
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Exploiting the Incomplete Diffusion Feature: A
Specialized Analytical Side-Channel Attack

against the AES and its Application to
Microcontroller Implementations

Shize Guo, Xinjie Zhao, Fan Zhang, Tao Wang, Zhijie Shi, Francois-Xavier Standaert, Chujiao Ma.

F

Abstract—Algebraic side-channel attack (ASCA) is a typical technique
that relies on a general solver to solve the equations of a cipher and
its side-channel leaks. It falls under analytical side-channel attack and
can recover the entire key at once. Many ASCAs are proposed against
the AES, and utilize the Gröbner basis-based, SAT-based or optimizer-
based solver. The advantage of the general solver approach is its
generic feature, which can be easily applied to different cryptographic
algorithms. The disadvantage is that it is difficult to take into account
the specialized properties of the targeted cryptographic algorithms. The
results vary depending on what type of solver is used, and the time com-
plexity is quite high when considering the error-tolerant attack scenarios.
Thus, we were motivated to find a new approach that would lessen
the influence of the general solver and reduce the time complexity of
ASCA. This paper proposes a new analytical side-channel attack on
AES by exploiting the incomplete diffusion feature in one AES round.
We named our technique incomplete diffusion analytical side-channel
analysis (IDASCA). Different from previous ASCAs, IDASCA adopts a
specialized approach to recover the secret key of AES instead of the
general solver. Extensive attacks are performed against the software
implementation of AES on an 8-bit microcontroller. Experimental results
show that: 1) IDASCA can exploit the side-channel leaks in all AES
rounds using a single power trace; 2) It has less time complexity and
more robustness than previous ASCAs, especially when considering
the error-tolerant attack scenarios; 3) It can calculate the reduced
key search space of AES for the given amount of side-channel leaks.
IDASCA can also interpret the mechanism behind previous ASCAs on
AES from a quantitative perspective, such as, why ASCA can work
under unknown plaintext/ciphertext scenarios and what are the extreme
cases in ASCAs.

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.
Shize Guo is with the Institute of North Electronic Equipment, Beijing, China.
E-mail: tigerone-gsz@vip.sina.com.
Xinjie Zhao is with the Institute of North Electronic Equipment, Beijing and
the Department of Information Engineering, Ordnance Engineering College,
Hebei, China. E-mail: zhaoxinjieem@163.com
Fan Zhang is with the Department of Information Science & Electrical
Engineering, Zhejiang University, China. E-mail: fanzhang@zju.edu.cn
Zhiije Shi and Chujiao Ma are with the Department of Computer Science &
Engineering, University of Connecticut, Storrs, Connecticut, USA. E-mail:
{zshi,chujiao.ma}@engr.uconn.edu
Tao Wang is with the Department of Information Engineering, Ordnance
Engineering College, Hebei, China. E-mail: twangdrsjz@yahoo.com.cn.
Francois-Xavier Standaert is with the UCL Crypto Group, Belgium. E-mail:
fstandae@uclouvain.be

Index Terms—Incomplete diffusion, algebraic side-channel attack,
AES, Hamming weight leakage model, microcontrollers.

1 INTRODUCTION

Security evaluation of cryptographic algorithms can be
considered from two aspects. The algorithms can be con-
sidered from the point of view of mathematical security
such as differential [4], linear [19], algebraic cryptanaly-
sis [3], [10], [11] and their variants. And their implemen-
tations can be considered from the point of view of phys-
ical security (which makes any analysis quite device-
dependent) with side channel-analysis (SCA) techniques
where physical leakages from the target devices, such
as execution time [16], power consumption [17], and
electromagnetic emissions [25], are exploited to break the
algorithms. Embedded systems are most vulnerable to
SCAs as attackers often have direct physical accesses.

Typical SCA techniques include simple power anal-
ysis (SPA) [18], differential power analysis (DPA) [17],
correlation power analysis (CPA) [7], mutual informa-
tion analysis (MIA) [15], template analysis (TA) [9],
stochastic SCA (SSCA) [31], side-channel cube analysis
(SCCA) [13], algebraic side-channel collision analysis
(ASCCA) [5] and algebraic SCA (ASCA) [8], [20], [21],
[23], [26], [27], [36]. All these attacks exploit some model
of the physical leakages to be compared with actual
measurements. Assumptions regarding the model lead
to two important classes of SCAs: profiled and non-
profiled. A profiled SCA is composed of two phases: a
profiling phase where the adversary is provided with
a training device under test (TRDUT) that allows him
to characterize physical leakages (in order to obtain a
precise leakage model); and an online exploitation phase
where the attack is mounted against a similar target
device under test (TADUT) to perform a secret key ex-
traction. Non-profiled SCA only requires the latter phase
and assumes some (less precise) leakage model, typically
obtained from engineering intuition. With respect to the
key recovery procedure, SCAs fall into two categories:

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

TABLE 1
SCAs classified by the leakages measurement and key recovery procedure.

SCA type Non-profiled SCA Profiled SCA
divide-and-conquer SCA DPA [17], CPA [7], MIA [15] SPA [18], TA [9], SSCA [31], SCCA [13]

analytical SCA ASCCA [5] ASCA [8], [20], [21], [23], [26], [27], [36]

divide-and-conquer SCA (which provide distinguishers
for small key chunks that are then combined, e.g., us-
ing key enumeration [34]) and analytical SCA (which
recover the entire key at once, e.g., by solving systems
of equations). As a result, SCAs can be divided into the
four types represented in Table 1. It should be noted that
the list in Table 1 is admittedly incomplete (these are just
examples of SCAs).

Analytical SCA is currently a very active area in the
crypto community. Traditional SCAs [7], [9], [15], [17],
[31] exploit a divide-and-conquer strategy and recov-
er several pieces of a secret key independently. For
analytical SCA, both the cipher and the leakages are
represented with algebraic equations and the full secret
key is recovered at once by solving these equations with
different strategies. Since leakages of more rounds can
be utilized, this attack has less measurement complexity
than traditional SCAs.

The idea of analytical SCA is first introduced by Bog-
danov et al. in 2007 [5] to attack the software implemen-
tation of AES on 8-bit microcontroller, where collision-
based SCA [30] is combined with algebraic cryptanalysis.
The attack is named algebraic side-channel collision
analysis (ASCCA). In ASCCA, the adversary detects the
internal collisions (if the values of two intermediate
states are equal) in two AES rounds by comparing the
patterns of the two sections of the power traces and
then converts them into equations. The F4 Gröbner basis-
based algorithm in MAGMA solver [14] is used to solve
the equations. Under known plaintext scenario, ASCCA
only requires five power traces to recover the master key
of AES. The attack is independent of the leakage model.

In INSCRYPT 2009, Renauld et al. combined template
attack with algebraic cryptanalysis [3], [10], [11] and pro-
posed the algebraic side-channel attack (ASCA) against
the software implementation of PRESENT on an 8-bit
microcontroller [26]. In ASCA, template attack is used to
deduce the Hamming weight (HW) or the accurate value
of intermediates states. This can be done by detecting the
external collisions between the targeted power trace in
TADUT with the template power trace in TRDUT. The
algebraic technique is used to represent both the cipher
and the deductions. A SAT solver, ZChaff [24], is used
to recover the secret key. In CHES 2009, Renauld et al.
successfully extended ASCA to the software implemen-
tation of AES on an 8-bit microcontroller [27]. Compared
with ASCCA and other SCA techniques, ASCA can
exploit the side-channel leakages in all cipher rounds
and can recover the key with a single trace even when
both the plaintexts and ciphertexts are unknown [26],
[27].

ASCA works well on the software implementation of
AES [12] on an 8-bit microcontroller under the Hamming
weight leakage model (HWLM) [27]. Recently, it has also
been successfully applied to the hardware implementa-
tion of AES on a 65nm ASIC, under the template leakage
model (TLM) [23] with a single power trace. The work
in [28] studies the impact of representation dependence,
leakage dependence and cipher dependence to ASCA.
The work in [8] studies the impact of algebraic immunity
to the resistance of block ciphers against ASCA. The
original ASCAs assume that the correct deduction on
the Hamming weight (HW), or the accurate value of
intermediates states, can be profiled from analyzing the
side-channel leakages. In practice, it was observed that
noise is the main issue for robust ASCA. Because of
this, multiple deductions have to be obtained from the
leakage and utilized in the attack. To mitigate this issue,
two types of solutions are provided. One solution is to
group these multiple deductions together into sets, then
convert them into algebraic equations. A SAT solver is
normally used to recover the secret key. In this approach,
there are many variants, such as multiple deductions-
based ASCA (MDASCA) in COSADE 2012 [36] and
improved ASCA (IASCA) in HOST 2012 [20]. The other
solution is to include the imprecise deductions in the
equation set and to deal with these imprecisions via an
optimizer (e.g., the SCIP solver [1]). This technique is
denoted as Tolerant ASCA (TASCA) in CHES 2010 [21]
and in Eprint 2012/092 [22]. In [8], [20], [21], [27],
[36], the probabilities of multiple deductions are treated
as equal, which may lose some useful information. In
CHES 2012, TASCA is further modified to cope with
the different probabilities of multiple deductions named
probabilistic TASCA (Prob-TASCA) [23]. Prob-TASCA
can regain some information lost in other attacks.

In summary, most existing ASCAs adopt a gener-
al, sometimes off-the-shelf equation solver (e.g., the F4
Gröbner basis-based algorithms in MAGMA solver [8],
SAT solver [26], [27], [20], [36], mixed integer program-
ming solver [21], [22], [23]). The advantage of the general
solver approach is its generic feature, which can be
easily applied to different cryptographic algorithms. The
disadvantage is that it is difficult to take into account
the specialized structures or properties of the targeted
cryptographic algorithms. The results vary depending on
what type of solver was used, and the time complexity
of the general solver is quite high when considering the
error-tolerant attack scenario in ASCA on AES. When
there is too much noise and the deduction sets are too
large, there exist too many solutions for the equation
system. If only the plaintext is included in the equa-

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

tion set, the general equation solver might output a
satisfied or optimized solution but not the correct one,
which reduces the success rate. If both the plaintext
and ciphertext are included in the equation set, the
output solution should be correct but the solver may
not output the correct solution in a reasonable amount
of time. Meanwhile, the exact reduced key search space
of AES for the given amount of leakages is not studied
in previous ASCAs [8], [20], [21], [22], [23], [27], [36].

It is critical to find a new approach that would lessen
the influence of the solver and reduce the time com-
plexity of existing ASCAs on AES, especially when con-
sidering the error-tolerant attack scenario. These are the
motivations of this paper. Our main idea is inspired by
the simple power attack technique in ICISC 02 [18] and
the low data complexity attack technique in CRYPTO
11 [6]. The work in [18] utilized the incomplete diffusion
feature in the AES key expansion 1 to recover the secret
key of AES with a single power trace. The work in [6]
utilized the customized solver approach instead of the
general equation solver to solve the equations of Round-
Reduced AES. It is interesting to exploit the incomplete
diffusion feature in the AES encryption procedure 2 and
utilize a specialized approach (construct a customized or
specialized solver) instead of the general equation solver
to improve ASCA. Since there are more leakages in the
AES encryption procedure, the attack might work under
unknown plaintext and ciphertext scenario. Meanwhile,
as the incomplete diffusion feature is considered, this
specialized attack may achieve better performance than
existing ASCAs. We name our technique incomplete dif-
fusion analytical side-channel analysis (IDASCA).

Specifically, the main principle of IDASCA on AES is
listed as follows.

1) For each AES round, considering the incomplete
diffusion feature in one round, four state bytes of
the round output are computed by transforming
the fixed four state bytes of the AddRoundKey
output with SubBytes, ShiftRows, MixColumns 3

operations.
2) Thus, the sixteen state bytes of the round output

and the AddRoundKey output in each round can
be divided into four state groups, each state group
containing four bytes.

3) The 84 deduction sets on the intermediates states
in one AES round can be profiled from analyzing
the side-channel leakages. These deduced sets can
also be divided into four groups. Each deduction
set group contains 21 leaks in computing the four
state bytes of the round output from the four state

1. The calculation on one byte of the i-th round key does not rely
on all sixteen bytes of the i− 1-th round key.

2. For this, the incomplete diffusion feature means that the calcula-
tion on one byte of the i-th round output does not rely on all sixteen
bytes of the i-th round AddRoundKey output. Comparatively, the full
diffusion can be achieved by two AES rounds, which means that the
calculation on one byte of the i-th round output relies on all sixteen
bytes of the i− 1-th round AddRoundKey output.

3. The last AES round does not have the MixColumns operation.

bytes of the AddRoundKey output.
4) By enumerating the 232 candidates of one state

group of the AddRoundKey output, the deduc-
tion on the 21 leaks can be predicted. For each
candidate, it can be kept only when the value of
each deduction in the predicted deduction group
is among the practical deduction set group. Other-
wise, the candidate can be discarded. Then, limited
candidates of one state group of the AddRoundKey
output can be kept.

5) By applying the above procedure to other three
state groups, limited candidates of the AddRound-
Key output can be calculated. Then, the same
amount of candidates of the round output can also
be computed.

6) The candidates of the i-th round-key in each AES
round can be calculated by XORing the i − 1-th
round output with the i-th round AddRoundKey
output.

7) The master key can be retrieved by analyzing the
candidates of all the round-keys.

Extensive experiments of IDASCA are conducted a-
gainst the software implementation of AES on an 8-
bit microcontroller under the HWLM. The results show
that IDASCA has the following features. As in previous
ASCAs, IDASCA can exploit the leaks in all AES rounds
and work even when both the plaintext and ciphertext
are unknown. Compared with previous ASCAs on AES,
IDASCA has lower attack complexities and better error
tolerant capabilities. IDASCA can calculate the accurate
reduced key search space of ASCA on AES, which inter-
prets the results of previous ASCAs (e.g., the original
ASCA [27], MDASCA [36], IASCA [20], TASCA [22],
Prob-TASCA [23]) from a quantitative perspective. It can
also be used to explain why ASCA can work under
unknown plaintext/ciphertext scenario and what are the
extreme scenarios in previous ASCAs.

The rest of this paper are organized as follows. Section
2 describes the design and the targeted implementation
of AES. Section 3 shows how to predict the deduction
set for different leaks with template attack technique.
Section 4 presents the details of IDASCA and how to use
it to recover the secret key of AES by analyzing the de-
duction set. Section 5 provides the experimental results
of IDASCA on AES. Section 6 interprets the results of
different previous ASCAs on AES with IDASCA. Section
7 concludes the paper.

2 ANALYSIS ON THE DESIGN AND IMPLEMEN-
TATION OF AES
2.1 Description of AES
The full description of the AES algorithm can be referred
to in [12]. The typical AES with 128-bit key length, AES-
128, is described in this subsection. Both the 128-bit input
plaintext (P) and the secret key (K) are arranged as a 4×
4 array of bytes, known as the state matrix, and referred
to as follows.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

P =

p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

 , K =

k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

 .

In AES-128, the input state matrix (plaintext) is trans-
formed through 10 round functions. The state matrix
evolves as it passes through the various operations of the
algorithm and finally emerges in the form of a ciphertext.
The first nine rounds are composed of the following four
operations and the last round is the same but without
the MixColumns operation.

1) AddRoundKey (AK). Each byte of the state matrix
is XORed with a byte from a corresponding matrix
of round subkeys.

2) SubBytes (SB). Each byte of the state matrix is
updated by a lookup table using the S-Box.

3) ShiftRows (SR). Row i of the state is rotated i-byte
to the left, for i = 0, 1, 2, 3.

4) MixColumns (MC). Each column of the state is up-
dated by multiplying itself with the corresponding
column of a fixed matrix M .

2.2 Target Implementation of AES
As in previous work [20], [21], [26], [27], [36], our at-
tack considers the typical C software implementation of
AES [12] on an 8-bit microcontroller ATMEGA324P for
both TRDUT and TADUT. We assumed that no leaks
from the key expansion process of AES are available to
the adversary, e.g., the device performs the round key
expansion in advance. The details of our implementation
can be referred to in Algorithm 1. S[] denotes the S-Box
lookup function and xt denotes the xtime function [12].

In this application, the HW of an intermediate byte can
be leaked and there are nine candidates for each byte. In
the attack, we exploited the HW leaks from the device
when the 8-bit operands on its data bus are processed.
In total, it corresponds to 100 leaks per round (as noted
in [23]) described below.

1) AK operation leaks information about the 16 state
bytes after the XOR with the key, as well as infor-
mation about the key bytes themselves, providing
a total of 32 leaks per round.

2) SB operation is implemented as a table look-up
and leaks information about its 16 output byte per
round.

3) SR operation does not leak any information.
4) MC operation is implemented with 8-bit XTIME

and XOR operations as specified in [12]. It leaks 36
bytes of internal state and 16 bytes of final state,
resulting in a total of 52 leaks per round.

We noted that some previous ASCAs in [20], [27],
[36] only consider 84 leaks for one AES round, where
the 16 leaks of loading the round key are omitted. The
technique in analyzing 100 and 84 leaks is identical,
except that the key search space of AES can be further

reduced by analyzing the 16 extra leaks on the round
key. We will address this in Section 4.

Algorithm 1. C implementation of AES
1: void AddRoundKey (int n){
2: for i=0 to 15 do
3: key[i]=rkey[16× n+ i]; //16 leaks
4: state[i]∧=key[i]; //16 leaks
5: end for
6:}
7: void SubBytes (){
8: for i=0 to 15 do //16 leaks
9: state[i]=S[state[i]];
10: end for
11:}
12: void ShiftRows (){
13: for i=0 to 15 do
14: temp[i]=state[R[i]];
15: end for
16: for i=0 to 15 do
17: state[j]=temp[j];
18: end for
19:}
20: void MixColumns () { //52 leaks
21: for i=0, 4, 8, 12 do
22: a=state[i]∧state[i+ 1]; b=state[i+ 1]∧state[i+ 2]; //2× 4 leaks
23: c=state[i+ 2]∧state[i+ 3]; d=state[i]∧state[i+ 3]; //2× 4 leaks
24: e=a∧c; //1× 4 leakages
25: state[i]∧=xt(a); state[i]∧=e; //2× 4 leaks
26: state[i+ 1]∧=xt(b); state[i]∧=e; //2× 4 leaks
27: state[i+ 2]∧=xt(c); state[i]∧=e; //2× 4 leaks
28: state[i+ 3]∧=xt(d); state[i]∧=e; //2× 4 leaks
29: end for
30:}
31: void AES (byte *in, byte *rkey, byte *out) {
32: for i=0 to 15 do
33: state[i]=in[i];
34: end for
35: for i=0 to 8 do
36: AddRoundKey(i); SubBytes(); ShiftRows(); MixColumns();
37: end for
38: AddRoundKey(9); SubBytes(); ShiftRows(); AddRoundKey(10)
39: for i=0 to 15 do
40: out[i]=state[i];
41: end for
42:}

3 PREDICT THE DEDUCTION SET WITH TEM-
PLATE ATTACK

Using the same method as previous ASCAs [8], [20], [21],
[22], [23], [27], [36], we first predict the deduction set for
each side-channel leakage point. We use the template
attack technique [9] to decode the power trace into a
series of deduction sets for all the leakage points. Let
b denote an intermediate byte, L() denote the leakage
function mapping the intermediate state b to the deduction,
d denote the correct deduction (Hamming weight in
HWLM or specific value in TLM) on b (d = L(b)), D
denote the deduction set on d, and di denote the i-th
deduction on d.

In the attack, we calculate the probabilities of every
deduction by template attack [9] with two steps. In
the first step, we profile nine templates for every HW
leak in an intermediate state. Each template assumes a
Gaussian noise and is characterized by a mean value
and a noise standard deviation. In the second step, we
use the Bayesian inversion to simulate the classification
probability from the templates for each deduction. Next,
we present several parameters used in the attack.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

1) µ denotes the size of the deduction set for one leak,
where the deduction set D = {d1, . . . dµ}.
The value of µ can be determined as either a global
constant (fixed µ) for all leaks in one attack (as
in [22], [23], [27]), or on a per-leak basis (dynamic
µ) according to some heuristics (e.g., choosing the
highest n deductions when the sum of their proba-
bilities is over a fixed threshold T , as in [20], [36]).
Under the ideal case, the adversary can deduce the
single and correct deduction for each leak and µ =
1, as assumed in [27]. This representation provides
the most information, but it cannot tolerate any
errors. To tolerate errors, more deductions can be
predicted and µ ≥ 1. In previous ASCAs, the work
in [21], [22], [23] considered the fixed µ scenario
for one attack. Using the same method, when the
value of µ is large, the complexity of the attack
increases exponentially. To overcome this, the work
in [36] considered the dynamic µ scenario where
1 ≤ µ ≤ 3 under HWLM and the work in [20] also
considered the dynamic µ scenario where 1 ≤ µ ≤ 5
under HWLM, both of which achieved lower attack
complexity than that in fixed µ scenario.

2) λi denotes the probabilities of d = di.
Two scenarios can be considered here. The first
is to assume all the deductions have the same
probability. Multiple deductions are represented as
equations regardless of the different probabilities
and input into the machine solver for key recovery
(as in [20], [21], [22], [36]). The second is to
consider different values of λi, encode them into
equations and send them to an optimizer (e.g.,
SCIP solver), as done in prob-TASCA [23]. Since
more information is exploited, prob-TASCA can
regain some information lost in MDASCA [36],
IASCA [20] and TASCA [21], [22]. Recently, the
work in [34] also considered using the probabilistic
(soft) information to optimize the key enumerating
in DPA, CPA and other SCAs 4.

3) ρd denotes the decoding success rate, the propor-
tion of traces for which the correct deduction of
all the leaks are included in the deduction sets
provided by the decoder.
The value of ρd depends both on the deduction size
µ and the noise. Under fixed µ scenario, the work
in [21], [22], [23] showed that ρd would approach
100% when µ = 3. Under dynamic µ scenario, the
work in [20] showed that ρd would approach 99%
when the threshold T ≥ 0.90, where 1 ≤ µ ≤ 4.

4. Since the target list to be optimized is only the 16 key bytes
in standard DPA attacks, the complexity of the key enumeration
algorithm in [34] is directly affordable in this case. Exploiting it in
the context of ASCA, where there are 100 intermediate bytes to be
analyzed per round, is not straightforward - and we leave it as an
interesting scope for further research.

4 INCOMPLETE DIFFUSION ANALYTICAL
SIDE-CHANNEL ANALYSIS (IDASCA) ON AES
When the measurement is too noisy and the deduction
sets are too large (the value of µ is large), there are
too many solutions for ASCA. For SAT solver based
ASCA, the solver may output a satisfiable solution that
is incorrect (if plaintext and ciphertext are known) or run
for too long (otherwise). For optimizer-based ASCA, the
SCIP solver may output an optimized solution that is
also incorrect. In these cases, both attacks would fail, and
how to conduct more efficient attacks still needs to be
further studied. Meanwhile, how to accurately estimate
the reduced key search space for a given amount of
leakages in ASCA on AES is also an interesting problem.

This section proposes a new technique named Incom-
plete Diffusion Analytical Side-channel Analysis (IDASCA).
We first analyze the incomplete diffusion feature in one
AES round and then describe the core of IDASCA on
AES, which is composed of three steps: divide the states
and leaks in each AES round, conquer the state from
leaks in each AES round and search for the master key
of AES.

4.1 The Incomplete Diffusion Feature in One AES
Round

Let Xi, Ki, Ai, Bi, Y i denote the 128-bit input, round-
key, output of AK, output of SB and the final output of
the i-th round, respectively. Let xij , k

i
j , a

i
j , b

i
j , y

i
j , denote

the j-th byte of Xi,Ki, Ai, Bi, Y i (0 ≤ i ≤ 9, 0 ≤ j ≤
15). Eq. (1) presents the equation of how to calculate
{yi0,yi1,yi2,yi3} from xi and the round-key Ki for the first
nine rounds (0 ≤ i ≤ 8). As to the final round (i = 9), MC
is omitted and Eq. (1) should be modified accordingly.

y
i
0 = 02 · S[xi

0 + k
i
0] + 03 · S[xi

5 + k
i
5] + S[x

i
10 + k

i
0] + S[x

i
15 + k

i
15]

y
i
1 = S[x

i
0 + k

i
0] + 02 · S[xi

5 + k
i
5] + 03 · S[xi

10 + k
i
0] + S[x

i
15 + k

i
15]

y
i
2 = S[x

i
0 + k

i
0] + S[x

i
5 + k

i
5] + 02 · S[xi

10 + k
i
10] + 03 · S[xi

15 + k
i
15]

y
i
3 = 03 · S[xi

0 + k
i
0] + S[x

i
5 + k

i
5] + S[x

i
10 + k

i
10] + 02 · S[xi

15 + k
i
15]

(1)

In Eq. (1), · denotes the Finite field multiplication
in GF (28) that corresponds with the multiplication of
polynomials modulo an irreducible polynomial x8+x4+
x3 + x+ 1; + denotes the XORed function; S[] denotes
the S-Box lookup function.

From Eq. (1), we can see that, in order to calculate
one byte of Y i, not all bytes of Ai need to be known
and only four bytes of Ai are required. We call this
the incomplete diffusion feature. Take the calculation of
{yi0,yi1,yi2,yi3} as an example, any byte in {yi0,yi1,yi2,yi3} is
calculated by {ai0, ai5, ai10, ai15} (the XORed result between
{xi0, xi5, xi10, xi15} and {ki0, ki5, ki10, ki15}), which are only
four bytes of Ai.

According to this feature and the C implementation
in Algorithm 1, there are only 21 leaks in the calculation
procedure of {yi0,yi1,yi2,yi3} from {ai0, ai5, ai10, ai15}. These
21 leaks can be used to search for {ai0, ai5, ai10, ai15}.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

4.2 Divide the states and leaks in Each AES Round
This section presents how to divide the state and 84 leaks
in each AES round into several groups by exploiting
the incomplete diffusion feature. First, we present some
notations and definitions.

State group. Define β0 = {yi0,yi1,yi2,yi3} as a state group
in Y i and α0 = {ai0, ai5, ai10, ai15} as a state group in Ai.
Each state group contains four bytes. Similarly, there
are three other state groups in Y i, which are β1 =
{yi4,yi5,yi6,yi7}, β2 = {yi8,yi9,yi10,yi11},β3 = {yi12,yi13,yi14,yi15}.
There are three other corresponding state groups in
Ai, which are α1 = {ai4,ai9,ai14,ai3}, α2 = {ai8,ai13,ai2,ai7}
,α3 = {ai12,ai1,ai6,ai11}.

State group mapping. We define the calculation pro-
cedure of one state group in βi from the state group in
αi as the state group mapping, which can be denoted as
αi → βi.

Leak group. According to the software implementa-
tion of AES in Algorithm 1, there are 21 leaks in one
state group mapping, which can form a leak group and
be denoted as Lαi→βi

.
Below lists the 21 leaks in calculating β0 from α0.
1) 4 leaks in AK when calculating ai0, a

i
5, a

i
10, a

i
15.

2) 4 leaks in SB when calculating bi0 = S[ai0], b
i
5 =

S[ai5], b
i
10 = S[ai01], b

i
15 = S[ai15].

3) 13 leaks in MC when calculating bi0 + bi5, b
i
5 +

bi10, b
i
10 + bi15, b

i
0 + bi15, b

i
0 + bi5 + bi10 + bi15, b

i
0 +xt(bi0 +

bi5), b
i
0 + xt(bi0 + bi5) + bi0 + bi5 + bi10 + bi15, b

i
5 + xt(bi5 +

bi10), b
i
5+xt(b

i
5+b

i
10)+b

i
0+b

i
5+b

i
10+b

i
15, b

i
10+xt(b

i
10+

bi15), b
i
10+xt(b

i
10+b

i
15)+b

i
0+b

i
5+b

i
10+b

i
15, b

i
15+xt(b

i
0+

bi15), b
i
15 + xt(bi0 + bi15) + bi0 + bi5 + bi10 + bi15.

The Leak group Lα0→β0
= {L(ai0), L(ai5), L(ai10),

L(ai15), L(b
i
0), L(b

i
5), L(b

i
10), L(b

i
15), L(b

i
0 + bi5), . . . , L(b

i
15 +

xt(bi0 + bi15) + bi0 + bi5 + bi10 + bi15)}.
Deduction set group. The group of all the deduction

set on the Leak group Lαi→βi
, can be denoted as Dαi→βi

.
Then Dα0→β0 = {D(ai0), D(ai5), L(a

i
10), D(ai15), D(bi0),

L(bi5), D(bi10), D(bi15), D(bi0+b
i
5), . . . , D(bi15+xt(b

i
0+b

i
15)+

bi0 + bi5 + bi10 + bi15)}.
Below describes how to divide the states (Ai and Y i)

and 84 leaks in each AES round into groups.
Step 1.1. Divide Ai into four state groups,

α0, α1, α2, α3, Y i into four state groups, β0, β1, β2, β3.
Step 1.2. Divide the 84 leaks in each AES round into

four groups,Lα0→β0 ,Lα1→β1 ,Lα2→β2 ,Lα3→β3 .
Step 1.3. Predict the deduction set on the 84 leaks

from analyzing the side-channel leakages in each AES
round with template attack technique.

Step 1.4. Divide the 84 deduction sets in each AES
round into four groups,Dα0→β0

,Dα1→β1
,Dα2→β2

,Dα3→β3
.

The details on how to search for the candidates of the
state group from analyzing the deduction set group will
be presented in the next section.

4.3 Conquer the States from Leaks in Each AES
Round
Let E(X) denote the entropy of the state X . Let x denote
a state byte, D(x) denote the deduction set on the value

of L(x), x denote one possible candidate of L(x), and
Is(x,D(x)) denote the function to judge whether x is in
the deduction set D(x). This section will describe how to
search for the state group αj by analyzing Lαj→βj

and
Dαj→βj

(0 ≤ j ≤ 3).
Next, we take the recovery of α0 as an example. The

general procedure is composed of the following steps.
Step 2.1. Enumerate one candidate of α0.
Step 2.2. Compute the predicted leak group, denoted

as Lα0→β0
.

Step 2.3. The enumerated candidate of α0 can be
kept only when every element in Lα0→β0

is among the
corresponding deduction set element in Dα0→β0

, which
can be realized by calling the Is() functions for 21 times.
Else, it can be discarded.

Step 2.4. Repeat Step 1 to Step 3 for 232 times. Then,
both the candidates and entropy of α0 can be calculated.

Above is a general way to enumerate and recover α0,
the maximal enumeration complexity is 232. In practice,
the adversary can adopt a smart approach to enumerate
α0 = {ai0,ai5,ai10,ai15}. The improved enumeration proce-
dure is composed of the following steps.

Step 2.1. Enumerate ai0.
Step 2.1.1. Enumerate one candidate of ai0.
Step 2.1.2. Compute 2 predicted leaks related with

ai0 (L(ai0),L(bi0)).
Step 2.1.3. If both predicted leaks are among the

corresponding deduction set(L(ai0) is among D(ai0) and
L(bi0) is among L(bi0)), the candidate of ai0 can be kept
and go to Step 2.2. Else, go to Step 2.1.1 and enumerate
another candidate of ai0.

Step 2.2. Enumerate ai5.
Step 2.2.1. Enumerate one candidate of ai5.
Step 2.2.2. Compute 4 predicted leaks related with

ai0, a
i
5 (L(ai5),L(bi5),L(bi0 + bi5), L(bi0 + xt(bi0 + bi5))).
Step 2.2.3. If all predicted leaks are among the

corresponding deduction set, the candidate of ai0, ai5 can
be kept and go to Step 2.3. Else, go to Step 2.2.1 and
enumerate another candidate of ai5.

Step 2.3. Enumerate ai10.
Step 2.3.1. Enumerate one candidate of ai10.
Step 2.3.2. Compute 4 predicted leaks related with

ai0, a
i
5, a

i
10 (L(ai10),L(bi10),L(bi5+bi10), L(bi5+xt(bi5+bi10))).

Step 2.3.3. If all these predicted leaks are among the
corresponding deduction set, the candidate of ai0, ai5, ai10
can be kept and go to Step 2.4. Else, go to Step 2.3.1 and
enumerate another candidate of ai10.

Step 2.4. Enumerate ai15.
Step 2.4.1. Enumerate one candidate of ai15.
Step 2.4.2. Compute the extra 11 predicted leaks

related with ai0, a
i
5, a

i
10, a

i
15.

Step 2.4.3. If all predicted leaks are among the
corresponding deduction set, the candidate of ai0, ai5, ai10,
ai15 can be kept. Else, discard it. Then, go to Step 2.4.1
and enumerate another candidate of ai15.

If there is no information leaked, we can see that
the attack complexity of the above general enumeration

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

procedure and the improved enumeration procedure
are identical (232 times). In practice, there are always
some leaks on the intermediate states and the attack
complexity of the improved enumeration procedure is
much lower.

Algorithm 2 shows the pseudo-code of search for the
candidates of α0 by analyzing the 21 related leaks.

Algorithm 2. Search the space of α0 = {ai0,ai5,ai10,ai15}
1: int Is (int b, Set D){
2: if b ∈ D
3: return 1;
4: else
5: return 0;
6: end if
7: }
8: void PartialStateSearch () {
9: for ai0=0 to 255 do // candidates of ai0
10: bi0 = S[ai0];
11: if (Is(L(ai0), D(ai0)) and Is(L(bi0), D(bi0)))
12: for ai5=0 to 255 do { // candidates of ai5
13: bi5 = S[ai5];
14: if (Is(L(ai5), D(ai5)) and Is(L(bi5), D(bi5)) and Is(L(bi0 + bi5), D(bi0 + bi5))

and Is(L(bi0 + xt(bi0 + bi5)), D(bi0 + xt(bi0 + bi5))))
15: for ai10=0 to 255 do // candidates of ai10
16: bi10 = S[ai10];
17: if (Is(L(ai10), D(ai10)) and Is(L(bi10), D(bi10)) and Is(L(bi5 + bi10),

D(bi5 + bi10)) and Is(L(bi5 + xt(bi5 + bi10)), D(bi5 + xt(bi5 + bi10))))
18: for ai15=0 to 255 do // candidates of ai15
19: bi15 = S[ai15];
20: if (Is(L(ai15), D(ai15)) and Is(L(bi15), D(bi15)) and Is(L(bi10 + bi15),

D(bi10 + bi15)) and Is(L(bi0 + bi15), D(bi0 + bi15)) and
Is(L(bi0 + bi5 + bi10 + bi15), D(bi0 + bi5 + bi10 + bi15)) and
Is(L(bi0 + xt(bi0 + bi5)+b

i
0 + bi5 + bi10 + bi15), D(bi0 +

xt(bi0 + bi5) + bi0 + bi5 + bi10 + bi15)) and
Is(L(bi5 + xt(bi5 + bi10)+ bi0 + bi5 + bi10 + bi15), D(bi5 +
xt(bi5 + bi10) + bi0 + bi5 + bi10 + bi15)) and
Is(L(bi10 + xt(bi10 + bi15)), D(bi5 + xt(bi10 + bi15))) and
Is(L(bi10 + xt(bi10 + bi15) + bi0 + bi5 + bi10 + bi15),
D(bi10 + xt(bi10 + bi15) + bi0 + bi5 + bi10 + bi15)) and

Is(L(bi0 + xt(bi0 + bi15)), D(bi0 + xt(bi0 + bi15))) and
Is(L(bi0 + xt(bi0 + bi15)+

bi0 + bi5 + bi10 + bi15), D(bi0 + xt(bi0 + bi15) + bi0 + bi5 + bi10 + bi15)))
21: kept ai0, ai5, ai10, ai15 as candidates of ai0, ai5, ai10, ai15;
22: end if
23: end for
24: end if
25: end for
26: end if
27: end for
29: end if
30: end for
31: }

Applying Algorithm 2, we can get limited candidates
of α0. Using a similar approach, we can conquer other
three state groups αj by analyzing Lαj→βj and Dαj→βj

(1 ≤ j ≤ 3). Then, candidates of Ai can be computed
(Ai = {α0, α1, α2, α3}). According to the encryption
procedure of AES, Y i can be computed directly from
Ai and their entropies are the same, E(Ai) = E(Y i).
Applying the above approach to each round, candidates
and entropies of Ai and Y i can be recovered (0 ≤ i ≤ 9).

4.4 Search for the Master Key
In this section, we show how to search for the master key
of AES with the recovered state Ai, Y i and the 16 HW
leaks of loading the round-key Ki in each AES round.

Step 3.1. Search for the preliminary space of the
round-keys.

According to the AES algorithm, Eq.(2) holds:

Y i = Xi+1, X
i
i+1 +Ki+1 = Ai+1 ⇒ Ki+1 = Y i +Ai+1.

(2)

As to 0 ≤ i ≤ 8, the candidates of round-key Ki+1 can
be calculated individually. If the plaintext is known, the
candidates of the first round key K0 can be calculated
by:

K0 = P +A0. (3)

If the ciphertext is known, the post-whitening key K10

can be calculated by:

K10 = C +A9. (4)

Step 3.2. Further reduce the search space of the round
keys.

If there are 100 leaks per AES round, the entropy of
Ki, E(Ki), can be further reduced by analyzing 16 leaks
of loading the round-key bytes.

If there are only 84 leaks per AES round (e.g., ASCAs
in [20], [27], [36]), this step can be omitted. Obviously,
the final entropy of the secret key would be larger in this
scenario than that in using 100 leaks.

Step 3.3. Search for the master key.
According to the AES key schedule [12], recovering

any round key is equivalent to recovering the master
key. We can calculate the candidates of the master key by
brute-force search of Ki for each round and then use the
intersection of candidates in multiple rounds to compute
the final search space of the master key. The complexity
of computing the intersection varies with the candidate
size in different rounds, affordable with small size and
intensive with large size.

5 EXPERIMENTAL RESULTS OF IDASCA ON
AES
Let ρk denote the 248th-order key recovery success
rate [32], the proportion of traces for which the entropy
of the AES master key of (E(K)) can be reduced to
less than 48 5. Next, we present results of extensive
attacks on AES implemented on 8-bit microcontroller AT-
MEGA324P, which closely follows the Hamming weight
leakage model (HWLM) [37] and is also widely studied
in previous ASCAs [20], [21], [23], [27], [36]. In our
experiment, IDASCA runs on a quad-core PC with Intel
Core I5-2400, 3.10 GHz, 8G memory and Windows XP
32-bit OS.

Three cases of IDASCA are studied in this section. The
first is the attack without Hamming weight deducing
errors, which explains why ASCA can work under un-
known plaintext and ciphertext scenario. The second and
the third cases are error tolerant attacks with fixed and
dynamic deduction set sizes, respectively.

5. Most modern Intel CPUs have a native implementation of AES
(AES-NI), which allows a sustained rate of more than 231 AES opera-
tions per second. Thus, an attacker can use a single machine with an
AES-NI implementation to enumerate 248 key candidates within 40
hours [2].

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

5.1 Case 1: Attack Without Errors

In this case, it assumes that all of the HWs are deduced
correctly, which can be achieved by averaging multiple
power traces with the same plaintext and the secret key,
as noted in [21]. We run 1000 attacks and calculate the
frequency of E(Ai) (Fig. 1(a)) for the first nine AES
rounds. The average time required for the attack is 0.1
second. We can see that E(Ai) is quite small and is 0.37
on average, which means that the almost correct value
of Ai can be recovered directly.

−1 0 1 2 3 4 5
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the state

P
er
ce
n
ta
g
e

A0

A1

A2

A3

A4

A5

A6

A7

A8

(a) Entropy of Ai

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1

Entropy of the round-key

P
er
ce
n
ta
g
e

K0

K1

K2

K3

K4

K5

K6

K7

K8

(b) Entropy of Ki

Fig. 1. Entropy of Ai and Ki in IDASCA on AES (µ=1)

Next we present the analysis on why IDASCA can
work under both known plaintext and unknown plain-
text/ciphertext scenarios. No matter what scenario it is,
both the output of AK and the round output in the i-
th round can be recovered by analyzing the 84 leaks
(excluding the 16 leaks in loading the round key Ki)
in that round. As to analyzing the i + 1-th round, since
the final output of the i-th round, also an input of AK
in the i + 1-th round, is unknown, we cannot extract
the round-key from any single round between Round 2
and 9. However, we can extract the preliminary search
space of the i + 1-th round key by analyzing any two
consecutive rounds, e.g., the i-th round and the i + 1-
th round (by XORing the final output of the i-th round
with the output of AK in the i + 1-th round). Then,
E(Ki+1) can be further reduced by analyzing the 16

leaks in loading Ki+1.
The difference comes in the first round when one input

of the AK is the plaintext and the final round when the
output of the 11-th AK is the ciphertext. Under known
plaintext scenario, the secret key can be extract directly
from the first round. Under known ciphertext scenario,
the secret key can be extract directly from the last round.

Fig. 1(b) demonstrates the frequency of E(Ki) in the
first 9 rounds, which is calculated by the output of
Step 2 in Section 4.4. Under known plaintext scenario,
E(K0) can be precalculated by XORing A0 with the
plaintext, and then further reduced by analyzing the 16
leaks in loading K0. The average value of E(K0) is only
0.02, which means that the secret key can be recovered
easily by analyzing the first round. Under unknown
plaintext/ciphertext scenario, limited candidates of Ki+1

(0 ≤ i ≤ 7) can be calculated by analyzing any two
consecutive rounds (XORed Y i with Ai+1), and then
further reduced by analyzing the 16 leaks in loading
Ki+1. According to the key schedule of AES, the master
key can be recovered easily.

5.2 Case 2: Attack with Errors, Fixed Deduction Size

In this case, two different values of the deduction size µ
are considered, the same as the prob-TASCA in CHES
2012 [23]. The first is µ = 2, where we conduct 100
attacks on the first 9 rounds of AES and the average time
required is 1 second. The results show that ρd = 80% and
ρk = 80%. The statistics on E(Ai) and E(Ki) are shown
in Fig. 2. We can see that E(Ki) can be reduced to less
than 12, which means that the master key of AES can
be recovered by attacking the first round under known
plaintext scenario , or by attacking any two consecutive
rounds under unknown plaintext/ciphertext scenario.
Compared with 43.7 minutes required in TASCA and
56.7 minutes required in prob-TASCA [23], IDASCA is
more efficient and requires less time complexity.

For µ = 3, we also conduct 100 attacks on the first
9 AES rounds. The decoding success rate ρd is 100%.
For entropy estimations of the 128-bit state, we divide
the state into four groups (four bytes in each group).
The entropy estimations are made independently for the
four groups of four bytes and then combined together
to calculate the entropy of the full 128-bit state. The
statistics of E(Ai) are shown in Fig. 3(a). We can see
that E(Ai) is quite large (on average 248). Under known
plaintext scenario, we use candidates of A0, the plaintext
and the 16 HW leaks on the secret key K0 to further
reduce E(K). The results are shown in Fig. 3(b). By
attacking the first round of AES, E(K) can be reduced to
on average 237.2 and the success rate ρk is 100%. The time
required in searching for E(K) is 7.42 seconds. After
that, the master key of AES can be recovered with an
additional exhaustive search within two minutes using
a single machine with an AES-NI implementation [2].

In TASCA and prob-TASCA [23], the error rate denotes
the percentage of the number of HWs that does not

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

0 8 16 24 32
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the state

P
er
ce
n
ta
ge

A0

A1

A2

A3

A4

A5

A6

A7

A8

(a) Entropy of Ai

0 2 4 6 8 10 12
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Entropy of the round-key

P
er
ce
n
ta
ge

K0

K1

K2

K3

K4

K5

K6

K7

K8

(b) Entropy of Ki

Fig. 2. Entropy of Ai and Ki in IDASCA on AES (µ=2)

have the highest probabilities in the deduction set among
all HWs used in one attack. The efficiency of IDASCA
is less dependent on the error rate and the attack can
be implemented successfully with 100% error rate when
µ = 3. Compared with the less than 20% error rate, 16.8
hours required in TASCA and 8.2 hours required in prob-
TASCA [23], IDASCA is more robust and efficient.

When µ ≥ 4 from one power trace, E(Ai) is very
large and E(Ai) > 64. Since it is difficult to recover the
master key by analyzing one sample, two strategies can
be adopted.

The first is to average the power traces of encrypting
the same plaintext multiple times and get a smaller value
of µ. For our experiment setup, the results show that
average of two power traces can reduce µ to 3.

The second is to use multiple different plaintexts
for the attack. We conducted IDASCA on AES under
different large value of µ, two plaintexts are required
when µ = 4, three plaintexts are required when µ = 5,
seven plaintexts are required when µ = 6, and fifteen
plaintexts are required when µ = 7. We can see that
IDASCA can be used to bridge the gap between DPA
(using many plaintexts) and ASCAs (using very few,
sometimes only one). One advantage of IDASCA is
that, as in DPA, increasing the data complexity (number
of measurements) is an easy way to reduce the time

32 36 40 44 48 52 56 60 64
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Entropy of the state

P
er
ce
n
ta
ge

A0

A1

A2

A3

A4

A5

A6

A7

A8

(a) Entropy of Ai

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Entropy of the first round-key
P
er
ce
n
ta
ge

(b) Entropy of Ki

Fig. 3. Entropy of Ai and Ki in IDASCA on AES (µ=3)

complexity; but unlike DPA, IDASCA can exploit all of
the leaks in one AES round, more than 16 leaks exploited
in DPA on AES.

When µ ≥ 4, under unknown plaintext/ciphertext sce-
nario, since both E(Ai) and E(Ai+1) (1 ≤ i ≤ 8) are quite
large, the effort to calculate and further reduce E(Ki+1)
is unaffordable (296) and IDASCA fails using a single
power trace of one plaintext. If power traces of multiple
plaintext/ciphertext pairs are used, since new unknown
256-bit variables (unknown plaintext/ciphertext) are in-
troduced in each new pair, the complexity of IDASCA
would be greater than single pair attack and IDASCA
also fails. Next, we provide a better way to conduct
IDASCA on AES for large value of µ.

5.3 Case 3: Attack with Errors, Dynamic Deduction
Size
In practice, an adaptive adversary can apply the dynamic
µ approach and choose the highest n HW deductions for
each leak when the sum of their probabilities is over a
fixed threshold T , as noted in [20], [36]. When we apply
IDASCA on AES for this scenario, the attack complexity
is much lower than the attack with fixed µ.

In the attack, ρd increases with T (better robustness).
Let η(µ) denote the percentage of leaks when the de-
duction size is µ. When T = 0.85, η(1) = 25%, η(2) =

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

0 8 16 24
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the state

P
er
ce
n
ta
ge

A0

A1

A2

A3

A4

A5

A6

A7

A8

(a) Entropy of Ai

0 2 4 6 8 10 12
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1

Entropy of the round-key

P
er
ce
n
ta
ge

K0

K1

K2

K3

K4

K5

K6

K7

K8

(b) Entropy of Ki

Fig. 4. Entropy of Ai and Ki in IDASCA on AES (1 ≤ µ ≤
3, T = 0.90)

65%, η(3) = 10%, and the decoding success rate ρd =
90%. If T = 0.90, ρd would reach 99%, η(1) = 16%, η(2) =
51%, η(3) = 33%. We run 100 attacks for T = 0.90.
The attack success rate is ρk = 99% and the average
time of the attack is 4.5 seconds. The results are shown
in Fig. 4. We can see that E(Ki) (0 ≤ i ≤ 8) is less
than 12. For the first time, IDASCA can be implemented
successfully on AES under both the error tolerant and
unknown plaintext/ciphertext scenarios with only single
power trace, which is quite powerful.

To show the robustness of IDASCA, we also run 100
attacks for T = 0.95 on the first AES round under
known plaintext scenario. The average time required for
one attack is 25.50 seconds. In the attack, we can also
get some deduction sets with four candidates, η(1) =
9%, η(2) = 29%, η(3) = 44%, η(4) = 18% and ρd = 100%.
The results on the entropy of K0 are shown in Fig. 5.
K0 can be reduced to 229.84 by analyzing the first AES
round.

6 INTERPRETING PREVIOUS ASCAS ON AES
WITH IDASCA
In this Section, we use IDASCA to interpret the results
of different ASCAs under the same assumption as in
previous work.

12 16 20 24 28 32 36 40 44 48
0

0.05

0.10

0.15

0.20

0.25

0.30

Entropy of the first round-key

P
e
r
c
e
n
ta
g
e

Fig. 5. Entropy of Ki in IDASCA on AES (1 ≤ µ ≤ 3,
T = 0.95)

6.1 Case 1: Interpreting the Original ASCA

Under the assumption that 84 HWs were leaked per
AES round and all the HWs can be deduced correctly,
Renauld et al. [27] first applied ASCA on AES with
wonderful results in CHES 2009. It has been shown that
under the known plaintext scenario, the secret key of
the AES can be recovered by analyzing the HW leakages
in three consecutive rounds from a single power trace.
ASCA is also the first attack that succeed on AES under
unknown plaintext and ciphertext scenario.

We also conduct IDASCA 100 times on AES under
this scenario. The frequency of E(Ai) and E(Ki) (0 ≤
i ≤ 8) are shown in Fig. 6. We can see that E(Ai)
can be reduced to less than 1 on average and E(Ki)
can be reduced to less than 5. Under known plaintext
scenario, the secret key of AES can be recovered by
analyzing the 84 HW leaks in the first round, which
is less than the three rounds required in [27]. Under
unknown plaintext/ciphertext scenario, the secret key
of AES can be recovered by analyzing the 168 HWs in
any two consecutive rounds, which is less than the three
rounds required in [27].

6.2 Case 2: Interpreting MDASCA and IASCA

The original ASCA [27] is sensitive to errors. To mitigate
this, zhao et al. [36] predicted multiple deductions on
the HWs and proposed the multiple deductions-based
ASCA (MDASCA) technique to attack AES. Similar ideas
are also proposed by Mohamed et al. in HOST 2012 [27]
named as improved ASCA (IASCA).

In MDASCA [36], 84 HWs are assumed to be leaked
per AES round. The result showed that, even if 80%
of the HWs have more than one deduction (η(1) =
20%, η(2) = 30%, η(3) = 50%), the master key of AES can
be recovered by exploiting 252 HWs in three consecutive
rounds. To interpret this, we also conduct IDASCA 100
times on AES under this scenario. The results are shown
in Fig. 7. We can see that E(K0) and E(Ki) (1 ≤ i ≤ 8)
can be reduced to 215 and 226 respectively. Also, E(K)

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

0 1 2 3 4 5
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the state

P
er
ce
n
ta
ge

A0

A1

A2

A3

A4

A5

A6

A7

A8

(a) Entropy of Ai

0 1 2 3 4 5 6
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the round-key

P
er
ce
n
ta
ge

K0

K1

K2

K3

K4

K5

K6

K7

K8

(b) Entropy of Ki

Fig. 6. Entropy of Ai and Ki in IDASCA on AES (µ = 1,
84 leaks per round)

has high probability of being reduced to zero by ana-
lyzing the round-keys in three rounds, which make sure
that the satisfied solution of the SAT solver in [36] is the
correct one.

From Fig. 7, we can also see that the secret key of AES
can be recovered by analyzing the HW leaks in the first
round of AES under known plaintext scenario (E(K0)
in Fig. 7(b)), and by analyzing the HW leaks in any two
consecutive rounds of AES under unknown plaintex-
t/ciphertext scenario (E(K1),...,E(K8) in Fig. 7(b)). The
data complexity required in IDASCA on AES is less than
that of MDASCA [36].

In IASCA [20], the dynamic µ approach was ap-
plied to attack AES under known plaintext/ciphertext
scenario. Different threshold values are used, where
T = {0.80, 0.85, 0.90, 0.95}. When T ≥ 0.90, IASCA
requires HW leakages from multiple rounds. To interpret
this, under the same scenario in [20], we also conduct
IDASCA on AES. The results are listed in Table 2.

When T = {0.80, 0.85}, ρd is much lower. IDASCA on
the first round of AES, can reduce the search space of the
128-bit master key to less than 25. As both the plaintext
and ciphertext are included in the equations, it is easy
for the SAT solver to verify the 25 key candidates and
output the correct key quickly. This explains why the

8 16 24 32
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the state

P
er
ce
n
ta
ge

A0

A1

A2

A3

A4

A5

A6

A7

A8

(a) Entropy of Ai

16 24 32 40 48
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Entropy of the round-key
P
er
ce
n
ta
ge

K0

K1

K2

K3

K4

K5

K6

K7

K8

(b) Entropy of Ki

Fig. 7. Entropy of Ai and Ki in IDASCA on AES (µ > 1
(80%), 84 leaks per round)

work in [20] can succeed by analyzing the HW leakages
in the first round of AES for T = {0.80, 0.85}.

When T = {0.90, 0.95}, ρd is much higher, which
increases the robustness of the attack. Applying IASCA
on the HW leakages in the first round of AES, on average
213.63 key solutions exist when T = 0.90 and on average
229.84 key solutions exists when T = 0.95. By only
analyzing the HW leaks in the first round, it is difficult
for the SAT solver to verify the correctness of these
key candidates within a reasonable amount of time. To
overcome this, IASCA [20] requires HW leakages of two
or three rounds, so that the search space of the AES
master key can be reduce to 1 and the SAT solver can
find out the solution quickly.

6.3 Case 3: Interpreting TASCA and Prob-TASCA

In CHES 2010 [21], Oren et al. proposed the error tolerant
ASCA (TASCA) and converted the key recovery to a
pseudo-Boolean optimization problem. The errors (±1
variance from the correct HW deduction) are encoded
into the equations. The SCIP optimizer [1] was used to
solve these equations. TASCA was applied to Keeloq in
[21] and extended to AES in Eprint 2012/092 [22] with
less than 20% error rate.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

TABLE 2
Results of this paper and the work in [20] under HWLM, dynamic µ, η = 84

Attack T µ ρd ρk required rounds time E(K)
IASCA[20] 0.80 1(35%), 2(47%), 3(18%), 4(0%), 5(0%) 82% 82% 1 2s –
this paper 0.80 1(35%), 2(47%), 3(18%), 4(0%), 5(0%) 82% 82% 1 0.63s 21.95

IASCA[20] 0.85 1(23%), 2(64%), 3(13%), 4(1%), 5(0%) 94% 94% 1 3s –
this paper 0.85 1(23%), 2(64%), 3(13%), 4(1%), 5(0%) 94% 94% 1 1.21s 24.32

IASCA[20] 0.90 1(14%), 2(45%), 3(36%), 4(5%), 5(0%) 99% 99% 2 3s –
this paper 0.90 1(14%), 2(45%), 3(36%), 4(5%), 5(0%) 99% 99% 1 4.85s 213.63

IASCA[20] 0.95 1(9%), 2(29%), 3(44%), 4(18%), 5(0%) 100% 100% 3 84s –
this paper 0.95 1(9%), 2(29%), 3(44%), 4(18%), 5(0%) 100% 100% 1 25.50s 229.84

In CHES 2012, Oren et al. exploited the different prob-
abilities of deduction candidates and proposed prob-
TASCA. The results showed that prob-TASCA can retain
some information lost in TASCA. In both attacks on
AES [22], [23], it assumes that 100 HWs are leaked per
round and the attack is successful if less than four key
bytes were incorrect. As the locations of the erroneous
key bytes are unknown, the work in [22], [23] claimed
that this would yield at most 248 brute-force-search of the
AES secret key. If the error rate is less than 20%, TASCA
can recover 13.25 correct key bytes (the location of these
correct key bytes are unknown) within 16.8 hours on
average and prob-TASCA can recover 16 correct key
bytes within 8.2 hours on average.

The IDASCA technique proposed in this paper can be
sightly adapted to attack the first round of AES under
the same scenario in TASCA and Prob-TASCA. In other
words, TASCA and Prob-TASCA can be conducted by
IDASCA without relying on the SCIP solver. To interpret
TASCA on the first round of AES [22], we propose
a variant of IDASCA to calculate the candidates of
{k00, k05, k010, k015} by exploiting the 25 leaks in the first
AES round. We first generate the 3-sized deduction set
for these 25 leaks. Then, we modify the Algorithm 2
according to the following steps:

1) Add four Is() functions as filters to analyze the
four HW leakages from loading the four round
key bytes {k00, k05, k010, k015}: Is(L(a00 + p0), D(k00)) at
line 11, Is(L(a05 + p5), D(k05)) at line 14, Is(L(ai10 +
p10), D(k010)) at line 17, Is(L(a015+p15), and D(k015))
at line 20.

2) Let hi denote the correct HW for the i-th leak
among the 25 leaks (0 ≤ i < 25), hi denote the
predicted HW of hi, which is computed by the
candidate of {a00, a05, a010, a015}. Let ĥi denote the HW
deduction of hi with the highest probability in the
3-sized deduction set, which is profiled from the
power traces, Sh denote the sum of 25 absolute
values on hi− ĥi. Then, at the end of the line 21 in
Algorithm 2, we write a function to compute Sh.

Sh =

24∑
i=0

abs(hi − ĥi) (5)

where abs(x) denotes the absolute value of x.
3) Sort all the candidates of {a00, a05, a010, a015} by Sh.

The candidate with the smallest Sh has the highest
probability to be the correct {a00, a05, a010, a015}. Since
the plaintext is known, {k00, k05, k010, k015} can be
recovered.

Using similar approach, we can also recover
{k04 ,k09 ,k014,k03}, {k08 ,k013,k02 ,k07}, and {k012,k01 ,k06 ,k011}.
The concatenation of them is the secret key.

To interpret Prob-TASCA on the first round of
AES [23], we also propose another variant of IDASCA to
calculate the candidates of {ki0, ki5, ki10, ki15} by exploiting
the 25 leaks in the first AES round. We first predict the
3-sized deduction set from the power trace and calculate
the different probabilities for each candidate. Then, we
modify the Algorithm 2 by the following steps:

1) Add four Is() functions as filters to analyze the
four HW leakages on loading the four round key
bytes {k00, k05, k010, k015}: Is(L(a00 + p0), D(k00)) at line
11, Is(L(a05 + p5), D(k05)) at line 14, Is(L(ai10 +

p10), D(k010)) at line 17, Is(L(a015+p15), and D(k015))
at line 20.

2) Let hi denote the predicted HW of hi, which is
computed by the candidate of {a00, a05, a010, a015}. Let
probi(hi = hi) denote the probability of hi = hi,
which is profiled from the power traces. Let Sh
denote the sum of 25 values on probi(hi = hi).
Then, at the end of the line 21 in Algorithm 2, we
write a function to compute Sh.

Sh =

24∑
i=0

probi(hi = hi) (6)

3) Sort all the candidates of {a00, a05, a010, a015} by
Sh. The candidate related with the largest Sh
has the highest probability to be the correc-
t {a00, a05, a010, a015}. Since the plaintext is known,
{k00, k05, k010, k015} can be recovered.

The above two types of attack can succeed within
five seconds. We run 100 attacks for each type, and the
number of the correct key bytes of {k00, k05, k010, k015} under
different number of error leaks among these 25 leaks for
TASCA and Prob-ASCA is shown in Fig. 8(a).

We can see that when the number of error HW deduc-
tions in computing {y00 , y01 , y02 , y03} is less than five or six
bytes (25% to 30% error rate), more than three key bytes
are correct. When extending this to analyze the full AES
key, more than twelve key bytes tend to be correct. From

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

0 5 10 15 20 25
0

1

2

3

4

Number of the error leaks among all 25 leaks

N
u
m
b
er

o
f
th

e
co

rr
ec
t
k
ey

b
y
te
s

TASCA

Prob−TASCA

(a) Entropy of Ai

8 9 10 11 12 13 14 15 16
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Number of the correct key bytes

P
er
ce
n
ta
g
e

(b) Statistics on the number of the correct key bytes
in TASCA

Fig. 8. Entropy of Ai and Ki in IDASCA on AES (20%
error rate)

Fig. 8(a), when the number of erroneous HW deductions
is less than six, more key bytes can be recovered by
Prob-ASCA, which means that Prob-ASCA can regain
some information lost in TASCA by considering the
probabilities of different deductions. Fig. 8(b) lists the
number of correct key bytes from analyzing the 100
HWs in the first AES round with IDASCA to interpret
TASCA (the error rate is 20%). The results show that
more than twelve key bytes are correct for 99% of the
cases. In the experiments of interpreting Prob-TASCA
with IDASCA, if the error rate is less than 20%, full AES
key can be recovered with 95% success rate. Compared
with the average 16.8 hours required in TASCA [22] and
8.2 hours required in Prob-TASCA [23], IDASCA is also
much more efficient.

7 CONCLUSIONS AND FUTURE WORK

ASCA falls under analytical side-channel attack and can
recover the entire secret key at once. Previous ASCAs
on AES [8], [20], [21], [23], [26], [27], [36] mainly rely
on a general equation solver, which makes it difficult to
take into account the specialized structures or properties
of AES. This paper proposes a new analytical side-
channel analysis technique on AES by exploiting the
incomplete diffusion feature in one AES round. We name

our technique incomplete diffusion analytical side-channel
analysis (IDASCA). Extensive attacks are performed a-
gainst the software implementation of AES on an 8-bit
microcontroller, which conforms to HWLM. The results
show that like ASCA, IDASCA can exploit the leakages
in all AES rounds from a single power trace and works
even under the unknown plaintext/ciphertext scenario.
Compared with previous ASCAs, IDASCA is also much
more efficient and robust. Meanwhile, IDASCA can be
used to explain the results of previous ASCAs on AES
from a quantitative perspective, such as, why ASCA
can work under unknown plaintext/ciphertext scenario
and what are the extreme cases in ASCA on AES. We
also extend IDASCA to devices that do not conform to
HWLM, e.g, TLM in CHES 2012 [23]. More details can
be found in Appendix 1.

From IDASCA on AES, we can explain why ASCA
is so efficient on block ciphers. Firstly, for the software
implementation of block ciphers, there exists too many
leakage points per round. Secondly, the intermediate
state of each round is simple enough so that there is
a high probability of being recovered by analyzing these
leakages. Finally, the leakages of any two adjacent round
can be used to recover the related round-keys, which in
turn can be used to recover the master key.

The work in [8] introduced a new criterion for the
effectiveness of ASCA. This criterion relies on a new no-
tion of algebraic immunity (especially on the nonlinear
component, e.g., S-Box). Assuming the Hamming weight
(or Hamming distance) of the S-Box input and S-Box
output are leaked, various experiments are performed on
PRESENT and AES. The equations are solved using the
F4 Gröbner basis-based algorithms in MAGMA solver.
The results show that algebraic immunity can be used as
a criterion to design S-boxes of block ciphers optimally
resistant to ASCA. The work of IDASCA raises a very
interesting question from the complementary view of [8],
can diffusion in the linear component (e.g., the branch
number of the MixColumns operation in the AES) of
block ciphers be used as a good design criterion for
improving its security against ASCA or analytical SCAs?
IDASCA can also be adjusted and adapted to other block
ciphers if diffusion was not complete in one round.
We have successfully applied IDASCA to PRESENT,
LED and MIBS by exploiting the incomplete diffusion
feature and successfully recover the master key from a
single power trace. The attacks can also be conducted
under error tolerant and unknown plaintext/ciphertext
scenarios. For IDASCA on ciphers where diffusion can
be completed in one round (e.g., Khazad block cipher),
attacks would be more difficult (computationally).

It should be noted that the readers should evaluate
the impact of ASCA and IDASCA objectively consider-
ing the informativeness and the robustness in the side-
channel information extraction. ASCA and IDASCA can
exploit the leakages of all the cipher rounds (more than
a single round in DPA), which provide a positive answer
in search of methods that extract more information from

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

the side-channel leakages. Thus, they can recover the
secret key of AES with a single power trace even when
both the plaintext and ciphertext are unknown, which is
much more powerful and requires less power traces than
DPA. From the robustness view, the success of ASCA
and IDASCA depends highly on the ability of the ad-
versary in deducing the accurate value of intermediates
states from the power traces. This precondition is much
stronger than that in DPA.

IDASCA can help to improve the understanding of
different ASCA techniques and make analytical side-
channel attacks more practical. Although there still re-
mains a tradeoff between the robustness and infor-
mativeness for IDASCA at the moment, we believe
that future research may further reduce this gap. The
experimental results of the paper show that IDASCA
should at least be taken into account for the security of
AES implemented on small devices like microcontroller.
We hope IDASCA can be used to evaluate the worst-
case security level for cryptographic hardware products
assuming the adversary has the most powerful attacking
capability in practice.

When searching for the state in each AES round
(Section 4.3), IDASCA in this paper mainly enumerates
and computes the satisfied candidates of four state bytes.
For these candidates, no rank information is exploited.
This also raises several interesting problems for further
research. The first is how to utilize the different prob-
abilities of multiple deductions to generate the rank
for each state candidate (four bytes). The second is
how to apply the key ranking enumeration [34] and
estimation algorithms [35] to IDASCA, and exploit the
rank to estimate the remaining key strength in ASCA
more accurately.

ACKNOWLEDGMENT
This work was supported in part by the National Natural
Science Foundation of China under the grants 60772082,
61173191, 61272491, 61202386, 61309021, the Major State
Basic Research Development Program (973 Plan) of Chi-
na under the grant 2013CB338004, and the US National
Science Foundation under the grant CNS-0644188 and
the ERC project 280141 on CRyptographic Algorithms
and Secure Hardware (CRASH).

REFERENCES
[1] T. Achterberg. SCIP: solving constraint integer programs, Math.

Prog. Comp., vol. 1, pp. 1-41, July 2009.
[2] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guil-

ford, E. Ozturk, G. Wolrich and R. Zohar. Breakthrough AES
Performance with Intel AES New Instructions[Online], available
at: http://software.intel.com/file/27067, October 2010.

[3] G.V. Bard. Algebraic Cryptanalysis, Springer, 2009.
[4] E. Biham and A. Shamir. Differential Cryptanalysis of the Data

Encryption Standard, in CRYPTO 1990, LNCS 537, pp. 2-21, 1991.
[5] A. Bogdanov and A. Pyshkin. Algebraic Side-Channel Collision

Attacks on AES[online], Cryptology ePrint Archive, available at: http:
//eprint.iacr.org/2007/477, 2007.

[6] C. Bouillaguet, P. Derbez, and P.-A. Fouque. Automatic Search
of Attacks on Round-Reduced AES and Applications,in CRYPTO
2011, LNCS 6841, pp. 169-187, 2011.

[7] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with
a leakage model, in CHES 2004, LNCS 3156, pp. 16-29, 2004.

[8] C. Carlet, J.-C. Faugère, C. Goyet and G. Renault. Analysis of the
algebraic side channel attack, Journal of Cryptographic Engineering,
vol. 2 No. 1, pp. 45-62, 2012.

[9] S. Chari, J. Rao and P. Rohatgi. Template Attacks, in CHES 2002,
LNCS 2523, pp. 13-28, 2002.

[10] C. Cid, S. Murphy and M. Robshaw. Algebraic Aspects of the
Advanced Encryption Standard, Springer, 2006.

[11] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations, in Asiacrypt 2002, LNCS 2501,
pp. 267-287, 2002.

[12] J. Daemen and V. Rijmen. AES Proposal: Rijndael[online], avail-
able at: http://www.cryptosoft.de/docs/Rijndael.pdf, 1998.

[13] I. Dinur and A. Shamir. Side Channel Cube Attacks on Block
Ciphers[online], Cryptology ePrint Archive, available at: http://
eprint.iacr.org/2009/127, 2009.

[14] J.-C. Faugère. A new efficient algorithm for computing Gröbner
bases (F4), Journal of Pure and Applied Algebra, Vol. 139, No. 1-3, pp.
61-88, 1999.

[15] B. Gierlichs, L. Batina, P. Tuyls and B. Preneel. Mutual Information
Analysis, in CHES 2008, LNCS 5154, pp. 426-442, 2008.

[16] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems, in CRYPTO 1996, LNCS 1109, pp.
104-113, 1996.

[17] P. Kocher, J. Jaffe and B. Jun. Differential power analysis, in
CRYPTO 1999, LNCS 1666, pp. 388-397, 1999.

[18] S. Mangard. A Simple Power-Analysis (SPA) Attack on Imple-
mentations of the AES Key Expansion, in ICISC 2002, LNCS 2587,
pp. 343-358, 2003.

[19] M. Matsui. Linear Cryptanalysis Method for DES Cipher, in
EUROCRYPT 1993, LNCS 765, pp. 386-397, 1994.

[20] M.S.E. Mohamed, S. Bulygin, M. Zohner, A. Heuser, M. Walter
and J. Buchmann. Improved algebraic side-channel attack on AES,
in HOST 2012, pp. 146-151, 2012.

[21] Y. Oren, M. Kirschbaum, T. Popp and A. Wool. Algebraic Side-
Channel Analysis in the Presence of Errors, in CHES 2010, LNCS
6225, pp. 428-442, 2010.

[22] Y. Oren and A. Wool. Tolerant Algebraic Side-Channel Analysis of
AES[online], Cryptology ePrint Archive, Report 2012/092, available
at: http://iss.oy.ne.ro/TASCA-eprint, 2012.

[23] Y. Oren, M. Renauld, F.-X. Standaert and A. Wool. Algebraic Side-
Channel Attacks Beyond the Hamming Weight Leakage Model, in
CHES 2012, LNCS 7428, pp. 140-154, 2012.

[24] Princeton University. zChaff[online], available at: http://www.
princeton.edu/∼chaff/, 2004.

[25] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards, in E-smart 2001,
LNCS 2140, pp. 200-210, 2001.

[26] M. Renauld and F.-X. Standaert. Algebraic Side-Channel Attacks,
in INSCRYPT 2009, LNCS 6151, pp. 393-410, 2009.

[27] M. Renauld, F.-X. Standaert and N. Veyrat-Charvillon. Algebraic
side-channel attacks on the AES: Why time also matters in DPA,
in CHES 2009, LNCS 5747, pp. 97-111, 2009.

[28] M. Renauld and F.-X. Standaert. Representation-, Leakage- and
Cipher- Dependencies in Algebraic Side-Channel Attacks, in in-
dustrial track of ACNS 2010, 2010.

[29] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel and
D. Flandre. A Formal Study of Power Variability Issues and Side-
Channel Attacks for Nanoscale Devices, in EUROCRYPT 2011,
LNCS 6632, pp. 109-128, 2011.

[30] K. Schramm, G. Leander, P. Felke and C. Paar. A collision-attack
on AES, in CHES 2004, LNCS 3156, pp. 163-175, 2004.

[31] W. Schindler, K. Lemke and C. Paar. A Stochastic Model for
Differential Side Channel Cryptanalysis, in CHES 2005, LNCS 3659,
pp. 30-46, 2005.

[32] F.-X. Standaert, T.G. Malkin and M. Yung. A Unified Framework
for the Analysis of Side-Channel Key Recovery Attacks, in EURO-
CRYPT 2009, LNCS 5479, pp. 443-461, 2009.

[33] M. Soos, K. Nohl and C. Castelluccia. Extending SAT Solvers to
Cryptographic Problems, in SAT 2009, LNCS 5584, pp. 244-257,
2009.

[34] N. Veyrat-Charvillon, B. Gerard, M. Renauld and F.-X. Standaert.
An optimal key enumeration algorithm and its application to side-
channel attacks, in SAC 2012, LNCS 7707, pp. 390-406, 2012.

http://software.intel.com/file/27067
http://eprint.iacr.org/2007/477
http://eprint.iacr.org/2007/477
http://www.cryptosoft.de/docs/Rijndael.pdf
http://eprint.iacr.org/2009/127
http://eprint.iacr.org/2009/127
http://iss.oy.ne.ro/TASCA-eprint
http://www.princeton.edu/~chaff/
http://www.princeton.edu/~chaff/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

[35] N. Veyrat-Charvillon, B. Gerard and F.-X. Standaert. Security E-
valuations beyond Computing Power, in EUROCRYPT 2013, LNCS
7881, pp. 126-141, 2013.

[36] X.J. Zhao, F. Zhang, S.Z. Guo, T. Wang, Z.J. Shi, H.Y. Liu and
K.K. Ji. MDASCA: An Enhanced Algebraic Side-Channel Attack for
Error Tolerance and New Leakage Model Exploitation, in COSADE
2012, LNCS 7275, pp. 231-248, 2012.

[37] X.J. Zhao, S.Z. Guo, F. Zhang, T. Wang, Z.J. Shi, H.Y. Liu, K.K.
Ji and J. Huang. Efficient Hamming Weight Based Side-Channel
Cube Attacks on PRESENT, The Journal of Systems and Software,
vol. 86, no. 3, pp. 728-743, 2012.

APPENDIX 1: IDASCA ON AES UNDER TLM
As noted in [23], the leakage of certain devices (e.g. in
65nm and smaller technologies [29]) cannot always be
precisely expressed with HWLM, but can be with TLM.
Under TLM, there are 256 candidates for the value of an
intermediate byte.

In CHES 12, Oren et al. first applied prob-TASCA to
AES implemented on a 65nm ASIC under HWLM [23].
They simulated 100 leaks in the first round of AES
according to the model of the 65nm ASIC implementing
one AES S-Box and used prob-TASCA to recover the
secret key with fixed µ approach. The results showed
that when µ ≥ 100, the decoding success rate ρd and
key recovery success rate ρk are all 100%. Even when
µ = 256, if the rank of the correct deduction for each
leak is less than 14, prob-TASCA can still succeed on
AES with 62254 seconds on average. It is interesting to
investigate how IDASCA works with TLM and interpret
prob-TASCA on AES in this scenario.

In the attack, we simulated the leaks from the PIC
device as in [23]. A C program is used to generate the
deduction set according to the value of µ, the value of
the probability for every deduction of a byte are also
simulated. Let δ denote the rank of the correct deduction
in the µ deductions. We conduct three types of the attack
on the first round of AES. 100 random attack instances
are launched for each type.

(1) Fixed µ, without consider the probability of differ-
ent deduction candidates

In this scenario, we set δ = µ, which means that the
correct deduction is always with the lowest probability
and is the worst case in [23]. As in [23], we conduct the
attacks under different µ. The entropy of K and time
complexity required in IDASCA on AES for different µ
are shown in Fig. 9(a) and Fig. 9(b), respectively .

From Fig. 9(a), the value of E(K) is less than 48
when µ ≤ 145. In the attack, when µ is small, the
attack complexity of IDASCA is lower, but the success
rate of the attack is also smaller due to the errors.
The decoding success rate, ρd, can reach 100% when
µ ≥ 100. For µ = 100, IDASCA can reduce the key
search space of AES to 21.26 within 0.01 second. From
Fig. 9(b), the time complexity for µ ≤ 145 is less than
one minute and is affordable in practice. When µ = 256,
the time complexity required for IDASCA is less than 16
hours, but it cannot recover any bit of the secret key.
In our experiments, when µ = 100, we were able to
extend the attack to cover unknown plaintext/ciphertext

0 32 64 96 128 160 192 224 256
0

16

32

48

64

80

96

112

128

Size of µ

E
n
tr
o
p
y
o
f
K

(a) Entropy of K

0 32 64 96 128 160 192 224 256
0

2

4

6

8

10

12

14

16

Size of µ
T
im

e
co

m
p
le
x
it
y
(h

o
u
rs
)

(b) Time complexity

Fig. 9. Results of IDASCA on AES with different size of µ
(TLM)

scenario and successfully recover the master key of AES
by exploiting the leaks in any two consecutive rounds.

(2) Dynamic µ, without consider the probability of
different deduction candidates

IDASCA can also be extended to attack the first round
of AES under TLM and known plaintext scenario using
the dynamic µ, which enable a smaller reduced key
search space for large range on the value of µ. For
example, when 64 < µ ≤ 90 (15%), 90 < µ ≤ 120
(22%), 120 < µ ≤ 150 (23%), 150 < µ ≤ 200 (22%),
200 < µ ≤ 256 (18%) and δ = µ, IDASCA can reduce
the key search space of AES to 235.4 within one minute.

(3) Interpreting prob-TASCA on AES under HWLM
with IDASCA (Fixed µ, consider the probability of dif-
ferent deduction candidates)

In prob-TASCA [23], for all the 100 leaks, δ is manually
set to be less than 15 (1 ≤ δ ≤ 14). In fact, such leakage
is even more informative than the µ = 1 under HWLM
(which equals µ = 50 under TLM). Since δ is so small in
[23], the SCIP solver always enumerates the deduction
from the highest probability to the lowest. This is why
prob-TASCA can succeed even when µ = 256. In fact, in
this case, a smart adversary can simply set µ = 14, and
then both MDASCA [36], IASCA [20] and IDASCA can
also succeed within one second.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 16

IDASCA can also be used to exploit the probability of
different deduction candidates by modifying Algorithm
2. Take recovering {k00, k05, k010, k015} as an example, we
first generate the 256-sized deduction set (µ = 256) for
these 25 leaks. Then, we modify Algorithm 2 using the
similar idea in Section 6.3 and compute the maximized
sum (Sh) on the values of the probabilities for all the
candidates of a00, a05, a010, a015. The results show that if δ =
14, the output optimized solution is always the correct
a00, a

0
5, a

0
10, a

0
15. Then, {k00, k05, k010, k015} can be recovered.

To recover full 16 bytes of K, the time complexity of
our attack is 56046 seconds on average (the maximized
solving time is 60234 seconds), which is comparable to
62254 seconds on average (the maximized solving time
is 48+ hours) required in [23]. Moreover, we also extend
our attack to when δ = 100, ρd = ρk = 95%, which is
more robust than 1 ≤ δ ≤ 14 in prob-TASCA.

Shize Guo was born in 1964. He received his
Ph.D. degree in Harbin Institute of Technology in
1989 and his M.S. and B.S. degrees from Ord-
nance Engineering College, China, in 1991 and
1988, respectively. He is currently a researcher
in Institute of North Electronic Equipment and
also a Professor in Beijing University of Post and
Telecommunications. His main research interest
includes information security and cryptography.

Xinjie Zhao received his Ph.D., M.S. and B.S.
degrees in Department of Information Engineer-
ing, Ordnance Engineering College in 2012,
2009 and 2006, respectively. He is currently an
Engineer in Institute of North Electronic Equip-
ment. His main research interest includes side
channel analysis, fault analysis and combined
analysis of block ciphers. He won the best pa-
per award in Darmstadt - the 3rd International
Workshop on Constructive Side-Channel Analy-
sis and Secure Design (COSADE 2012).

Fan Zhang was born in 1978. He received
his Ph.D. degree in the Department of Com-
puter Science and Engineering from University
of Connecticut in 2012. His research interests
include side channel analysis and fault analysis
in cryptography, computer architecture, security
in wireless sensor network, and more. Currently
he is working in the Department of Information
Science & Electrical Engineering, Zhejiang Uni-
versity, China.

Tao Wang was born in 1964. He received his
Ph.D. degree in computer application from Insti-
tute of Computing Technology Chinese Acade-
my of Sciences in 1996 and masters degree in
computer application from Ordnance Engineer-
ing College in 1990. He is currently a Professor
in Ordnance Engineering College. His research
interests include information security and cryp-
tography.

Zhijie Jerry Shi is currently an Associate Pro-
fessor of Computer Science and Engineering at
the University of Connecticut. He received his
Ph.D. degree from Princeton University in 2004
and his M.S. and B.S. degrees from Tsinghua
University, China, in 1996 and 1992, respec-
tively. He is a member of IEEE and ACM. Dr.
Shi received US National Science Foundation
CAREER award in 2006. His current research in-
terests include hardware mechanisms for secure
and reliable computing, side channel attacks

and countermeasures, primitives for cipher designs, embedded system
designs, underwater sensor networks, and sensor network security.

Francois-Xavier Standaert was born in Brus-
sels, Belgium in 1978. He received the Electrical
Engineering degree and PhD degree from the
Universite catholique de Louvain, respectively in
June 2001 and June 2004. In 2004-2005, he
was a Fulbright visiting researcher at Columbia
University, Department of Computer Science,
Network Security Lab and at the MIT Medialab,
Center for Bits and Atoms. In March 2006, he
was a founding member of IntoPix s.a. From
2005 to 2008, he was a post-doctoral researcher

of the UCL Crypto Group and a regular visitor of the two aforementioned
laboratories. Since September 2008, he is associate researcher of
the Belgian Fund for Scientific Research (F.R.S.-FNRS) and professor
at the UCL Institute of Information and Communication Technologies,
Electronics and Applied Mathematics (ICTEAM). In 2010, he was pro-
gram co-chair of CHES (IACR’s flagship workshop on cryptographic
hardware). In June 2011, he has been awarded a Starting Independent
Research Grant by the European Research Council. His research inter-
ests include digital electronics, FPGAs and cryptographic hardware, low
power implementations for constrained environments (RFIDs, sensor
networks, ...), the design and cryptanalysis of symmetric cryptographic
primitives, physical security issues in general and side-channel analysis
in particular.

Chujiao Ma is currently a PhD Candidate of
Computer Science and Engineering at the Uni-
versity of Connecticut. She received her Bach-
elor of Science degree from Franklin W. Olin
College of Engineering in 2010. She was the
recipient of Graduate Assistance in Area of Na-
tional Needs (GAANN) fellowship from 2010 to
2013. Her research interests focus on computer
security, more specifically side channel attacks
and countermeasures, as well as network secu-
rity.

	Introduction
	Analysis on the Design and Implementation of AES
	Description of AES
	Target Implementation of AES

	Predict the Deduction Set with Template Attack
	Incomplete Diffusion Analytical Side-channel Analysis (IDASCA) on AES
	The Incomplete Diffusion Feature in One AES Round
	Divide the states and leaks in Each AES Round
	Conquer the States from Leaks in Each AES Round
	Search for the Master Key

	Experimental Results of IDASCA on AES
	Case 1: Attack Without Errors
	Case 2: Attack with Errors, Fixed Deduction Size
	Case 3: Attack with Errors, Dynamic Deduction Size

	Interpreting Previous ASCAs on AES with IDASCA
	Case 1: Interpreting the Original ASCA
	Case 2: Interpreting MDASCA and IASCA
	Case 3: Interpreting TASCA and Prob-TASCA

	Conclusions and Future Work
	References
	Biographies
	Shize Guo
	Xinjie Zhao
	Fan Zhang
	Tao Wang
	Zhijie Jerry Shi
	Francois-Xavier Standaert
	Chujiao Ma

