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based on a consistent nonparametric estimator of copula densities. Furthermore, we establish the asymp-
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that we use in finite sample settings to compute a bootstrap bias-corrected estimator and to perform sta-
tistical tests. A Monte Carlo simulation study reveals that the bootstrap bias-corrected estimator behaves
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1. Introduction

Much research has been devoted to building and applying tests
of non-causality. However, once we have concluded that a ‘‘causal
relation’’ (in the sense of Granger) is present, it is usually impor-
tant to assess the strength of this relationship. Only few papers
have been proposed to measure the causality between random
variables. Furthermore, although the concept of causality is nat-
urally defined in terms of conditional distributions, the estimation
of the existing causality measures has been done using paramet-
ric mean regression models in which the causal relations are lin-
ear. Consequently, one simply cannot use the existing measures
to quantify the strength of nonlinear causalities. The present pa-
per aims to propose a nonparametric estimation and inference for
Granger causality measures. The proposed approach is model-free
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and allows us to quantify nonlinear causalities and the causalities
that show up in conditional quantiles as well as higher order con-
ditional moments (such as volatilities, skewness, kurtosis, etc.).

The concept of causality introduced by Wiener (1956) and
Granger (1969) constitutes a basic notion for studying dynamic re-
lationships between time series. This concept is defined in terms of
predictability at horizon one of a (vector) variable Y from its own
past, the past of another (vector) variable X, and possibly a vector
Z of auxiliary variables. The theory of Wiener–Granger causality
has generated a considerable literature; for review see Dufour and
Taamouti (2010). Wiener–Granger analysis distinguishes between
three basic types of causality: from Y to X , from X to Y , and instan-
taneous causality. In practice, it is possible that all three causality
relations coexist, hence the importance of finding means to quan-
tify their degree. Unfortunately, causality tests fail to accomplish
this task, because they only provide evidence on the presence or
the absence of causality, and statistical significance depends on
the available data and test power. A large effect may not be sta-
tistically significant (at a given level), and a statistically significant
effect may not be ‘‘large’’ from an economic viewpoint (or more
generally from the viewpoint of the subject at hand) or relevant
for decision making. Hence, it is crucial to distinguish between the
numerical value of a parameter and its statistical significance (see
McCloskey and Ziliak (1996)).

Thus, beyond accepting or rejecting non-causality hypotheses
– which state that certain variables do not help forecasting other
variables – we wish to assess the magnitude of the forecast im-
provement, where the latter is defined in terms of some loss func-
tion (Kullback distance). Even if the hypothesis of no improvement
(non-causality) cannot be rejected from looking at the available
data (for example, because the sample size or the structure of the
process does allow for high test power), sizeable improvements
may remain consistentwith the same data. Or, by contrast, a statis-
tically significant improvement –whichmay easily be produced by
a large data set – may not be relevant from a practical viewpoint.

The topic of measuring the causality has attracted much less
attention. Geweke (1982, 1984b) introduced measures of causal-
ity based on mean-square forecast errors. Gouriéroux et al. (1987)
proposed causality measures based on the Kullback information
criterion and provided a parametric estimation for their measures.
Polasek (1994, 2002) showed how causality measures can be com-
puted using the Akaike Information Criterion (AIC) and a Bayesian
approach. Dufour and Taamouti (2010) proposed short and long
run causality measures based on vector autoregressive and mov-
ing averagemodels. The estimation ofmost existing causalitymea-
sures has been done based on parametric mean regressionmodels.
However, the misspecification of parametric model may affect the
structure of the causality between the variables of interest. In
addition, the dependence in the mean-regression is only due to
the mean dependence, and thus it ignores the dependence that
show up in conditional quantiles as well as higher order condi-
tional moments. Finally, as shown inmany theoretical and empiri-
cal papers, several ‘‘causal relations’’ are nonlinear; see for example
Gabaix et al. (2003), Bouezmarni et al. (2012) and Bouezmarni and
Taamouti (2011), and references therein. Hence, the existing esti-
mation methods for causality measures cannot be used to quan-
tify nonlinear causalities. An exception is the paper of Zheng et al.
(2012) who study linear and nonlinear strength of dependence
without making any parametric assumptions on the data. How-
ever, their approach only focuses on the dependence in the mean,
whereas our approach deals with any type of dependence.

We propose a nonparametric estimator for Granger causality
measures that quantify nonlinear causalities and causalities that
show up in higher order conditional moments. The nonparametric
estimator ismodel-free and therefore it does not require the speci-
fication of the model linking the variables of interest. Wewrite the
theoretical Granger causality measures in terms of copula densi-
ties. Copula is a tool that fully quantifies the dependence among
the variables of interest, and thus it can be used to characterize
the conditional probability density based Granger causality that
we consider in this paper. So, it seems natural to define the mea-
sures of Granger causality in distribution using copulas. An advan-
tage of such an approach is that it allows us to completely separate
themarginal structure from the dependence structure. As noted by
Chen and Fan (2006), separate modeling of the temporal depen-
dence and the marginal behavior is particularly important when
the dependence structure and the marginal properties of a time
series are affected by different exogenous variables.

Thereafter, the causality measures are estimated by replacing
the unknown copula densities by their nonparametric estimates.
The copula densities are estimated nonparametrically using Bern-
stein polynomials. For i.i.d. data, Sancetta and Satchell (2004) show
that, under some regularity conditions, any copula can be repre-
sented by a Bernstein copula. Bouezmarni et al. (2010) provide the
asymptotic properties of the Bernstein copula density estimator for
dependent data. The nonparametric Bernstein copula density esti-
mates are guaranteed to be non-negative. Since the causality mea-
sures are defined using the Kullback distance, the non-negativity
of the Bernstein estimators avoids having negative values inside
the logarithmic function. Furthermore, there is no boundary bias
problemwhenweuse the Bernstein estimator, because by smooth-
ing with beta densities the Bernstein copula density does not as-
sign weights outside its support. Chen and Huang (2007) propose
a bivariate kernel copula estimator based on local linear kernels
that also removes the boundary bias. For the review of how to re-
move boundary bias in nonparametric estimation, see for example
Brown and Chen (1999) and Chen (2000).

We establish the asymptotic normality of the proposed non-
parametric estimator. This result is used to build tests for the statis-
tical significance of causality measures. The asymptotic normality
is achieved by subtracting some bias terms and then rescale the es-
timator by the proper variance.We also discuss the validity of local
smoothed bootstrap that we use in finite sample settings to com-
pute a bootstrap bias-corrected estimator and to perform statisti-
cal test for Granger causality measures. A Monte Carlo simulation
study reveals that the bootstrap bias-corrected estimator behaves
well and that the test has good power for a variety of typical data
generating processes and different sample sizes.

Finally, the empirical importance of measuring nonlinear
causalities is illustrated. In a first empirical applicationwe quantify
the causality between S&P500 Index returns and many exchange
rates (US/Canada, US/UK and US/Japan exchange rates). We find
that both exchange rates and stock prices could have a significant
impact on each other. We also find that the impact of stock returns
on exchange rates is much stronger than the impact of exchange
rates on stock returns. In a second applicationwe compare the pre-
dictive content of dividend–price ratio, volatility index (VIX) and
liquidity factor for stockmarket returns. The results show that both
dividend–price ratio and VIX help to predict stock market returns.
The comparison of causality measure estimates indicates that VIX
has more predictive content than dividend–price ratio. We also
find that liquidity factor of Pastor and Stambaugh (2003) does not
help to predict the time-series of stock returns.

The plan of the paper is as follows. Section 2 provides the mo-
tivation for considering a nonparametric causality measures. Sec-
tions 3 and 4 present the theoretical framework which underlies
the definitions of causality measures using probability and copula
density functions. In Section 5 we introduce a consistent nonpara-
metric estimator of causalitymeasures based on Bernstein polyno-
mial.Wealso establish the asymptotic distribution of our estimator
and discuss the asymptotic validity of a local bootstrap finite sam-
ple test. In Section 6 we extend our results to the case where the
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random variables of interest are multivariate. In Section 7 we pro-
pose a bootstrap bias-corrected estimator of causality measures
and provide a simulation exercise to evaluate the bias-correction
and investigate the finite sample properties of local bootstrap-
based test for causality measures. Section 8 is devoted to two em-
pirical applications and the conclusion relating to the results is
given in Section 9. Proofs appear in the Appendix.

2. Motivation

The causality measures that we consider here constitute a gen-
eralization of those developed by Geweke (1982, 1984b) and oth-
ers. The existing measures quantify the effect of one variable Y
on another variable X assuming that the regression function link-
ing the two variables of interest is known and linear. Furthermore,
these measures focus on quantifying the causality in mean and ig-
nore the causalities that showup in conditional quantiles aswell as
higher order conditional moments (such as volatilities, skewness,
kurtosis, etc.). Hence, the significance of such measures is limited
in the presence of unknown regression functions and in the pres-
ence of nonlinear and high-order moment causalities.

We propose measures of Granger causality between random
variables based on copula densities. Such measures detect and
quantify the causalities in quantiles as well as higher order condi-
tional moments. To see the importance of such causalitymeasures,
consider the following examples.

Example 1. Assume that the joint process (X, Y )′ follows a sta-
tionary VAR(1) model:
Xt+1
Yt+1


=


0.5 0.0
0.4 0.35

 
Xt

Yt


+


εX
t+1

εY
t+1


  

εt+1

, (1)

where

εt+1 | Xt , Yt ∼ N


0
0


,


σ 2
X,t 0
0 σ 2

y


with

σ 2
X,t = 0.01+ 0.5Y 2

t + 0.25X2
t .

Since the coefficient of Yt in the first equation of (1) is zero, we can
conclude that Y does not Granger cause X in the mean. However,
if consider the causality in the variance we get

V (Xt+1 | Xt , Yt) = 0.01+ 0.5Y 2
t + 0.25X2

t ,

where now Y Granger causes X in the variance. This example illus-
trates the case where the causality in the variance does exist even
if there is no causality in the mean. But, how can we measure the
degree of the causality in the variance? Existing measures do not
answer this question.

Example 2. Suppose now X is given by the following process:

Xt+1 = µX + 0.5Xt + εX
t+1,

where the error term εX
t+1 follows Lévy skew stable probability

distribution defined by the Fourier transform of its characteristic
function ϕ(u):

εX
t+1 | Xt , Yt ∼ f


εX
t+1 | Xt , Yt


=

1
2π


+∞

−∞

ϕ(βt , u)e−iuε
X
t+1du,

where ϕ(βt , u) = exp

− | u |


1+ i 2βt sgn(u)

π
log (u)


, sgn(u) is

the sign of u and βt is the time-varying skewness that depends
on Y :

βt = λ+ ρYt .
In this model, Y does not affect the mean and variance of X , but it
does affect its skewness. Again, how can wemeasure the degree of
the causality in skewness? Existing measures do not answer this
question.

3. Granger causality measures

Let

(Xt , Yt) ∈ R× R ≡ R2, t = 0, . . . , T


be a sample of sta-

tionary stochastic process in R2, with joint distribution function
FXY and density function fXY . For simplicity of exposition, here we
consider univariate Markov processes of order one. Later, see Sec-
tion 6, we will extend the results to the case where the variables
of interest X and Y can bemultivariate Markov processes of order p,
for p ≥ 1.

Following Gouriéroux et al. (1987), we define the measure of
Granger causality from X to Y by1

C(X → Y ) = E

log


f (Yt | Yt−1, Xt−1)

f (Yt | Yt−1)


, (2)

where the expected value is taken on the joint distribution of
Xt−1, Yt−1 and Yt . Important properties of this measure include:
(1) is nonnegative, and (2) cancels only when there is no causal-
ity. The property (2) implies that the null hypothesis of Granger
non-causality from X to Y ,

Hx→y
0 : f (yt | xt−1, yt−1) = f (yt | yt−1), 1 ≤ t ≤ T , (3)

is equivalent to C(X → Y ) = 0. Thus, the measure C(X → Y ) de-
fines a ‘‘distance’’ between the left and right hand sides of the null
Hx→y

0 . It quantifies the difference between the conditional densi-
ties f (yt | xt−1, yt−1) and f (yt | yt−1). Hence, high values of mea-
sure C(X → Y ) will be interpreted as indicating ‘‘strong’’ causality
from X to Y . The measure of Granger causality from Y to X , C(Y →
X), is defined similarly. Moreover, the instantaneous Granger non-
causality between X and Y can also be characterized in terms of
probability density functions using the equivalent null hypotheses:

Hx↔y
0 : f (yt | xt , xt−1, yt−1) = f (yt | xt−1, yt−1), 1 ≤ t ≤ T ,

Hx↔y
0 : f (xt | yt , xt−1, yt−1) = f (xt | xt−1, yt−1), 1 ≤ t ≤ T , (4)

Hx↔y
0 : f (yt , xt | xt−1, yt−1) = f (yt | xt−1, yt−1)f (xt | xt−1, yt−1),

1 ≤ t ≤ T .

From the third null hypothesis Hx↔y
0 , the instantaneous Granger

non-causality between X and Y can be viewed as the conditional
independence between Xt and Yt conditional to the past Xt−1 and
Yt−1. Thus, the instantaneous causality between X and Y can be
quantified using the following equivalent measures:

C(Y ←→ X) = E

log


f (Yt | Xt , Xt−1, Yt−1)

f (Yt | Xt−1, Yt−1)


= E


log


f (Xt | Yt , Xt−1, Yt−1)

f (Xt | Xt−1, Yt−1)


= E


log


f (Yt , Xt | Xt−1, Yt−1)

f (Yt | Xt−1, Yt−1)f (Xt | Xt−1, Yt−1)


. (5)

Finally, observe that:

C(X → Y )+ C(Y → X)+ C(Y ←→ X)

= C(Y , X) = E

log


f (Yt , Xt | Xt−1, Yt−1)

f (Xt | Xt−1) f (Yt | Yt−1)


, (6)

1 Details of the derivation of Granger causality measure in (2) can be found in
Sections 4.b and 4.c of Gouriéroux et al. (1987).
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where the right-hand side of Eq. (6) defines a measure of depen-
dence between X and Y , denoted by C(Y , X). The measure of de-
pendence C(Y , X) decomposes the dependence between X and Y
to measures of feedbacks (time-lagged causal effect) from X to Y
(C(X → Y )) and from Y to X (C(Y → X)) and a measure of instan-
taneous causality between X and Y (C(Y ←→ X)). This measure
will enable one to check whether the processes X and Y must be
considered together or whether they can be treated separately.

4. Copula-based Granger causality measures

Herewe show that the aboveGranger causalitymeasures can be
rewritten in terms of copula densities. This will allow us to keep
only the terms that involve the dependence among the random
variables.

It is well known from Sklar (1959) that the distribution function
of any joint process (U, V ,W ) ∈ R × R × R can be expressed via
a copula
F(u, v, w) = C (FU(u), FV (v), FW (w)) , (7)
where FQ (.), for Q = U, V ,W , is the marginal distribution func-
tion of the random variable Q , and C (FU(.), FV (.), FW (.)) is a cop-
ula function defined on [0, 1]3 which captures the dependence of
(U, V ,W ). If we differentiate Eq. (7) with respect to (u, v, w), we
obtain the joint density function of (U, V ,W ):
f (u, v, w) = fU(u)× fV (v)× fW (w)

× c(FU(u), FV (v), FW (w)), (8)
where fQ (.), for Q = U, V ,W , is the marginal density of random
variableQ and c (FU(.), FV (.), FW (.)) is the copula density of (U, V ,
W ) defined on [0, 1]3.

Using Eq. (8), the measure of causality in (2) can be rewritten in
terms of copula densities as follows:
C(X → Y )

= E


log


c(FYt (Yt ), FYt−1 (Yt−1), FXt−1 (Xt−1))

c(FYt−1 (Yt−1), FXt−1 (Xt−1))c(FYt (Yt ), FYt−1 (Yt−1))


, (9)

where c

FYt (.), FYt−1(.), FXt−1(.)


, c

FYt−1(.), FXt−1(.)


and c(FYt (.),

FYt−1(.)) are the copula densities of (Yt , Yt−1, Xt−1), (Yt−1, Xt−1),
and (Yt , Yt−1), respectively. The measure of causality from Y to
X , C(Y → X), can similarly defined in terms of copula den-
sities c


FXt (.), FXt−1(.), FYt−1(.)


, c

FXt−1(.), FYt−1(.)


and c


FXt (.),

FXt−1(.)

.

Finally, the first measure in (5) of the instantaneous Granger
causality between X and Y can be rewritten in terms of copula
densities as in Box I. We can, in a similar way, rewrite the last two
measures in (5) of the instantaneous causality in terms of copula
densities.

5. Estimation and inference

Since we are interested in time series data, we need to spec-
ify the dependence in the process of interest. In what follows, we
consider β-mixing dependent variables. The β-mixing condition is
required to show the asymptotic normality of the nonparametric
estimator of our causality measures. To establish the asymptotic
normality, we also need to apply the results of Bouezmarni et al.
(2010, 2012). Now let us recall the definition of a β-mixing pro-
cess (see e.g., Doukhan (1994), Fan and Yao (2003), among others).
For


Wt = (Xt , Yt)

′
; t ≥ 0


a strictly stationary stochastic process

and F s
t a sigma algebra generated by (Ws, . . . , Wt) for s ≤ t , the

process W is called β-mixing or absolutely regular, if

β (l) = sup
s∈N

E

 sup
A∈F +∞s+l

P A|F s
−∞


− P (A)

→ 0,

a.s. l→∞.
Although the β-mixing condition is required to show the
asymptotic normality of our nonparametric estimator (see Ten-
reiro (1997) and Fan and Li (1999)), the consistency of this esti-
mator can be established under α-mixing condition.

5.1. Estimation

We have shown in Section 4 that Granger causality measures
can be rewritten in terms of copula densities. Thus, thesemeasures
can be estimated by replacing the unknown copula densities by
their nonparametric estimates from a finite sample. Hereafter, we
focus on the estimation of Granger causality measure from X to Y ,
C(X → Y ), which is defined in (9). However, we can similarly pro-
pose estimators of measures of Granger causality from Y to X and
of the instantaneous causality between X and Y defined in Box I.

To estimate C(X → Y ), we first need to estimate the copula de-
nsities c


FYt (.), FYt−1(.), FXt−1(.)


, c

FYt−1(.), FXt−1(.)


and c


FYt (.),

FXt−1(.)

. This can be done using the Bernstein copula density esti-

mators defined below and studied in Bouezmarni et al. (2010). We
first set the following additional notations. We denote by

Gt = (Gt1,Gt2,Gt3) = (FYt (Yt), FYt−1(Yt−1), FXt−1(Xt−1))

and its empirical analog

Ĝt = (Ĝt1, Ĝt2, Ĝt3) = (FYt ,T (Yt), FYt−1,T (Yt−1), FXt−1,T (Xt−1)),

where FYt ,T (.), FYt−1,T (.), and FXt−1,T (.) with subscript T is to in-
dicate the empirical analog of the distribution functions FYt (.),
FYt−1(.), and FXt−1(.), respectively. The Bernstein copula density es-
timator of c


FYt (.), FYt−1(.), FXt−1(.)


at a given value g = (g1, g2,

g3) is defined by

ĉ(g1, g2, g3) = ĉ(g) =
1
T

T
t=1

Kk(g, Ĝt), (11)

where

Kk(g, Ĝt) = k3
k−1
k1=0

k−1
k2=0

k−1
k3=0

AĜt ,k

3
j=1

pkj(gj),

the integer k represents the bandwidth parameter, pkj(gj) is the bi-
nomial distribution

pkj(gj) =

k− 1
kj


g
kj
j (1− gj)k−kj−1, for kj = 0, . . . , k− 1,

and AĜt ,k is an indicator function

AĜt ,k = 1
Ĝt∈Bk

,
with Bk =


k1
k

,
k1 + 1

k


×


k2
k

,
k2 + 1

k


×


k3
k

,
k3 + 1

k


.

The Bernstein estimators ĉ

FYt−1(.), FXt−1(.)


and ĉ


FYt (.), FXt−1(.)


of c


FYt−1(.), FXt−1(.)


and c


FYt (.), FXt−1(.)


, respectively, are

defined similarly. Observe that the kernel Kk(g, Ĝt) can be rewrit-
ten as

Kk(g, Ĝt) =

k−1
k1=0

k−1
k2=0

k−1
k3=0

AĜt ,k

3
j=1

B(gj, kj + 1, k− kj),

where B(gj, kj + 1, k − kj) is a beta density with shape parame-
ters kj + 1 and k− kj evaluated at gj. The Bernstein copula density
estimator in (11) is easy to implement, non-negative, integrates to
one and is free from the boundary bias problemwhich often occurs
with conventional nonparametric kernel estimators; see Sancetta
and Satchell (2004) in the case of i.i.d. data and Bouezmarni et al.
(2010) for α-mixing data. Bouezmarni et al. (2010) establish the
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0)
C(X ↔ Y ) = E


log


c

FYt (Yt), FXt (Xt), FYt−1(Yt−1), FXt−1(Xt−1)


c

FYt−1(Yt−1), FXt−1(Xt−1)


c

FXt (Xt), FXt−1(Xt−1), FYt−1(Yt−1)


c

FYt (Yt), FXt−1(Xt−1), FYt−1(Yt−1)

 (1

where c(FYt (Yt), FXt (Xt), FYt−1(Yt−1), FXt−1(Xt−1)), c

FXt (Xt), FXt−1(Xt−1), FYt−1(Yt−1)


and c(FYt (Yt), FXt−1(Xt−1), FYt−1(Yt−1)) are the

copula densities of (Yt , Xt , Yt−1, Xt−1), (Xt , Xt−1, Yt−1), and (Yt , Xt−1, Yt−1), respectively.
Box I.
asymptotic bias, variance and the uniform almost convergence of
Bernstein copula density estimator for α-mixing data. These prop-
erties are needed to prove the consistency and the asymptotic nor-
mality of the estimators of causality measures.

Based on the previous nonparametric estimators of copula den-
sities, an estimator of Granger causality measure C(X → Y ) is
given by

Ĉ(X → Y )

=
1
T

T
t=1

log

 ĉ

FYt ,T (Yt ), FYt−1,T (Yt−1), FXt−1,T (Xt−1)


ĉ

FYt−1,T (Yt−1), FXt−1,T (Xt−1)


ĉ

FYt ,T (Yt ), FXt−1,T (Xt−1)


 .

(12)

The most basic property that the above estimator should have is
consistency. To prove consistency, some regularity assumptions are
needed.We consider a set of standard assumptions on the stochas-
tic process and bandwidth parameter of the Bernstein copula den-
sity estimator.
Assumptions on the stochastic process

(A1.1)

(Yt , Xt) ∈ R× R ≡ R2, t ≥ 0


, is a strictly stationary

β-mixing processwith coefficientβ (l) = O(ρ l), for some
0 < ρ < 1.

(A1.2) The copula density c

FYt (.), FYt−1(.), FXt−1(.)


is assumed

to be twice continuously differentiable on (0, 1)3 and
bounded away from zero and bounded above.

Assumptions on the bandwidth parameter

(A1.3) We assume that for k → ∞, T k−7/2 → 0 and T−1/2k3/4
ln(T )→ 0.

Assumption (A1.1) is satisfied bymany processes such as ARMA
and ARCH processes as documented for example by Carrasco and
Chen (2002) and Meitz and Saikkonen (2008). In Assumption
(A1.2), the second differentiability of c


FYt (.), FYt−1(.), FXt−1(.)


is

required by Bouezmarni et al. (2010) in order to calculate the bias
of the Bernstein copula estimator. Assumption (A1.3) is needed to
cancel out some bias terms and for the almost sure convergence of
the Bernstein copula estimator. Note that the bandwidth parame-
ter k plays the inverse role compared to that of the standard non-
parametric kernel, that is a large value of k reduces the bias but
increases the variance. We now state the consistency of the non-
parametric estimator in (12) (see the proof of Proposition 1 in Ap-
pendix A).

Proposition 1. Under Assumptions (A1.1)–(A1.3), the estimator
Ĉ(X → Y ) defined in (12) converges in probability to C(X → Y ).

5.2. Inference

The measures proposed in the previous sections can also be
used to test for Granger non-causality between random variables.
Hereafter, the null hypothesis of interest is given by

H0 : C(X → Y ) = 0.

In this section, we provide the asymptotic normality of our non-
parametric estimator in (12), and we establish the consistency of
the test statistic used for testing H0. Again, here we focus on the
Granger causality measure from X to Y , but similar results can be
obtained for the measures of Granger causality from Y to X and of
the instantaneous causality between X and Y .

Theorem 1. Under Assumptions (A1.1)–(A1.3) and H0, we have

TBE = T k−3/2(2Ĉ(X → Y )− T−1 k3/2ξ)/σ
d
→N (0, 1),

where σ =
√
2 (π/4)3/2 and ξ = −π3/2

8 +
π
2 k
−1/2
−k−1(π1/2

−1).
To prove the above Theorem (see the proof in Appendix A), we

follow the proof of Theorem 1 in Bouezmarni et al. (2012). How-
ever, it is important to notice that the bias terms, B1, B2 and B3 in
Theorem 1 of Bouezmarni et al. (2012) are estimated, whereas in
the present paper these terms are calculated exactly. For a given
significance level α, we reject the null hypothesis H0 when TBE >
zα , where zα is the critical value from the standard normal distri-
bution.

The nonparametric estimator of Granger causality measure can
be biased in small samples, and this may arise from bias in copula
density estimates. This bias can, in turn, affect the finite sample
properties of the TBE test statistic in Theorem 1. To correct the fi-
nite sample bias, we suggest to use the smooth bootstrap method
proposed by Paparoditis and Politis (2000). The details of the boot-
strap procedure that we use are provided in Section 7.1.1. The va-
lidity of smoothed bootstrap that corresponds to a test statistic
which is similar to ours is established in Bouezmarni et al. (2012)
(see Proposition 3 of Bouezmarni et al. (2012)). Under some reg-
ular assumptions on the bootstrap kernel and the bandwidth pa-
rameter, one can show that TBE∗

d
→N (0, 1), where TBE∗ is the

smoothed bootstrap version of TBE.
Notice that the derivation of Theorem 1 requires the bounded-

ness of the copula density in Assumption (A1.2). It is true thatmany
common families of copula are unbounded at the corners, Clayton,
Gumbel, Gaussian and Student copulas being important examples.
However, following Bouezmarni et al. (2012), we can show that the
result in Theorem 1 is still valid for unbounded copula densities, if
the following condition is fulfilled:

c(g1, g2, g3) = O

 1
3

j=1
gj(1− gj)

 , (13)

where c(g1, g2, g3) is the copula density function of (Yt , Yt−1,
Xt−1). Condition (13) is satisfied by many common copula densi-
ties, see for example Omelka et al. (2009).

Finally, the following proposition establishes the consistency
of the TBE test in Theorem 1 (see the proof of Proposition 2 in
Appendix A).

Proposition 2. Under Assumptions (A1.1)–(A1.3), the test defined
in Theorem 1 is consistent if

log


c(u, v, w)

c(u, v)c(u, w)


dC(u, v, w) > 0,

where c (u, v, w) , c (u, v) and c (u, w) are the copula densities of
(Yt , Yt−1, Xt−1), (Yt−1, Xt−1), and (Yt , Xt−1), respectively, and C(u,
v, w) is the copula distribution function of (Yt , Yt−1, Xt−1).
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6. Measuring causality between high dimensional variables

Let

(Xt , Yt) ∈ Rd1 × Rd2 ≡ Rd, t = 0, . . . , T


be a sample of

stationary stochastic process in Rd, where d = d1+d2, for d1, d2 ≥
1, with joint distribution function FXY and density function fXY . For
(Xt , Yt) aMarkov process of order p, the null hypothesis of Granger
non-causality from vector X to vector Y is given by

HX→Y
0 : f (yt | xt−1, yt−1) = f (yt | yt−1), 1 ≤ t ≤ T , (14)

where xt−1 = {xt−s, 1 ≤ s ≤ p}, y
t−1
= {yt−s, 1 ≤ s ≤ p}, with

yt = (y1,t , . . . , yd2,t) and xt = (x1,t , . . . , xd1,t). Similarly, the null
hypothesis of Granger non-causality from vector Y to vector X is
given by

HY→X
0 : f (xt | yt−1, xt−1) = f (xt | xt−1), 1 ≤ t ≤ T , (15)

where y
t−1

and xt−1 are defined above.
Moreover, the instantaneous non-causality between X and Y is

characterized by the following equivalent null hypotheses:
HY↔X

0 : f (yt | xt , yt−1) = f (yt | xt−1, yt−1), 1 ≤ t ≤ T ,

HY↔X
0 : f (xt | xt−1, yt) = f (xt | xt−1, yt−1), 1 ≤ t ≤ T , (16)

HY↔X
0 : f (yt , xt | xt−1, yt−1)

= f (yt | xt−1, yt−1)f (xt | xt−1, yt−1), 1 ≤ t ≤ T ,

where xt = {xt−s, 0 ≤ s ≤ p} and y
t
= {yt−s, 0 ≤ s ≤ p} .

As in Section 4, we define the following copula-based measure
of Granger causality from vector X to vector Y :
C(X → Y )

= E


log


c

F̄Y(Yt), F̄Y(Yt−1), F̄X(Xt−1)


c

F̄Y(Yt−1)


c

F̄Y(Yt−1), F̄X(Xt−1)


c

F̄Y(Yt), F̄Y(Yt−1)

 ,

where, for simplicity of notation, we denote F̄Y(Yt−1) ≡

(FY1(Y1,t−1), . . . , FYd2 (Yd2,t−1), . . . , FY1(Y1,t−p), . . . , FYd2 (Yd2,t−p)),
F̄Y(Yt) ≡ (FY1(Y1,t), . . . , FYd2 (Yd2,t)) and F̄X(Xt−1) ≡ (FX1(X1,t−1),

. . . , FXd1 (Xd1,t−1), . . . , FX1(X1,t−p), . . . , FXd1 (Xd1,t−p)), with FQi(.)

for Q = X, Y , is the marginal distribution function of the ith el-
ement of the random vector Q , and c


F̄Y (.), F̄Y(.), F̄X(.)


, c

F̄Y(.),

F̄X(.)

, c

F̄Y (.), F̄Y(.)


, and c


F̄Y(.)


are the copula densities of

(Yt , Yt−1,Xt−1), (Yt−1,Xt−1), and (Yt , Yt−1), Yt−1, respectively.
The copula-based measure of Granger causality from vector Y to
vector X can be defined in a similar way.

Now, the copula-based measure of the instantaneous Granger
causality between vectors X and Y is given by:
C(X ↔ Y )

= E


log


c

F̄Y (Yt ), F̄X (Xt ), F̄X(Xt−1), F̄Y(Yt−1)


c

F̄X(Xt−1), F̄Y(Yt−1)


c

F̄Y (Yt ), F̄X(Xt−1), F̄Y(Yt−1)


c

F̄X (Yt ), F̄X(Xt−1), F̄Y(Yt−1)

 ,

where F̄X (Xt) = (FX1(X1,t), . . . , FXd1 (Xd1,t)), and F̄Y (Yt), F̄Y(Yt−1),
and F̄X(Xt−1) are defined as above, c


F̄Y (.), F̄X (.), F̄X(.), F̄Y(.)


,

c

F̄Y (.), F̄X(.), F̄Y(.)


, c

F̄X (.), F̄X(.), F̄Y(.)


, and c(F̄X(.), F̄Y(.)) are

the copula densities of (Yt , Xt ,Xt−1, Yt−1), (Yt ,Xt−1, Yt−1), (Xt ,
Xt−1, Yt−1) and (Xt−1, Yt−1), respectively.

Following Section 5.1, an estimator of Granger causality mea-
sure from vector X to vector Y is given by
Ĉ(X → Y )

=
1
T

T
t=1

log

 ĉ

F̄Y,T(yt ), F̄Y,T (yt−1), F̄X,T (xt−1)


ĉ

F̄Y,T (yt−1)


ĉ

F̄Y,T (yt−1), F̄X,T (xt−1)


ĉ

F̄Y,T(yt ), F̄Y,T (yt−1)


 ,

(17)
where F̄Y,T(yt), F̄Y,T (yt−1), and F̄X,T (xt−1) with subscript T is to
indicate the empirical analog of the terms F̄Y(yt), F̄Y(yt−1), and
F̄X(xt−1) defined above, and ĉ

F̄Y ,T (yt), F̄Y,T (yt−1), F̄X,T (xt−1)


,

ĉ

F̄Y,T (yt−1), F̄X,T (xt−1)


, ĉ

F̄Y ,T (yt), F̄Y,T (yt−1)


, and ĉ


F̄Y,T (yt−1)


are the Bernstein copula density estimators of c


F̄Y (yt), F̄Y(yt−1),

F̄X(xt−1)

, c

F̄Y(yt−1), F̄X(xt−1)


, c

F̄Y (yt), F̄Y(yt−1)


, and c


F̄Y

(y
t−1

)

. To prove the consistency of the estimator in (17), similar

assumptions to the ones in Section 5.1 are required. We consider
a set of standard assumptions on the stochastic process and band-
width parameter of the Bernstein copula density estimator.
Assumptions on the stochastic process

(A2.1)

(Xt , Yt) ∈ Rd1 × Rd2 ≡ Rd, t ≥ 0


is a strictly station-

ary β-mixing process with coefficient β (l) = O(ρ l), for
some 0 < ρ < 1.

(A2.2) The copula density c

F̄Y(.), F̄Y(.), F̄X(.)


is assumed to

be twice continuously differentiable on (0, 1)d2+pd and
bounded away from zero and bounded above.

Assumptions on the bandwidth parameter

(A2.3) We assume that for k → ∞, T k−((d2+pd)/2)−2 → 0 and
T−1/2k(d2+pd)/4 ln(T )→ 0.

We now state the consistency of the nonparametric estimator
in (17). The proof of Proposition 3 below is similar to the one of
Proposition 1, thus we decided to do not include it in the paper.

Proposition 3. Under Assumptions (A.2.1)–(A.2.3), the estimator
Ĉ(X → Y ) defined in (17) converges almost surely to the true causal-
ity measure C(X → Y ).

We wish now to test the following null hypothesis:
H0 : C(X → Y ) = 0.
Under the conditions (A2.1)–(A2.3), the following theorem pro-
vides the asymptotic normality of the estimator in (17) under the
null H0 (see the proof of Theorem 2 in Appendix A).

Theorem 2. Under Assumptions (A2.1)–(A2.3) and H0, we have

TBE = T k−(d2+pd)/2(2Ĉ(X → Y )

− T−1 k(d2+pd)/2 ξ)/σ
d
→N (0, 1),

where σ =
√
2 (π/4)(d2+pd)/2 and

ξ = −2−(d2+pd)π (d2+pd)/2 + 2−(pd2+d2)π (pd2+d2)/2k−(pd1)/2

+ 2−pdπpd/2k−d2/2 + 2(2−pd2 − 1)πpd2/2k−(pd1+d2)/2.

The proof of Theorem 2 is similar to the one of Theorem 1, thus
in Appendix A we only computed the bias terms. For a given sig-
nificance level α, we reject the null hypothesis H0 when TBE > zα ,
where zα is the critical value from the standard normal distribu-
tion. To perform the test and make our decision, we can also use
the smoothed bootstrap technique as in the bivariate case (see Sec-
tion 5.2).

7. Monte Carlo simulations

Here we examine the finite sample bias in the nonparametric
estimation of Granger causality measures and we suggest a
bootstrap bias-corrected estimator. We also investigate the finite
sample properties (size and power) of the TBE test in Theorem 1.

7.1. Bootstrap bias-corrected estimator of Granger causalitymeasures

7.1.1. Bootstrap bias-correction
We first use bootstrap to compute the small sample bias in the

nonparametric estimator of Granger causalitymeasure. Thereafter,
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Table 1
Data-generating processes (DGPs) used in the simulations.

DGPs Variables of interest Direction of causality in the DGP
Yt Xt

DGP1 ε1t white noise ε2t white noise X 9 Y , Y 9 X
DGP2 Yt = 0.5Yt−1 + ε1t Xt = 0.5Xt−1 + ε2t X 9 Y , Y 9 X
DGP3 Yt = (0.01+ 0.5Y 2

t−1)
0.5ε1t Xt = 0.5Xt−1 + ε2t X 9 Y , Y 9 X

DGP4 Yt = 0.5Yt−1 + 0.5Xt−1 + ε1t Xt = 0.5Xt−1 + ε2t X → Y , Y 9 X
DGP5 Yt = 0.5Yt−1 + 0.5X2

t−1 + ε1t Xt = 0.5Xt−1 + ε2t X → Y , Y 9 X
DGP6 Yt = 0.5Yt−1Xt−1 + ε1t Xt = 0.5Xt−1 + ε2t X → Y , Y 9 X
DGP7 Yt = 0.5Yt−1 + 0.5Xt−1ε1t Xt = 0.5Xt−1 + ε2t X → Y , Y 9 X
DGP8 Yt =


h1,tε1t Xt = 0.5Xt−1 + ε2t X → Y , Y 9 X

h1,t = 0.01+ 0.5Y 2
t−1 + 0.25X2

t−1

DGP9

Yt
Xt


=


0.2
0.3


+


0.1 0.8
0.7 0.15


Yt−1
Xt−1


+


εY
t

εX
t


, with


εY
t

εX
t


∼ N


0
0


,


1 0.2
0.2 1


X → Y , Y → X , Y ←→ X

Note: This table summarizes the data generating processes that we consider in the simulation study to investigate the bias in the nonparametric estimation of Granger
causality measures and to examine the finite sample properties (size and power) of nonparametric test for these causality measures. We simulate (Yt , Xt ), for t = 1, . . . , T ,
under the assumption that (ε1t , ε2t )

′ are i.i.d. from N(0, I2). The last column of the table summarizes the directions of causality and non-causality in each DGP. The symbols
‘‘→’’ and ‘‘9’’ refer to Granger causality and Granger non-causality, respectively.
we subtract the bias term to obtain a bootstrap bias-corrected es-
timate. Since a simple resampling from the empirical distribution
will not conserve the conditional dependence structure in the data,
see for example Remark 2.1 in Singh (1981), we suggest to use
the local smoothed bootstrap proposed by Paparoditis and Politis
(2000).

Hereafter, we discuss the implementation of local smoothed
bootstrap. For simplicity of exposition, we consider the case of uni-
variate Markov processes of order one. The method is easy to im-
plement in the following five steps:
(1)We draw the sample of Y ∗t−1 using the sum

Y ∗t−1 = Y+t−1 + hηt−1,

where h is a bandwidth parameter and the random variables Y+t−1
and ηt−1 are drawn from the empirical distribution of Yt−1 and a
kernel density, L, respectively. In our simulations, L is given by a
univariate normal density and h is computed using the standard
rule of thumbs. Similar approach is used to simulate X∗t−1;
(2) Conditional to Y ∗t−1, we draw Y ∗t and X∗t−1 independently. The
sample of X∗t−1 conditional to Y ∗t−1 is generated from the kernel
estimator given by formula (2.5) of Paparoditis and Politis (2000).
Similar approach is used to draw X∗t and Y ∗t−1 independently con-
ditional to X∗t−1;
(3) Based on the bootstrap sample, we compute the bootstrap
Granger causality measure Ĉ∗(X → Y );

(4) We repeat the steps (1)–(3) B times so that we obtain Ĉ∗j (X →
Y ), for j = 1, . . . , B.

(5) We approximate the bias term Bias = E[Ĉ(X → Y ) − C(X →
Y )] by the corresponding bootstrap bias Bias∗ = E∗[Ĉ∗(X → Y )−

Ĉ(X → Y )], where E∗ is the expectation based on the bootstrap
distribution of Ĉ∗(X → Y ), and Ĉ(X → Y ) is the estimate of
C(X → Y ) using the original sample. This suggests the bias es-
timate

Bias∗ = 1
B

B
j=1

Ĉ∗j (X → Y )− Ĉ(X → Y ).

Hence, a bootstrap bias-corrected estimator of measure of Granger
causality from X to Y is given by

Ĉ∗BC (X → Y ) = Ĉ(X → Y )−Bias∗. (18)

In practice and especially when the true value of causality mea-
sure is zero or close to zero, it is possible that for some bootstrap
samples the quantity Ĉ∗BC (X → Y ) becomes negative. In this case
we follow Dufour and Taamouti (2010) and suggest to impose the
following non-negativity truncation:

Ĉ∗BC (X → Y ) = max

Ĉ∗BC (X → Y ), 0


. (19)

We can similarly define the bootstrap bias-corrected estimators for
measures of Granger causality from Y toX and of the instantaneous
causality between X and Y .

To achieve the validity of the above local smoothed bootstrap,
we need the following additional assumptions on the kernel L and
bandwidth h (see Paparoditis and Politis (2000)):
Assumptions on bootstrap kernel and bandwidth
(A3.1) The kernel L is a product kernel of a bounded symmetric

kernel density l.
(A3.2) l is r times continuously differentiable such that


ujl(r)(u)

du = 0 for j = 0, . . . , r − 1 and

ur l(r)(u)du <∞, where

l(r) is the rth-derivative of l.
(A3.3) As T →∞, h→ 0, and Th3+2r/(ln T )γ → C > 0, for some

γ > 0.

7.1.2. Simulation study
We run a Monte Carlo experiment to investigate possible bias

and bias-correction in the nonparametric estimation of Granger
causality measures. We consider two groups of data generating
processes (DGPs) that represent linear and nonlinear regression
modelswith different forms of heteroskedasticity. Table 1 presents
the DGPs used in our simulation study and its last column summa-
rizes the directions of causality and non-causality in these DGPs.
The first three DGPs of Y , DGP1 to DGP8 of X , and DGP9 of (X, Y )
are used to evaluate the bias in the nonparametric estimation. In
these DGPs the true values of causality measures are known (equal
to zero) or can be easily computed. For example, in the first three
DGPs of X and Y , we have X and Y are by construction indepen-
dent: Y does not cause X and X does not cause Y . Thus, we expect
that the true measures of causality in these DGPs will be equal to
zero. However, the causality from X to Y exists in DGP4 to DGP9 of
Y , thus the true measures of causality from X to Y in these DGPs
will not be equal to zero.

The nonparametric estimators of causalitymeasures depend on
the bandwidth parameter k, which is needed to estimate the cop-
ula densities. Here we take k equal to the integer part of T 1/2, but
in Section 7.2 we consider various values of k to evaluate the sen-
sitivity of the TBE test. To keep the computing time in our simula-
tions reasonable, we consider two sample sizes T = 200, 300. We
perform 250 bootstrap replications and 500 simulations to com-
pute the bias terms and the average values of the bootstrap bias-
corrected causality measures. Finally, in the simulations the data
are rescaled such that the variables have zero mean and variance
equal to one.
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Table 2
Bootstrap bias-corrected estimation of Granger causality measures.

Measure DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9

Sample size: T = 200
Y → X No No No No No No No No Yes
True C(Y → X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4702
Bias-corrected Ĉ∗BC (Y → X) 0.0000

(0.0147)
0.0000
(0.0146)

0.0000
(0.0147)

0.0000
(0.0143)

0.0000
(0.0140)

0.0000
(0.0144)

0.0002
(0.0146)

0.0000
(0.0140)

0.2253
(0.0139)

X → Y No No No Yes Yes Yes Yes Yes Yes
True C(X → Y ) 0.0000 0.0000 0.0000 – – – – – 0.3819
Bias-corrected Ĉ∗BC (X → Y ) 0.0016

(0.0147)
0.0000
(0.0130)

0.0002
(0.0201)

0.0957
(0.0142)

0.1818
(0.0143)

0.1024
(0.0149)

0.0984
(0.0145)

0.0580
(0.0150)

0.2528
(0.0139)

X ←→ Y – – – – – – – – Yes
True C(X ←→ Y ) – – – – – – – – 0.0408
Bias-Corrected Ĉ∗BC (X ←→ Y ) – – – – – – – – 0.056

(0.012)

Sample size: T = 300
Y → X No No No No No No No No Yes
True C(Y → X) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4702
Bias-Corrected Ĉ∗BC (Y → X) 0.0012

(0.0085)
0.0000
(0.0078)

0.0000
(0.0081)

0.0000
(0.0076)

0.0000
(0.0083)

0.0000
(0.0078)

0.0000
(0.0061)

0.0000
(0.0078)

0.2447
(0.0076)

X → Y No No No Yes Yes Yes Yes Yes Yes
True C(X → Y ) 0.0000 0.0000 0.0000 – – – – – 0.3819
Bias-Corrected Ĉ∗BC (X → Y ) 0.0009

(0.0087)
0.0000
(0.0040)

0.0003
(0.0097)

0.0993
(0.0077)

0.2069
(0.0078)

0.1094
(0.0089)

0.1150
(0.0082)

0.0637
(0.0087)

0.2769
(0.0077)

X ←→ Y – – – – – – – – Yes
True C(X ←→ Y ) – – – – – – – – 0.0408
Bias-Corrected Ĉ∗BC (X ←→ Y ) – – – – – – – – 0.054

(0.0093)

Note: This table shows the average values of bootstrap bias-corrected (Ĉ∗BC (Y → X), Ĉ∗BC (X → Y )) estimates of causality measures from Y to X (C(Y → X)) and from X to
Y (Ĉ(X → Y )). ‘‘True’’ indicates the true value of causality measure, ‘‘Bias-Corrected’’ indicates the average value of the estimate of causality measure after bootstrap bias
correction, and ‘‘—’’ means that the true value of causality measure is unknown. Eq. (18) is used to calculate the bootstrap bias-correction estimates of causality measures.
The number of simulations used to compute the averaged values of the estimates of causality measures and the number of bootstrap replications used to calculate the
bias-corrected estimates are equal to 500 and 250, respectively. ‘‘No’’ indicates non-causality in the true DGP (given in the first row of the table) and ‘‘Yes’’ means that there
is causality in the true GDP. The data generating processes (DGPs) in the first row of the table are described in detail in Table 1. In parenthesis is the standard deviation of
the estimated values.
The simulation results are presented in Table 2. From this, we
see that the nonparametric estimators ofmeasures are biased, pos-
sibly due to the finite sample bias in the nonparametric estimators
of Bernstein copula densities. Interestingly, we find that there is a
big improvement when one uses the bootstrap bias-corrected es-
timators.

7.2. Empirical size and power of the TBE test

We study the finite sample performance of nonparametric test
proposed in Theorem 1. We examine its size and power proper-
ties using the data generating processes (DGPs) introduced in Sec-
tion 7.1.2 (see Table 1). The first three DGPs of Y and DGP1 to DGP8
of X are used to investigate the size property, since in these DGPs
the null hypothesis of non-causality is satisfied. However, in DGP4
to DGP9 of Y and GDP9 of X the null hypothesis is not satisfied, and
therefore these GDPs serve to illustrate the power of the test.

Recall that Theorem 1 is valid only asymptotically. For finite
samples and in order to improve the size and power of the pro-
posed nonparametric test, bootstrap is used to compute the test
statistics and p-values. As we mentioned in Section 7.1.2, a sim-
ple bootstrap, i.e. resampling from the empirical distribution, will
not conserve the conditional dependence structure in the data, and
hence sampling under the null hypothesis is not guaranteed. To
prevent this from occurring, we use the local smoothed bootstrap
of Paparoditis andPolitis (2000). From the bootstrap causalitymea-
sure Ĉ∗j (X → Y ), as defined in Section 7.1.1, we compute the boot-
strap test statistic TBE∗j , for j = 1, . . . , B. The bootstrap p-value
is computed as p∗ = B−1

B
j=1 1{TBE∗j >TBE}. Then, for given signifi-

cance level α, we reject the null hypothesis if p∗ < α.
TBE test depends on the bandwidth parameter k, which is used

to estimate the copula densities. In the simulation study we take k
equal to the integer part of δT 1/2, for δ = 1, 1.5, 2. To keep the
computing time in the simulations reasonable, we consider two
sample sizes T = 200, 300 and B = 250 bootstrap replications
with resampling bandwidths chosenby the standard rule of thumb.
Finally, we use 500 simulations to compute the empirical size and
power of the test.

The empirical size and power for the sample sizes 200 and 300
are given in Tables 3 and 4, respectively. For 5% and 10% signifi-
cance levels and for both T = 200 and T = 300, we see that the
TBE∗ test controls quite well its size and has good power. For DGP1
the test tends to be slightly oversized and is conservative for DGP3,
DGP5 and DGP6. In most cases, the power is quite good and close
to 100%.

8. Empirical applications

8.1. Stock market returns and exchange rates

The causal relationship between exchange rates and stock
prices have been the focus of most economic literature for quite
some time. In the literature, there is no academic consensus about
this relationship and the results are somewhatmixed as towhether
stock indexes lead exchange rates or vise versa. To examine those
causal links, early studieswere using simple correlations. Aggarwal
(1981), using monthly data from 1974 to 1978, found that there is
a positive and significant correlation between US stock prices and
the trade-weighted US dollar that is equal to the average value of
the US dollar weighted by US trade with its 46 largest trading part-
ners.2 Moreover, using monthly data from 1980 to 1986 on the

2 In Aggarwal’s study stock prices are given by the prices of New York Exchange
Index (NYSE), the Standard and Poor’s 500 Stock Index (S&P 500), and the
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Table 3
Size and power properties for sample size T = 200.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9

T = 200, α = 5%
Y → X Size Size Size Size Size Size Size Size Power
c = 1 5.20 6.40 5.60 5.20 5.60 4.00 4.40 4.40 100
c = 1.5 6.00 6.00 4.00 4.80 3.20 3.60 4.00 3.20 100
c = 2 6.88 4.80 2.40 3.60 4.40 4.00 4.00 4.00 100

X → Y Size Size Size Power Power Power Power Power Power
c = 1 6.66 4.80 5.20 100 100 100 100 99.2 100
c = 1.5 6.40 4.80 5.60 100 100 98.8 100 99.2 100
c = 2 6.95 5.20 5.60 99.2 100 98.0 100 99.6 100

T = 200, α = 10%
Y → X Size Size Size Size Size Size Size Size Power
c = 1 8.00 10.00 10.80 8.80 8.40 5.60 10.00 10.40 100
c = 1.5 11.20 8.40 8.40 6.00 8.40 6.00 6.80 8.80 100
c = 2 13.20 8.00 7.60 6.40 7.60 6.40 9.20 10.00 100

X → Y Size Size Size Power Power Power Power Power Power
c = 1 10.80 10.80 9.60 100 100 100 100 99.6 100
c = 1.5 12.00 9.60 10.00 100 100 100 100 100 100
c = 2 13.40 8.80 9.60 100 100 99.2 100 99.6 100

Empirical size and power at the α level based on 500 replications. The sample size is T = 200 and the number of bootstrap resamples is B = 250. The bandwidth k is the
integer part of cT 1/2 .
Table 4
Size and power properties for sample size T = 300.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8 DGP9

T = 300, α = 5%
Y → X Size Size Size Size Size Size Size Size Power
c = 1 6.80 3.60 2.40 5.20 4.40 4.40 3.60 5.600 100
c = 1.5 7.20 3.60 2.40 6.00 2.00 2.40 3.20 5.600 100
c = 2 5.80 3.80 2.60 5.60 3.40 2.60 4.40 4.50 100

X → Y Size Size Size Power Power Power Power Power Power
c = 1 6.40 6.20 6.00 100 100 100 100 100 100
c = 1.5 7.60 3.60 6.80 100 100 100 100 100 100
c = 2 5.10 4.50 5.80 100 100 100 100 100 100

T = 300, α = 10%
Y → X Size Size Size Size Size Size Size Size Power
c = 1 12.40 5.20 6.00 9.20 7.20 8.40 6.80 10.40 100
c = 1.5 11.60 6.80 6.40 9.60 5.20 5.60 9.20 10.40 100
c = 2 10.90 7.40 6.90 10.20 6.30 7.50 10.10 9.80 100

X → Y Size Size Size Power Power Power Power Power Power
c = 1 10.80 10.40 11.60 100 100 100 100 100 100
c = 1.5 11.60 8.80 11.20 100 100 100 100 100 100
c = 2 10.50 10.20 11.20 100 100 100 100 100 100

Empirical size and power at the α level based on 500 replications. The sample size is T = 300 and the number of bootstrap resamples is B = 250. The bandwidth k is the
integer part of cT 1/2 .
US stock prices and the effective exchange rate of the US dollar
weighted against 15 other major currencies, Soenen and Henniga
(1981) found that the correlation is negative and statistically sig-
nificant.3 Finally, Soenen and Aggarwal (1989) foundmixed results
among industrialized countries.

Many recent studies have used more sophisticated econo-
metric techniques to study stock prices–exchange rates relation-
ships. Bahmani-Oskooee and Sohrabian (1992) using cointegration
models along with Granger causality tests, found that there is bidi-
rectional causality between stock prices measured by S&P 500 in-
dex and the effective exchange rate of the dollar, at least in the
short-run. Since Bahmani-Oskooee and Sohrabian (1992) several
papers have examined different directions of causality between
stock prices and exchange rates using these econometric technique

Department of Commerce Index of 500 Stocks (DC 500). Furthermore, the weights
used to compute the variable trade-weighted US dollar represent each country’s
share of the total trade (measured by the sum of imports plus exports).
3 In Soenen and Henniga’s study stock prices are given by the prices of New York

Exchange Index (NYSE) and the Standard and Poor’s 500 Stock Index (S&P 500).
and data from both industrial and developing countries. The di-
rection of causality, similar to earlier correlation studies, appears
mixed. Mok (1993), using ARIMA approach and Granger causality
tests, found that the Hong Kong market efficiently incorporated
much of exchange rate information in its price changes both at
dailymarket close andopen. Abdalla andMurinde (1997) foundout
that the results for India, Korea and Pakistan suggest that exchange
rates Granger cause stock prices, which is consistent with earlier
study by Aggarwal (1981). But, for the Philippines, they found that
the stock prices lead the exchange rates. Granger et al. (2000), us-
ing unit root and cointegrationmodels, found that data from South
Korea are in agreement with the traditional approach. That is, ex-
change rates lead stock prices. On the other hand, using data of the
Philippines, they found that stock prices lead exchange rates with
negative correlation. Further, they found that the data from Hong
Kong, Malaysia, Singapore, Thailand, and Taiwan indicate strong
feedback relations, whereas that of Indonesia and Japan fail to re-
veal any recognizable pattern. Finally, Nieh and Lee (2001), first
found that there is no long-run significant relationship between
stock prices and exchange rates in the G-7 countries. This result
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(a) Stock return. (b) US/CA exchange rate.

(c) US/UK exchange rate. (d) US/JAP exchange rate.

Fig. 1. S&P 500 stock returns and growth rates of US/Canada, US/UK, and US/Japan exchange rates. The sample runs from January 1990 to January 2011 for a total of 253
observations.
interfaces with Bahmani-Oskooee and Sohrabian’s (1992) finding,
but contrasts with the studies that suggest that there is a signif-
icant relationship between these two financial variables. Second,
they found that the short-run significant relationship has only been
found for one day in certain G-7 countries.

Most of the conclusions on the relationship between exchange
rates and stock prices were obtained using linear mean regression-
based tests. Although such tests have high power in uncovering lin-
ear causal relations, their power against nonlinear causal relations
can be very low (see Bouezmarni et al. (2012) and Bouezmarni
and Taamouti (2011), and references therein). Hence, traditional
Granger causality tests might overlook a significant nonlinear re-
lation between stock prices and exchange rates. In this section, we
apply our nonparametric Granger causality measures to reexam-
ine and quantify the causal relationship between the two financial
variables in a broader framework that allows us to leave free the
specification of the underlying model.

8.1.1. Data description
The data sets consist of monthly observations on S&P 500 In-

dex and US/Canada, US/UK and US/Japan exchange rates and come
from St. Louis Fed (S&P 500 Index) and Yahoo Finance (exchange
rates). The sample runs from January 1990 to January 2011 for
a total of 253 observations, see Fig. 1 for the series in growth
rates. We perform Augmented Dickey–Fuller tests (hereafter ADF-
tests) for nonstationarity of the logarithmic price and exchange
rates and their first differences. Using ADF-tests with only an in-
tercept and with both a trend and an intercept, the results show
that all variables in logarithmic form are nonstationary. However,
their first differences are stationary. The test statistics with both
a trend and an intercept for the first differences of log price and
log US/Canada, US/UK and US/Japan exchange rates are −14.666,
−12.164,−11.390,−11.666, respectively, and the corresponding
5% critical value is −3.427. Using ADF-tests with only intercept
leads to the same conclusions. Thus, based on the above station-
arity tests we model the first difference of logarithmic price and
exchange rates rather than their level. Consequently, the causality
relations have to be interpreted in terms of growth rates.

8.1.2. Results and comments
We have applied the nonparametric estimator and TBE test of

copula-based Granger causality measures to quantify the causality
between stock market return, say r , and US/Canada, US/UK and
US/Japan exchange rates. The empirical results are reported in Ta-
ble 5 where the zero-values (0.0000) of the causality measure es-
timates are due to the non-negative truncation given by Eq. (19).

In Panel A of Table 5 we see that the estimates of measures
of Granger causality from US/Canada and US/UK exchange rates
to stock market returns are equal to zero. This indicates that the
causal effects from US/Canada and US/UK exchange rates to stock
returns are economicallyweak. These effects are also statistically in-
significant at 5% significance level. Furthermore, we find that there
is a causal effect from US/Japan exchange rate to stock market re-
turns. This effect is statistically significant at 5% significance level.

Panel B of Table 5 shows that the causal effects of stock mar-
ket returns on US/UK and US/Japan exchange rates are economi-
cally weak and statistically insignificant at 5% significance level. We
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Table 5
Measures of causality between exchange rates and stock returns.

Direction of causality Bandwidth k = δT 1/2 Bias-corrected estimate of measure p-values (TBE test)

Panel A
US/Canada→ r

δ = 1 0.0019 0.5562
δ = 1.5 0.0000 0.6370
δ = 2 0.0000 0.7600

US/UK → r
δ = 1 0.0000 0.9601
δ = 1.5 0.0000 0.9245
δ = 2 0.0000 0.7101

US/Japan→ r
δ = 1 0.0293 0.0025
δ = 1.5 0.0345 0.0051
δ = 2 0.0347 0.0226

Panel B
r → US/Canada

δ = 1 0.0357 0.0004
δ = 1.5 0.0330 0.0090
δ = 2 0.0284 0.0501

r → US/UK
δ = 1 0.0105 0.2353
δ = 1.5 0.0095 0.3000
δ = 2 0.0097 0.3640

r → US/Japan
δ = 1 0.0083 0.2700
δ = 1.5 0.0071 0.4130
δ = 2 0.0082 0.4480

Note: This table reports the results of the bootstrap bias-corrected estimation and p-values from TBE test for measures of Granger causality from exchange
rates (US/Canada,US/UK and US/Japan) to stock returns (Panel A) and from stock returns to exchange rates (Panel B).
also find that there is a causal effect from stock market returns to
US/Canada exchange rate, which is statistically significant at 5%
significance level. Finally, it seems that the impact of stock mar-
ket returns on exchange rates is more apparent than the impact of
exchange rates on stock market returns.

8.2. Comparing stock return predictability using dividend–price ratio,
VIX and liquidity

Many empirical studies have investigatedwhether stock excess
returns can be predictable. The econometric method used in this
context is an ordinary least squares regression of stock returns onto
the past of some financial variables. Fama and French (1988) ar-
gue that using the lagged dividend–price ratio as a predictor vari-
able has a significant effect on stock returns. Campbell and Shiller
(1988) find that the lagged dividend–price ratio together with the
lagged dividend growth rate have a significant predictive power
on stock returns. Since the publication of Fama and French (1988)
and Campbell and Shiller (1988), the question of whether stock
returns are predictable or not has attracted much more attention
from economists; for review see Lewellen (2004). The finding of
Campbell and Shiller (1988) and Fama and French (1988) was con-
firmed by subsequent studies and considered to be a new stylized
fact by Cochrane (1999) and Campbell (1999).

In this section, we use the nonparametric-based Granger
causality measures to quantify and compare the predictive power
of three financial variables (dividend–price ratio, VIX and liquid-
ity factor) for stock market returns. The nonparametric approach
does not impose any restriction on the model linking the depen-
dent variable (here stock return) to the independent variables
(dividend–price ratio, VIX or liquidity factor). In addition to div-
idend–price ratio, we use VIX and liquidity factor of Pastor and
Stambaugh (2003) to predict stock returns. Bollerslev et al. (2009)
show that the difference between VIX and realized variation, called
variance risk premium, is able to explain a non-trivial fraction of the
time series variation in post 1990 aggregate stock market returns,
with high (low) premia predicting high (low) future returns. Fur-
ther, Pastor and Stambaugh (2003) find that expected stock returns
are related cross-sectionally to the sensitivities of returns to fluctu-
ations in aggregate liquidity. They find that over a 34-year period,
the average return on stocks with high sensitivities to liquidity
exceeds that for stocks with low sensitivities by 7.5% annually, ad-
justed for exposures to themarket return as well as size, value, and
momentum factors.

8.2.1. Data description
We consider monthly aggregate S&P 500 composite index over

the period January 1996 to September 2008 (153 trading months).
Our empirical analysis is based on the logarithmic return on the
S&P 500 in excess of the 3-month T-bill rate. The excess returns
are annualized. We also consider the following monthly financial
variables: dividend–price ratio, VIX and liquidity factors of Pastor
and Stambaugh (2003). The monthly dividend–price ratio is com-
puted from the Center for Research in Security Prices (CRSP) in-
dices for the S&P 500 universe which contains monthly index files
with value-weighted returns, with andwithout dividends.We also
consider monthly data for VIX index. The VIX volatility index is an
indication of the expected volatility of the S&P 500 stock index for
the next thirty days. The VIX is provided by the Chicago Board Op-
tions Exchange (CBOE) in the US, and is calculated using the near
term S&P 500 options markets. It is based on the highly liquid S&
P500 index options along with the ‘‘model-free’’ approach. Finally,
we consider the liquidity factor of Pastor and Stambaugh (2003).
This factor can be downloaded from Stambaugh’s website.

8.2.2. Results and comments
Table 6 reports the estimates and the corresponding p-values

from TBE test of measures of Granger causality from divi-
dend–price ratio, VIX and liquidity factor to stock market returns.
The results show that both dividend–price ratio and VIX help to
predict stock market returns. The estimates of Granger causality
from dividend–price ratio to stock returns and from VIX to stock
returns are statistically significant at the conventional levels of
significance. The comparison of Granger causality measures esti-
mates indicates that VIX has more predictive content than the div-
idend–price ratio. Similarly, we can say that the impact of VIX on
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Table 6
Measures of causality between stock return and dividend–price ratio, VIX and liquidity.

Direction of causality Bandwidth k = δT 1/2 Bias-corrected estimate of measure p-values (TBE test)

Dividend–price ratio→ r
δ = 1 0.0236 0.0735
δ = 1.5 0.0355 0.0560
δ = 2 0.0401 0.0320

Volatility Index→ r
δ = 1 0.0504 0.0001
δ = 1.5 0.0516 0.0012
δ = 2 0.0501 0.0095

Liquidity→ r
δ = 1 0.0000 0.7230
δ = 1.5 0.0108 0.4320
c = 2 0.0184 0.2317

Note: This table reports the results of the bootstrap bias-corrected estimation and p-values from TBE test for measures of Granger causality from
dividend–price ratio, VIX and liquidity factor to stock market returns.
stock returns is ‘‘much’’ stronger than the impact of dividend–price
ratio on stock returns. Finally, it seems that the liquidity factor
of Pastor and Stambaugh (2003) cannot help to predict stock re-
turns. Its predictive content is weak and is statistically insignifi-
cance. Hence, using this liquidity factor will not help to predict the
time series of stock market returns. Using cross-section data, Pas-
tor and Stambaugh (2003) argue that this liquidity factor helps to
explain the cross-section of individual stock returns: they find that
over a 34-year period, the average return on stocks with high sen-
sitivities to liquidity exceeds that for stocks with low sensitivities
by 7.5% annually. To conclude, liquidity factors explains the vari-
ation in the cross-section of individual stock returns, but not the
variation in the market stock returns (S&P 500).

9. Conclusion

We proposed a nonparametric estimator and a nonparamet-
ric test for conditional density based Granger causality measures
that quantify linear and nonlinear causality between random vari-
ables. We first showed that the Granger causality measures can
be rewritten in terms of copula densities. Thereafter, we proposed
consistent nonparametric estimators for these Granger causality
measures based on consistent nonparametric estimators of cop-
ula densities. We proved that the nonparametric estimators of
the measures are asymptotically normally distributed and we dis-
cussed the validity of a local smoothed bootstrap that can be used
in finite sample settings to compute bootstrap bias-corrected esti-
mators and build tests for Granger causality measures. A simula-
tion study revealed that the bootstrap bias-corrected estimator of
causality measures behaves well and that the test has quite good
finite sample properties for a variety of typical data generating pro-
cesses and different sample sizes. Finally, we illustrated the practi-
cal relevance of nonparametric causality measures by quantifying
the Granger causality between S&P500 Index returns andmany ex-
change rates: US/Canada, US/UK and US/Japan exchange rates. We
also compared the predictive content of dividend–price ratio, VIX
and liquidity factor for stock market returns.

Appendix. Proofs

This Appendix provides the proofs of the theoretical results
developed in Sections 5 and 6. Except for the proof of Proposition 1,
most of the rest of the proofs here are inspired from the paper
Bouezmarni et al. (2012).

Proof of Proposition 1. Put ξt =

FYt (yt), FYt−1(yt−1), FXt−1(xt−1)


and ξt,T =


FYt ,T (yt), FYt−1,T (yt−1), FXt−1,T (xt−1)


. Using Taylor ex-

pansion and the fact that |ξt,T − ξt | = OP(T−1/2) uniformly, we
obtain

log(ĉ(ξt,T )) = log(ĉ(ξt))+ OP(T−1/2). (20)
Second, using Taylor again and the fact that |ĉ(ξt) − c(ξt)| =
OP(k−1+T−1/2k3/4 ln(T )) uniformly (see Bouezmarni et al. (2010)),
we have

log(ĉ(ξt)) = log(ĉ(ξt))+ OP(k−1 + T−1/2k3/4 ln(T )). (21)

From (20) and (21), we obtain

Ĉ c(X → Y )

=
1
T

T
t=1


log


c

FYt (Yt ), FYt−1 (Yt−1), FXt−1 (Xt−1)


c

FYt−1 (Yt−1), FXt−1 (Xt−1)


c

FYt (Yt ), FXt−1 (Xt−1)


+OP (η(k, T )),

where η(k, T ) = T−1/2+ k−1+ T−1/2k3/4 ln(T ). Hence, the results
of Proposition 1 can be deduced from the lawof large numbers. �

Proof of Theorem 1. In what follows, F̄ζ (.) (F̄ζ ,T (.)) denote the
distribution function of ζ (resp. the empirical distribution function
of ζ ), with ζ is either Y , Y or X. Also, put Gt = (F̄Y (Yt), F̄Yt (Yt−1),

F̄X(Xt−1)), Ut = (F̄Y (Yt), F̄Y(Yt−1)), and Vt = (F̄Y(Yt−1), F̄X(Xt−1)).
Since

ĉ(F̄Y ,T (y), F̄Y,T (y), F̄X,T (x)) = ĉ(F̄Y (y), F̄Y(y), F̄X(x))+ OP(T−1),

uniform in (0, 1)d, studding the asymptotic distribution of Ĉ c(X →
Y ) reduces to the study of

H(ĉ, Ĉ) :=
1
T

T
t=1

log


ĉ(Gt)

ĉ(Ut)ĉ(Vt)


.

Let first consider H(ĉ, C) :=

log


ĉ(u,v,w)

ĉ(u,v)ĉ(u,w)


dC(u, v, w). Using

Taylor expansion, we obtain

H(ĉ, C) ≈

 
ĉ(u, v, w)

ĉ(u, v)ĉ(u, w)
− 1


dC(u, v, w)

−
1
2

 
ĉ(u, v, w)

ĉ(u, v)ĉ(u, w)
− 1

2

dC(u, v, w)

+
1
6

 
ĉ(u, v, w)

ĉ(u, v)ĉ(u, w)
− 1

3

dC(u, v, w)

= I1 + I2 + I3 ::: (say).

Define φ(α) =
φ3(α)

φ1(α)φ2(α)
− 1, where

φ1(α) = c(u, v)+ αc∗(u, v), φ2(α) = c(u, w)+ αc∗(u, w), and
φ3(α) = c(u, v, w)+ αc∗(u, v, w),

with c∗(u, v, w), c∗(u, v) and c∗(u, w) being functions inΓi, for i =
1, 2 and 3, respectively, and Γi is a set defined as

Γi =


γ : [0, 1]qi → R, γ is bounded,


γ = 0


, : with :

q1 = 3, : and : q2 = q3 = 2.
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Using Taylor’s expansion, we have that, for any α ≥ 0,

φ(α) = φ(0)+ αφ′(0)+
1
2
α2φ′′(α∗), for α∗ ∈ [0, α].

One can check that,

φ′(α)

=
c∗(u, v, w)φ1(α)φ2(α)− c∗(u, v)φ2(α)φ3(α)− c∗(u, w)φ1(α)φ3(α)

φ2
1(α)φ2

2(α)
,

and

φ′′(α) = O(∥c∗(u, v)c∗(u, v, w)∥∞ + ∥c∗(u, w)c∗(u, v, w)∥∞).

Next, we consider α = 1, c∗(u, v, w) = ĉ(u, v, w) − c(u, v, w),
c∗(u, v) = ĉ(u, v) − c(u, v), and c∗(u, w) = ĉ(u, w) − c(u, w).
Using the results of Bouezmarni et al. (2010), we get

φ′′(α) = Op (ζ (k, T )) ,

where ζ (k, T ) = T−1k5/4 ln2(T ) + k−2. UnderH0, we have φ(0) =
0 and

φ′(0) =
ĉ∗(u, v, w)

c(u, v, w)
−

ĉ(u, v)

c(u, v)
−

ĉ(u, w)

c(u, w)
+ 1.

Hence, we have

I1 =
 

ĉ(u, v, w)

c(u, v, w)
−

ĉ(u, v)

c(u, v)
−

ĉ(u, w)

c(u, w)
+ 1


dC(u, v, w)

+Op (ζ (k, T ))

= 2−


ĉ(u, v)

c(u, v)
c(u, v, w)dudvdw

−


ĉ(u, w)

c(u, w)
c(u, v, w)dudvdw + Op (ζ (k, T ))

= Op(ζ (k, T )).

Similarly, one can show that I3 = Op (ζ (k, T )). Hence, the asymp-
totic distribution of H(ĉ, C) follows from the fact that, see Bouez-
marni et al. (2012),

T k−3/2

σ


2I2 − C1T−1k3/2 − B1T−1k− B2T−1k− B3T−1k1/2


→ N (0, 1),

where C1 = −2−3π3/2, B1 = B2 =
π
4 and B3 = 1 − π1/2k1/2, and

σ =
√
2 (π/4)3/2 and the fact that

Tk−3/2

H(ĉ, Ĉ)− H(ĉ, C)


= op(1). ::: �

Proof of Proposition 2. The proof of Proposition 2 can be deduced
from the proof of Theorem 1 by observing that

φ(0) =
c(u, v, w)

c(u, v)c(u, w)
− 1 ≈ log


c(u, v, w)

c(u, v)c(u, w)


> 0.

So, in such a case, our test statistic TBE converges to infinity. �

Proof of Theorem 2. Theproof of the asymptotic normality for the
high dimensional case is similar to the proof of Theorem 1 given
above. The key ingredient is the fact that

T k−l/2

σ
(2I2 − C1T−1kl/2 − B1T−1k(l1+l2)/2

− B2T−1k(l1+l3)/2 − B3T−1kl1/2)
d
→N (0, 1),

where l1 = pd2, l2 = d2, l3 = pd1, l = l1 + l2 + l3, C1 = −2−lπ l/2,
σ =
√
2 (π/4)l/2, B1 = 2−(l1+l2)π (l1+l2)/2, B2 = 2−(l1+l3)π (l1+l3)/2,

and B3 = −(2 − 2−l1+1)π l1/2kl1/2; see the technical Appendix of
Bouezmarni et al. (2012) for more details. �
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