interaction Surface.
When the master Interaction Surface is destroyed, all slave
Interaction Surfaces are destroyed too. For instance,
floating toolbars depend on the window/frame they are
docked.

USER INTERFACE DISTRIBUTION CHARACTERISTICS
Once we have defined all concepts and relationships in
terms of the metamodel depicted in Figure 4, the
distribution characteristics of the user interface are defined
in terms of states and capabilities.

4

User interface distribution states
We define the user interface distribution state as the
organization/configuration of all the Interaction Objects that
are part of a UI System (representing a user interface
ecosystem) at a given instant in time.

Unified State: A UISystem reaches the Unified State iff all
Interaction Objects are hosted on the same Interaction
Surface at a given time

Divided State: A UISystem reaches the Divided State iff it
has at least two Interaction Surfaces which host at least one
Interaction Object each at a given time.

Distributed State: A UI System reaches the Distributed
State iff it defines at least two Interaction Surfaces that are
hosted on different Platforms. As Interaction Surfaces are
Interaction Containers, they host at least one Interaction
Component each at a given time.

Single Platform State: A UI System reaches the Single
Platform State iff all Interaction Objects that are part of the
UI System are hosted on a set of Interaction Surfaces that
share the same Platform.

User interface distribution capabilities
We define the user interface capability as the set of user
interface configurations (states) that a user interface
ecosystem is able to reach.

Divisible: A user interface ecosystem is divisible iff exists
an Interaction Object that can be hosted in more than one
Interaction Surface. It means that any application that
supports floating toolbars defines a user interface that is
divisible.

Distributable: A user interface ecosystem is distributable
iff exists at least one Interaction Object that can be hosted
on at least two Interaction Surfaces implemented on
different Platforms. It means that any application that
allows users to “transfer” components from one platform to
another one defines a user interface that is distributable.

USER INTERFACE DISTRIBUTION MODEL EDITORS
The metamodel is supported by two types of graphical
editors implemented as Eclipse plugins to manipulate user
interface distribution models. These editors were developed
using the Eclipse Modeling Framework (EMF) [6] and the
Graphical Modeling Framework (GMF) [7].

The Figure 5 shows the GMF model editor. It allows
developers to easily manipulate and validate models as
graphs.

The validation constrains where defined in OCL on the
metamodel as well as on the graphical parts of the
diagrams.

The user interface allows analyzers/developers to easily
locate validation errors using the Problems view as well as
the icons on the graphical components that violate model

constraints. Besides, it supports both, on demand and live
validations to improve model editor performance on big
models.

Figure 5: GMF-based user interface distribution model editor

The Figure 6 depicts the domain specific language
supported by the GMF model editor. On the left, we show
the Paint .NET user interface; on the right, we show the
distribution model of the Paint .NET user interface built
with the GMF model editor.

Rectangles represent Interaction Objects. The color changes
according to the role they play on the model. Interaction
Surfaces are green, Interaction Containers are yellow and
Interaction Components are blue.

Red circles represent Platforms.

The hosting relationship is represented by a solid black line
with an arrow pointing to the host Interaction Objects.

The implementation relationship is also represented by a
solid black line which ends with a square pointing to the
Interaction Object.

Finally, the dependency relationship is represented by a
dashed line with an arrow pointing to the Interaction master
object.

Although the GMF editor is a good model manipulation
tool, the EMF-based editor (aka reflexive editor) allows
analyzers/developers to manipulate models as trees where
all model elements are represented as tree nodes.

The main advantage of this representation is the possibility
to select any element of the model to set the context of OCL
expressions that can be executed on the model using the
OCL console tool as can be seen in Figure 7.

The UISystem metaclass defines a set of queries to derive
user interface ecosystem characteristics (states and
capabilities) in order to answer if the user interface
ecosystem: is divisible or distributable, and if it reaches the
unified, divided, single platform or distributed states

5

Figure 6: Domain specific language for the user interface distribution metamodel. The Paint .NET sample

Figure 7: EMF-based user interface distribution model editor

The UISystem also defines a distributionReport query that
returns the characteristics of the user interface ecosystem.

CASES OF STUDIES
This section analyzes the user interface distribution
properties (capabilities and states) of five cases of study.

The Quiz user interface
The first case of study to analyze is the Quiz application
[9]. The Figure 8 shows the Quiz user interface distribution
model that shows two platforms (desktop and mobile). Each
platform defines two Interaction Surfaces.

While the first one defines the application user interface,
the other one defines the meta-user interface. Using the

meta-user interface, the application is able to distribute
components among different platforms (i.e. distributable).

However, as the meta-user interface is attached to each
platform, the single platform state cannot be reached.

Figure 8: The Quiz user interface distribution model

The Paint .NET user interface
The second case of study to analyze is the Paint .NET user
interface model, which is depicted in Figure 6. This
application does not have the divisible neither the
distributable capability.

Even though it supports floating toolbars, which is an
indication that it might be considered a divisible user
interface, it is not the case because although they depend on
the Main Window Interaction Surface, they are not hosted
in it (i.e. they cannot be attached). Regarding the
distribution, as it runs on a single platform, it cannot reach
the distributed state.

6

The GIMP 2.7 user interface
The third example analyzes the user interface model of the
GIMP 2.7 application which is depicted on Figure 9.

Figure 9: GIMP 2.7 user interface distribution model

As the model defines one platform only, there is no
distribution possible. Therefore, it is not distributable and it
is a single platform user interface.

However, from the divisibility perspective, this example
shows how an Interaction Surface can be docked on an
Interaction Container (i.e. the Channels Interaction Surface
on the Tool Area Interaction Container).

Thus, the Channels Interaction Object plays two roles
according to the user interface state. It plays the Interaction
Surface role when it is a floating toolbar, or it plays the
Interaction Container role when it is docked on the Tool
Area Interaction Container. Therefore, this user interface is
divided.

Besides, it is worth to highlight that this user interface
cannot does not reach the unified state because the editor
and Tool Box Interaction Surfaces depend on each other
and there is no Interaction Object that is able to host both of
them.

The WallShare user interface
The fourth user interface to be analyzed is the WallShare
[10, 11]. The WallShare runs on 3 different platforms and it
is a peculiar example of user interface distribution.

It is a distributed user interface because it reaches the
distributed state. However, it is not a distributable user
interface because it cannot “transfer” user interface
components from one platform to another one.
Consequently, it cannot reach the single platform state.
However, it able to reach the unified state because users can
close all WallShare clients while the WallShare Server is
still running.

Besides, even if it reached the divided state it is not
divisible. The Figure 10 shows the distribution model of the
WallShare user interface.

Figure 10: The WallShare user interface distribution model

The RFID ECOPanels user interface
The last user interface distribution model to analyze is the
RFID ECO Panels [12, 13] application. This application
presents a heterogeneous user interface that couples the user
interface represented by RFID tag icons on a panel and a
mobile device display. The Figure 11 shows the user
interface distribution model.

As in the previous case, this user interface is not divisible
neither distributable. Therefore, it cannot reach the single
platform state. However, it can reach the unified state
because the RFID platform is still able to interact when no
client is working.

Figure 11: The RFID ECOPanels user interface distribution
model

Besides, it is a divided and distributed user interface due to
the capability of running in more than two platforms.

7

DISTRIBUTED USER INTERFACES VS. DISTRIBUTABLE
USER INTERFACES
This section presents a summary of the user interface
distribution capabilities and states of the cases of study we
have presented.

The Table 1 shows a summary of the user interface
distribution capabilities of each case of study.

Case of Study Capabilities
Divisible Distributable

Quiz
Paint .NET
GIMP 2.7
WallShare
RFID EcoPanels

Table 1. Cases of Study user interface capabilities

The Table 2 shows possible states reached by cases of study
user interfaces.

Case of Study States
Unified Divided Single Distrib.

Quiz
Paint .NET
GIMP 2.7
WallShare
RFID EcoPanels

Table 2: Cases of study user interface distribution states

As conclusion, we have defined two user interface
distribution characteristics: the user interface distribution
capabilities and the user interface distribution states that can
be reached.

The Distributed User Interface (DUI) concept has been
redefined to become a state of a user interfaces instead of a
capability. Besides, the Distributable User Interface (DeUI)
was coined to represent the capability of a user interface to
be distributed among different platforms.

Thus, a user interface that reaches the distributed state may
not be distributable. In addition, a user interface that
reaches the divided state may not be divisible.

PROXYWORK
To illustrate the concept of distributable user interfaces, we
expose the Proxywork system [14, 15], which allows users
to distribute the user interface components of Web
applications among a set of displays.

The distribution is controlled by the user through a set of
primitives (i.e. show, hide, copy, move, etc.) attached to
Web page components.

The Proxywork Web proxy automatically attaches these
primitives to Web page components on runtime.

Therefore, Web pages do not require any extra information
to be distributed among different displays.

The Figure 12 shows how Web pages are processed in order
to allow users to distribute their contents.

Figure 12: Proxywork Web page processing

All devices that are part of the user interface ecosystem are
connected to a Web proxy.

As soon as a device requests a Web page the Web proxy the
Web proxy checks if the device is registered on the system.
If it is not, then the user has to register the device with a
name to identify it. Once the device is registered, the Web
proxy accesses the page on the Web server and introduces
distribution primitives’ functionality into the page. Then,
the modified version of the page is sent to the device that
requested it.

Proxywork primitives
Proxywork defines the following set of primitives:

• Connect/Disconnect: They allow users to add/remove
a device to/from the user interface ecosystem.

• Rename: It allows users to change the device name/id
on the user interface ecosystem it is part of.

• Copy: It allows users to copy a Web component from
one interaction surface to another one. Actions
performed on the copy affect the source interaction
surface (see Figure 13).

• Clone: It allows users to copy a Web component from
one interaction surface to another one. Actions
performed on the copy affect the target interaction
surface (see Figure 13).

• Migrate: It allows users to move a Web component
from one interaction surface to another one. Actions
performed on the copy affect the source interaction
surface (see Figure 13).

Figure 13: Proxywork distribution primitives

8

Proxywork limitations
The Proxywork system the following limitations regarding
the Web pages to be distributed.

First, Web pages should be “well-formed”. It means that the
Web page structure should be defined in terms of divs,
articles, section, forms, navs, etc, HTML tag elements. It
is due to the fact that although Proxywork is able to
distribute any Web component; the distribution is limited to
structural HTML tags.

Another important limitation to highlight regarding
Proxywork is the lack of the support of The HTTPS
protocol.

Currently, Proxywork does not support any user interface
device adaptation, though it is not difficult to introduce
adaptation rules on the proxy.

Finally, the system does not support cross-domain
communication due to HTML 5 restrictions.

CONCLUSIONS AND FUTURE WORK
This paper presents the difference between user interface
distribution capabilities and states. To characterize these
properties the user interface distribution metamodel is
presented. This metamodel allows analyzers/designers to
build user interface models to find out user interface
capabilities and calculate user interface states.

This article also presents a graphical model editor, which
was implemented as an Eclipse plugin to create and
manipulate user interface distribution models, and a
reflexive model editor to calculate user interface
capabilities and states.

Using these editors, five user interface cases of study were
analyzed. As result of this analysis, the distributed user
interface (DUI) concept is redefined as a state instead of a
capability. Besides, the distributable user interface (DeUI)
concept is presented to define the user interface capability
of distributing their components among the set of platforms
that are part of the user interface ecosystem.

Finally, to illustrate a distributable user interface (DeUI),
this paper present the Proxywork system which allows users
to distribute user interface Web components among
different devices.

As future work, we are considering the following lines.
First, we are dealing with the HTTPS Proxywork limitation,
which really restricts Proxywork capabilities and
application scenarios, such as Facebook, Twitter, etc.

Besides, we are studying the way to link task models to user
interface distribution models in order to validate and
generate distributable user interfaces.

Finally, we are working on the control of distributed
components.

ACKNOWLEDGMENTS
We thank the CICYT-TIN 2011-27767-C02-01 Spanish
project.

REFERENCES
1.L. Terrenghi, A. Quigley and A. Dix. A taxonomy for and

analysis of multi-person-display ecosystems. Personal
Ubiquitous Comput., vol. 13, nº 8, pp. 583-598, 2009.

2.G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q.
Limbourg, L. Marucci, F. Paternò, C. Santoro, N.
Souchon, D. Thevenin and J. Vanderdonckt. The
CAMELEON reference framework, Deliverable 1.1,
CAMELEON Project, 03 September 2002. URL:
http://www.w3.org/2005/Incubator/model-based-
ui/wiki/Cameleon_reference_framework. [last access:
06/12/2013].

3.Object Management Group. IFML: The Interaction Flow
Modeling Language. URL= http://www.ifml.org/ [last
access: 06/20/2014].

4.Object Management Group. Meta-Object Facility (MOF).
URL=http://www.omg.org/mof/ [last access: 06/20/2014].

5.Object Management Group. Object Constraint Language
(OCL). URL=http://www.omg.org/spec/OCL/ [last
access: 06/20/2014]

6.Eclipse Foundation. Eclipse Modeling Framework
Project. URL= http://www.eclipse.org/modeling/emf/
[last access: 06/20/2014]

7.Eclipse Foundation. Graphical Modeling Project. URL=
http://www.eclipse.org/modeling/gmp/ [last access:
06/20/2014]

8.J. Vanderdonckt and F. Bodart. Encapsulating knowledge
for intelligent automatic interaction objects selection.
Proc. of INTERACT '93 and CHI '93 Conference on
Human Factors in Computing Systems, Amsterdam,
1993.

9.M. Manca y F. Paternò, Distributed User Interfaces with
MARIA. Proc. of Distributed User Interfaces 2011 (DUI
2011) CHI 2011 Workshop, Vancouver, BC, Canada,
May 2011.

10.P. G. Villanueva, J. A. Gallud and R. Tesoriero.
WallShare: A collaborative multi-pointer system for
portable devices. Proc. of Workshop on coupled displays
visual interfaces in conjunction with AVI 2010, pp. 31-
34. May 25th, 2010. Rome, Italy.

11.P. G. Villanueva, J. A. Gallud and R. Tesoriero. Multi-
pointer and Collaborative System for Mobile Devices.
Proc. of the MobileHCI 2010. ACM. September 7th-10th,
2010. Lisbon, Portugal.

12. P. G. Villanueva, R. Tesoriero, J. A. Gallud, A. H.
Altalhi. A Framework to Develop Web Applications
Based on RFID Panels. International Journal of Universal
Computer Science. ISSN: 0948-695x, vol. 19(12), pp
1792-1807. 2013.

9

13.R. Tesoriero, P. G. Villanueva, H. M. Fardoun, G.
Sebastián. Distributed User Interfaces in Public Spaces
using RFID-based Panels. International Journal of
Human-Computer Studies. ISSN: 1071-5819, vol. 72(1),
pp 111–125. 2014.

14.P. G. Villanueva, R. Tesoriero and J. A. Gallud.
Distributing web components in a display ecosystem
using Proxywork. BCS-HCI '13. Proc. of the 27th

International BCS Human Computer Interaction
Conference, Brunel University, London, UK, 9-13
September 2013, art. 28.
URL=http://dl.acm.org/citation.cfm?id=2578048

15.P. G. Villanueva. Distributable User Interfaces. PhD
Thesis. University of Castilla-La Mancha. 2014.

10

Towards User-Centered Distributed Mashups
Oliver Mroß

Faculty of Computer Science
Technische Universität Dresden

Dresden, Germany
oliver.mross@tu-dresden.de

Klaus Meißner
Faculty of Computer Science

Technische Universität Dresden
Dresden, Germany

klaus.meissner@tu-dresden.de

ABSTRACT
Today’s availability of web-enabled and mobile devices has
led to a paradigm shift in the development of web applica-
tions. They are no longer restricted to a single device that is
used by a single user. Future web applications are distributed
across the borders of heterogeneous devices as a set of in-
terconnected components using a message brokering system.
With this approach new challenges arise, e. g., the inclusion
of dynamically available devices during the application’s load
time or the discovery and integration of their capabilities (sen-
sors, communication interfaces or installed apps etc.) at run
time. In this paper, we present our ongoing work towards
a distributed client-server runtime environment (CSR) that
should support the dynamic distribution and user-centered
adaptation of composite multi-device web applications – de-
noted as distributed mashups.

Author Keywords
Distributed Mashups; Multi-Device Web Application;
Dynamic Device Composition.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques;
D.2.11 Software Architectures: Domain-specific architec-
tures

INTRODUCTION
The increasing availability of web-enabled and interactive de-
vices leads to the need for the combined use of their capabil-
ities, for instance, to use the smart phone’s motion sensor as
input source for a remote controller scenario or using a tablet
PC as a collaborative notepad in a multi-user application. Re-
garding the combination of devices, we are following the ap-
proach of [2] and use the term multi-device application for
denoting such scenarios. They are subject to dynamic varia-
tions of their physical execution environment, due to joining
and leaving (mobile) devices. Furthermore, integrated appli-
cation fragments (presentation, application logic, data access

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permissions@acm.org. ,July 01 2014,
Toulouse, France Copyright 2014 ACM 978-1-60558-724-0/14/07. . . $15.00

DOI http://dx.doi.org/10.1145/2677356.2677658

or device-specific I/O components) are simultaneously dis-
tributed across heterogeneous platforms and are communicat-
ing with each other based on a distributed message broker-
ing system. Considering these characteristics, current devel-
opment methods (for desktop and web applications or apps)
are resulting in an unreasonable development effort, due to
the lack of concepts for supporting the context-sensitive and
platform-independent distribution of application fragments as
well as its adaptation at run time.

Model-based distributed UI development approaches [7, 8]
are lacking concepts for adapting the application’s composi-
tion and communication relations as consequence on changes
in the physical environment. Günalp et al. propose a
rule-based development approach for multi-device scenarios,
which empowers the application’s runtime environment to re-
act autonomously on context changes [3]. However, resulting
applications are not flexible enough to address varying user
requirements, for example, to integrate the personal smart
phone situationally as remote presentation controller in an in-
formal team meeting. We argue that the application developer
neither can anticipate all relevant situations nor the expecta-
tions of the user.

Considering the dynamic nature of multi-device applications,
the mashup paradigm becomes an interesting development
approach, because mashup components are independently ex-
ecutable and loose-coupled web-based building blocks with a
clearly defined interface facilitating their use in dynamic ap-
plication creation and adaptation scenarios. Moreover, com-
bining the mashup paradigm with new extension mechanisms
of modern web-browsers, e. g., by using the Cordova frame-
work1, the mashup development approach is no longer re-
stricted to web resources. However, there are a few multi-
device mashup approaches [4, 5], which are only focusing on
the distribution of UI elements without providing concepts for
the dynamic discovery and integration of device capabilities
and resources encapsulated as mashup components with ad-
ditional context properties, such as the location, constrained
resources or access privileges.

In this paper, we introduce our model-based approach for de-
veloping multi-device mashups considering the dynamic na-
ture of their physical execution environment at load and run
time. In Section 2, we describe a sample scenario for illus-
trating our vision of an adaptable multi-device mashup. Af-
terwards, Section 3 comprises fundamental concepts and a
meta-model for describing the mashup’s initial distribution in
1https://cordova.apache.org/

1

a multi-device scenario. In Section 4, we discuss adaptation
use cases and immanent challenges for our ongoing work to-
wards user-centered distributed mashups.

SCENARIO
John would like to present some slides to a group of peo-
ple. To this end, he connects his tablet pc with a smart board
virtually and starts loading a distributed slide presentation
mashup. The application’s bootstrap process includes several
steps (cf. Figure 1). At first, John logs on to a multi-device
mashup web-service (MDMS) using the browser-based client
runtime that registers his current tablet pc (step 1).

Figure 1. Client-Server-Runtime Overview

We assume, the smart board was already registered at the
MDMS. After John has logged on, his tablet pc receives a
list of available mashups from the MDMS. John selects a
slide presentation mashup, whose components (C1 - slide
controller, C2 - slide loader, C3 - slide presenter) will be dis-
tributed to his tablet pc and the smart board simultaneously
(step 3). While John is presenting his slides, suddenly Jane
has some regarding questions. In order to enhance the com-
munication, she prefers to use a visual sketching UI com-
ponent. For this purpose, she logs on to the MDMS and
joins John’s application (step 4). Afterwards she modifies
the application’s composition by integrating (step 5) a vi-
sual sketching component to her notebook (C5) and the smart
board (C4). While Jane is interacting with the sketch com-
ponent presented on her notebook, every modification is syn-
chronized with the instance presented on the smart board.

In the next Section, we describe concepts concerning the
mashup’s composition and component model, communica-
tion relations and its initial distribution with respect to the
potentially changing physical execution environment.

DISTRIBUTED MASHUPS
With the term distributed mashup we follow the idea of a vir-
tual and distributed application space [1] in that each device

could be regarded as runtime container to execute loose cou-
pled black-box mashup components, which are communicat-
ing across device/platform borders using a server-side mes-
sage brokering system based on the event publish-subscribe
paradigm. The physical environment of a distributed mashup
is subject to dynamic variations, due to joining and leaving
devices. In our approach, we denote the abstraction of the
application’s physical environment on runtime layer as envi-
ronment model. It aggregates functional and non-functional
properties of registered containers at run time. Moreover, we
distinguish between the concept of a global and an applica-
tion specific environment model. The former includes all de-
vices registered on the runtime layer. The latter is bound to a
specific application space and contains only those containers,
which were added into the application space explicitly.

Our approach is based on the component and composition
meta-model developed as results of the CRUISe-project [9].
In the next Section, we give a brief introduction to relevant
concepts. For describing the application’s distribution state
as well as validating its modifications at run time, we added
further concepts on the meta-model layer, which we charac-
terize afterwards.

Composition and Component Model
The application’s structure, communication behavior and dis-
tribution state is defined respectively in the conceptual-,
communication- and distribution model as entities of the com-
position model, such as presented in Figure 2. The conceptual
model contains functional requirements modeled as compo-
nent entities by reusing concepts of the following component
meta model. Uni- and bidirectional communication chan-
nels between mashup components are defined in the com-
munication model that supports following paradigms: fire-
and-forget, request-response and bidirectional property syn-
chronization. Assigning components to different devices at
load- and run-time is realized using concepts of the distribu-
tion model, which is described in the next Section.

Each mashup component – encapsulating application or web
service logic as well as UI elements – adheres to the same
platform independent meta-model describing the component
interface using three abstractions: operations, events and
properties (cf. Figure 2). Furthermore, the component model
includes domain ontology concepts to specify data and func-
tional semantics of the interface elements [9]. In addition, it
includes concepts for describing the component’s dependen-
cies (e. g., external source code, documents etc.) and their
required platform or device features, e. g., sensor APIs, func-
tionalities of native apps or embedded in- and output devices.
The latter aspect is required to compute possible distribution
changes or device capability integration options.

Distribution of Mashup Components
Considering the dynamic device availability, we provide the
distribution and context condition as elementary concepts of
the distribution model, such as presented in Figure 2. A dis-
tribution represents the assignment of a group of components
to one or more runtime containers. The amount of poten-
tial runtime containers can be greater than one, because we
model the distribution of at least one component as context

2

Figure 2. Overview of distributed mashup meta model

condition request. Concerning the latter concept, we follow
the definition of the term delivery context [6] and use device,
platform and modality characteristics to describe the required
container and its “carrier” device. A fitting example is the
following query statement:
SELECT ?c WHERE {
?c a s:CSRClient; s:runOn ?d.
?d a d:Smartphone; d:hasOutputDevice ?td.
?td a d:Display; m:supportsModality m:Tactile.

}

It selects a container that is executed on a smart phone, which
is providing a display with tactile input support. The query
statement is formatted using the SPARQL Protocol and RDF
Query Language2 (SPARQL). As statement vocabulary we
use the DoCUMA platform ontology3 that is based on the
concepts defined in the W3C delivery context ontology [6].
Moreover, to determine applicable runtime containers, each
device has to provide a self descriptive profile while joining
into the application space. It comprises concepts of the afore-
mentioned ontology and is aggregated into the environment
model managed by the MDMS.

Before a distributed mashup is generated and initialized, at
least a valid runtime container should be registered in the
application space. From a component’s perspective a run-
time container is valid when it provides all requested features,
e. g., min/max resolution or a specific rendering engine. If no
matching container is available, the user can select between
the cancellation, the interruption of the loading process (until
a new device joins the application space) or the modification
of the application’s composition. The latter end-user devel-
opment aspect is out of scope of this paper. If the loading
process is interrupted, the MDMS will listen for joining con-
tainers. After such an event occurs, the application’s distribu-
tion requirements as well as the device requests of each com-
ponent’s interface are matched against the provided features

2http://www.w3.org/TR/sparql11-overview/
3http://goo.gl/4LeKBX

described in the associated device profile. For each distribu-
tion entity the set of valid distribution targets results from the
intersection between the set of potential distribution targets
and the intersection of those containers, which are able to ex-
ecute the component candidates derived from each associated
component template. In other words, the resulting target set
includes containers, which are able to execute the component
candidates and fulfill the distribution requirements defined in
the application model. They are presented to the user and s/he
can specify the assignment of one or more components with
respect to one or more devices of the application’s environ-
ment model. Besides the mashup’s initialization, we use the
meta-model concepts to serialize and persist the mashup to
reload it in another session, e. g., to continue an interrupted
multi-device presentation.
After we have proposed our initial model-driven development
approach of a distributed mashup, in the next Section we dis-
cuss adaptation use cases – derived from the previous sce-
nario – and their immanent challenges and requirements on a
supporting client-server runtime (CSR) environment.

Adaptation Use Cases
In our vision, we see the user as an integral element of the ap-
plication’s environment, who is able to modify the mashup’s
composition, communication and distribution.
Modifying a predefined application - Due to the device mo-
bility and its constrained resources, loading a predefined dis-
tributed mashup is not always possible. Hence, following
user-centered adaptation options should be supported by the
CSR.
Updating the mashup’s distribution becomes possible by the
provision of a service that recommends valid runtime contain-
ers with regards to a fixed set of components of an associated
distribution item. This option is activated, when every con-
tainer feature request of each component is fulfilled consider-
ing the application-specific environment model, but not each
requirement of the distribution model. If no runtime container
was registered in the application space, the recommendation
service may analyse the global environment model. In this
case, not all valid containers could be integrated automati-
cally, because of restricted access rights. This comes with
the challenge of proposing a valid access right model con-
cerning dynamic distribution state modifications (push/pull
migration/replication) or the integration of protected device
capabilities and resources in public or private scenarios.
Replacing components by alternative variants should be used
in case of fulfilled distribution requirements, but unmet com-
ponent feature requests. Instead of searching for an alterna-
tive container, the aforementioned service recommends func-
tional equivalent and applicable alternatives with respect to
the original components and the associated target container
specified by the user. As mentioned before, loading a pre-
defined mashup can be performed as resumption of a sus-
pended application. This comes with the challenge of ex-
changing state information between original and alternative
components, with different interface configurations. Thus,
the CSR should apply mediation techniques for transferring
component-specific states into a representation applicable by
an alternative component.

3

Joining a running application - After the user registers
her/his personal device at the MDMS, s/he can choose from a
set of active applications, determined from the user’s access
rights. The join into an existing application space results in
the recommendation of following adaptation options.
Distributing new components - For this purpose, either the
user defines target devices at the beginning and afterwards
selects applicable mashup components or at first s/he defines
required components and subsequently choose one or more
target containers currently available. In this use case, the
MDMS recommends components by validating their feature
requirements using reasoning algorithms with respect to the
current state of the application-specific environment model.
To this end, real-time data of each container (current energy
level, processor and memory load etc.) has to be included in
the validation process.
Remote device coupling - After joining into an application,
the user can build up a mental model using a visualization of
associated mashup components and communication channels
for each runtime container registered in the application space.
Selecting an arbitrary component results in several coupling
recommendations. A recommended entity includes the se-
lected component as sender/receiver and another running or
not integrated component. In this use case, the challenge is
the similar to the one described in the first use case. Another
challenge is the dynamic encapsulation of device capabilities
and resources as composable mashup components using the
device profile. Possible solutions are the derivation of match-
ing components or the ad-hoc creation of generic components
using model-to-code transformations executable on each run-
time container.
Dynamic distribution modification - In this use case, we dis-
tinguish between the migration and the replication of mashup
components. Considering the latter approach, two different
options are valid - the coupled and uncoupled replication.
The first copies the component’s state into a corresponding
functional equivalent alternative, that is connected with the
original component through at least a single channel. Migrat-
ing components between different runtime containers modi-
fies the application’s distribution state, but not its composi-
tion and communication. As consequence of migrating UI
components between different devices, replacement strate-
gies should be performed by the MDMS. The immanent chal-
lenge of both distribution update operations is the concep-
tion of a state synchronization and mediation mechanism in
scenarios of heterogeneous but functional equivalent mashup
components.
Leaving a running application - Removing a runtime con-
tainer from an active mashup could lead to the application’s
breakdown, due to missing information providing compo-
nents. Such failure situations should be mitigated by finding
alternatives or migrating mashup components to other devices
or to the MDMS for persisting the application state for later
reuse.

CONCLUSION AND FUTURE WORK
Considering the dynamic nature of multi-device scenarios, we
proposed the use of delivery context condition statements for
describing the application’s initial distribution as well as con-

tainer feature requirements defined in the component model
of a distributed mashup. In combination with semantic de-
vice profiles, our approach can be the basis to perform several
adaptation options at run time in ad-hoc integration scenarios,
which we discussed at the end of this paper.

Our future work comprises the extension of our client-server-
runtime for adapting migrating/replicating components in
heterogeneous multi-device scenarios using a replacement
strategy. Moreover, we will integrate existing mediation tech-
niques to realize the component state transfer described in the
previous Section.

REFERENCES
1. Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman,

J., and Zukowski, D. Challenges: An Application Model
for Pervasive Computing. In Proceedings of the 6th
Annual International Conference on Mobile Computing
and Networking, MobiCom ’00, ACM (New York, NY,
USA, 2000), 266–274.

2. Chmielewski, J., and Walczak, K. Application
architectures for smart multi-device applications. In
Proceedings of the Workshop on Multi-device App
Middleware, ACM (2012), 5.

3. Günalp, O., Gürgen, L., Lestideau, V., and Lalanda, P.
Autonomic Pervasive Applications Driven by Abstract
Specifications. In Proceedings of the 2012 International
Workshop on Self-aware Internet of Things, Self-IoT ’12,
ACM (New York, NY, USA, 2012), 19–24.

4. Husmann, M., Nebeling, M., and Norrie, M. C.
MultiMasher: A Visual Tool for Multi-device Mashups.
In ICWE Workshops, Q. Z. Sheng and J. Kjeldskov, Eds.,
vol. 8295 of Lecture Notes in Computer Science, Springer
(2013), 27–38.

5. Kovachev, D., Renzel, D., Nicolaescu, P., and Klamma,
R. DireWolf - Distributing and Migrating User Interfaces
for Widget-Based Web Applications. In ICWE, F. Daniel,
P. Dolog, and Q. Li, Eds., vol. 7977 of Lecture Notes in
Computer Science, Springer (2013), 99–113.

6. Lewis, R., and Fonseca, J. M. C. Delivery Context
Ontology. http://www.w3.org/TR/dcontology/
(02.04.2014), June 2010.

7. Manca, M., and Paternó, F. Distributing user interfaces
with MARIA. In Distributed User Interfaces 2011 (DUI
2011), CHI 2011 Workshop (2011), 93–96.

8. Manca, M., and Paternó, F. Flexible Support for
Distributing User Interfaces Across Multiple Devices. In
Proceedings of the 9th ACM SIGCHI Italian Chapter
International Conference on Computer-Human
Interaction: Facing Complexity, CHItaly, ACM (New
York, NY, USA, 2011), 191–195.

9. Pietschmann, S., Radeck, C., and Meißner, K.
Semantics-based Discovery, Selection and Mediation for
Presentation-oriented Mashups. In Proceedings of the 5th
International Workshop on Web APIs and Service
Mashups, Mashups ’11, ACM (New York, NY, USA,
2011), 7:1–7:8.

4

http://www.w3.org/TR/dcontology/

Interacting with Tangible Objects in Distributed Settings

Elena de la Guía
Computer Science Research

University of Castilla-La
Mancha, Albacete, Spain
Mariaelena.guia@uclm.es

María D. Lozano
Computer Systems Department

University of Castilla-La
Mancha, Albacete, Spain
Victor.Penichet@uclm.es

 Victor M. R. Penichet
Computer Systems Department

University of Castilla-La
Mancha, Albacete, Spain
Victor.Penichet@uclm.es

ABSTRACT

The rapid evolution of technology has changed the way in
which we can interact with interactive systems. New
physical workspaces have appeared such as Multi-Device
Environments (MDE). These scenarios implicitly support
Distributed User Interfaces allow us to distribute user
interfaces on different devices. In this way, we take
advantages of distributed human innate cognition.
However, interactions with pixels on these GUI screens are
inconsistent with our interactions with the rest of the
physical environment in which we live. In this paper, we
propose two different interaction techniques based on
Tangible User Interfaces (designed with NFC technology).
Then, we discuss the strengths and weaknesses of
interaction techniques in distributed systems settings.

Keywords

Tangible interaction, Distributed User Interfaces

ACM Classification Keywords

H.5.2. [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces, Interaction styles.

INTRODUCTION

The rapid evolution of technology has changed the way in
which we can interact with interactive systems. New
scenarios have appeared such as Multi-Device
Environments (MDE). These scenarios implicitly support
Distributed User Interfaces. According to González [3],
Distributed User Interfaces (DUI) can be classified
depending on the feature of the interface in a MDE. The
interfaces can be divided into or distributed through among
the ecosystem according to state, platform and distribution
properties. The main goal of a DUI is to facilitate users
tasks in the software system by means of providing them
with an optimal configuration of user interface which are
available in the user working environment. According to
Vandervelpen and Coninx [17] we can find two types of

interactive components that make up the system.
Interaction Resources (IRs) are atomic input or output
channels that are available and that can be used to carry out
several tasks. This includes I/O facilities like keyboards,
mice, screens, speakers, speech-recognizers. In this context
the resource is limited to a single input or output modality.
Interaction Devices (IDs) are computing systems that
handle the input or send output to individual IRs that are
connected to it. This includes devices such as mobile
devices, desktop computers, and so on. However, the spatial
distribution of interfaces is complex; the main challenge is
how to configure and distribute the IUs among IR, ID to
achieve a usable system. There are studies about it [16],
however they do not emphasize what interaction technique
would be more appropriate depending on the system, user,
task, and so on.

We propose two interaction techniques based on Tangible
User Interfaces (TUI). It refers to user interfaces which give
physical form to digital information [8]. These are settle on
smart objects, and provide a natural and easy style of
interaction that proves intuitive and motivating for non-
experts in technology. They have been developed with NFC
(Near Field Communication) technology.

In the next section, we describe the interaction techniques
used in Multi-Devices Environment. Then, we explain the
novel interaction mechanism found on Tangible User
Interfaces. Afterwards, we evaluated two prototypes that
used Tangible User Interfaces to interact with the system
and discuss advantages, disadvantages and some
conclusions.

INTERACTION TECHNIQUES

An interaction technique is a combination of hardware and
software elements that provides a way for computer users to
accomplish a single task. Its aim is to facilitate user
interaction with the system. That is, it should be intuitive,
simple, easier-to-learn, etc. Several techniques have
proposed to interact with multi-devices environments. In
the next study [14] the authors explored interactions with
connected devices by moving a stylus along paths on a
printed map of the infrastructure that is annotated with
barcodes. Rukzio and Holleis [13] discuss the design space
of interactions and applications enabled by pico projector
units integrated into mobile devices; and projection
showing information related to the object on which the
projector currently focuses on (augmented reality).
Stitching [6] is an interaction technique that allows users to

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.

July 01 2014, Toulouse, France

Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00

http://dx.doi.org/10.1145/2677356.2677659

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Software

combine pen-operated mobile devices utilizing wireless
networking, by using pen gestures that span multiple
displays. Beardsley et al. [1] They interact with the system
through of a handheld projection system that lets users
create opportunistic displays on any suitable nearby surface.
Touching is a technique that involves touching an object,
either with a finger or with a mobile device, to perform a
task. Some examples of projects using this technique can
be found in [2]. Select-and-point [10] consists in a touch-
sensitive tabletop display and surrounding wall screens
which is set up for efficient collaborative works. Scanning,
in this case, the mobile device or any other device is able to
scanne information and interact with the system to provide
a service to the user [18]. Pick & Drog [11] is a pen-based
direct manipulation technique. It allows users to pick up an
object on a display and drop it on another display.
PointRight [9] is a technique founded on a peer-to-peer
pointer and keyboard redirection system that operates in
multi-device environments. On the one hand, Stitching,
Pick&Drog are techniques used to interact with the system
pen and mobile devices. In this particular case, the
combination (IR:pen and ID:mobile devices) requires to
interact with the system. This atomic interaction can be
diversified through the combination with input from
keyboards, mouse, joysticks or sensors. However, almost
all keyboards and pointing devices are tethered to a single
computer; we cannot share a mouse between two users.
Moreover, it can be confusing to distinguish the input
device from its real/corresponding device. On the other
hand, touching, select-and-point, scanning are techniques
based on physical mobile interaction (used like ID). Thus,
the collaborative tasks are more complex, because each user
needs a capable device for it. Furthermore, pointing requires
some cognitive effort to point at the smart device and it
needs line of sight. There are IDs such as Projector, Kinect,
Wii and so on. These permit an interaction technique based
on gestures, being more intuitive by user. However, they
are costly and have complex infrastructures. In addition,
users need considerable concentration and physical skills,
especially from inexperienced users. For instance,
according to Igual [7] the interaction founded on mobile
devices (touching) is difficult to people with limitations. It
was therefore necessary to adapt it to the user. In order to
provide tangible interaction we have based on
Approach&Remove technique. It is a style of interaction
that allows the user to interact with distributed user
interfaces by approaching a mobile device to digitized
objects. Our proposal is supported by this interaction
technique; however we use input and output variants
[12][15].

TANGIBLE USER INTERFACES

In order to interact with the multiple-devices we have
digitalized everyday objects (now smart objects). The
technology used has been NFC. It allows direct
manipulation of wireless network connections by means of
proximal interactions. For that reason, a tag (or more) is

integrated inside the object or card depending on the size of
the object; describing each tag a unique identifier. When the
tangible object is brought closer to the NFC reader in the
mobile device, the NFC tag inside the object is excited by
electromagnetic waves sent by the NFC reader, and then the
controller component sends the identifier to the server. The
server checks this information and returns the appropriate
user interfaces to the output device. We describe two
different types of interaction depending on the interactive
resource used as input in the system. The internal operation
of the system is the same.

Figure 1. Inputs in Distributed Settings a) Interaction
Resource is the smart object; b) Interaction Device is the

mobile device
Input: Smart object
The interaction technique is called Approach&Remove
object. In order to interact with the system, the user needs
tangible user interfaces (smart objects). These interactive
resources used the mobile phone (with an NFC reader) to
connect with the system and send the required task. The
user can interact with the system through everyday objects
such as cards, toys, coins, etc. They only have to bring the
object or tangible interface closer to the mobile device (see
Figure 1a).
Input: Mobile Device
The interaction technique is denominated
Approach&Remove mobile device. The input to use the
system is the mobile phone (interaction devices). The style
of interaction consists in bringing the mobile device close
to a tangible interface. NFC-enabled mobile phones serve
as pointing devices for the interaction with the diverse
content of dynamic NFC-displays, including text,
pictures, links, maps or custom widgets (see Figure 1b).
Output: Mobile Devices and Screen
In order to display the interface results, there are multiple
output devices and multi-modal communication which
permit output from different ways (auditory, visual, textual,
and graphical). In this way, user experience is more
pleasant, satisfactory and they can feel immersed in the
task.

PROTOTYPES

In order to be able to evaluate the interaction techniques
based on tangible user interfaces, we have developed two
prototypes. This section presents their features and explains
how interaction techniques are used in the systems.

A

B

Figure 2. 1.a)Co-Brain Training 1.b) mobile device as input
combined with the smart panel. 2.a) TraInAb Sytem 2.b)

smart object to interact with the system.

Co-Brain Training [4] is a collaborative and interactive
game based on a Distributed and Tangible User Interface in
order to support cognitive training. The interaction
techniques consist in bringing the mobile device close to a
tangible interface (see Figure 2.1a).

TraInAb (Training Intellectual Abilities) [5] is an
interactive and collaborative game designed to stimulate
people with intellectual disabilities. The user can interact
with the system through everyday objects such as cards,
toys, coins, etc. Users only have to bring the object or
tangible interface to the mobile device (with an NFC
reader) (see Figure 2.2a).

EVALUATION AND DISCUSSION

In order to test the strengths and weaknesses of the
interaction style we compared two kinds of interactions in
the prototypes Co-Brain Training and TraInAb. The main
goal was to test the effect of the new user interaction based
on tangible objects. 12 users were recruited, and there were
carried out 3 tasks by means of three different games
(memory, calculation and linguistics). Direct observation
was the method used in this research. The results are as
follows: quantitative data concerning errors in the technique
Approach&Remove mobile device was 17% ‒it is with
regard to the 6% of errors when using the
technique Approach&Remove objects. These studies have
shown that people are able to learn fast and make very few
errors after using it. Common errors are exemplified by
touching NFC tag too briefly, complicating its reading in
the mobile device; or selecting a wrong tag or smart object.
Infrastructure is similar to the previous one but its cost is
higher in the system which uses Approach&Remove mobile
device technique. The higher cost stems from the fact that
each user needs his/her own mobile device with regard to
the other technique which allows them to interact with all
users.

Rating: High,
Medium,Low

Approach&Remove
object

Approach&Remove
mobile device

Error rate Low Medium

Infrastructure
and Cost

Low Medium(each)

Tangibility High Low

Affordance High Medium

Grouping Medium High

Table 1. Comparison of properties of the tangible interaction
techniques

Tangibility is the attribute of being easily detectable with
the senses. The objects are more common and familiar. The
technique Approach&Remove objects offers a high
tangibility. Affordance is often taken as a relation between
an object that affords the user to perform an action.
Grouping, Approach&Remove mobile devices technique
offers the opportunity to group or organize functions or
objects. Moreover, when they need to interact with more
complex interfaces this technique is more appropriate. For
instance, the spelling game had 27 options (related to the
alphabet) and they preferred to use the digitized panels
because if they are looking for any option in the panel these
ones are more organized. That is, if we must distribute
information or need to have it more organized, it is
preferable panels as tangible interface. For this way, the
panels can distribute menus and shortcut to use the system
(see Table 1).

CONCLUSION

In this paper we describe two interaction techniques based
on tangible user interfaces. The main objective is to provide
simple and novel interaction mechanisms for environments
that support distributed user interfaces. We developed and
evaluated two prototypes that implement this concept.
Tangible user interfaces are very intuitive and simple for
users. Using tangible interaction provides benefits as
explained below. Interaction with the system is simple and
intuitive. Common items are familiar and can be easily
assimilated by users, making it more predictable to use.
They do not need prior knowledge of the system or device
to use it. Direct interaction with objects allows a better
understanding of the task. Furthermore, the tangible
interaction is integrated into a real space and therefore it is
always located in a specific place (not just on a screen). In
addition, it allows us to extend a part of user interface in
physical objects, simulating how user usually works in its
surroundings, that is, focusing on a particular task (main
UI) and interacting with everyday objects scattered around.
For future work we want to perform a more detailed
assessment and define patterns or guidelines to help
designers to choose the method of interaction depending on
the task and the user profile.

1.A 1.B

2.A 2.B

http://en.wikipedia.org/wiki/Sense

ACKNOWLEDGMENTS

This research has been partially supported by the
Spanish CICYT research project TIN2011-27767-C02-01,
from the Ministerio de Economía y Competitividad, and
the regional projects with reference PPII10-0300-4174 and
PII2C09-0185-1030, funded by the Junta de Comunidades
de Castilla-La Mancha and the Diputación Provincial de
Albacete.We would also like to especially thank Francisco
Vizcaino García, Erika González ,Yolanda Cotillas and
Nuria Belmonte their collaboration in the project; without
your support all this work would not have been possible.

REFERENCES

1.Beardsley, P., van Baar, J., Raskar, R., Forlines, C. (2005)
Interaction using a handheld projector. IEEE Comput
Graph Appl 25(1):39–43.

2. Broll, G., Graebsch, R., Holleis, P., Wagner, M. Touch
to play: mobile gaming with dynamic, NFC-based
physical user interfaces, Proceedings of the 12th
international conference on Human computer interaction
with mobile devices and services, September 07-10, 2010,
Lisbon, Portugal

3.González, P., Tesoriero, R. and Gallud, J. A. Revisiting
the Concept of Distributed User Interfaces. In Distributed
User Interfaces: Usability and Collaboration. Springer,
Human-Coomputer Interaction Series. Eds. M. D.
Lozano, J. A. Gallud, R. Tesoriero, and V. M. R.
Penichet. ISBN: 978-1-4471-5498-3, pp. 1-15. 2013.
url= http://dx.doi.org/10.1007/978-1-4471-5499-0_1.

4.Guía, E. de la, Lozano, M.D., Penichet, V.M.R: Tangible
and Distributed User Interfaces to Improve Cognitive
Abilities within People Affected by Alzheimer's Disease.
DUI 2013: 3rd Workshop on Distributed User Interfaces:
Models, Methods and Tools. In conjunction with ACM
EICS 2013 June 24th, 2013. London, UK. ISBN-10: 84-
616-4792-0 ISBN-13: 978-84-616-4792-7

5.Guía, E. de la, Lozano,M.D Penichet, V.M.R.: TrainAb:
a solution based on tangible and distributed user
interfaces to improve cognitive disabilities. In Proc. CHI
EA 2013. ACM; 2013, p. 3039-3042. ISBN: 978-1-4503-
1952-2 doi>10.1145/2468356.2479605

6.Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P.,
Smith, M. (2004) Stitching: pen gestures that span
multiple displays. In Proceedings of the working
conference on advanced visual interfaces. ACM, pp 23–
31.

7.Igual, R., Plaza, I., Martín, L., Corbalan, M., Medrano, C.
Guidelines to Design Smartphone Applications for People
with Intellectual Disability: A Practical Experience. In
Ambient Intelligence-Software and Applications;
Springer: Berlin, Germany, 2013; pp. 65–69.

8.Ishii, H. and Ullmer, B. (1997). Tangible bits: towards
seamless interfaces between people, bits and atoms. In
CHI ’97: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 234–241,
New York, NY, USA. ACM Press. 19, 20, 27, 36, 73, 96,
187

9.Johanson, B., Hutchins, G., Winograd, T. and Stone, M.
PointRight: experience with flexible input redirection in
interactive workspaces. In Proceedings of the ACM
Symposium on User Interface Software and Technology,
227–234, 2002.

10.Lee, H., Jeong, H., Lee, J., Yeom, K., Shin, H., Park, J.
(2008) Select-and-point: a novel interface for multi-
device connection and control based on simple hand
gestures. In: CHI’08: extended abstracts on Human
factors in computing systems. ACM, Florence, Italy, pp
3357–3362. doi:10.1145/1358628.1358857

11.Rekimoto, J. (1997) Pick-and-drop: a direct
manipulation technique for multiple computer
environments. In: Proceedings of the 10th annual ACM
symposium on user interface software and technology.
ACM, Banff, AB, Canada, pp 31–39.
doi:10.1145/263407.263505

12.Romero, S., Tesoriero, R., González, P., Gallud, J. A.,
Penichet, V. M. R.: Interactive System based on NFC to
manage Georeferenced Documents. Interacción 2009, X
Congreso Internacional de Interacción Persona-
Ordenador. Barcelona. Septiembre 2009. ISBN-13:978-
84-692-5005-1

13.Rukzio, E., Holleis, P. (2010) Projector phone
interactions: design space and survey. In: Workshop on
coupled display visual interfaces at AVI 2010. Rome,
Italy

14.Siio, I., Masui, T., Fukuchi, K. (1999) Real-world
interaction using the FieldMouse. In: Proceedings of the
12th annual ACM symposium on user interface software
and technology—UIST’99, vol1. ACM Press, pp 113–
119. doi:10.1145/320719.322592.

15.Tesoriero, R., Tébar, R., Gallud, J. A., Penichet, V. M.
R., Lozano, M.: Interactive EcoPanels: Ecological
Interactive Panels based on NFC . Proceedings of the IX
Congreso Internacional de Interacción Persona-Ordenador
Interacción 2008. ISBN: 978-84-691-3871-7; pp 155-
165.

16.Vanderdonckt, J. Distributed User Interfaces: How to
Distribute User Interface Elements across Users, Platforms,
and Environments. Proc. of XI Interacción, 20-32, 2010.

17.Vandervelpen, C., Coninx, K. Towards model based
design support for distributed user interfaces, Proceedings
of the third Nordic conference on Human-computer
interaction, p.61-70, October 23-27, 2004, Tampere,
Finland [doi>10.1145/1028014.1028023]

18.Want, R., Fishkin, K.P., Gujar, A., Harrison, B.L.:
Bridging physical and virtual worlds with electronic tags.
In: Proceedings of the SIGCHI conference on Human
factors in computing systems: the CHI is the limit, ACM
Press, Pittsburgh, Pennsylvania, United States, 1999.

http://dx.doi.org/10.1007/978-1-4471-5499-0_1
http://dl.acm.org/citation.cfm?id=1028023&CFID=444945066&CFTOKEN=55172780
http://dl.acm.org/citation.cfm?id=1028023&CFID=444945066&CFTOKEN=55172780
http://dl.acm.org/citation.cfm?id=1028023&CFID=444945066&CFTOKEN=55172780
http://dl.acm.org/citation.cfm?id=1028023&CFID=444945066&CFTOKEN=55172780
http://dl.acm.org/citation.cfm?id=1028023&CFID=444945066&CFTOKEN=55172780
http://doi.acm.org/10.1145/1028014.1028023

User-aware Distributed User Interface for Tiled-display
Environments

Vı́t Rusňák
Masaryk University

Brno, Czech Republic
xrusnak@fi.muni.cz

Lukáš Ručka
Masaryk University

Brno, Czech Republic
xrucka@fi.muni.cz

ABSTRACT
Large-sized display walls and tabletops stand for state of the
art visualization platforms providing a great opportunity for
group collaborative tasks. The integration of multi-touch
overlays enables multiple users to interact concurrently with
the system. However, continuous user tracking and associa-
tion of input events with users, which could considerably im-
prove user experience, is still a largely unexplored topic. In
this paper, we present a concept of the distributed user-aware
interface and a prototype of the modular framework that im-
plements the concept using commodity sensor devices. Al-
though our target platforms are display walls and tabletops, it
can be utilized for other collaborative systems.

Author Keywords
tiled-display systems;group collaborative environment;user
tracking;distributed user interface

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
Input devices and strategies, Prototyping

INTRODUCTION
Display-wall systems are said to be state of the art platforms
for visualization analysis tasks providing high resolution and
the performance of cluster computing. The concept of Op-
tIPortals [3], envisions the interactive visual multi-user inter-
face to the OptIPuter cyber-infrastructure which extends these
systems with natural user interaction interface 1.

Opposed to single-user platforms such as personal computers,
tablets or smartphones, where users interact with the device
from a close proximity, these advanced group collaborative
systems there can be more interaction zones [7] based on the
distance from the interactive surface (or displays), positioning
accuracy or user’s comfort—up-close, mid-air (or distance)
and remote. Each of them is beneficial for different types of

1OptIPuter is a global-scale computing grid that enables world-wide
collaboration platform that enables effectively share and collaborate
with content-rich data over photonic networks. [15]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

4th Workshop on Distributed User Interfaces and Multimodal Interaction
DUI’14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07$15.00
http://dx.doi.org/10.1145/2677356.2677660

tasks (precise operations in up-close zone vs. global changes
in mid-air zone).

Current prototypes of tiled-display systems allow for multi-
user interaction using IR overlay frames but are unable to as-
sociate input events with individual users [7]. This behavior
results in conflicts during collaborative tasks. For instance,
when two users want to reposition an application window in
opposite trajectories at the same time, the window is magni-
fied. Correct behavior in such case is the reposition of the
window towards the user who touched the surface earlier.

We focus on building come-up-and-use unobtrusive user-
aware interface which enables association of users to in-
put events they performed using commodity multi-touch and
depth sensors. To achieve this goal, we combine an unobtru-
sive user tracking (i.e., marker-less and without wearables)
in combination with location of a touch point registered on a
multi-touch sensor. This could significantly increase a way
of multi-user interaction [14] and makes it more real-world
behaving. Our approach utilizes commodity multi-touch and
depth sensors and enables continuous user tracking and asso-
ciation of them with input events.

The reminder of the paper is organized as follows: first, we
overview related work covering user tracking and distinguish-
ing topics; then, we describe the concept of distributed user-
aware interface followed by description of the framework and
its informal evaluation; finally, we conclude by reviewing of
ongoing work prototype limitations and presentations of on-
going and future work.

RELATED WORK
Until recently, large-sized tiled-display systems were con-
trolled remotely from command line or graphical control in-
terfaces by a single person. Integration of commodity multi-
touch IR overlay frames integrated in these systems open new
possibilities and enabled multi-user group collaborative inter-
action [10, 20]. However, multi-touch overlays can only de-
tect location of a touch event without specification of the user
who did it.

User tracking and distinguishing techniques are heavily ex-
plored in small-sized (single-display) tabletops. Diamond-
Touch [4] uses capacitive coupling through the users touch-
ing the sensor but requires them to stay at one position. Use
of cheap proximity sensors integrated in tabletop borders en-
abled user tracking at a close proximity with the surface [1,
16, 19]. The sensors, on the other hand, struggle with retro-
reflective materials and the issues with problematic detection
of overlapping hands were also reported.

1

Motion capture technology is great for prototyping and evalu-
ation of interaction concepts. Optical motion capture systems
provide robust method for continuous distinguishing of tan-
gible objects (used e.g., in LambdaTable [9]) or even users in
room-sized environments [2]. On the other hand, they might
be obtrusive and unnatural for regular use due to mandatory
installation of markers on pointing devices and clothing of
users.

The advent of MS Kinect depth sensor opened new possibil-
ities for top-view finger and hand tracking and enabled inter-
action above the tabletop surfaces. Various approaches for
finger tracking [13, 12] or arm tracking [6] were published
earlier. LightSpace [21] project utilize multiple depth sensors
for user tracking in small-room environment with multiple in-
teractive surfaces. Existing approaches either track users as a
whole [11] or track only body parts such as arms [6].

In general, individual setups are unique and differ from each
other. Although there are toolkits for developing interactive
interfaces (e.g., [5, 17, 8, 18]), various tactile and vision-
based modalities were used autonomously. On the contrary,
our approach is based on composition of different modalities
to achieve seamless user-aware interface.

DISTRIBUTED USER-AWARE INTERFACE
We define a distributed user-aware interface as an interaction
subsystem of a group collaborative environment that com-
bines multiple input modalities (e.g., different types of sen-
sor or pointing devices) and enables unobtrusive user tracking
and association of input events with individual users. Such
an interface ensures correct response of the system on con-
flict situations. At the same time, all of these tasks require
complex description of multi-touch surface as well as the
space around the tabletop or in front of the display wall where
users operate. Further, we present three essential features of
the distributed user-aware interface: i) complex interaction
space description, ii) user tracking, iii) the association of in-
put events with users.

Complex interaction space description
Users can move freely between the up-close and mid-air inter-
action zones and possibly, there could be more physical sen-
sors or interaction devices (including smartphones or tablets).
These assumptions put our focus on complex description of
an interaction area where users operate. We consider setups,
where a multi-touch surface is the central part of an group col-
laborative system and a depth sensor captures a space above
the interactive surface as seen in Figure 1 and Figure 2. The
interaction space can be defined by mutual positions and re-
lations between physical components—e.g., displays, multi-
touch sensor(s) or depth sensors. Description of the interac-
tion area also implies the existence of a global coordinate sys-
tem where each sensor is aware of position and arrangement
of other devices integrated within the interactive system.

User tracking
While multi-touch sensors provide accurate positioning of
touch events on the surface of up-close interaction zone,
depth sensors provide user tracking in the whole interaction
space. We suppose users interacting with their hands and

b)a)

Figure 1. The tabletop use case—a depth sensor is placed above the
center of the tabletop; a) top view, b) side view.

a) b)

Figure 2. The display wall use case – a depth sensor captures the space
in front of the wall; a) top view, b) side view.

fingers only. Due to this premise, our concept combines a
user tracking and a palm tracking both realized by depth sen-
sors. The user tracking ensures distinguishing of individu-
als within the interaction area and the palm tracking allows
precise delimitation of the area in which fingers can occur.
Consequently, the palm tracking can be used in the mid-air
interaction zone for hand gestures. Depth data help avoiding
occlusion mistakes when users overlap their hands.

The association of input events with users
To provide seamless association of input events with the cor-
responding user aforementioned features are combined. In
principle, it requires to find the intersection of the touch event
described by its coordinates within the touch surface with the
palm of the corresponding user. Thanks to the global coor-
dinate system, we are able to locate precise positions of the
touch surface, interacting users and their palms. Simple com-
parison of the touch event coordinate position with the palm
areas we find a pairing between them. When the touch event
is paired, the identification of the corresponding user is ap-
pended to its description and could be utilized in further pro-
cessing in application.

UNIVERSAL INTERACTION FRAMEWORK
We designed and implemented a framework for building
seamless interaction interfaces for group collaborative sys-
tems based on large tabletops and display walls. Its modular
architecture enables utilization in various systems and an easy
way for implementing new extensions in future. Extensive
context description related to user tracking and distinguish-
ing makes the framework to be used as a basis for further
research in group collaborative systems. The framework im-
plements features of distributed user-aware interface. It can
be also utilized as an natural multi-user interaction subsystem
to existing rendering middleware for tiled-display systems 2.

2E.g., SAGE (http://www.sagecommons.org) or Display-
Cluster(https://www.tacc.utexas.edu/tacc-projects/
displaycluster).

2

http://www.sagecommons.org
https://www.tacc.utexas.edu/tacc-projects/displaycluster
https://www.tacc.utexas.edu/tacc-projects/displaycluster

Figure 3. Framework internal structure
Figure 4. Workflow of a touch event association with a user

Figure 3 shows the internal structure of the framework with
communication and data channels. Framework Core works
as a dispatcher that mediates internal communication be-
tween framework modules. It also provides building the
DAG based on configuration file and its dynamic update if
necessary. Configuration file contains description of physi-
cal components and their configuration, framework modules
and workflow meta-data created during prior calibration of
the interactive system. The framework modules are of three
categories—wrappers, composers and bridges. The input
event processing and the user tracking are realized in pro-
cessing chain, which is represented by a direct acyclic graph
(DAG). Vertices represent framework modules and oriented
edges represent data flow between them as shown in Figure 4.

Wrappers provide an interface between physical sensors and
the unified framework environment. They convert incom-
ing raw data from devices to a framework communication
protocol. Each wrapper module represents one physical de-
vice. Currently, we distinguish wrappers of two types—
multi-touch and tracking wrappers. Multi-touch wrappers
perform direct transformation of raw sensor data—i.e., touch
point coordinates—to pointer message of the communication
protocol. Tracking wrappers perform complex processing of
input data related to tracking of users and individual body
parts. The depth sensor tracking wrapper performs object de-
tection and skeleton tracking to find and track image blobs
describing users or their palms and returns messages describ-
ing palms with corresponding user IDs for each frame.

The composer module receives messages from the wrappers
and provides the association of touch inputs with correspond-
ing image blobs. In principle, the algorithm pairs a touch
point with an image blob representing user’s palm as de-
scribed in previous section. The outgoing messages contain
positions of input events with auxiliary information about as-
sociated user IDs.

Since an internal communication usually varies at various vi-
sualization platforms, it is necessary to generate platform-
specific control messages on the framework output. The

bridge module receives messages from the composer and
translates framework communication protocol messages to
the target visualization middleware.

The communication protocol of the framework is based on
Open Sound Control format 3, which provides an efficient bi-
nary encoding method for the transmission of arbitrary con-
troller data. Communication protocol messages are of two
types describing either static representation of the system
(sensor properties, mutual position of devices) or its dynamic
behavior (location of users, their palms and touch events).
Further description of the protocol is beyond the scope of this
paper.

The framework is implemented in C++. We implemented the
multi-touch wrapper and two tracking wrappers for depth sen-
sors (for top-view and rear-view tracking), composer module
and bridge module to selected distributed visualization mid-
dleware (SAGE) so far. The informal evaluation was focused
on the accuracy of event-to-user association. We tested the
framework in both tabletop and display-wall settings with a
single depth sensor tracking. The algorithm associated more
than 90 % of registered touch points with users correctly.
False associations emerged when users stand close to each
other since user tracking algorithms were unable to distin-
guish them correctly and when one user completely over-
lapped hands by their heads or torsos. Further improvements
in occlusion handling might be realized with involving addi-
tional depth sensors in different placements and will be ex-
plored in future. Beside the accuracy evaluation, we mea-
sured end-to-end latency of the processing chain from the
moment when user touched the surface till the response of the
system. Measured latency was 311± 12ms (24 repetitions of
the task). From the total time, the interaction framework oc-
cupied 78± 2ms, SAGE middleware took the rest (including
complete background color change). The large portion of la-
tency is caused by SAGE middleware itself and its sources
will be investigated in future.

3http://opensoundcontrol.org/specification

3

http://opensoundcontrol.org/specification

CONCLUSION AND FUTURE WORK
Extending multi-touch sensor with an association of input
events with users is the next step towards the real-world in-
teraction experiences in group collaborative systems. In our
work, we presented the concept of distributed user-aware in-
terface based on combination of multiple input modalities
provided by multi-touch and depth sensors.

We further presented the framework for building unobtrusive
DUIs for large-sized visualization systems and shortly sum-
marized the results of its informal evaluation. Although we
demonstrated the framework on display-wall and tabletop use
cases, it can be easily adaptable for other types of distributed
user interface with multi-surface and/or multi-display envi-
ronments where it could serve as complex multi-modal inter-
action input layer.

Our initial observations are quite encouraging. The proof-of-
concept evaluation showed the processing speed of the frame-
work is high enough to ensure real-time event processing.
We will continue with integration of multiple depth sensors
to handle occlusion problems. The framework is also ready
for an extension towards mid-air interaction zone where users
can interact with hand gestures in space or using hand-held
devices.

ACKNOWLEDGMENTS
This work has been kindly supported by CESNET Large
Infrastructure Project (LM2010005) and internal grants of
Masaryk University (MUNI33/022012, MUNI33/192013).

REFERENCES
1. Annett, M., et al. Medusa: A Proximity-Aware

Multi-Touch Tabletop. In Proc. UIST ’11 (2011),
337–346.

2. Ballendat, T., Marquardt, N., and Greenberg, S.
Proxemic Interaction: Designing for a Proximity and
Orientation-Aware Environment. In Proc. ITS ’10
(2010), 121–130.

3. DeFanti, T. A., et al. The OptIPortal, a scalable
visualization, storage, and computing interface device
for the OptiPuter. Future Generation Computer Systems
25, 2 (2009), 114 – 123.

4. Dietz, P., et al. DiamondTouch: A Multi-User Touch
Technology. In Proc. UIST ’11 (2011), 219–226.

5. Dragicevic, P., and Fekete, J.-D. Support for Input
Adaptability in the ICon Toolkit. In Proc. ICMI ’04
(2004), 212–219.

6. Haubner, N., et al. Detecting interaction above digital
tabletops using a single depth camera. Machine Vision
and Applications 24, 8 (Aug. 2013), 1575–1587.

7. Jagodic, R. Collaborative Interaction And Display Space
Organization In Large High-Resolution Environments.
Ph.D. thesis, University of Illinois, Chicago, 2011.

8. Kim, M., Cho, Y., and Park, K. S. Design and
Development of a Distributed Tabletop System Using
EBITA Framework. In Proc. of the 4th International
Conference on Ubiquitous Information Technologies
Applications, ICUT ’09 (Dec. 2009), 1–6.

9. Krumbholz, C., Kooima, R., and Rao, A. Tangible User
Interface Testing on the LambdaTable: A High
Resolution Tiled LCD Tabletop. Interactions of the
ACM 14 (2006), 15–22.

10. Leigh, J., and Brown, M. Cyber-Commons: merging
real and virtual worlds. Comm. of the ACM 51, 1 (2008),
82–85.

11. Migniot, C., and Fakhreddine, A. 3D Human Tracking
from Depth Cue in a Buying Behavior Analysis Context.
In Proc. 15th CAIP, CAIP 2013 (2013).

12. Murugappan, S., et al. Extended Multitouch: Recovering
Touch Posture and Differentiating Users Using a Depth
Camera. In Proc. of the 25th Annual ACM Symposium
on User Interface Software and Technology, UIST ’12,
ACM (New York, NY, USA, 2012), 487–496.

13. Ramakers, R., et al. Carpus: A Non-intrusive User
Identification Technique for Interactive Surfaces. In
Proc. of the 25th Annual ACM Symposium on User
Interface Software and Technology, UIST ’12, ACM
(New York, NY, USA, 2012), 35–44.

14. Schmidt, G., et al. A Survey of Large High-Resolution
Display Technologies, Techniques, and Applications. In
Proc. of the IEEE Virtual Reality Conference 2006,
IEEE (2006), 223–236.

15. Smarr, L. L., et al. The OptIPuter. Comm. of the ACM
46, 11 (Nov. 2003), 58–67.

16. Tanase, C. A., et al. Detecting and Tracking Multiple
Users in the Proximity of Interactive Tabletops.
Advances in Electrical and Computer Engineering 8, 2
(2008), 61–63.

17. Tuddenham, P., and Robinson, P. T3: A Toolkit for
High-Resolution Tabletop Interfaces. In Proc. of the
2006 ACM Conference on Computer Supported
Cooperative Work, CSCW ’06 (2006), 3–4.

18. van de Camp, F., and Stiefelhagen, R. GlueTK: A
Framework for Multi-modal, Multi-display
Human-machine-interaction. In Proc. of the 2013
International Conference on Intelligent User Interfaces,
IUI ’13, ACM (New York, NY, USA, 2013), 329–338.

19. Walther-Franks, B., et al. User Detection for a
Multi-touch Table via Proximity Sensors. In Proc. of the
ACM International Conference on Interactive Tabletops
and Surfaces 2008, ITS ’08, ACM (2008), 2 pp.

20. Westing, B., et al. Integrating Multi-touch in
High-resolution Display Environments. In State of the
Practice Reports, SC ’11 (2011), 8:1–8:9.

21. Wilson, A. D., and Benko, H. Combining Multiple
Depth Cameras and Projectors for Interactions on,
Above and Between Surfaces. In Proc. of the 23Nd
Annual ACM Symposium on User Interface Software
and Technology, UIST ’10, ACM (New York, NY, USA,
2010), 273–282.

4

Context-sensitive and Collaborative application for
Distributed User Interfaces on tabletops

Amira Bouabid
LAMIH-UMR CNRS 8201,

Univ. of Valenciennes, France
UR SETIT, University of Sfax-

Tunisia PB 1175 -3038
amira.bouabid@gmail.com

Sophie Lepreux,
Christophe Kolski

LAMIH-UMR CNRS 8201,
Univ. of Valenciennes, France
{firstname.lastname}@univ-

valenciennes.fr

Clémentine Havrez
LAMIH-UMR CNRS 8201,

Univ. of Valenciennes, France
Play Research Lab – CCI
Grand-Hainaut, France

clementine.havrez@univ-
valenciennes.fr

ABSTRACT

This paper focuses on collaborative work on interactive
tabletops. To optimize the travel time of team members
(remote workplace, telecommuting, and so on),
collaborative work is now often remotely done. This brings
many user interfaces issues between distributed platforms
of each member. In the domain of context-sensitive user
interfaces, which aims at an adaptation to the users, the
platforms and the environment, context models have been
proposed in the literature. We propose, in this paper, a
context model for distributed applications centered on
collaboration and interactive tabletops. The proposed model
is validated by a distributed application, which is developed
on two interactive tabletops with tangible interaction; these
tabletops are equipped with RFID technology. This
application, which has educational purposes, highlights the
collaborative aspect and exchanges between remote users.
The paper ends with a conclusion and several perspectives.

Author Keywords :

Context; Model; Distribution; Collaboration; Interactive
tabletop; Tangible object; RFID.

ACM Classification Keywords :

 H.5.2; H.5.3. Information Interfaces and Presentation
(e.g.HCI): User Interfaces; Group and Organization
Interfaces

INTRODUCTION

With the development of remote work on various platforms,
user interfaces have evolved. In the 2000s, an application
was intended for a single end user and worked on a single
platform in a single environment. Nomadic applications
engendered researches about the adaptation of applications
to the various types of platform (e.g. PDA, Smartphone).
Thus, the consideration of the interaction context became

essential for their adaptation. The introduction of
interaction surfaces with a more important size has led to
applications available to multiple users interacting in a
single environment and on the same support [13]. The
improvement of the network capacities has brought new
remote collaborative applications based on a variety of
platforms [9]. This led to treat the distribution of user
interfaces. Collaboration became possible between users in
the same interaction context or in different contexts.

This paper focuses on collaborative interactions on
interactive tabletops. Section 2 presents the state of the art
on collaboration. Some types of collaboration are presented
with an example for each type. Section 3 is dedicated to
present our proposition. It is a context model which
supports collaboration between remote or collocated users.
In section 4, a case study on a pedagogical application
adapted from [10] is shown on interactive tabletops with a
distributed tangible interaction. The paper ends with a
conclusion and research perspectives.

COLLABORATION AND INTERACTIVE TABLETOPS

The high quality networks coupled with the arrival of
efficient systems increases the remote collaborative work.
Many researches are carried out in the field of CSCW since
[7]. Some researches dealing with collaboration are focused
on many domains, such as education [11], information
retrieval on the web [6, 5], and so on. In this paper, we
particularly focus on collaboration via interactive tabletops
according to two types of collaboration: (1) collaboration
where the team is in the same workspace (co-located) and
(2) remote collaboration (distributed).

The technology of interactive tabletops allows sharing
information and tasks between team members located face
to face or side by side thanks to their large surface. It is
therefore particularly suitable for co-located collaboration.
Interactive tabletops provide the ability to handle multiple
real and / or virtual objects depending on the capture
technology used.

The DTLens system [4] uses an interactive tabletop in a
multi-user environment. It is based on a zoom-in-context
that enables group exploration of spatial data with multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions fromPermissions@acm.org.
July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677661

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2677356.2677661

individual lenses on the same direct-touch interactive
tabletop.

Most of the works, which aim to realize distributed
collaborative systems, seek to find a good remotely data
presentation to perform a task or a common work between
the different members of a geographically dispersed team
[2]. Balakrishnan and colleagues are looking for solutions
to solve complex problems by sharing remote data
visualizations [1]. They conclude that the more members
have access to a complete visualization of their data, the
more they can be fruitful and provide solutions to problems.
Another research encourages task sharing and data
personalization in a collaborative framework: Brennan and
colleagues adopt an approach that requires the explicit
sharing and merging views of data during distributed
analysis [2]. In this way team members can first work
separately on sub-tasks, and then gather all the ideas in a
common view that takes charge of the construction of the
common sense. The Keel system [8], which is dedicated to
analysts of distributed data, offers a solution for group-
work. Each member works in his/her personal workspace
and offers the data considered as appropriated in the
common workspace. This method allows the implicit
sharing of information.

Collaboration takes place in a collaborative environment.
This environment can support two types of interaction:
synchronous or asynchronous [14]. The types depend on the
goal of the application and the manner in which several
collaborators interact. [15] mentions a type of interaction
called semi-synchronization. We face this situation when it
is possible for some users to see and interact with the work
of other absent users. This is possible thanks to traceability
of past activities.

In the case of the tangible interaction, the concept of
Tangiget was proposed in [13]. Tangigets are tangible
objects which support the interaction on one or several
tabletops. They are divided into six categories: (1) Control
objects of the application, (2) Context objects of the
application, (3) Control of the interface objects, (4)
Communication objects, (5) Coordination objects (6)
Creation objects. Among these categories, we note that
some Tangigets support communication and coordination,
two activities required during collaboration. They are
exploited in our proposition.

Figure 1. Context model focused on collaboration properties

PROPOSITION

Our proposition is based on the work of Calvary and
colleagues [3]: they define the context as a triplet <user,
platform, environment>. This model was adapted by [9] to
focus on interactions on interactive tabletops in a
distributed context. Our goal is to incorporate in this
previous context model [9] the notions linked with
collaboration presented above and the different types of
Tangigets used for collaboration between remote tables.

Main evolutions are shown in bold in the Figure 1.
Concerning the user part, the most significant changes are
the adding of a reflexive relationship between users and of a
Collaboration class. This class contains the properties of
the collaboration between users. It sets the privileges
granted to each user according to his or her role in the
application and the social link between the users who
collaborate. Another class named Type of collaboration is
added. This class specifies the type of collaboration
between users. An Interact on relationship is added
between user and collaborative environment in which
he/she interacts. Concerning the environment part, a
relationship named realise on is created between tasks and
collaborative environment. Another relationship named
takes place on specifies the environment in which the
collaboration is performed. Concerning the platform part,
the several categories of Tangigets were introduced in the
model through six new classes. They are connected either to
the Collaboration class or to the local tasks.

CASE STUDY: COLLABORATIVE APPLICATION

The “learning color” application (previously proposed and
described in [10]) is developed with a collaborative goal,
following a scenario inspired from [9] in which a child and
parents interact in a distributed manner. This distribution is
achieved through a multi-agent system developed with
JADE [12]. The child is doing his or her color learning
exercise on one tabletop. Parents are in another room where
they also have a tabletop. The two tabletops are connected.
There could be several users on each table. The scenario
which aims to generate collaboration is: "The child has a
difficulty; he or she wants to seek assistance from parents
who are distant but also possess an interactive tabletop.
Parents wish to let the child work independently but also
want to control the work done by the child without
disturbing him or her with their presence."

A remote collaboration between users is possible. The child
can ask parents for help. The Parents can have a
visualization of child labor. The picture shown in Figure 2
shows the distributed application on both TangiSense
tabletops equipped with RFID technology (developed by
the RFidées Company, http://www.rfidees.fr/). On one side
(child), we see tangible objects placed by the child and their
virtual feedback. On the right side, the parents have a view
of objects put by the child. The Parents in this way can
monitor the progress of the game on the tabletop without
having to move.

In Figure 3, we present the object diagram of the Request
for assistance collaborative use case. We see in this figure
the Tangigets used for the realization of a distributed task
between a child and his or her father.

Figure 2. Picture of the distributed application showing

the child’s view on the left side (with tangible objects) and
the parents’ view on the right side (with virtual objects as

feedback).
CONCLUSION AND PERSPECTIVES

In this paper, we focused on the concept of collaboration
between users on interactive tabletops involving distributed
user interfaces. Two types of collaboration were
considered: co-located collaboration and distributed
collaboration. Based on this notion of collaboration
exploiting a distribution of user interfaces, a context model
has been proposed, built on the distributed interfaces and
integrating collaboration features on tangible inter-
connected tabletops. A case study involving two RFID
interactive tabletops with tangible objects implements this
model. As research perspectives we aim to diversify the
types of distributed platforms and to implement variants of
the tangigets proposed in [13].

ACKNOWLEDGMENTS

This research was partially financed by the French National
Research Agency (ANR IMAGIT project ANR-10-CORD-
017, partners LIG & RFIdees). We would like to thank the
Region Nord-Pas de Calais, France for its support, as well
as E. Adam, S. Kubicki, Y. Lebrun & R. Mandiau.

REFERENCES

1. Balakrishnan, A. D., Fussell, S. R., Kiesler, S., and
Kittur, A. Pitfalls of information access with
visualizations in remote collaborative analysis. In Proc.
of CSCW (2010), 411–420.

2. Brennan, S. E., Mueller, K., Zelinsky, G., Amakrishnan
I., Warren, D. S., and Kaufman, A. Towards a Multi-
Analyst, Collaborative Framework for Visual Analytics.
In Proc. of VAST, (2006), 129–136.

3. Calvary, G., Demeure, A., Coutaz, J., and Dâassi, O.
Adaptation des Interfaces Homme-Machine à leur
contexte d’usage. Revue d’intelligence artificielle 18, 4
(2004), 577–606.

Figure 3. Object diagram for the use case: request for assistance

4. Forlines, C. and Shen, C. DTLens: Multi-user Tabletop
Spatial Data Exploration. In Proc. of UIST (2005), 119–
122.

5. Hansen, P., and Jarvelin, K. Collaborative Information
Retrieval in an Information-Intensive Domain.
Information Processing and Management 41, 5 (2005),
1101-1119.

6. Isenberg, P., and Fisher, D. Collaborative Brushing and
Linking for Co-located Visual Analytics of Document.
Collections IEEE-VGTC Symposium on visualization,
Volume 28 (2009).

7. Johansen, R. Groupware-Computer Support for
Business Teams. The Free Press (1988).

8. Keel, P. E. Collaborative Visual Analytics: Inferring
from the Spatia Organization and Collaborative Use of
Information. In Proc. of VAST, (2006), 137–144.

9. Kubicki, S., Lepreux, S., and Kolski, C. Distributed UI
on Interactive tabletops: issues and context model. In
M.D. Lozano, J.A. Gallud, R. Tesoriero, V.M.R.
Penichet (Eds.), Distributed User Interfaces:
Collaboration and Usability, Springer, 27-38.

10. Kubicki, S., Lepreux, S., Kolski, C. Evaluation of an
interactive table with tangible objects: Application with

children in a classroom. Proceedings 2nd Workshop on
Child Computer Interaction, CHI'2011, 70-73 (2011).

11. Large, A., and Beheshti, J. The web as a classroom
resource: Reactions from the users. Journal of the
American Society for Information Science, 51(12),
1069–1080. (2000).

12. Lebrun, Y., Lepreux, S., Kolski, C., and Mandiau, R.
Combination between Multi-Agent System and
Tangigets for DUI Design on several Tabletops. 3rd
Workshop on Distributed User Interfaces, pp. 54-57,
(2013).

13. Lepreux, S., Kubicki, S., Kolski, C., and Caelen, J.
From Centralized interactive tabletops to Distributed
Surfaces: the Tangiget concept: International Journal of
Human-Computer Interaction, 28 (11), 709-721 (2012).

14. Yang, S., Lu, Y., Gupta, S., and Cao, Y. Does context
matter? The impact of use context on mobile internet
adoption. International Journal of Human-Computer
Interaction, 28(8), 530–541. (2012).

15. Yarosh, S., Cuzzort, S., Müller, H., and Abowd, G. D.
Developing a Media Space for Remote synchronous
Parent–Child Interaction. In Proc. IDC (2009)

Fault-Tolerant User Interfaces for Critical Systems:
Duplication, Redundancy and Diversity as New

Dimensions of Distributed User Interfaces
Camille Fayollas, Célia Martinie, David Navarre, Philippe Palanque, Racim Fahssi

Institute of Research in Informatics of Toulouse, University of Toulouse
Interactive Critical Systems (ICS)

118 route de Narbonne, 31042 Toulouse Cedex 9, France
lastname@irit.fr

ABSTRACT
Assuring that operators will be able to perform their
activities even thought the interactive system exhibits
failures is one of the main issues to address when designing
and implementing interactive systems in safety critical
contexts. The zero-defect approaches (usually based on
formal approaches such as [5]) try to guarantee that the
interactive system will be defect free and thus will be fully
functional during operations. While this has been proved a
good mean for removing faults and bugs at development
time, natural faults (such as bit-flips due to radiations) are
beyond their reach. To address this kind of faults three main
approaches are available: include fault tolerant mechanisms
such as the ones offered by self-checking user interfaces
[7], reconfigure the user interface and the interaction
techniques so that part of the operations can still take place
[4] or duplicate interactive systems and their user interfaces
so that if one system fails, operation can still take place
using a redundant one. This position paper investigates this
last option connecting this redundancy approach to the
concept of Distributed User Interfaces that provide a
generic framework for understanding both their advantages
and their limitations.

Author Keywords
Model-Based approaches, formal description techniques,
fault-tolerance, interactive software engineering, distributed
user interfaces.

ACM Classification Keywords
D.2.2 [Software] Design Tools and Techniques - Computer-
aided software engineering (CASE), H.5.2 [Information
Interfaces and Presentation]: User Interfaces - Interaction
styles.

INTRODUCTION
Systems which support the management of complex tasks
and of a huge amount of information usually require
Distributed User Interfaces (DUIs) where information
display may appear on various output devices and input of
information can be performed by the operators using several
input devices.

Several definitions of distributed user interfaces co-exist
and present complementary viewpoints. For Vanderdonckt
[8], a UI distribution “concerns the repartition of one or
many elements from one or many user interfaces in order to
support one or many users to carry out one or many tasks on
one or many domains in one or many contexts of use, each
context of use consisting of users, platforms, and
environments”. Another definition proposed by Elmqvist
[2] identifies several dimensions for the distribution of UI
components: input, output, platform, space and time.
Demeure et al. [1] also propose a reference framework
(called 4C) to analyse DUIs, which is composed of four
concepts: computation, coordination, communication and
configuration. Villanueva et al. [9] also proposes a
metamodel to classify UIs as Divisible/Undivisible and
Distributable/Undistributable. In this position paper we
advocate for a task and context based approach for the
design of DUI. For this reason the contribution fits better
with the first definition as it explicitly and directly binds the
tasks and context of use to the DUI.

Assuring that operators will be able to perform their
activities even thought the interactive system exhibits
failures is one of the main issues to address when designing
and implementing interactive systems in safety critical
contexts. The zero-defect approaches (usually based on
formal approaches such as [5]) try to guarantee that the
interactive system will be defect free and thus will be fully
functional during operations. While this has been proved a
good mean for removing faults and bugs at development
time, natural faults (such as bit-flips due to radiations) are
beyond their reach. To address this kind of faults three main
approaches are available: include fault tolerant mechanisms
such as the ones offered by self-checking user interfaces
[7], reconfigure the user interface and the interaction
techniques so that part of the operations can still take place
[4] or duplicate interactive systems and their user interfaces
so that if one system fails, operation can still take place
using a redundant one.

This position paper investigates this last option connecting
this redundancy approach to the concept of Distributed User
Interfaces that provide a generic framework for
understanding both their advantages and their limitations.

Next section presents briefly the concepts behind user
interface redundancy and its relationship with distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

DUI '14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677662

user interfaces. The following section presents on a case in
the avionics domain how such redundancy has been
introduced in the past and how the requirement of diversity
brings interesting challenges both in terms of design and in
terms of use of these interfaces. Last section briefly
summarizes the paper and highlights some research
questions that could be discussed at the wokshop.

REDUNDANT USER INTERFACES AND DUI
In order to be efficient, fault-tolerance (i.e. guaranteeing the
continuity of service), provides duplicated user interfaces
for the command and control of a single system. This ends
up with redundant user interfaces. If those interfaces are
built using the same processes and offer the same
interaction techniques, it is possible that a single fault could

trigger failures in both user interfaces. This could be the
case for instance when using the idea of cloning the UI as
proposed by [10]. In order to avoid such common points of
failure the redundant user interfaces must ensure diversity.
Diversity can be guaranteed if the user interfaces have been
developed using diverse means such as different
programming languages, different notations for their
specifications, executed on top of different operating
systems, exploiting different output and input devices, …
Such diversity is only efficient if the command and control
system offers confinement mechanisms avoiding cascading
faults i.e. the failure of one user interface triggering a
failure in the duplicated one.

Such fault tolerant basic principles raise conflicting design
issues when applied to user interfaces. Indeed, diversity

Figure 1. The two possible means to control flight heading within the A380 interactive cockpit, one using the FCU and the
other using the FCU Backup application and the KCCU

Engage Button

Heading Value

Value

selection Knob

Heading textbox

Figure 2. Heading selection.

requires the user interfaces to be very different in terms of
structure, content and in terms of interaction techniques
they offer even though they must guarantee that they
support the same tasks and the same goals of the operators.
Another aspect is that they must be located in different
places in the system i.e. distributed as this is one of the
most efficient way of ensuring confinement of faults.

In that context, distribution of user interface does not
concern the presentation of complementary information in
different contexts (as presented in [3]) but the presentation
of redundant information in those contexts.

In terms of design it is important to be able to assess that
the various user interfaces make it possible to the operators
to reach their goals. Beyond that, it is also important to be
able to assess the relative complexity and diversity of these
interfaces in order to be sure that operations will not be
drastically degraded when a redundant user interface has to
be used following the failure of another one. In order to
answer these design questions we propose the use of tasks
models to describe the operators activites when interacting
with those redundant and diverse user interfaces. Those
tasks models can, in turn, be analysed to assess their

relative complexity as we have done to assess relative
complexity of tasks depending on fault-tolerance
mechanisms [6].

CASE STUDY
The case study presents (in the area of aircraft cockpits)
examples of redundant user interfaces. More precisely
we present in the context of the cockpit of the A380
aircraft two redundant ways of using the autopilot to
change the heading of the aircraft. One is performed
using the electronic user interface of the Flight Control
Unit while the other one exploits the graphical user
interface of the Flight Control Unit Backup interface.

Figure 1 presents a picture of the A380 interactive
cockpit, the heading control means are highlighted.

Figure 2 presents a zoomed view on the two ways to control
the heading of the flight. On the left side of the figure, the
editing of the heading is performed using a physical knob
which may be turned to set a value, engaged by pressing the
physical LOC push button. On the right side, the heading is
set up using the keyboard of the KCCU and engaged using
the dedicated software LOC push button.

Figure 4 presents an overview on the pilot’s activity while
setting a new heading for the flight.

The task model representing how a pilot modifies the
heading value using the FCU Backup application is
presented on Figure 3. The set of actions to be performed in
order to modify a parameter (goal “Input heading FCU
Backup”) has to be performed in sequence (operator >>).
The pilot edits the heading (input task “input value” after
reaching the input device “Reach KCCU”). This action on
the input device leads to an update in the system state
(system task “update value”). Lastly, as any aircraft
parameter is important (whatever its level of criticality is),
the pilot at least verifies the value entered (task “perceive
value” followed by “analyze the value is OK”), even though

Figure 4: High level tasks involved in changing the heading.

Figure 3: Tasks involved in the editing of the heading value using the FCU Backup application

no formal monitoring activity is required for non-critical
interaction. It is important to note that objects represent data
in the system while information represents data in the head
of the user. Modifying a parameter consists precisely in
moving information from the head of the user to the system.

The task model representing how a pilot modifies the
heading value using the FCU is presented on Figure 5.
These two task models correspond to the same operations
that have to be performed by the flying crew to change the
heading of the aircraft using the autopilot. It is important to
note that there are other additional means to perform the
same task (for instance controling directly the aircraft using
the sidestick) that are not presented here.

CONCLUSION
The position paper has presented the issues raised by the
duplication of user interfaces in order to improve the
dependability of command and control systems in safety
critical contexts. We have shown that task models can
provide useful means to ensure that the user interfaces are
diverse enough (via the representation of input and ouptut
devices information on the task models) and that they allow
operators to reach the same goals. Beyond that the tasks can
be used to assess the relative complexity of the redundant
interfaces thus providing ways of planning corresponding
training of operators.

We believe that this way of assessing diversity, duplication
and redundancy of user interfaces could be used more
broadly in the larger context of distributed user interfaces.

REFERENCES
1. Demeure, A., Sottet, J.S., Calvary, G., Coutaz, J., Ganneau, V.,

Vanderdonckt, J. The 4C reference model for distributed user interfaces.
In Proceedings of the International Conference on Autonomic and
Autonomous Systems, pages 61-69, IEEE Explore, Piscataway, 2008.

2. Elmqvist, N. Distributed User Interfaces: State of the Art. In J.A. Gallud
et al. (eds), Distributed User Interfaces: Designing Interfaces for the
Distributed Ecosystem, Human-Computer Interaction Series, pages 1-12,
2011, Springer-Verlag, 2011

3. Martinie C., Navarre D., Palanque P. A multi-formalism approach for
model-based dynamic distribution of user interfaces of critical
interactive systems. Int. J. Hum.-Comput. Stud. 72(1): 77-99 (2014)

4. Navarre, D., Palanque, P., Basnyat, S., (2008) Usability Service
Continuation through Reconfiguration of Input and Output Devices in
Safety Critical Interactive Systems. The 27th International Conference
on Computer Safety, Reliability and Security (SAFECOMP 2008)
LNCS 5219, pp. 373–386.

5. Navarre, D., Palanque, P., Ladry, J., and Barboni, E. ICOs: A model-
based user interface description technique dedicated to interactive
systems addressing usability, reliability and scalability, ACM ToCHI,
2009, V. 16, 4, pp. 1-56

6. Palanque P., Martinie C., Fabre J-C., Déléris Y., Navarre D. and
Fayollas C. An approach for assessing the impact of dependability on
usability: application to interactive cockpits. European Dependable
Computing Conference, 2014, Springer Verlag LNCS, pp.45-55.

7. Tankeu-Choitat, A., Navarre, D., Palanque, P., Deleris, Y., Fabre, J.-C.,
Fayollas, C. Self-checking components for dependable interactive
cockpits using formal description techniques. In Proc of 17th IEEE
Pacific Rim Int. Symp. on Dependable Computing (PRDC 2011), 10p

8. Vanderdonckt, J. Distributed User Interfaces: How to Distribute User
Interface Elements across Users, Platforms, and Environments. In
Proceedings of XIth Congreso Internacional de Interacción Persona-
Ordenador Interacción’2010 (Valencia, 7-10 September 2010), J.L.
Garrido, F. Paterno, J. Panach, K. Benghazi, N. Aquino (Eds.), AIPO,
Valencia, 2010, pp. 3-14, Keynote address.

9. Villanueva,P. G., Tesoriero, R., Gallud, J. A. Revisiting the Concept of
Distributed User Interfaces. In Distributed User Interfaces: Usability
and Collaboration, Human–Computer Interaction Series, 2013, Springer-
Verlag London, pp. 1-15.

10.Villanueva,P. G., Tesoriero, R., Gallud, J. A. 2013. Distributing web
components in a display ecosystem using Proxywork. In Proceedings of
the 27th International BCS Human Computer Interaction Conference
(BCS-HCI '13), 2013, Steve Love, Kate Hone, and Tom McEwan (Eds.).
British Computer Society, Swinton, UK, UK, Article No. 2

Figure 5. Tasks involved in the editing of the heading value using the FCU

Improving Surgery Operations by means of Cloud
Systems and Distributed User Interfaces

Habib M. Fardoun, Abdullah AL-Malaise
AL-Ghamdi

King Abdulaziz University
Jeddah, Saudi Arabia

{hfardoun, aalmalaise}@kau.edu.sa

Antonio Paules Cipres
European University of Madrid

Madrid, Spain
apcipres@gmail.com

ABSTRACT
Surgical interventions are usually performed in an operation
room; however, access to the information by the medical
team members during the intervention is limited. While in
conversations with the medical staff, we observed that they
attach significant importance to the improvement of the
information and communication direct access by queries
during the process in real time. It is due to the fact that the
procedure is rather slow and there is lack of interaction with
the systems in the operation room. These systems can be
integrated on the Cloud adding new functionalities to the
existing systems the medical expedients are processed.
Therefore, such a communication system needs to be built
upon the information and interaction access specifically
designed and developed to aid the medical specialists.

Author Keywords
Surgical interventions; Model View Controller; View Cloud
Controller; Distributed User Interfaces; Cloud Computing;
Google Glass

ACM Classification Keywords
B.4.1. Data Communications Devices. Receivers,
Transmitters

B.4.2. Input/Output Devices. Image Display, Voice

C.2.0. General. Data communications.

INTRODUCTION
This paper proposes a solution for the medical
professionals. During a surgery, a surgeon needs to consult
or acquire visual information about different medical tests

and results before the operation. Nowadays in Spain such
activities and information acquisition are facilitated and
supported by hard copies or engaging a medical application
available to the sanitary centres and related communities.

It is important for the hospital officers to manage the
information correctly, facilitating medical expedients
queries directed to experts and providing them with an
index for monitoring medical treatments and surgical
interventions. Due to the fact that this specific problem is of
great magnitude, the focus in this paper is isolated on the
pre-operatory tests and associated necessary procedures
conducted before the surgical intervention.

This proposition suggests the use of a platform on the
Cloud for medical tests processing supporting surgeons’
queries. This platform facilitates faster and more precise
information access; therefore, accessibility is aided via
different interaction types, such as:

• Voice commands

• DUIs, where the assistant checks the medical tests and
results, and passes them to the surgeon into the
operation room.

• A mixed system of Voice commands and DUIs. The
surgeon says the commands so to obtain the query from
the Cloud on the specific interface the surgeon has
access to.

A platform with such characteristics is located on a system
to support on-line queries, so the specialists can help each
other in real time when they conduct an operation. Thus, if
an operation is planned, the surgeon is able to indicate that
the operation is, for example, becoming complex and there
is a need for more specialists in the operation room
immediately. Such need requires the design and
development of a parallel system for the messages
retransmission of the operation activities as such as well as
the machines’ sensors in the operation room.

Here, there is a challenge for the hardware used for the new
interaction and tangible systems, like tablets and DUIs, so
to access information on the Cloud by both voice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org, July 01
2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677663.

commands and the assistants’ help during the surgical
process.

GOAL AND NECESSITIES
This paper proposes a technical solution aiming at
accessing specialised information into the operations room
in real time. Such information must be accessed fast and the
medical tests results performed must be stored in associated
medical communities’ information systems. These
necessities suggest a mixed system combining tangible
interfaces, DUIs and new devices, such as Google Glass
[1].

STATE OF ART
In Spain, the results from medical tests are stored in
systems belonging to autonomous Medical Communities.
Country’s legislation does not impose results digitalisation
and storage in a centralized system for every Spanish
patient; the medical expedients are stored in both hard
copies and digital format.

The specialists, in this case, the surgeons, prepare the
surgeries conducting their own expedients managed by an
administrative person who works for them; this person
leaves this surgery request on a waiting list. This request is
stored in the medical expedient space through a referral
note produced by the specialist.

The specialist prepares all necessary data for the surgery in
a non-established way; usually data is stored in a DVD or a
piece of paper. With this information s/he reviews the
surgery elements for decision-making such as actions
required before entering the operations room. Thus, the
surgeon cannot have access to such data results during the
operation because it is unhygienic and indicates high risk
for the patient.

Access to such data using mobile devices facilitates
information access in a hygienic and sterilized way, in
addition to accessing wide online resources banks during
the surgical intervention.

There are different technological solutions in the current
market, ranging from a voice recognizer for the redaction of
medical expedients [2] to patients’ monitors aiding in
decision-making [3].

System interoperability following the suggested
characteristics can be hosted on the Cloud taking advantage
of the different communication methodologies. Our
previous research on distributed graphical user interfaces
[4], e-health organization for hospitals [5] and interaction
methods in educational experiences, point to concrete
results suggesting that collaboration and interaction are the
main axis for methodologies and tools [6][7].

Nowadays, hardware devices evolve quickly allowing new
type of interactions; thus, there are the 12” tablets and
clocks with Internet connection that allow the notifications
delivery [9] in the market already. It is necessary to adapt

these technologies towards the suggested medical scope so
to facilitate the information flow inside the operations room
during the surgery. Another solution can be the augmented
reality devices like the Google Glass [1], so to provide the
information needed during the surgical process. Usually,
medical information consisted of reports and images in high
resolution so the screen size can be a significant
impediment for immediate use.

As for the ways the users access information, in the
Tangible Graphical User Interfaces, the users interact with
screen objects by gestures. They interact with the device to
complete tasks through finger movements exchanging
information with other objects on the screen. Another
important factor is that tangible interfaces usually are DUI
based as the user interprets exchanging information as a
moving object in an area on the personalised tangible
interface. [10]

SCENARIO AND USABILITY
Such interactions requirements are built upon a clear and
focused scenario. This is because such scenario defines, on
one hand, the users’ necessities, and on the other hand, the
collaborating environment where the platform is going to be
used [11]. In addition, all possible interaction methods need
to be considered because such scenario indicates flexibility
and interoperability for the inclusion of future new devices
and sensors.

Here, usability is related to certain access speed and
flexibility completion and fulfilment. Moreover, the
information flow among the different team members also
needs to happen fast and the data must be clear of
misinterpretations. Consequently, the suggested tool is
utilised successfully if:

• Users obtain the information fast.

• User-system interaction is fast and easy to use. The
user makes the least needed number of steps to reach
the target.

• Users’ interaction can be carried out in different ways
associated to the real time necessities.

• Data visualization simplicity as well as good and
appropriate visibility is also an important factor.

WORK SPACE
Before defining the architecture, the working environment
definition is necessary; this is the place where the surgeon
and the team members’ work, as well as the special
disposition of the elements found in an operations room. At
the next figure (Figure 1) we can see the elements
disposition and the actors inside the operations room.

Figure 1. Elements disposition within the operations room

Blue elements indicate the working areas along a
symmetrical axis where the medical staff is located. At the
central axis, a triangle suggests the audio and video devices
used to record the surgery, and by a circle the area to
receive and send voice commands to the system is
indicated. The two green rectangles correspond with the
output devices depicted by images, which can be moved in
all directions to facilitate the medical staff positioning. At
the operations room, the ICT Technical System can be
searched for information in relation to the parameters
indicated by the members of the medical team, performing
the search and exchanging the information using available
interaction patterns. Usually the nurses located near the
screens do have access to the searches and can make
suggestions to the surgeon about the necessary actions
using a touch screen. The surgeon via voice commands can
also have access to related information search or any other
necessary data.

ARCHITECTURE
A system with such characteristics is proposed to be located
on the Cloud so to guarantee data security and acquisition
speed. For that reason, the design and development of a
system located on the Cloud system guarantees the
information access and ensures that previous information is
stored before the intervention at the hospital local servers.
This is a mixed system where users can access the Cloud
for certain operations and consult medical data previously
prepared. In addition, they will be able to check the use of
the devices located into the operations room.

This architecture depicts the interaction layers so to
simplify the interaction process with the different interfaces
and hardware devices that can be found.

Figure 2. System’s architecture

The system is divided into three parts: in red, the part of the
system in charge of the interaction with users’ devices is
indicated; in green, the necessary services are depicted so to
create the operation report; and in purple, the online help
required during the surgical intervention can be viewed.

• Medical Objects: The grouped medical objects indicate
everything that is necessary for the user (the medical
team) to access the data, allowing interventions
preparation and aiding in their completion. These
objects are not found on an Internet server but in the
hospital’s servers to guarantee quick and secure
accessibility. There is also the possibility to access the
preparation process of these objects from home;
however, access during the surgical intervention is
imperative via the local connection inside the hospital.

• Operation report: In this Cloud part, doctors
perform the preparation process and this is related
to the necessary documentation. Thus the system
can bring forward data from diverse medical
platforms under different administrations and
hospitals.

• Specs: The surgeon or the medical team complete
the necessary specifications of the intervention
within the surgery. These specifications are part of
the medical object created to store the technical
necessities of the operation, as for example,
materials, tests, clinical analysis, staff and
specialist used during the intervention.

• Test Repository: A medical tests bank is created
specifically for each patient. These medical tests
results are necessary for the intervention surgery
and can be acquired before or during the pre-
operatory. These tests are documents to specify the
types of surgical intervention so to acknowledge
any consequences and the ways the surgical
intervention can be directed and focused.

• Steps of operation: The surgeon establishes the
intervention process and needed steps taking into
consideration the previous medical tests results.
The doctor can include the post-operatory
recuperation process and the required treatment
once the intervention has ended, thus the specialist
can monitor the patient’s recuperation process till
s/he has the medical discharge. Therefore, the
doctor can create a rich repository of data
interventions for a posterior study and also, for
sharing with the medical community members.

• Configuration Devices: The ICT technician located
in the operations room configures the medical
devices in order to adjust them to the team medical
necessities, or, in other words, the technician
configures the platform depending on the required
interaction devices.

• On-line help: This system of online help allows the
medical staff to establish searches in real time on the
available sanitary platform during the intervention and
also establish direct communication with the
specialists.

We place an interoperability layer in the system in order to
interact with the different systems mediated by Web
Services [12].

The interaction process is a MVC (Model View Controller)
model modification adapted to the Cloud systems. It
facilitates the incorporation process simplification towards
the specified devices. Different devices provide diverse
ways for interaction, which can be an impediment for
system development allowing the inclusion of different
interaction types.

The MVC model [13]:

• Model: It refers to the information representation
treated by the system; therefore it manages all access to
that information, consultation as updates, also
implementing the access privileges described at the
application’s specification (business logic).

• Controller: It responds to events (usually user’s
actions) and invokes requests to the Model when any of
the above is performed over the data.

• View: It presents the Model in an adequate format to
interact with the system.

The following figure (Figure 3) depicts the MVC model
where the user sends and receives information to and from
the system. The red line represents user’s interaction area
with the computer application. In that area a system is
located to allow the user to interact with any preferable
interaction method or device. To obtain that result, an
abstraction layer is necessary allowing the developers to
determine an output. Thus great flexibility is provided to
the system without modifying the font code of the data

manipulation or the view. A decision was made to provide
these model layers because they contribute to the
communication with the model.

Figure 3. The MVC model

In the suggested VCC (View Cloud Controller) model,
interaction and devices are strongly related. Interaction
includes voice commands, conventional events or gestural
events. However the graphical user interfaces must be
developed to allow and support that each part of the system
is under continuous development so to support more as well
as future diverse interaction models. Therefore, the starting
point can be a conventional application so to add tangible
functionalities or voice command functionalities. The
application inputs and outputs define the types of
interaction into the system, so a flexible system needs to be
designed and developed, not in regard to programming, but
to promote adaptation with the new methods. For that
reason a MVC model with a Cloud layer would speed up
this type of applications development and would allow the
inclusion of new interaction methods.

Figure 4. VCC model.

In the previous diagram (Figure 4) the VCC model is
represented. Through integrated adapters on the Cloud this
model allows to make a migration of input or output of the
view or controller model, adapting it to the device’s type.

One of the main goals for hosting this layer on the Cloud is
that applications, isolated from devices or interaction
methods, aid users to share information each other. With
this fact the DUIs would provide an important step because
usually the DUIs interact with applications of similar
characteristics. Therefore, decisions on specific DUIs
facilitate working with different type of devices [14].

Figure 5. View Model Controller Functionality.

The previous figure 5 shows the ways the View Model
Controller works. The adapters evaluate the input object
type and the output device to which the information goes,
producing a migration from the processed object to the
required type of object by the receptor device of
information. All this processing is carried out on the Cloud
and is located into the presentation logic; the object does
not suffer any modification in reference to its content, only
on its structure to be interpreted by the receiver. Till now,
objects are sent from one screen to another without
modification, whereas the emitter and the receiver use the
same protocol. Adding this layer, the emitter and receiver’s
independence is diversified, providing more flexibility to
the DUIs in its use and device’s independence. One of the
goals in the computer software applications development is
the operating systems portability. For that reason, it is
important to reach portability among different interaction
devices so to acquire more functionality for DUIs in the
applicable environments.

 PROOF OF CONCEPT
An authentic situation occurring in the operations room
during the process of a surgical intervention is going to be
described and presented. This is a mixed situation using
DUI between two different devices and communication
between users at the surgery. The users are registered by the
surgeon who initiates the intervention and requests
information on previously performed medical tests from the
assistant and on continuous information delivery from a
nurse.

First, the types of devices associated to each user are
described as follows:

• The surgeon carries the Google Glass. The doctor
requests information from the assistant, which is
received, visually on the surgeon’s Google glass visor.

• The nurse uses an available tablet to visualize the data
and send them to the surgeon.

Figure 6. Nurse’s Tablet

In the previous Figure 6, the patient’s monitoring results are
displayed. This application connects the measurement
medical equipment and displays it as with the information
on the device. In this case the monitoring works during the
implantation of a pacemaker by the cardiologist, who
requests from the nurse the medical data with the necessary
parameters related to blood pressure and oxygen saturation.
The nurse sends that information through the “Drag and
Drop” event to the shared area of the screen that the doctor
can see this during the intervention surgery. At the
following Figure 7 we can observe a display’s vision
simulation.

Figure 7. Google Glass Visor

At the same time, the anaesthetist sends to his/her clock the
Biespecral Index, because s/he has to attend to another
operations room at the contiguous room. The nurse sends
that information to the clock.

Figure 8. Anaesthetist’s clock

CONCLUSIONS AND FUTURE WORK
In this paper, a DUIs medical solution is presented and
discussed, providing information exchange between users
with different type of devices within an operation room.
The abstraction layer created on the Cloud follows the VCC
model and adjusts DUIs closer to the specific hardware
devices; this is necessary for objects conversion towards a
posterior interpretation. This migration is done on the
Cloud due to its flexibility, development capacity and
processing power. In addition, this platform offers new
functionalities as the devices evolve in time.

Here DUIs are directed towards “wereable” mobile devices,
because these are usually used for notifications delivery,
and also to send useful information. For that reason the
proof of concept was successfully implemented deploying
“wereable” devices that have the capacity to grow in regard
to functionalities. Also new microprocessors can be
incorporated increasing the power, as at the same time the
WiFi communication will be improving.

REFERENCES
1. Google Glass. http://www.google.com/glass/start/
2. Philips. Soluciones profesionales de dictado y

grabadoras de dictado.
https://www.dictation.philips.com/es/como-hacemos-la-
diferencia/news/el_reconocimiento_de_voz_y_el_flujo_
de_trabajo/

3. Philips. Clinical Informatics & Patient Monitoring.
http://www.healthcare.philips.com/main/products/hi_pm
/products/index.wpd.

4. Fardoun, H. M., & Alghazzawi, D. M., Cipres A. P.
(January 2013). Distributed User Interfaces: Usability
and Collaboration. Distributed User Interfaces. Human–
Computer Interaction Series 2013 (pp 151-163). ISBN
978-1-4471--­‐5498-­‐. Springer London.

5. Paules Ciprés, A., Fardoun, H. M., Alghazzawi, D. M.,
& Oadah, M. (October 2012). KAU e-health mobile
system. In Proceedings of the 13th International

Conference on Interacción Persona- Ordenador (p. 29).
ACM.

6. Ciprés, A. P., Fardoun, H. M., &Mashat, A.
(September2012). Cataloging teaching units: Resources,
evaluation and collaboration. Federated Conference In
Computer Science and Information Systems (FedCSIS),
2012 (pp. 825--­‐830). IEEE. SCOPUS.

7. Fardoun,H.M.,Antonio P. Ciprés,Sebastian R. Lopez,
Bassam Zafar (June 2012). CSchool Interactive Design.
1st international Workshop on Interaction Design in
Educational Environments (IDEE 2012). ICEIS 2012
Conference. Proceedings of the 14th International
Conference on Enterprise Information Systems ICEIS
2012. 1st International Workshop on Interaction Design
in Educational Environments IDEE 2012. INSTICC,
ISBN 978-989-8565-17-­‐4, June 28, 2012. Wroclaw,
Poland.

8. Galaxy NotePRO (12.2").
http://www.samsung.com/es/consumer/mobile-
phone/tablets/pro-series/SM-P9050ZWAPHE

9. GALAXY Gear.
http://www.samsung.com/latin/consumer/mobile-
devices/galaxy-gear/

10. Kubicki, S., Lepreux, S., &Kolski, C. (2013).
Distributed UI on Interactive Tabletops: Issues and
Context Model. In Distributed User Interfaces: Usability
and Collaboration (pp. 27-38). Springer London.

11. Pedro G. Villanueva,Ricardo Tesoriero,José A. Gallud:
Is The Quality In Use Model Valid For DUI?.
Proceedings of the 2nd Workshop on Distributed User
Interfaces: Collaboration and Usability, DUI 2012 in
conjunction with CHI 2012 Conference. ISBN 978-84-
695-3318-5, pp 39-44. May 5th, 2012. Austin, Texas,
USA.

12. Li, L., &Liu, J. (2012). An efficient and flexible web
services-based multidisciplinary design optimisation
framework for complex engineering systems. Enterprise
Information Systems, 6(3), 345-371.

13. Krasner, G. E., & Pope, S. T. (1988). A description of
the model-view-controller user interface paradigm in the
smalltalk-80 system. Journal of object oriented
programming, 1(3), 26-49.

14. P. G. Villanueva, R. Tesoriero and J. A. Gallud.
Revisiting the Concept of Distributed User Interfaces. In
Distributed User Interfaces: Usability and Collaboration.
Springer, Human-Coomputer Interaction Series. Eds. M.
D. Lozano, J. A. Gallud, R. Tesoriero, and V. M. R.
Penichet. ISBN: 978-1-4471-5498-3, pp. 1-15. 2013.
url= http://dx.doi.org/10.1007/978-1-4471-5499-0_1

12 + 1 Questions in the Design of Distributed User
Interfaces

Victor M. R. Penichet, Maria Dolores Lozano, Jose A. Gallud, Ricardo Tesoriero
Computer Systems Department

University of Castilla-La Mancha (UCLM), Albacete, Spain
{Victor.Penichet, Maria.Lozano, Jose.Gallud, Ricardo.Tesoriero}@uclm.es

ABSTRACT

Current visual display ecosystems raises new situations and
new configurations regarding the way a user interacts with
a system through the user interface. In a post-WIMP period,
we can find coupled displays, multi-touch devices, and
interactive table-tops, tablets, tangible user interfaces,
eWatchs and many other devices often interconnected
through the same applications. This scenario poses
researchers new challenges in the design of distributed user
interfaces. In this paper we raise a set of questions as
guidelines to consider that may drive designers in their
work.

Author Keywords

Distributed User Interfaces; DUI; design; Tangible User
Interfaces; Multi-Device Environment.

ACM Classification Keywords

H.5.2 [Information Interfaces and Presentation]: User
Interfaces - Graphical user interfaces, Input devices and
strategies, Interaction styles, Screen design.

INTRODUCTION

Distributed User Interfaces (DUI) are a novel research field
in the Human-Computer Interaction area and plays an
important role in the proper design of advanced visual
interface display ecosystems when more than one device is
used to perform tasks on the same application. This is a
common scenario due to the large amount of different
devices that users use in their everyday life. Computers
have become part and parcel of our daily lives, therefore
current applications are also adapted to such situation and
provide mechanisms to interact with them from the various
devices in multiple ways. New challenges in the design of
these applications emerge and they have to be carefully
studied by researchers to achieve higher quality
applications.

In this paper, we present some guidelines through 12 + 1
questions taken from an in depth study of papers on DUI
mainly presented at the DUI workshops held during the last
three years. Researches from all over the world presented
their ideas, proposals and innovations in the area. Here we
synthetize and identify the most important conclusions,
agreements and assumptions which may guide a designer
thanks to the knowledge of experts in the field. These
guidelines will make the designers think on several aspects
to explicitly consider many important points when
distributing a user interface. There is one final guideline; a
question that designers should consider regardless of the
kind of application they design; just a must.

The paper is organized as follows. Firstly, a number of
advances concerning display technology and interaction are
presented in Section 2. Then, a unified and detailed
definition of Distributed User Interfaces is given in Section
3. Section 4 provides the twelve plus one questions we
propose as guidelines to design DUIs. Lastly, some
conclusions and final remarks are presented in Section 5.

ADVANCES IN DISPLAY TECHNOLOGY AND
INTERACTION: CURRENT TECHNOLOGICAL
ECOSYSTEM

Current technological ecosystem introduces important
challenges to developers and researches on display
technology as well as on interaction matters. The way a
user interacts with the system has evolved in such a manner
that new research opportunities arise. In the last decades,
we have moved from single end user interfaces to a wide
variety of interactions due to the emergence of different
devices platforms, architectures, operating systems, space
and/or time distribution, etc. We have moved from one user
interacting with their own computer in a really simple way,
to more complex situations. Moreover, even such complex
situations have become further more complicated with the
introduction of the wide variety of different devices,
platforms, architectures, operating systems, space and/or
time distribution, etc. where users may interact despite the
complexity of these settings. User interface design and
interaction have turned into important research fields plenty
of topics to tackle.

There are many interaction techniques such as (a) touching
which involves touching an object. Some projects using this
technique can be found in [4, 11, 20]; (b) scanning through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

DUI '14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677664

the mobile device which is capable of scanning information
and interacting with the system to provide a service to the
user [21]; (c) approach&remove [16] which allows the user
to control distributed user interfaces by approaching the
mobile device to an object; and lastly, (d)movement based
interaction through motion sensing input-output devices
like Kinect and Leap Motion.

New scenarios have appeared such as Multi-Device
Environments (MDE) with multiple and heterogeneous
devices distributed in the environment along with screens
and surfaces where user interfaces are displayed.

We also should mention an increasingly fashionable
paradigm, ubiquitous computing, described by Mark Weiser
[22] in 1991: “The most profound technologies are those
that disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from it”. Its
main goal is to provide the user with advanced and implicit
computing, capable to carry out a set of services but
without being aware of it. In order to interact in these
environments, user interfaces are required to allow an
intuitive and simple interaction that help remove the
barriers so far encountered, such as prior learning of the use
of systems.

Another interesting vision lies in doing common objects
interactive and perceptible. Tangible User Interfaces (TUI)
refers to user interfaces which give physical form to digital
information, making the parts directly malleable and
perceptible [12].

Current technology offers us a wide variety of possibilities
to make interaction richer. RFID (Radio Frequency
Identification) is a system for storing and remotely
retrieving data which allows the identification of an object
from the distance with no contact. In the same way, NFC
(Near Field Communication) standardizes the way in which
smartphones and other mobile devices establish radio
communication with each other by touching them together
or bringing them into proximity. Regarding Web
communication we could mention Web Services as a set of
protocols and standards to exchange data between
applications providing interoperability; however,
Websocket goes a step further and provides full-duplex
communication channels over a single TCP connection. It
can be used by any client or server application providing
real-time interaction through the Web.

HTML5, Android OS, Windows Phone, iOS as well as
many other technologies, and research fields around them
provide amazing challenges and design opportunities. User
interface distribution is becoming a really interesting
research topic because of the nature of such advances. Even
more, we could talk about real necessity more than mere
opportunities.

DISTRIBUTED USER INTERFACES

GUI (Graphical User Interfaces) formerly thought to be
used for PC-based software applications and controlled by a
mouse and a keyboard are no longer enough in the new
scenarios where we have multiple devices and displays. In
these cases, other kinds of interfaces are necessary. DUIs
(Distributed User Interfaces) have been conscious or
unconsciously used and defined in many different ways in
the near past.

As Niklas Elmqvist [7], Jean Vanderdonckt [19] and other
researchers state, the specialized literature is plenty of
references highly related to distributing the user interface,
as in [9, 2], among others . We can find Migratory and
Migratable Interfaces [3] to describe applications capable
of roaming freely on the network instead of being confined
to a particular computer. Plasticity [18] is a concept defined
as the capacity of a UI to withstand variations in both the
device and its physical environment while preserving
usability. The aforementioned Multi-Device Environment
(MDE) consists of multiple, heterogeneous and distributed
devices, displays and surfaces. Also Ubiquitous Computing
was previously introduced; it integrates data and
computation into everyday objects and activities. Other
connected terms are Multi-Device Interaction Techniques,
Application and Content Redirection. Lastly, Niklas
highlighted CAMELEON-RT as a middleware software
infrastructure for distributed, migratable, and plastic
interfaces 1.

Some approaches to a definition of DUI may be found in
recent past years [6, 15 19]. However, after several
workshops on Distributed User Interfaces where researchers
have deeply discussed about this novel research field, we
have found the definition given by Niklas [7] as the most
appropriate, also assumed by many other authors
subsequently. DUI was then described as “a user interface
whose components are distributed across one or more of the
dimensions input [so called input redirection], output [so
called display or content redirection], platform [i.e.,
architectures, operating systems, networks, etc.], space [i.e.,
co-located or remote interactive spaces], and time
[synchronous or asynchronous]”. The wording in square
brackets corresponds to some comments he made after the
definition.

In order to get an in-depth understanding of the need of
distributing user interfaces, Donatien Groulaux, Jean
Vardendonckt and Peter Van Roy illustrated us with a
really appropriated metaphor: a painter painting a scene
[10]. In such scenario, the painting is the main focus of
attention, while the rest of tools remain secondary. If we
consider a software tool for painting, the colour palette, the
pencil, the painting tools, etc. are allocated on the screen in
different positions. Although they are well-grouped, the
user interface collapse with so many information altogether,
and it is not considered natural [13]. It is true that many
possible configurations are available so that the user can

modify the layout of toolbars when needed, but still no
natural and uncomfortable. We could design a more natural
interface making use of different displays. Each display
allocated in a similar way as it would be allocated in a real
scenario. The main objective would be the same: painting.
There would be still only one application. But several user
interfaces in different devices could make it more natural.
This is just a small example to show the power of
distributing the user interface. Applying this minor example
into our daily reality is much more complicated. That is the
reason why researching on DUIs is more and more trendy.
If we put together the complexity of nowadays applications
and the aforementioned dimensions of DUIs (input, output,
platform, space and time), it is not only a matter of quality,
but a matter of necessity. We also depicted the distribution
of user interfaces according to the users' mental models 8,
splitting the interface of collaborative games on a projector
to be displayed more clearly. Mobile device interface were
used as interaction devices between the main interface and
several tangible user interfaces.

Up to this point, the concept of DUI has been adequately
explained. However, if we would like to go further on, we
also could consider how to dynamically deal with such user
interfaces in the developed applications. To do so, Grolaux
[10] defines a set of properties as the basis of what they call
a detachable user interface: “detachability [any UI
component of the interactive application of interest can be
detached from its host UI], migratability [the detached UI
component is migrated from the source computing platform
[…] to another target platform], plastifiability [5] [the
migrated UI component is adapted according to the new
constraints posed by the new target computing platform],
attachability [the plastified UI component is attached to any
UI running on the target computing platform, if needed].”
The wording in square brackets corresponds to some
comments he made.

Although it is practically not considered [7] in the
definition of DUI, collaboration is still a highly important
concept to take into account. It was not included since users
were not considered as a distribution dimension;
nevertheless, space/time dimensions of CSCW are
specifically mentioned in the definition. Besides, due to the
nature of nowadays applications, technology and the use of
devices by users, we also consider collaboration as a key
issue to keep in mind. Empirical studies [14] indicate that
the distribution of shared and private workspaces to support
balanced participation in face-to-face collaboration is very
important in collaborative settings.

GUIDELINES TO DESIGN DUIS

As stated above and according to the visions presented in
previous editions of the workshop on DUIs and our own
expertise in this area, we may summarize a number of key
points to be considered as important subjects to cope with
in the development of DUIs. It is important to notice that
the main perspective we consider regards Human-Computer

Interaction research field. As can be imagined, the
distribution of the user interface implies many other fields
which are also well appreciated. Interaction techniques
such as touching, scanning, approach&remove and
movement based interaction through motion sensing input-
output devices, among others, determine the success of
these systems. Traditional interaction techniques could be
also good ones; however, analyzing the most adequate
interaction in such a specific system becomes a key factor.
Q1: What are the most appropriate interaction techniques?

Tangible User Interfaces (TUI) is also closely linked to
interaction as implies a new way of interacting with
software applications. Everyday objects take part in the
distribution of user interfaces and interactions, which makes
the development of systems more difficult, but makes the
interaction and participation easier for many users. TUIs
and the big amount of new devices that invades our
everyday life drive us to consider the principles of Multi-
Device Environments (MDE) as well as the idea of
Ubiquitous computing: anytime, anyplace, anywhere, if
possible. Q2: What are the devices working in the whole
system? Q3: How do they communicate with each other?
Q4: Where are they allocated?

In accordance with the assumed definition, we should
consider the mentioned dimensions: “a user interface whose
components are distributed across one or more of the
dimensions input, output, platform, space, and time”. Some
of these basics are partially included in the previous
questions; however, we may still wonder about substantial
points. Q5: What parts of the user interfaces should we
distribute? Q6: What are the main features of the different
platforms, mainly according to compatibility,
interoperability, etc.? Q7: What tasks are thought to be
performed synchronously and what asynchronously? Q8:
Are all de UIs thought to be co-located in the near space or
in different spaces?

For a more in-depth consideration, Grolaux et al. [10]
defined a set of properties as the basis of what they called a
“detachable user interface”: detachability, migratability,
plastifiability, attachability. If considered, we also may
pose another question. Q9: What components of a UI may
we compose and decompose?

Sangiorgi et al. describe a set of challenges for distributing
the user interface [17]. They finish the discussion with an
interesting message: “The list of challenges presented on
this paper is intended to bring the discussion of “old”
problems of collaborative systems to the contemporary
context”. That is what, beyond the collaboration concept,
we propose with this paper. Anyhow, once more we should
realize about the importance of considering what users do
in the whole system: collaboration as well as awareness.
The four challenges they introduce for a distributed
sketching system take into account user awareness as a first
issue: “make users aware of each other’s activities […].
Furthermore, by having such a large number of possible

devices and an “infinite” workspace to work on, it is hard to
keep track of which devices are observing specific parts of
the wall.” Then the problem of pointing remotely: “how to
“point” at something remotely?” Other important factors
are concurrency and conflicts. Lastly, what they introduce
as a novel subject is considering “the right tool for the job:
Not all the devices have the same resolution or performance
[…] which devices are suitable for the […] activities”. Q10:
In what way users collaborate, coordinate and
communicate? Q11: How can the user be aware of what the
other users of the system do? Q12: Where may we find
concurrency problems and other conflicts? The problem of
“pointing remotely” and “the right tool for the job” are
somehow included in previous questions, mainly regarding
interaction techniques.

Lastly, keeping always in mind that technology evolves
quickly, the state of current technology should also be
considered as a fundamental issue. Technology such as
RFID (Radio Frequency Identification), NFC (Near Field
Communication), HTML5, Android OS, Windows Phone,
iOS enriches interaction and provides new ways in the
distribution of the user interface. Designers and researchers
need to keep abreast of new developments in the field. The
last question is Q13: Are we using technology properly or is
there any other that could solve the problem more
accurately? This last question is a really generic one, which
could be used in the design of any kind of system; however,
how not mention it?

CONCLUSIONS

In this paper we have presented twelve questions as
guidelines that designers might consider when addressing
the design of applications based on Distributed User
Interfaces. These questions pose a set of problems or
situations that designers should take into account in these
environments. In this way, key aspects regarding would be
explicitly addressed. Another last guideline just highlights
the importance of using the appropriate and cutting-edge
technology. These 12 + 1 questions are a synthesis which
comes from the expertise of a number of researchers who
are experts on DUIs. These guidelines do not intend to be a
must, but just another piece of the puzzle that may be
helpful in this research field.

ACKNOWLEDGMENTS

This work has been partially funded by project TIN2011-
27767-C02-01 from the Spanish Ministry of the Economy
and Competitiveness and by project TSI-100101-2013-147
from the Spanish Ministry of Industry, energy and Tourism.
Special thanks to everyone who participated and/or made
possible past DUI workshops.

REFERENCES

1. Balme, L.; Demeure, A.; Barralon, N.; Coutaz, J.;
Calvary, G.: CAMELEON-RT: A software architecture
reference model for distributed, migratable, and plastic

user interfaces. In Proceedings of the Symposium on
Ambient Intelligence, volume 3295 of Lecture Notes in
Computer Science, 291–302. Springer, 2004.

2. Bandelloni, R.; Paterno, F.: Flexible interface migration.
In Proceedings of the ACM Conference on Intelligent
User Interfaces, 148–155, 2004.

3. Bharat, K. A. and Cardelli, L. Migratory applications. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, 133–142, 1995.

4. Broll ,G. Graebsch ,R., Holleis ,P. , Wagner,M. Touch
to play: mobile gaming with dynamic, NFC-based
physical user interfaces, Proceedings of the 12th
international conference on Human computer interaction
with mobile devices and services, September 07-10,
2010, Lisbon, Portugal

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J.: A Unifying Reference
Framework for Multi-Target UI. Interacting with
Computers 15,3

6. Demeure, J. Sottet,S. Calvary,G. Coutaz,J. Ganneau,V.
and Vanderdonckt,J. The 4C reference model for
distributed user interfaces. In Proceedings of the
International Conference on Autonomic and
Autonomous Systems, 61–69, 2008

7. Elmqvist, N. (2011). Distributed User Interfaces: State
of the Art. Workshop on Distributed User Interfaces
2011 (DUI) at the 29th ACM CHI Conference on
Human Factors in Computing Systems 2011, ISBN:
978-84-693-9829-6, Vancouver, Canada.

8. Guía,E. Lozano,M.D. Penichet.V.M.R. Interaction and
Collaboration Supported by Distributed User Interfaces:
FromGUIs to DUIs. In Proceedings of of the 13th
International Conference on Interacción Persona-
Ordenador. ACM, Article No. 53. ISBN: 978-1-4503-
1314-8 doi>10.1145/2379636.2379688Elche, Alicante,
Spain, Oct. 3-5, 2012

9. Grolaux, D.; Roy, P. V.; Vanderdonckt, J.: Migratable
user interfaces: Beyond migratory interfaces. In
Proceedings of the IEEE/ACM Conference on Mobile
and Ubiquitous Systems, 422–430, 2004.

10.Grolaux, D., Vanderdonckt, J., Van Roy, P. Attach me,
Detach me, Assemble me like You Work. 10th IFIP TC
13 Int. Conf on Human-Computer Interaction
INTERACT'2005 (Rome, 12--16 September 2005). M.-
F. Costabile, F. Paternò (Eds.). Lecture Notes in
Computer Science, Vol. 3585, Springer-Verlag, Berlin,
2005, pp. 198--212.

11.Hardy,R., Rukzio,E. Touch & interact: touch-based
interaction of mobile phones with displays, Proceedings
of the 10th international conference on Human computer
interaction with mobile devices and services, September
02-05, 2008, Amsterdam, The Netherlands

12.Ishii, H.; Ullmer, B. (1997). Tangible bits: towards
seamless interfaces between people, bits and atoms. In
CHI ’97: Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 234–241,
New York, NY, USA. ACM Press

13.Jacobson, J.: Configuring Multiscreen Displays with
Existing Computer Equipment. In: Proc. of Conf. on
Human Factors HFES’2002.

14.Looi, C.K.; Lin, C-P.; Liu, K-P. (2008). Group Scribbles
to Support Knowledge Building in Jigsaw Method.
IEEE Transactions on Learning Technologies, July-
September 2008 (vol. 1 no. 3), pp. 157-164

15.Melchior,J. Grolaux,D. Vanderdonckt,J. and Roy,P. V.
A toolkit for peer-to-peer distributed user interfaces:
concepts, implementation, and applications. In
Proceedings of the ACM Symposium on Engineering
Interactive Computing System, 69–78, 2009

16.Romero,S., Tesoriero,R., González,P. , Gallud,J. A.,
Penichet, V. M. R.: Sistema Interactivo para la Gestión
de Documentos Georeferenciados basado en NFC.
Interacción 2009, X Congreso Internacional de
Interacción Persona-Ordenador. Barcelona. Septiembre
2009. ISBN-13:978-84-692-5005-1

17.Sangiorgi, U. B., Zen, M., Motti, V. G. &
Vanderdonckt, J. (2013). Challenges on Distributing a
Collaborative Sketching System Across Multiple

Devices. In M. D. Lozano, A. S. Mashat, H. M.
Fardoun, J. A. Gallud, V. M. R. Penichet, R. Tesoriero
& J. Vanderdonckt (eds.), DUI@EICS (p./pp. 50-53).
ISBN: 978-84-616-4792-7

18.Thevenin, D.; Coutaz, J.: Plasticity of user interfaces:
Framework and research agenda. In Proceedings of IFIP
INTERACT, 110–117, 1999.

19.Vanderdonckt, J. Distributed user interfaces: How to
distribute user interface elements across users,
platforms, and environments. In Proceedings of the
International Conference on Interaccion, 2010

20.Vandervelpen, Ch., Vanderhulst, K., and Coninx, K.
Light-weight Distributed Web Interfaces: Preparing the
Web for Heterogeneous Environments. Proc. of 5th Int.
Conf. on Web Engineering ICWE'2005 (Sydney, July
25--29, 2005). Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2005.

21.Want, R., Fishkin, K.P., Gujar, A., Harrison, B.L.:
Bridging physical and virtual worlds with electronic
tags. In: Proceedings of the SIGCHI conference on
Human factors in computing systems: the CHI is the
limit, ACM Press, Pittsburgh, Pennsylvania, United
States, 1999.

22.Weiser, M. The computer of the 21 century. Scientific
American Special Issue on Communications, Computer,
and Networks, 1991

Performance Evaluation of Proxywork

Pedro G. Villanueva
University of Castilla-La Mancha

Campus Universitario s/n
(02071) Albacete, Spain
pedro.gonzalez@uclm.es

Ricardo Tesoriero
University of Castilla-La Mancha

Campus Universitario s/n
(02071) Albacete, Spain

ricardo.tesoriero@uclm.es

Jose A. Gallud
University of Castilla-La Mancha

Campus Universitario s/n
(02071) Albacete, Spain

jose.gallud@uclm.es

ABSTRACT

Proxywork is a system that allows users to distribute user
interface components of any Web application among a set
of devices. In order words, it allows to transform any Web
application in a Web application with Distributable User
Interface. The distribution is controlled by the user through
a set of primitives (clone, copy and migrate) attached to
Web page components. Proxywork injects these operations
automatically into the Web page components in runtime, so
Web pages do not require any extra information in order to
be distributed among different devices. This paper presents
an evaluation of Proxywork productivity to perform defined
tasks. This evaluation demonstrates that, the productivity is
greater when we use Proxywork instead of without
Proxywork when performing certain tasks.

Author Keywords

Distributable User Interfaces; Web; Proxywork; Quality in
Use; HCI

ACM Classification Keywords

H.5.2 [Information interfaces & presentation]: User
Interfaces; H.5.3 [Information interfaces & presentation]:
Group and Organization Interfaces.

INTRODUCTION

Web applications do not offer the possibility to distribute
UI components from one device to another one. For
instance, suppose that you are viewing a Web site using a
Smartphone, and you want to read an article in a bigger
display such as your desktop computer.

In an ideal situation, you should be able to “select” the
article from your Smartphone, and “distribute” it to the
Web browser running in the desktop computer. However, in
the real life, it is not as simple as it seems, because Web
browsers do not support this feature.

The term Distributed User Interface or DUI has been

defined in many different ways, some of them [3, 4, 6]. But
as it is mentioned in [1], it is not possible to find a single
formal definition that can be considered as the reference.
This concept is redefined in [7] where the new concept of
Distributable User Interface (DeUI) is presented.

Proxywork system offers the ability to transform Web
applications designed to run on a single display into Web
Applications running on a DeUI. This transformation is
performed at runtime by means of a Web proxy, which is
able to distribute a Web application UI across different
platforms.

In order to carry out this task, Web browsers connected to
the Proxywork proxy receive a modified version of Web
pages they have requested. This modification attaches a
menu that allow users to clone, copy or migrate UI
components to the rest of the browsers that are connected to
the Proxywork proxy.

In this work, we present a user study whereby we want to
demonstrate whether productivity when certain tasks are
proposed, is greater using Proxywork than without
Proxywork.

This article is organized as follows: Section 2 introduces
the concept of DeUIs. Section 3 briefly describes the
Proxywork system. Later on, section 4 shows the
quantitative evaluation of the Proxywork system. Finally,
conclusions and future work are presented.

THE DISTRIBUTABLE USER INTERFACE CONCEPT

A formal definition of the concept of distribution of the user
interface is present in [7]. That article proposes a new
concept called Distributable User Interface (DeUI).

The DeUI concept is defined in an informal way as follows:
A User Interface is distributable, if and only if, there is at
least one interaction object which can be in more than one
platform.

The Platform entity is the combination of Hardware (CPU
and I/O devices) and the operating system, which supports
the running application. In the case of Web applications, the
browser is part of the platform. Some examples of different
platforms are smartphones, tablets, laptops, desktop
computer, etc.

The Interaction Object entity (hereafter referred to as IO) is
defined as the Abstract Interaction Object (AIO) described
in [5]. Some examples are: an application window, a button,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

DUI '14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677665

mailto:Permissions@acm.org

a layout, a textbox, etc. There are three types of interaction
object: Interaction Component, Interaction Container and
Interaction Surface.

The Interaction Component entity represents the basic
elements of the user interface. An InteractionComponent
cannot contain other elements. Some examples are: a
button, a label, an icon of a RFID panel, etc.

The Interaction Container entity represents user interface
elements able to contain other elements. Some examples
are: a grid including two buttons, a region of a RFID panel
that contains some RFID icons, etc.

The Interaction Surface entity represents user interface
elements that may contain other elements, but that cannot
be contained in another element. Some examples are: a
windows desktop, a panel of RFID, an Activity on Android,
a Page on Windows Phone, a View on iPhone, etc.

DISTRIBUTING WEB APPLICATIONS: PROXYWORK

Proxywork is a system that supports Web-based DeUIs.
This system is a proxy that transforms any Web Application
into a Web Application with a distributable user interface.
This system is the first that allow users to interact on true
DeUI environment. Figure 1 shows the overview of the
Proxywork architecture that is explained in the next
paragraphs.

Once the device Web browser is registered, the request
follows these steps to display the Web page enriched with
distribution operations: First, the request for the page, e. g.
http://www.yyy.com, departs from the device browser, and
arrives to the Proxywork proxy. The Proxywork system
requests the Web resource to the Web server where the
application is hosted. The Web server returns the Web
resource to the Proxywork. Proxywork modifies the
resource by inserting HTML, CSS and JavaScript extra
code in the page in order to add distribution primitives, and
provide a list of devices where users will be able to perform
the distribution of UI components. Proxywork returns the
modified Web page supporting the distribution primitives to
the device Web browser that sent the request. Finally, the
Web browser shows the distributable Web page
(http://www.yyy.com).

Distribution Granularity

The distribution granularity of a Web page defines which
parts of the Web page users are able to distribute (or make
sense to be distributed) across devices, and which are not.

These parts are identified in terms of HTML tags.
Therefore, Proxywork sets the granularity to the <DIV>
HTML tag level by default because this tag represents
groups of graphically related tags. However, users are able
to set other HTML tags to make the distribution more
flexible.

Figure 1. Overview of the Proxywork architecture.

Distribution primitives

This section describes the set of distribution primitives
supported by Proxywork.

The Connect primitive associates the IP address of a device
Web browser to a device name. The connection occurs
when the Web browser request a Web resource for the first
time. As result the user sends the device name to the proxy
through a form. Once the device is registered, the name is
used to parameterize the distribution primitives that require
a target device Web browser (Clone, Copy and Migrate).

The Disconnect primitive releases a device Web browser
from the distribution environment. Once the device is
disconnected, the device name is removed from the list of
parameters that are set to distribution primitives.

The Rename primitive allows users to change the
registered name of a device Web browser.

The Copy primitive allows users to copy UI components
from one device Web browser to another one connected to
the same distribution environment. This primitive requires
the target device Web browser as parameter. Besides, the
interaction with this component in the source or target
device, affects to the source device.

The Clone primitive allows users to copy UI components
from one device Web browser to another one connected to
the same distribution environment. This primitive requires
the target device Web browser as parameter. Besides, the
interaction with this component in the source device, affects
to the source device, and the interaction with this
component in the target device affects to the target device.

The Migrate primitive sends UI components from one
device Web browser to another one connected to the same
distribution environment. This primitive requires the target
device Web browser as parameter. The component
disappears from the source device and appears on the target
device. Besides, the interaction with this component in the
target device, affects to the source device.

To illustrate the difference between Copy and Migrate let
us suppose that A and B are two device Web browsers. If a
user performs a Copy primitive on a UI component, called
X, running on A being the target device B, all subsequent
primitives performed on X do not affect B in any way.
However, if a user performs a Migrate primitive on a UI

component, called Y, running on A being the target device
B, the Y UI component disappears from A and appears on
B. Note that all primitives performed on Y are targeted to
A.

Finally, if two device Web browsers A and B perform the
Migrate primitive on the same UI component Z of the same
Web page to a third device Web browser C, the primitive
performed on Z affects both, A and B. That is to say that
while the Copy primitive “copy” UI component instances,
the Migrate use the “reference” of UI components that are
defined by the ID attribute of the tag.

When users click the right button of the mouse on any UI
component, a distribution menu with the Clone, Copy and
Migrate primitives appears. For each primitive there is a list
of devices that are connected to Proxywork at that time.
The Figure 2 illustrates this with an example.

Figure 2. Distribution menu with Clone, Copy and Migrate

primitives and five connected devices.

USABILITY EVALUATION

Given the Proxywork system, a quantitative evaluation was
carried out. Our goal was to investigate whether the
productivity when performing certain tasks is greater using
Proxywork than without Proxywork. Therefore, we have
focused mainly on the total time of the distributed task and
the total time of the task without distribution.

The scenario simulates a primary school classroom and our
participants are professors. The participants were asked to
complete the next task: the user must to show, in the PC of
five students (pupils), the first video of Youtube that
appears when the user searches the string “children's
stories” in the search engine of Youtube.

For this experiment we have set a null hypothesis, which
allows us to evaluate the productivity of Proxywork for the
proposed task. The null hypothesis is described as follows:

H0: There is no significant improvement in the total time of
the distributed task with Proxywork respect to the total time
of the task without using Proxywork.

Participants

Five volunteer participants (2 female) were recruited from
the local university campus. Participants ranged from 29 to
55 years (mean = 37.4, SD = 10.33). All were daily users of
computers, reporting 4 to 12 hours usage per day (mean =
7.4, SD = 3.13). All were weekly users of Youtube Web
site, reporting 5 to 20 videos per week (mean = 11.2, SD =
5.97). Participants had no prior experience with Proxywork
system.

Apparatus

The hardware consisted of six Windows hosts, one of them
managed by participants (2.8 GHz Intel Core i7 with 8 GB
of RAM) (see Figure 3.a) and the rest of them busy by
pupils (2.4 GHz Intel Core i5 with 6 GB of RAM) (see
Figure 3.b). All hosts ran Windows 7 and used Google
Chrome browser. Hosts were connected to local university
Ethernet.

Procedure

The experiment was performed in a quiet room. The user
had their own computer and other 5 computers available for
pupils. All computers showed initially a different page of
Youtube. Each user should perform first the proposed task
without using Proxywork, and subsequently, had to do the
same task from his/her computer using Proxywork (within
subjects). In the first case, the user should work in each
computer searching and starting the video. In the case of
Proxywork, the user made use of the clone primitive to all
computers from her/his own computer (see Figure 2).

Figure 3. Hardware for experimentation.

Each session of the experiment took half an hour, and
during that time, the user performed the task with both
conditions. The first step at the beginning of the session
was to check all systems worked correctly: the computers,
the Proxywork system and the measuring device. Later, we
explained the experiment and the task to be carried out to
each participant. Once the user had a clear idea about the
experiment, we gave him/her a training session, and after
that, the user performed the task with both conditions.
During the testing we measured the times, and recorded the
process.

Once all the sessions were made, we collected the task
times without Proxywork and the task times with
Proxywork. Errors with each condition were also collected.

Design

Independent and dependent variables can be obtained from
the null hypothesis. The independent variable in this case is
the technique used, with two possible conditions (with
Proxywork or without Proxywork). The dependent variable
is the task time. Thus, by having a single independent
variable, the experiment has a basic design instead of a
factorial design (more than one independent variable).

We decided to carry out the experiment with a "within
group" design instead of a "between groups" design because
the number of users selected to perform the experiment is
reduced. Besides, the learning effect can be considered null.
The advantage of this design is that you need fewer users,
but the limitation is the impact due to the fatigue of the
users.

RESULTS AND DISCUSSION

A dependent variable was measured through the course of
the experiment. Results for the basic metric of the task time
is presented first. This is followed by additional
investigations on a linear regression of the task time respect
of the number of computers.

Task time

In user studies involving multiple conditions, the ultimate
objective is to find out whether there is any difference
between the conditions. Since the data points contributed by
the same participant are related, a paired-sample t test
should be used [2].

The results for the task time without Proxywork are (mean
= 81.8, SD = 11.61) and for the task time with Proxywork
are (mean = 30, SD = 2.34).

After applying the paired-sample t test on the set of data
collected in the experiment, we obtained a statistical test (t)
10.91 with the specific degrees of freedom (df = 5), which
yields a p-value of 0.00000562, with which there is strong
evidence, with a 95% confidence, that the task time without
Proxywork is significantly greater than the task time to the
using Proxywork, (t (5) = 10.91, p < 0.05).

You can also be 90% confident that the true difference
between the means is between 41,679 and 61,921,
according to the uncertainty associated.

Linear regression

We measured the time users spent to show the video on
different number of computer used (1 to 5 computers), and
a linear regression has been applied to make a prediction of
how long it would take to show the video on N computers.
The result is the linear equation f (x) = 1.200 + 16.04 x.
This equation allows us to predict the time that it would
take to accomplish the task without Proxywork considering
x is number of computers. Number of computers does not
affect the task time performed with Proxywork (f (x) = 30).
The Figure 4 shows the average task time for both
conditions of the independent variable according to the
number of computers.

CONCLUSION

An paired-sample t test suggests that there is significant
difference in the total time of the task distributed with
Proxywork respect to the total time of the task without
using Proxywork (t(5) = 10.91, p<0.05).

Figure 4. Average task time for both conditions of the

independent variable according to the number of computers

ACKNOWLEDGMENTS

We thank all, the CICYT-TIN 2011-27767-C02-01 Spanish
project, the PPII10-0300-4174 and the PII2C09-0185-1030
JCCM Projects for supporting this research. We also would
like to thank to the “Programa de Potenciación de Recursos
Humanos” from the Scientic Research, Technological
Development and Innovation Regional Plan 2011-
2015(PRINCET).

REFERENCES

1. Elmqvist, N. Distributed User Interfaces: State of The
Art. CHI 2011 Workshop (2011), 7-12.

2. Lazar, J., Heidi J., and Hochheiser, H. Research
Methods in Human-Computer Interaction. Wiley
Publishing (2010). ISBN: 978-0-470-72337-1.

3. López, J.J., Gallud, J.A., Lazcorreta, E., Peñalver, A.,
and Botella, F. Distributed User Interfaces:
Specification of Essential Properties. Distributed User
Interfaces: Designing Interfaces for the Distributed
Ecosystem. Springer (2011). ISBN 978-1-4471-2270-8.
Chapter 2, 13-21.

4. Melchior, J., Grolaux, D., Vanderdonckt, J., and Van, R.
P. A Toolkit for Peer-to-Peer Distributed User
Interfaces: Concepts, Implementation, and Applications.
Proceedings of the 1st ACM SIGCHI symposium on
Engineering interactive computing systems. ACM Press
(2009), 69-78.

5. Vanderdonckt, J., and Bodart, F. Encapsulating
Knowledge for Intelligent Automatic Interaction Objects
Selection. Proc. of InterCHI'93 “Bridges Between
Worlds”. ACM Press (1993), 424–429.

6. Vandervelpen, Ch., Vanderhulst, K., Luyten, K., and
Coninx, K. Light-weight Dis-tributed Web Interfaces:
Preparing the Web for Heterogeneous Environments.
Proceeding of 5th Int. Conf. on Web Engineering.
ICWE'2005. Springer-Verlag (2005).

7. Villanueva, P. G. Revisiting the Concept of Distributed
User Interfaces. Distributed User Interfaces: Usability
and Collaboration. HCI Series (2013). ISBN 978-1-
4471-5498-3. Chapter 1. 1-15.

Real Time Public Transport Location and Time Services
for mobile users

Habib M. Fardoun, Daniyal M. Alghazzawi, Lorenzo Carretero Gonzales
King Abdulaziz University

Jeddah, Saudi Arabia
{hfardoun, dghazzawi, lgonzales}@kau.edu.sa

ABSTRACT
At the people’s daily routine is usually included the option
of using the public transport to reach their destination.
However, in most cases, they have to arrive at a specific
time to the expected place, calculating the necessary time of
the whole trip. In this proposal we are going to introduce a
platform, which unifies the services that the public transport
companies have, to provide to the user, by mean of a
mobile device, an accurate notion of the time to the
destination and of the transport’s location every moment.

Author Keywords
Distributed User Interfaces; Public Transport; Mobile
Devices; Web Services.

ACM Classification Keywords
H.2.4. Systems. Distributed Databases.

H.5.0. Information Interfaces and Presentation. General.

INTRODUCTION
At current society, the use of the public transport is, in most
cases, a problem due to the lack of parking places in the
main cities. In addition, this fact provokes certain worry on
people because they don’t know how much time they need
to park or if they will find a parking for their vehicle. This
brings the possibility of arriving late to the working place or
to an important meeting [1]. For that reason, users usually
going out early from their houses to avoid problems like the
previous ones, which brings a loss of personal time for
sleeping or for being with the family. [2]

The administrations take into account these factors and for
that reason they offer to the citizens’ public transports for
carry them to near places to their destination, without
expending time worrying about where they have to park or
the time to make it. Thus, transports like the metro, the bus,
the tram or the train, which pass each a specific time for

determined stops, available for users. Moreover, the price
of this kind of transports is usually cheap to provide a wide
access to everyone. However, although all of this facilitates
the citizens’ life, they have to continue estimating the time
to arrive to a specific destination. Therefore, they continue
using more time than the necessary with the target of not to
arrive late to the meetings or work.

Due to previous facts we propose a solution that helps to
the users to know, with a small margin of error, the time to
expend from one stop to another one in real time, with the
possibility of seeing in a map where the transport is in a
determined moment, and the necessary time on each section
of the trip. Thus, after consulting the available application
at the mobile device, the user will be able to estimate
meetings with a bigger accurate, avoiding the fact of getting
out early from his/her home and promoting the punctuality
at the meetings, by means of Distributed User Interfaces
[3].

At next sections we are going to talk about the services
available by the public transports, about the system’s
architecture, the methodology used to carry the platform out
and how the different users interact with the system to
obtain the requested information.

STATE OF ART
The companies of public services usually provide through
their web page information about all related with the
transport: stops, schedule, times, etc. Thus, the user, after
navigating through the web, introduces the street origin and
destination, and the system provides the route and the type
of transport that can be used beside with estimated times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org, July 01
2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677666

Figure 1. TMB (Metropolitan Transport of Barcelona)

In addition to the previous comments, the company Google1
with its product Maps2 [4], also provides transport’s routes,
showing different trips that can be used, by mean of a
personal vehicle or by public transport, beside with
information about the estimated times to reach the
destination.

Figure 2. Google Maps.

Once we are physically located at the different stops, we are
able to obtain more accurate information about the time to

1 Google. North American multinational enterprise
specialized in products and services related with Internet,
software, electronic devices and other technologies.
2 Maps. Google’s service that allows to visualize the world
through satellite images, maps or a combination of both.

arrive our next transport thanks to the digital devices that
show the estimated time of arrival. However, we must to be
physically there to know this information, for that reason it
would be very useful to consult it before going out.

ARCHITECTURE
This system starts from the different user interfaces
distributed among the operators’ terminals of each of the
implicated public transport companies. With the
information about the times and location that they have
available, we open read-only outputs through web services
for a posterior treatment at the centralized platform. This
platform is in charge of unifying all the obtained
information and providing to the users of the necessary data
to control the transport times. Below we show the
architecture taking as a reference the public transport of the
city of Barcelona.

Figure 3. System’s Architecture.

As we can see at the Figure 3, we have available various
distributed user interfaces among the different public
transport companies.

- In red we have the TMB (Transporte
Metropolitano de Barcelona), in English:
Metropolitan Transport of Barcelona, related with
the transport by bus or metro [5].

- In orange are defined the “Rodalies de Catalunya”
that makes reference to the regional train, which
connects with the farthest parts of the city and with
surrounding towns [6].

- In yellow we have the FGC, the railways of
Cataluña, which go from the centre to the outskirts
of the city [7].

Taking into consideration that these companies have all the
information related with their transports, for example the
location, they can estimate the time to arrive the next
transport to a specific stop. If we can consult that data
through read-only web services, we will have the necessary
information for users can consult their itinerary in a more
accurate way. To avoid a dispersion of all that information

into different web pages and/or mobile applications, we
provide a central kernel where all the data is stored.
Therefore, we centralize the data providing to the users the
information of the different transport means of the city.

To provide a wider accessibility, we made a mobile
application to access and visualize the data. Thus, with only
a mobile device we have all the information related with the
location of the next transport and with the times for arriving
to the next destination.

METHODOLOGY
Basing on the services offered by the public transport
companies to the users and on the information provided by
Google Maps, we are going to obtain a system, which
unifies and improves the requested information by those
users. Below we show the services that each of the
companies provides:

- TMB.

o The Metropolitan Transports of Barcelona are
related with the bus and metro, offering routing
services and estimated times in function of a street
origin and a street destination.

- Rodalies.

o The “Rodalies de Catalunya” related with the
regional train, offer routing services in function of
a stop origin and a stop destination, and they have
an exact schedule about departures.

- FGC.

o “Ferrocarrils de la Generalitat de Catalunya” are
train services similar to metro and show routes
from a stop origin and a stop destination with
determined departure times.

- Google Maps.

o Offers detailed services for routing by walk, with
public transport or private transport.

In all of them, there are digital posters on each station or
stop where the arrival time of the next transport is
indicated, although not in every bus stop this service is
offered.

Having available all this information, our proposal treats to
improve and to unify all the information that is distributed
on different control interfaces to be more accessible for the
user and to be more useful. Thus, we will use the info of
Google Maps [8][9] to know the time that we need to arrive
to the stop by walk (added in future versions). In addition
the TMB, FGC and Rodalies provide the data to know
about how much time we have to wait till the transport’s
arrival. Besides, the application shows the transport’s
location with the help of the GPS technology and the used
one when the train goes under the floor [9]. In addition, for

the transfer among stops, we are going to use the info
provided by the TMB to know the walking time. Finally,
once the user has arrived to the destination stop, we use the
services of Google Maps again to calculate the last stretch
to the destination.

With all that information we obtain a good estimation about
the time we have to use from one point to another of the
city using the public transports.

APPLICATION
The installed application at the mobile devices is easy due
to the main target is that the user late as less as possible to
obtain the route and the estimated time. This is so, because
in general, people use this type of services when they have
hurry. For that reason the number of screens to show is
small and with only the necessary information.

Figure 4. Selection Screen.

Figure 5. Trip Screen.

As we can see at the previous figure, the amount of
information screens is negligible. We only have to provide
few data to obtain the route and thus, to get the information
shortly. Thus, in a glance the user knows what s/he needs.

CONCLUSION AND FUTURE WORK
With this paper we have stepped forward to get a more
accurate estimation about the time necessary to reach a
destination by mean of the services provided by the public
transport of a specific city (in this case Barcelona). Thus,
the users will have a more concrete notion about the time
they have to use to move themselves from a point to
another and thus, they can schedule appointments with a
smaller error margin.

In this particular case we have treated the time needed from
a public transport stop to the final stop. In this route are also
included the transfers and the time among changes.
However, we haven’t taken into consideration the time
needed to arrive to those stops, therefore in future
extensions we will take the services provided by Google to
control it and thus, to obtain even more details about the
walking time from a determined point to another. For
example, from our house to the first stop and from the last
stop to our destination.

REFERENCES
1. Luigi dell’Olio, Angel Ibeas, Patricia Cecin. The quality

of service desired by public transport users. Transport
Policy, Volume 18, Issue 1, January 2011, Pages 217–
227. http://dx.doi.org/10.1016/j.tranpol.2010.08.005

2. Niels van Oort, Daniel Sparing, Ties Brands, Rob M.P.
Goverde. Optimizing Public Transport Planning and
Operations using Automatic Vehicle Location Data: the
Dutch Example. Models & Technologies for Intelligent
Transportation Systems. 2013.

3. P. G. Villanueva, R. Tesoriero and J. A. Gallud.
Revisiting the Concept of Distributed User Interfaces. In
Distributed User Interfaces: Usability and Collaboration.
Springer, Human-Coomputer Interaction Series. Eds. M.
D. Lozano, J. A. Gallud, R. Tesoriero, and V. M. R.
Penichet. ISBN: 978-1-4471-5498-3, pp. 1-15. 2013.
url= http://dx.doi.org/10.1007/978-1-4471-5499-0_1

4. Google Maps. www.google.com/maps
5. TMB (Transports Metropolitans de Barcelona).

http://www.tmb.cat/en/home
6. Rodalies de Catalunya.

http://www20.gencat.cat/portal/site/rodalies/?newLang=
en_GB

7. FGC (Ferrocarrils de la Generalitat de Catalunya).
http://www.fgc.cat/eng/index.asp.

8. Gabriel Svennerberg. Beginning Google Maps API 3
(Expert's Voice in Web Development). 2010. ISBN-13:
978-1430228028.

9. Evangelos Petroutsos. Google Maps: Power Tools for
Maximizing the API. 2014. ISBN-13: 978-0071823029.

10. Masaki Ito, Satoru Fukuta, Takao Kawamura and
Kazanuri Sugahara. A Precision Navigation System for
Public Transit Users. Distributed, Ambient, and
Pervasive Interactions, Lecture Notes in Computer
Science Volume 8028, 2013, pp 302-308. Print ISBN
978-3-642-39350-1. DOI 10.1007/978-3-642-39351-
8_33.

Interaction Modality Mapping Service for devices in a P2P
network

João Paulo Delgado Preti
Instituto Federal de Ciência e Tecnologia de Mato

Grosso (IFMT)
CP 78.005-200 MT BR

joao.preti@cba.ifmt.edu.br
+55 65 8409-6882

Lucia Vilela Leite Filgueiras
Escola Politécnica da Universidade de São Paulo

(EPUSP)
CP 05.508-900 SP BR

lfilguei@usp.br
+55 11 3091-5200

ABSTRACT
Distributed user interfaces are a trend in human-computer
interaction, supporting applications in ubiquitous and
collaborative computing. Yet, interoperability is achieved
by the use of several protocols. In order to strengthen
interoperability, a greater degree of standardization is still
needed. In this paper, we propose a interaction modality
mapping service for peer-to-peer service-oriented approach
to attend cross-device and distributed user interaction. As a
proof-of-concept, we developed the service and GUI
components that allows devices services to be invoked
through different interaction modalities. We concluded that
the architecture is feasible and provide a rapid construction
of solutions that exploit the interaction among multiple
devices, multiplatforms and multiple users spontaneously,
as devices enter and leave the network.

Author Keywords
Transitions, SOA, P2P, distributed user interface.

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies.

INTRODUCTION
The emergence of a variety of connected devices make up
an infrastructure that encourages the natural growth of new
interaction models. Computational devices tend to connect,
applications, rather than compete, are working together,
making user interaction more rich and complex. Talks-
about new communication models and new human
computer interaction demands are observed in studies by
distributed user interfaces in [6], [7] and [8]. The paper [10]
shows the relationship of the various media with the cloud
computing and the importance of transparency device to
compose a favorable scenario for the human cloud

interaction.

Integrate different devices and systems and the skills to do
it efficiently may present a barrier to use the potential of
information systems and the various connected objects
(devices and applications) disseminated in the environment.

Aiming to meet the requirements already presented in [13],
an architecture with the following characteristics is
presented:

• service oriented;

• DPWS stack based;

• organized as a Web Service Framework;

The use of SOA in the proposed architecture is suitable
because:

1. There is tendency to implement SOA, in particular
Web services standards (SOAP, WSDL, DPWS,
etc..) directly on the devices [11], which enables a
P2P network architecture;

2. There is the prospect of applications integration,
i.e. distributed information can act in cooperation
with corporate systems [3], which enables cross-
application;

3. Standards used in the household are trying to
incorporate the technology of Web Services, as the
UPnP 2.01 and Microsoft2 with its invisible
computing platform, which enables cross-device;

4. There is a convergence of mobile and stationary
systems where applications become a resource not
litmited by the constraint of device and location
[12].

1 UPnP (Universal Plug and Play) is a distributed system, open network
architecture, where devices are directly connected with each other at home,
office and public spaces.
http://en.wikipedia.org/wiki/Universal_Plug_and_Play
2 It is a research prototype for making small devices part of the seamless
computing world. http://research.microsoft.com/en-
us/um/redmond/projects/invisible/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

DUI '14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07…$15.00
http://dx.doi.org/10.1145/2677356.2677667

This research assumes that Web services technologies are
increasingly widespread in the platforms of heterogeneous
devices over Internet Protocol. Nevertheless, the typical use
of Web Services is not suitable, as it should be taken into
account the limited processing capabilities and bandwidth
of resource constrained devices.

The use of SOA in the devices is becoming common and
refers to the Device as a Service (DaaS) concept. This
concept is addressed in several studies, such as [1], [2], [4]
and [9], and several of them point the DPWS specification
as a promising one.

For the proposed architecture in this research we chose a
direct communication model (P2P) because:

1. gives the device the ability to spontaneously
connect with each other to perform an activity;

2. promotes a facilitated communication, plug and
play style, without many configurations;

3. there is no hierarchy among communication nodes
and there is not a compromising failure point, each
device can be a consumer or provider, with no
common dependence in the architecture to a single
device.

This paper presents a service-oriented architecture that
assist in the communication of devices that need to
coordinate a distributed interaction using more than one
interaction modality.

SOA technologies for devices has emerged like UPnP and
Jini, but a promising technology for compatibility with Web
Services (WS) is proposed by OASIS through Device
Profile for Web Service (DPWS) specification [5].

Interaction Modality Mapping Service (IMMS) is being
built on top of DPWS specification as architecture base for
discovery and communication between devices. All devices
in the distributed environment must have an
implementation of DPWS specification.

Despite DPWS stack provide specifications for service
description, location, security and events, it does not
include some features needed for a distributed interaction
scenario. For this reason, DISS (Distributed Interaction
Support Service) existence becomes necessary. DISS was
already presented in [13] and raises a set of services needed
to organize a distributed interaction. In this paper we
present IMMS, one part of DISS service architecture
responsible for multimodality. IMMS rationale is described
in the following section.

INTERACTION MODALITY MAPPING SERVICE (IMMS)
Given the different modes of interaction for each device
type, we visualize an organization of services for its type.
The existing arrangements for a smartphone interaction can
be very different from those found on a TV. There are
smartphones that allow interaction via keyboard, voice,

video camera, multitouch screen and through sensors, such
as accelerometer and proximity. TV interaction occurs
almost always at the remote control keypad.

The IMMS is the service responsible for registering how an
interaction, performed on a given device, invokes the
services offered by another device. To achieve this
behavior, the IMMS must have recorded the events that can
be launched and act as an adapter for the correct invocation
of the desired service. The relationship between actions and
services is a many to many cardinality.

An example is shown in Figure 1, which is possible to
visualize a smartphone device interested in the services of
another device whatsoever. Actions taken on the
smartphone represents user interaction with this device.
These actions, trigger events that are intercepted by IMMS,
which is responsible for interpreting the event and properly
invoke the desired service on another device. A user action
can be, for example, a multitouch gesture "to enlarge". This
action can be configured to increase the volume of the TV,
or zoom in on a display, or increase the acceleration of an
engine.

Figure 1. IMMS mapping user actions on a smartphone

to another device.

Table 1 presents a hypothetical example of interaction
possibilities of the use of a smartphone with the services
offered by a TV and vice versa.

Table 1: Interaction between Smartphone and TV
SMARTPHONE TV

Spreading two fingers Increase volume
Approaching two fingers Decrease volume
Swipe right Channel up
Swipe left Channel down
Double tap the screen Change screen format

(16:9;4:3)
Drag three fingers down Show TV program

schedule
TV SMARTPHONE
Press up arrow Go to previous contact
Press down arrow Go to next contact
Press ENTER/OK Show detailed contact data
Press Info Show smartphone location

At the end of Figure 1 is also possible to observe the
existence of a Relation Service, which is necessary to allow
connections between services to be constituted. It allows
chaining a set of devices in a single interaction. The call to
a service can trigger a call to another service, allowing an
action to take effect in more than one service (present in the
same device or not), causing a cascading effect. We
visualize the possibilities of using SOAP messages over
UDP or stream strategy for events that can be fired
continuously. The DPWS specification allows you to send
SOAP messages over UDP or TCP, and also the realization
of stream, which provides the flexibility to categorize
events according to their nature and use a more optimized
protocol or strategy if necessary.

The WS-Eventing specification allows creating complex
topologies for events submission and processing, allowing
the event source and the receiver to be decoupled.

Figure 2 shows how the IMMS is organized.

Figure 2. IMMS structure for events and stream

processing.

The mapModality operation allows loading the modality
formats recorded in a XML configuration file for the
service the user wants to access.

The ModalityEventClient and ModalityStreamClient
classes represents the communication format of the
interaction, whether in the form of events, whether in the
form of stream, respectively.

The Interpreter class is responsible for storing and
retrieving the XML configuration file that structure the
interaction modality map, as the example in Figure 3.

In Figure 3 is possible to verify that the operations
setMouse (which sends mouse data streamed to other
devices) of MouseService and okEvent (which sends data
typed on the keyboard when pressed OK in the smartphone
and ENTER on the desktop) of KeyboardService, are being
mapped to TV devices services. It is possible to check that
three mouse and one keyboard events were mapped:

• simple click on the left button
(LEFT_ONE_CLICK): invokes the nextChannel
TV operation only once (occurrence value = "1");

• simple click the scroll button
(SCROLL_ONE_CLICK): invokes the showInfo
TV operation only once (occurrence value = "1");

• hold down the left button (LEFT_PRESSED):
invokes the operation volumeUP several times
(occurrence value = "*"). The number of calls to

volumeUp operation will depend on the positive
variation of mouse x axis;

• type CHN: invokes the setChannel operation
(changes the TV channel), the numeric argument
entered after the CHN command sets the new
value of the channel.

Figure 3. XML document that maps TV services to

mouse and keyboard events.

The sequence diagram in Figure 4 shows an example of
IMMS using event-driven mechanism.

In this mapping, the keyboard service is mapped to interact
with TV through text commands. Already Figure 5 shows
an example using IMMS via stream.

Figure 4. Keyboard operations mapped to TV operations

through events.

In this other example the mouse service is mapped to
interact with the TV via mouse click actions. The keyboard
and mouse actions of the two samples can be investigated in
the XML document described in Figure 3.

Figure 5. Mouse operations mapped to TV operations

through stream.

For demonstration purpose take the example of our
XMouse GUI component. This component is responsible to
create a virtual cursor in the destination device, allowing
controlling a remote cursor when the cursor service exists
in the destination device.

Figure 5a shows the implemented XMouse desktop GUI
component. Figure 5b shows the result of virtual cursors in
another desktop device controlled by XMouse component.

Figure 5a. XMouse

component.

Figure 5b. Cursors
controlled by XMouse.

XMouse in its initial version was able to communicate only
with devices that support the creation of virtual cursors
(like desktop devices). With IMMS, XMouse component is
able to communicate with devices for other intents than the
virtual cursor (as controlling TV operations).

CONCLUSION
The experiments presented in this paper are helping in the
definition of a service that allows services to be linked with
different interaction modalities with a distributed
interaction nature.

Device services in conjuction with IMMS can significantly
ease the implementation of a planned and distributed
interaction and offers benefits of interoperability, usability,

reusability and deployability due to its service nature.
However, we understand the need of standardization of
devices services.

REFERENCES
[1] Andreas Muller et al. 2009. An assisted device

registration and service access system for future
home networks. (Dec. 2009), 1–5.

[2] Bohn, H. et al. 2006. SIRENA - Service
Infrastructure for Real-time Embedded Networked
Devices: A service oriented framework for different
domains. Networking, International Conference on
Systems and International Conference on Mobile
Communications and Learning Technologies, 2006.
ICN/ICONS/MCL 2006. International Conference on
(Apr. 2006), 43.

[3] Bronsted, J. et al. 2010. Service Composition Issues
in Pervasive Computing. IEEE Pervasive Computing.
9, 1 (2010), 62–70.

[4] De Deugd, S. et al. 2006. SODA: Service Oriented
Device Architecture. Pervasive Computing, IEEE. 5,
3 (Sep. 2006), 94 –96.

[5] Devices Profile for Web Services Version 1.1: 2009.
http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-
1.1-spec.html. Accessed: 2014-01-28.

[6] DUI 2011. DUI 2011 Distributed User Interfaces.
(Vancouver, BC, May 2011), 109.

[7] DUI 2012. DUI 2012 Distributed User Interfaces.
(Austin, TX, USA, May 2012), 74.

[8] DUI 2013. DUI 2013 Distributed User Interfaces.
(London, UK, Jun. 2013), 75.

[9] Jammes, F. et al. 2005. Service-oriented device
communications using the devices profile for web
services. Proceedings of the 3rd international
workshop on Middleware for pervasive and ad-hoc
computing. (2005), 1–8.

[10] João Paulo Delgado Preti and Lucia Vilela Leite
Filgueiras 2010. Interação em Nuvens. (Belo
Horizonte, MG, Oct. 2010).

[11] Karnouskos, S. et al. 2009. Towards the real-time
enterprise: service-based integration of
heterogeneous SOA-ready industrial devices with
enterprise applications. Proc. of the 13th IFAC
Symposium on Information Control Problems in
Manufacturing (INCOM’09) (2009), 2127–2132.

[12] Marc McLoughlin 2009. ECSCW Workshop:
Bridging Interaction Clouds: Exploring collaborative
interaction across assemblies of mobile and
embedded technology. ecscw workshop: bridging
interaction clouds.

[13] Preti, J.P.D. et al. 2014. Transitions: a crossmedia
interaction relevant aspect. (Hawaii, USA, Jan.
2014).

Non-Functional Requirements for Distributable User
Interfaces in Agile Processes

Mohamed Bourimi
MT AG – Business by Integration

Balcke-Dürr-Allee 9
(40882) Ratingen, Germany

mohamed.bourimi@mt-ag.com
+49 173 8605799

Ricardo Tesoriero
University of Castilla-La Mancha
Campus Universitario de Albacete

(02071) Albacete, Spain
ricardo.tesoriero@uclm.es
+34 967599200 (ext. 2295)

ABSTRACT
This paper presents a two-folded approach to deal
with non-functional requirements for distributable
user interfaces (DeUIs) in agile processes. This
proposal employs a conceptual agile framework
that ensures earlier consideration of non-
functional requirements and stakeholders’
involvement to solve tensions among agility,
requirements engineering practices and
continuous system architecture adaptation.
Besides, it improves the step of continuous
architecture adaptation as established in the DeUI
field by employing model-driven architectures.
Thus, while this approach profits from the
conceptual framework by means of continuous
feedback on how to technically better support the
classical tension between agility and requirement
engineering; it also takes advantage of model-
driven architecture to cope with the tension
between agility and distributable user interface
architecture changes.
Author Keywords
Agile methodologies, Distributable User
Interfaces, Model-driven development, Scrum,
AFFINE.

ACM Classification Keywords

H.5.2 User Interfaces: User-centered design, H.5.2 User
Interfaces: Graphical user interfaces (GUI), I.6.5 Model
Development

MOTIVATION
The cost reduction of digital displays has
encouraged the use of them almost everywhere.
They can be both, stationary (i.e. Smart TVs,
advertising displays, interactive information point
displays, etc.) or mobile (i.e. Smartphone,
Tablets, etc.).

Due to the advances in the communication
infrastructure, these devices can be easily
connected to define a display ecosystem [1]
where users are able to interact with more than
one interaction display at the same time.
One way of taking advantage of the resources that
are part of a user interface (UI) Ecosystem is the
distribution of UI components among devices that
are available within the ecosystem. According to
[2], in a distributed user interface (DUI) scenario,
users distribute one or many elements/s of one or
many user interface/s to support one or many
user/s to carry out one or many task/s on one or
many domain/s in one or many context/s of use.
Some cases of study where DUIs were
successfully developed are exposed in [3] and [4].

The DUI concept was redefined in [5] to describe
a state of a UI, instead of a type of UI.
Consequently, the distributable user interface
(DeUI) concept emerges to define UIs that can be
distributed among different platforms in runtime.
The DeUI concept is defined using a metamodel
that describes the distribution characteristics of
UIs in terms of metaclass instances that specify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

4th Workshop on Distributed User Interfaces and Multimodal Interaction
DUI’14, July 01 2014, Toulouse, France
Copyright 2014 ACM 978-1-60558-724-0/14/07$15.00
http://dx.doi.org/10.1145/2677356.2677660

the UI distribution model [6]. Some examples of
DeUIs can be found in [25, 26]

There are different approaches to develop DeUIs;
however, they are leaving the research status to
become more mature in order to satisfy sensitive
industrial requirements [7]. Moving interfaces
from one screen to another screen or device as we
know them from famous movies (e.g. Minority
Report, Paycheck or Avatar) are no more fiction
but becomes a reality.

The distribution aspect, as defined above, allows
the distribution of information among different
displays or UIs running on different platforms,
which are often used in collaborative settings,
adding so another dimension of complexity.
Indeed, this “distribution” aspect in a given usage
situation needs addressing emerging issues (e.g.;
related to trust, security and privacy
requirements). Especially when DeUIs are used
within collaborative settings, further requirements
such as group and social awareness, usability as
well as tailorability (i.e. adaptability)
requirements have to be considered. The
majority of these requirements are primarily
related to non-functional requirements (NFRs)
[29].

The major challenge from the software
engineering perspective consists since decades in
properly addressing those requirements in (i)
early system design as well as (ii) continuously
aligning them with the resulting system
architecture in latter adaptation/maintenance
phases of emerging systems and applications.
DeUIs and socio-technical systems (i.e.
groupware or social software) in general demand
frequent evaluation, collection of feedback and
experiences with respect to unexpected human
behavior. Nowadays, user-centered and
participatory design metho(dologie)s with
different degree of agility are used to build such
socio-technical systems. Agility and earlier end-
users’ involvement increases the frequency of
change requests on both; business processes and
development level (business process agility; agile
development). In this paper, we address agility at
both levels. The meaning of agile processes is put

here on developing systems as well as
considering dependencies to business in general
(i.e. organizational management levels). Agile
method(ologi)es often just focus on development
activities while business process agility demands
stronger consideration of constraints emerging
from organizational dependencies to IT Risk
Management, IT Compliance, and Multi-project
Controlling, and stakeholders involvement
concerns across the organizational units etc. This
increases tensions among agility, requirements
engineering practices and continuous system
architecture alignment to changing business
needs.

In this paper, we present a two-folded approach to
deal with NFRs in early stages of agile
development of distributable user interfaces
(DeUIs).

To cope with this challenge we employ the
characterization of the UI distribution presented
in [5]. This characterization is based on the
definition of metamodels that are part of a model-
driven architecture (MDA) designed to develop
DeUIs. The MDA presented in this paper is an
extension of [8] that allows the modeling of
NFRs such as, privacy and security, of traditional
UIs.
The remainder of this paper is structured as
follows; it starts with the analysis of the problem
that presents NFRs when developing DeUIs in
agile processes. Then, it presents how to address
this problem using a model-driven architecture
and discusses the first findings of adopting this
approach. Finally, we expose conclusions and
future work.
PROBLEM ANALYSIS AND RELATED WORK

Background information
End-users are more and more taking control over
the designed systems. For instance, the range of
devices to be supported in different business
scenarios increased rapidly over the last years. A
single end-user disposes nowadays of many
(mobile) devices, with different capabilities (UI,
operating system, etc.) and uses all of them
interchangeably along the day depending of its
leisure or professional needs.

Another emerging need in industrial settings is to
support all categories of users (young or elderly
persons, lay or expert users, etc.) when providing
applications that act as touch points to the
targeted audiences. One could consider for
instance multi-channel marketing (MCM), e.g.,
by using social media where the designed system
must support responsive design for different
devices/platforms. Furthermore, the direction of
interaction is no more from marketers to
consumers but should also be supported in the
opposite way, so that consumers are enabled to
provide information (e.g.; commenting pictures)
or trigger further interaction (i.e. as a reaction on
an offer by chatting with the marketers or their
agents).

The reader may get an impression on which
complexity the system could reach when
considering that the generated context-rich
content should support responsive design
capabilities (for different platforms), maybe track
the user interaction/navigation within the content
(on page or click level) in order to provide
analytics to the marketers, and last but not least,
include anchors for bidirectional interactivity,
e.g., in order to support commenting artifacts,
setting location spots or (instantly and securely)
communicating with others, etc.

As mentioned before, the design of interactive
and collaborative systems is lately focusing on
agile methodologies as a way to efficiently
involve all stakeholders from the beginning when
building such systems. In industrial settings
agility is being followed to reach faster release
cycles in order to meet “time to market”
challenges. Latter are increasingly influenced by
change requests of the customers (e.g., getting car
parking tickets with my handy, shopping by
scanning barcodes while walking through a
corridor in a subway, etc.). In industrial settings,
e.g. for the MCM example above, increasing
users’ numbers within a successful campaign
could produce in performance bottlenecks and
require availability improvements. Furthermore,
MCM involves different stakeholders from
marketing, content management creation teams

(e.g., layout designers), usability and user
experience engineers, business analysts, as well
as approval committees (legal and information
security, and data protection officers, for
checking content on IT compliance, IT product
managers for allocating IT operations
capabilities, etc.).
Tension field and identified needs
In the following we accurately highlight the
tension fields that emerge in such settings when
building sophisticated DeUI and collaborative
systems as we experienced in our (academic and
industrial) project settings by referencing related
work:

• The complexity of the business domain by
satisfying business agility NFRs while
considering multi-laterality of
stakeholders and their (often conflicting)
goals is needed (Tension Field 1; TF1).
For instance, Cremers and Alda mention
in organizational requirements
engineering that “project management
issues (costs, time, schedule) are often
considered as non-functional requirements
as well”; however, at the project
organizational/management level [9].

• The majority of literature addresses NFRs
from the development perspective. NFRs
at development levels are known as a
classical problem area [10]. A very
important finding is that NFRs are often
conflicting and their nature as well as
alignment differs according to involved
(research) areas within a given business
case in particular or project in general
(Usability, Security and Data Protection,
etc.). For instance, confidentiality could
not be handled like availability and
integrity within the Security research area
[24]. Furthermore, there are findings that
(N)FRs’ alignment problems cannot be
fully solved using automations [11]
(TF2).

Figure 1: Tension filed in agile processes

• Mature industrial software is, however, a
final product of a software life
(production) process (s. TF1). Producing
complex software should align the
dimensions depicted in Figure 1 [12].
Regarding the tension between agility and
requirements engineering (RE),
practitioners of agile methodologies
stress, that adequate support for NFRs is
not provided in agile method(ologie)s in
general (e.g., it is not easy to consider
NFRs in user stories). Paetsch et al.
denotes in [13] that: ”Requirements
engineering, […] is a traditional software
engineering process with the goal to
identify, analyze, document and validate
requirements for the system to be
developed. Often, requirements
engineering and agile approaches are
seen being incompatible: RE is often
heavily relying on documentation for
knowledge sharing while agile methods
are focusing on face-to-face collaboration
between customers and developers to
reach similar goals”. In agility,
refactoring hell with respect to continuous
Software Architecture (SA) alignment in
agile settings is well-known example.
(TF3)

• Development methodologies and
processes in general try to reach an
engineering-oriented approach
(automatable, measurable, etc.). Model-
driven development offers an opportunity
to reach this. This could be in our case of

benefit since current research work show
that MDA could be profitable towards
engineering DeUI. However, considering
NFRs and their continuous alignment
could be a challenge especially when
following agile methods (cf. TF3, Agility
vs. Architecture Design). In our case an
engineering-oriented automation level
should be well integrated in DeUI design,
implementation and evaluation since we
already elaborated first steps in this
direction (e.g., in [8]). The new need
consists in supporting it in agile processes
for industrial settings we are involved in.
Catching interdependencies between
organizational and development levels as
well as solving NFR issues that could not
be fully automated is a main requirement
thereby. (TF4). Note that even though
agile method(ologi)es could produce a
qualitatively good product backlog, there
will be still unpredictable breakdowns in
the planning, which results for instance
from decision to be taken at development
level. Another ones are often not related
to technological challenges such as
decisions to freeze or abort projects due to
budget restrictions or re-prioritization.

With simple words in our case, concretely for
building complex DeUIs within agile (industrial)
processes, it is required to address NFR related
problems at both levels; organizational one, e.g.,
reaching consensus among stakeholders’ multi-
lateral goals; as well as at development level, i.e.,
for conflicting or contradicting NFRs and FRs
(Need 1; N1 with respect to TF1 and TF2).
Thereby engineering the process as much as
possible by refining the metamodels of our
emerging DeUI MDA framework by considering
won best practices and/or lessons learned (N2
with respect to TF3 and TF4).
APPROACH

The big picture
The industrial adoption of DeUIs is reflected in
our two main needs (N1 and N2) requires a two-
folded approach. Tremendous literature from

different research communities try to overcome
drawbacks identifies agile methodologies (NFR,
RE vs. Software Architecture) contemplated from
each other (representing so micro-approaches1).
We argue that a methodological macro-approach,
integrating NFR early consideration and
alignment for DeUI in agile processes should be/
build the first part of any approach (i.e., by also
considering/integrating organizational NFRs, so
for agile processes within complex business
domains, e.g., MCM in general2) (N1). Indeed,
many projects fail in industrial settings due to
organizational NFRs and their dependencies to
other levels (development, IT operations, IT
compliance, changes due to emerging regulations
and legal directives, etc.). The second part of our
approach towards engineering-oriented
improvements consists on MDA techniques
addressing NFRs for DUIs in agile processes
(N2). In this paper, we present a proposal on how
a MDA approach addresses NFRs, such as
privacy, security and UI distribution (in
continuation of our previous work described in
[9]).
The methodological part
One could argue that our identified needs (N1-2)
could be seen as high-level requirements to any
software development process. Indeed, however,
and as mentioned before, agility and the software
engineering as disciplines are still young. A
process and meth(odologie)s tailoring respective
development processes are taking place in
different research fields, industrial settings with
different focuses. Such processes’ tailorings
or/and improvements (based on existing ones,

1 For clarification: Approaching problems by
dividing them in research is legitimate proceeding
(divide and conquer philosophy), however, for
industrial settings and since DeUIs are in
adoption/maturity evaluation process, a coarser
approach is needed.
2 The reader may consider again the footnote one
with respect to agile processes vs. agile
methodologies (as we perceive them in this
contribution).

e.g., integrating CMMI and Scrum) lead to
increasing process complexity. We argue that this
is contradicting in some degree the philosophy of
“agility in software engineering” (mainly at
development level). For this, we integrate the
Agile Framework For Integrating Non-functional
requirements Engineering (AFFINE) as an
integral part of our approach [14]. We argue that,
AFFINE is not just another agile method(ology);
instead it defines a conceptual framework
consisting in its turn of two integral parts: (a) the
method and (b) its supporting technology (i.e.
architecture). In addition, AFFINE conceptually
handles all NFRs at the earliest stage of the
development process, which in effect follows a
kind of a “big-front up effort” approach (cf. [12]).
As result, the backlog considers all NFRs,
involves experts for all NFRs of interest, and
helps to constitute the adequate capability of
teams while ensuring traceability of requirements
(which is not often explicitely done in
documentation of agile methods; N1).

One of the main design rationales of AFFINE
consists in considering human factors (i.e.
stakeholders and experts involvements) and
integrating NFR consideration as well as
negotiation techniques and artifacts into Scrum
(see [14]) to ease the communication across the
whole phases of the software life cycle among
involved stakeholders. The current version of
AFFINE extends used practices to ease the
consideration of dependencies to organizational
NFRs. However, keeping the simplicity of the
agile methodology intact so far as possible. So,
inherent dependencies to often-competing NFRs
of various degrees and at different levels
(strategic, organizational, development, and
operational) are considered by keeping
boundaries to other Frameworks such as ITIL3.

3 IT Infrastructure Library as a set of best
practices for IT service management (ITSM),
which focuses on aligning IT with business
needs/requirements.

As we argued earlier in this paper, a macro-
approach is needed to address our needs. The big
picture of our approach is depicted in Figure 2.

Figure 2. Agile Addressing NFRs for DeUIs

Figure 2 depicts the concrete parts of our
conceptual framework towards integrating the
best –so far as feasible- from agility, RE and SA
by focusing on software process improvement
(SPI) requirements specific to a given business
domain (DeUI for MCM for instance). Again, we
argue that in our case the need for such
conceptual convergence-driving approach at this
macro-level is crucial since existing approaches
are (legitimately) focusing on specific aspects
between both extremes (i.e. the SA’s Up-Front
and the Just-So-Far-As-Needed agile
philosophies). Related work address often
bottom-up- or top-down-focused tunings but not
sufficiently their convergence. Figure 2 is based
on collected crucial SPI requirements (SPIRs) by
using AFFINE within DeUI as well as other
projects (i.e. building tailorable groupware). It
coarsely shows how we systematically try to
enforce consideration of our needs within two
integral phases of our framework: (P1) a vision
alignment phase (see. Figure 2), and (P2) the
phase of agile solution’s requirements mapping
onto the agreed vision (see Figure 2,
Construction, Evaluation, and Maintenance
Phases). While P1 is performed as an agile
quality-driven sub-process enforcing the earlier
consideration of organizational and requirements
engineering SPIRs, P2 incorporates established
best practices and anti-patterns for ensuring
continuous SA validation at development and
operational levels; and this while considering

continuous changes in NFRs agreed in P1 in a
balanced and customer's needs oriented way,
namely, by using MDA for DeUI while
considering identified NFRs (TF1-4).

The role played by MDA in P1 is involves the
definition of the virtual (e.g. buttons, entry field,
canvas, etc.) and physical (e.g. displays, smart-
panels, etc.) resources that are part of the display
ecosystem as well as NFRs such as, principals,
access control and anonymity attributes, etc. In
P2, the MDA defines a set of marking models
that relates NFRs to resources. The aim of these
models is filling the gap among MDA models
that cover different concerns of the DeUI system
in order to generate source code for catching up
dependencies across involved levels, the a single
(however, versioned) document is used (e.g.
traceability of NFR alignment decisions).

The Figure 2 depicts therefore a conceptual
framework that can be tailored with means of P1
and P2 in order to meet concrete customers'
situation (in terms of a balanced agile and
existent architecture-considering SPI
implementation). Thereby P1 and P2 can be
considered as concrete SPIRs alignment and
dependency checking mechanisms at the meta-
level. In our case, we used MDA in order to reach
the big-front effort approach in P1 in various
projects (high-fidelity rapid prototyping with
MDA for building a common vision among
stakeholders, identifying NFRs of interests,
needed experts, staffing capabilities, e.g. for
development teams, etc.) [3,4, 15].
Considering the interplay between agile methodology
and MDA
Some NFRs could be broken down into
requirements that can be automatically checked
(e.g. availability could be verified in terms of
performance response times, integrity could be
assessed by means of unit tests, etc.). However,
other NFRs are difficult to be qualitatively or
quantitatively evaluated.4 For the formers, we

4 For instance, usability, confidentiality and
consideration of privacy as well as trust

showed in [9] how metamodels could address
some issues regarding breakable NFRs in DeUIs.
However, as we have mentioned in the
Motivation section, there are non-breakable NFRs
that introduce tensions in the development
process between (a) requirements engineering and
agility and (b) between agility and architecture
design (N2).

The use of a MDA to define different concerns of
DeUIs allows the definition of different
metamodels for each aspect of the system to be
developed (e.g. NFRs such as, security and
privacy). Even though, models that are part of the
MDA are used to generate semi-automatically the
source code of the system, these models can also
be validated according to constraints defined in
the metamodels. Consequently, it allows the
validation of NFRs in early stages of the
development process (event before the system is
built).

Our macro-approach consisting in following the
proposed steps of our conceptual framework (see
Figure 2) suggests the involvement of experts in
order to early and adequately addresses NFRs
(N2). Due to the nature of some NFRs that could
not be addressed with fully automated techniques
(the engineering approach), involvement of
experts reduces the complexity of this problem.
For catching up dependencies to later changes
within the construction, evaluations, and
maintenance phases, AFFINE is used (cf.
consensus finding iteration by circulating a
communication artifact in form of an AFFINE
document [14]).

The continuous alignment with means of MDA in
our case targets considering (a) tensions between
requirements engineering and agility and (b)
between agility and architecture design
(distributed system architecture are expensive to
continuously be maintained and tailored each
time) (N2). Considering NFRs for DeUI with
means of MDA is described in the following.

issues/requirements within the designed DeUI
system.

The engineering part: Metamodeling DeUI NFRs
With respect to N2, from a MDA perspective, the
software is specified at different levels of
abstraction using the same or different Domain
Specific Languages (DSLs).
The architecture usually divides the software
representation into 3 layers. The highest level of
abstraction model is the Computational
Independent Model (CIM) that employs a DSL
that is close related to the problem domain. This
model is usually transformed into Platform
Independent Model (PIM) that is a lower level of
abstraction model that represents a computational
solution of the problem. This model is
independent of the implementation platform.
Then, the PIM is linked to the Platform Model
(PM) using a Marking Model (MM) to generate
the Platform Specific Model (PSM) of the
software including implementation platform
details. Finally, the PSM is transformed into
source code (Implementation Specific Model)
using a model-to-text transformation.

Regarding the implementation, metamodels were
defined in ECORE [16] enriched with constraints
in OCL [17] following the OMG [18] standards.
Model editors were developed as Eclipse plugins
using the EMF [16] and GMP [19] technologies.
Models are represented in using the XML Model
Interchange (XMI) [20] language also defined by
the OMG. Model-to-model transformations are
defined in ATL [21] and model-to-text-
transformations are defined in MOFScript [22].
The Cameleon Reference Framework (CRF) [23]
is a unifying reference framework to model
traditional multi-target UIs where the Tasks and
Concepts layer of the framework is the CIM of
the UI, the Abstract UI layer of the framework is
the PIM of the UI, the Concrete UI layer is the
PSM and the Context of Use is a transversal
model that affects all layers (see Figure 3).
The metamodel exposed on Figure 4 was defined
in [6] to introduce security and privacy issues into
the MDA specified by the CRF.

Models conforming the PriS metamodel are linked
models conforming the Task and Domain

metamodels using a marking model that associates
Activity instances (defined in the PriS metamodel)
to Task instances (defined in the Task metamodel)
and Resource instances (defined in the PriS
metamodel) to Class instances (defined in the
Domain metamodel).

Figure 3. The Cameleon Reference Framework

Figure 4. The PriS-oriented security metamodel

This approach is valid for UIs running in a single
platform system because security or privacy
issues are defined for the whole platform.
However, in a DeUI environment platform
conditions vary during UI system lifetime.
The Figure 5 shows the metamodel that describes
the UI distribution characteristics of a DeUI [5].
Models conforming this metamodel describe the
UI Distribution features which are related to AUI
models using a marking model that links
Interaction Object instances (defined in the UI
Distribution metamodel) to Abstract Interaction
Object instances (defined in the Abstract User
Interface metamodel).
According to the UI distribution metamodel, a
Distributed User Interface (DUI) as a state of a UI

instead of a type of UI. A UI ecosystem reaches
the Distributed State, if and only if, it defines at
least 2 Interaction Surfaces that are hosted on
different Platforms. As Interaction Surfaces are
Interaction Containers, they host at least one
Interaction Component each at a given time. It
means that UI components belonging to a
Distributed UI, which is running on a UI
ecosystem, are distributed among UIs running in
different runtime platforms. Therefore, a UI
ecosystem is Distributable, if and only if, exists at
least one Interaction Object that can be hosted in
at least 2 Interaction Surfaces implemented on
different Platforms. This concept of UI
Distribution is a challenge from different
perspectives.

Figure 5. The UI Distribution metamodel.

Note that the UI Distribution model is defined at
the PIM layer of the MDA because in a DeUI
interaction objects can be distributed among
different platforms at runtime. Therefore, in a
DeUI, the PriS model affects both, Platform and
Interaction Object instances.

To model this situation, we define a new marking
model that relates Platform and Interaction Object
instances (defined in the UI Distribution
metamodel) to Resources instances (defined in
the PriS metamodel).
Consequently, the proposed MDA provides
traceability in terms of security and privacy
among: data (as PriS Resource instances), tasks
(as PriS Activity instances), interaction objects
and platforms (also as PriS Resource instances).

Although this approach covers most of security
and privacy issues, there still exist some

particularities that cannot be modeled using this
MDA. For instance, those issues exposed in the
Introduction section of this paper.
DISCUSSION
The following contribution goes beyond last
research carried by us (i.e. [14, 9, 15]) in the
following directions:

• Primarily considering organizational
NFRs (such as aligning multi-lateral
stakeholders’ or technological
requirements that are also often
conflicting), which is increased need for
DeUI within their industrial adoption
process.

• Reflecting the result of our research in
form of a conceptual agile framework
(macro-approach) in order to catch up
important dependencies (following the
anti-pattern approach, especially because
agility and software engineering are still
considered as young disciplines in the
research and industrial fields).

• Targeting an engineering-oriented
approach by using MDA for NFRs in
DeUI projects in agile processes.

However, it is difficult to qualitatively and/or
quantitatively compare our approach to other
ones. However, first collected experiences show
the benefits of our approach, so:

• Our approach helped to early catch up
dependencies by building DeUI
prototypes for SocialTV, Cloud
Computing or Distributed Decision
Making settings where NFRs such as
Authentication , Anonymity , and
Pseudonymity are crucial to the success of
the application. For instance, experts’
involvement helped to identify conflicting
NFRs (awareness in a collaborative UI
and privacy concerns of the end-users) or
design decision that could to violations
(e.g. information security violations when
users share information using a shared
display, i.e. a reflection on a wall). In
various scenarios, experts analyzed
different situations based rapidly

generated MDA prototypes and were able
to detect violations, design balanced
solutions in consensus among
stakeholders.

• Reducing for instance the refactoring hell
and accumulating knowledge in the
developed metamodels (which could be
reused/extended for different business
domains, e.g. MCM with DeUI instead of
SocialTV or Cloud Computing, etc.).
Using MDA for high-fidelity rapid
prototyping approach in various projects
(according to the big-front effort
proceeding) helped to sharpen and reduce
efforts in general in the agile development
phases. However, limitations in our
settings (fixed budget, single track
development, etc.) are not representative
enough to emphasize the relevance of
observations made in this direction.

Strictly speaking, from the modeling point of
view, UI distribution requirements should be part
of the CIM; however, as both, the Abstract UI
and the UI Distribution metamodels share the
Interaction Object concept, UI distribution
characteristics are introduced at the PIM.
Nevertheless, linking a potential UI Distribution
metamodel defined at the CIM level to the
models defined at the Tasks and Concepts layer
of the CRF would introduce semantic
relationships that are relevant to the user
experience.
As Tasks and Concepts models provide
information of the system from a higher level of
abstraction, there is information that could be
derived from these models to improve the
reusability and maintainability of the software.

For instance, suppose that the Task model of a
DeUI system defines the “Enter Name” and we
perform a Task to Abstract UI model
transformation [27] that generates 2 Interaction
Objects representing an input component to
introduce the information and an output
component that identifies the input component.
By using the metamodel defined in [5, 6], you

have to create 2 Interaction Objects to link them
(one per Interaction Component); however, if a
UI Distribution model is defined at the CIM level,
you have to define only one artifact to link the
task. Consequently, the transformation would
automatically create 2 Interaction Objects linked
to both Interaction Components.
Using a MDA approach to develop applications
increases the productivity by incrementing the
software reuse, decrementing maintenance costs,
increasing development speed, etc. [28].
Apart from some conceptual issues, we consider
that metamodeling for DeUIs is mature at the
moment; therefore, we are not discussing in this
paper issues that emerge in large scale integration
projects.

By employing MDAs, this approach deals with
the tension between agility and architecture
design. To cope with the tension between agility
and requirement engineering, we employed the
AFFINE methodology.
Just to explain how our approach helped in
detecting trade-offs among just 3 NFRs
(awareness, confidentiality and maybe privacy).
Imagine the complexity for distribution and other
NFRs of relevance.

Allowing for multiple identities in general and
showing such identities at a given location breaks
confidentiality in the means of linkability.
Suppose that a mobile application allows mobile
anglers to see who is angling at watercourses
around them (i.e. river, sea, etc.) . It presents
anglers mapped onto the map within the
application, as a way of workspace awareness,
and you see two persons in your application map.
However, when you look into the watercourse
with your eyes you see just one person.
Therefore, you infer that this person has two
identities.
To solve this problem, the chat application was
designed to support just one identity. However;
another problem arises.

When you chat often with a person using two
identities (A and B) without you knowing it, you

perceive that every time identity B is logging in
to the chat, identity A is logged off. It is the
consequence of the chat restriction to support just
one identity of the same person at the same time.
Thus, you infer that identity A is linked to
identity B.

To solve this problem, logging out pseudo-delays
were adopted to avoid the simultaneousness of
logging in and out, which makes the linkability
more difficult.

Strictly speaking, from the modeling point of
view, the use of a MDA supports the NFR
modeling and the development process. While the
representation of NFRs (i.e. security and privacy)
are modeled using the PriS metamodel, the
development process is supported by the CRF
metamodels and the UI distribution metamodels.
Regarding the NFR representation, this MDA
allows the validation and verification of models
to ensure both, the inter-model coherence and the
intra-model consistency. On the other hand, the
representation of the UI characteristics allows the
use of transformation engines to generate UI
system source code.

Figure 6: Context and contribution of the proposal

This proposal was successfully applied with agile
evaluation and user-centered design to different
cases of study. To shows the viability of the
approach we present 2 projects where AFFINE
and metamodels were applied [30].

The Figure 6 shows a diagram that summarizes
the contribution of this paper. It describes the
context of the contribution in the field of
specialized software, concretely speaking, in the
field of DeUIs. The maturity of the business
model presented in this paper is supported by
industrial and research projects. From the
industrial perspective, this approach was
employed in two commercial and two EU
projects (di.me and PICOS). From the research
perspective, it supports the DEINUDI National
project which is focused on the application and
development of DeUIs. The proposal provides a
framework to support the customization of
operational and organizational NFRs as well as
the combination of NFRs from different concerns
in order to satisfy the need for tailoring the
methodology and the process to create tailored
software.
CONCLUSION AND FUTURE WORK
The interleaving of the two parts results in a big
benefit on the software development process
because: (a) it supports frequent changes on the
distributed UI architecture efficiently and (b)
AFFINE conceptual framework considers earlier
NFRs by building a circle which can be repeated
along evolution of systems with technical means
for solving NFR challenges.
As consequence, this proposed approach in this
contribution avoid tensions between agility and
architecture changes as well as agility and
requirement engineering. Therefore, those
aspects, which are not covered by the MDA, are
covered by Affine (i.e. not fully automatable
solutions to address NFR issues). To show the
validity of our proposal we presented and
explained anecdotally (by referencing our
projects, collected experiences, and selected
relevant related work) cases where the approach
was successfully applied.
As future works, from the MDA perspectives, we
are working on a UI distribution metamodel at the
CIM level of the MDA in order to model
distribution concerns at the Tasks and Concepts
Layer of the CRF.

ACKNOWLEDGMENTS
We thank the CICYT-TIN 2011-27767-C02-01
Spanish project. Further thanks are due to
Thomas Barth, Peter Heintzen and Thomas
Eschke for discussions with respect to
organizational requirements dependencies.
REFERENCES
1.Terrenghi, L., Quigley, A. and Dix, A. A

taxonomy for and analysis of multi-person-
display ecosystems. Personal and Ubiquitous
Computing, 13, 2009, 583–598.

2.Vanderdonckt, J. Distributed User Interfaces:
How to Distribute User Interface Elements
across Users, Platforms, and Environments, in
XI INTERACCIÓN, (Valencia, Spain, 2010), 20-
32.

3.Barth, T., Fielenbach, T., Bourimi, M.,
Kesdogan, D. and Villanueva, P. Supporting
distributed decision making using secure
distributed user interfaces, in Gallud, J.A.,
Tesoriero, R., Penichet, V. M. Eds. Distributed
User Interfaces. Human-Computer Interaction
Series. Springer London, 2011, 177–184.

4.Heupel, M., Bourimi, M., Schwarte, P.,
Kesdogan, D., Barth, T. and Villanueva, P. G.
Enhancing the Security and Usability of DUI
Based Collaboration with Proof Based Access
Control, in Lozano, M. D., Gallud, J, A.
Tesoriero, R. and Penichet, V. M.R. Eds.
Distributed User Interfaces: Usability and
Collaboration. Human–Computer Interaction
Series. ISBN: 978-1-4471-5498-3. Springer
London, 2013, 95-105.

5.Villanueva, P. G., Tesoriero, R. and Gallud, J.
A. Revisiting the Concept of Distributed User
Interfaces., in Lozano, M. D., Gallud, J. A.,
Tesoriero, R, and Penichet, V, M.R. Eds.
Distributed User Interfaces: Usability and
Collaboration Human Computer interaction
Series. ISBN: 978-1-4471-5498-3, 2013, 1-15.

6.Villanueva, P. G. Distributable User Interfaces.
PhD Thesis. Universidad de Castilla-La
Mancha. June 2014.

7.Bandelloni, R. and Paternò, F. Flexible
interface migration, in 9th international

conference on Intelligent user interfaces (IUI
'04). ACM, (New York, USA, 2004) 148-155.

8.Bourimi, M., Tesoriero, R., Villanueva, P. G.,
Karatas, F. and Schwarte, P. Privacy and
Security in Multi-modal User Interface
Modeling for Social Media, in Privacy,
Security, Risk and Trust (PASSAT) and 2011
IEEE 3rd International Conference on Social
Computing (SocialCom) (Boston, MA, USA,
2011), 1364-1371.

9.Cremers, A. B. and Alda, S. Non-functional
Requirements. Organizational Requirements
Engineering. Chapter 9. URL =
http://www.iai.uni-
bonn.de/III/lehre/vorlesungen/SWT/RE05/slides
/09_Non-functional%20Requirements.pdf (last
visit 2014).

10.Chung, L. and Nixon, B.A. Dealing with non-
functional requirements: three experimental
studies of a process-oriented approach, in ICSE
1995. ACM, (New York, USA, 1995).

11. Chung L. and Prado Leite, J. C. On Non-
Functional Requirements in Software
Engineering. In Conceptual Modeling:
Foundations and Applications in Alexander T.
Borgida, Vinay K. Chaudhri, Paolo Giorgini,
and Eric S. Yu (Eds.). LNCS 5600. Springer-
Verlag, Berlin, Heidelberg (2009) 363-379.

12. Babar, M. A., Brown, W. and Mistrik, I. Agile
Software Architecture: Aligning Agile Processes
and Software Architectures, 1st edition. Morgan
Kaufmann Publishers Inc. December 2013.

13.Paetsch, F., Eberlein, A., Maurer, F.:
Requirements engineering and agile software
 development, in 12th IEEE International
Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises,
2003. WET ICE 2003, 2003, 308–313 .

14. Bourimi, M., Barth, T., Haake, J. M.,
Ueberschär, B. and Kesdogan, D. AFFINE for
enforcing earlier consideration of NFRS and
human factors when building socio-technical
systems following agile methodologies, in
Bernhaupt, R., Forbrig, P., Gulliksen, J.
Lárusdóttir , M. (Eds.) 3rd International

Conference on Human-centred software
engineering (HCSE'10). Springer-Verlag,
Berlin, Heidelberg, (Reykjavik, Iceland, 2010),
182-189.

15. Bourimi, M. and Kesdogan, D. Experiences
by using AFFINE for building collaborative
applications for online communities, in Ozok,
A. A. and Zaphiris, P. (Eds.) 5th International
Conference on Online Communities and Social
Computing (OCSC'13), Springer-Verlag, Berlin,
Heidelberg, 2013, 345-354.

16.The Eclipse Modeling Framework (EMF).
URL: http://www.eclipse.org/modeling/emf/

17.The Object Constraint Language (OCL). URL:
http://www.omg.org/spec/OCL/2.3.1/

18.The Object Management Group (OMG). URL:
http://www.omg.org/

19. Graphical Modeling Project (GMP). URL:
http://www.eclipse.org/modeling/gmp/

20.The XML Metadata Interchange. URL:
http://www.omg.org/spec/XMI/

21.The Atlas Transformation Language. URL:
https://eclipse.org/atl/

22.The MOFScript. URL:
http://eclipse.org/gmt/mofscript/

23.Calvary, G., Coutaz, J., Thevenin, D.,
Limbourg, Q., Bouillon, L., Vanderdonckt, J. A
Unifying Reference Framework for Multi-
Target User Interfaces. Interacting with
Computers 15(3), 2003, 289–308.

24. Santen, T. Security Engineering:
Requirements Analysis, Specification, and
Implementation. Habilitation, Fakultät
Elektrotechnik und Informatik, Technische
Universität Berlin, 2006.

25. Villanueva, P. G., Tesoriero, R. and Gallud,
J. A. Distributing web components in a display
ecosystem using Proxywork, in Love, L., Hone,
K. MacEwan, T. (Eds.) 27th International BCS
Human Computer Interaction Conference (BCS-
HCI '13) British Computer Society, (Swinton,
UK, 2013). Article 28, 6.

26. Villanueva, P. G., Tesoriero, R. and Gallud, J.
A. Proxywork: Distributing User Interface

Components of Web Applications, in Lozano,
M. D., Mashat, A., S., Fardoun, H. M., Gallud,
J. A., Penichet, V. M. R., Tesoriero, R. and
Vanderdonckt, J. (Eds.) 3rd Workshop on
Distributed User Interfaces: Models, Methods
and Tools, DUI 2013. In conjunction with ACM
EICS 2013 Conference, (London, UK, 2013),
58-61.

27. Tran, V., Vanderdonckt, J., Tesoriero, R. and
Beuvens, F. Systematic generation of abstract
user interfaces, in 4th ACM SIGCHI symposium
on Engineering interactive computing systems
(EICS '12). ACM, (New York, NY, USA), 101-
110.

28. Mellor, S. J., Scott, K., Uhl, A. and Weise, D.
MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley. 2004.

29. Ambler, S. W. Beyond Functional
Requirements on Agile Projects. URL:
www.ddj.com/architect/210601918

30.Mostafa, D. Maturity Models in the Context of
Integrating Agile Development Processes and
User Centred Design. PhD Thesis, University of
York. 2013.

31.Karatas, F., Bourimi, M., Kesdogan, D.,
Villanueva, P. G., Fardoun, H. M. Evaluating
Usability and Privacy in Collaboration Settings
with DUIs: Problem Analysis and Case Studies
in Lozano, M. D., Gallud, J. A., Tesoriero, R.
Penichet, V. M.R. (Edrs.) Distributed User
Interfaces: Usability and Collaboration.
Springer London. Human–Computer Interaction
Series. ISBN 978-1-4471-5498-3. (2013) 119-
127.

4th Workshop on Distributed User Interfaces and
Multimodal Interaction 2014
DUI 2014 ,1st July 2014, Toulouse, France
Copyright 2014 ACM ISBN: 978-1-60558-724-0

	introProceedingsDUI-14-RevMLP
	p11-MroB.pdf
	Introduction
	Scenario
	Distributed Mashups
	Composition and Component Model
	Distribution of Mashup Components
	Adaptation Use Cases

	Conclusion and Future Work
	REFERENCES

	p19-Rusnak.pdf
	Introduction
	Related Work
	Distributed User-aware Interface
	Universal Interaction Framework
	Conclusion and Future Work
	Acknowledgments
	REFERENCES

	backmatter.pdf
	sponsors
	Final

