
1

Automated UI Evaluation based on a Cognitive

Architecture and UsiXML

Jan-Patrick Osterloh1, Rene Feil1, Andreas Lüdtke1, Juan Gonzalez-Calleros2, 3

1 OFFIS Institute for Information Technology, Escherweg 2,

26121 Oldenburg, Germany

{osterloh, luedtke}@offis.de, rene.feil@informatik.uni-oldenburg.de
2 Faculty of Computer Sciences,

Benemérita Universidad Autónoma de Puebla,

72400 Puebla, Mexico

juan.gonzalez@cs.buap.mx
3

Research and Development Unit, Estrategia 360

Puebla, Mexico

Abstract. In this paper, we will present a method for automated UI evaluation.

Based on a formal UI description in UsiXML, the cognitive architecture

CASCaS will be used to predict human performance on the UI, in terms of task

execution time, workload and possible human errors. In addition, the

UsabilityAdviser tool can be used to check the UI description against a set of

usability rules. This approach fits well into the human performance and error

analysis proposed in the European project HUMAN, where virtual testers

(CASCaS) are used to evaluate assistant systems and their HMI. A first step for

realizing this approach has been made by implementing a 3D rendering engine

for UsiXML.

Keywords: UI evaluation, UsiXML, cognitive architecture, CASCaS,

UsabilityAdviser

Introduction

In order to further reduce the cost of Human Machine Interface (HMI) design, while

reducing human error and increasing usability at the same time, the HMI development

process has to be improved, by integrating the evaluation of User Interfaces (UI) into

the design process. The European project HUMAN (7th Framework Programme)

aimed at developing virtual testers, in order to improve the human error analysis of

new assistance systems, including User Interfaces. In this paper, we will describe how

cognitive models can be used to improve the development of UI. The objective is to

provide a tool for automated UI evaluation, in terms of predicting cognitive workload,

execution times, human error as well as compliance to HMI guidelines. A similar

mailto:rene.feil@informatik.uni-oldenburg.de

2

approach has already been tackled in CogTool [8], a UI prototyping tool, which uses a

predictive human performance model to automatically evaluating GUI design.

In the next section, we will discuss CogTool and its application in the industrial

process. Then, we will propose another approach for UI evaluation, which should

improve some of CogTools shortcomings, and could be integrated in the industrial

design process.

State-of-the-Art

Currently there are different approaches to evaluation of UI designs. Beside the

classical approach of evaluation with test users, automatic evaluation with tools is

used. The common major shortcoming of any evaluation tool is that the evaluation

logic is hard coded in the evaluation engine [13], for example, two leaders of the web

evaluation market, Bobby and A-Prompt only provide the choice between the

guidelines of W3C or Section 508, which makes them very inflexible for any

modification of the evaluation logic or any introduction of new guidelines. In

addition, many of them do not offer much possibilities of controlling the evaluation

process like choosing which guideline to evaluate, or the level of evaluation at

evaluation time. Not only existing tools cannot accommodate different and multiple

bases of guidelines or usability knowledge but also they force the evaluator to

evaluate the GUI in a predefined way: it is not possible to focus the evaluation on

only some parts of the GUI, for instance by considering only those guidelines that are

concerned with the contents. The goal here is to develop an evaluation tool that

addresses the above shortcomings, such as the support of multiple bases of guidelines

(accessibility, usability, or both) on-demand (partial or total evaluation), with

different levels of details (a presentation for a developers and a presentation for the

person who is responsible for attributing the accessibility certification). For this

purpose, an evaluation engine should be developed that perform guidelines evaluation

or other independently of guidelines and usability knowledge.

Another, newer approach is the evaluation based on cognitive models. CogTool is

a general purpose UI prototyping tool, which uses a predictive human performance

model to automatically evaluating GUI design ([8], [3]). In order to perform an

analysis, the analyst defines first a prototype of the interface (based on standard set of

UI widgets, like buttons, sliders, menus), including possible transitions between

different interfaces. Then, a number of tasks are demonstrated on the design, which

are recorded and build the basis for the interaction tasks. Then the cognitive

architecture ACT-R [2] is used to predict e.g. cognitive workload, and task execution

times.

While CogTool allows fast prototyping and evaluation, the UI prototype itself can

only be imported and exported as HTML code, and cannot be reused for the final

interface. In the transportation domain, model driven development has become

standard for development of assistance systems. Using CogTool in an industrial

process would require that a given design has to be re-implemented in CogTool, and

after the improvements are made within CogTool, these have to be implemented in

the final version of the system, as CogTool is currently neither integrated in a UI

development tool, nor in a modelling tool used in the industry (like Scade, Matlab, or

Rhapsody).

In addition, the need to demonstrate the tasks performed in each scenario from start

to the end seems for a larger set of scenarios to time consuming. Re-usage of the UI

prototype that allows model driven development, as well as re-usage of the tasks that

are performed, are main requirements for the proposed method.

Method

In the HUMAN project, a method for system evaluation has been proposed, that

integrates cognitive testers into the design process of aircraft manufacturers, as well

as integrating an offline evaluation tool. Main idea is to use the system models (e.g.

defined in Matlab) in a simulation together with virtual testers, in order to test the

system in an early design phase. For the UI development, the HUMAN method

proposes to use UsiXML, which stands for USer Interface eXtensible Markup

Language. UsiXML is a XML-compliant mark-up language that describes the UI for

multiple contexts of use, i.e. interactive applications with different types of interaction

techniques, modalities of use, and computing platforms can be described in a way that

preserves the design independently from the physical computing platform. Fig. 1

shows a possible architecture for automated UI evaluation, with UsiXML, and the

cognitive architecture CASCaS.

Fig. 1. Architecture for automated UI evaluation

The first step in the proposed method is to model the system functionality in a

design tool like Matlab or Scade, and to model the UI using UsiXML. There are

multiple tools to create rapid prototypes of GUI in UsiXML, e.g. SketchiXML [6],

with no need for writing XML directly. In the next step, a simulation is used for the

evaluation: A rendering engine for UsiXML is used to display the UsiXML to the

virtual tester, or a human user respectively. On the same time, it controls the

interaction between the system model and the UI, i.e. if the virtual tester presses a

button this is propagated to the system model and the UI. Each interaction may result

in changes on the UI, which are then re-translated into UsiXML and send to an online

evaluation tool. This evaluation tool calculates then online the workload that is

4

needed for this status of the UI. The cognitive model, which is described in more

detail in the next section, also calculates workload (e.g. for motor actions, goal

switches, etc.) for the overall simulation, as well as task execution times, gaze

distribution and predicts possible human errors. A simulator provides additional

information, e.g. route, traffic and weather information.

In an offline evaluation, it is also possible to use the UsabilityAdviser [4] for

analysing the UI on compliance to certain usability rules, like certain undesired colour

combinations (e.g. yellow on white background).

Cognitive Model

The cognitive architecture CASCaS has initially been developed in the 6th European

Commission Framework Programme project ISAAC (see [9]), and has been widely

extended and used in other projects since then. CASCaS has been used to successfully

model perception [10], attention allocation [15], decision making (of drivers) [14] and

human errors [9] of aircraft pilots and car drivers.

CASCaS is based on Rasmussen’s [12] three behaviour levels in which cognitive
processing takes place: skill-based, rule-based and knowledge-based behaviour. The
levels of processing differ with regard to their demands on attention control
dependent on prior experience: skill-based behaviour is acting without thinking in
daily operations, rule-based behaviour is selecting stored plans in familiar situations,
and knowledge-based behaviour is coming up with new plans in unfamiliar situations.
Anderson [1] distinguishes very similar levels, but uses the terminology of
autonomous, associative, and cognitive level, which will be used throughout the
paper. Fig. 2 gives an overview on the components of CASCaS. These components
form the following control loop: The “Perception” component retrieves the current
situation from the “Simulation Environment”, and stores the information in the
“Memory” component. The “Processing” component contains components for the
behaviour layers. These layers can retrieve information from the memory and process
this information according to their cognitive cycle (rule-based or knowledge-based).
The layers may store new information in the memory, or start motor actions in the
“Motor” component. Each component is based on psychologically and
physiologically sound theories, e.g. from cognitive psychology. They implement
detailed models of timing, e.g. for eye movements, such that CASCaS allows
prediction of task execution times. In addition, the attention allocation can be
predicted, based on top-down (rules) and bottom-up (peripheral view/selective
attention) processes [10]. For the calculation of eye- and hand movements, CASCaS
needs information on the positioning of the instruments. We call this information the
“topology”, which is currently defined in a customized XML format, which should be
exchanged by a UsiXML format in future implementations.

Fig. 2: Architecture and components of CASCaS

UsiXML

UsiXML is a XML-compliant mark-up language which consists of a declarative User

Interface Description Language (UIDL). It describes user interfaces for multiple

contexts of use such as Graphical User Interfaces (GUIs), Auditory- and Multimodal

User Interfaces and their constituting elements such as widgets, controls and

containers [7]. Using UsiXML, a UI developer is able to model a description of

interactive applications with different types of interaction techniques and modalities

in a device and computing platform independent notation.

UsiXML provides an MDE approach for the specification of user interfaces and is

based upon the architecture of the CAMELEON Reference Framework [5]. This

framework defines UI development steps for multi-context interactive applications.

Fig. 3 shows a simplified version of this development process.

The rendering engine is placed between the layers three and four in Fig. 3. A

UsiXML Concrete User Interface description serves as input data. This description is

converted by a UsiXML parser and forwarded to the rendering engine. The result

6

after this step is a Final User Interface according to the CUI.

Fig. 3. The User Interface Reference Framework, (cf [11])

Rendering Engine

Fig. 4 shows a simplified architecture of the rendering engine which consists of

four main parts. First, a UsiXML parser, which conforms to a language processing

system, converts a CUI description into an internal and renderable format. After this

step, the converted data is passed to the rendering engine for further handling. The

second component is based upon the MVC architectural pattern and handles the user

actions, provides the user interface, stores the converted CUI data, supplies the

application's main loop and delivers strategies for the program flow. Configuration

files and log files are handled by this part of the application, too. The fourth

component is a mathematical library including a useful set of algebraic and calculus

functions. Finally, the rendering engine itself consists of 6 ancillary parts, as shown

Fig. 5. A further component shown in Fig 4 is a module for inter process

communication (IPC). This part is planned for future implementation steps, e.g. to

connect the system model, CASCaS, or other tools.

Fig. 4. Architecture for Rendering Engine

Fig. 5. Components of the Core Rendering Engine

The main component of the Core Rendering Engine is an OpenGL core profile

renderer, which includes the functionality for drawing primitives and complex

geometric objects, and allows geometry and scene management respectively

manipulation. Summarized, it serves as a programming framework for creating and

preparing the input for OpenGL. Further, this part includes a font system for font

rendering, a buffer manager, a shader1 manager for loading and preparing shader

programs including a common set of shader pairs, and a resource manager for loading

external resources like textures, fonts and additional shaders. The sixth component is

an object library which contains a pre-rendered set of GUI objects like buttons and

labels. OpenGL itself is a low-level rendering API. It doesn't include functions for

drawing geometric objects like cylinders or spheres or GUI elements like buttons. It's

up to the application developer to implement algorithms for drawing these objects.

For that reason there is a need for the development of such an object library. The

included object library is in an early stage and accordingly limited.

UsabilityAdviser

The global process for automatic evaluation with the UsabilityAdviser is depicted

in Fig. 6. The “Knowledge Base” contains a formalisation of rules for good ergonomy

and accessibility. This knowledge base is a collection from ergonomic guidelines, for

instance, structures (Smith and Mosier) or various recommendations that are encoded

in a formal format, using the UsiXML language. The knowledge base is used by the

“Formal rules compiler” to load and parse the rules. Once this internal structure is

created the tool performs a data analysis of the UI, encoded in UsiXML, which may

be developed in a UsiXML editor. The UsabilityAdviser search for violations of rules

formalized through the automatic evaluation of UI data. Finally, a report on the found

violations of ergonomics and accessibility is presented. One major challenge is to

create and update the knowledge base on ergonomic rules, which requestes a

1 Programmable shading is the current state of the art in real-time computer graphics. Today's

graphics cards are highly programmable and the term of shader refers to according programs,

written in high level languages like GLSL, HLSL or Cg, which are executed by

programmable chips on modern graphics card.

8

complete review and compilation of existing rules from different sources. These rules

are often expressed in a natural language that is normally more complex and open

compared to a programming language. Anyway, the UsabilityAdviser provides an

extensible way of evaluation from multiple sources of guidelines for (parts of) a User

Interface.

Fig. 6. Global process for automatic evaluation

Summary and Next Steps

We proposed an approach for automated UI evaluation with a cognitive architecture,

which is usable in industrial application. It uses a model driven approach, and is

connectable to tools that are already in use in the industry, like Matlab or Scade,

which allows re-use of the models defined by the system designers. UsiXML provides

a model driven development for the industry. These models together can be used for

automated UI evaluation, for which the HUMAN project has already implemented

some prototypical tools. Still an open issue is the connection between CASCaS and

UsiXML. A first step in this direction is the implementation of a UsiXML rendering

engine, which can be connected to CASCaS. Another open issue is the link between

the UsiXML UI description and the system model. As tools like Matlab or Scade use

the mechanism of Events for interaction, an extension to UsiXML with a mapping to

such events could be the solution. The rendering engine could then be extended to

trigger such events when there is interaction with the UI elements, e.g. on button

clicks, and to transfer events back to certain changes in the UI (e.g. opening of a

dialog).

References

1. Anderson, J. R.: Learning and Memory, John Wiley & Sons, Inc. (2000)

2. Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S. A.; Lebiere, C.; Qin, Y.: An

Integrated Theory of Mind. Psychological Review, Vol 111(4), Oct 2004, pp. 1036-

1060 (2004)

3. Bellamy, R., John, B. E., Richards J., and Thomas J.: Using CogTool to model

programming tasks. In Evaluation and Usability of Programming Languages and

Tools (PLATEAU '10). ACM, New York, NY, USA, Article 1, 6 pages.

http://doi.acm.org/10.1145/1937117.1937118 (2010)

4. Bossche, P. vanden: Développement d'un outil de critique d'interface intelligent :

UsabilityAdviser, M.Sc. thesis, Université catholique de Louvain, Louvain-la-Neuve

(2006).

5. Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L., Paternò,

F., Santoro, C., Souchon, N., Thevenin, D., Vanderdonckt, J.: The CAMELEON

Reference Framework, Deliverable 1.1, Version V1.1, CAMELEON Project (2002)

6. Coyette, A., Vanderdonckt, J., and Limbourg, Q., SketchiXML: A Design Tool for

Informal User Interface Rapid Prototyping, in Proc. of International Workshop on

Rapid Integration of Software Engineering techniques, RISE'2006 (Geneva, 13-15

September 2006), N. Guelfi, D. Buchs (Eds.), Lecture Notes in Computer Science,

Vol. 4401, Springer-Verlag, Berlin, 2007, pp. 160-176 (2006)

7. Guerrero García, J., Lamaigre, C., González Calleros, J. M., Vanderdonckt, J.: Model

Driven Approach to Design User Interfaces for Workflow Information Systems,

Journal of Universal Computer Science, vol 14, no 19, pp 3160-3173 (2008)

8. John, B. E.: Using Predictive Human Performance Models to Inspire and Support UI

Design Recommendations. Proceedings of CHI 2011, ACM New York (2011)

9. Lüdtke, A., Cavallo, A., Christophe, L., Cifaldi, M., Fabbri, M., Javaux, D.: Human

Error Analysis based on a Cognitive Architecture. In: Reuzeau, F., Corker, K., Boy,

G. (eds) Proceedings of the International Conference on Human-Computer

Interaction in Aeronautics (HCI-Aero), 20.-22.09.2006, Seattle, USA. Toulouse,

Cépaduès-Editions, France, pp. 40-47 (2006)

10. Lüdtke, A., Osterloh, J-P.: Simulating Perceptive Processes of Pilots to Support

System Design. In T. Gross, et al. (eds), Proceedings Human-Computer Interaction

(INTERACT), Springer, pp. 471-484 (2009).

11. Molina, J.P., Vanderdonckt, J., Montero, F., González, P.: Towards Virtualization of

User Interfaces based on UsiXML, Proc. of Web3D 2005 Symposium, 10th

International Conference on 3D Web Technology (Bangor, 29 March-1 April 2005),

ACM Press, New York, pp. 169-178 (2005)

12. Rasmussen, J.: Skills, Rules, Knowledge: Signals, Signs and Symbols and other

Distinctions in Human Performance Models, IEEE Transactions: Systems, Man and

Cybernetics, SMC-13, pp.257-267 (1983)

13. Vanderdonckt, J., Beirekdar, A., Automated Web Evaluation by Guideline Review,

Journal of Web Engineering, Vol. 4, No. 2, 2005, pp. 102-117.

14. Weber, L., Baumann, M., Lüdtke, A., Steenken, R.: Modellierung von

Entscheidungen beim Einfädeln auf die Autobahn. In A. Lichtenstein, C. Stößel, C.

Clemens (Hrsg), 8. Berliner Werkstatt, Mensch-Maschine-Systeme, Düsseldorf: VDI

Verlag, S. 86-91 (2009)

15. Wortelen, B., Lüdtke, A.: Ablauffähige Modellierung des Einflusses von

Ereignishäufigkeiten auf die Aufmerksamkeitsverteilung von Autofahrern. In A.

Lichtenstein, C. Stößel, C. Clemens (Hrsg.), 8. Berliner Werkstatt, Mensch-

Maschine-Systeme, Düsseldorf: VDI Verlag, S. 80-85 (2009)

http://smv.unige.ch/rise06/tiki-index.php

