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Abstract

This article proposes a new general methodology for constructing nonparamet-

ric asymptotic distribution-free tests for semiparametric hypotheses in regression

models. Tests are based on the difference between the estimated restricted and

unrestricted regression errors’ distributions. A suitable integral transformation of

this difference renders the tests asymptotically distribution-free, with limits that are

well-known functionals of a standard normal variable. Hence, the tests are straight-

forward to implement. The general methodology is illustrated with applications to

testing for parametric models, semiparametric constrained mean-variance models

and nonparametric significance. Several Monte Carlo studies show that the finite

sample performance of the proposed tests is satisfactory in moderate sample sizes.
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1 Introduction

Let Yt be a response variable and Xt a d-dimensional explanatory variable. Assume

that the process (Xt, Yt), t = 0,±1,±2, . . . , is strictly stationary and ergodic, and that

E [Y 2
t ] < ∞. We assume Yt is related to Xt through the heteroskedastic regression model

Yt = µ(Xt) + σ(Xt)εt, (1)

where µ(x) = E(Yt | Xt = x) and σ2(x) = V ar(Yt | Xt = x) are the conditional mean and

the conditional variance of Yt given Xt = x, respectively, and εt is an error term, which is

assumed independent of Xt. In this article, we propose a general methodology for testing

semiparametric hypotheses about the regression function µ(·). We are interested in testing

H0 : µ ∈ M versus H1 : µ /∈ M, (2)

where M =
{
µ : Rd → R such that µ(x) = g(θ, η(x), x), θ ∈ Θ ⊂ R

r, η ∈ H
}

is a class

of parametric or semiparametric models defined in terms of a known function g, a finite-

dimensional unknown parameter θ and a possibly infinite-dimensional unknown parameter

η. This general formulation covers many testing problems in semiparametric regression. In

particular, if g(θ, η(x), x) ≡ g(θ, x), then the problem reduces to testing for a parametric

model for the regression function µ, which is a classical problem in statistics. Special cases

of semiparametric null hypotheses include the partially linear model with g(θ, η(x), x) =

θ′x1+η(x2), x = (x1, x2), additive models with g(θ, η(x), x) = η1(x1)+η2(x2), η = (η1, η2),

and single-index models with g(θ, η(x), x) = η(θ′x), among many others. Two examples

that we analyze in detail below are constrained mean-variance models and nonparametric

significance testing in regression. In the former η(x) = σ(x), and our general formulation

of g allows to test for relationships between the regression function and the variance

function; for example, the choice g(θ, σ(x), x) = σ(x)g1(θ, x) leads to tests for a particular

parametric model given by g1(θ, x) for the standardized first moment µ(x)/σ(x), which

is an interesting problem in the financial literature since the seminal contributions by

Merton (1973, 1980). When Yt is a stock return, µ(x)/σ(x) is called the Sharpe ratio,

and its statistical analysis is of practical interest because it measures the stock return

per unit of risk. There are no tests available in the literature for general parametric

specifications of µ(x)/σ(x), when µ(x) and σ(x) are nonparametric. For other applications

of this setting in statistics see McCullagh and Nelder (1989) and Eagleson and Müller

(1997), among others. In nonparametric significance testing g(θ, η(x), x) = η(x1), where

η(x1) = E(Yt | X1t = x1), Xt = (X1t, X2t) and x = (x1, x2), that is, in this semiparametric
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specification the regressor X2t is not significant in the nonparametric regression model for

(Yt, Xt).

Tests for parametric or semiparametric hypotheses on the regression function have

been extensively investigated in the literature, with a special focus on independent and

identically distributed (i.i.d) observations; see González-Manteiga and Crujeiras (2013) for

a recent comprehensive survey on the topic. The main two methodologies are based on

comparisons of unrestricted (i.e. nonparametric) estimators of µ and restricted estimators

of µ (see e.g. Härdle and Mammen, 1993), or their corresponding cumulative processes

(see, e.g., Stute, 1997, and Delgado and González-Manteiga, 2001). A third methodology

is based on the comparison of unrestricted and restricted estimators of the distributions

of the standardized errors. This methodology has been used in several regression con-

texts in the recent literature, and it is widely applicable. For instance, Van Keilegom,

González-Manteiga and Sánchez-Sellero (2008) and Dette, Neumeyer and Van Keilegom

(2007) used this idea to develop goodness-of-fit tests for the parametric form of the regres-

sion function and the variance function, respectively. Dette, Pardo-Fernández and Van

Keilegom (2009) developed goodness-of-fit tests for a multiplicative structure between the

regression and the scale functions. Their tests are based on Kolmogorov-Smirnov (KS)

and Cramér-von Mises (CM) type statistics and they are not asymptotic distribution-

free. Bootstrap methods are then used to approximate critical values. In this article,

we propose a new methodology based on the cumulative difference of the standardized

errors’ distributions under H0 and H1. This methodology applies to the general setting

described above and it is simple to implement because the test statistics are asymptotic

distribution-free, so that resampling methods are not needed. The proposed tests are con-

sistent against fixed alternatives and they are able to detect some, although not all, local

alternatives converging to the null at the parametric rate. The tests can be tailored to

specific alternatives of interest. Monte Carlo experiments show a satisfactory finite sam-

ple performance for the proposed tests in three different applications: parametric models,

mean-variance constrained models and nonparametric significance testing.

The remainder of this article is organized as follows. In Section 2 we introduce the

new methodology. In Section 3 we provide asymptotic distribution theory for the general

framework under the null hypothesis and under fixed and local alternatives. Three ap-

plications are studied in detail in Section 4. Section 5 presents simulation studies for the

three applications. Finally, we conclude in Section 6 by pointing out further applications

and future research. Mathematical proofs are gathered in an Appendix.
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2 General methodology

This section introduces the general methodology. The discussion here is organized around

a few “high-level” assumptions. More primitive conditions can be given in specific appli-

cations of the methodology; see Section 3 below. Our tests are based on the comparison

of two estimators of the standardized error’s distribution. Define the restricted model for

the regression function as µ0(x) = g(θ0, η0(x), x), where

(θ0, η0) = arg min
θ∈Θ,η∈H

E[(µ(Xt)− g(θ, η(Xt), Xt))
2].

Henceforth, we assume that (θ0, η0) exists and is unique (identifiability). Then, define the

standardized errors

εt0 =
Yt − µ0(Xt)

σ(Xt)
and εt =

Yt − µ(Xt)

σ(Xt)
,

with cumulative distribution functions Fε0(y) = P (εt0 ≤ y) and Fε(y) = P (εt ≤ y), re-

spectively. Our testing procedure will be based on the integrated difference of the dis-

tribution functions of εt0 and εt. The following theorem justifies the testing procedure

described below. The proof is given in the Appendix.

Theorem 1 The following statements are equivalent:

(i) H0 is true.

(ii) εt0 and εt have the same distribution.

(iii) D(y) =
∫ y

−∞
(Fε0(s)− Fε(s))ds = 0 for all y ∈ R.

The equivalence between statements (i) and (ii) has been extensively used in recent

literature to construct tests for H0 (see, for example, Van Keilegom et al., 2007, or Dette

et al., 2009). In this article we will exploit the equivalence between (i) and (iii), which

will allow us to obtain asymptotic distribution-free tests.

In practice, the variables εt and εt0 are not observable, so they need to be estimated.

Assume that a sample (Xt, Yt), t = 1, . . . , T is available and construct the estimated

residuals

ε̂t0 =
Yt − µ̂0(Xt)

σ̂(Xt)
and ε̂t =

Yt − µ̂(Xt)

σ̂(Xt)
, (3)

for t = 1, . . . , T , where µ̂(x) and σ̂(x) are nonparametric estimators of µ(x) and σ(x),

respectively, and µ̂0(x) is a suitable consistent estimator of µ0(x). More precisely, to
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estimate nonparametrically µ(x) we use local polynomial estimators, that is, µ̂(x) = α̂0(x),

where α̂0(x) is the first component of the vector α̂(x), which is the solution of the local

minimization problem

min
α

T∑

t=1

{
Yt − Pt(α, x, p)

}2

Kh(Xt − x), (4)

where Pt(α, x, p) is a polynomial of order p built up with all 0 ≤ i ≤ p products of factors

of the form Xjt − xj , j = 1, . . . , d, and d is the dimension of x. The vector α consists of

all coefficients of this polynomial. Here, for u = (u1, . . . , ud) ∈ R
d, K(u) =

∏d
j=1 k(uj)

is a d-dimensional product kernel, k is a univariate kernel function, h = (h1, . . . , hd)

is a d-dimensional bandwidth vector converging to zero when n tends to infinity, and

Kh(u) =
∏d

j=1 k(uj/hj)/hj. To estimate σ(x), define

σ̂2(x) = γ̂0(x)− α̂2
0(x),

where γ̂0 is defined in the same way as α̂0, but with Yt replaced by Y 2
t in (4), t = 1, . . . , T .

There are general estimation methods available for semiparametric models that can

be used to estimate (θ0, η0). For example, we can use sieve least squares estimators

(θ̂, η̂) = arg min
θ∈Θ,η∈HT

1

T

T∑

t=1

(Yt − g(θ, η(Xt), Xt))
2,

where HT is a sieve approximation of H (see e.g. Chen, 2007, and references therein). In

other applications alternative estimators for η0, such as kernel estimators, can be used.

This is the case for our constrained mean-variance example, where η̂ = σ̂, and where θ0

can be estimated by the (two-step) least squares estimator

θ̂ = argmin
θ∈Θ

1

T

T∑

t=1

(Yt − g(θ, σ̂(Xt), Xt))
2.

Rather than focussing on a specific estimator or class of estimators, here we assume that

an estimator for (θ0, η0) is available satisfying certain conditions below, and we refer to

the detailed examples below for specific choices of estimators. The restricted estimator of

µ0(x) is then denoted by µ̂0(x) = g(θ̂, η̂(x), x).

The corresponding distribution functions, Fε0(y) and Fε(y), are estimated by

F̂ε0(y) =
1

T w̄

T∑

t=1

w(Xt)I(ε̂t0 ≤ y) and F̂ε(y) =
1

T w̄

T∑

t=1

w(Xt)I(ε̂t ≤ y),
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respectively, where w is a positive weight function and w̄ = T−1
∑T

t=1w(Xt). The weights

are introduced as a technical device to allow for covariates with non-compact support.

Note that when w ≡ 1, then the regular empirical distribution functions based on esti-

mated residuals are obtained. Given the standardized difference of empirical distributions

R̂(y) =
√
T
(
F̂ε0(y)− F̂ε(y)

)
,

−∞ < y < +∞, under suitable regularity conditions (see below) and the null hypothesis

H0, one can establish an asymptotic expansion for R̂(y) as follows:

R̂(y) =
fε(y)

E[w(Xt)]
T−1/2

T∑

t=1

w(Xt)Wt + oP (1), (5)

uniformly in −∞ < y < ∞, where fε(y) is the density function corresponding to Fε(y),

and Wt is a zero-mean random variable which will be defined later. We further assume

that

0 < σ2
W =

E [w2(Xt)W
2
t ]

(E[w(Xt)])
2 < ∞.

The random variables Wt and the regularity conditions needed for (5) to hold are

of course specific to each application. For instance, Dette et al. (2009) established this

expansion for constrained mean-variance models when g(θ, σ(x), x) = θσ(x) and x is

univariate, and used this expansion to propose Kolmogorov-Smirnov (KS) and Cramér-

von Mises (CM) type statistics. Tests based on the expansion of R̂(y) have null limiting

distributions which are unknown, as they depend on the density of the errors and other

unknown quantities. These authors suggested to implement the tests with the assistance

of a bootstrap procedure. To avoid resampling methods, while keeping the good power

properties of the procedure, we consider a transformation of R̂(y) that is well-suited for

delivering asymptotic distribution-free inference. Specifically, we consider the integrated

process

Ĉ(y) =

∫ y

−∞

R̂(s)ds,

−∞ < y < ∞, and propose test statistics that are continuous functionals of Ĉ(·). In

particular, we consider the KS and CM-type statistics

KST = sup
−∞<y<∞

1

σ̂W

∣∣∣Ĉ(y)
∣∣∣ ,

and

CMT =
3

σ̂2
W

∫ ∞

−∞

(
Ĉ(y)

)2
dF̂ε0(y),
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where σ̂2
W is a consistent estimator of σ2

W . The proposed test statistics are straightforward

to compute, since some simple algebra shows that

KST = max
1≤t≤T

1

σ̂W
max

{∣∣∣Ĉ(ε̂t)
∣∣∣ ,
∣∣∣Ĉ(ε̂t0)

∣∣∣
}

and CMT =
3

σ̂2
W

1

T w̄

T∑

t=1

w(Xt)
(
Ĉ(ε̂t0)

)2
,

where

Ĉ(y) =
1√
T w̄

(
T∑

s=1

w(Xs){(y − ε̂s0)+ − (y − ε̂s)+}
)
,

and a+ = max{a, 0}. In the asymptotic results given in Section 3, we will prove that,

under H0,

KST →d |Z| and CMT →d Z
2,

where Z ∼ N(0, 1). Therefore the tests are very easy to implement. For instance, the

CM test rejects H0 at significance level α level if CMT > χ2
1,1−α, where χ2

1,1−α is the

(1− α)-quantile of the chi-square distribution with one degree of freedom.

3 Asymptotic results

This section investigates the limit distribution of the test statistics proposed in the pre-

vious section under a set of primitive conditions. To that end, we introduce the following

regularity conditions and notations. Let FX(x) = P (Xt ≤ x) and let F (x, y) = P (Xt ≤
x, Yt ≤ y) (which under assumption A1 below do not depend on t). Lowercase letters will

be used to denote the corresponding density functions. Define the β-mixing coefficients

as (see e.g. Doukhan, 1994)

βt = sup
m∈Z

sup
A∈F∞

t+m

E
∣∣P (A|Fm

−∞)− P (A)
∣∣ ,

where F t
s denotes the σ-algebra generated by the sequence {(Xj, Yj), j = s, . . . , t} for

s ≤ t. Henceforth, C is a generic constant that may change from expression to expression.

Assumption A1: The process (Xt, Yt), t = 0,±1,±2, . . ., satisfies (1) and is strictly

stationary and absolutely regular (β-mixing), with mixing coefficients satisfying βt =

O(t−b), for some b > 2.
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Assumption A2:

(i) θ0 belongs to the interior of a compact subset Θ of Rr.

(ii) The weight function w has a compact support Rw in R
d and satisfies w(x) > 0 for

all x ∈ Rw and supx∈Rw
w(x) ≤ C.

(iii) All partial derivatives of FX up to order 2d+1 exist on the interior of Rw, they are

uniformly continuous and infx∈Rw
fX(x) > 0.

(iv) All partial derivatives of µ and σ up to order p+2 exist on the interior of Rw, they

are uniformly continuous and infx∈Rw
σ(x) > 0.

Whenever there is no ambiguity, we use the same notation for any function of X as

for its version restricted to the compact set Rw.

Assumption A3:

(i) E(|Y0|s) < ∞ and supx∈RX
E(|Y0|s | X0 = x) < ∞ for some s > 2+2/(b−2), where

b is as in Assumption A1.

(ii) There exists some j′ such that for all j ≥ j′,

sup
x0,xj∈RX

E(|Y0Yj|2 | X0 = x0, Xj = xj)fj(x0, xj) < ∞,

where fj(x0, xj) denotes the joint density of (X0, Xj).

(iii) The errors of the regression model satisfy

E(εt|Xt,F t−1
−∞) = E(εt|Xt)

and

Var(εt|Xt,F t−1
−∞) = E(ε2t |Xt).

Furthermore, εt is independent of Xt, with mean zero and unit variance.

Assumption A4: The function F (x, y) is continuous in (x, y), and twice continuously

differentiable with respect to x and y. Let L(x, y) denote generically the derivatives
∂
∂x
F (x, y), ∂

∂y
F (x, y), ∂2

∂x2F (x, y), ∂2

∂y2
F (x, y) and ∂2

∂x∂y
F (x, y). Then, L(x, y) is continuous

in (x, y) and satisfies supx,y |y2L(x, y)| < ∞.
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Assumption A5:

(i) For all j = 1, ..., d : hj/h1 → Cj , with 0 < Cj < ∞, and the bandwidth h1

satisfies (log T )−1T ηhd
1 → ∞ for η = b−1−d−(1+b)/(s−1)

b+3−d−(1+b)/(s−1)
, where d, b and s are such

that d < (b−2)(s−2−2/(b−2))+s−2
s−1

, and with b and s as defined in Assumption A1 and

A3 respectively, Th2d+δ
1 → ∞ for some small δ > 0, Th2p+2

1 → 0 for odd p and

Th2p+4
1 → 0 for even p.

(ii) The kernel k is a symmetric probability density function on [−1, 1], k is d times

continuously differentiable, and k(j)(±1) = 0 for j = 0, . . . , d− 1.

Assumption A3 and the first condition in Assumption A5-(i) are taken from Hansen

(2008), and they ensure suitable rates of convergence of the kernel estimators of µ(·) and

σ(·). Our next assumption is on the restricted estimator µ̂0. The class of smooth functions

Cα
M(Rw) is defined in the Appendix (see also p. 154 in Van der Vaart and Wellner, 1996).

Assumption A6: Under H0, the restricted estimator µ̂0(x) = g(θ̂, η̂(x), x) satisfies:

(i) supx∈Rw
|µ̂0(x)− µ0(x)| = oP (T

−1/4).

(ii) P
(
µ̂− µ̂0 ∈ Cα

M(Rw)
)
→ 1 as T tends to infinity.

(iii)
∫

w(x)

σ(x)
(µ̂0(x)− µ0(x))dFX(x) = T−1

T∑

t=1

w(Xt)l(Yt, Xt) + oP (T
−1/2),

for a measurable function l(·) satisfying E(l(Yt, Xt) | Xt,F t−1
−∞) = 0 a.s. and

E(‖l(Yt, Xt)‖2) < ∞ (where ‖ · ‖ is the Euclidean norm).

Assumption A6 is standard in the literature. If η̂ is a kernel estimator, the first condition

in Assumption A6 can be shown to hold under smoothness conditions on g, using results

from Hansen (2008). Likewise, results in Neumeyer and Van Keilegom (2010) can be

used to show A6-(ii). Assumption A6-(iii) requires a linear asymptotic representation for

the restricted estimator. For many examples of semiparametric models and estimators

this representation has been already established. We verify this condition for our leading

examples below.
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3.1 Asymptotic null distribution

Our next result establishes a uniform expansion of the process Ĉ(y) in i.i.d. terms.

Theorem 2 Assume A1-A6. Then, under the null hypothesis H0 the following holds:

Ĉ(y) = T 1/2

∫ y

−∞

[F̂ε0(s)− F̂ε(s)] ds =
Fε(y)

E[w(Xt)]
T−1/2

T∑

t=1

w(Xt)Wt + oP (1),

uniformly in −∞ < y < ∞, where Wt = l(Yt, Xt)− εt.

The proof of Theorem 2 is given in the Appendix. The result does not follow directly

from (5), since the mapping R →
∫ y

−∞
R(s)ds is not continuous in the space of uniformly

bounded functions. The rate of convergence of Ĉ is T−1/2 and does not depend on the

dimension of Xt, in contrast to alternative nonparametric tests based on smoothers.

We now assume that a consistent estimator for σ2
W = E(w2(Xt)W

2
t )/ (E[w(Xt)])

2

exists.

Assumption A7: 0 < σ2
W < ∞, and there exists a weakly consistent estimator for σ2

W ,

say σ̂2
W .

Remark 1. Estimation of variance. A natural candidate to estimate σ2
W is

σ̂2
W =

1

w̄2T

T∑

t=1

w2(Xt)Ŵ
2
t , (6)

where Ŵt = l̂(Yt, Xt)− ε̂t is a suitable consistent estimator of Wt, see the examples below.

The following Corollary is a consequence of Theorem 2, the continuous mapping the-

orem, the central limit theorem for mixing sequences (see, for instance, Theorem 2.20 in

Fan and Yao, 2003) and the consistency of the estimator σ̂2
W .

Corollary 3 Assume A1-A7. Then, under the null hypothesis H0,

KST →d |Z| and CMT →d Z
2,

where Z ∼ N(0, 1).
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3.2 Power against fixed and local alternatives

This section investigates the asymptotic power of the proposed tests. We first analyze the

power against the fixed alternatives

H1 : µ(·) 6= µ0(·), with positive probability on Rw.

That is, under this alternative hypothesis H1, P (µ(Xt) 6= µ0(Xt) | Xt ∈ Rw) > 0. We shall

show that under certain conditions the proposed tests will diverge to infinity under H1 as

T → ∞, thereby proving the consistency of the tests against these fixed alternatives. To

that end, note that the proof of Theorem 2 shows that under the alternative hypothesis,

uniformly in −∞ < y < ∞,

T−1/2Ĉ(y) =

∫ y

−∞

R(s)ds+ oP (1),

≡ C(y) + oP (1),

where R(y) = E(w(Xt) {I(εt0 ≤ y)− I(εt ≤ y)})/E(w(Xt)). Therefore, by the continu-

ous mapping theorem,

T−1CMT =
3

σ2
W

∫ ∞

−∞

(C(y))2 dFε(y) + oP (1),

and

T−1/2KST = sup
−∞<y<∞

1

σW
|C(y)|+ oP (1).

Thus, the test statistics will diverge to infinity as T → ∞ if C(y) 6= 0 for some y ∈ R.

This is evident for the KS test, and using the continuity of C and Fε, the same holds for

the CM-type test. The next result shows that under H1, C(y) 6= 0 for some y ∈ R. The

proof is given in the Appendix.

Proposition 4 Under the alternative hypothesis H1, C(y) 6= 0 for some y ∈ R.

We consider now the limiting distribution under the local alternative

H1T (a) :
µ(x)− µ0(x)

σ(x)
=

a(x)√
T
,

so the true µ(x) equals µ(x) = µ0(x) + T−1/2σ(x)a(x), where a 6= 0 is the direction of

departure, such that E [w(Xt)a(Xt)] < ∞ and 0 < E [a2(Xt)W
2
t ] < ∞. The following

assumption is needed to control the behavior of the estimator µ̂0(x) under H1T (a) :

Assumption A6bis: Under H1T (a), the restricted estimator µ̂0(x) = g(θ̂, η̂(x), x) satis-

fies:
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(i) supx∈Rw
|µ̂0(x)− µ(x)| = oP (T

−1/4).

(ii) P
(
µ̂− µ̂0 ∈ Cα

M(Rw)
)
→ 1 as T tends to infinity.

(iii)

∫
w(x)

σ(x)
(µ̂0(x)− µ0(x))dFX(x) = T−1

T∑

t=1

w(Xt)l(Yt, Xt)

−T−1/2

∫
[w(x) + d(x)]a(x)dFX(x) + oP (T

−1/2),

for a measurable function l(·) satisfying E(l(Yt, Xt) | Xt,F t−1
−∞) = 0 a.s. and

E(‖l(Yt, Xt)‖2) < ∞, and where d(·) depends on the estimator of θ0.

Define

δ(a) =
E [(w(Xt) + d(Xt)) a(Xt)]

(E [w2(Xt)W 2
t ])

1/2
.

Then, we have the following asymptotic result under the local alternative. We refer to

the Appendix for the proof.

Corollary 5 Assume A1-A5, A6bis and A7. Then, under the local alternative H1T (a),

KST →d |Z + δ(a)| and CMT →d (Z + δ(a))2 ,

where Z ∼ N(0, 1).

This result shows that our tests are able to detect local alternatives converging at the

parametric rate, provided δ(a) 6= 0. The tests are not consistent against all local alter-

natives, as there are directions a for which δ(a) = 0. Nevertheless, if one is particularly

interested in a direction a∗, one can always choose the weight function w so that δ(a∗) 6= 0,

namely by choosing w(x) = |a∗(x)| , and a∗ such that E [d(Xt)a
∗(Xt)] = 0. We provide

below further details on local power, including the expressions for the drift parameter

δ(a), in the context of some examples. The local power properties of our tests are differ-

ent from other nonparametric tests based on smoothers (see e.g. Härdle and Mammen,

1993), which are unable to detect local alternatives converging to the null hypothesis at

the parametric rate.

12



4 Examples

This section provides formulae for the estimators, influence functions, drift parameters,

asymptotic variances σ2
W and their estimators for three examples: (i) parametric models

for the regression function µ; (ii) constrained mean-variance models and (iii) nonparamet-

ric significance testing.

4.1 Parametric models

Consider the specification g(θ, η(x), x) = g(θ, x). The testing problem (2) is then a

goodness-of-fit test for a parametric form of the regression function µ(x). The unknown

parameter θ0 can be estimated by the nonlinear least squares estimator

θ̂ = argmin
θ∈Θ

1

T

T∑

t=1

(Yt − g(θ,Xt))
2.

The following assumption is needed to verify Assumption A6 in this example:

Assumption E1: The function g(·, x) is continuously differentiable with respect to θ

in a neighborhood of θ0, say Θ0, for all x ∈ R
d, with derivative gθt(θ) = ∂g(θ,Xt)/∂θ

satisfying that E[gθt(θ0)g
′
θt(θ0)] is finite and non-singular. Furthermore, for all θ ∈ Θ0,

g(θ, ·) ∈ Cα
M(Rw), for an α > max(d/2, 1).

By Assumption E1 there exists a constant C such that

sup
x∈Rw

|µ̂0(x)− µ0(x)| ≤ C|θ̂ − θ0| = OP (T
−1/2),

which verifies A6-(i). Likewise, E1 and results in Neumeyer and Van Keilegom (2010)

show that A6-(ii) holds. To verify A6-(iii) note that by E1 and standard least squares

theory,

∫
w(x)

σ(x)
(µ̂0(x)− µ0(x))dFX(x) = E[w(Xt)σ

−1(Xt)gθt(θ0)](θ̂ − θ0) + oP (T
−1/2)

= T−1
T∑

t=1

w(Xt)l(Yt, Xt) + oP (T
−1/2),

with

l(Yt, Xt) = E[w(Xt)σ
−1(Xt)gθt(θ0)](E[gθt(θ0)g

′
θt(θ0)])

−1gθt(θ0)σ(Xt)εt.
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This verifies Assumption A6-(iii). Similarly, it is straightforward to verify that Assump-

tion A6bis-(iii) holds with

d(Xt) = −E[w(Xt)σ
−1(Xt)gθt(θ0)](E[gθt(θ0)g

′
θt(θ0)])

−1gθt(θ0)σ(Xt).

This drift term results from the asymptotic non-zero mean of
√
T
(
θ̂ − θ0

)
under local

alternatives.

In the particular case of testing for a linear model g(θ, x) = θ′x, gθt(θ0) = Xt and then

Wt = εt
{
E[w(Xt)σ

−1(Xt)X
′
t](E[XtX

′
t])

−1Xtσ(Xt)− 1
}
.

A consistent estimator for σ2
W is then obtained by replacing σ(Xt) and εt in the previous

expression by σ̂(Xt) and ε̂t, respectively, and then using equation (6).

From a practical point of view, for the goodness-of-fit problem it is also recommendable

to apply some smoothing to the restricted estimator of µ as in Van Keilegom et al. (2007).

That is, in the definition of εt0 in (3), replace µ̂0(Xt) by µ̃0(Xt), where µ̃0(Xt) is obtained

in the same way as the nonparametric estimator µ̂(Xt), but replacing the responses Yt by

µ̂0(Xt). The asymptotic theory given in section 3 is still valid when this modification is

applied to the estimated residuals.

4.2 Constrained mean-variance models

This section illustrates the general methodology with an application to constrained mean-

variance models. In these models η(x) = σ(x) and the null hypothesis becomes

H0 : µ(Xt) = g(θ0, σ(Xt), Xt), (7)

where g is a completely specified function up to the unknown parameter θ0 ∈ Θ ⊂ R
r.

The alternative hypothesis is the negation of the null, i.e.

H1 : H0 is not true.

Dette, Pardo-Fernández and Van Keilegom (2009) studied the special case g(θ0, σ(x), x) =

θ0σ(x) in detail and developed bootstrap-based tests for the corresponding hypothesis un-

der the assumption that the covariate is one-dimensional. See also Dette, Marchlewski

and Wagener (2012) for an alternative test with i.i.d. data. Our more general formulation

here is motivated from applications in economics and finance. We illustrate the general

applicability of our null hypothesis (7) with some examples. The first example is moti-

vated by an extensive empirical literature documenting a time-varying standardized first
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moment µ(Xt)/σ(Xt); see e.g. Harvey (1989), Ferson (1989), Ferson, Foester and Keim

(1993).

Example 1. Models with parametric time-varying coefficient of variation.

The general null hypothesis H0 also incorporates as a special case the hypothesis that

µ(Xt)/σ(Xt) follows a specific parametric model. For instance, if the null hypothesis is of

a multiplicative form g(θ, σ(x), x) = σ(x)g1(θ, x), then µ(Xt)/σ(Xt) will have the para-

metric structure specified in g1. Examples are the exponential models in De Santis and

Gerard (1997) and Bekaert and Harvey (1995), where g1(θ0, Xt) = exp(θ′0Xt). Hence, our

null hypothesis encompasses tests for the correct specification of a parametric coefficient

of variation. To the best of our knowledge, such tests are not available in the literature.

Our next example illustrates that our testing procedure is also useful for testing mul-

tiplicative structures in classical time series models using an appropriate definition of

Yt.

Example 2. Testing for multiplicative structure. Several classical time series mod-

els for univariate processes present a multiplicative structure of the form Zt = σtǫt, where

σ2
t = m(Zt−1, . . . , Zt−p) for some specification of the function m (usually, a linear func-

tional form). The squared values of the process Zt can be re-expressed as the regression

model Yt = µ(Xt) + σ(Xt)εt, where Yt = Z2
t , Xt = (Zt−1, . . . , Zt−p) and εt = c(ǫ2t − 1),

with c2 = [E(ǫ4)− 1]−1, and the peculiarity that µ(Xt) = m(Xt) and σ(Xt) = c−1m(Xt).

Hence the regression function and the scale function satisfy the relation µ(·) = cσ(·).
This is a feature satisfied by many financial models, such as the ARCH(p). Dette, Pardo-

Fernández and Van Keilegom (2009) studied this example in detail when the covariate is

one-dimensional.

In the general case the parameter θ0 can be estimated by the following weighted least-

squares (LS) estimator

θ̂ = argmin
θ∈Θ

T∑

t=1

w(Xt) (Yt − g(θ, σ̂(Xt), Xt))
2 . (8)

See also Escanciano, Pardo-Fernández and Van Keilegom (2013) for a related estimator

of θ0 in a more general context. The following assumption is needed to verify Assumption

A6 in this general example:

Assumption E2: The function g(θ, u, x) is continuously differentiable with respect to the

components of θ and u, with derivative gθt(θ) = ∂g(θ,Xt)/∂θ satisfying that E[gθt(θ0)g
′
θt(θ0)]
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is finite and non-singular. Furthermore, for all θ ∈ Θ0, P
(
g(θ, σ̂(·), ·) ∈ Cα

M(Rw)
)
→ 1,

for an α > max(d/2, 1).

By Assumptions A1-A5 and E2 there exists a constant C such that

sup
x∈Rw

|µ̂0(x)− µ0(x)| ≤ C

{
|θ̂ − θ0|+ sup

x∈Rw

|σ̂(x)− σ(x)|
}

= OP (T
−1/4),

which verifies A6-(i). Likewise, E2 and results in Neumeyer and Van Keilegom (2010)

show that A6-(ii) holds.

Consider the notation:

gθt(θ) =
∂

∂θ
g(θ, σ(Xt), Xt),

gut(θ) =
∂

∂u
g(θ, u,Xt)|u=σ(Xt),

ut = εt − 0.5gut(θ0)(ε
2
t − 1),

S(θ0) = E [w(Xt)gθt(θ0)g
′
θt(θ0)] /E[w(Xt)],

s(Xt, εt) = S−1(θ0)σ(Xt)gθt(θ0)ut, and

ϕ(θ) =
1

E[w(Xt)]
E

[
w(Xt)

σ(Xt)
gθt(θ)

]
.

Then, the following Lemma verifies Assumption A6-(iii).

Lemma 6 Assume A1-A5 and E2. Then, under the null hypothesis H0,

∫
w(x)

σ(x)
(µ̂0(x)− µ0(x))dFX(x) = T−1

T∑

t=1

w(Xt)l(Yt, Xt) + oP (T
−1/2),

where

l(Yt, Xt) = ϕ′(θ0)s(Xt, εt) + 0.5gut(θ0)(ε
2
t − 1). (9)

The first term s(Xt, εt) arises in the linear expansion because the least squares estimator

θ̂ satisfies

θ̂ − θ0 =
1

E[w(Xt)]T

T∑

t=1

w(Xt)s(Xt, εt) + oP (T
−1/2),

as shown in Escanciano, Pardo-Fernández and Van Keilegom (2013). The second term in

(9) accounts for the effect of estimating σ in g(θ, σ(Xt), Xt). The arguments of Escanciano,

Pardo-Fernández and Van Keilegom (2013) can be also used to show that
√
T
(
θ̂ − θ0

)
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has an asymptotic non-zero mean under local alternatives, so that Assumption A6bis-(iii)

holds with

d(Xt) = −S−1(θ0)w(Xt)gθt(θ0)σ(Xt)

E[w(Xt)]
.

Therefore, for this example A6-A6bis hold and

Wt = ϕ′(θ0)s(Xt, εt)− ut,

which can be consistently estimated by

Ŵt = ϕ̂′(θ̂)ŝ(Xt, ε̂t)− ût,

with

ût = ε̂t − 0.5ĝut(θ̂)(ε̂t
2 − 1),

ϕ̂(θ̂) =
1

w̄T

T∑

t=1

w(Xt)

σ̂(Xt)
ĝθt(θ̂),

ŝ(Xt, ε̂t) is a consistent estimate for the influence function s(Xt, εt),

ĝut(θ̂) =
∂g(θ̂, u,Xt)

∂u

∣∣∣∣∣
u=σ̂(Xt)

and ĝθt(θ̂) =
∂g(θ̂, σ̂(Xt), Xt)

∂θ
.

It is often straightforward to prove the consistency of σ̂2
W in a given problem, as the

following examples illustrate.

4.2.1 Example 1: Linear model with time-varying coefficient of variation

If g(θ0, σ(x), x) = σ(x)θ′0x, we estimate θ0 by the LS estimator

θ̂ =

(
T∑

t=1

w(Xt)XtX
′
tσ̂

2(Xt)

)−1 T∑

t=1

w(Xt)YtXtσ̂(Xt).

A consistent estimator for σ2
W is then given by (6) with

Ŵt = Â(Xt)ût, (10)

where ût = ε̂t − 0.5θ̂′Xt(ε̂
2
t − 1),

Ŝ =
1

T

T∑

t=1

w(Xt)σ̂
2(Xt)XtX

′
t

and

Â(Xt) =

[
1

T

T∑

t=1

w(Xt)X
′
t

]
Ŝ−1σ̂2(Xt)Xt − 1.

By the uniform consistency of σ̂2(·) and µ̂2(·) on Rw, and the consistency of θ̂ it follows

that σ̂2
W = σ2

W + oP (1).
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4.2.2 Example 2: Nonlinear model with time-varying coefficient of variation

A nonlinear specification for µ(Xt)/σ(Xt) that has been entertained is g1(θ0, x) = exp(θ′0x),

see, e.g., De Santis and Gerard (1997). In this case the LS estimator in (8) leads to a

consistent estimator for θ0 and σ2
W can be estimated by (6) with

Ŵt = Â(θ̂, Xt)ût,

where ût = ε̂t − 0.5 exp(θ̂′Xt)(ε̂
2
t − 1),

Â(θ̂, Xt) = ϕ̂1Ŝ
−1σ̂2(Xt)Xt exp(θ̂

′Xt)− 1,

ϕ̂1 =
1

T

T∑

t=1

w(Xt)X
′
t exp(θ̂

′Xt)

and

Ŝ =
1

T

T∑

t=1

w(Xt)σ̂
2(Xt)XtX

′
t exp(2θ̂

′Xt).

4.3 Nonparametric significance testing

In nonparametric significance testing we are interested in testing

H0 : E(Yt | Xt = x) = E(Yt | X1t = x1),

against nonparametric alternatives, where Xt = (X1t, X2t) and x = (x1, x2). This cor-

responds in our setting to g(θ, η0(x), x) = η0(x1), where η0(x1) = E(Yt | X1t = x1). We

consider a local polynomial estimator for η0, denoted by µ̂0(x). The proof of Theorem 2

directly shows that µ̂0(x) satisfies A6 with

∫
w(x)

σ(x)
(µ̂0(x)− µ0(x))dFX(x) =

∫
ι(x1)(µ̂0(x1)− µ0(x1))dFX1

(x1)

= T−1
T∑

t=1

ι(X1t)εt + oP (T
−1/2),

with ι(x1) = E(w(Xt)/σ(Xt) | X1t = x1). Therefore, in this application l(Yt, Xt) =

ι(X1t)εt/w(Xt) and

Wt = εt {ι(X1t)/w(Xt)− 1} , (11)

which can be consistently estimated by replacing εt by ε̂t and ι(X1t) by a local polynomial

estimator of E(w(Xt)/σ(Xt) | X1t = x1). Since the null hypothesis does not involve a
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parametric component, it holds that d (·) ≡ 0, and the drift under local alternatives for

this example is given by

δ(a) =
E [w(Xt)a(Xt)]

(E [w2(Xt)W 2
t ])

1/2
,

with Wt defined in (11).

5 Simulation study

In this section we will briefly illustrate the finite sample performance of the asymptotic

distribution-free tests based on the Kolmogorov-Smirnov (KST ) and Cramér-von Mises

(CMT ) statistics for the applications described in the previous section. In all cases, the

rejection probabilities are based on 1000 simulated data sets. The estimation of the finite-

dimensional parameter involved in the specification given in the null hypothesis is done by

using the least squares estimator, as in (8), and the variance σ2
W is estimated as explained

in (6). Nonparametric estimators of µ(·) and σ(·) are obtained by local-linear estimation

and Nadaraya-Watson estimation, respectively, with fixed bandwidths and least-squares

cross-validation bandwidths (indicated as ‘cv’ in the tables). The nominal level is 0.05 in

all cases.

5.1 Goodness-of-fit tests for parametric models for µ

In this set of simulations we will deal with the goodness-of-fit problem of parametric

models for the regression function µ(·). The null hypothesis is H0 : µ(x) = θx. We

generate i.i.d. samples of sizes T = 100 and T = 200 from the model proposed in Van

Keilegom et al. (2008)

Y = θX + a(X) + 0.20(1 +X)ε,

where the covariate X has a uniform distribution on [0, 1] and the error ε is standard

normal. The parameter is fixed at θ = 1. The term a(X) gives different possibilities:

(i) a(x) = 0;

(ii) a(x) = x2;

(iii) a(x) = 0.5x exp(x);

(iv) a(x) = 0.3 sin(4πx).
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Model (i) is under the null hypothesis, whereas models (ii), (iii) and (iv) are under the

alternative. In this case, since the covariate has compact support, the weight function is

w(x) ≡ 1 and therefore, the tests will be based on the regular empirical distributions.

Table 1 summarizes the obtained results. For model (i), the critical values obtained

from the asymptotic distribution of the test statistics produce a slight overestimation of

the nominal level when T = 100, but the approximation of the level is already very good

for T = 200 for all values of the smoothing parameter. The results for the other models

show that the proposed tests reach good power. For model (ii) and (iii) CMT yields better

power than KST , and the contrary happens under model (iv). The influence of the choice

of the smoothing parameter only seems to have some relevance for CMT in model (iv).

Table 1 also shows a comparison with the test statistics proposed in Van Keilegom

et al. (2008), which are denoted by KSV K and CMV K . The critical values for these test

statistics are approximated by means of a smooth bootstrap of residuals (see details in

the paper). The level approximation for the bootstrap tests is good. In terms of power,

the results obtained with KST and CMT for models (ii) and (iii) are better than the

ones obtained with CMV K and KSV K , respectively. On the other hand, the contrary

happens under model (iv), which shows a difference in favor of the bootstrap test CMV K ,

specially for the CM-type statistics. We must recall that the tests based on a bootstrap

approximation require the choice of a second bandwidth and are more computationally

demanding. In the view of the results of this simulation, it seems that the proposed

asymptotically distribution-free tests are reasonable competitors.

[ Table 1 (at the end of the manuscript) to be placed around here ]

5.2 Constrained mean-variance models

In this section we will investigate the practical performance of the proposed methodology

to test for relationships between µ(·) and σ(·). In this case, we consider data from pairs

(Xt, Yt) with a dependence structure given by Xt = Yt−1, t ∈ Z. More precisely, sequences

of sizes T = 200 and T = 500 are generated from the following data generating processes:

(i) Yt = 0.1Xt(1 + 0.2X2
t )

1/2 + (1 + 0.2X2
t )

1/2εt;

(ii) Yt = exp(−0.1X2
t )(1 + 0.2X2

t )
1/2 + (1 + 0.2X2

t )
1/2εt;

(iii) Yt = 0.2 + (1 + 0.2X2
t )

1/2εt;
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(iv) Yt = exp(−0.1X4
t )(1 + 0.2X2

t )
1/2 + (1 + 0.2X2

t )
1/2εt.

In this case, since the covariate has no compact support, the nonparametric estimation

of the conditional mean function and variance function are performed on the [5%, 95%]

range of the covariate by conveniently adapting the weight function w.

Two null hypotheses will be tested: (a) H0 : µ(x) = θxσ(x), for which model (i) is

under the null; and (b) H0 : µ(x) = exp(−θx)σ(x), for which model (ii) is under the null.

These specifications provide parametric models for the Sharpe ratio µ(Xt)/σ(Xt).

Table 2 displays the results. In the case of the null hypothesis (a) (left part of the

table), the approximation of the level in model (i) is good and the behavior in terms of

power is very satisfactory. The results for model (iii) show that KST and CMT yield

almost the same power. On the other hand, the right part of the table shows the results

for the null hypothesis (b). In this case, the level is well approximated for sample size

T = 500. The power is excellent under both models (i) and (iii). Although model (iv) is

very close to the null hypothesis, we can see that both tests reach non-trivial power.

[ Table 2 (at the end of the manuscript) to be placed around here ]

5.3 Nonparametric significance testing

In this section we will perform a small simulation study to test for covariate significance

in nonparametric regression. More precisely, the null hypothesis is

H0 : E(Yt | Xt = x) = E(Yt | X1t = x1),

where Xt = (X1t, X2t) is a bidimensional covariate and x = (x1, x2). The null hypothesis

states that in the given regression model, only the first component of the covariate is

significant. We consider the following specifications of µ(x) = E(Yt | Xt = x):

(i) µ(x1, x2) = x1;

(ii) µ(x1, x2) = x1 + x2;

(iii) µ(x1, x2) = x1x2.

Model (i) satisfies the null hypothesis, whereas models (ii) and (iii) are under the al-

ternative hypothesis. In the simulations, the bidimensional covariate (X1t, X2t) is drawn

from independent uniform distributions on [0, 1], the conditional variance function is
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σ2(x1, x2) = 0.1 + x1 + x2 and the regression error εt is a standard normal. The weight

function needed in the construction of the test statistics is w ≡ 1.

Table 3 collects the results obtained from data sets with sizes T = 200 and T = 500.

To perform the test, bidimensional nonparametric smoothing is required, hence smoothing

parameters of the form h = (h1, h2) are considered, with h1 = h2 = 0.3, 0.4, 0.5. In the

case of model (i), the asymptotic distributions of the test statistics do not provide a good

approximation of the nominal level when the sample size is T = 200. However, there is

a clear improvement when the sample size is increased up to T = 500, with reasonable

results specially for the test based on KST . Models (ii) and (iii) show the consistency of

the tests in terms of power, as it increases as the sample size increases. The impact of the

choice of the smoothing parameter is more relevant for model (iii) than for model (ii).

[ Table 3 (at the end of the manuscript) to be placed around here ]

6 Conclusions

In this article, we have proposed a general and simple-to-implement methodology for

testing semiparametric hypotheses in regression models. The tests are based on the cu-

mulative difference of the standardized errors’ distributions under the null and alterna-

tive hypotheses, respectively. The asymptotic null distributions of the tests are known

functionals of a standard normal random variable, for which critical values are readily

available. The tests are consistent against fixed alternatives and are able to detect local

alternatives converging to the null at the parametric rate. Some Monte Carlo experi-

ments have shown a satisfactory finite sample performance for the tests in three different

applications.

We now point out several topics for future research. We have not discussed the choice

of the bandwidth parameters in our testing problem. Although there exists an extensive

literature on bandwidth choice for estimation, there is no general theory available for

testing purposes. One possible approach in our context is to choose the bandwidth that

maximizes the test statistic subject to convergence constraints on the bandwidth. This

procedure is likely to be more stable for our methodology than for alternative nonpara-

metric tests based on smoothers, since the rates of convergence of our tests do not depend

on those of the bandwidth under standard rate conditions on bandwidth parameters. To

apply these ideas we would need to establish the expansion of Theorem 2 uniformly in the

bandwidth parameters in a suitable range that converges to zero. This uniform expansion
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is feasible given existing results; see e.g. Escanciano, Jacho-Chavez and Lewbel (2014).

Another extension would be to semiparametric hypotheses on the conditional variance,

as in Dette, Neumeyer and Van Keilegom (2007). Our transformation does not lead to

asymptotic distribution-free tests in that context, but alternative transformations may

exist. Finally, it would be interesting to investigate whether bootstrap procedures lead to

asymptotic refinements when applied to our asymptotic distribution-free tests.
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Appendix: Proofs

Proof of Theorem 1. The implications (i) ⇒ (ii) ⇒ (iii) are obvious. To prove

(iii) ⇒ (ii) it suffices to take the derivative of D(y). Finally, let us prove (ii) ⇒ (i).

If ε and ε0 have the same distribution, then it also holds that E(ε) = E(ε0) and

V ar(ε) = V ar(ε0). It is easy to see that E(ε0) = E(ε) +E[(µ(Xt)− µ0(Xt))/σ(Xt)], and

hence E[(µ(Xt)− µ0(Xt))/σ(Xt)] = 0. On the other hand, we also have that V ar(ε0) =

V ar(ε) + V ar[(µ(Xt)− µ0(Xt))/σ(Xt)], and therefore V ar[(µ(Xt)− µ0(Xt))/σ(Xt)] = 0.

We can now conclude that P ((µ(Xt)− µ0(Xt))/σ(Xt)) = 0, or µ(Xt) = µ0(Xt) a.s. �
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Proof of Theorem 2. First consider

1

Tw

T∑

t=1

w(Xt)

∫ y

−∞

{
I(ε̂t ≤ s)− I(εt ≤ s)

}
ds

=
1

Tw

T∑

t=1

w(Xt)
{
I(ε̂t ≤ y) (y − ε̂t)− I(εt ≤ y) (y − εt)

}

=
1

Tw

T∑

t=1

w(Xt)I(εt ≤ y) (εt − ε̂t)

+
1

Tw

T∑

t=1

w(Xt)
{
I(ε̂t ≤ y)− I(εt ≤ y)

}
(y − ε̂t)

= A(y) +B(y) :: (say).

The term B(y) can be bounded as follows :

B(y) =
1

Tw

T∑

t=1

w(Xt)I(ε̂t ≤ y < εt) (y − ε̂t)

− 1

Tw

T∑

t=1

w(Xt)I(εt ≤ y < ε̂t) (y − ε̂t)

≤ 1

Tw

T∑

t=1

w(Xt)I(ε̂t ≤ y < εt) (εt − ε̂t)

+
1

Tw

T∑

t=1

w(Xt)I(εt ≤ y < ε̂t) (ε̂t − εt).

Each of the above terms is OP (maxt(ε̂t−εt)
2) = OP ((Th

d)−1 log T ) = oP (T
−1/2) uniformly

in y. Indeed, the first term on the right hand side is bounded by

1

Tw
max

t
|ε̂t − εt|max

t
w(Xt)

T∑

t=1

I(ε̂t ≤ y ≤ εt).

The sum in the latter expression follows a binomial distribution, conditionally on the

estimators µ̂(·) and σ̂(·). The probability of success is P (ε̂t ≤ y ≤ εt), which is bounded

by supy fε(y)maxt |µ̂(Xt) − µ(Xt)| + supy |yfε(y)|maxt |σ̂(Xt) − σ(Xt)|. Hence, the first

term above is of the order OP (maxt |µ̂(Xt) − µ(Xt)|2) + OP (maxt |σ̂(Xt) − σ(Xt)|2) =

OP ((Th
d)−1 log T ) = oP (T

−1/2). The second term can be bounded in a similar way. Next,

it can be shown that B0(y), obtained by replacing ε̂t with ε̂t0 in the definition of B(y), is
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also oP (T
−1/2) by using Assumption A6-(i). Consider now

A(y)− A0(y)

=
1

Tw

T∑

t=1

w(Xt)I(εt ≤ y) (ε̂t0 − ε̂t)

=
1

Tw

T∑

t=1

w(Xt)I(εt ≤ y)
µ̂(Xt)− µ̂0(Xt)

σ̂(Xt)

=
1

TE[w(Xt)]

T∑

t=1

w(Xt)I(εt ≤ y)
µ̂(Xt)− µ̂0(Xt)

σ(Xt)
+ oP (T

−1/2).

We will now show that

1

TE[w(Xt)]

T∑

t=1

[
w(Xt)I(εt ≤ y)

µ̂(Xt)− µ̂0(Xt)

σ(Xt)

−E
{
w(Xt)I(εt ≤ y)

µ̂(Xt)− µ̂0(Xt)

σ(Xt)

}]
= oP (T

−1/2), (12)

uniformly in −∞ < y < ∞. Define the class

F =
{
(x, e) → w(x)σ−1(x)I(e ≤ y)v(x) : −∞ < y < +∞, v ∈ Cα

M(Rw)
}
,

where Cα
M(Rw) is the space of continuous functions v defined on the compact set Rw, for

which

‖v‖α = max
k.≤α

sup
x

|Dkv(x)|+max
k.=α

sup
x,x′

|Dkv(x)−Dkv(x′)|
‖x− x′‖α−α

≤ M < ∞,

where α is the largest integer strictly smaller than α (which we choose later in the proof),

k = (k1, . . . , kd),

Dk =
∂k.

∂xk1
1 . . . ∂xkd

d

,

and k. =
∑

ki. Note that

P
(
µ̂− µ̂0 ∈ Cα

M(Rw)
)
→ 1

as T tends to infinity, by Assumption A6-(ii). We will show that this class is Donsker. A

sufficient condition for the class F to be Donsker is that
∫ 2M

0

√
logN[ ](δ,F , ‖ · ‖2,β) dδ < ∞,

where for any function g,

‖g‖22,β =

∫ 1

0

β−1(u)Q2
g(u)du,
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and where β−1 is the inverse cadlag of the decreasing function u → β⌊u⌋ (⌊u⌋ being the

integer part of u, and βt being the mixing coefficient) and Qg is the inverse cadlag of

the tail function u → P (‖g‖ > u) (see Section 4.3 in Dedecker and Louhichi, 2002).

Here, N[ ](δ,F , ‖ · ‖2,β) is the δ−bracketing number of the class F , i.e. it is the smallest

number of δ-brackets needed to cover the space F , where a δ-bracket is the set of all

functions h such that hℓ ≤ h ≤ hu and where (hℓ, hu) satisfy ‖hu − hℓ‖2,β ≤ δ. From

Corollary 2.7.2 in Van der Vaart and Wellner (1996) it follows that N[ ](δ, C
α
M(Rw), ‖·‖2) ≤

exp(Kδ−d/α). Moreover, defining yj = F−1
ε (jδ) for j = 1, . . . , O(δ−1), it is easily seen

that N[ ](δ,F , ‖ · ‖2,β) = O(δ−1 exp(Kδ−d/α)). It now follows that the class F is Donsker,

provided α > d/2. Next, since

Var
{
w(Xt)I(εt ≤ y)

µ̂(Xt)− µ̂0(Xt)

σ(Xt)

}
≤ K sup

x∈Rw

|µ̂(x)− µ̂0(x)|2 P→ 0,

it follows from Corollary 2.3.12 in Van der Vaart and Wellner (1996) that (12) holds true.

It remains to calculate

1

E(w(Xt))
E
{
w(Xt)I(εt ≤ y)

µ̂(Xt)− µ̂0(Xt)

σ(Xt)

}

= − Fε(y)

E(w(Xt))

∫
w(x)

g(θ̂, σ̂(x), x)− g(θ0, σ(x), x)

σ(x)
dFX(x)

+
Fε(y)

E(w(Xt))

∫
w(x)

µ̂(x)− µ(x)

σ(x)
dFX(x), (13)

which follows from the independence between Xt and εt.

It is straightforward to show that

∫
w(x)

σ(x)
(µ̂(x)− µ(x))dFX(x) = T−1

T∑

t=1

w(Xt)εt + oP (T
−1/2),

whereas by Assumption A6-(iii) under the null hypothesis

∫
w(x)

σ(x)
(µ̂0(x)− µ(x))dFX(x) = T−1

T∑

t=1

w(Xt)l(Yt, Xt) + oP (T
−1/2).

Therefore, by the arguments above, uniformly in y :

∫ y

−∞

[F̂ε0(s)− F̂ε(s)] ds = A0(y)−A(y) =
Fε(y)

TE[w(Xt)]

T∑

t=1

w(Xt)Wt + oP (T
−1/2).

This finishes the proof. �

26



Proof of Proposition 4. First note that by the fundamental theorem of calculus C ≡ 0

if and only R ≡ 0. Then, arguing as in the proof of Theorem 1, it can be shown that

R ≡ 0 implies that

P (µ(Xt) 6= µ0(Xt) | Xt ∈ Rw) = 0.

This finishes the proof. �

Proof of Corollary 5. The proof parallels the proof of Theorem 2, except for the

calculations starting from equation (13). Write

1

E(w(Xt))
E
{
w(Xt)I(εt ≤ y)

µ̂(Xt)− µ̂0(Xt)

σ(Xt)

}

= − Fε(y)

E(w(Xt))

∫
w(x)

{g(θ̂, σ̂(x), x)− g(θ0, σ(x), x)

σ(x)
− a(x)√

T

}
dFX(x)

+
Fε(y)

E(w(Xt))

∫
w(x)

µ̂(x)− µ(x)

σ(x)
dFX(x).

Using Assumption A6bis-(iii), the first term on the right hand side equals

∫ {w(x)
σ(x)

(µ̂0(x)− µ(x))− w(x)a(x)√
T

}
dFX(x)

= T−1

T∑

t=1

w(Xt)l(Yt, Xt)− T−1/2

∫
[w(x) + d(x)]a(x)FX(x) + oP (T

−1/2).

It now follows that
∫ y

−∞

[F̂ε0(s)− F̂ε(s)] ds

=
Fε(y)

TE[w(Xt)]

T∑

t=1

w(Xt)Wt + T−1/2E[(w(Xt) + d(Xt)) a(Xt)]

E[w(Xt)]
Fε(y) + oP (T

−1/2).

From this and from the formula of σ2
W , the expression of the non-centrality parameter

δ(a) follows. �

Proof of Lemma 6. If we consider g(θ, u, x) as a function in the two first arguments

and apply a Taylor expansion, we obtain

g(θ̂, σ̂(x), x)− g(θ0, σ(x), x) =(θ̂ − θ0)
′∂g(θ0, σ(x), x)

∂θ

+ (σ̂(x)− σ(x))
∂g(θ0, u, x)

∂u

∣∣∣∣
u=σ(x)

+ oP (T
−1/2).
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For simplicity we take d = 1 and p = 0 in what follows, but the results can be easily

extended to d > 1 and p > 0. Denote the derivatives of µ and σ by µ̇(x) = dµ(x)/dx and

σ̇(x) = dσ(x)/dx, and consider

σ̂(x)− σ(x)

= [2σ(x)fX(x)]
−1(Th)−1

T∑

t=1

K
(x−Xt

h

)[
(Yt − µ(x))2 − σ2(x)

]
+ oP (T

−1/2).

Hence, it can be easily shown that using a Taylor expansion around x = Xt, we obtain

(provided Th4 → 0)

∫
w(x)

σ(x)

∂g(θ0, u, x)

∂u

∣∣∣∣
u=σ(x)

(σ̂(x)− σ(x))dFX(x)

=
1

2T

T∑

t=1

w(Xt)

σ2(Xt)

∂g(θ0, u,Xt)

∂u

∣∣∣∣
u=σ(Xt)

[
(Yt − µ(Xt))

2 − σ2(Xt)
]
+ oP (T

−1/2)

=
1

2T

T∑

t=1

w(Xt)
∂g(θ0, u,Xt)

∂u

∣∣∣∣
u=σ(Xt)

(ε2t − 1) + oP (T
−1/2).

If we take into account the representation for θ̂ − θ0 given after the Lemma, we then

obtain the following expansion, uniformly in y :

∫ y

−∞

[F̂ε0(s)− F̂ε(s)] ds

= ϕ′(θ0)
Fε(y)

E(w(Xt))

1

T

T∑

t=1

w(Xt)s(Xt, εt)

+
1

2

Fε(y)

E(w(Xt))

1

T

T∑

t=1

w(Xt)
∂g(θ0, u,Xt)

∂u

∣∣∣∣
u=σ(Xt)

(ε2t − 1)

− Fε(y)

E(w(Xt))

1

T

T∑

t=1

w(Xt)εt + oP (T
−1/2)

=
Fε(y)

E(w(Xt))

1

T

T∑

t=1

w(Xt)
{
ϕ′(θ0)s(Xt, εt) +

1

2

∂g(θ0, u,Xt)

∂u

∣∣∣∣
u=σ(Xt)

(ε2t − 1)− εt

}

+oP (T
−1/2).

This finishes the proof. �
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Table 1: Observed rejection proportions in 1000 simulated data sets when the null hy-

pothesis is H0 : µ(x) = θx with the tests based on CMT and KST and those proposed in

Van Keilegom et al. (2008), indicated as CMV K and KSV K . Model (i) is under the null;

models (ii), (iii) and (iv) are under the alternative hypothesis. The significance level is

0.05.

KST CMT KSV K CMV K

model h T : 100 200 100 200 100 200 100 200

(i) 0.15 0.071 0.061 0.082 0.061 0.038 0.042 0.032 0.047

0.2 0.064 0.055 0.073 0.056 0.039 0.043 0.036 0.039

0.25 0.063 0.055 0.070 0.061 0.042 0.048 0.037 0.043

c-v 0.072 0.058 0.079 0.059 0.054 0.046 0.038 0.048

(ii) 0.15 0.881 0.991 0.927 0.995 0.736 0.975 0.839 0.989

0.2 0.847 0.982 0.897 0.993 0.740 0.975 0.816 0.986

0.25 0.795 0.970 0.871 0.986 0.719 0.967 0.793 0.977

c-v 0.875 0.992 0.927 0.998 0.745 0.974 0.833 0.991

(iii) 0.15 0.825 0.975 0.882 0.989 0.681 0.964 0.786 0.975

0.2 0.779 0.963 0.848 0.980 0.698 0.953 0.761 0.968

0.25 0.730 0.949 0.814 0.971 0.676 0.935 0.732 0.957

c-v 0.833 0.982 0.892 0.994 0.700 0.955 0.781 0.983

(iv) 0.15 0.767 0.945 0.604 0.854 0.846 0.995 0.852 0.997

0.2 0.717 0.930 0.517 0.777 0.813 0.994 0.798 0.991

0.25 0.720 0.933 0.524 0.781 0.764 0.982 0.740 0.981

c-v 0.821 0.963 0.698 0.914 0.865 0.997 0.887 0.998
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Table 2: Observed rejection proportions in 1000 simulated data sets when the null hy-

pothesis is (a) H0 : µ(x) = θxσ(x) (left panel, model (i) is under the null), or (b)

H0 : µ(x) = exp(−θx)σ(x) (right panel, model (ii) is under the null). The significance

level is 0.05.

test: (a) H0 : µ(x) = θxσ(x) (b) H0 : µ(x) = exp(−θx)σ(x)

KST CMT KST CMT

models h T : 200 500 200 500 200 500 200 500

(i) 0.50 0.051 0.036 0.054 0.037 1.000 1.000 1.000 1.000

0.75 0.047 0.034 0.052 0.034 1.000 1.000 1.000 1.000

1.00 0.048 0.033 0.049 0.034 1.000 1.000 1.000 1.000

cv 0.047 0.035 0.054 0.035 1.000 1.000 1.000 1.000

(ii) 0.50 1.000 1.000 1.000 1.000 0.084 0.059 0.079 0.057

0.75 1.000 1.000 1.000 1.000 0.068 0.054 0.069 0.056

1.00 1.000 1.000 1.000 1.000 0.059 0.058 0.062 0.057

cv 1.000 1.000 1.000 1.000 0.075 0.072 0.074 0.072

(iii) 0.50 0.753 0.980 0.735 0.980 1.000 1.000 1.000 1.000

0.75 0.733 0.981 0.743 0.984 1.000 1.000 1.000 1.000

1.00 0.726 0.982 0.742 0.984 1.000 1.000 1.000 1.000

cv 0.733 0.983 0.740 0.983 1.000 1.000 1.000 1.000

(iv) 0.50 1.000 1.000 1.000 1.000 0.219 0.269 0.183 0.235

0.75 1.000 1.000 1.000 1.000 0.173 0.230 0.155 0.215

1.00 1.000 1.000 1.000 1.000 0.145 0.199 0.141 0.189

cv 1.000 1.000 1.000 1.000 0.174 0.240 0.159 0.219
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Table 3: Observed rejection proportions in 1000 simulated data sets for the significance

test H0 : E(Yt | Xt = x) = E(Yt | X1t = x1). Model (i) is under the null hypothesis.

Models (ii) and (iii) are under the alternative hypothesis. The significance level is 0.05.

KST CMT

model (h1, h2) T : 200 500 200 500

(i) (0.3, 0.3) 0.104 0.067 0.163 0.076

(0.4, 0.4) 0.082 0.059 0.109 0.069

(0.5, 0.5) 0.103 0.082 0.113 0.082

(ii) (0.3, 0.3) 0.965 1.000 0.985 1.000

(0.4, 0.4) 0.958 1.000 0.980 1.000

(0.5, 0.5) 0.949 0.999 0.971 0.998

(iii) (0.3, 0.3) 0.374 0.536 0.521 0.678

(0.4, 0.4) 0.319 0.497 0.418 0.622

(0.5, 0.5) 0.313 0.470 0.395 0.565
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