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Abstract 
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1 Introduction

To satisfy customers, companies develop product lines and thereby increase the number of products. This
allows capturing demand by o�ering di�erent functionalities �tting the various customer needs. Consumers
also experience variety as a service and this explains the regular product accumulation in many �rms'
portfolio. At some point however, the product proliferation and the portfolio complexity are so high that
end-of-life or similar stock-keeping units (SKUs) need to be discontinued. This process is known as SKU
rationalization. We develop in this paper a mathematical programming tool supporting this process for a
two-echelon supply chain case composed of a supplier, a central warehouse and multiple customers. More
speci�cally, the goal is to balance the savings provided by SKUs elimination and the loss of revenue from
decreasing sales volume.

With this goal in mind, the main di�culty lies in the determination and in the modelling of various
implications of a product portfolio simpli�cation.

Morgan et al.[16] analyse the importance of operational cost implications of the product line design.
They describe �ve di�erent levers of cost savings (Table 1). Firstly, the elimination of SKUs allows shifting
the customers towards products with higher average selling prices. Secondly, it improves the manufacturing
productivity thanks to fewer changeovers and less scraping waste. Thirdly, the improvements in manufac-
turing and the reduction of changeovers free up capacity. Fourthly and as Alfaro and Corbett make use
in 2003 [2], inventories are pooled and this SKU consolidation cuts holding costs. Finally, the portfolio
simpli�cation brings about a bene�t regarding the operational and administrative product management,
decreasing thereby the workload and improving the yield of employees.

Regarding the drawbacks, the elimination of SKUs surely impacts the demands of the whole set of
products. The modelling di�culty actually lies in the forecast of the customer's behaviour following the
portfolio reshape. How many of them will agree swapping? In which extent does the �rm control the
choice of a substitute? Which substitute would customers pick up if they can choose? Do they prefer
moving to the competitor? All these questions need to be covered by the demands reshape modelling.
Also, demanded quantities impact all the variable costs or bene�ts. Therefore, the model has to take care
of the revenue and of the production, transportation and inventory costs to embody all the rationalization
e�ects in the pro�t calculation.

The rest of the paper is divided into three main sections. The following reviews the relevant literature.
Section 3 describes a mixed-integer conic optimization model in the case of corporate control of product
substitution and independent demand. We then show how to adapt the model to deal with several
variants: dependent demand, customer choice of substitution and non-homogeneous product substitution.
Finally, section 4.1 illustrates the approach in a real-life industrial application and demonstrates that our
procedures scale up to portfolios of at least 400 SKUs.

Levers Bene�ts

Pricing Shift of customers to products with higher average selling price
Raw Materials Higher manufacturing productivity due to fewer changeovers and scraps

Manufacturing
Capacity freed up due to the diminution of changeover waste
Capacity freed up due to the higher manufacturing productivity

Inventory Reduction of required inventory due to consolidation and pooling of products
Management Reduction of workload due to the simpli�cation

Table 1: Bene�ts of Portfolio Simpli�cation

2 Literature Review

Literature makes use of a diverse vocabulary to analyse the number of products that a �rm wants to
make available for her customers. This topic is generally described as variety management, product line
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management or product line design. However, a substantial fraction of this body of research including
the present paper considers the process of reducing the number of SKUs o�ered by the company. In this
regard, terms such as SKU rationalization, e�cient product portfolio reduction, product range simpli�-
cation or optimization of product variety are used. This is related to concepts like complexity reduction,
product proliferation or cost of providing variety. In this article, all of those expressions will be used
interchangeably.

However, assortment planning must be distinguished from variety management. Indeed, it occurs at
the retailer level and involves an understanding of the cognitive consumer's behaviour in front of the shelf.
In this paper, we focus on longer term decisions regarding the product portfolio management, for which
the supporting analyses are carried out from a broader viewpoint, the market level.

Following Ramdas [18], we classify the studies intended to support product range simpli�cation in two
categories.

On the one hand, qualitative methodologies have been set up by various authors and consulting compa-
nies, proving the importance of SKU rationalization in modern businesses. This results in the elaboration
of best practices based on the analysis of transactional data and key performance indices (sales volumes,
pro�t, productivity, substitutability, etc.) and on the �rm's objectives (targeted SKU number, priorities,
etc.) to select the products to discontinue from an existing portfolio. Also, Martin, Hausman and Ishii
[13] recommend to support product portfolio decisions the use of indices of commonality, of di�erentiation
and of set up, or other qualitative tools such as the process sequence and commonality graphs.

On the other hand, and the present paper falls in this category, models can be built to try determining
the optimal product range by means of mathematical programming. Fellini, Kokkolaras and Papalambros
[10] use an extended commonality strategy to reduce the number of SKUs by e�ciently grouping similar
products. McBride and Zufryden [14] propose an integer programming approach to the optimal product
line selection based on products attributes and consumer measurements. Dobson and Kalish ([8] and [9])
include in their programming a �xed and a variable cost related to each product pro�le.

The model that we will develop contains formal similarities to location-inventory problems. Therefore,
we brie�y review now the most relevant works in this area. Shen, Coullard and Daskin ([7] and [19]) develop
a joint location-inventory model which embodies the inventory pooling e�ects on the facility location
decision. This is done in the objective of shaping increasingly integrated supply chains. They consider
independent and normally distributed demands, and solve the problem with a Lagrangian relaxation
algorithm requiring additional distributional assumptions.

Di�erent extensions of their facility-location model have been studied. On the one hand, Aydin,
Kayis and Guker [4] consider in 2011 dependent or correlated demands and on the other hand, Corbett
and Rajaram [6] cover the case of non-normal and dependent demands. Gerchak and He [12] analyse
also the relation between the bene�ts of risk pooling and the demand variability to show that savings
are lower when demands are more positively correlated. Shen and Daskin [20] �nd a way to serve the
uncovered demand through the location decision. Shu, Song and Sun [21] and then Snyder, Daskin and
Teo [22] transform the problem in a stochastic location-inventory model with risk pooling, using scenarios
where long-term location and inventory allocation decisions are temporally separated. Finally, to solve
the joint location-inventory model, Atamtürk, Berenguer and Shen [3] provide an innovative conic integer
programming formulation which we will use in the next sections.

We contribute to this literature by describing a more comprehensive model that includes e�ects like
product pooling or pricing. Using recent ideas for similar location-inventory models, we show how to
reformulate as a MIQCP, and that commercial solvers can be e�cient to solve the program in a reasonable
amount of time.

3 Mathematical Models

This section is divided in three parts. The �rst one is dedicated to the model development, where we
review the required assumptions and needed notations. The actual problem formulation, the objective
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function de�nition and a resolution procedure compose the three last subsections of this �rst part. The
two last parts of the section discuss di�erent sets of assumptions about customer behaviour. The model
is adapted in the �rst one to correlated demand distributions, while it considers the customer behaviour
out of �rm's control in the second one.

3.1 Model with Company Control

3.1.1 Assumptions

Here is the list of basic assumptions that we make and we discuss next. The �rst two will be made
throughout the paper, while H3, H4, H5 and H6 will be relaxed in the next subsections.

H1 Linear transportation cost function;

H2 EOQ policy to compute the transportation and working-inventory costs;

H3 Constant lead time respective to the SKU;

H4 Corporate control of the demand reallocation;

H5 Only one substitute SKU;

H6 Independent and normally distributed demands.

To model production cost savings thanks to SKU rationalization, we include in our model two �xed
costs: one per product, and another per family of products. The per-product �xed cost will be represen-
tative of the following bene�ts associated with an SKU suppression: increase of capacity utilization (e.g.
less setups and changeovers), decrease of scraps (e.g. less setups and changeovers), reduced supervision
and administrative workload from simpli�cation.

In addition to these per-SKU �xed costs, the production structure may justify additional savings
if entire product families can be eliminated. Following Meyer and Utterback [15] we de�ne a product
family as �a group of products sharing a common platform in terms of market understanding, distribution,

manufacturing or service dimensions�. Park and Simpson [17] discuss a method to determine the costs
shared by common components. To include this aspect in our model, a family �xed charge is introduced
to illustrate that a whole family elimination entitles the suppression of an additional �xed cost. In other
words, this charge occurs if at least one SKU from the family is produced. This also exempli�es how
�exible the modelling process is and how it may be modi�ed to deal with additional features.

Next, to model bene�cial e�ects related to inventory pooling, we model safety stock using the classical
safety stock formula that assumes normal and independent demands (H6) and constant lead times (H3).
This is for ease of presentation only, as we will allow for correlated and random lead times in Section 3.2.
Finally, to derive transportation cost we assume them to be linear (H1).

The main drawback associated with SKU elimination is of course a decrease of demand. This leads
to classical recommendation as products should only be dropped if they merely cannibalize demand from

other products [5]. To go beyond this, one needs to understand what will be the customer reaction to the
elimination of their preferred product. To model this, we assume that some fraction of the demand will
disappear, while the remainder of the demand will be reported to another, similar product in the o�ering.
Let us de�ne the substitution parameter δij ≥ 0 as the positive number so that, in case product i would
be eliminated from the portfolio and the only alternative would be product j, each unit of demand for
product i would be replaced by δij units of demand for product j. That is, δij models both a partial
substitution e�ect and a unit conversion e�ect (in case i and j are expressed in di�erent units). When i
and j are expressed in identical units, then δij is the substitution rate and in particular δij = 1 means
that products i and j are perfect substitutes.
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We suppose that this substitution relation can be reliably estimated between each single pair of SKUs,
by means of forecasting, surveys, customer consultations or other quantitative methods. We also assume
that the company controls the substitution and decides how she wants to reallocate the customers among
the products (H4). An alternative model of customer behaviour will be presented in Section 3.3 where we
will assume that the company does not control the substitute SKU, but customers decide the substitution
product, based on a ranking of these products. Finally we also assume for simplicity that there is only
one substitution SKU, or that the residual demand of a cancelled item is not split up between di�erent
replacements (H5). Thereby, the customers of that deleted SKU are supposed to move homogeneously
towards either one other SKU, or a competitor. This assumption can be relaxed by using customer
individual information to reallocate demand, as we do in section 3.4.

3.1.2 Notation

Before moving to the model formulation, we introduce the notation used.

Sets

i, j ∈ I set of SKUs composing the portfolio,

k ∈ K set of SKU families,

Ik subsets of SKUs i belonging to the family k,

Parameters

Demand

Ωi annual demand distribution assumed to be Normal (µi,12σ2i ),

µi yearly demand for SKU i,

σi standard deviation of monthly demand for SKU i;

Revenue and costs

pi unit average selling price of SKU i,

ci variable production cost related to SKU i,

fi �xed cost related to the presence of SKU i in the portfolio,

lk �xed cost related to the presence of family k, i.e. if at least one SKU of Ik is in the �nal portfolio,

t(x) annual transportation cost function for a yearly demand quantity of x,

v(x) shipment cost function for x units from the supplier to the warehouse,

d unit transportation cost from the supplier to the warehouse,

g �xed cost of shipment,

w(x) working inventory cost function for a yearly demand quantity of x,

hj annual unit holding cost,

F �xed cost of ordering,
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Other parameters

LTi lead time for SKU i,

α desired service level, or the probability of not encountering stock out,

δij substitution parameter between products i and j, see de�nition and discussion above,

Weights

θ ≥ 0 relative weight assigned to the inventory cost,

β ≥ 0 relative weight assigned to the transportation cost.

Decision Variables

Yi ∈ {0, 1} equals 1 if the SKU i remains in the standard o�ering and 0 otherwise,

Wk ∈ {0, 1} equals 1 if at least one SKU belonging the the family k remains in the o�ering, and 0 otherwise,

Xij ∈ {0, 1} equals 1 if SKU i is discontinued and if its demand is transferred to j, and 0 otherwise,

Dj ≥ 0 demand for SKU j after rationalization,

The model is thus composed of O(|I|2 + |K|) variables.

3.1.3 Problem Formulation

Based on the provided hypothesis and notations, we obtain the following mixed-integer optimization
problem. At this point, we only give a very generic objective function that we will fully specify in Section
3.1.4.

max
∑
j∈I

Kj(Dj)− Fj(Yj)−Hj(X.j)−
∑
k∈K

GK(Wk)

subject to

Xij ≤ Yj , ∀ i, j ∈ I (1)∑
j∈I

Xij ≤ 1, ∀ i ∈ I (2)

Dj =
∑
i∈I

δijµiXij , ∀ j ∈ I (3)

Xii = Yi, ∀ i ∈ I (4)

Yi ≤Wk, ∀ i ∈ Ik, k ∈ K (5)

Xij , Yi,Wk ∈ {0, 1}, ∀ i, j ∈ I, k ∈ K (6)

where X.j denotes the column j vector of matrix X. Constraint (1) ensures the demand of the discontinued
SKUs is allocated to an SKU kept in the portfolio. The second constraint makes sure that the demand
of an abandoned SKU is transferred to only one other product. The constraint (6) de�nes the existence
domain of decision variables.

Clearly, this part of the model corresponds to the uncapacitated facility problem. In most of cases,
these models attempt to minimize the involved �xed and transportation costs. Our formulation is partly
analogous because the same kinds of decisions are expected. The initial set of SKUs corresponds to the
potential facility sites and each product involves a �xed cost, just like the building of a plant. Then,
the opening variables will determine if the speci�c SKU is con�rmed and if the respective �xed cost
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has to be reckoned. Also, the distance from the plant to the customer is analogous to the discrepancy
between the product and the customer's needs. While closing plants generates higher transportation costs,
discontinuing SKUs increases the gap between the products and the preferences, which results in a loss of
demand depending on the substitution parameter.

However, even if the framework of both problems seems similar, an important discrepancy arises
in comparison with the basic facility location problem. As we will see, the objective function is non-
linear because of other elements like the safety stock. Also, additional constraints are necessary to model
SKU rationalization. The new demand needs to be de�ned as a function of the allocation variables and
parameters δij . This is ensured by (3). Constraint (4) guarantees that the demand of an SKU kept in the
portfolio is not reallocated. Finally, constraint (5) ensures the family �xed cost is saved only if all SKUs
in the family are discontinued. This generic model has O(|I|(|I|+ |K|)) variables and constraints.

3.1.4 Objective Function De�nition

As explained in the introduction of the model, we are interested in the e�ects of pooling the demand of
di�erent SKUs together, which are the elimination of the set up costs per SKU and family of SKUs, and the
bene�ts of pooling the safety stock. Moreover, the rationalization is going to a�ect the demand. Hence, we
have to consider all the revenues and costs depending on the total demand. We will consider the revenue,
the production, the transport and the working inventory and we'll try to maximize the bene�ts minus
those di�erent costs. Table 2 summarizes the components involved and provides a �rst mathematical
formulation.

Objective function Formulation Explanation

+ Revenue pjDj Price multiplied by the new demand
- Production cost cjDj Production cost multiplied by the new de-

mand
- Set up cost related to the

existence of a SKU
fjYj Set up cost to be considered when the SKU

continues to exist (Y =1)
- Set up cost related to the

existence of a family
lkWk Set up cost to be considered when the family

exists (W =1)

- Safety stock cost θhjZα
√
LTj

√∑
i∈I δ

2
ijσ

2
iXij Weighted SS formula where the deviation is

the sum of pooled items' standard deviations
- Annual transportation

cost
t(Dj) Function to be determined hereafter

- Working inventory cost w(Dj) Function to be determined hereafter

Table 2: Components of the objective function

When we aggregate the seven elements, we get a �rst formulation of the objective to maximize:

max
Xi,j ,Yj ,Dj ,Wk

∑
j∈I

(pj − cj)Dj − fjYj − θhjZα
√
LTj

√∑
i∈I

δ2ijσ
2
iXij − βt(Dj)− w(Dj)

−∑
k∈K

lkWk

We still need to determine t(Dj) and w(Dj), the transportation and working inventory costs related to the
annual demand Dj . Actually, both costs depend on the shipped quantities and on how often the orders
are dropped. We use the approach developed by Shen et al. [19] based on the Economic Order Quantity

policy (H2). The purpose of this model is to determine the optimal quantity to order (and thereby the
number of orders), which balances and minimizes inventory and transportation costs. Once the expression
of this number is known, a �nal formulation of the involved costs can be derived.

The development illustrated in Appendix A shows for a speci�c product the derivation of the optimal
number of orders from the costs, and its insertion into the cost expressions. The �nal formulation for the
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transportation and working inventory costs obtained for every SKU j is:

βt(Dj) + w(Dj) =
√

2θhDj(F + βg) + βdDj

This expression can be injected in the objective function to reach the �nal version.

max
Xi,j ,Yj ,Dj ,Wk

∑
j∈I

(pj − cj)Dj − fjYj − θhjZα
√
LTj

√∑
i∈I

δ2ijσ
2
iXij −

√
2θhDj(F + βg)− βdDj

−∑
k∈K

lkWk

max
Xi,j ,Yj ,Dj ,Wk

∑
j∈I

(pj − cj − βd)Dj − fjYj − θhjZα
√
LTj

√∑
i∈I

δ2ijσ
2
iXij −

√
2θhDj(F + βg)

−∑
k∈K

lkWk

max
Xi,j ,Yj ,Dj ,Wk

∑
j∈I

(pj − cj − βd)Dj − fjYj − qj
√∑

i∈I
δ2ijσ

2
iXij − sj

√
Dj

−∑
k∈K

lkWk

where qj = θhjZα
√
LTj and sj =

√
2θhj(F + βg)

3.1.5 Resolution Procedure: A Conic Quadratic Mixed Integer Reformulation

This problem is hard to solve because of the non-linearity of the objective function. Following Atamtürk
et al.[3], we reformulate it as a mixed integer (convex) conic quadratic program. Indeed convexity is key
to be able to e�ciently solve the continuous relaxation and exploit it in a branch-and-bound procedure.
For example commercial solvers like GUROBI [1] include now modern algorithms able to deal with conic
quadratic formulations.

The objective function is linearised by replacing the two non-linear terms by auxiliary variables t1j

and t2j . To be equivalent, the optimal solution of this program must satisfy t1j =
√∑

i∈I δ
2
ijσ

2
iXij and

t2j =
√
Dj =

√∑
i∈I δijµiXij . Natural constraints are t

2
1j ≥

∑
i∈I δ

2
ijσ

2
iXij and t

2
2j ≥

∑
i∈I δijµiXij , with

non-negativity conditions on t1j and t2j . To ensure convexity and since Xij = X2
ij for binary variables,

these inequalities are reformulated by the conic quadratic constraints (8) and (9):

max
Yj ,Xij ,Dj ,Wk

∑
j∈I

[(pj − cj − βd)Dj − fjYj − qjt1j − sjt2j ]−
∑
k∈K

lkWk

subject to

t1j , t2j ≥ 0 ∀ j ∈ I (7)∑
i∈I

δ2ijσ
2
iX

2
ij ≤ t21j ∀ j ∈ I (8)∑

i∈I
δijµiX

2
ij ≤ t22j ∀ j ∈ I (9)

(1) - (6)
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3.2 Model with Dependent Demands and Stochastic Lead Times

Several assumptions made up to now are clearly unrealistic. In particular, it seems very natural for
demands of substitutable products to be correlated. Moreover, the lead times are not always deterministic
and may be characterized by a variance. Therefore, this section generalizes the model to integrate these
two aspects.

Practically, to take these into account in the model, only the formulation for the safety stock cost
needs to be modi�ed. Instead of just taking the sum of the variances, we now need to take into account
the correlation of demands and the variability of lead times.

Firstly, the aggregate variance of pooled correlated demands is basically V ar(
∑

iXijδijΩi). Follow-
ing classical rules from statistics, the variance of a sum of correlated variables multiplied by a constant
parameter is:

V ar(
∑
i

XijδijΩi) =
∑
i,i′

δijδi′jXijXi′jCov(Ωi,Ωi′), ∀ j ∈ I.

Let us denote V j the adjusted variance-covariance matrix respective to each SKU j, where each element
V j
ii′ is δijδi′jCov(Ωi,Ωi′). Then, the variance term of demands becomes

XT
.jV

jX.j

where X.j denotes the column j vector of matrix X.
Secondly, the safety stock variation term now includes the variability of lead times. The deviation

factor is equal to
√
LTσ2D + µ2Dσ

2
LT , where LT and µD are the respective mean lead time and mean

demand, and σLT and σD the respective lead time and demand deviations.
For a speci�c product pool, the mean lead time and the deviation of the initial product are used. The

variance of the demand is computed as explained here above and the mean is simply equal to the sum
of forecasts of assigned products, i.e.

∑
i µiXij . As the variables Xij are binary, the squared aggregate

demand can be written XT
.jMX.j , where

M =


µ21 µ1µ2 · · · µ1µ|I|
µ2µ1 µ22 · · · µ2µ|I|
...

...
. . .

...
µ|I|µ1 µ|I|µ2 · · · µ2|I|


Hence, the derived safety stock cost term is

θZαhj

√
LTjσ2D + µDσ2LT = θZαhj

√
LTj(XT

.jV
jX.j) + (XT

.jMX.j)σ2LT

= θZαhj

√
XT
.j (LTjV

j + σ2LTjM)X.j

and the generalized model becomes:

max
Xi,j ,Yj ,Dj ,Wk

∑
j∈I

[
(pj − cj − βd)Dj − fjYj − q̄j

√
XT
.j (LTjV

j + σ2LTjM)X.j − sj
√
Dj

]
−
∑
k∈K

lkWk

where q̄j = θhjZα, sj =
√
θhj(F + βg), and this is subject to constraints (1) to (6).

Following the same resolution procedure of section 3.1.5, we �nally reformulate constraint (8) as shown
in the resulting convex quadratic program:

max
Yj ,Xij ,Dj ,Wk

∑
j∈I

[(pj − cj − βd)Dj − fjYj − q̄jt1j − sjt2j ]−
∑
k∈K

lkWk
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subject to

XT
.j (LTjV

j + σ2LTjM)X.j ≤ t21j , ∀ j ∈ I (10)

(1)− (7), (9)

3.3 Customer Behaviour Model

In the model of section 3.1, the demand reshape is assumed to be de�ned by the �rm herself. It means she
arbitrarily decides which substitute she provides to the customers, given the proportion who will agree.
This is realistic when the marketing and the client relationship is strong enough.

However, in other cases, the �rm does not pilot the reallocation but has to anticipate the reaction of
the customers to the new product o�ering. To that end, we propose to model the consumer behaviour as
follows: customers are supposed to have a preference ordering, and buyers of discontinued product will
switch (partially according to the substitution parameter δij) to their preferred product still in the o�ering
(and not necessarily to the product most pro�table for the �rm). Consumers of an SKU are supposed to
behave identically and rank the products in the same order. This assumption is relaxed in the following
section where a customer-speci�c information is available.

Mathematically, we assume we have for each SKU i an ordering ≺i with j ≺i m meaning that if i is not
available anymore, buyers of i would switch to j only if m is not available either. Again, this information
has to be gathered based on forecasting, surveys, customer consultations or other quantitative methods.
To incorporate this into model (1)�(9), we need to add the following constraints:

Xij + Ym ≤ 1 ∀ i, j,m ∈ I, j ≺i m. (11)

Indeed, this constraint ensures that when m is preferred over j as a substitute for i, Xij cannot be 1 if
m is still in the o�ering (Ym = 1). To strengthen the formulation, the equivalent clique inequalities are
preferable: ∑

j:j≺im

Xij + Ym ≤ 1 ∀ i,m ∈ I (12)

Indeed, these inequalities are stronger (i.e. constraints (11) are linearly implied by (12)), but there are
also less clique inequalities than inequalities of type (11).

3.4 Model with Individual Customer Information

Conversely to the model with company control, the previous section provides a decision-making power
to the consumers, but it still requires a segmental homogeneous behaviour. However, H5 may need to
be relaxed if customers of a same product want to pick up di�erent substitutes. If this information is
available, the model can be modi�ed to take into account individual behaviours. It could be particularly
helpful in presence of big customers with di�erent preference orderings.

The adaptation of section 3.1 model is straightforward. We create a set of customers C with index
c. As we need an assignment decision for every single customer, the allocation variable becomes Xc

ij .
Additionally, the distribution of demand, the substitution parameter δcij and the preference ordering �ci
all depend on the speci�c customer c.

Constraints (1), (2), (6) and (4) were using Xij for all i ∈ I, while they are now considering the Xc
ij

variables and are therefore also applied for every c ∈ C. Moreover, the new demand calculation has to
sum the quantities of all the customers. Consequently, constraint (3) is replaced by the following equation
(13). Constraint (5) about the family �xed cost de�nition remains identical.

10



Dj =
∑
i∈I

∑
c∈C

δcijµ
c
iX

c
ij , ∀ j ∈ I (13)

As far as the objective function is concerned, the only di�erence lies in the computation of the safety
stock cost. The aggregation of variations has to include all the customers. This is done by summing up
on c.

max
Xc

i,j ,Yj ,Dj ,Wk

∑
j∈I

(pj − cj − βd)Dj − fjYj − qj
√∑

i∈I

∑
c∈C

δc
2

ij σ
c2
i X

c
ij − sj

√
Dj

−∑
k∈K

lkWk

As a result, the modi�cations do not signi�cantly transform the model, and the same solution procedure
remains valid.

4 Computational Experiments

This section analyzes the bene�ts of the proposed rationalization approach by solving instances that
di�er in size, substitution levels and cost. Cost data directly come from a large company operating in
the chemical sector in Belgium. The data is such that each individual product is pro�table (i.e. with
substitution levels at 0, it is optimal to keep the portfolio unchanged).

Considering uncorrelated and normally distributed demands, we �rst present in some detail the ra-
tionalization of a small product portfolio composed of 32 SKUs (which was a base case for the company
considered). Afterwards, we treat portfolios of various sizes and subject to di�erent substitution instances
to analyse the algorithm e�ciency. Finally, we perform a sensitivity analysis to highlight a couple of in�u-
ential parameters. In each single part, the �rst model assuming company control on product substitution
(M1) is compared to the customer behaviour model (M2).

Our real-life example provides all the parameters with exception of the substitution rates. The sub-
stitution data obtained from the company was not satisfactory for two reasons: it was incomplete, and
applied to a portfolio much smaller than what we needed for our computational experiments. Moreover,
our goal was also to experiment with di�erent substitution levels. Consequently, we have decided to gener-
ate substitution levels ourselves. In the �rm considered, all SKUs are expressed in identical units, so that
our substitution parameters are between 0 and 1. To guarantee industrial consistency, we generate substi-
tution levels based on the SKUs and product families similarity. It also takes the pricing di�erences into
account, explaining the asymmetry of rates. This robust method fully described in Appendix B ensures
that the substitution rates are mutually coherent among each other in terms of relative values. Finally, for
the customer behaviour model of Section 3.3, we take the reasonable assumption that preference ordering
is given by the substitution rates. That is, we de�ne m ≺i j if and only if δim ≤ δij (breaking ties
arbitrarily). In other words, in case i is discontinued, customers will (partially) switch to the product j
that has the highest substitution rate.

4.1 A Detailed Example

The tight product portfolio we are considering is composed of 4 product families, making a total of 32
SKUs. Tables 7, 8, 9 and 10 provided in Appendix C display the initial parameters needed in the ratio-
nalization program. As far as the inventory policies are concerned, the company guidelines state that 99%
of orders are satis�ed on-time.

The solver reaches an optimal solution for both problems in a few seconds and the substitution decisions
are shown in Table 11 of Appendix C. The bene�ts are straightforward to depict. In the case of the
company control model (M1) for instance, it suggests to reduce the portfolio size to 19 SKUs in order

11



Figure 1: Comparison of Costs

to increase the total pro�t by 13,443e. Figure 1 and Table 3 respectively display for both models the
di�erent costs and some key performance indicators.

KPI Initial Company Control Model Customer Behaviour Model

Number of SKUs 32 19 21
Pro�t 1,887,796 1,901,239 1,899,024

Fixed Cost 9,380 8,860 8,940
SS Cost 96,925 81,966 85,990

Transportation Cost 11,551 10,879 10,874
Working-Inventory Cost 9,335 7,389 7,670
Total Demand (units) 3,378,298 3,216,376 3,207,837

Gross Margin 2,004,177 2,000,040 2,002,233
Weighted Average Gross Margin 0.593 0.622 0.624

Table 3: Key Performance Indicators

The gross margin computed in the table is de�ned as the di�erence between the revenue and the costs
of production and transportation. It actually provides an indication of the pricing e�ect on the global
pro�t. One may think that the gains mostly come from substituting SKUs by more pro�table products.
However, results show that even if the weighted average gross margin increases, the gain arises mainly out
of the pooling e�ect through the safety stock term. This can be easily observed in Figure 2 showing the
breakdown of the pro�t increase.

As far as the customer behaviour model is concerned, the additional preference constraint makes the
magnitude of the gain slightly smaller. The �nal number of SKUs is a bit higher and consequently, the
gross margin loss is smaller, but the savings from product pooling are also weaker. This can be observed
on Figures 1 and 2.

We can illustrate the relevance of the customer behaviour model through the following example. Let us
consider the SKU 23. Model M1 recommends to discontinue this product and to swap 82% of the demand
to the SKU 25. However, model M2 suggests to replace by SKU 27 to transfer 94% of the demand. This
choice is more respectful of customer preferences if we assume that the most favourite product is the most
substitutable SKU of the o�ering.

4.2 E�ciency of the Algorithmic Approach

In this section, we want to answer the following questions:

• What is the maximum size portfolio that we can handle using the solution approach proposed?

12



Figure 2: Pro�t Increase Decomposition. Each bar is related to one or two terms of the objective (see
Table 2). Its height gives the di�erence between portfolios before and after rationalization. M1 assumes
corporate control of customer reallocation, M2 does not.

• What is the impact of consumer models (with and without company control) at di�erent substitution
levels?

From the same database as the last section, we consider portfolios of 50, 100, 200, 300 and 400 SKUs.
Using the estimating method described in Appendix B, we randomly generate 5 instances (i.e. di�ering
by substitution rates) for each portfolio size. These medium rates are multiplied by 0.95 and 1.05 (with
a maximum substitution rate of 1) to build respectively a low-level and a high-level substitution table.
Hence, for each problem size we have 3 classes of substitution levels (low, medium, high) composed of 5
instances each. All instances are solved using Gurobi[1] version 5.5 on an Intel Quad-Core i5 platform,
running at 3.40 GHz with 8 GB of RAM under Windows 7.

For each single portfolio and substitution level, average results of solving M1 and M2 are shown in
Tables 4 and 5. The �rst table describes the solutions obtained in a maximum of 10 minutes, while the
second gives the �rst feasible solution found within a gap of 1%.

For each run, we collect three solution values: INIT is the objective value of the initial portfolio,
BEST is the objective value of the best solution found and UB is the solution upper bound returned by
the solver.

In general, the solution process may terminate in three di�erent states: the optimal solution is found,
a feasible solution is found during the allocated time, or no feasible solution could be found. The solution
status describes in both tables the state of �ve instances terminations. All other �gures are the average
of values related to the best solution found. Of course, when the optimal solution is found, BEST = UB.

The standard gap is traditionally de�ned as (UB − BEST )/UB, the relative distance between the
upper bound and the objective value of the best solution found at the end of the solution process. However,
for the instances we consider, by construction, this gap will always be small in absolute terms. This is
because the starting portfolio is always substantially pro�table (to cover all indirect and �xed cost not
in the scope of the problem). This corresponds to adding a large constant to the objective function,
mechanically reducing the gap.

To better analyze the quality of the solution found, we consider two other measures. The �rst one is
the potential gain. It is de�ned as (UB − INIT )/INIT and gives an upper bound on the relative gains
the SKU rationalization can potentially deliver. The second measure is the realized potential gain. It is
de�ned as (BEST-INIT)/(UB-INIT) and gives the fraction of this maximum possible gain achieved by the
current best solution. For example, a realized potential gain of 90% means that the solution found realizes
at least 90% of the gains the SKU rationalization can possibly deliver.

We can make the following observations based on these results:

• As expected, high substitution rates lead to discontinue more SKUs.

• The solution time to proven optimality increases very quickly with the number of SKUs. In particular,
it becomes di�cult for both consumer models to �nd the optimal solution within 10 minutes when
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Model
Initial SKU Substitution Solution Solution Status

Gap
Potential Realized Solving Time

Number Level SKU Number opt / feas / none Gain Potential Gain (sec)

M1

50
LOW 42.6 5 / 0 / 0 0% 0.35% 100% 1.7
MED 21.4 4 / 1 / 0 0.003% 1.68% 99.80% 123.5

HIGH 12.2 5 / 0 / 0 0% 4.40% 100.00% 1.1

100
LOW 89.6 5 / 0 / 0 0% 0.19% 100.00% 51.8
MED 50.8 3 / 2 / 0 0.011% 1.23% 99.17% 367.8

HIGH 34.8 5 / 0 / 0 0% 3.38% 100.00% 3.8

200
LOW 154.6 5 / 0 / 0 0% 1.05% 100% 151.8
MED 106.2 3 / 2 / 0 0.005% 1.92% 99.76% 419.3

HIGH 77 5 / 0 / 0 0% 3.56% 100.00% 12.4

300
LOW 208.4 0 / 5 / 0 0.054% 1.02% 94.69% 601
MED 129.4 0 / 5 / 0 0.074% 2.20% 96.57% 601.2

HIGH 88.2 0 / 5 / 0 0.031% 4.10% 99.21% 600.8

400
LOW 266 0 / 5 / 0 0.091% 1.24% 92.52% 602.4
MED 160 0 / 5 / 0 0.142% 2.62% 94.43% 601.8

HIGH 105.6 0 / 5 / 0 0.065% 4.85% 98.59% 602.2

M2

50
LOW 42.2 5 / 0 / 0 0% 0.21% 100% 1.5
MED 25.6 5 / 0 / 0 0% 1.50% 100% 4.7

HIGH 16.4 5 / 0 / 0 0% 3.71% 100% 5.4

100
LOW 89.4 5 / 0 / 0 0% 0.11% 100% 5.6
MED 56.2 5 / 0 / 0 0% 1.12% 100% 18.9

HIGH 40 5 / 0 / 0 0% 2.97% 100% 30.5

200
LOW 155.6 5 / 0 / 0 0% 0.95% 100% 30.7
MED 114.2 5 / 0 / 0 0% 1.81% 100% 81.6

HIGH 88.6 5 / 0 / 0 0% 3.27% 100% 138.1

300
LOW 212.4 4 / 1 / 0 0.004% 0.88% 99.56% 472.6
MED 155 0 / 2 / 3 0.27% 2.20% 87.4% 600

HIGH 129 0 / 2 / 3 0.656% 4.09% 83.43% 600

400
LOW 259 0 / 5 / 0 0.277% 1.20% 75.79% 600
MED na 0 / 0 / 5 na 3.02% na 600

HIGH na 0 / 0 / 5 na 7.73% na 600

Table 4: Results within a 10 minutes time limit.
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Model
Initial SKU Substitution Solution Solution Status

Gap
Potential Realized Solving Time

Number Level SKU Number opt / feas / none Gain Potential Gain (sec)

M1

50
LOW 44.6 0 / 5 / 0 0% 0.51% 58% 0.1
MED 31.8 0 / 5 / 0 0.687% 2.09% 66.43% 0.1

HIGH 15.4 0 / 5 / 0 1% 5.01% 85.23% 0.1

100
LOW 93.4 0 / 5 / 0 0% 0.31% 53.68% 0.4
MED 70.8 0 / 5 / 0 0.568% 1.54% 62.59% 0.4

HIGH 40.8 0 / 5 / 0 1% 4.10% 78.14% 0.4

200
LOW 157.4 0 / 5 / 0 0.13% 1.14% 88.60% 3.1
MED 106.2 0 / 5 / 0 0.481% 2.21% 77.78% 3

HIGH 79.2 0 / 5 / 0 0% 3.76% 92.98% 3.9

300
LOW 227.6 0 / 5 / 0 0.382% 1.21% 68.04% 9.8
MED 134.2 0 / 5 / 0 0.748% 2.64% 71.13% 10.6

HIGH 96 0 / 5 / 0 0.470% 4.42% 89.12% 18.8

400
LOW 299.2 0 / 5 / 0 0.497% 1.47% 65.60% 19.9
MED 162.6 0 / 5 / 0 0.649% 2.92% 77.36% 26.4

HIGH 115.4 0 / 5 / 0 0.385% 5.03% 92.12% 38.5

M2

50
LOW 46.8 0 / 5 / 0 0.23% 0.35% 34.93% 0.4
MED 29 0 / 5 / 0 0.60% 1.88% 67.84% 1.7

HIGH 16.6 0 / 5 / 0 0.08% 3.77% 97.80% 4.01

100
LOW 98.4 0 / 5 / 0 0.17% 0.20% 12.97% 3.1
MED 68 0 / 5 / 0 0.73% 1.58% 53.08% 5.5

HIGH 45.6 0 / 5 / 0 0.57% 3.32% 82.47% 10

200
LOW 160.4 0 / 5 / 0 0.12% 1.04% 87.83% 15.8
MED 121.6 0 / 5 / 0 0.38% 2.03% 81.27% 40.2

HIGH 94.2 0 / 5 / 0 0.32% 3.51% 90.75% 61.3

300
LOW 237.8 0 / 5 / 0 0.286% 1.06% 72.80% 67.5
MED 169 0 / 5 / 0 0.486% 2.28% 78.76% 556.3

HIGH 121.6 0 / 5 / 0 0.557% 4.07% 85.86% 681.3

400
LOW 259.4 0 / 5 / 0 0.394% 1.30% 68.71% 373.2
MED 210.4 0 / 5 / 0 0.56% 2.65% 78.68% 2045.4

HIGH 140.8 0 / 5 / 0 0.66% 4.79% 85.65% 2827.3

Table 5: Results of 1% gap-�rst solutions.
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the number of SKUs exceeds 300 SKUs. This is not surprising as our problem generalizes the strongly
NP-Hard uncapacitated facility location problem.

• By observing the realized part of the potential gain, we nevertheless observe that the feasible solutions
found realize most of the gain the rationalization process could potentially achieve, even when one
could not prove the optimality.

• Furthermore, the larger the potential gain, the larger the realized gain by the �rst feasible solution
found. Conversely, it is only for instances where not much can be gained by portfolio rationalization
that the �rst solution job is poor. This is of course good news.

• Within ten minutes, one obtains good quality solutions for portfolio up to 300 hundreds of products,
while allowing for an hour of computation is enough to handle 400 products. For larger portfolios,
it is likely that another solution approach would be necessary, as already solving the continuous
relaxation of the problem is too time consuming.

• The solution time also seems to depend on the substitution level. It is likely to be more di�cult to
solve problems with high substitutability than with low substitutability, but somewhat surprisingly,
it is still harder to solve problems with medium substitution levels (see columns "Gap" and "Time" in
Table 4). This could be explained by a simple counting argument: there are more di�erent portfolios
with half the products retained, than there are portfolios with few, or many, products kept in the
portfolio.

• Instances with low or medium substitution rates are easier to solve with M2 than with M1. Con-
versely, M1 is faster for problems with high substitution levels.

• Intuitively, one would think that more products will be discontinued in M1 (with company control)
compared to M2, since the company could potentially gain more when discontinuing products (by
reallocating demand where it is more pro�table). The results we get con�rm this intuition. Looking
at Table 4, this intuition is correct for all portfolio sizes. Note that the results of Table 5 do not
seem to support this conclusion, but this is only because the solutions are not optimal.

As a general conclusion, we believe that the size of instances we can handle is large enough for most
industrial applications. Indeed, given the framework of the model, combining unsubstitutable products in
the same portfolio is irrelevant. Therefore, only substitutable products should be gathered and submitted
to the rationalization process. In this sense, clusters of 400 SKUs is a reasonable limitation for many
industrial cases.

4.3 Sensitivity Analysis

Intuitively, the characteristics enhancing the suppression of an SKU can be derived from the model. One
may indeed suppose that the substitution rates, the costs or the distribution of the demand highly in�uence
the decision to keep a product in the portfolio. Table 6 presents those incentives and their intuitive
justi�cation. Nevertheless, all those e�ects have di�erent impacts. They are combined and balanced in
the problem optimization and it may be di�cult to highlight them in the numerical example. While the
impact of the substitution level was analysed in section 4.2, we investigate two additional assumptions on
an initial portfolio composed of 100 SKUs. We vary �rst the inventory cost weight, and afterwards the
standard deviation of demand distribution.

Weight of Inventory Cost In this part, we modulate the weight corresponding to the importance given
to the inventory cost. Furthermore, this analysis stands for variations in annual holding cost values or in
customer service, since the level of inventory cost is solely impacted. Initially equal to 1, our study makes
use of weights stretched from 0.2 to 2. The total inventory cost (safety stock and working-inventory)
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Incentives to discontinue Justi�cation

High Substitutability Weak demand dead-weight loss
High Fixed Cost Discontinuing the SKU and its �xed cost
High Holding Cost Replacing the SKU by an SKU less costly to stock
Weak Initial Demand Small demand loss even if low transfer rate
High Demand Deviation Combining deviations to reduce the variability
Small Average Gross Margin
(price - proportional costs)

Transferring demand to high-margin products despite the loss (to
escape cannibalization)

Dependent Demands Case: Low
Correlation

Discontinuing a highly correlated SKU has low pooling e�ects

Table 6: Incentives to discontinue SKUs

is shown in Figure 3. Figure 4 illustrates the solution indicators as a function of the inventory cost
weight in the model. Before rationalization, the weight has a quasi-linear impact on the inventory cost,
and therefore on the pro�t. After rationalization however, the lower concave curve shows that the cost
reduction increases with the rising of holding cost. Hence, as it can be seen in Figure 4, the product
rationalization and its pooling e�ect drive larger bene�ts and are more e�cient in case of substantial
holding cost.

Figure 3: Evolution of inventory cost in function of the weight

Standard Deviation of the Demand Similarly, we analyse the impact of the demand variability on
the rationalization bene�ts. We multiply the standard deviation by a factor varying from 0.2 to 2 in
order to generate di�erent levels of variability. Figure 5 shows the evolution of the safety stock cost, as
a function of this multiplicative factor. It shows that the rationalization is increasingly e�cient with a
growing standard deviation. Indeed, high demand variability involves larger safety stock. Hence, the gains
of pooling products are greater and the incentive to reduce the number of products consequently higher.
These results can be observed in Figure 6 displaying the total pro�t and the optimal portfolio size in
function of the variability level.

5 Conclusion

This paper contributes to the existing literature in three di�erent ways. Firstly, the described model
is comprehensive and includes major non-linear e�ects underestimated so far, like product pooling and
pricing. Secondly, based on recent research on location-inventory problems, we show how to reformulate
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Figure 4: Pro�t and optimal SKU number in function of inventory cost weight

Figure 5: Evolution of safety stock cost in function of the demand deviation

Figure 6: Pro�t and optimal SKU number in function of demand deviation
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our model as a Mixed-Integer Quadratically Constrained Programming problem. Finally, we illustrate by
means of a real-life industrial instance that commercial MIP solvers can e�ciently solve problems of up
to a few hundreds products.

Our model however su�ers from several limitations. Firstly, it remains di�cult to estimate essential
parameters, like the substitution rate. However, avoiding this di�culty would require to use a completely
di�erent approach. Secondly, an SKU rationalization process may have other impacts which are not
treated in our model, like improvements in productivity thanks to a more streamlined portfolio. Also,
our model is essentially a one-period model that should be representative of a steady-state or average
situation. When some parameters (e.g. demands) substantially vary over time, we may need to consider
a multi-period setting. Finally, our proposed solution method does not seem to scale to thousands of
products. Either a simpli�ed model or an improved algorithmic approach is necessary in such a case. All
these topics constitute interesting further research directions.
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Appendix A Derivation of optimal inventory and transportation costs

The goal of this development is to set up an optimal formulation for transportation and working inventory
costs. As laid down in the Economic Order Quantity policy (H2), the cost function optimization determines
the optimal number of orders (and consequently the optimal ordering quantities).

We currently drop the product index j to simplify the notation of demand, and we denote n the annual
number of orders, still unknown at this point. The transportation and working-inventory cost function
depending on n and on the annual demand is:

w(D) + βt(D) = Fn+ θh
D

2n
+ βv(

D

n
)n

To de�ne the costs, we assume the shipment cost function is linear (H1) and includes a �xed cost, i.e.
v(x) = dx+ g and we have an annual transportation cost equal to t(D) = n× v(z), where n is the annual
number of deliveries and z the quantity shipped per delivery. Thus, we suppose the �xed cost of each
single delivery is composed by the �xed order cost and the �xed transportation cost. By splitting them
up, one can give a di�erent weight to the transportation cost through the parameter β for instance.

F is the �xed cost of placing an order and one just has to multiply it by the number of orders to get
the annual order cost. The second term is the holding cost. Indeed, D

2n is the average quantity in stock
since D

n is the quantity delivered by order or the inventory level at the beginning of the cycle. The average
quantity is obtained by dividing it by 2 and this is multiplied by the unit holding cost h to get the total
cost. The last term represents the transportation cost. It is equal to the number of deliveries per year
n multiplied by the shipment cost which depends on the shipped quantity. We keep for the moment a
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cost function v(x) where x corresponds to the quantity per delivery. Again, we use θ and β to modify the
relative importance we want to give to the inventory and transportation costs.

From this formulation, �rst order conditions give:

∂(w(D) + βt(D))

∂n
= F − θh D

2n2
+ βv(

D

n
)− βv′(D

n
)
D

n2
n

= F − θh D

2n2
+ βv(

D

n
)− βD

n
v′(
D

n
) = 0

We use now the assumption regarding the transportation cost function. As we suppose v(x) is linear
(v(x) = dx + g), it means a part of the transportation cost is �xed (g) and another one is variable (d).
Under this condition, we have v′(x) = d and we can pursue the determination of n:

F − θh D

2n2
+ βd

D

n
+ βg − βdD

n
= 0

F − θh D

2n2
+ βg = 0↔ 2n2 =

θhD

F + βg

n =

√
θhD

2(F + βg)

Of course, the number of orders is non-negative and there is only one solution for this optimization problem.
The next step consists in replacing n into the working-inventory cost function. We start with inserting
the linear transportation cost function in the equation, and we get:

w(D) + βt(D) = Fn+ θh
D

2n
+ β

(
d
D

n
+ g

)
n = Fn+ θh

D

2n
+ βdD + βgn

= F

√
θhD

2(F + βg)
+ θh

D

2
√

θhD
2(F+βg)

+ βdD + βg

√
θhD

2(F + βg)

=

√
θhD

2(F + βg)
(F + βg) +

θhD√
2 θhD
(F+βg)

+ βdD

=

√
θhD(F + βg)

2
+

√
θhD(F + βg)

2
+ βdD

w(D) + βt(D) =
√

2θhD(F + βg) + βdD

Appendix B Construction of the substitution rate table

Fisher [11] suggests to consider a product as a collection of attributes, and a family of products as the set
of SKUs presenting approximatively the same attribute levels. As a result, each product is represented
by a point in a multidimensional space and the distance between 2 points is a measure of (dis)similarity.
Following this view, the similarity of products is a good predictor of their substitutability.

Practically, we generate 5 virtual attributes per family with level between 0 and 1. Then, we randomly
determine a level per SKU within a 30%-interval around the family level. Moreover, the price is considered
as a quality indicator and for each SKU the mean of 5 attributes is set to be equal to the price attribute.
Based on this, the normalized spatial distance measures the similarity of products and 1 minus this distance
provides a reasonable estimation of the substitution. To introduce asymmetry related to quality and prices
aspects, we multiply this substitution rate by a factor between 0.5 and 1 depending on the price di�erence.
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That is, the more expensive the substitute compared to the discontinued product, the fewer demand will
be transferred to it.

As a result, we obtain coherent substitution rates that satisfy the following properties:

• products within a family are more similar to each other than across families,

• prices are consistent with quality attributes (to avoid generating cheap products with high substitu-
tion rates to them),

• asymmetric substitution rates: with equal attributes, the substitution rate from an expensive product
to a cheaper product will be higher than in the opposite direction.

Tables 9 and 10 give the substitution parameters and prices for the instance discussed in Section 4.1
(remember that in this example, all SKU demands are expressed in identical units).

Appendix C Parameters and results of Section 4.1

Service Level α 99% Fixed Cost of Ordering F 29
Inventory Cost Weight θ 1 Fixed Cost of Transportation g 5
Transportation Cost Weight β 1 Variable Cost of Transportation d 0.032

Table 7: Scalar Parameters

Family Family Fixed Cost
k lk

1 1600
2 3000
3 1500
4 2000

Table 8: Family Fixed Costs
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SKU Family Price Demand
Standard Lead Fixed Production Inventory
Deviation Time Cost Cost Cost

j k pj µj σj LTj fj cj hj

1 1 1.43 156480 94678 2.58 0.648 40 0.0207
2 1 1.57 56307 18314 2.58 0.713 40 0.0228
3 1 1.45 121296 87606 2.58 0.658 40 0.0211

4 2 0.59 12398 6467 2.58 0.269 40 0.0086
5 2 0.65 159439 42682 2.58 0.296 40 0.0095
6 2 1.22 21057 5677 2.58 0.553 40 0.0177
7 2 1.05 182607 78594 2.58 0.476 40 0.0152
8 2 1.19 55706 31883 2.58 0.539 40 0.0173
9 2 0.84 97792 60406 2.58 0.381 40 0.0122
10 2 0.61 154868 88104 2.58 0.278 40 0.0089
11 2 0.51 102306 56309 2.58 0.234 40 0.0075
12 2 5.08 64967 23404 2.58 2.307 40 0.0738
13 2 1.20 114543 50989 2.58 0.546 40 0.0175
14 2 0.87 79483 43441 2.58 0.396 40 0.0127
15 2 0.76 23215 16751 2.58 0.346 40 0.0111
16 2 0.82 11629 3145 2.58 0.374 40 0.0120

17 3 0.78 19620 7537 2.58 0.357 40 0.0114
18 3 0.84 18430 8891 2.58 0.382 40 0.0122
19 3 0.75 183411 49383 2.58 0.342 40 0.0110
20 3 0.78 194499 85628 2.58 0.356 40 0.0114
21 3 1.09 123991 64971 2.58 0.497 40 0.0159
22 3 0.76 80519 33210 2.58 0.345 40 0.0110
23 3 0.97 113361 74155 2.58 0.441 40 0.0141
24 3 0.63 167628 56482 2.58 0.286 40 0.0092
25 3 1.13 166163 110681 2.58 0.514 40 0.0164
26 3 1.96 87095 27936 2.58 0.891 40 0.0285
27 3 0.80 191792 135089 2.58 0.363 40 0.0116
28 3 0.79 54616 33310 2.58 0.360 40 0.0115

29 4 1.35 138599 74594 2.58 0.613 40 0.0196
30 4 1.20 126349 61437 2.58 0.546 40 0.0175
31 4 1.04 121645 73784 2.58 0.470 40 0.0150
32 4 1.49 176487 53281 2.58 0.679 40 0.0217

Table 9: SKU Parameters
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i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 1.00 0.81 0.92 0.35 0.36 0.33 0.34 0.33 0.35 0.35 0.36 0.00 0.33 0.35 0.35 0.35 0.40 0.42 0.41 0.41 0.43 0.41 0.40 0.40 0.41 0.39 0.41 0.40 0.39 0.40 0.39 0.38
2 0.94 1.00 0.96 0.36 0.36 0.34 0.35 0.34 0.36 0.36 0.36 0.00 0.34 0.36 0.36 0.36 0.40 0.42 0.41 0.41 0.44 0.41 0.41 0.39 0.41 0.43 0.41 0.40 0.41 0.41 0.40 0.40
3 0.94 0.85 1.00 0.36 0.36 0.34 0.35 0.34 0.36 0.36 0.37 0.00 0.34 0.36 0.36 0.36 0.41 0.43 0.42 0.42 0.45 0.42 0.41 0.40 0.42 0.42 0.42 0.41 0.42 0.42 0.41 0.40
4 0.13 0.03 0.11 1.00 0.89 0.32 0.49 0.35 0.70 0.97 0.94 0.00 0.33 0.66 0.79 0.72 0.44 0.42 0.43 0.43 0.41 0.43 0.43 0.44 0.39 0.00 0.43 0.44 0.20 0.33 0.44 0.09
5 0.17 0.07 0.16 0.95 1.00 0.37 0.54 0.41 0.78 0.96 0.96 0.00 0.39 0.74 0.86 0.79 0.45 0.42 0.43 0.43 0.41 0.43 0.44 0.44 0.43 0.00 0.44 0.45 0.24 0.37 0.43 0.13
6 0.33 0.34 0.34 0.84 0.84 1.00 0.94 0.93 0.88 0.84 0.80 0.00 0.92 0.88 0.87 0.88 0.39 0.37 0.37 0.37 0.37 0.37 0.39 0.38 0.39 0.17 0.37 0.39 0.39 0.39 0.41 0.41
7 0.34 0.34 0.35 0.88 0.89 0.78 1.00 0.81 0.93 0.89 0.86 0.00 0.77 0.92 0.92 0.93 0.41 0.39 0.39 0.39 0.39 0.39 0.41 0.40 0.41 0.07 0.40 0.41 0.40 0.40 0.43 0.41
8 0.33 0.34 0.34 0.85 0.86 0.91 0.94 1.00 0.91 0.85 0.83 0.00 0.94 0.92 0.89 0.91 0.40 0.38 0.38 0.38 0.38 0.38 0.40 0.39 0.41 0.16 0.39 0.40 0.39 0.40 0.41 0.40
9 0.29 0.20 0.29 0.92 0.95 0.55 0.73 0.60 1.00 0.93 0.91 0.00 0.58 0.95 0.97 0.98 0.43 0.41 0.42 0.42 0.40 0.42 0.43 0.42 0.43 0.00 0.42 0.43 0.39 0.41 0.43 0.28
10 0.14 0.04 0.13 0.99 0.92 0.34 0.51 0.37 0.73 1.00 0.95 0.00 0.35 0.69 0.82 0.75 0.44 0.42 0.43 0.43 0.41 0.43 0.43 0.44 0.41 0.00 0.43 0.44 0.22 0.34 0.44 0.10
11 0.07 0.00 0.06 0.87 0.83 0.25 0.41 0.28 0.62 0.86 1.00 0.00 0.26 0.59 0.70 0.64 0.45 0.43 0.44 0.44 0.35 0.44 0.43 0.45 0.33 0.00 0.44 0.45 0.14 0.26 0.42 0.03
12 0.15 0.17 0.16 0.37 0.39 0.52 0.48 0.52 0.43 0.38 0.35 1.00 0.52 0.44 0.41 0.43 0.17 0.16 0.16 0.16 0.17 0.16 0.18 0.15 0.20 0.20 0.17 0.17 0.20 0.20 0.20 0.24
13 0.33 0.34 0.34 0.83 0.85 0.90 0.91 0.95 0.90 0.84 0.81 0.00 1.00 0.90 0.88 0.89 0.39 0.37 0.38 0.38 0.37 0.38 0.40 0.38 0.41 0.17 0.38 0.39 0.38 0.39 0.40 0.39
14 0.32 0.22 0.31 0.91 0.94 0.58 0.76 0.63 0.99 0.92 0.91 0.00 0.61 1.00 0.96 0.97 0.43 0.41 0.42 0.42 0.40 0.41 0.43 0.42 0.43 0.00 0.42 0.43 0.39 0.41 0.43 0.31
15 0.24 0.15 0.23 0.95 0.96 0.48 0.66 0.52 0.90 0.96 0.93 0.00 0.50 0.85 1.00 0.93 0.44 0.42 0.42 0.42 0.40 0.42 0.43 0.43 0.42 0.00 0.42 0.44 0.33 0.41 0.44 0.22
16 0.28 0.19 0.28 0.94 0.95 0.54 0.73 0.58 0.97 0.94 0.92 0.00 0.56 0.92 0.98 1.00 0.43 0.41 0.42 0.42 0.40 0.42 0.43 0.43 0.43 0.00 0.42 0.43 0.38 0.41 0.44 0.27
17 0.30 0.18 0.28 0.44 0.45 0.39 0.41 0.40 0.43 0.44 0.45 0.00 0.39 0.43 0.44 0.43 1.00 0.90 0.97 0.97 0.64 0.96 0.77 0.96 0.61 0.00 0.95 0.98 0.37 0.43 0.45 0.24
18 0.35 0.24 0.34 0.42 0.42 0.37 0.39 0.38 0.41 0.42 0.43 0.00 0.37 0.41 0.42 0.41 0.95 1.00 0.96 0.97 0.71 0.98 0.81 0.93 0.65 0.00 0.97 0.95 0.42 0.44 0.45 0.29
19 0.28 0.16 0.26 0.43 0.43 0.37 0.39 0.38 0.42 0.43 0.44 0.00 0.38 0.42 0.42 0.42 0.94 0.88 1.00 0.95 0.61 0.96 0.73 0.95 0.57 0.00 0.93 0.93 0.34 0.43 0.44 0.21
20 0.30 0.19 0.29 0.43 0.43 0.37 0.39 0.38 0.42 0.43 0.44 0.00 0.38 0.42 0.42 0.42 0.97 0.92 0.98 1.00 0.65 0.97 0.76 0.96 0.60 0.00 0.95 0.96 0.37 0.43 0.44 0.24
21 0.43 0.44 0.45 0.41 0.41 0.37 0.39 0.38 0.40 0.41 0.41 0.00 0.37 0.40 0.40 0.40 0.92 0.94 0.92 0.93 1.00 0.93 0.92 0.89 0.88 0.12 0.92 0.92 0.43 0.45 0.44 0.41
22 0.28 0.16 0.27 0.43 0.43 0.37 0.39 0.38 0.42 0.43 0.44 0.00 0.38 0.41 0.42 0.42 0.93 0.90 0.97 0.95 0.62 1.00 0.73 0.94 0.57 0.00 0.93 0.93 0.35 0.44 0.44 0.22
23 0.40 0.33 0.41 0.43 0.44 0.39 0.41 0.40 0.43 0.43 0.43 0.00 0.40 0.43 0.43 0.43 0.95 0.93 0.93 0.93 0.81 0.93 1.00 0.91 0.82 0.02 0.94 0.95 0.42 0.44 0.44 0.39
24 0.17 0.06 0.16 0.44 0.44 0.32 0.40 0.35 0.42 0.44 0.45 0.00 0.33 0.42 0.43 0.43 0.81 0.74 0.84 0.81 0.49 0.82 0.60 1.00 0.45 0.00 0.78 0.80 0.23 0.37 0.43 0.11
25 0.41 0.41 0.42 0.42 0.43 0.39 0.41 0.41 0.43 0.42 0.42 0.00 0.41 0.43 0.42 0.43 0.92 0.91 0.91 0.91 0.92 0.90 0.97 0.88 1.00 0.14 0.92 0.93 0.42 0.44 0.44 0.41
26 0.41 0.43 0.43 0.33 0.33 0.33 0.33 0.34 0.34 0.33 0.33 0.00 0.34 0.34 0.33 0.34 0.74 0.76 0.74 0.75 0.81 0.75 0.77 0.71 0.80 1.00 0.75 0.74 0.41 0.41 0.38 0.39
27 0.31 0.20 0.30 0.43 0.44 0.37 0.40 0.39 0.42 0.43 0.44 0.00 0.38 0.42 0.42 0.42 0.96 0.93 0.97 0.97 0.65 0.97 0.78 0.93 0.62 0.00 1.00 0.97 0.38 0.44 0.45 0.25
28 0.30 0.19 0.29 0.44 0.45 0.39 0.41 0.40 0.43 0.44 0.45 0.00 0.39 0.43 0.44 0.43 0.99 0.91 0.96 0.96 0.64 0.96 0.79 0.95 0.62 0.00 0.96 1.00 0.37 0.44 0.45 0.25
29 0.39 0.41 0.42 0.39 0.39 0.39 0.40 0.39 0.39 0.39 0.39 0.00 0.38 0.39 0.40 0.40 0.41 0.42 0.41 0.41 0.43 0.42 0.42 0.40 0.42 0.32 0.42 0.41 1.00 0.94 0.91 0.80
30 0.40 0.41 0.42 0.41 0.41 0.39 0.40 0.40 0.41 0.41 0.40 0.00 0.39 0.41 0.41 0.41 0.43 0.44 0.43 0.43 0.45 0.44 0.44 0.42 0.44 0.21 0.44 0.44 0.80 1.00 0.92 0.63
31 0.39 0.38 0.41 0.44 0.43 0.41 0.43 0.41 0.43 0.44 0.43 0.00 0.40 0.43 0.44 0.44 0.45 0.45 0.44 0.44 0.44 0.44 0.44 0.43 0.44 0.07 0.45 0.45 0.63 0.77 1.00 0.49
32 0.38 0.40 0.40 0.39 0.39 0.41 0.41 0.40 0.40 0.39 0.38 0.00 0.39 0.40 0.40 0.40 0.40 0.40 0.39 0.39 0.41 0.40 0.40 0.38 0.41 0.39 0.40 0.40 0.93 0.89 0.89 1.00

Table 10: Substitution factor δij

(a)

X i \ j 1 2 3 6 7 12 13 14 15 18 20 21 25 26 27 29 30 31 32

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1

(b)

X i \ j 1 2 3 6 7 8 9 12 13 14 18 20 21 23 25 26 27 29 30 31 32

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1

Table 11: Substitution decisions for models with company control (a) and with preference ordering (b)

24



Recent titles 
CORE Discussion Papers 

 
2013/66 Yu. NESTEROV and Vladimir SHIKHMAN. Algorithmic models of market equilibrium. 
2013/67 Cristina PARDO-GARCIA and Jose J. SEMPERE-MONERRIS. Equilibrium mergers in a 

composite good industry with efficiencies. 
2013/68 Federica RUSSO, Michel MOUCHART and Guillaume WUNSCH. Confounding and control in 

a multivariate system. An issue in causal attribution. 
2013/69 Marco DI SUMMA. The convex hull of the all-different system with the inclusion property: a 

simple proof. 
2013/70 Philippe DE DONDER and Pierre PESTIEAU. Lobbying, family concerns and the lack of 

political support for estate taxation. 
2013/71 Alexander OSHARIN, Jacques-François THISSE, Philip USHCHEV and Valery VERBUS. 

Monopolistic competition and income dispersion. 
2013/72 N. Baris VARDAR. Imperfect resource substitution and optimal transition to clean 

technologies. 
2013/73 Alejandro LAMAS and Philippe CHEVALIER. Jumping the hurdles for collaboration: fairness 

in operations pooling in the absence of transfer payments. 
2013/74 Mehdi MADANI and Mathieu VAN VYVE. A new formulation of the European day-ahead 

electricity market problem and its algorithmic consequences. 
2014/1 Erik SCHOKKAERT and Tom TRUYTS. Preferences for redistribution and social structure. 
2014/2 Maarten VAN DIJCK and Tom TRUYTS. The agricultural invasion and the political economy 

of agricultural trade policy in Belgium, 1875-1900. 
2014/3 Ana MAULEON, Nils ROEHL and Vincent VANNETELBOSCH. Constitutions and social 

networks. 
2014/4 Nicolas CARAYOL, Rémy DELILLE and Vincent VANNETELBOSCH. Allocating value 

among farsighted players in network formation. 
2014/5 Yu. NESTEROV and Vladimir SHIKHMAN. Convergent subgradient methods for nonsmooth 

convex minimization. 
2014/6 Yuri YATSENKO, Natali HRITONENKO and Thierry BRECHET. Modeling of enrironmental 

adaptation versus pollution mitigation. 
2014/7 Sanjeeb DASH, Oktay GÜNLÜK and Laurence A. WOLSEY. The continuous knapsack set. 
2014/8 Simon BUCKLE, Mirabelle MUÛLS, Joerg LEIB and Thierry BRECHET. Prospects for Paris 

2015: do major emitters want the same climate. 
2014/9 Lionel ARTIGE, Antoine DEDRY and Pierre PESTIEAU. Social security and economic 

integration. 
2014/10 Mikhail ISKAKOV, Alexey ISKAKOV and Alexey ZAKHAROV. Equilibria in secure 

strategies in the Tullock contest. 
2014/11 Helmuth CREMER and Pierre PESTIEAU. Means-tested long term care and family transfers. 
2014/12 Luc BAUWENS, Lyudmila GRIGORYEVA and Juan-Pablo ORTEGA. Estimation and 

empirical performance of non-scalar dynamic conditional correlation models. 
2014/13 Christian M. HAFNER and Arie PREMINGER. A note on the Tobit model in the presence of a 

duration variable. 
2014/14 Jean-François CARPANTIER and Arnaud DUFAYS. Specific Markov-switching behaviour for 

ARMA parameters. 
2014/15 Federico GRIGIS DE STEFANO. Strategic stability of equilibria: the missing paragraph. 
2014/16 Claudio TELHA and Mathieu VAN VYVE. Efficient approximation algorithms for the 

economic lot-sizing in continuous time. 
2014/17 Yukai YANG. Testing constancy of the error covariance matrix in vector models against 

parametric alternatives using a spectral decomposition. 
2014/18 Koen DECANCQ, Marc FLEURBAEY and Erik SCHOKKAERT. Inequality, income, and 

well-being. 
2014/19 Paul BELLEFLAMME and Martin PEITZ. Digital piracy: an update. 
 



Recent titles 
CORE Discussion Papers - continued 

 
2014/20 Eva-Maria SCHOLZ. Licensing to vertically related markets. 
2014/21 N. Baris VARDAR. Optimal energy transition and taxation of non-renewable resources. 
2014/22 Benoît DECERF. Income poverty measures with relative poverty lines. 
2014/23 Antoine DEDRY, Harun ONDER and Pierre PESTIEAU. Aging, social security design and 

capital accumulation. 
2014/24 Biung-Ghi JU and Juan D. MORENO-TERNERO. Fair allocation of disputed properties. 
2014/25 Nguyen Thang DAO. From agriculture to manufacture: How does geography matter ? 
2014/26 Xavier Y. WAUTHY. From Bertrand to Cournot via Kreps and Scheinkman: a hazardous 

journey. 
2014/27 Gustavo BERGANTIÑOS and Juan MORENO-TERNERO. The axiomatic approach to the 

problem of sharing the revenue from bundled pricing. 
2014/28 Jean HINDRIKS and Yukihiro NISHIMURA. International tax leadership among asymmetric 

countries. 
2014/29 Jean HINDRIKS and Yukihiro NISHIMURA. A note on equilibrium leadership in tax 

competition models. 
2014/30 Olivier BOS and Tom TRUYTS. Auctions with prestige motives. 
2014/31 Juan D. MORENO-TERNERO and Lars P. ØSTERDAL . Normative foundations for equity-

sensitive population health evaluation functions. 
2014/32 P. Jean-Jacques HERINGS, Ana MAULEON and Vincent VANNETELBOSCH. Stability of 

networks under Level-K farsightedness. 
2014/33 Lionel ARTIGE, Laurent CAVENAILE and Pierre PESTIEAU. The macroeconomics of PAYG 

pension schemes in an aging society. 
2014/34 Tanguy KEGELART and Mathieu VAN VYVE. A conic optimization approach for SKU 

rationalization. 
 

Books 
 
V. GINSBURGH and S. WEBER (2011), How many languages make sense? The economics of linguistic 

diversity. Princeton University Press. 
I. THOMAS, D. VANNESTE and X. QUERRIAU (2011), Atlas de Belgique – Tome 4 Habitat. Academia 

Press. 
W. GAERTNER and E. SCHOKKAERT (2012), Empirical social choice. Cambridge University Press. 
L. BAUWENS, Ch. HAFNER and S. LAURENT (2012), Handbook of volatility models and their 

applications. Wiley. 
J-C. PRAGER and J. THISSE (2012), Economic geography and the unequal development of regions. 

Routledge. 
M. FLEURBAEY and F. MANIQUET (2012), Equality of opportunity: the economics of responsibility. 

World Scientific. 
J. HINDRIKS (2012), Gestion publique. De Boeck. 
M. FUJITA and J.F. THISSE (2013), Economics of agglomeration: cities, industrial location, and 

globalization. (2nd edition). Cambridge University Press. 
J. HINDRIKS and G.D. MYLES (2013). Intermediate public economics. (2nd edition). MIT Press. 
J. HINDRIKS, G.D. MYLES and N. HASHIMZADE (2013). Solutions manual to accompany intermediate 

public economics. (2nd edition). MIT Press. 
 

CORE Lecture Series 
 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 
A. SHAPIRO (2010), Stochastic programming: modeling and theory. 




