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Adjusting for centre heterogeneity in
multicentre clinical trials with
a time-to-event outcome
Marco Munda* and Catherine Legrand

Conducting a clinical trial at multiple study centres raises the issue of whether and how to adjust for centre heterogeneity in
the statistical analysis. In this paper, we address this issue for multicentre clinical trials with a time-to-event outcome. Based on
simulations, we show that the current practice of ignoring centre heterogeneity can be seriously misleading, and we illustrate
the performances of the frailty modelling approach over competing methods. A special attention is paid to the problem of
misspecification of the frailty distribution. The appendix provides sample codes in R and in SAS to perform the analyses in this
paper. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Clinical trials are conducted at multiple centres for two main
reasons: to accrue the required number of patients within a
short period of time and to broaden the scope of the trial
results. Considerable efforts are made to standardise the way the
trial is conducted in each centre according to the study proto-
col. However, patients from different centres are likely to have
different prognoses due to, for example, differences in disease
diagnosis, differences in referral patterns and differences in indi-
cations for background therapies. Hence, variability in outcome
between patients within an individual centre tends to be lower
than variability in outcome between patients at different centres.

The International Conference on Harmonisation (ICH) guid-
ance document E9 ‘statistical principles for clinical trials’ (www.
ich.org/products/guidelines/efficacy/article/efficacy-guidelines.
html) clearly states that ‘The main treatment effect may be inves-
tigated first using a model which allows for centre differences,
but does not include a term for the treatment-to-centre interac-
tion.’ For multicentre clinical trials with a time-to-event endpoint
(e.g. time until tumour progression in cancer studies), however,
recommendations on how to adjust for centre heterogeneity are
limited. We address this problem in this paper.

Probably the most natural option is to enter additional fixed
centre effects parameters into the Cox model. Alternatively, mod-
elling heterogeneity between centres can be performed via strat-
ification of the baseline hazard function. The frailty model is
another approach that has gained in popularity in recent years.
The frailty model is a proportional hazards model that includes a
random factor, the frailty term, to account for the centre-to-centre
variability. In Section 2, we briefly review the basics of these mod-
elling strategies. In Section 3, a real data example is analysed
using each method. Statistical aspects are clearly discussed in [1],
where the authors found advantages in using the frailty approach.

The frailty approach requires specification of a distributional
form for the frailty distribution. This is a difficult issue due to

the latent nature of the frailty term. Therefore, it is of interest
to investigate whether the frailty approach is the strategy to be
recommended, considering the fact that the frailty distribution
might be misspecified.

In this paper, it is our aim to provide pragmatic guidelines for
the practising statistician in the pharmaceutical industry. Our first
objective, covered in Section 4, is to highlight the limitations of
the current practice of ignoring centre heterogeneity as well as
the pros and the cons of the aforementioned modelling strategies
to adjust for centre heterogeneity. Our second objective, covered
in Section 5, is to further investigate the performances of the
frailty model over its competitors when the frailty distribution is
misspecified. Section 6 summarises the conclusions and presents
our recommendations.

2. MODELLING CLUSTERED
TIME-TO-EVENT DATA

2.1. The (unadjusted) Cox model

We start with nonclustered time-to-event data for which the
observed information consists of

Z D f.yj , ıj , xxxj/ j j D 1, : : : , Ng
where yj D min.tj , cj/ is the time to event or censoring, whichever
comes first; ıj D I.tj 6 cj/ indicates whether an observation
corresponds to an event (ıj D 1) or is censored (ıj D 0); and
xxxj is a vector of covariates. We make the standard assumptions
that the event times (the tj ’s) and the censoring times (the cj ’s)
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are independent given the covariate information (independent
censoring) and that the censoring distribution has no common
parameter with the event time distribution (noninformative cen-
soring).

Let hj.t/ denote the hazard rate of subject j at time t. The
Cox model specifies the way the explanatory variables act on the
hazard rate, but lets its time dependence unspecified,

hj.t/ D h0.t/ exp.xxx0
jˇ/ (1)

with h0.�/ a (nonspecified) baseline hazard function and ˇ D
.ˇ1 : : : ˇp/0 a vector of fixed effects parameters. Owing to its
semi-parametric nature, the Cox model has become routine in
studies of time-to-event outcomes.

The ratio of the hazard functions for two subjects with different
covariate information, say xxxj1 and xxxj2 , is

hj1 .t/

hj2 .t/
D exp

��
xxxj1 � xxxj2

�0
ˇ

�

A one-unit change in one of the explanatory variables (while all
other are kept fixed) results in a proportional change in the hazard
function. The parameter ˇk in model (1) is thus interpreted as a
conditional hazard ratio.

An estimate Ǒ of ˇ is obtained by maximising a partial log
likelihood given by (assuming no ties in the event times)

`.ˇ; Z/ D
NX

jD1

ıj

2
4xxx0

j ˇ � log

0
@ X

`2R.yj/

exp
�
xxx0

`ˇ
�1A

3
5

with R.yj/ the risk set at time yj containing all subjects still under
observation just prior to yj . Approximate standard errors are given
by the square roots of the diagonal entries of the negative inverse
matrix of second derivatives of `.�; Z/ evaluated at Ǒ . Even though
`.�; Z/ is not a genuine log likelihood, it has been shown that con-
sistency and asymptotic normality properties for the estimator of
ˇ are preserved [2].

2.2. Adjusting for centre heterogeneity

Model (1) requires independent (homogeneous) data up to mea-
sured covariates. In multicentre clinical trial data, however, there
is likely to be heterogeneity across centres. To account for this,
centre effects must somehow be included in the statistical model
used for the analysis.

2.2.1. The fixed effects approach. Centre effects can enter
model (1) as additional fixed effects parameters

hij.t/ D h0.t/ exp
�

ccc0
i ˛ C xxx0

ijˇ
�

(2)

where we now use two indices, i 2 f1, : : : , sg for the s centres
and j 2 f1, : : : , nig for the ni patients in centre i, to reflect the hi-
erarchical structure of the data (the vector of observations Z is
changed accordingly). In model (2), ˛ D .˛1 : : : ˛s�1/0 contains
the fixed centre effects, and ccci denotes the vector with a 1 in the
ith position and 0’s elsewhere (i D 1, : : : , s � 1). The last centre
does not need an indicator because an observation is known to
belong to that centre when ccci D .0 : : : 0/0. If we had included
an additional indicator for the last centre, then the model would
have been overparametrised. Choosing one particular centre as
reference is consistent with the interpretation of h0.�/ as being

the hazard rate for subjects with covariate values all equal to 0.
However, this choice is arbitrary, and any centre can play the role
of the reference centre.

2.2.2. The stratified approach. Instead of entering the centre vari-
able as additional fixed effects parameters, the baseline hazard
can be stratified on that variable to indicate that different subpop-
ulations are exposed to different baseline risks, that is,

hij.t/ D h0i.t/ exp
�

xxx0
ijˇ

�
(3)

where h01.�/, : : : , h0s.�/ are unspecified and unrelated base-
line hazard functions. The partial likelihood approach is readily
adapted by multiplying the partial likelihoods specific to each
stratum [1].

2.2.3. The frailty approach. Participating centres may also be
viewed as one possible sample from a broader population of cen-
tres. In that case, centre i has a random effect, called frailty and
denoted by ui , on the hazard rate. The frailty term reflects dif-
ferent levels of risk across centres. The (shared) frailty model is
defined as [3,4]

hij.t/ D h0.t/ui exp.xxx0
ijˇ/ (4)

The ui ’s are the actual values of a random variable with
probability density f .�/, called the frailty distribution. The
(one-parameter) gamma distribution, with density

f .u/ D .1=�/
1=� u.1=�/�1 exp.�.1=�/ u/

�.1=�/

is the most commonly used. Note that E(U) = 1 and that
Var.U/ D � . The variance of the frailty term determines the
degree of heterogeneity between centres.

In the frequentist approach, which we follow in this paper, the
frailty model is fitted by maximising the marginal likelihood (also
called the observed likelihood). The marginal likelihood is ob-
tained by integrating out the ui ’s from the joint likelihood of Z and
uuu D .u1 : : : us/

0 . For the gamma frailty distribution, the integra-
tion can be done in closed form; see, for example, [3, Section 2.2],
leading to the following log-likelihood function

`marg.h0.�/, ˇ, � ; Z/

D
sX

iD1

2
4

0
@ niX

jD1

ıij

�
log.h0.yij// C xxx0

ijˇ
�1
A

�
�

Di C 1

�

�
log

0
@1 C �

niX
jD1

H0.yij/ exp
�

xxx0
ijˇ

�1
A

C I.Di > 0/

Di�1X
`D0

log.1 C `�/

3
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with Di the number of events in cluster i and I.Di > 0/ the
indicator function that takes value 1 if Di > 0 and 0 otherwise.

In `marg, the baseline hazard function h0.�/ can either be mod-
elled using a parametric distribution (e.g. Weibull) or it can be
modelled in a nonparametric way. The parametric approach
results in a fully parametric log likelihood that can be maximised
by means of an optimisation routine (e.g. a Newton-type
algorithm). Alternatively, if the form of the baseline hazard is
left unspecified (semi-parametric approach), then it has to be
eliminated using partial likelihood ideas. For a detailed1
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overview of the estimation techniques that are available in the
semi-parametric case, see [5].

Parametric frailty models can be fitted in R by means of the
parfm() function (part of the parfm library); see [6]. For the
semi-parametric approach, an overview of the available software
is provided in [7]. In this paper, we use the coxph() function in R
(part of the survival library) to fit the semi-parametric gamma
frailty model (as well as models (1)–(3)). For a detailed description
of the proper use of coxph() for frailty models, see [8, Chapter 9].
Generic sample codes are provided in the Appendix.

3. EXAMPLE

The European Organisation for Research and Treatment of Can-
cer (EORTC) trial 10854 is a randomised phase III breast cancer
trial comparing surgery alone versus surgery followed by one
course of perioperative chemotherapy. A total of 2793 women
with early breast cancer (1395 in the control arm and 1398 in
the perioperative chemotherapy arm) recruited at 14 centres (me-
dian number of patients per centre: 69) were followed up (median
follow-up time: 8.8 years) for overall survival (primary endpoint),
progression-free survival and locoregional recurrence (secondary
endpoints). The study design and results have been published
previously [9,10].

The results of fitting models (1)–(4) to the primary endpoint are
shown in Table I. All models virtually lead to the same hazard ratio
of 0.91, which does not differ significantly from 1. The largest stan-
dard error of Ǒ is found for model (3). Model (4) returns O� D 0.049,
suggesting that the centre heterogeneity is quite low. In the next
section, we will see that, in other settings (higher heterogeneity,
smaller centres, etc.), models (1)–(3) have serious drawbacks com-
pared with model (4). In particular, interpreting model (1) can be
seriously misleading, the hazard ratio obtained from model (2) is
usually biased and model (3) typically lacks power because of the
large standard error.

4. COMPARISON OF THE
MODELLING APPROACHES

In this section, we discuss the strengths and the weaknesses of
models (2)–(4) to adjust for centre heterogeneity, and we illus-
trate this discussion with simulations. Because the unadjusted
model (1) is often used in practice, we consider it as well.

4.1. Simulation setting

We consider two opposite situations with six centres of size 48
(N D 6 � 48) and 48 centres of size 6 (N D 48 � 6) as well as an
intermediate situation with eight centres of size 18 plus 24

Table I. Results for the primary endpoint (overall
survival) in the perioperative breast cancer clinical
trial.

Model cHR
SE. Ǒ/

95% CI. Ǒ/�102

Unadjusted (1) 0.9078 7.7448 0.7798–1.0565
Fixed effects (2) 0.9083 7.7504 0.7803–1.0573
Stratified (3) 0.9123 7.7550 0.7837–1.0621
Frailty (4) 0.9086 7.7488 0.7806–1.0577

centres of size 6 (N D 8 � 18 C 24 � 6), thus keeping the total
sample size fixed at N D 288. We mimic a 1:1 (respectively 2:1) al-
location ratio in each centre by selecting N=2 (respectively 2N=3)
patients for the treatment arm (x D 1) and the remaining N=2
(respectively N=3) patients for the control arm (x D 0).

Frailties u1, : : : , us are randomly drawn from the one-parameter
gamma distribution with variance � . The event time for each pa-
tient is generated from model (4). By assuming a Weibull baseline
hazard function (h0.t/ D ��t��1 with scale � > 0 and shape
� > 0), the event time tij has, conditional on ui , a Weibull dis-
tribution with scale �ui exp.xijˇ/ and shape �. We take � D 0.5,
� D 0.7, � D 1.5, and ˇ D log.2=3/ � �0.4 or ˇ D 0. The
between-centre heterogeneity induced by this parameter setting
is shown in Figure 1 by the spread in the median time to event
from centre to centre [11]. The censoring time for each patient
is generated from an exponential distribution whose rate param-
eter is chosen so that 30% of the observations are censored.
Additional simulations with 50% censoring are given in the sup-
plementary material (available online as supporting information).

Note that by disregarding the clustering under this parame-
ter setting (with 30% censoring), one will expect to have an 80%
chance of declaring a hazard ratio of HR D 2=3 to be significant
at the 5% level [12, Chapter 10].

For each setting, we fit models (1)–(4) to K D 10000 simu-
lated data sets by means of coxph() in R. For model (4), we use
the correctly specified gamma frailty distribution (the impact of
misspecification is addressed separately in Section 5). We report

� HR: the average hazard ratio;
� %bias: the percentage bias defined as . 1

K

P
k

Ǒk � ˇ/=̌ � 100
(it is undefined, and hence not reported, for ˇ D 0);

� SD: the standard deviation of the Ǒ
k ’s;

� CI cov: the empirical coverage of the asymptotic 95% confi-
dence interval based on the normal approximation, that is,
the proportion of such confidence intervals that cover the
true value of ˇ;

� power/size: the empirical rejection rate for the null hypoth-
esis of no treatment effect (H0: ˇ D 0) – under H0, it equals
1 minus the empirical coverage probability.

4.1.1. Assessment of coverage. Let pc be the true coverage proba-
bility and X the number of times the confidence interval covers

median survival time
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Figure 1. Density functions of the median time to event from centre to centre in the
control group for different frailty distributions (Kendall’s � D 0.20). Gam: gamma dis-
tribution; IG: inverse Gaussian distribution; LN: log-normal distribution; PS: positive
stable distribution.
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ˇ out of K replications; then X � Bin.K , pc/. The empirical es-
timator Opc D X=K has an asymptotic normal distribution with
mean pc and variance pc.1 � pc/=K so that the width of its 95%
confidence interval is approximately 2

p
pc.1 � pc/=K , which is

bounded from above by
p

1=K . With K D 10000, the width of that
confidence interval therefore approximately equals 0.01. Hence,
empirical coverage probabilities below 0.945 correspond to un-
dercoverage while empirical coverage probabilities above 0.955
correspond to overcoverage [13].

4.2. Results and guidelines

The results are displayed in Tables II (ˇ D log.2=3/ � �0.4) and
III (ˇ D 0).

4.2.1. The unadjusted approach. Model (1) makes no attempt
to account for clustering. This alters the way the treatment
effect (HR D exp.ˇ/) has to be interpreted. Indeed, HR
has different meanings in model (1) (marginal model) and in
models (2)–(4) (conditional models). In model (1), HR compares
the hazard rates of two subjects, one treated and one untreated,
randomly drawn from the population under study, regardless
of where they come from (population-averaged interpretation).
On the other hand, in conditional models (and in particular
in model (4) used to generate the data), HR compares the
hazard rates of two subjects, one treated and one untreated,
randomly drawn from the same centre (centre-specific interpre-
tation). Therefore, in our simulations, the unadjusted model esti-
mates a quantity that is different from the target. In Table II, we

Table II. Simulation results (30% censoring; Kendall’s � D 0.20; ˇ D
log.2=3/) under correct specification of the frailty distribution.

Model

Sample size Statistic (1) (2) (3) (4)

1:1
6 � 48 HR 0.731 0.668 0.673 0.674

% bias �20.45 2.039 0.433 �0.021
SD 0.133 0.148 0.149 0.145

CI cov 0.929 0.948 0.954 0.953
Power 0.617 0.809 0.784 0.798

8 � 18 HR 0.742 0.645 0.674 0.674
C24 � 6 % bias �24.41 11.90 0.630 0.028

SD 0.127 0.173 0.168 0.153
CI cov 0.918 0.910 0.944 0.944
Power 0.582 0.814 0.701 0.772

48 � 6 HR 0.743 0.627 0.675 0.675
% bias �25.05 19.44 0.521 �0.205

SD 0.123 0.184 0.173 0.150
CI cov 0.925 0.890 0.954 0.955
Power 0.572 0.825 0.656 0.764

2:1

6 � 48 HR 0.730 0.668 0.673 0.674
% bias �19.97 2.450 0.641 0.370

SD 0.141 0.158 0.159 0.154
CI cov 0.939 0.945 0.948 0.950
Power 0.580 0.768 0.736 0.755

8 � 18 HR 0.740 0.644 0.674 0.674
C24 � 6 % bias �23.50 12.22 0.916 0.403

SD 0.134 0.177 0.172 0.158
CI cov 0.935 0.917 0.954 0.952
Power 0.545 0.780 0.665 0.732

48 � 6 HR 0.742 0.628 0.675 0.675
% bias �24.41 19.35 0.938 0.133

SD 0.132 0.195 0.182 0.160
CI cov 0.933 0.893 0.951 0.950
Power 0.535 0.781 0.620 0.719

Model (1): unadjusted Cox model; model (2): fixed effects Cox model; model (3):
stratified Cox model; model (4): semi-parametric gamma frailty model.1
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Table III. Simulation results (30% censoring; Kendall’s � D 0.20; ˇ D log.1/)
under correct specification of the frailty distribution.

Model

Sample size Statistic (1) (2) (3) (4)

1:1

6 � 48 HR 1.007 1.009 1.010 1.009
SD 0.128 0.149 0.151 0.146

Size 0.031 0.055 0.052 0.052

8 � 18 HR 1.010 1.016 1.015 1.013
C24 � 6 SD 0.124 0.170 0.164 0.150

Size 0.024 0.074 0.050 0.047

48 � 6 HR 1.011 1.020 1.017 1.014
SD 0.123 0.187 0.173 0.152

Size 0.022 0.090 0.049 0.051

2:1

6 � 48 HR 1.008 1.011 1.012 1.011
SD 0.134 0.157 0.158 0.154

Size 0.028 0.053 0.049 0.048

8 � 18 HR 1.007 1.014 1.013 1.010
C24 � 6 SD 0.129 0.178 0.171 0.157

Size 0.022 0.074 0.050 0.048

48 � 6 HR 1.006 1.017 1.016 1.011
SD 0.130 0.198 0.183 0.162

Size 0.024 0.094 0.050 0.053

Model (1): unadjusted Cox model; model (2): fixed effects Cox model; model (3):
stratified Cox model; model (4): semi-parametric gamma frailty model.

observe that the population-averaged effect is attenuated com-
pared with the centre-specific effect. Under the null hypothesis
of no treatment effect (Table III), HR is well estimated (as there
is no room for attenuation), but it can be seen from the type I
error rate that ignoring the clustering leads to results that are
too conservative. For more general results regarding the omis-
sion of important risk factors from nonlinear regression models,
see [14].

4.2.2. The fixed effects approach. Model (2) requires maximisation
over a .p C s � 1/-parameter space, with p the number of
parameters in ˇ (here, p D 1). This is numerically challenging
whenever the number of centres, s, is large relative to the total
sample size. The fixed effects approach therefore performs
poorly for s D 8 C 24 and for s D 48. It produces estimates
that are biased away from the true ˇ, and the coverage of the con-
fidence interval (respectively the type I error rate) is below 95%
(respectively above 5%). Regarding multicentre clinical trials, the
fixed effects approach further shows additional limitations. (i)
It implicitly assumes that the centres participating in the trial
are by themselves of interest. Inference is to be made for those
centres only, and conclusions are thus restricted in scope. (ii) It
provides neither a summary measure of heterogeneity between
centres nor a convenient framework to test for the presence of
centre effects [15]. (iii) It might be of interest to assess whether

a covariate explains heterogeneity in outcome between centres
[16]. It is, however, unfeasible in this model to include a co-
variate whose values only change at the centre level. (iv) Pre-
cision in centre effects estimates is dependent upon the cen-
tre size. Interpretation can therefore be misleading. A related
problem is that the centre effects estimates (and their interpre-
tation) depend on the choice of the reference centre, which is
generally arbitrary.

4.2.3. The stratified approach. Model (3) performs well, with good
point estimates and good coverage probabilities. However, no
between-centre comparisons are made by the stratified approach
which, therefore, does not make optimal use of all the information
at hand (only within-centre comparisons are made). This explains
why both the standard deviation inflates and the power deterio-
rates when the centre size decreases. Besides, similar to the fixed
effects approach, (i) interpretation of the treatment effect is re-
stricted to participating centres, (ii) no heterogeneity measure
is returned, and (iii) centre-specific covariates cannot be investi-
gated because no between-centre comparisons are made by the
stratified approach.

4.2.4. The frailty approach. Model (4) shows good performances
in every investigated setting with virtually no bias and good cov-

Pharmaceut. Statist. 2014, 13 145–152 Copyright © 2014 John Wiley & Sons, Ltd.
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erage probabilities. Unlike the stratified model, the frailty model
also makes use of between-centre comparisons to gather in-
formation on the treatment effect. This explains why both the
standard deviation is smaller and the power is better for the
frailty model than for the stratified model. The frailty modelling
approach further provides a rich framework for the analysis of
multicentre clinical trials. (i) Because of their random nature,
the actual values of the frailty term (i.e. the centre effects for
those centres participating in the trial) are not of intrinsic in-
terest, and the conclusions of the study are intended to be
generalised more broadly to all hospitals represented by the
sample at hand. (ii) The variance of the gamma frailty distri-
bution, � , is a key parameter that determines the degree of
heterogeneity between centres. To help interpretation, this pa-
rameter can further be translated into clinically relevant quan-
tities like the spread in the median time to event (as we did
in Figure 1) or in the 5-year survival rate from centre to centre
[11]. Alternatively, the � parameter can be transformed into the
Kendall’s � that measures the degree of association between out-
comes within the same centre [17, Section 4.2 and Section 7.2.5].
For gamma frailties, Kendall’s � is � D �=.� C 2/. (iii) Consider-
ing the ui ’s as random effects parameters also makes it possible
to study whether the inclusion of a centrespecific covariate ex-
plains/reduces heterogeneity between centres [16].

5. ROBUSTNESS AGAINST MISSPECIFICATION
OF THE FRAILTY DISTRIBUTION

Different distributions can be used to model the frailty term. Di-
agnostic checks to assess the frailty distribution are not yet widely
available (particularly in software), and research is still needed in

this area. In the meantime, it is important to investigate robust-
ness properties against misspecification of the frailty distribution
via simulations.

The most common assumption, mainly made for mathemati-
cal convenience and software availability rather than for clinical
or empirical (data-driven) evidence, is that the frailties have a
gamma distribution. Therefore, the most common form of mis-
specification is that of using the gamma distribution while the
frailties actually follow another distribution. Alternative distribu-
tions that have received interest to model the frailty term include
the inverse Gaussian, log-normal, and positive stable distributions
[3, Chapter 4].

To observe the impact of misspecifying the frailty distribution
on the inferences for the treatment effect (and more generally for
the fixed effects parameters included in the model), we simulate
data from model (4) (cf. Section 4.1) using the inverse Gaussian,
log-normal, and positive stable distributions to generate the frail-
ties, and we fit the misspecified gamma frailty model. For each
frailty distribution, the heterogeneity parameter is chosen to yield
a Kendall’s tau of � D 0.20, as earlier. Additional simulations
with � D 0.40 are given in the supplementary material (available
online as supporting information).

By comparing the results obtained under misspecification in
Table IV (respectively Table V) with those obtained under correct
specification in Table II (respectively Table III), it appears that infer-
ences on the fixed effect parameter ˇ are robust against misspeci-
fication of the frailty distribution. In particular, the frailty approach
performs better than the competing stratified approach in terms
of power in either misspecified situation.

Table IV. Simulation results (30% censoring; 1:1; Kendall’s � D 0.20; ˇ D log.2=3/)
under misspecification of the frailty distribution.

True frailty distribution

IG LN PS

Model

Sample size Statistic (3) (4) (3) (4) (3) (4)

6 � 48 HR 0.672 0.673 0.672 0.673 0.674 0.675
% bias 0.900 0.341 0.800 0.358 0.018 �0.440

SD 0.151 0.146 0.151 0.147 0.150 0.146
CI cov 0.947 0.948 0.952 0.953 0.952 0.950
Power 0.784 0.806 0.778 0.793 0.778 0.793

8 � 18 HR 0.673 0.674 0.673 0.674 0.675 0.676
C24 � 6 % bias 1.250 0.113 1.106 0.174 0.526 �0.677

SD 0.166 0.152 0.165 0.151 0.167 0.151
CI cov 0.950 0.948 0.951 0.950 0.952 0.950
Power 0.710 0.774 0.707 0.778 0.695 0.765

48 � 6 HR 0.674 0.675 0.674 0.676 0.675 0.676
% bias 1.033 �0.201 1.005 �0.400 0.812 �0.687

SD 0.172 0.152 0.176 0.154 0.174 0.152
CI cov 0.954 0.950 0.950 0.948 0.951 0.950
Power 0.660 0.758 0.654 0.756 0.654 0.757

Model (3): stratified Cox model; model (4): semi-parametric gamma frailty model.1
5
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Table V. Simulation results (30% censoring; 1:1; Kendall’s � D 0.20; ˇ D log.1/)
under misspecification of the frailty distribution.

True frailty distribution

IG LN PS

Model

Sample size Statistic (3) (4) (3) (4) (3) (4)

6 � 48 HR 1.010 1.009 1.012 1.011 1.010 1.010
SD 0.150 0.145 0.149 0.144 0.148 0.144

Size 0.054 0.050 0.048 0.044 0.051 0.050

8 � 18 HR 1.012 1.010 1.018 1.015 1.014 1.012
C24 � 6 SD 0.166 0.151 0.165 0.150 0.162 0.149

Size 0.055 0.052 0.054 0.049 0.049 0.048

48 � 6 HR 1.015 1.012 1.015 1.011 1.014 1.012
SD 0.172 0.152 0.172 0.153 0.170 0.152

Size 0.049 0.051 0.047 0.051 0.045 0.049

Model (3): stratified Cox model; model (4): semi-parametric gamma frailty model.

6. CONCLUSIONS

In clinical trials with a time-to-event outcome, the primary analy-
sis is commonly based on model (1) with a single covariate for the
treatment group or on the equivalent log-rank test. When the trial
is conducted at multiple centres, the treatment effect obtained
from model (1) has a population-averaged (marginal) interpre-
tation, the effect being averaged over all centres, rather than
a centre-specific (conditional) interpretation. Of note, model (1)
leads to a consistent estimate of the population hazard ratio,
but the standard error is not consistent and a robust estimator
that copes with the clustering should be used (cf. the cluster()
function in coxph()) [3, Section 3.4]. The centre-specific treat-
ment effect, that is, the ratio of the hazard rate of a treated
subject versus an untreated subject from the same centre, is par-
ticularly relevant in the context of clinical trials as it compares
‘like-for-like’. Models (2)–(4) allow a centre-specific interpretation
of the treatment effect.

Important conclusions from our simulations are as follows:

� The population-averaged effect is attenuated compared
with the centre-specific effect.

� Ignoring the clustering leads to results that are too conser-
vative.

� The centre-specific treatment effect is usually biased when
it is estimated from the fixed effects Cox model (2).

� Power is lost when fitting the stratified Cox model (3) com-
pared with the frailty model (4).

� Inferences on the centre-specific treatment effect obtained
from the frailty model (4) are robust against misspecifica-
tion of the frailty distribution in many settings.

In the light of these results, we recommend to use the frailty
model, which is now readily available in standard software (e.g. R
and SAS), to adjust for centre heterogeneity in multicentre clinical
trials with a time-to-event outcome.

Acknowledgements

We are grateful to the associate editor and to the two review-
ers for their valuable insights and helpful comments. M. Munda
is supported by a F. R. I. A. fellowship. C. Legrand is supported
by the contract ‘Projet d’Actions de Recherche Concertées’ (ARC)
11/16-039 of the ‘Communauté française de Belgique’, granted
by the ‘Académie universitaire Louvain’. Support from the IAP Re-
search Network P7/06 of the Belgian State (Belgian Science Policy)
is gratefully acknowledged.

REFERENCES

[1] Glidden DV, Vittinghoff E. Modelling clustered survival data from
multicentre clinical trials. Statistics in Medicine 2004; 23:369–388.

[2] Gill RD. Understanding Cox’s regression model: a martingale
approach. Journal of the American Statistical Association 1984;
79:441–447.

[3] Duchateau L, Janssen P. The frailty model. Springer: New York, 2008.
[4] Wienke A. Frailty models in survival analysis. Chapman and Hall/CRC:

Boca Raton, 2010.
[5] Cortiñas Abrahantes J, Legrand C, Burzykowski T, Janssen P,

Ducrocq V, Duchateau L. Comparison of different estimation proce-
dures for proportional hazards model with random effects. Compu-
tational Statistics & Data Analysis 2007; 51:3913–3930.

[6] Munda M, Rotolo F, Legrand C. parfm: parametric frailty models in
R. Journal of Statistical Software 2012; 51:1–20.

[7] Hirsch K, Wienke A. Software for semiparametric shared gamma
and log-normal frailty models: an overview. Computer Methods and
Programs in Biomedicine 2012; 107:582–597.

[8] Therneau TM, Grambsch PM. Modeling survival data: extending the
cox model. Springer: New York, 2000.

[9] Clahsen PC, van de Velde CJ, Julien JP, Floiras JL, Delozier T, Mignolet
FY, Sahmoud TM. Improved local control and disease-free survival
after perioperative chemotherapy for early-stage breast cancer. A
European Organization for Research and Treatment of Cancer Breast
Cancer Cooperative Group Study. Journal of Clinical Oncology 1996;
14:745–753.

[10] van der Hage JA, van de Velde CJ, Julien JP, Floiras JL, Delozier T,
Vandervelden C, Duchateau L. Improved survival after one course
of perioperative chemotherapy in early breast cancer patients:
long-term results from the European Organization for Research and

Pharmaceut. Statist. 2014, 13 145–152 Copyright © 2014 John Wiley & Sons, Ltd.

1
5

1



M. Munda and C. Legrand

Treatment of Cancer (EORTC) Trial 10854. European Journal of Cancer
2001; 37:2184–2193.

[11] Duchateau L, Janssen P. Understanding heterogeneity in gener-
alized mixed and frailty models. The American Statistician 2005;
59:143–146.

[12] Collett D. Modelling survival data in medical research. Chapman and
Hall/CRC: London, 2003.

[13] Burton A, Altman DG, Royston P, Holder RL. The design of sim-
ulation studies in medical statistics. Statistics in Medicine 2006;
25:4279–4292.

[14] Hauck WW, Anderson S, Marcus SM. Should we adjust for covariates
in nonlinear regression analyses of randomized trials? Controlled
Clinical Trials 1998; 19:249–256.

[15] Andersen PK, Klein JP, Zhang MJ. Testing for centre effects in
multi-centre survival studies: a Monte Carlo comparison of fixed and
random effects tests. Statistics in Medicine 1999; 18:1489–1500.

[16] Legrand C, Duchateau L, Sylvester R, Janssen P, van der Hage JA,
van de Velde CJ, Therasse P. Heterogeneity in disease free survival
between centers: lessons learned from an EORTC breast cancer trial.
Clinical Trials 2006; 3:10–18.

[17] Hougaard P. Analysis of multivariate survival data. Springer: New
York, 2000.

SUPPORTING INFORMATION

Additional supporting information may be found in the online
version of this article at the publisher’s web-site.

APPENDIX

Models (1)–(4) can be fitted in R by means of coxph() (part of
the survival library) and in SAS by means of proc phreg. In the
generic sample codes below, data has the following columns:

� cluster: cluster identification number;
� time: minimum between the actual event time and the

censoring time;
� status: 1 if the observation is an event, 0 if it is

right-censored;
� x: treatment group indicator (0 or 1).

R CODES

# unadjusted Cox model (1)
coxph(Surv(time, status) ~ x, data=data)

# fixed effects Cox model (2)
coxph(Surv(time, status) ~ x + factor(cluster),
data=data)

# stratified Cox model (3)
coxph(Surv(time, status) ~ x + strata(cluster),
data=data)

# semi-parametric gamma frailty model (4)
coxph(Surv(time, status) ~ x +

frailty.gamma(x=cluster, eps=1e-11),
outer.max=50, data=data)

SAS CODES

/* unadjusted Cox model (1) */
proc phreg data=data; class x(ref="0");
model time*status(0) = x / ties=efron;
run;

/* fixed effects Cox model (2) */
proc phreg data=data;
class x(ref="0") cluster(ref="1");
model time*status(0) = x cluster / ties=efron;
run;

/* stratified Cox model (3) */
proc phreg data=data; class x(ref="0");
model time*status(0) = x / ties=efron;
strata cluster;
run;

/* semi-parametric log-normal frailty model (4) */
/* !!! gamma frailty dist not yet available !!! */
proc phreg data=data;
class x(ref="0") cluster;
model time*status(0) = x / ties=efron;
random cluster / method=REML;
run;
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