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Abstract

In many situations in survival analysis, it may happen that a fraction of

individuals will never experience the event of interest: they are considered to

be cured. The promotion time cure model is one of the survival models taking

this feature into account. We consider the case where one or more explanatory

variables in the model are subject to measurement error. This error should be

taken into account in the estimation of the model, to avoid biased estimators.

A general approach that exists in the literature is the SIMEX algorithm, a

method based on simulations which allows one to estimate the effect of mea-

surement error on the bias of the estimators and to reduce this bias. We extend

the SIMEX approach to the promotion time cure model. We explain how the

algorithm works, and we show that the proposed estimator is consistent and
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asymptotically normally distributed. We also show via simulations that the sug-

gested method performs well in finite samples. Finally, we analyze a database in

cardiology: among the explanatory variables of interest is the ejection fraction,

which is known to be measured with error. There are supplementary materials

online for this paper.

KEY WORDS: Bias correction; Cure fraction; Measurement error; Promo-

tion time cure model; Semiparametric method.

1 INTRODUCTION

When analyzing time-to-event data, it often happens that a certain proportion of

subjects will never experience the event of interest. For example, in medical studies

where one is interested in the time until recurrence of a certain disease, it is known

that, for some diseases, some patients will never suffer a relapse. In studies in econo-

metrics on duration of unemployment, some unemployed people will never find a new

job, and in sociological studies on the age at which a person marries, some people

will stay unmarried for their whole life. Other examples can be found in finance,

marketing, demography, and education, among others, where each time there is a

certain proportion of subjects whose time to event is infinite and hence they are said

to be cured. Since classical survival models implicitely assume that all individuals

will eventually experience the event of interest, they cannot be used in such contexts.

They would in fact lead to incorrect results such as, among others, an overestimation

of the survival of the non-cured subjects. This is why specific models, called cure

models, have been developped.

In order to model the impact of a set of covariates on the time-to-event variable,

two main streams of cure models (and proposals that overarch both types of models)

can be found in the literature. The first one is the so-called mixture cure model,
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which supposes that the conditional survival function is given by S(t|x1,x2) = P (T >

t|X1 = x1,X2 = x2) = p(x2) + {1− p(x2)}Su(t|x1), where p(x2) is the probability

of being cured for a given vector of covariates x2, and Su(t|x1) is the conditional

survival function of the non-cured subjects, where x1 is another set of covariates

(possibly with common components). This model has been studied by, among others,

Boag (1949), Berkson and Gage (1952), Farewell (1982), Kuk and Chen (1992), Taylor

(1995), Peng and Dear (2000), Sy and Taylor (2000), Peng (2003) and Lu (2008). A

second class of models is based on an adaptation of the Cox model (Cox 1972) to

allow for a cure fraction. It is called the class of promotion time cure models and

supposes that

S(t|x) = exp {−θ(x)F (t)} , (1)

where F (·) is a proper baseline cumulative distribution function (cdf) and θ(·) cap-

tures the effect of the covariates on the conditional survival function. One often

chooses θ(x) = exp(xTβ), where the first component of the P -dimensional covari-

ate x is supposed to be 1, in order to include an intercept in the model. Note that

the classical Cox model (without cure fraction) does not include an intercept, since

it supposes that F (t) tends to infinity when t tends to infinity, and an intercept

would therefore not be identifiable. References on the promotion time cure model

include Yakovlev and Tsodikov (1996), Tsodikov (1998a,b, 2001), Chen et al. (1999),

Ibrahim et al. (2001), Tsodikov et al. (2003), Zeng et al. (2006) and Carvalho Lopes

and Bolfarine (2012).

In this paper we consider the promotion time cure model (1) in which we leave

F completely unspecified. We suppose that the survival time T is subject to random

right censoring, i.e. instead of observing T we observe Y = min(T,C) and δ =

I(T ≤ C), where the censoring time C is independent of T given X. An immediate

consequence of the presence of right censoring is that for the censored observations, we
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do not observe whether they are cured or not cured, the latter also called susceptible.

In addition to being exposed to censoring, the data can also be subject to another

type of incompleteness. As is often the case in practice, we suppose that some (or

all) continuous covariates are subject to measurement error. For instance, in medical

studies the error can be caused by imprecise medical instruments, and in econometric

studies economic variables like welfare or income can often not be measured in a

precise way, in which case one has to work with approximate measures, including

some error. Although this measurement error is rarely taken into account, ignoring it

leads to several issues, including incorrect conclusions drawn from biased estimators

(Carroll et al. 2006). In order to deal with this measurement error, some assumptions

about its form are necessary. We consider a classical additive measurement error

model for the continuous covariates, so that we have, for the whole vector of covariates,

W = X +U , (2)

where W is the vector of observed covariates and U is the vector of measurement

errors. We further assume that U is independent of X and U follows a continuous

distribution with mean zero and known covariance matrix V , where the elements of

V corresponding to covariates with no measurement error (the non-continuous covari-

ates, and possibly some continuous ones) are set to 0. It is also assumed that (T,C)

and W are independent given X. When U is assumed to be normally distributed,

this is the model studied, for example, by Cook and Stefanski (1994) and Ma and

Yin (2008).

The methods designed to deal with measurement error in the covariates can be

classified into two families: structural modeling and functional modeling approaches

(Carroll et al. 2006). In structural modeling, the distribution of the unobservable co-

variates X must be modeled (usually parametrically), while in functional modeling,

no assumptions are made regarding the distribution of X. When the distributional
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assumptions are met, the approaches of the first group yield higher efficiency. How-

ever, an obvious advantage of the second type of approaches is their robustness with

respect to a possible misspecification of the distribution of X.

In this paper we choose to work with a functional approach, the so-called SIMEX

(Simulation-Extrapolation) approach for correcting for the measurement error. The

basic idea of SIMEX consists of two steps. In the first step we consider several

increasing amounts of measurement error, and simulate a large number of data sets

for each of these levels of measurement error. At each level we estimate the vector

β of regression coefficients ignoring the presence of measurement error. Next, in the

second step we extrapolate the so-obtained estimators corresponding to the different

levels of measurement error to the situation where the covariates are observed without

error. This very intuitive algorithm was proposed by Cook and Stefanski (1994) in

the context of generalized linear models, and has a number of important advantages

that will be summarized in the Discussion (Section 6). The method has increasing

popularity and has been considered in many different contexts. In survival analysis,

it has been used in, e.g., the Cox model (Carroll et al. 2006), the Cox model with

nonlinear effect of mismeasured covariates (Crainiceanu et al. 2006), the multivariate

Cox model (Greene and Cai 2004) and the frailty model (Li and Lin 2003), but, as

far as we know, not in cure models.

To the best of our knowledge, the problem considered in this paper has been

addressed in only one other paper in the literature: Ma and Yin (2008) also stud-

ied a promotion time cure model with right censored responses and mismeasured

covariates. But instead of using the SIMEX approach, they introduced a corrected

score approach in order to deal with the measurement error in the covariates. Their

approach yields consistent and asymptotically normal estimators when the measure-

ment error variance is known and the error is normally distributed. However, their
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method only works for the specification θ(x) = exp(xTβ), while the SIMEX algo-

rithm can be used for any parametric version of θ(x). Moreover, they mention the

case of non-gaussian measurement error, but they do not study it in detail.

The motivation for considering cure models with right censoring allowing for co-

variates to be subject to measurement error is multifold. Our research was inspired

by a recent study focusing on the link between the ejection fraction and death from

heart disease amongst patients suffering from aortic insufficiency. Our data consists

of 393 patients with moderate to severe aortic insufficiency followed up for death

from heart disease. These patients were taken in charge by a cardiac department,

monitored regularly and operated upon if thought necessary by the cardiac surgeon

in charge. It is therefore expected that a majority of these patients will actually

not die from their heart disease, explaining the presence of cured individuals in our

data. Nowadays, the ejection fraction plays a major role in the treatment of these

patients, and current practice is to recommend surgery when it goes below a given

threshold (Bonow et al. 1998; Vahanian et al. 2007). However, the ejection fraction,

as measured by non-invasive techniques (i.e. echocardiography) is known to be mea-

sured with error (Otterstad et al. 1997) and it is therefore necessary to take this into

account to quantify correctly the impact of this covariate on survival.

The rest of this paper is organized as follows. In the next section, we explain the

proposed estimation method for the parameter vector β and the baseline distribution

F . Section 3 contains the asymptotic properties of these estimators. The finite sample

properties of the estimator of β are investigated in Section 4 through a simulation

study. Section 5 contains the analysis of the aortic insufficiency database, and in

Section 6 we discuss the obtained results and mention some ideas for future research.

Finally, the Appendix contains the proof of asymptotic normality, while the proof of

consistency can be found in the Supplementary Materials.
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2 METHODOLOGY

We suppose that we have n independent and identically distributed right-censored

observations (Yi, δi,Xi). We denote by Y(1), . . . , Y(m) the m distinct ordered event

times, so that Y(1) < . . . < Y(m). We use model (1), where we consider θ(x) =

η(xTβ) for some given function η. Two examples are η(·) = exp(·) and η(·) =

exp(·)/ {1 + exp(·)}. We present the algorithm to be used when the error U is nor-

mally distributed, although it can be applied whatever its distribution.

The general idea of the SIMEX algorithm consists in adding successively increasing

(and known) amounts of artificial noise to the covariates subject to measurement

error, estimating the model without taking the measurement error into account, and

extrapolating back to the case of no measurement error. Two types of parameters

have to be chosen: the levels of added noise λ = λ1, . . . , λK and the number B of

simulations for each value of λ. Some common values are K = 5 and B = 50 (Cook

and Stefanski 1994; Carroll et al. 1996).

The SIMEX algorithm for the promotion time cure model is then:

1. For λ = λ1, . . . , λK

• For b = 1, . . . , B

– Generate Zb,i ∼iid NP (0, IP ) independently of the observed data and

construct Wi,λ,b = Wi +
√
λV 1/2Zb,i for each individual i = 1, . . . , n.

The variance-covariance matrix of the contaminated Wi,λ,b is

Var (Wi,λ,b|Xi) = Var(Wi|Xi) + λV = V + λV = (1 + λ)V ,

which converges to the zero matrix as λ converges to −1.

– Replace Xi by Wi,λ,b in the promotion time cure model:

S (t|Wi,λ,b) = exp
{
−F (t)η(W T

i,λ,bβλ)
}
.
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– When theWi,λ,b are known, this model is the standard promotion time

cure model. Obtain the estimates β̂λ,b of βλ, by using a naive esti-

mation method, i.e., a method which does not take the measurement

error into account.

• Obtain β̂λ = B−1
∑B

b=1 β̂λ,b.

2. Choose an extrapolant (linear, quadratic, fractional, etc.) for each parame-

ter (i.e. for each element β̂λ,p of the vector β̂λ), as a function of the λ’s:

gβ(γβ, λ) = {gβ1(γβ1 , λ), . . . , gβP (γβP , λ)}T depending on a vector of parameters

γβ = (γTβ1 , . . . ,γ
T
βP

)T . In the case of the quadratic extrapolant, one obtains:

β̂λk,p = gβp(γβp , λk) + ηp,k = γβp,1 + γβp,2λk + γβp,3λ
2
k + ηp,k,

p = 1, . . . , P ; k = 1, . . . , K.

Fit these parametric models for each p = 1, . . . , P in order to obtain γ̂β =

(γ̂Tβ1 , . . . , γ̂
T
βP

)T .

3. Obtain the SIMEX estimated values

β̂SIMEX = lim
λ→−1

gβ(γ̂β, λ).

This algorithm is illustrated (for the coefficient of the mismeasured covariate

in the cardiology database analyzed in Section 5) in Figure 1, with B = 50, λ ∈

{0, 0.5, 1, 1.5, 2} and a quadratic extrapolation function.

The naive estimation method that appears in the simulation step can be any

method that allows estimation of the parameters of the promotion time cure model.

When there is no measurement error in the covariates, Zeng et al. (2006) and Ma and

Yin (2008) explain how to estimate the model parameters β and F . They show that

the log-likelihood of the promotion time cure model without measurement error is
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Figure 1: Illustration of the functioning of the SIMEX algorithm for one parameter.
The circles are the estimated values (50 for each value of λ). The squares correspond-
ing to λ = 0.5, 1, 1.5, 2 are the average estimated values. They are used together with
the naive estimator corresponding to λ = 0 to fit the extrapolation curve. The value
on the y-axis of the square corresponding to λ = −1 is the SIMEX estimator.

(we use η(XTβ) instead of the particular case exp(XTβ) considered by the authors):

` =
n∑
i=1

[
δiI(Yi <∞)

{
−F (Yi)η(XT

i β) + logF{Yi}+ log η(XT
i β)

}
+(1− δi)I(Yi <∞)

{
−F (Yi)η(XT

i β)
}
− I(Yi =∞)η(XT

i β)
]
, (3)

where F{Yi} is the jump size of F at Yi. As Zeng et al. (2006) explain, it can be

shown that the nonparametric maximum likelihood estimator for F is a function with

point masses at the distinct observed failure times Y(1), . . . , Y(m) only: if p(j) denotes

the jump size of F at Y(j), then F (Yi) =
∑

Y(j)≤Yi p(j). Moreover, the authors also

explain that, in order for this semiparametric model to be identifiable in (β, F ), we

need to choose a threshold τ (the cure threshold) such that all censored individuals

with a censoring time larger than this threshold are treated as observed to be cured

(with Ti = Ci = Yi = ∞). The largest observed failure time is often used as the

cure threshold in practice, so that τ = Y(m). Thus, the estimated baseline cumulative
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distribution function is forced to be 1 beyond the cure threshold,
∑m

j=1 p(j) = 1, since

no event can occur at those times.

The parameters can then be estimated by solving the score equations related to

the likelihood in which the baseline cumulative distribution function is replaced by a

step function.

If the interest also lies in estimating the baseline cumulative distribution func-

tion F , exactly the same SIMEX procedure can be applied to the p̂i, yielding the

p̂SIMEX,i. In order to ensure that their sum is equal to 1, each of them is divided

by their sum: p̂∗SIMEX,i = p̂SIMEX,i/
∑

j p̂SIMEX,j. Finally, we obtain F̂SIMEX(t) =∑
Y(j)≤t p̂

∗
SIMEX,(j).

3 ASYMPTOTIC PROPERTIES

We present some theorems regarding the asymptotic properties (consistency and

asymptotic normality) of the SIMEX estimators of the regression parameters β and

the baseline cumulative distribution function F . Theorem 1 states their consistency;

its proof can be found in the Supplementary Materials. Theorem 2 establishes their

asymptotic normality and is proved in the Appendix. Here, we assume that the Zb,i

that are generated in the simulation step follow a truncated Gaussian distribution

with large truncation limits (this will always be the case in practice). We also assume

that the expectation of the log-likelihood has a unique maximizer, whether or not

there is measurement error in the covariates.

Theorem 1. Under the regularity conditions (C1)-(C4) of Zeng et al. (2006) (by

replacing X that appears there by Wλ,b, ∀b = 1, . . . , B and ∀λ), if the measurement

error variance and the true extrapolant function are known, then, with probability 1,

‖β̂SIMEX − βTRUE‖ → 0 and sup
t∈R+

|F̂SIMEX(t)− FTRUE(t)| → 0.
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Theorem 2. Under the regularity conditions (C1)-(C4) of Zeng et al. (2006) (by re-

placing X that appears there by Wλ,b, ∀b = 1, . . . , B and ∀λ), if the measurement error

variance and the true extrapolant function are known, then
√
n(β̂SIMEX −βTRUE)

d→

N(0,Σ), where Σ is given in the Appendix. Moreover,
√
n(F̂SIMEX − FTRUE) con-

verges weakly to a zero-mean Gaussian process G whose covariance function is given

in the Appendix.

As far as the variance of the SIMEX estimator is concerned, it can be estimated

using the method introduced by Stefanski and Cook (1995) and summarized, for

example, in Carroll et al. (2006). The variance estimator can be computed as Σ̂ =

limλ→−1

(
Σλ − Σ̂λ

)
, where

• Σλ is the extrapolation function corresponding to

V ar[β̂λ] = B−1
∑B

b=1Ṽ ar[β̂λ,b],

where Ṽ ar[β̂λ,b] is the estimated covariance matrix of β̂λ,b, when using the

variance estimator corresponding to the naive estimation method.

• Σ̂λ is the extrapolation function corresponding to

V̂ ar[β̂λ] = B−1
∑B

b=1[β̂λ,b − β̂λ][β̂λ,b − β̂λ]
T ,

i.e. the empirical covariance matrix of {β̂λ,b}Bb=1.

4 SIMULATION STUDIES

We perform here a simulation study to investigate the properties of the proposed

estimator in samples of finite size and to compare it with both the naive method, i.e.
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the one that does not take measurement error into account, which was introduced at

the end of Section 2 and is based on Equation (3), and the corrected score method of

Ma and Yin (2008). For the SIMEX algorithm, we used B = 50, λ ∈ {0, 0.5, 1, 1.5, 2}

and a quadratic extrapolant. For each setting, 500 simulated data sets were analyzed.

4.1 One Mismeasured Covariate

The first set of simulation studies that we conduct is the first one used in Ma and Yin

(2008). They assume that the follow-up is infinite, and that the censoring distribution

and the failure distribution have an infinite support, so that each individual is known

to be either cured (when Ti = Ci =∞), dead (when Ti < Ci ≤ ∞) or censored (when

Ci < Ti ≤ ∞; some of the censored individuals being actually cured, those for whom

Ci < Ti = ∞). In such a case, a cure threshold is not needed for the estimation.

Each subject has a probability of 60% of having an infinite censoring time. Because

of the infinite follow-up, this setting clearly does not correspond to a realistic case,

but is useful for assessing the proposed method in an “ideal” situation.

The model under study is:

S(t|X1, X2) = exp {− exp (β0 + β1X1 + β2X2)F (t)}

and we generate the data from the model with β0 = 0.5, β1 = 1, β2 = −0.5,

F (t) = 1 − exp(−t) and X1 ∼ Uniform[0, 1], X2 ∼ Bernoulli(0.5), X1 is sub-

ject to measurement error so that W = X1 + U is observed, where U ∼ N(0, v2).

Moreover, the censoring time C is independent of X and of T given X, and the finite

censoring times follow an exponential distribution with mean µ.

Eight different settings are obtained by considering two possible values for each

of the following three parameters: sample size (n = 200 or n = 300), variance of the

measurement error (v2 = 0.12 or v2 = 0.22) and mean of the finite censoring times

(µ = 0.1 or µ = 1). The average cure rate (T = ∞) is 14%, the average proportion
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of subjects who are considered cured for the estimation (T = C = ∞) is 8%, while

the average censoring rate is 17% when µ = 1 and 33% when µ = 0.1.

The results for the four settings with µ = 0.1 are summarized in Table 1, while

those corresponding to µ = 1 can be found in the Supplementary Materials.

The empirical and estimated variances are always quite close to each other, while

both the corrected score and the SIMEX approaches yield coverage probabilities of

the confidence intervals that are close to their nominal level of 95%. It also appears

that, compared to the naive estimation method, both correction methods decrease the

bias in the intercept and the parameter corresponding to the mismeasured covariate,

but at the cost of a larger variance. Although the SIMEX algorithm and the method

of Ma and Yin (2008) cannot really be discriminated on the basis of the bias, the

former leads to a smaller variance for β0 and β1 when v = 0.2, and to similar variances

when v = 0.1. This results in an MSE which is, when v = 0.2, the smallest for SIMEX

(compared to the naive and corrected score methods). When the measurement error

variance is smaller, the naive method yields a smaller MSE than both correction

methods. This is to be expected since bias correction methods have a larger variance

than the naive method.

4.2 Two Mismeasured Covariates

We now introduce, in the previous setting, one additional covariate with measurement

error. In this case, S(t|X1, X2, X3) = exp {− exp (β0 + β1X1 + β2X2 + β3X3)F (t)}.

We generate the data with β0 = 0.5, β1 = 1, β2 = 1, β3 = −0.5, F (t) = 1− exp(−t)

and X1 ∼ Uniform[0, 1], X2 ∼ N(0, 1), X3 ∼ Bernoulli(0.5), X1 and X2 are subject

to measurement error so that W1 = X1 + U1 and W2 = X2 + U2 are observed, where

U1 ∼ N(0, v21), U2 ∼ N(0, v22) and U1 and U2 are uncorrelated.

The average censoring rate is 17% when µ = 1 and 32% when µ = 0.1. The
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average proportion of subjects considered cured for the estimation is 13%, while the

average cure rate is 21%.

The results for the four settings with µ = 0.1 are summarized in Table 2, while

those corresponding to µ = 1 can be found in the Supplementary Materials.

The three methods perform similarly as far as β3 is concerned. None of the

correction methods clearly outperforms the other one in terms of the bias. For the

larger values of the measurement error variances, the method of Ma and Yin (2008)

is the best for β0 and β1, while SIMEX is prefered for β2. However, when also taking

the variance of the estimators into account, the MSE indicates that the naive method

is preferable for small values of v1 and v2, while SIMEX outperforms the corrected

score approach and the naive method for larger values of v1 and v2.

4.3 A More Realistic Case

In practice, neither the failure times nor the censoring times can be infinite. Con-

sequently, none of the cured subjects are observed to be cured. The use of the cure

threshold (the largest observed event time, as mentioned in Section 2) is thus needed

for the estimation of the model parameters. Moreover, depending on the context, the

censoring and cure rates can be much larger than the values considered in the two

previous settings.

We therefore consider the following model:

S(t|X1, X2) = exp {− exp(−0.3 +X1 − 0.5X2)F (t)} ,

where X1 ∼ Uniform[0, 1], X2 ∼ Bernoulli(0.5), X1 is subject to measurement error

so that W = X1 + U is observed, where U ∼ N(0, v2).

For the baseline cumulative distribution function F (t), we use an exponential dis-

tribution with mean 6 which is truncated at t = 20. Consequently, the maximum
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value for the event times is 20. The censoring times are independent of the covari-

ates and are generated from an exponential distribution with mean µ = 5, which is

truncated at t = 30.

Four different settings are obtained by considering two possible values for these

two parameters: sample size (n = 200 or n = 300) and variance of the measurement

error (v2 = 0.12 or v2 = 0.252). The average censoring rate is 60% and the average

proportion of cured subjects is 39%, while the average observed cure rate is 5%.

For each setting, we performed analysis of 500 simulated data sets. The results are

summarized in Table 3.

As can be expected, differences between the methods appear only for β1 and, in

some cases, for β0. In terms of the bias, both correction methods are preferable to the

naive one. When v = 0.1, SIMEX is the best for β1, while the method of Ma and Yin

(2008) is the best for this parameter when v = 0.25. When v = 0.1 the MSE of the

naive estimator is the smallest. When v = 0.25, the MSE of the SIMEX estimator is

the smallest (while the method of Ma and Yin yields the largest MSE).

5 AORTIC INSUFFICIENCY DATABASE

We illustrate the proposed methodology on data from patients suffering of aortic

insufficiency (AI). Between 1995 et 2013, 393 patients underwent echocardiography

for severe AI at the Brussels Saint-Luc University Hospital (Belgium). The (follow

up) data were collected by one of the authors (CdM) and include information from

the diagnosis of the pathology, between 1981 and 2013. The main event of interest in

this study is death from AI. It is however known that a proportion of patients will not

die from AI and will therefore be considered as cured from their heart disease. The

main objective of this study is to investigate the link between the ejection fraction

(measured at baseline) and the survival of the patients. The ejection fraction is the
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ratio of the difference between the end-diastolic and the end-systolic volumes over the

end-diastolic volume and it therefore measures the fraction of blood which leaves the

heart each time it contracts. It is typically high for healthy individuals and is one

of the main indicators appearing in the guidelines used to decide whether a patient

should be operated on or not (Bonow et al., 1998; Vahanian et al., 2007). However,

the ejection fraction is known to be measured with error (Otterstad et al. 1997), and

this should be taken into account when evaluating its impact on the survival of the

patients.

After a median follow-up of 7.2 years, only 58 patients (15%) had died, and the

Kaplan-Meier estimate of the survival curve for these patients shows a clear plateau

after about 17 years (Figure 2). To take into account the presence of cured patients

and the measurement error in the covariate of interest, we apply the promotion time

cure model estimated with the SIMEX algorithm (with the quadratic extrapolant).

We also compare our results with those obtained from a “naive” promotion time cure

model (ignoring measurement error). In our data the ejection fraction (EF) takes

value between 0.19 and 0.84 (median 0.56) and based on previous work (Otterstad

et al. 1997), we consider a standard deviation of the measurement error (v) of 0.05

and 0.10. Our model is adjusted for other patient characteristics, measured without

error, namely: gender (79% male), age at diagnosis (median 52, range 17-88) and

surgery strategy chosen by the cardiologist for this patient (no surgery, 15% - surgery

within the first 3 months, 39% - surgery after the first 3 months, 46%). Results are

presented in Table 4.

The parameters that are the most affected when taking the measurement error

into account are the intercept and the coefficient of the EF. It can be seen that

correcting for the measurement error increases the size of the estimated effect of the

ejection fraction. In the promotion time cure model, a negative coefficient implies an
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Figure 2: Kaplan-Meier estimate of the survival curve for the patients from the aortic
insufficiency database.

increase in the cure probability and in the survival (at all times), when the value of

the covariate increases. The results hence indicate that, all other things being equal,

the higher the ejection fraction, the higher the cure probability and the better the

survival for the susceptible subjects. This is consistent with the expectations and

with the existing guidelines, which advise to perform surgery when the EF is below

a given threshold. As far as the surgery strategy is concerned, our results indicate

a better survival for the patients having undergone surgery more than three months

after the discovery of the disease, and the worst, for those with surgery within the

first three months (although the effect is reduced when taking measurement error into

account). These results should however be interpreted carefully. First, the patients

in the group ”surgery after 3 months” have, by definition, lived at least three months

after the discovery of their disease. Second, and probably more importantly, the

two groups are not comparable at baseline as the decision of whether to operate

immediately was taken according to existing guidelines, based on the prognosis of

20



Table 4: Regression coefficient estimates, estimated variances and confidence intervals

(based on the asymptotic Normal distribution)

Estimate Intercept EF Age Gender Surgery Surgery

< 3 months > 3 months

Naive -4.1230 -1.1905 0.0759 0.6545 0.1429 -0.7332

(Estimated var.) (1.2238) (1.9144) (0.0001) (0.0825) (0.1426) (0.1481)

95% C.I. (lower bound) -6.2913 -3.9024 0.0563 0.0915 -0.5972 -1.4875

95% C.I. (upper bound) -1.9547 1.5214 0.0955 1.2175 0.8830 0.0211

SIMEX (v = 0.05) -3.9752 -1.4072 0.0757 0.6483 0.1272 -0.7357

(Estimated var.) (1.4598) (2.6817) (0.0001) (0.0829) (0.1436) (0.1469)

95% C.I. (lower bound) -6.3433 -4.6169 0.0561 0.0840 -0.6155 -1.4869

95% C.I. (upper bound) -1.6071 1.8025 0.0953 1.2126 0.8699 0.0155

SIMEX (v = 0.10) -3.6157 -1.9533 0.0750 0.6339 0.1038 -0.7335

(Estimated var.) (1.9068) (4.1702) (0.0001) (0.0840) (0.1463) (0.1451)

95% C.I. (lower bound) -6.3222 -5.9558 0.0554 0.0658 -0.6459 -1.4801

95% C.I. (upper bound) -0.9092 2.0492 0.0946 1.2020 0.8535 0.0131

the patients. Therefore, the worse survival for patients with surgery within the first

three months can be explained by the fact that 80% of these patients had at least

one of the guideline criteria for surgery, including the presence of symptoms in 62%

of them. It is indeed known that the survival of severe AI patients with symptoms

is worse than for those without symptoms (Dujardin et al. 1999), as also observed in

post operative survival (Klodas et al. 1997).

6 DISCUSSION

We have proposed a method for estimating the parameters of a promotion time cure

model with mismeasured covariates. The SIMEX algorithm has several advantages

that make it a very appealing method, especially in applied problems. First, since
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it allows one to graphically represent the effect of the measurement error and of

the correction on the bias, it helps justify the need for a correction. Secondly, its

intuitive nature makes it appealing in applied problems, with users not necessarily

familiar with the issue of measurement error. Finally, the scope of the correction can

be tuned, making a conservative correction possible. Compared to the alternative

approach introduced by Ma and Yin (2008), SIMEX can be applied to a broader

class of models, since θ(x) can take any parametric form, including non-penalized

fixed knot B-splines. Also, when using the SIMEX approach, the additive error

can have any distribution, whereas Ma and Yin (2008) only study the normal case in

detail. Moreover, the practical implementation of the SIMEX method is easier, since it

only requires software to estimate the parameters of the model without measurement

error.

We have proved that, under some conditions, our estimator is consistent and

asymptotically normally distributed. Three simulation studies have shown the good

properties of this estimator in samples of finite size, both in theoretical and in prat-

ical settings. In the theoretical settings (when the cured subjects are observed), the

SIMEX method and the method of Ma and Yin (2008) cannot be clearly discrim-

inated on the basis of the bias, while in the practical setting, SIMEX is preferred

for the lower measurement error variance, and the Ma and Yin method for larger

variances. As far as the MSE is concerned, in all settings, SIMEX yields the lowest

MSE when the measurement error variance is relatively large. For smaller values of

the variance, the naive method outperforms both correction methods in terms of the

MSE. Therefore, when the measurement error variance is small, it is better not to

perform any correction. Moreover, the choice between the SIMEX and the Ma and

Yin approaches could depend on the desired property of the obtained estimates: a

pure reduction of the bias, or a decrease in the MSE.
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APPENDIX: PROOF OF THEOREM 2

For showing the asymptotics under this model, we follow the approach proposed by

Zeng et al. (2006), using G(·) = exp(−·). In the case of no measurement error, the

log-likelihood function is

˜̀(β, F ) = I(Y <∞)
[
δ log f + δ log

{
−G′(η(XTβ)F (Y ))η(XTβ)

}
+(1− δ) logG(η(XTβ)F (Y ))

]
+ I(Y =∞) logG(η(XTβ)).

Then, the true (βTRUE, FTRUE) maximizes the expected log-likelihood E
{

˜̀(β, F )
}

over the class H = {(β, F ) : β ∈ B,F cdf}, for some compact set B.
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With measurement error, we define

`λ(β, F ) = I(Y <∞)
[
δ log f + δ log

{
−G′(η(W T

λ β)F (Y ))η(W T
λ β)

}
+(1− δ) logG(η(W T

λ β)F (Y ))
]

+ I(Y =∞) logG(η(W T
λ β)),

where Wλ = W +λ1/2U∗ and U∗ ∼ N(0, V ), and we suppose that E {`λ(β, F )} has

a unique maximizer (βλ, Fλ). Therefore, we can follow exactly the same reasoning as

in Zeng et al. (2006), replacing X by Wλ in all their calculations.

For a fixed λ and a fixed b, it follows from Equation (A.7) in Zeng et al. (2006)

that

(β̂λ,b − βλ)Th1 +

∫ ∞
0

h2 d(F̂λ,b − Fλ)

= −(Pn − P )

{
`λ,β(βλ, Fλ)

TΩ−1λ,β(h1, h2) + `λ,F (βλ, Fλ)

[∫
Ω−1λ,F (h1, h2)dFλ

]}
+op(n

−1/2)

= n−1
n∑
i=1

ψλ(Ti,Wi,λ,b,h1, h2) + op(n
−1/2),

uniformly over all (h1, h2) ∈ S0. Here, Pn[g(δ, Y,X)] = n−1
∑n

i=1 g(δi, Yi,Xi) is the

empirical measure of n iid observations, P [g(δ, Y,X)] = E[g(δi, Yi,Xi)] is the expec-

tation, `λ,β(β, F ) is the derivative of `λ(β, F ) with respect to β, `λ,F (β, F )[
∫
h2dFλ]

is the derivative of `λ(β, F ) along the path (β, Fε,λ(t) = Fλ(t) + ε
∫ t
0
h2(u)dFλ(u)),

ε ∈ (−ε0, ε0) for a small constant ε0, and (Ω−1λ,β,Ω
−1
λ,F ) is the inverse of the linear

operator (Ωλ,β(h1, h2),Ωλ,F (h1, h2)) defined in Appendix A.2 in Zeng et al. (2006).

Finally,

S0 =
{
h1 ∈ RP : ‖h1‖ ≤ 1

}
×
{
h2 : R+ → R : ‖h2‖V ≤ 1,

∫ ∞
0

h2(y)dFλ(y) = 0

}
with the total variation of h2 defined as the supremum over all finite partitions 0 =

t1 < t2 < · · · < tm+1 =∞:

‖h2‖V = sup
0=t1<t2<···<tm+1=∞

m∑
i=1

|h2(ti+1)− h2(ti)|.
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Of course, Eλ {ψλ(T,Wλ,h1, h2)} = 0, ∀(h1, h2) ∈ S0.

Next, for fixed λ, the class {(t,w)→ ψλ(t,w,h1, h2) : (h1, h2) ∈ S0} is Donsker

(see Zeng et al. (2006)), and hence the class{
(t,w1, . . . ,wB)→ B−1

∑B
b=1ψλ(t,wb,h1, h2) : (h1, h2) ∈ S0

}
is also Donsker, since sums of Donsker classes are Donsker, see Van der Vaart and

Wellner (1996), Lemma 2.10.6. It now follows that the process

√
n

{
(β̂λ − βλ)Th1 +

∫ ∞
0

h2 d(F̂λ − Fλ)
}

=
√
n

{
B−1

B∑
b=1

(β̂λ,b − βλ)Th1 +

∫ ∞
0

h2 d

(
1

B

B∑
b=1

(F̂λ,b − Fλ)

)}

= n−1/2
n∑
i=1

B−1
B∑
b=1

ψλ(Ti,Wi,λ,b,h1, h2) + op(1)

converges weakly to a zero-mean Gaussian process GP indexed by (h1, h2) ∈ S0 (see

Zeng et al. (2006), under Equation (A.7)).

The covariance between GP (h1, h2) and GP (h∗1, h
∗
2) is

E

[{
`λ,β(βλ, Fλ)

TΩ−1λ,β(h1, h2) + `λ,F (βλ, Fλ)

[∫
Ω−1λ,F (h1, QFλ(h2))dFλ

]}
×
{
`λ,β(βλ, Fλ)

TΩ−1λ,β(h∗1, h
∗
2) + `λ,F (βλ, Fλ)

[∫
Ω−1λ,F (h∗1, QFλ(h∗2))dFλ

]}]
.

However, by noting that, for any h2 in the class

S =
{
h1 ∈ RP : ‖h1‖ ≤ 1

}
×
{
h2 : R+ → R : ‖h2‖V ≤ 1

}
,

we have
∫∞
0
h2 d(F̂λ − Fλ) =

∫∞
0
g2 d(F̂λ − Fλ), where g2 = h2 −

∫∞
0
h2 dFλ, we can

also consider this process as a process indexed by (h1, h2) ∈ S.

Finally, we take a finite grid Λ = (λ1, . . . , λK)T . The foregoing reasoning which

was based on a single value of λ can be redone in exactly the same way for the vector
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(λ1, . . . , λK). At the end we have that

√
n


(β̂λ1 − βλ1)Th1 +

∫∞
0
h2 d(F̂λ1 − Fλ1)

...

(β̂λK − βλK )Th1 +
∫∞
0
h2 d(F̂λK − FλK )


converges to a K-dimensional Gaussian process of mean zero. The covariance function

between the ith and jth components (i, j = 1, . . . , K) is

E

[{
`λi,β(βλi , Fλi)

TΩ−1λi,β(h1, h2) + `λi,F (βλi , Fλi)

[∫
Ω−1λi,F (h1, QFλi

(h2))dFλi

]}
×
{
`λj ,β(βλj , Fλj)

TΩ−1λj ,β(h∗1, h
∗
2) + `λj ,F (βλj , Fλj)

[∫
Ω−1λj ,F (h∗1, QFλj

(h∗2))dFλj

]}]
We consider two particular cases.

1. Consider the class

{(h1, h2) ∈ S : h1 = (0, . . . , 0, 1, 0, . . . , 0) and h2 ≡ 0}

where h1 is a vector containing 1 at the jth position (j = 1, . . . , P ) and

0 elsewhere. Then, we get the weak convergence of
√
n(β̂(Λ) − β(Λ)) to

a multivariate normal random variable of dimension PK, N(0,Σβ), where

β(Λ) = (βTλ1 , . . . ,β
T
λK

)T .

2. Consider the class

{
(h1, h2) ∈ S : h1 = 0 and h2(·) = I(· ≤ t), t ∈ R+

}
.

Then, we get the weak convergence of
√
n
{
F̂ (Λ, t)− F (Λ, t)

}
to a Gaussian

process G indexed by t ∈ R+, where F (Λ, t) = (Fλ1(t), . . . , FλK (t))T .

We will now prove the asymptotic normality of β̂SIMEX . To this end, suppose

that βλ can be specified using a parametric model gβ(γβ, λ) depending on a vector of

parameters γβ. Assuming that gβ(γβ, λ) is the true extrapolation function, we have
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that βTRUE = gβ(γβ,−1) and β̂SIMEX = gβ(γ̂β,−1), where γ̂β solves (by the least

squares estimation method)

ġβ(γβ,Λ)T
{
gβ(γβ,Λ)− β̂(Λ)

}
= 0

and ġβ(γβ,Λ) is the PK × dim(γβ) matrix of partial derivatives of the elements of

gβ(γβ,Λ) with respect to the elements of γβ. We then have that

√
n(γ̂β − γβ) =

{
ġβ(γβ,Λ)T ġβ(γβ,Λ)

}−1
ġβ(γβ,Λ)T

√
n(β̂(Λ)− β(Λ)) + op(1)

converges to

{
ġβ(γβ,Λ)T ġβ(γβ,Λ)

}−1
ġβ(γβ,Λ)TN(0,Σβ).

Because β̂SIMEX = gβ(γ̂β,−1) and β−1 = gβ(γβ,−1) = βTRUE, using the Delta

method, we have that

√
n(β̂SIMEX − βTRUE) −→ ġβ(γβ,−1)

{
ġβ(γβ,Λ)T ġβ(γβ,Λ)

}−1
ġβ(γβ,Λ)TN(0,Σβ).

Finally, we will show that
√
n(F̂SIMEX − FTRUE) converges weakly to a Gaussian

process. For a fixed t, suppose that Fλ(t) is determined by a parametric model

gt(γt, λ) depending on a parameter vector γt. Under the assumption that this is the

true extrapolation function, we have that FTRUE(t) = gt(γt,−1) and F̂SIMEX(t) =

gt(γ̂t,−1), where γ̂t is a solution of

ġt(γt,Λ)T
{
gt(γt,Λ)− F̂ (Λ, t)

}
= 0

and ġt(γt,Λ) = ∂gt(γt,Λ)/∂γTt . It now follows that

√
n(γ̂t − γt)

=
{
ġt(γt,Λ)T ġt(γt,Λ)

}−1
ġt(γt,Λ)T

√
n
{
F̂ (Λ, t)− F (Λ, t)

}
+ op(1)
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for all t, and hence the process
√
n(γ̂t − γt) (indexed by t ∈ R+) converges to the

Gaussian process

{
ġt(γt,Λ)T ġt(γt,Λ)

}−1
ġt(γt,Λ)TG.

Since by definition F̂SIMEX = gt(γ̂t,−1) and F−1 = gt(γt,−1) = FTRUE, using the

Delta method, we obtain that

√
n(F̂SIMEX − FTRUE) −→ ġt(γt,−1)T

{
ġt(γt,Λ)T ġt(γt,Λ)

}−1
ġt(γt,Λ)TG.

SUPPLEMENTARY MATERIALS

Proof of Theorem 1: Proof of the Theorem stating the consistency of the proposed

estimator. (pdf file)

Simulation results: Simulation results for the settings of Sections 4.1 and 4.2, for

a lower censoring rate (when µ = 1). (pdf file)
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