
 
2014/35 

 
 
■ 

 
 

Transferable and non transferable utility implementations  
of coalitional stability in integrated assessment models 

 
 
 

Ulrike Kornek, Kai Lessmann 
and Henry Tulkens 

 
 
 

 
 
 

 
 
 

 
 

 

Center for Operations Research 
and Econometrics 

 
Voie du Roman Pays, 34 

B-1348 Louvain-la-Neuve 
Belgium 

http://www.uclouvain.be/core 

D I S C U S S I O N  P A P E R  
 



CORE DISCUSSION PAPER 
2014/35 

 
Transferable and non transferable utility implementations  

of coalitional stability in integrated assessment models 
 

Ulrike KORNEK 1, Kai LESSMANN 2  
and Henry TULKENS 3  

 
August 2014 

 
Abstract 

To study the stability of coalitions in the standard game theoretic model of international environmental 
agreements, two alternative concepts are used: potential internal stability and core stability. Both 
concepts make use of the possibility of reallocating payoffs within a coalition through transfers, 
formulated in terms of transferable utility among the players. For international applications where 
players are countries, such as done in the growing literature on integrated assessment models, non-
transferable utility games would be economically better suited. In this note, we provide a framework for 
comparing the treatment of coalitions in five game theoretically minded integrated assessment models, 
from that point of view. Under way, we extend the definition of the two stability concepts to games 
without transferable utility, assuming instead the transferability of some physical good. We also show 
that potential internal stability and blocking power of coalitions can be tested by solving a simple 
optimization problem. 
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1 Introduction

In the game theoretically inspired literature, that deals with the stability of inter-
national environmental agreements in view of which countries form coalitions,
two alternative concepts are considered. Potential internal stability (PIS) on the
one hand, introduced by Carraro et al. (2006), is a property that holds in any
coalition if the agreement is such that a transfer scheme exists that guarantees
all members at least their outside payoff. Core stability (CS) on the other hand,
introduced in the field by Chander and Tulkens (1995, 1997), is a property that
prevails in the grand coalition if no other coalition can provide each of its mem-
bers a higher payoff when deviating from an agreement proposed for the grand
coalition.

Both concepts, which are formulated analytically in terms of transferable util-
ity (TU) games, make use of transfers among players. Using this instrument,
Weikard (2009) defines the class of transfers necessary to induce PIS. Similarly,
Chander and Tulkens (1995, 1997) give a formula of transfers that they show to
be sufficient to induce CS in a wide class of international environmental games.

With Eyckmans and Tulkens (2003), the CS concept has been introduced in a
numerical simulation model of the world economy dubbed CWS, with a view
of computing the international transfers asserted to ensure the core stability of
possible agreements. Since then, other authors have done the same with the PIS
concept, introducing it in other simulation models, namely Nagashima et al.
(2009) with STACO and Bosetti et al. (2013) with WITCH. The latter paper
introduces extensions to non-transferable utility (NTU).

Obviously, an interesting comparison exercise focusing on the coalition sta-
bility issue was called for. Lessmann et al. (2014) analyze five integrated as-
sessment models (IAMs) with respect to stability: MICA (Lessmann and Eden-
hofer, 2011), STACO (Finus et al., 2006), CWS (Eyckmans and Tulkens, 2003),
WITCH (Bosetti et al., 2006), and RICE (Yang, 2008). To enlighten the results
of this first comparison paper as well as future ones, the present note aims at
making explicit some aspects of the underlying theory and of computational
methodologies involved: while these are basically common to all five models,
there are nevertheless important differences that deserve to be pointed out to
make the comparability credible.
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Our main concern is with the formulation of transfers between players in the
alternative frameworks of TU vs NTU. Furthermore, as the economic models
underlying the game differ considerably in terms of their scope, we aim here at
a unifying presentation.

After reviewing in Section 2 the basic structure of IAMs, showing how strategic
and coalitional games are associated with them and reminding one of the source
of TU vs NTU distinction, we define in Section 3 the two stability concepts in
their TU version and describe the role of transfers in the achievement of coali-
tional stability in either case. We extend the definitions in Section 4 to the NTU
form of the game, substituting transfers of a standard economic commodity for
transfers of utilities. We verify the extent to which results known for the game
in the TU form do still hold in the NTU case. We finally propose in Section 5
methods for testing the stability of coalitions by means of a simple optimization
problem. Section 6 discusses briefly the practicality of transfers.

2 The IAMs and their associated games

2.1 The worldwide economic-environmental models

This section introduces the generic IAM to which the descriptions of this work
apply, following the well-known RICE-model (Nordhaus and Yang, 1996). The
specific IAM may differ in model setup concerning decision variables and con-
straints.

Consider an international economy with environmental externalities, consisting
of n ∈ N countries indexed by i ∈ N ⊂ N and whose activities (consumption,
labor, investment, capital accumulation) extend over T periods, indexed t ∈
{1, . . . ,T} = T . Within that framework, the characteristic feature of integrated
assessment models is to include the environmental dimension of the activities,
namely emissions of pollutants and reception of ambient pollutants.

The general economic activities are supposed to be those of market economies,
and the resulting emitted pollutants in all countries are assumed to accumulate
over time as a single stock affecting all countries around the planet, hence a
worldwide environmental and stock externality. This also reflects the models’
intended application to climate change.
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Countries are assumed to be acting so as to maximize a over time collective util-
ity function, ui, specific for each of them, whose arguments are the domestic ag-
gregate consumptions in each period, Cit > 0. Felicity at time t, uit , is assumed
to be additively separable over the periods T . The consumptions are made fea-
sible from the production of commodities, in aggregate amounts Yit > 0, after
deducting investment decisions Iit and possibly diminished at each t by the do-
mestic damages Dit(∆t) > 0 incurred from the temperature change ∆t . Thus,
for each country i, the assumed objective is to maximize

ui = ∑
t∈T

β t−1
uit(Cit) (1)

with 0 < β t−1 < 1 discount factors and for which at each t

Cit = Yit − Iit −Dit(∆t)

holds. In each country, production at each t results from the use of inputs such
as labor Lit and capital Kit , according to some production function

Yit = fit(Lit ,Kit),

with labor treated as exogenous (i.e. given) and capital resulting from accumu-
lated investments Iit according to the relation Kit = Kit−1 + Iit . Production also
generates polluting emissions, Eit , the sum of which over all countries deter-
mines, in turn, the level of the worldwide externality ∆t . One thus has for each
i and t, in addition to the two equations above,

Eit = git(Yit)

and
∆t = h(∆t−1,∑

i∈N

Eit). (2)

Additionally, the optimization problem is complemented by the ability of each
region to reduce emissions via an (implicit or explicit) abatement cost function.
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These are the bare bones of many IAMs1. Concerning the five IAMs in ques-
tion, some are more detailed on production (WITCH) or include other activities
such as trade (MICA), others being even less detailed (STACO).

As it is stated thus far, an IAM may be seen as essentially descriptive. As-
suming that in all countries utility maximization is spontaneous, because oc-
curring through competitive market forces, the models’ solution is a worldwide
Pareto efficient trajectory of consumptions, productions and capital accumula-
tions when the externality of equation (2) is not present. This cannot be as-
serted concerning the environmental variables: due to the externality they gen-
erate, pollutant emissions and the resulting levels of ambient pollutants prevent
a market world economy from achieving efficiency. If the purpose is to correct
for that, the models can be taken as prescriptive and their solution interpreted as
policies, that is, decision variables. Beyond Pareto efficiency other objectives
may be sought for, such as coalitional stability of the solution, as done here.

2.2 The associated games

This is where game theoretic concepts can come into play, if a precise connec-
tion is made between the components of the economy and the elements that
constitute a game. To that effect, remembering that a game (in strategic form)
is mathematically defined, in general, as a triplet comprising a set of players,
the set of strategies of the players, and the players’ payoffs, let us define the
international environmental externality game as

Γ = (N,(Xi)i∈N ,(ui)i∈N) (3)

where N, the set of players, is the set of countries, (Xi)i∈N is a family of sets
of strategies accessible to each player, and (ui)i∈N is the vector of the players’
payoffs, taken to be the values of the countries’ collective utility functions (1).

What the players’ sets of strategies exactly are may remain unspecified at this
point (they do differ according to the IAM under consideration). Be it sufficient
to point out now that the externality feature - a crucial one in this case - is not
lost in the passage from the economy to the game: the variables Eit and ∆t will

1To our knowledge, first formulated by Nordhaus (1994) in a world model called DICE that
was not differentiating utilities across countries. This last feature – without which the issues
raised in this paper do not exist – was introduced in Nordhaus and Yang (1996).
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remain present in the accessible sets (Xi)i∈N as well as the transition equation
(2) that links them. For the time being and until further notice, let us denote
simply by xi any element of the set (Xi), and call a strategy profile any list,
denoted x, of strategies of all players.

Pursuing in the direction of cooperative games, the stability literature consid-
ers players forming coalitions, that is, subsets S of N, and coordinating thereby
their behavior on the externality (typically, in our economic application, partic-
ipants in an environmental agreement among the coalition members). We spec-
ify this in the game by assuming that if a coalition S forms, its members have
access, acting jointly, to a set XS =×i∈SXi of joint strategies (xi)i∈S, on which
they maximize their joint payoffs according to a social welfare function specific
to the IAM. We shall denote by x

S the elements of XS. We simultaneously as-
sume that the non-members maximize their individual payoffs over their respec-
tive strategy sets. Based on this twofold assumption, the outcome of the forma-
tion of a coalition is a particular strategy profile x̃

S =de f

�
(x̃i)i∈S,(x̃ j) j∈N\S

�
,

that Chander and Tulkens (1995, 1997) have called “partial agreement Nash
equilibrium with respect to coalition S ” (PANE wrt S), for which we extend
the concept to allow for general social welfare functions to be maximized. This
efficient solution wrt a coalition S will play a key role in the rest of this paper.

For the sake of completeness, let us point out that the formation of a coalition
in the game Γ is approached differently depending upon the literature where the
stability concepts that we wish to compare originate. In the PIS literature, to be
a member of a coalition is treated as a strategic variable in the first stage of a two
stage game, whose solution consists of, for each i, the fact of belonging or not
to some coalition S (knowing that it will implement a PANE wrt that S). In the
second stage the solution consists of the emission strategies of the PANE wrt the
coalition chosen at the first stage. In the CS literature, Γ is treated instead as a
single stage coalitional cooperative game whose core solution directly specifies
which coalition forms. This difference in origins is without impact, though, on
the issues and results dealt within this paper.

2.3 TU vs NTU games and transfers

The TU vs NTU distinction intervenes when a precise specification is needed
for the expression of “maximizing joint payoffs“ used above for describing the
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behavior of the members of a coalition. For this purpose, a function may be
specified, called the “coalition function“2, whose arguments are all possible
coalitions S ⊆ N and the image some expression of the best outcome that the
members of S can achieve as a group, that is, using the joint strategies XS they
have access to.3 And to the definition (3) of the game in strategic form there
may be added, as a complement, a definition of the game in coalitional form

4

or, for short, of a coalitional game. We present here three alternative forms
of that function which are used in the IAM literature and are the source of the
distinction between TU vs NTU games.

If the coalition function associates with each subset S of N a real number de-
noted v(S), this scalar being the one that maximizes the (unweighted) sum of
the individual payoffs achieved by the members, the game is called TU and de-
noted (N,v) in this coalitional form. The number v(S) is called the “worth“ of
the coalition S. In behavioral terms – that is, in terms of strategies –, this “best“
outcome is obtained from maximizing v(S) over the joint strategy set XS de-
fined above.5 Notice that by doing so it is also assumed that once achieved, this
maximum joint payoff is possibly redistributed among the coalition members
in any way they please, by means of transfers between players inside the coali-
tion.6 The transfers of payoffs that we state here are usually called transfers
of utility if the coalition function v(S) is defined as above. Hence the acronym
TU game. Among the five IAMs reviewed in the comparison paper, CWS and
STACO make use of coalition functions of the kind just described and are thus
TU games.

In a second form, the coalition function associates with each S a set of vectors of
the individual payoffs, denoted V (S), achieved by the coalition members play-
ing their joint strategies. The game then is called NTU, for non-transferable
utility, and denoted (N,V ) in its coalitional form. The best outcome in this case

2We are adopting the terminology of Peleg and Sudhoelter (2007), p.9.
3Thus, in addition to the individual players i, coalitions are also considered as elements of

the definition of the game.
4For a long time, actually since von Neumann and Morgenstern (1944, ChapterXI), the coali-

tional function was called the “characteristic function’, and the game so defined called ”game in
characteristic function form“. By now, and since Aumann (1989, pp. 9 and 49), the term coali-

tional that we are using here seems to have been definitively adopted, as in Peleg and Sudhoelter
(2007).

5Any joint strategies that yield v(N) are called “efficient” strategies, and correspond to a
Pareto optimum of the world economy.

6This is indeed desirable if there are members for which the joint strategy happens not to be
beneficial in terms of their own payoff function.
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is not represented by the sum of the vector’s components, as it would be with
with TU, but instead by the vectors itself. The reason for that lies in the under-
lying economic model, where the assumptions needed to justify the summation
of utilities (and consequently of payoffs in the game) are considered not to be
verified. In fact, the admissibility of summation or non-summation of payoffs
corresponds to alternative assumptions made on the nature of the utility func-
tions in the economy. To the TU formulation there correspond two features7:
(i) that individual utilities are expressed in units of a common numeraire good,
e.g. in dollar units of GDP, and (ii) that the utility functions are quasi-linear
(i.e. linear in the numeraire commodity). Accepting these two restrictions and
thus adding up unweighted utilities across individual players does not make the
analysis meaningless, but it makes it dependent to quite particular interpersonal
considerations.

If the two restrictions above are not accepted, identifying a best outcome for a
coalition’s choice of a joint strategy requires identifying, in the payoff space,
vectors that do not dominate one another in the sense of vector maximization
(as in Kuhn and Tucker’s theorem, that is, in a Pareto sense). Such vector
maximization does not yield a unique solution, in general, so that the image V

of the coalition function V (S) is to be taken as the set of undominated payoff
vectors in the payoffs space8. In NTU coalitional games the worth of coalition
S is thus represented by a set of vectors of payoffs.

The coalition function for NTU may also be defined as a single vector of the
individual payoffs achieved by the coalition members playing one of their joint
strategies and identified via a specific social welfare function to be maximized.
The functional form of social welfare is taken to be the weighted sum of the
players payoffs. The weights - denote them by λi > 0 for each i ∈ S - are deter-
mined by considerations derived from the underlying economic model, in the
spirit of some utilitarian social welfare function for instance, based on equity
considerations, or in relation with the marginal utility of income of the eco-
nomic agents, that the players represent. The coalitional form of the game in
this case should be written v

λ (S). Among the five IAMs reviewed in the com-
parison paper, MICA, RICE, and WITCH make use of coalition functions of

7As mentioned in Peleg and Sudhoelter (2007), pp. 1-2, referring to Aumann (1960).
8In the space of strategies, each such vector being induced by a (possibly) different joint

stategy of the members of S.
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the kind just described.9 No transfers of the payoffs v
λ (S) within the coalition

can be envisaged, though, because of their non-comparability.

But the meaninglessness of transferring payoffs should not preclude the possi-
bility of transferring instead some physical commodity (that induces payoffs),
in the hope of obtaining, in the NTU form of the environmental externality
game, stability properties similar to those well established for its TU form,
which are repeated in Section 3 and applicable to CWS and STACO. We deal
analytically with such “non-utility transfers“ in Section 4 below, applicable to
MICA, RICE, and WITCH.

Transfers play an important role in both forms of coalition functions: they shift
payoffs, directly or indirectly, between the players. The reason for doing that
lies, as suggested in footnote 6, in a possible discrepancy between the payoff a
player obtains when implementing his part of the joint strategy x

S and the payoff
attributed to him at, for example, the non-cooperative Nash-equilibrium of the
game in (3). However, are the transfers themselves elements of the strategy
sets?

The answer is ”no” for the games associated with the five IAMs here under
review. In all cases, the solution concept sought for10 is obtained from com-
puting first the worths of the coalitions of interest from strategy sets XS that
ignore transfers, after which, ex post, transfers between players are computed
so as to find (if possible) a vector of payoffs of all players that achieves the said
solution concept. With this methodology, the virtue of the transfers, on which
the computational experiment of the Lessmann et al. (2014) paper reports, is
conceptual rather than behavioral. They serve to appreciate the feasibility of
the stability concepts, but are not an expression of behavioral assumptions on
the players.

We now move, in sections 3 and 4, to the detailed analysis of coalitional stabil-
ity, respectively for the TU version and the NTU version of the environmental
externality game.

9For analyses of these models with λi-weighted utilities but without the application of trans-
fers see Lessmann et al. (2009) for MICA and Yang (2008) for RICE. Bosetti et al. (2013)
analyze stability results in WITCH and consider transfers by redistributing the present value of
consumption rather than utility (see discussion below equation 11).

10Namely, a potentially internally stable strategy for some coalitions, or a core stable strategy
for the grand coalition, which will be described in detail in sections 3 and 4 below.
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3 The Stability Concepts in the TU-case

3.1 Potential Internal Stability (PIS)

The PIS concept derives from the notion of internal stability (IS) introduced
in the international environmental game by Carraro and Siniscalco (1993) and
Barrett (1994). As mentioned in Section 2.2, a two-stage cartel formation game
is defined where in the first stage players decide on being part of a coalition. In
the second stage the players implement the11 PANE wrt the so chosen coalition.
This defines the equilibrium vector of strategies in Γ.

IS is then a property of the coalition chosen at the first stage. It is verified if
for each of its members the payoff of being inside the coalition is higher than
when being outside of it, and thus higher than when being a free-rider vis-a-vis

the remainder of the coalition. Formally, and more precisely:

A coalition S is internally stable if ∀i ∈ S, u
S

i ≥ u
S\{i}
i

, (4)

with u
S

i
the payoff of player i at the PANE wrt to the coalition S when i is a

member of it, and u
S\{i}
i

player i’s payoff as a singleton at the (new12) PANE
wrt the coalition S\{i} that i is no longer a member of.

Three points need to be made. First, note that in each of these two situations,
the payoffs u

S

i
and u

S\{i}
i

result from joint strategies chosen by the coalitions
S and S \ {i} respectively. For a given S, verifying the right hand side of (4)
requires re-computing as many other PANEs as there are members in S. Thus,
when the number of countries is large, and the number of coalitions is, in turn,
very large, the computational task of checking for IS for each coalition ends
up being quite considerable. Next, notice that, as stated, this definition of IS is
independent of whether or not the payoff functions are quasilinear and TU or
the coalition function is represented by v

λ and payoffs are NTU, as discussed in
section 2.3 above. Finally, the payoffs mentioned in (4), as well as the strategies

11For every coalition S, this equilibrium is proved to be unique by Chander and Tulkens (1997)
in the usual analytical form of the environmental externality game, which is independent of
IAMs. When used in the present applications to IAMs, the uniqueness of such equilibrium is
assumed, and much needed as seen in the sequel.

12Because the defection of i induces the remaining members of S to adapt their equilibrium
strategies.
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that induce them, bear on the whole period 1 . . .T: thus, by construction of the
model, coalitions remain fixed over time.

PIS is a weakening of the IS requirement. It is defined as follows (see Carraro
et al. 2006):

A coalition S is potentially internally stable if ∑
i∈S

u
S

i ≥ ∑
i∈S

u
S\{i}
i

. (5)

If this inequality is satisfied, the total payoffs of the coalitions’ members, i.e.

the left hand side, is sufficient to cover the total of the free-rider payoffs, i.e.

the right hand side, that all these members might claim simultaneously, even
if for some members condition (4) does not hold. Therefore, as observed by
Carraro et al. (2006), if (5) is satisfied, a scheme of payoff transfers among the
members of S – from those for which (4) holds with strict inequality to those
for which (4) does not hold – can be devised such that, by implementing such
a scheme, the coalition S would become internally stable in the sense of (4).
Hence the ”potential” qualification. The transfers are not explicitly stated by
these authors, but Weikard (2009) has formulated conditions that they should
satisfy for a specific analytical model.

There is in particular a feasibility condition: for PIS to prevail, the total of
transfers, formulated in units of payoffs as done above, should not exceed the
(positive) difference between the two sides of the inequality (5). If that differ-
ence is negative, the sum of the members’ payoffs on the left hand side is not
sufficient to cover the claims stated by these same members in the right hand
side. Then, PIS does not hold among the members of coalition S.

For a given game, whether or not the PIS property is satisfied by all coalitions,
by only a few, or perhaps by no coalition at all, depends on the specifics of each
game (that is, properties of their strategy sets and payoff functions), and within
each game, on the specifics of the members of each coalition.13 It may hold for
some coalitions, and not for other ones. Weikard (2009) shows that within a
simple analytical model large heterogeneity in damages from emissions among
the members induces a coalition to become PIS. To the best of our knowledge,
no general analytical condition has been formulated so far that guarantees the
existence of PIS coalitions in more complex versions of the environmental ex-

13In view of the remark that prompted the next to last footnote, notice that the summand on
the right of (5) bears on a number equal to |S| of possibly different PANE’s.
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ternality game.14 However, in numerical simulations of the IAM type, Carraro
et al. (2006), as well as Brechet et al. (2011) found some of them, and these
findings led to the Lessmann et al. (2014) comparison paper, seeking for deter-
minants of potential internal stability of coalitions.

Because the PIS concept is formulated in terms of sums of payoffs, and such
sums are economically meaningful only if payoffs are quasi-linear, as argued in
Section 2.3, the concept has been used in IAMs that assume TU. To overcome
this limitation, we seek in Section 4 below for an extension of PIS to the NTU
case.

3.2 Core Stability (CS)

When Γ is treated as a coalitional game, the fact that players form coalitions is
not rendered explicit as a distinct strategic variable as in the case of IS. Instead,
it is included as part of the solution concept of the game.

The core of a coalitional TU game (N,v) is defined as the set of payoffs vectors
u
∗∗ = (u∗∗1 , . . . ,u∗∗n ), feasible for coalition N, such that (see Myerson (1991)

p.462)
∀S ⊆ N, ∑

i∈S

u
∗∗
i ≥ v(S). (6)

By feasibility is meant that N, the grand coalition, has access to some joint
strategies15

x
∗∗ = (x∗∗1 , . . . ,x∗∗n ) for its members16, which yield ui(x∗∗) =de f

(u∗∗
i
) for each of them, and satisfies

∑
i∈N

ui(x
∗∗)≤ v(N). (7)

When equality holds in (7) the core joint strategy x
∗∗ is an efficient one, and

(6) says that for the members of any coalition S, this strategy profile yields
aggregate payoffs (the LHS of equation 6) larger than the best this coalition
can possibly do (the RHS of equation (6)). Thus, no coalition can pretend to
“block“ the proposed vector u

∗∗ or to improve upon it. The vector u
∗∗, as well

14Brechet et al. (2011, pp. 62-63) provide logical arguments explaining why PIS may not hold
in general.

15There may be many.
16since S = N in this case, x

∗∗is also a strategy profile.
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as the coalition N and the strategy profile x
∗∗ that induces it, are stable in that

sense.

Defined in this way, the core appears as a set in the space of payoffs and in
the strategy space as well. From the use of the additive coalition function in
the specification of the non-blocking condition (6), the possibility of payoff
transfers inside coalition N is implicitly at play. Indeed it was stated earlier
that “the joint payoff is possibly redistributed among the coalition members in
any way they please”. However, such transfers may not be necessary. This is
the case if for all the members of N the efficient strategies x

∗∗
i

happen to yield
individual payoffs that directly meet (6). The simplest example of that is when
all players are assumed to be identical: with the standard analytical model,
Chander and Tulkens (1995) show, in their Section 6, that an efficient strategy
profile without transfers is in the core in that case. We leave it as a conjecture
whether in anyone of the five IAMs, with their parameters modified so as to
be “symmetric“ (that is, countries being identical), one could obtain the same
result.

Thus, CS does not rest in an essential way on the notion of transfers, as it
is sometimes believed. However, when the CS property is not met by an ef-
ficient strategy in an environmental game, the claim of Chander and Tulkens
(1995, 1997) is that the particular transfers they define are a sufficient instru-
ment to obtain stability. While this was first established for the analytic model
in its static version, an extension to a formulation adapted to the intertemporal
framework of IAMs led to the formula of “generalized GTT transfers“ given
in equations (30) and (31) of Eyckmans and Tulkens (2003). Introducing it in
the simulations done with CWS, and repeating the exercise with Brechet et al.
(2011) has revealed that the optima so computed, supplemented by the general-
ized GTT transfers, are indeed solutions in the core of the CWS game. To our
knowledge, there has been so far no reporting of tests of that property with the
other TU-IAM, namely STACO.

As a final remark, since the games constructed from CWS and STACO are
TU games, the transfers are expressed, as suggested above, in units of payoffs,
that is, in units of discounted sums of aggregate consumptions in the various
countries over the whole time horizon of the models, see equation (1). This
raises the practical question of when these sums are to be paid and received.
At whatever times they are paid, the amount of consumption at these points in
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time needs to be sufficient to ensure the feasibility of the transfer (formalized
below in equation 13). The same question of when transfers are paid arises in
the next section and we postpose the discussion of it to the concluding section
of the paper.

The extension of the PIS and core stability concepts to the NTU case will be
our second purpose in the next section.

4 The Stability Concepts in the NTU-case

In this section we present how the two stability concepts translate to the NTU
setting with a transferable commodity. We take advantage of the fact that in the
underlying economic model there is at least one commodity which is transfer-
able and yields utility, and we use this one for transfers. As was the case for
TU transfers in the preceding section, commodity transfers are treated below
“ex post“, that is, they are not part of the strategy sets of the players, but are
introduced after an optimum without transfers is obtained, as a computational
operation with no explicit behavioral motivation on the part of the players.

4.1 Differences between transfers in the TU and the NTU games

Transfers in our model are just numbers denoted τit ∈ R, satisfying the con-
dition that one unit of it added to a player i has to be balanced by an equal
reduction from another player, i.e. and more generally, for any transfer we have
∑i τi = 0, with τi = (τit). As we wish to restrict transfers to occur within coali-
tions, the set of all possible transfers we shall admit as possibly occurring when
S forms reads:

T(S) = {(τi) = (τit) : i ∈ N, t ∈ T ∧ ∀t ∈ T : ∑
i∈S

τit = 0

∧ ∀ j /∈ S : (τ jt) = 0}.
(8)

Both the units in which transfers are expressed as well as the way in which
transfers enter the players’ payoff functions differ depending upon the TU vs
NTU formulation of the game. In the former, we repeatedly mentioned above
that transfers are implicit in the definition of coalition functions as well as in
the results obtained with them. To make them explicit we may rewrite the
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individual payoff function (1) of player i when he is a member of S and after
transfers as:

u
TU,S
i

= (∑
t∈T

β t−1
uit(Cit))+ τSu

i , (9)

in which indeed the transfer τSu

i
(> 0 if received by i, < 0 if paid by i) is ex-

pressed in the same units as the discounted payoff, and done ex post, that is,
as a lump sum separate from the choice of Cit , hence the superscript u and the
absence of a time index.17

In the NTU formulation, one may propose to write18 the players’ individual
payoff functions as:

u
NTU,S
i

= ∑
t∈T

β t−1
uit(Cit + τSc

it ) (10)

where the transfer is now denoted τSc

it
, expressed at each time t in the same

units as the composite commodity (hence the superscript c). Discounted over
the whole time period T with discount-factor rit , it amounts to the single number
that we now define as

τ̄Sc

i = ∑
t∈T

ritτSc

it , (11)

as done in Bosetti et al. (2013).19 Bosetti et al. add the discounted transfers
in equation (11) to the discounted sum of consumption streams ∑t∈T ritCit , an
approximation to utility, in order to test the PIS-property of a coalition. This
procedure however neglects the fact that marginal utility is non-constant and
can therefore not provide a definite test of whether a coalition is PIS via ex-post
re-distribution. The definition of PIS given below is based on utility rather than
discounted comsumption and is therefore more general.

The role that the transfers defined in equation (10) play in the two stability
concepts is presented in the next subsections.

17This is exactly what Eyckmans and Tulkens (2003) do for CWS (see their equations (30) and
(31), which are more explicit on the time dimension than equation (1) in Brechet et al. 2011),
and repeated in the Lessmann et al. (2014) comparison paper. The same applies to STACO as
appears from formulae of their transfers given as equations (13) and ff. in the Nagashima et al.
(2009) version of the model, and repeated in the comparison paper.

18As done for WITCH in Bosetti et al. (2013), see their equation (4), and also in the Lessmann
et al. (2014) comparison paper.

19See in particular equations (7) and (8).
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4.2 Potential Internal Stability in IAMs under NTU

For any coalition S, IS under NTU is defined exactly as in equation (4) when
the game is of v

λ -type. For PIS, since we cannot use the summation of utilities
as in equation (5), we express the definition of the concept in the NTU case in
terms of vectors of payoffs as determined by the functions (10).

As these result from strategy profiles specific to each coalition S, we have to
rephrase (5) in a way that expresses them fully. This is done as follows: A
coalition S is potentially internally stable in the v

λ environmental externality
game if, given the PANE x̃

S that prevails when coalition S forms as well as, for
each i ∈ S, the PANE x̃

S\{i} prevailing in the coalition S \{i} that forms when
player i defects from S, there exists a transfer scheme (τSc

i
)∈ T(S) and inducing

payoffs ũ
NTU,S
i

such that

∀i ∈ S, ũ
NTU,S
i

=de f ∑
t∈T

β t−1
ui(C̃

S

it + τSc

it )

≥ ũ
NTU,S\{i}
i

= ui(x̃
S\{i}
i

), (12)

where C̃
S

it
is the it-th consumption component of the strategy profile x̃

S

i
.

As seen in this last expression the commodity transfers (8) can replace the utility
transfers for coalition S to ensure its members at least their outside option pay-
offs ũ

S\{i}
i

. Doing so a feasibility issue arises in commodity terms: the amount
of commodity to be transferred by the members of S to the possibly defecting
members at each point in time must be feasible for this task, the amount being
taken from the commodities that coalition S produces. Since transfers are re-
distributed in an ex-post fashion without influencing the underlying economies
at the PANE wrt S, the amount of commodity paid by any region has to be
deducted purely from consumption so that investment decisions can remain at
their respective level:

C̃it + τ̃it > 0 ∀i ∈ S ∀ t ∈ T. (13)

This feasibility constraint applies to all IAMs. Additionally and depending on
the specific modeling context, other constraints may be added to ensure that
ex-post redistribution is feasible for all economies.
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In Bosetti et al. (2013) results as computed with WITCH are reported on PIS
holding for (some) coalitions, albeit basing the redistribution on the present
value of consumption and transfers defined as in equation (11). Typically, the
grand coalition is never PIS (as indicated on the second and last lines of their
Table 3), but various smaller ones are. Other IAMs with NTU have thus far not
been subject to PIS analysis with coalitions.

As a closing remark on PIS, applying this NTU-definition to a TU-game should
lead to the same conclusions as when using the simple TU definition in (5),
due to the fact that in both cases transfers are ex-post and do not influence the
solutions x̃

S: only a fixed ’cake’ is distributed. Yet the cake is of a different
composition as well as subject to different limitations as to its size. Therefore it
is not clear whether a same game, treated successively as TU and NTU would
lead to identical coalitions being either PIS or not.

4.3 Core stability in IAMs under NTU

The core of a coalitional NTU game (N,V ) is defined as the set of payoffs
vectors u

∗∗ = (u∗∗1 , . . . ,u∗∗n ), feasible for coalition N, which are not dominated
by feasible payoff vectors of the members of any other coalition. Formally,

∀S ⊆ N, and ∀i ∈ S, u
∗∗
i ≥ u

∗S

i (14)

needs to hold for all feasible payoff vectors (u∗S

i
) ∈V (S) of the coalitions S.

More explicitly, in terms of strategies, by “no domination“ is meant that N, the
grand coalition, has access to some joint strategies20

x
∗∗ = (x∗∗1 , . . . ,x∗∗n ) for its

members21, which yield ui(x∗∗) =de f (u∗∗i
) for each of them, and is such that

there exists no coalition S ⊂ N for which a PANE wrt S, x̃
S, yields

ui(x
S)≥ ui(x

∗∗) ∀i ∈ S with > for at least one i. (15)

For S = N, expression (15) replaces, in this NTU definition of the core, the
efficiency requirement (7) in the TU case. For all other S, equation (15) ensures
that no coalition can “block“ the proposed vector u

∗∗ by pretending to improve
20There may be many.
21since S = N in this case, x

∗∗is also a strategy profile.
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upon it. The vector u
∗∗, as well as the coalition N and the strategy profile x

∗∗

that induce it, are “NTU-stable” in that sense.

Turning to IAMs, the issue of interest is to find out whether a computed ef-
ficient solution could belong to the NTU core, with or without transfers (and
not, as is sometimes believed, to compute the entire core). To that effect, let us
briefly recall how this is done in the TU framework, e.g. with CWS22. Compute
first the efficient solution (with all weights equal to 1) , and record in particu-
lar the payoff of each player at that solution. Compute next the worth of each
coalition (with the same equal weights), that is, a single number for each coali-
tion, and compare this number with the sum of the payoffs that the coalition
members obtain at the efficient solution, another single number. If the differ-
ence between the former and the latter is positive for all coalitions, the efficient
solution already belongs to the TU core, without transfers. If this difference is
negative for one or more coalitions, it does not, but after applying GTT transfers
to the efficient solution, and making the comparison again, it appears that the
difference is positive for all coalitions. Thus, efficiency with transfers yields a
solution in the core of the game associated with CWS, for the parameter values
used in that experiment.

In the NTU framework, parts of that procedure can be followed, while others
cannot for the obvious reason of non-additivity of payoffs. Nevertheless, let
us follow that path. Take an IAM, compute a PANE of the Grand Coalition,
and record the individual payoffs so obtained, as well as, of course, the strategy
profile that induced them. Check whether or not these strategies, after having
been introduced as arguments of the individual (NTU) payoff functions, are
undominated in the sense of (14). If they are undominated, we claim that the
solution is in the NTU core.

For the case of ex-post transfers (τit)∈ T(S) that induce feasible payoff-vectors
of the sub-coalitions, a procedure to test for the blocking power of a coalition S

is proprosed in section 5.3. With this method, a payoff vector u
N of the Grand

Coalition can be rejected to belong to the core if a blocking coalition is found
with respect to the case that a transfer scheme (τit) ∈ T(S) exists that, once
implemented, violates equation (14). However, since not the entire accessible
strategy space is tested in this manner, only potential candidates of u

∗∗ can be
identified.

22see the details in Table 5, pp. 321-322 of Eyckmans and Tulkens (2003).
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To our knowledge, none of the five IAMs here under review has been subject to
CS analysis with NTU coalitions23.

5 Testing for stability

5.1 A method to test for PIS

In case of NTU of the v
λ -type (models MICA, RICE, and WITCH), we can test

for PIS of a coalition by considering all possible transfer schemes as control
variables in a maximization problem. Indeed, at the PANE wrt to some coalition
S, given the corresponding utility vector (uS

i
)i∈S, take as fixed the vector of

consumptions C̃
S of its members. Then, for an arbitrary but fixed coalition

member k solve

max
(τkt)

uk(C̃
S

kt
+ τkt), (τit) ∈ T(S) (16)

subject to u j(C̃
S

jt + τ jt)≥ u
S\{ j}
j

for j ∈ S\{k} (17)

C̃it + τit > 0 for i ∈ S, t ∈ T (18)

....

That is, redistribute consumption of all i∈ S at each time t such that all members
except player k receive at least their outside payoff, and player k receives as
much as possible given this restriction. Additional feasibility constraints can be
added to this procedure that are specific to the IAM. Then S is PIS if the payoff
ũ

S

k
= u

S

k
(CS

kt
+ τ∗

kt
) of k, with (τ∗

kt
) the solution to (16–17), exceeds her outside

payoff u
S\{k}
k

.24

5.2 A continuous measure of PIS

The excess surplus per member of the coalition, by which we mean any sur-
plus that is not necessary to make the coalition PIS, may serve as a continuous
indicator of the degree of stability.

23In the Lessmann et al. (2014) comparison paper, CS is not dealt with at all, but is announced
for later.

24This approach is similar to the linear programming problem proposed for example in Fried-
man (1986, pp. 187-217) to test whether the core is nonempty in TU games.
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For j ∈ S \ {k}, the (C̃S

jt
+ τ∗

jt
) are minimal in the sense that they generate no

more than the necessary outside payoff. By maximizing the left-over consump-
tion

max
∆Ct

Λ = ∑
t

1
1+ rkt

·∆Ct (19)

subject to uk(C̃
S

kt
+ τ∗

kt
−∆Ct)≥ u

S\{k}
k

(20)

∆Ct ≥ 0 (21)

C̃
S

kt
+ τ∗

kt
−∆Ct > 0 for t ∈ T (22)

....

while ensuring the arbitrary but fixed member k from (16–17) at least her out-
side payoff, the maximum amount of money still to be distributed among the
members is determined, where rkt is the discount-rate of member k. If S is not
PIS, one may drop the conditions (21) and allow Λ to be negative. This then
indicates how much consumption S is lacking. The per-member indicator Λ/|S|
resembles the continuous measure.

5.3 An algorithm to test for Blocking Power

Consider a feasible payoff vector (ũN

i
)i∈N , possibly induced by a transfer scheme

(τi)∈ T(N) in the grand coalition N, and a potentially blocking coalition S. The
question then is whether there exists a transfer scheme (τi) ∈ T(S) that ensures
every member j ∈ S at least her inside-payoff ũ

N

j
so that (14) is not fulfilled.

In order to derive this, we set up a maximization procedure. Choose an ar-
bitrary but fixed member j ∈ S. Maximize her payoff with arbitrary transfers
(τi) ∈ T(S) subject to the constraints that every other member k ∈ S \ { j} re-
ceives at least the payoff ũ

N

k
:

max
(τi)

u j(C̃
S

jt + τ jt), (τi) ∈ T(S) (23)

subject to uk(C̃
S

kt
+ τkt)≥ ũ

N

k
∀k ∈ S\{ j} (24)

C̃
S

kt
+ τkt > 0 for t ∈ T (25)

....
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with C̃
S

jt
being the jt-th component of a strategy profile x̃

S

j
that the coalition S

has access to. This ensures that every member k ∈ S \ { j} receives the inside
payoff ũ

N

k
and that member j will get the highest payoff possible under these

constraints. If the resulting payoff of player j is greater than her payoff in the
grand coalition, ũ

N

j
, then the solution to problem (23), (ũS

i
)i∈N , contradicts (14)

and the coalition S can block the grand coalition.

6 Concluding remark

A “practically“ minded reader might ask the question: when are these stability
enhancing transfers ever paid and received? The dynamic nature of the ex-
post transfers we propose in the NTU formulation of IAMs reveals that they
need to be paid over the entire time horizon of the model. Therefore, just as
the agreement of a stable coalition prescribes abatement efforts for every pe-
riod, transfers are specified as binding for every period as well. For the case of
TU, transfers are formulated in discounted present value terms, which makes it
possible that they are paid in the final period after all benefits and costs have
accrued. However, also in this case a dynamic formulation based on the con-
sumption streams available to the regions could be feasible. Now, given the
extremely long extension of that time path, the decisional aspects of the opti-
mizations achieved by IAMs such as those reviewed here cannot be considered
as realistic.

There is nevertheless an interest in defining and computing them as they confirm
and illustrate the qualitative assertions of the theory, and give some orders of
magnitude of their quantitative importance, relative to the rest of the economy.

Yet, the lack of realism just mentioned is not to be found in essential properties
neither of the stability concepts nor of the transfers instrument. It is rather due
to the methodology of open loop dynamic optimization used in all five IAMs.
Other techniques have been proposed to avoid the rigidities of this method, but
their implementation in numerical IAMs is currently at a exploratory stage only.
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