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Summary 11 

The heterogeneity of the spatial distribution of Soil Organic Carbon (SOC) at the landscape 12 

scale is generally not considered in regional or national SOC dynamics models. In cropland, 13 

this heterogeneity is largely controlled by topography, which influences the distribution of 14 

water, energy and sediments, and thus the SOC dynamics. Sediment redistribution rates have 15 

strongly increased since the mechanization of agriculture. The oversimplification of 16 

landscape processes in regional models of C dynamics may add to the uncertainty in C 17 

balances. Therefore, a better characterization of the importance of landscape scale effects on 18 

the SOC distribution throughout a  region is needed. This study proposes to characterize the 19 

relative importance of geomorphology on the SOC horizontal and vertical variability across 20 

the croplands in the Belgian loess belt region. A large legacy dataset of soil horizons was 21 

exploited together with 147 recently sampled profiles. Mean SOC depth profiles for different 22 

soil types were compared. Various topographic attributes were computed from a digital 23 

elevation model, and their influence on SOC was quantified through simple linear models. 24 

Finally, SOC content was mapped at three depth layers through multiple linear models, and 25 

results were cross-validated. The legacy dataset allowed identifying significant differences in 26 

the mean SOC profile according to texture, drainage or profile development classes. A clear 27 

relationship between SOC content and topographic attributes was highlighted, but only for 28 

the recently sampled profiles. This may be explained by a substantial error on the location of 29 

the profiles of the legacy dataset. This study thus shows evidence that the major control on 30 

the vertical distribution of SOC is related to topography in a region where observed 31 

heterogeneities for other commonly involved factors are limited. However, the large amount 32 

of unexplained variability still limits the usefulness of the spatial prediction of SOC content, 33 
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and suggests the importance of additional influencing factors. 34 

Keywords: erosion, arable soil, soil organic carbon. 35 

Introduction 36 

The soil organic carbon (SOC) pool is of great importance for the global carbon (C) cycle. 37 

Soil represents the largest terrestrial C pool, containing more organic C than biosphere and 38 

atmosphere together (Grace, 2004). However, it is the largest source of uncertainty in 39 

regional and continental C balances of terrestrial ecosystems (van Wesemael et al., 2011). For 40 

example, predictions about the response of the soil carbon store to global warming are 41 

diverging (e.g. Trumbore & Czimczik, 2008). As a result, soils are increasingly receiving 42 

attention for the potential role they can play in CO2 mitigation (Milne et al., 2007). One of the 43 

sources of uncertainty in C flux modeling between soils and atmosphere arises from the lack 44 

of consideration of the landscape processes influencing SOC (Ciais et al., 2010). Models 45 

predicting the temporal change of SOC for a region  typically represent the soil system as a 46 

collection of large spatially homogeneous units (Easter et al., 2007). However, horizontal and 47 

vertical variability of SOC within landscapes is large (Stevens et al., 2006; VandenBygaart et 48 

al., 2007; Hbirkou et al., 2012). For example, Goidts & van Wesemael (2007) showed that 49 

SOC variability at the field scale is of the same order of magnitude as the variability inside a 50 

large map unit of cropland. The implications of this large variability for model 51 

parameterization, predictions and soil monitoring schemes are still poorly understood. 52 

The topography is typically related to the spatial patterns of SOC in  the landscape , as 53 

geomorphic landscape features control hydrologic and erosional processes, and soil 54 

temperature (Moore et al., 1993; Florinsky et al., 2002). Transport of sediments influences C 55 
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fluxes between soil and atmosphere through the dynamic replacement of eroded C at eroding 56 

sites and reduced decomposition of buried C at depositional sites (Van Oost et al., 2005; 57 

Quinton et al., 2010; Vandenbygaart et al., 2012). Conceptual models have been developed 58 

that combine geomorphic models with models of carbon dynamics. They have been applied 59 

to eroding micro-catchments and were able to closely reproduce the observed SOC depth 60 

profiles for a wide range of erosional and depositional settings (Liu, 2003; Rosenbloom et al., 61 

2006; Dlugoss et al., 2010). Application of these models suggests that lateral fluxes of SOC, 62 

sediments and water will further enhance the spatial heterogeneity in SOC storage within 63 

agricultural landscapes. However, these studies typically focus on small areas with high 64 

erosion rates and pronounced topography. So far, the importance of erosion-induced and 65 

topography related variability in C stocks at the regional scale remains unclear. 66 

However, the spatial prediction of SOC content accounting for landscape-scale 67 

variability is still a challenging task, given the large number of additional processes occuring 68 

at that scale (Viaud et al., 2010). Even if the main controls are identified, the true landscape 69 

condition differs from the ideal conditions of field and hillslope scale studies (e. g. Van 70 

Hemelryck et al., 2011). A complex lateral and vertical distribution of SOC may result from 71 

the historic and current interactions between many processes incuding sediment transfers or 72 

agricultural management (Sleutel et al., 2007a; Goidts et al., 2009). Doetterl et al.(2012) 73 

showed that even if the subsoil SOC content is generally larger at depositional than at eroding 74 

positions along a slope, differences between similar geomorphological positions of different 75 

slopes may be important. The difficulty to predict soil horizon thickness at a high spatial 76 

resolution (Vanwalleghem et al., 2010) also suggests that the landscape processes result in 77 

important point or plot scale variability in soil properties. A spatially explicit description of 78 
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the soil processes and properties at landscape scale is, however, of prime importance to 79 

simulate the evolution of SOC stocks in the coming decades (Viaud et al., 2010). 80 

To adress this issue, the main objective of this paper is to assess the importance of the 81 

topographic control on SOC spatial distribution, over a large area of cropland, accounting for 82 

landscape scale variability. The effect of topography will be characterised on both the vertical 83 

SOC variability directly, and the lateral variability at different depths. The second objective is 84 

to compare the potential of a  a legacy dataset and a more recent dataset to fulfill the first 85 

objective. 86 

Material and methods 87 

Study area 88 

The study area was chosen to maximize variability in topographic features while limiting 89 

variability in other environmental factors influencing SOC. To this end, the cropland of the 90 

Belgian Loess Belt, in central Belgium was selected (Fig. 1). The Belgian Loess Belt is an 91 

area of 9921 km² of which 43% is occupied by cropland. It is characterized by a rolling 92 

topography with plateaus, slopes and some incised rivers with generally well drained, dry 93 

valley bottoms. The climate of the region is a temperate oceanic climate with mild winters 94 

and cool summers. The geological substrate is a several meters thick Pleistocene aeolian 95 

deposit of calcareous loess in which luvisols have developed (Gullentops, 1954). Loess 96 

deposits are typically thicker on south facing slopes than on north facing slopes and are 97 

overlaying tertiary sands (Vanwalleghem et al., 2010). In some locations, these sandy layers 98 

are already apparent at the surface, as soil erosion has removed several meters of the loess. At 99 
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present, the main crops in the region are cereals (46%), sugar beet (20%), silage maize (10%) 100 

and potato (7%) (van Wesemael et al., 2010) with typical C inputs to the soil by plants 101 

estimated at 1.93 Mg C ha
-1

 year
-1

 and by manure at 1.1 Mg C ha
-1

 year
-1

. Forests, grassland 102 

and urban areas are typically located in the floodplains. 103 

Carbon datasets 104 

Characterizing the SOC spatial distribution in both topsoil and subsoil required the use of 105 

spatial datasets describing the SOC profile. In our analysis, both a legacy and a recently-106 

sampled dataset of soil profiles were used. The legacy dataset is composed of soil profiles 107 

described during the Belgian National Soil Survey (1947-1962) (De Leenheer et al., 1968).  108 

Soils were sampled by horizon from observation pits, and physical and chemical analyses 109 

were performed in the laboratory. SOC was estimated by dichromate wet combustion 110 

(Walkley & Black, 1934). Soil profile location, horizon limits, physical and chemical 111 

properties and classification were recorded on paper. 112 

In 1993, the legacy dataset was digitized creating the digital soil database ‘Aardewerk’ 113 

(Van Orshoven et al., 1988). However, due to storage constraints, data description was 114 

simplified and standardized and, as a result, part of the information was lost. A critical 115 

simplification was the coding of the horizon boundaries as intervals instead of exact values. 116 

Some horizons were also omitted during the transcription. The methodology we developed to 117 

reconstruct detailed SOC profiles from incomplete and uncertain information of Aardewerk is 118 

described later. From all the profiles under cropland, 543 were removed because they had 119 

missing horizons or inconsistent values for some variables, leaving 2449 profiles available. In 120 

the following, the dataset containing the reconstructed SOC profiles located in the study area 121 
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will be called AW93.  122 

Recently, original descriptions of soil profiles located in Flanders were again digitized, 123 

but this time with the exact limits of the horizons (Van De Vreken et al., 2011). This dataset  124 

was used to validate the SOC profile reconstruction method (see below). We selected 944 125 

profiles for which SOC values were coherent with the corresponding AW93 profiles. This 126 

dataset is referred to as  AW10. A common factor of 1.33 ( Sleutel et al., 2007b) was used to 127 

correct SOC concentration for the incomplete oxidation of Walkley and Black method, in 128 

AW93 and AW10.  129 

Finally, we also used 139 profiles from a recently sampled dataset (Doetterl et al., 130 

2013). These profiles were randomly selected from existing AW93 profile locations within a 131 

40 x 40 km² sub-area (Fig. 1). It is not possible to affirm that their position exactly matches 132 

the position of the corresponding AW93 profile, since no marker was left in the soil during 133 

the original sampling of AW93 profiles. Besides, it was checked that the current land use had 134 

not changed since the Belgian National Soil Survey. Between 2010 and 2012, soil cores were 135 

extracted and analysed for carbon with a spectrometer by 3 cm depth intervals up to one 136 

meter soil depth. Reflectance was measured using a Fieldspec-Pro spectroradiometer (ASD, 137 

Boulder, CO) in the Vis-NIR range (350 - 2500 nm) under laboratory conditions. SOC 138 

concentrations were predicted from spectral information using a multiple tree algorithm. The 139 

root mean square error associated with these estimates was low (1.22 g C kg
-1

), and similar to 140 

the analytical error of the reference technique of dry combustion. In the following, this 141 

dataset will be referred as R_AW (for Resamples Aardewerk). 142 

The two datasets which are used – separately – for describing the spatial distribution 143 
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of SOC, AW93 and R_AW, are very different but complementary. The legacy dataset AW93 144 

contains a large number of data, with associated observations on soil properties, but a low 145 

precision in both the coordinates and the retrieved SOC content at a given depth. The recent 146 

dataset R_AW contains a one order of magnitude-smaller number of profiles and no 147 

associated soil observations, but a very high precision in both coordinates and depth-explicit 148 

SOC content. In this study, the large number of profiles in AW93 will be an advantage to 149 

highlight statistical differences in SOC depth distribution between soil classes, when the good 150 

precision in the coordinates of R_AW profiles will be an advantage for 3D spatially explicit 151 

predictions.  152 

Terrain attributes 153 

Terrain attributes derived from a DEM are used in our analyses. The DEM was produced by 154 

merging two DEMs of 10 and 5 meters resolutions that partially cover Belgium (Demarcin et 155 

al., 2009; AGIV, 2006). A new DEM was then created by interpolating at a 10 meters grid 156 

resolution and by smoothing the surface using a 3x3 mean filter. Terrain attributes were 157 

computed using Matlab and the TopoToolbox package (Schwanghart & Kuhn, 2010). They 158 

are elevation (ELEV), slope gradient (GRAD), total curvature (CURV), south orientation 159 

(SOUTH), topographic wetness index  (TWI, Beven & Kirkby, 1979), stream power index 160 

(STR) and topographic position index for different sizes of neighbourhood (TPI) (Weiss, 161 

2001). The flow accumulation, implied in the calculation of hydrologic attributes, was 162 

computed using multiple flow direction algorithms. TPI is the relative difference between the 163 

elevation of a cell and the average elevation of the cells within a given radius. Three radiuses 164 

were used (32 m, 128 m and 512 m), in order to represent different scales. The south 165 

orientation was taken as the cosine between the slope orientation vector and a vector pointing 166 
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south. It was selected to reflect the anisotropy of the geomorphic variables observed in the 167 

region, with loess deposits thickness and texture depending on slope orientation (Goossens, 168 

1997). 169 

Horizons distribution reconstruction 170 

Due to the loss of information while digitizing the legacy profile dataset, the vertical position 171 

of each horizon in AW93 is not given as an exact value but as two intervals: one interval 172 

indicates the depth of the upper boundary of the horizon; the other indicates its thickness 173 

class. These intervals belong to a set of predefined intervals (Table 1). In order to address this 174 

issue, a Monte Carlo simulation based method was developed (Fig. 2). For a given profile, 175 

the thickness of each horizon was simulated from a uniform distribution within the given 176 

thickness interval. Then the corresponding horizon depths were derived assuming, naturally, 177 

no gap or overlap between horizons. The simulated set of horizon thickness values was 178 

retained only if the derived horizon depths were also enclosed in the depth intervals given in 179 

AW93, for the corresponding horizons. This means that simulated sequences of horizons that 180 

were not coherent with the original information given by AW93 were discarded. A smooth 181 

SOC concentration profile was then obtained from the simulated distribution of the horizons 182 

and the SOC horizon values, by equal area quadratic spline (EAQS, see below). The whole 183 

process was repeated until 10,000 valid horizon sequences were simulated.  The estimated 184 

profile was then taken as the mean of these 10,000 profiles. This method allowed us to use all 185 

the information on horizon distribution contained in AW93 simultaneously without adding 186 

arbitrary information.  187 

The AW10 dataset was used to validate the horizon distribution reconstruction 188 
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method,  because it  contains the same profiles than AW93, but provided the exact horizon 189 

limits. The profiles of AW10 were also smoothed using a spline method (see below). Then, all 190 

the AW10 profiles were compared with the corresponding AW93 profiles. The mean profile 191 

of both datasets and the profile of mean difference (bias) and root mean square difference 192 

(RMSD) were computed. This resulted in an estimate of the magnitude of the error caused by 193 

the coding of the horizon limits used in the legacy dataset including its depth distribution.  194 

Smoothing the profiles 195 

SOC concentration was given by horizon in AW93 and AW10. Nevertheless, estimating depth 196 

explicit profiles of SOC was needed for further analysis. Traditionally, it is assumed that the 197 

horizon value of a particular attribute represents its average value over that horizon (Malone 198 

et al., 2009). In luvisols that developed in thick loess deposits, soil properties including SOC 199 

content are expected to vary continuously with depth, except at the transition zone below a 200 

mixed plough layer (Minasny et al., 2006; Kempen et al., 2011; Myers et al., 2011). This is 201 

confirmed by the re-sampled cores that do not display SOC vertical patterns of abrupt 202 

transitions between horizons (Doetterl et al., 2013). Thus, using a step function with mean 203 

SOC value over each horizon could lead to bias and cumulative errors may produce under- or 204 

overestimation for a given soil layer (Ponce-Hernandez et al., 1986). Although a SOC profile 205 

is often described using a negative exponential depth function, fitting this function does not 206 

ensure that the mean SOC content measured for each horizon is respected. In this study we 207 

therefore chose to apply the equal area quadratic spline method of Bishop et al. (1999). This 208 

method produces smoothly varying profiles that are consistent with the observed mean SOC 209 

values for each horizon. However, we assume that the first horizon , the soil surface horizon, 210 

is a tillage horizon and, given the continuous mixing by tillage operations, the SOC content is  211 
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constant. Therefore, inside the depth interval corresponding to the first horizon, interpolated 212 

values from the spline method were not used, and the mean horizon value given by the 213 

database was used instead. The SOC concentration was then calculated for three depth layers 214 

(0-30 cm, 30-60 cm, 60-90 cm) from the interpolated profiles.  215 

Computing class-representative SOC profiles 216 

Even though the legacy dataset did not permit to spatially predict SOC content (see Results 217 

and discussion), it allowed characterizing the influence of topography on the vertical 218 

distribution of SOC. AW93 profile descriptions contain information about soil texture, 219 

drainage and profile development classes. The profile development classification was 220 

simplified to the presence or absence of a colluvial layer above 120 cm depth (“colluvial” and 221 

“not colluvial” classes). This variable may indeed be considered as a proxy for the 222 

topography since the occurrence of a colluvium largely depends on the position in the 223 

hillslope. To compare the influence of these properties on SOC profile inside the study area, 224 

profiles were grouped based on combinations of soil properties. Then, for each group, a 225 

representative profile was computed by taking the mean of all the profiles in this group, and 226 

the error on the mean was computed for all depths assuming normal distribution of the errors. 227 

Finally, representative profiles of each group were compared. Representative profiles were 228 

computed for the interaction between drainage and development, and between texture and 229 

development. In order to assure a sufficient number of elements in each group to permit 230 

meaningful statistical analyses, the classifications of AW93 drainage and texture were also 231 

simplified. Drainage was split into two classes: well drained and poorly drained. Poorly 232 

drained profiles display traces of temporary water saturation (pseudo gley) above 80 cm 233 

when well drained profiles do not. 24 profiles (0.9 %) showing traces of permanent water 234 
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saturation (gley) were discarded. Texture was split into three classes: “silt loam”, “(heavy) 235 

sandy loam” and “light sandy loam”. 103 profiles (4.2 %) belonging to other texture classes 236 

(mainly clay) were not used.. Only groups containing more than 30 profiles are shown in the 237 

results. 238 

To evaluate the direct influence of the topography on the SOC profile, a method 239 

similar to the computation of soil class representative profiles was applied, but this time using 240 

terrain attributes and R_AW dataset. Indeed, the use of terrain attributes with AW93 or AW10 241 

profiles was not possible due to the error in the coordinates (see below). For each terrain 242 

attribute, the profiles were sorted by increasing value of this terrain attribute, and divided in 243 

three groups of equal size. Mean profiles were then computed for the three groups, and 244 

compared between them. 245 

For both the soil property and terrain attributes classifications, the within class 246 

variability of SOC concentration for our three successive 30 cm thick layers was computed 247 

and displayed as a boxplot using the ggplot2 package (Wickham, 2009). For each layer, an 248 

ANOVA F-test was used to test the hypothesis that all the means are equal. p-values are given 249 

in Tables 2-5. When the mean of the SOC values in one or many groups showed a relevant 250 

similarity or difference with the mean of the SOC values of another group, a t-test was 251 

performed to question the hypothesis of equality of the means. The AW93 profiles are 252 

distributed all over the study area, compared to the ones of R_AW which are restricted to a 253 

smaller sub-area. Thus, the large number of profiles increases the power of statistical tests for 254 

AW93. 255 
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Spatial prediction of SOC 256 

In order to estimate the importance of topography on the spatial distribution of SOC, 257 

statistical analyses were performed with AW93, R_AW and terrain attributes. In a first step, 258 

the Pearson coefficients of correlation between the observed SOC content in the three depth 259 

layers and the terrain attributes were computed. The correlations were analysed for both 260 

AW93 and R_AW, in order to assess their ability to spatially predict SOC. Because of the 261 

very weak values observed with the legacy dataset AW93 (see Table 6), a procedure was 262 

developed to check if these weak values could originate from a lack of precision in profile 263 

geolocations. Simulated random errors of given magnitude and random direction were added 264 

to the coordinates of the profiles in R_AW. They were chosen because they are characterised 265 

by a standard deviation of the error in their (unbiased) position of only approx. 5 meters, due 266 

to precision of the GPS. The magnitude of the simulated errors was increased gradually from 267 

0 to 300 meters by 10 meters increment (Fig. 6). Then, correlations between SOC layer 268 

contents and terrain attributes extracted at modified positions were computed. Because of the 269 

issue of the precision of the AW93 samples, the next steps of the SOC spatial prediction were 270 

only performed using the R_AW dataset. 271 

In a second step, a multiple linear regression model was used to predict SOC from the 272 

terrain attributes. A model with an arbitrary number of predictors was selected as the one 273 

which minimizes the residual sum of squares during a 10-fold cross-validation procedure. 274 

This lead to the best predictive model among tested ones. Terrain attributes, terrain attributes 275 

at second power, and interaction between all pairs of terrain attributes were all included as 276 

predictors. However, the number of predictors in the selected model was limited to three 277 

because of computational constraints.  278 
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Finally, predicted SOC spatial stock from the best model was mapped in a 5 km × 5 279 

km plotting area (see Fig. 1), randomly selected inside the sub-area containing the R_AW 280 

profiles. The stock was calculated by multiplying on a pixel and layer basis the predicted 281 

SOC concentration with the estimated bulk density (BD). BD was itself estimated from SOC 282 

concentration using the general model of Manrique & Jones (1991). The choice of the model 283 

is of prime importance given that different estimation models applied over a whole region 284 

may lead to differences in mean BD up to 7.5%, and in mean SOC stock up to 6% (Liebens 285 

& VanMolle, 2003). The model was chosen for its simplicity and, relatively to other models, 286 

its good ability to predict soil bulk density at surface as well as along soil profile in Belgium 287 

(Boucneau et al., 1998).  288 

Results and discussion 289 

Horizon distribution reconstruction 290 

The profiles calculated from incomplete horizon information (AW93) were compared to a 291 

subset of corresponding profiles that were derived from another database with exact horizon 292 

descriptions (AW10). The mean profile of both sets and the vertical profile of mean 293 

difference (bias) and root mean square difference (RMSD) are presented in Fig. 3. Bias is 294 

very low across depth, and reaches, between 15 and 30 cm, a minimum followed by a 295 

maximum, all having an absolute value less than 1 g C kg
-1 

. This may indicate a trend to 296 

underestimate the thickness of the surface horizon, since the transition between the surface 297 

horizon and the second horizon is generally also between 15 and 30 cm, and the surface 298 

horizon contains generally more SOC than the second one. The RMSD profile shows peaks 299 

in the same region, reaching up to 25% of the mean SOC content of AW10. This is due to the 300 
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fact that the SOC content is high, and decreases fastly below the plough layer, and thus 301 

absolute error is high also. Above 10 cm and below 50cm, the RMSD is stable and varies 302 

between 0.4 and 0.5 g C kg
-1

. 303 

To interprete these results, one should keep in mind that SOC profiles in both AW93 304 

and AW10 were estimated using the spline smoothing method mentioned before, and are thus 305 

not the true SOC profiles. The smoothing method also assumes that the SOC concentration 306 

associated with each horizon is the exact mean SOC concentration over this horizon, an 307 

assumption that could not be verified. Furthermore, more complex horizon reconstruction 308 

methods could be tested, for example by using the exact horizon distributions of AW10 to 309 

estimate an a priori horizon distribution for AW93. But the goal of the study was not to 310 

concentrate efforts on the development of complex methods for this task, since the current 311 

results are already satisfying for our purposes.  312 

Legacy datasets are still valuable, also because they represent a past situation. Our 313 

reconstruction method deals with a specific problem in the data format, and could not be 314 

directly transposed to other legacy datasets. However, it could prove to be useful if it inspires 315 

other researchers when finding a strategy to exploit other legacy dataset. Besides, we had the 316 

chance to receive a large number of profiles without this specific problem in the format 317 

(AW10), permitting to validate our reconstruction methods, which is rarely the case. 318 

Soil property influence on SOC profile 319 

The soil property influence on the vertical distribution of SOC in AW93 is displayed by Fig. 320 

4 and Tables 2 & 3. Generally, the representative profiles of each group display similar 321 
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shapes, and are well sorted with few intersection of the curves. The intraclass variability for 322 

the SOC content inside the depth layers is large (Fig. 4, right side). However, thanks to the 323 

large number of profiles in each group, significant difference between mean layer SOC 324 

content of different classes can be observed, as indicated by the very small p-values of the 325 

ANOVA F-tests.  326 

The upper part of Fig. 4, and Table 2, show the combined influence of drainage and 327 

profile development on SOC distribution. In the top layer, differences between groups are 328 

small compare to their mean values. The lowest SOC content was found in non-colluvial 329 

poorly drained profiles, which contain 12 % less SOC in this layer than other profiles (p < 10
-

330 

15
). In the deeper layers, however, all the classes show relatively larger differences. In the 331 

bottom layer, the poorly drained not colluvial profiles, contain in average more than two 332 

times less SOC than the well drained colluvial profiles (p < 10
-15

). A good drainage is 333 

positively correlated with SOC content, which has not always been observed (e.g. Tan et al., 334 

2004). It can be explained by the fact that, outside redoxymorphic conditions, water may 335 

enhance SOC decomposition. In the study region, incidentally, redoxymorphic soils are 336 

mainly under grassland, and since all our profiles are under cropland, even the ones we 337 

classify as poorly drained undergo only temporary water saturation. Nevertheless, in these 338 

layers, we observe that the influence of profile development is still clearer than the influence 339 

of drainage.  340 

 The classification based on texture and development combinations (lower part of Fig. 341 

4) also shows differences in SOC vertical distribution. For the topsoil layer, the mean SOC 342 

values are first sorted by texture, then by profile development. In particular, light sandy loam 343 

not colluvial profiles contain in average 25% SOC less than other not colluvial profiles (p < 344 
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10
-15

), showing that even when all soils are loamy, texture can have a drastic influence. In 345 

contrast, a difference for example between the mean SOC content for colluvial silt loam 346 

profiles and non-colluvial silt loam profiles cannot be observed (p = 0.26). Texture has thus a 347 

larger influence than profile development on topsoil SOC content. In the two deepest layers, 348 

however, substantial differences may be observed between classes with similar texture and 349 

different profile development. In the 60-90 cm layer, silt loam colluvial profiles contain in 350 

average 41 % more SOC than silt loam non colluvial profiles (p < 10
-15

). And the curves are 351 

first sorted by profile development, then by texture, showing that the effect of profile 352 

development is the most important in the deeper soil layers. 353 

 In summary, the influence of soil properties on SOC differs with depth and the 354 

presence of colluvium is the soil property which influences the most the deeper SOC content 355 

for our study area. Indeed, within the range of variability of texture and drainage of the 356 

cropland, the differences of deep SOC resulting from differences in profile development are 357 

larger than the differences resulting from differences in texture and drainage. The use of 358 

texture or drainage classes in combination with profile development classes permits to better 359 

highlight the influence of profile development alone. In this context, it should be pointed out 360 

that the soil property class-representative profiles are not intended to represent actual soil 361 

profiles, but only average, or type-profiles to be used for regional scale SOC distribution 362 

quantification. 363 

Terrain influence on SOC profiles 364 

Terrain attributes of the R_AW profiles were divided in 3 groups of equal size according to 365 

their order. For the sake of brevity, only the results for TWI and GRAD are shown and 366 
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discussed (Fig. 5, Tables 4 & 5). For TWI, the mean SOC profile of the third class (the one 367 

with the highest TWI values) show the highest SOC content (Fig. 5). This third class contains 368 

in average  7.6 % (p = 16 × 10
-4

), 40 % (p = 13 × 10
-4

) and 33 % (p = 16 × 10
-5

) more SOC 369 

than the two other classes, for the 0-30 cm, 30-60 cm and 60-90 cm layers respectively. The 370 

positive relationship between SOC and TWI may not be explained by the effect of the 371 

wetness itself. This would contradict the trends previously observed for the mean profiles by 372 

soil class showing that, for a given soil development class, the drainage class containing most 373 

SOC is the less humid (Fig. 4). It can however be explained by the role of water erosion, 374 

since the accumulation of  runoff in concave areas with a gentle slope induces sedimentation. 375 

And this results in the burial of former C-rich soil below the plough layer in a low 376 

mineralization context (Van Oost et al., 2012). 377 

The effect of the slope classes (GRAD) is mainly visible for the third class (Fig. 5, 378 

Table 5). For the three layers successively, the mean content of the third class contains 379 

respectively 4 % (p = 0.0037),  21 % (p = 0.0029) and 24 % (p = 32 × 10
-9

) less SOC than the 380 

mean of the two other classes. This third class includes the profiles with a slope gradient 381 

larger than 3.4 %. This may be explained by the loss of SOC when the soil profile is 382 

truncated during erosion process. In the plough layer, the loss of carbon could be 383 

compensated through dynamic replacement, which would explain why the difference between 384 

classes is small in the 0-30 cm layer. However, in the deeper layer, inputs of SOC are reduced 385 

and replacement of SOC could be only partial.  386 

The classification of the profiles by terrain attributes allowed to put in evidence a clear 387 

and significant influence on the SOC profile. The grouping by terrain attribute classes was 388 

also performed with the AW93 profiles, on individual texture and drainage classes. But the 389 
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results did not show interesting relationships as with R_AW (not shown). This may be due to 390 

the positioning errors in AW93 (see below).  391 

Analysis of the correlations for legacy and new data 392 

The correlations between terrain attributes and SOC layer contents, and between SOC layers 393 

themselves, were computed for the AW93 and R_AW datasets (Table 6). First, our results 394 

show a strong dependence between the SOC content of the three layers for both datasets. The 395 

coefficient of correlation reaches 0.43 between the top and the bottom layer, and varies 396 

between 0.5 and 0.65 for the correlation between adjacent layers. There are small differences 397 

between the two datasets probably due to the characteristics of AW93 and the methods used 398 

to estimate its SOC profiles: the weaker precision in AW93 SOC content decreases the 399 

correlation between layers, while the Monte Carlo based method developed to deal with the 400 

uncertainty in the position of the horizons has a smoothing effect, and this likely increases the 401 

correlation between layers. 402 

Then, we considered the correlations between terrain attributes and SOC layers, as 403 

preliminary information for the spatial prediction of SOC from topography. Results widely 404 

differ between AW93 and R_AW. In AW93, the correlations are generally weak, with the 405 

maximum coefficient of correlation of 0.28 reached by the relationship between elevetion and 406 

top layer SOC. The effect of elevation may be explained by the smooth variations of texture 407 

inside the Loess Belt, since the parts in the North and in the East, in average, have lower 408 

altitude, and contain in average less fine texture fractions. This effect is not visible for R_AW, 409 

since R_AW profiles are limited to a smaller sub-area, containing mainly silt loam. For 410 

R_AW, correlations are generally higher and all the attributes, except elevation and south 411 

aspect, show a highly significant correlation with the SOC content of at least one layer. The 412 
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highest correlation observed are between wetness index and the deepest SOC layer, reaching 413 

a value of 0.55. Note that weaker correlations may be more significant for AW93 than for 414 

R_AW because of the larger number of observations. 415 

The weak correlations for AW93 dataset could be explained, at least partially, by an 416 

error in the profile positions recorded in the 1950’s. This is likely to result in an error in the 417 

terrain attributes extracted at these profile positions. The possible sources of error are 418 

positioning errors on paper maps during the original survey, and transformation between 419 

different geoids. While the last error component was estimated at approximately  60 m (Van 420 

De Vreken et al., 2011), the other cannot be quantified since the pit locations are not visible in 421 

the field anymore. The correlations between SOC and terrain attributes for R_AW profiles 422 

indicate the importance of precise geolocations (Fig. 6). For all terrain attributes, the absolute 423 

value of the correlation tends to decrease when the size of the errors increases, until it reaches 424 

a minimum plateau with some noise. However, the rate of decrease varies. With local 425 

attributes, like slope or curvature, it decreases faster than with attributes related to the 426 

position in the landscape, like wetness or large range TPI (not shown). This analysis confirms 427 

that the error associated with the coordinates of AW93 is likely to be the cause of the weak 428 

correlation between SOC layers and terrain attributes with this dataset. The weak correlations 429 

may be also partly explained by the precision of the SOC analysis in AW93, the fact that the 430 

profiles had to be reconstructed (Fig. 2), or the influence of past land use conversions prior to 431 

the National Soil Survey. 432 

Spatially explicit prediction of SOC 433 

A summary of the regression model used to predict SOC over the study area is given in Table 434 
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7. The table shows the terrain attributes selected by cross-validation, as well as the intercept, 435 

the coefficients and their standard errors, the mean error (ME) and root mean square error of 436 

prediction (RMSEP) , and the coefficient of determination R
2
. Terrain attributes are sorted by 437 

decreasing importance (increasing p-values). All predictors are significant at p < 0.05. In all 438 

cases, the number of automatically selected attributes is equal to three, the maximum that was 439 

authorized. Interaction terms were selected for four predictors out of nine, terrain attributes at 440 

the power 2 were never selected.  441 

 For the top layer, TWI is the first predictor, with a positive coefficient. TWI was also 442 

the most correlated terrain attribute (Table 6). The selection of SOUTH as the next predictor 443 

in order of importance may be explained by small differences in texture related to the 444 

hillslope orientation (Goossens, 1997). The last predictor is the interaction between the 445 

elevation and the TPI with a range of 512 m. This may be due to small variations of texture 446 

correlated to the altitude.  TWI, TPI with different radiuses, ELEV and GRAD are used, 447 

directly or inside interaction terms, in the models predicting SOC for the two deeper layers. 448 

The signs of the coefficients are coherent with the individual correlations (Table 6). 449 

  The models predicts respectively 21 % (0 – 30 cm) ,  25 % (30 – 60 cm)  and 33 % 450 

(60 – 90 cm) of the SOC variability (Table 7). The larger R
2
 of the mid layer compared to the 451 

top layer, despite a similar RMSEP and a smaller mean SOC content, is explained by  its 452 

larger variance. The mean error is negligible (~0.01 g C kg
-1

) for all layers, confirming that 453 

the model is not biased. Points at the extreme of the range of SOC values have in general the 454 

larger errors in the prediction (Fig. 7, left column).  455 

 The fact that the prediction improves with deeper soil layers contradicts what has been 456 
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observed in other studies (Minasny et al., 2006; Kempen et al., 2011). This may be due to 457 

both particularities in the study area and in the prediction method. In our study area, the role 458 

of topography is particularly important since the region combines slopes and intensive tillage, 459 

and the redistribution of sediments mainly influences the subsoil SOC dynamics through 460 

burial of SOC rich sediments. Besides, since we focus on the cropland of a pedologically 461 

homogeneous region, we do not exploit factors which mainly influence the topsoil layers, like 462 

soil type, vegetation or land-use, as it is often done in other studies through soil  maps or 463 

remote images. 464 

The predicted SOC layer contents were mapped into the 5 km × 5 km plotting area 465 

(Fig. 7, right column). For the three layers, the spatial patterns of SOC are very 466 

heterogeneous, even inside a field, which is coherent with the field or airborne observations 467 

(Stevens et al. 2010). Convergent positions and valley bottoms contain more SOC than other 468 

landscape positions, and this effect is stronger for deeper layers. 469 

The large part of unexplained variability may be due in variable proportions to three 470 

factors. First, the quality of the data, i.e. the precision in the SOC content of R_AW and the 471 

terrain attributes. Secondly, the model structure, which does not permit to fit all the 472 

complexity and interaction of the processes controlling SOC. In their conceptual model, 473 

Rosenbloom et al. (2006) observe a sharp transition of SOC content between erosional and 474 

depositional surfaces, while Florinsky et al.(2002) observe a bimodal distribution for deep 475 

SOC. Finally, other factors influencing SOC were not considered. There could be small 476 

variations in the texture, differences in management practices or crop rotations between farms 477 

and influence of non cropped landscape features on adjacent fields (Viaud et al., 2010). 478 

However, an extensive knowledge of these variables is not easily available. For example, the 479 
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information on the texture available in the soil map does not account for texture variability 480 

inside or between adjacent hillslopes.  481 

More generally, comparing quantitavely our spatial prediction results with other 482 

studies should be made with caution. In our case, the study are was chosen to highlight the 483 

effect of topography in cropland but, usually, spatial predictions over regions are not 484 

restricted to one land use and soil type. Therefore, the range of variability of SOC is much 485 

larger, the relative effect of hardly observable landscape scale processes is reduced, and 486 

additional sources of information (vegetation images, land use/soil type maps, …) can be 487 

successfully exploited (e. g. Vasques et al., 2010). 488 

Lastly, if in our case erosion-depostion processes are represented implicitly by terrain 489 

attributes, other models exist which aim at representing explicitly these processes, and the 490 

associated temporal evolution of the topography. These landscape evolution models (LEMs) 491 

use more flexible expressions for erosion, deposition and sediment transport processes, and 492 

run on a time step basis. Their calibration requires a large number of data, and for these 493 

reasons the models are generally applied to regions not larger than a catchment. However, 494 

some LEM have been calibrated an validated for millenial periods on a loess belt catchment 495 

(Temme et al., 2011). Since the Loess Belt is relatively homonegeneous in soil properties and 496 

agricultural management, the fact that the model parameters derived  in this catchment are 497 

still partially valid for all the region, could be envisaged. This model could then give an 498 

estimate of the current sediment transport patterns, which could be related to SOC by 499 

empirical reationships, or integrated in a SOC dynamics model accounting for erosion (e.g. 500 

SPEROS-C, Van Oost et al, 2005). 501 
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Conclusions and perspectives 502 

We conclude that topographical information, in relation to erosion and deposition processes, 503 

allows us to envisage the spatial prediction of SOC at regional scale but a large part of the 504 

variability still remains unexplained. The control of topography on SOC content increases 505 

with depth as we were able to explain up to 33% of the variability in SOC content in the 60-506 

90 cm depth layer. This is substantially less than values reported for studies conducted in 507 

single fields or micro-catchments. Different strategies could be considered in order to 508 

improve prediction. In particular, for the topsoil layer, additional data could be exploited, like 509 

additionnal topsoil samples or remotely sensed images (Stevens et al., 2010). The dependency 510 

between topsoil and deeper SOC could also be used to improve the prediction of deeper SOC 511 

content from the additional data. Finally, the use of landscape evolution models to better 512 

estimate erosion-deposition pattens could be envisaged. Besides this, our study showed that 513 

precise geolocation of soil profiles is essential for spatial prediction in the landscape. The 514 

errors in the geolocations of the legacy dataset AW93 probably explains why high 515 

correlations between SOC content and terrain attributes are not observed for this dataset.  516 
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Captions for tables 659 

Table 1: Predefined intervals for the horizon depth and thickness as coded in the legacy 660 

dataset AW93. 661 

Table 2: Statistics for the grouping of the SOC layer contents by combined drainage and 662 

profile development classes, for AW93 dataset.  663 

Table 3: Statistics for the grouping of the SOC layer contents by combined texture and 664 

profile development classes, for AW93 dataset.  665 

Table 4 : Statistics for the grouping of the SOC layer contents by wetness index classes, for 666 

R_AW dataset. 667 

Table 5 : Statistics for the grouping of the SOC layer contents by slope gradient classes, for 668 

R_AW dataset. 669 

 670 

Table 6: Pearson correlation and level of significance between terrain attributes and SOC 671 

contents by layer, for AW93 and R_AW datasets. Levels of significance are *** : p <0.001, 672 

** : p <0.01 and * : p <0.05. 673 

Table 7: Model formulae and performance indices of the regression models for the three 674 

layers. Please refer to text for complete names of terrain attributes. The sign before each 675 

predictor represent the sign of its cofficient in the model. Intercept are also present for each 676 

layer. The predictors are ordered by decreasing significance, i.e. by increasing p-value. 677 

Besides, all predictors are significant with p <0.05.  678 

 679 
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Captions for figures 680 

Fig 1: Left picture: the Belgian loess belt region (orange polygon) is largely occupied by 681 

cropland (orange fill). Center picture: AW93 (blue points) and R_AW (red triangles) profiles 682 

sites are presented across the resampled sub-area of the study region.  683 

Fig 2: Reconstruction of the horizon distribution for AW93 data and validation of the method 684 

using AW10 data. 685 

Fig 3: The inaccuracy and imprecision due to the use of incomplete horizon distribution 686 

information is limited thanks to the use of a Monte Carlo based simulation procedure. Error is 687 

maximal around the expected bottom limit of the plough layer (15-30 cm). 688 

Fig 4: Left side: representative SOC profile for soil property classes using AW93 profiles. 689 

Standard error on the mean is represented by a ribbon along the curve. The number of profile 690 

of each class are inside parentheses. Right side: distribution of SOC for each class by 30 cm 691 

thick soil layers. Inside each layer, a common letter indicate not significantly different means, 692 

(cf Material and methods). 693 

Fig 5: Left side: representative SOC profile for terrain attribute classes using R_AW profiles. 694 

Standard error on the mean is represented by a ribbon along the curve. The number of profile 695 

of each class are inside parentheses. Right side: distribution of SOC for each class by 30 cm 696 

thick soil layers. Inside each layer, a common letter indicate not significantly different means 697 

(cf Material and methods). (GRAD: slope gradient ; TWI : topographic wetness index). 698 

Fig 6: Correlations between SOC layers and terrain attributes are sensitive to a perturbation 699 

of the originally precize geolocations of the profiles of the R_AW dataset. The weak 700 

correlations observed with the AW93 dataset could thus be explained by an insufficient 701 

precision in the coordinates. (GRAD: slope gradient ; TWI : topographic wetness index). 702 

Fig 7: For each layers, result of the 10-fold cross validation of R_AW (left column) and 703 

mapping of the predicted SOC stocks inside the fields of the plotting area (right column) 704 
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Tables 705 

Table 1 706 

Horizon depth /cm Horizon thickness /cm 

0 - 5 0 - 2 

6 - 10 3 - 5 

11 - 20 6 - 10 

21 - 40 11 - 20 

41 - 60 21 - 30 

61 - 80 31 - 50 

81 - 100 51 - 100 

101 - 150 > 100 

>150  
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Table 2 :  707 

 well drained 

colluvial 

poorly drained 

colluvial 

well drained 

not colluvial 

poorly drained 

not colluvial 

 Anova  

F-test 

 mean std mean std mean std mean std p 

SOC0 – 30 cm 

 /g C kg
-1

  

12.63 

 ± 0.18 

3.33 11.92 

 ± 0.26 

3.29 12.16 

 ± 0.11 

3.50 10.70 

 ± 0.13 

3.47 < 10
-15

 

SOC30 – 60 cm  

/g C kg
-1

  

4.68 

 ± 0.13 

2.47 4.08 

 ± 0.16 

2.05 3.48 

 ± 0.06 

1.91 3.02 

 ± 0.07 

1.75 < 10
-15

 

SOC60 – 90 cm  

/g C kg
-1

  

3.40 

 ± 0.10 

1.9 2.68 

 ± 0.11 

1.38 2.27 

 ± 0.05 

1.46 1.65 

 ± 0.05 

1.32 < 10
-15
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Table 3: 708 

 silt loam 

colluvial 

(heavy) sandy 

loam 

colluvial 

silt loam 

not colluvial 

(heavy) sandy 

loam 

not colluvial 

light sandy 

loam 

not colluvial 

Anova 

F-test 

 mean std mean std mean std mean std mean std p 

SOC0 – 30 cm 

 /g C kg
-1

  

12.62 

± 0.16 

3.28 11.7 

± 0.48 

3.67 12.51 

± 0.11 

3.38 11.09 

± 0.18 

3.41 9.07 

 ± 0.17 

2.92 < 10
-15

 

SOC30 – 60 cm  

/g C kg
-1

  

4.77 

 ± 0.11 

2.41 4.10 

± 0.28 

2.12 3.52  

± 0.06 

1.93 3.06  

± 0.08 

1.49 2.77  

± 0.11 

1.87 < 10
-15

 

SOC60 – 90 cm  

/g C kg
-1

  

3.28  

± 0.08 

1.78 2.70  

± 0.20 

1.50 2.32  

± 0.05 

1.45 1.85  

± 0.08 

1.41 1.26 

 ± 0.07 

1.22 < 10
-15
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Table 4: 709 

 wetness index I wetness index II wetness index III Anova  

F-test 

 mean std mean std mean std p 

SOC0 – 30 cm 

 /g C kg
-1

  

9.58 ± 0.31 1.68 9.82 ± 0.18 0.94 10.44 ± 0.22 1.20 0.031 

SOC30 – 60 cm  

/g C kg
-1

  

2.96 ± 0.16 0.86 3.23 ± 0.19 1.02 4.32 ± 0.32 1.73 5.9 × 10
-5

 

SOC60 – 90 cm  

/g C kg
-1

  

1.96 ± 0.07 0.37 2.14 ± 0.12 0.63 2.73 ± 0.17 0.93 2.2 × 10
-5
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Table 5 710 

 slope gradient I slope gradient II slope gradient III Anova  

F-test 

 mean std mean std mean std p 

SOC0 – 30 cm 

 /g C kg
-1

  

10.25 ± 0.23 1.18 9.96 ± 0.23 1.26 9.65 ± 0.27 0.93 0.24 

SOC30 – 60 cm  

/g C kg
-1

  
3.76 ± 0.22 1.14 3.86 ± 0.33 1.75 2.99 ± 0.18 1.03 0.012 

SOC60 – 90 cm  

/g C kg
-1

  

2.56 ± 0.18 0.93 2.45 ± 0.14 0.74 1.90 ± 0.07 0.37 0.00021 
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Table 6: 711 

 AW93 R_AW 

 SOC0-30 SOC30-60 SOC60-90 SOC0-30 SOC30-60 SOC60-90 

SOC0-30 / 0.50*** 0.43*** / 0.61*** 0.43*** 

SOC30-60  / / 0.45*** / / 0.65*** 

ELEV 0.28*** 0.11*** 0.17*** -0.06 -0.05 -0.05 

GRAD 0.05* 0.00 0.04 -0.34*** -0.26** -0.37*** 

CURV 0.04 0.05* 0.05* 0.31*** 0.45*** 0.37*** 

SOUTH -0.02 -0.03 -0.02 -0.27** -0.10 -0.05 

TPI32 -0.03 -0.06** -0.07*** -0.28** -0.45*** -0.38*** 

TPI128 -0.03 -0.14*** -0.14*** -0.19* -0.42*** -0.38*** 

TPI512 -0.01 -0.14*** -0.13*** -0.02 -0.28** -0.28** 

TWI 0.00 0.06** 0.08*** 0.40*** 0.50*** 0.55*** 

STR 0.09*** 0.08*** 0.14*** 0.17 0.34*** 0.27** 
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 712 
Table 7: 713 

Model formula RMSEP  

/ g C kg
-1 

ME  

/ g C kg
-1 

R
2 

SOC0 – 30 cm   ~  TWI – SOUTH + (ELEV × TPI512 m) 1.28 0.01 0.21 

SOC30 – 60 cm  ~  – (TPI32 m  × TWI) – (ELEV × GRAD) + TPI32 m  1.28 <0.01 0.25 

SOC60 – 90 cm  ~  – TPI128 m – GRAD + (GRAD × TPI128 m)       0.67 0.01 0.33 

 714 
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Figures 715 

Fig 1: 716 
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 718 
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Fig 2:  719 
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Fig 3 : 722 
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 724 

Fig 4: 725 
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 728 

Fig 5:  729 
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Fig 6:  732 
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Fig 7.  734 
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