

Computer-Aided Design of User Interfaces

Proceedings of the 2nd International Workshop on
Computer-Aided Design of User Interfaces CADUI’96

Facultés universitaires Notre-Dame de la Paix

à Namur (Belgique)

Collection

« Travaux de l’Institut

d’Informatique »

n°15

Computer-Aided Design of User Interfaces

Proceedings of the 2nd International Workshop on
Computer-Aided Design of User Interfaces

CADUI’96

Namur

5-7 June 1996

Jean Vanderdonckt

Editor

Copyright © 1996 by Presses Universitaires de Namur

Rempart de la Vierge, 8

B - 5000 Namur (Belgium)

Tel. : +32 - (0)81/72.48.84

Fax. : +32-(0)81/23.03.91

Telex: 59922 facnam b

All right reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior permission of the publisher.

Printed in Belgium

ISBN : 2-87037-189-6

Dépôt légal : D / 1996 / 1881 / 5

Contents

 Contributors ... v

 Reviewers .. xi

 Current Trends in Computer-Aided Design of User Interfaces xiii
 Jean Vanderdonckt

 Retrospective and Challenges for Model-Based Interface
 Development ... xxi
 Pedro Szekely

Part I. Model-Based Interface Development Environments

 1. Automatic User Interface Generation from Declarative Models.................. 3
 Egbert Schlungbaum and Thomas Elwert

 2. The MECANO Project: Comprehensive and Integrated Support for
 Model-Based Interface Development .. 19
 Angel Puerta

 3. The FUSE-System: an Integrated User Interface Design Environment 37
 Frank Lonczewski and Siegfried Schreiber

 4. Software Life Cycle Automation for Interactive Applications:
 The AME Design Environment .. 57
 Christian Märtin

Part II. Task Aspects in CADUI

 5. Bridging the Generation Gap: From Work Tasks to User
 Interface Designs .. 77
 Stephanie Wilson and Peter Johnson

 6. The DIANE+ Method .. 95
 Jean-Claude Tarby and Marie-France Barthet

 7. An Approach to Structured Display Design - Coping with
 Conceptual Complexity ... 121
 Morten Borup Harning

ii Computer-Aided Design of User Interfaces

Part III. Automated UI Generation and Evaluation

 8. Generating User Interfaces from Formal Specifications of the
 Application .. 141
 Bernhard Bauer

 9. Automatic Ergonomic Evaluation: What are the Limits? 159
 Christelle Farenc, Véronique Liberati, and Marie-France Barthet

 10. A Framework for the Automatic Generation of Software Tutoring 171
 Javier Contreras and Francisco Saiz

 11. The JANUS Application Development Environment—Generating
 More than the User Interface .. 183
 Helmut Balzert, Frank Hofmann, Volker Kruschinski,
 and Christoph Niemann

Part IV. Computer-Aided Design of Graphical UIs

 12. Investigating Layout Complexity .. 209
 Tim Comber and John Maltby

 13. An Interactive Constraint-Based Graphics System with Partially
 Constrained Form-Features .. 229
 Borut Zalik

 14. A Tool for Adapting Visual Interfaces to Blind People 247
 Siwar Farhat and Christian Fluhr

Part V. CADUI Techniques

 15. Declarative Interaction through Interactive Planners 265
 Conn Copas and Ernest Edmonds

 16. Implementation Techniques for Petri Net Based Specifications of
 Human-Computer Dialogues .. 285
 Rémi Bastide and Philippe Palanque

 17. A Case-Based Design Support Method Incorporated with
 Designer's Intention Recognition ... 303
 Takayuki Yamaoka and Shogo Nishida

 Contents iii

Part VI. Reports from Working Groups

 18. Issues in Automatic Generation of User Interfaces
 in Model-Based Systems .. 323
 Angel Puerta

 19. Reflections on Model-Based Design: Definitions and Challenges............ 327
 Stephanie Wilson

 List of abbreviations ... 335

 References .. 337

 Keywords index ... 369

 Author index .. 371

 Sponsors and cooperating societies ... 375

Contributors

Helmut Balzert, Lehrstuhl für Software-Technik, Ruhr-Universität Bochum, Uni-
versitätstraße, 150, D-44780 Bochum, Germany

Phone: +49-(0)234-700-6880 - Fax: +49-(0)234-700-6914

E-mail: hb@swt.ruhr-uni-bochum.de, janus@swt.ruhr-uni-bochum.de

WWW:http://www.swt.ruhr-uni-bochum.de/forschung/veroeffentlichungen.html

Rémi Bastide, Laboratory for Information Science, Université Toulouse I, Place
Anatole France, F-31042 Toulouse Cedex, France

Phone: +33-61.63.35.88 – Fax: +33-61.63.37.98

E-mail: bastide@cict.fr

WWW: http://lis.univ-tlse1.fr/~bastide

Marie-France Barthet, Laboratory for Information Science, Université Toulouse
I, Place Anatole France, F-31042 Toulouse Cedex, France

Phone: +33-61.63.36.03 – Fax: +33-61.63.37.98

E-mail: barthet@cict.fr

WWW: http://lis.univ-tlse1.fr/~barthet

Bernhard Bauer, Institut für Informatik, Technische Universität München, Arcis-
straße 21, D-80290 München, Germany

Phone: +49-89-2892-8160 – Fax: +49-89-2892-8180

E-mail: bauer@informatik.tu-muenchen.de

WWW: http://www2.informatik.tu-muenchen.de/persons/bauer/bauer.html

Tim Comber, Southern Cross University, Faculty of Business & Computing, P.O.
Box 157, Lismore, N.S.W. 2480, Australia

Phone: +61-66-203117 – Fax: +61-66-221724

E-mail: tcomber@scu.edu.au

WWW: http://www.scu.edu.au/buscomp/compmaths/tcomber.html

vi Computer-Aided Design of User Interfaces

Javier Contreras, Instituto de Ingeniería del Conocimiento, Universidad Autónoma
de Madrid, Cantoblanco 28049, Madrid, Spain

Phone: +34-1-397.39.73 – Fax: +34-1-397.85.44

E-mail: contrera@lola.iic.uam.es

WWW: http://lola.iic.uam.es/~contrera

Conn Copas, Human-Systems Integration Group, Information Technology Divi-
sion, Defence Science & Technology Organisation, P.O. Box 1500, Salisbury, SA
5108, Australia

Phone: +61-(0)-8-25-95349 – Fax: +61-(0)-8-25-95980

E-mail: cvc@itd.dsto.gov.au

WWW: http://www-itd.dsto.defence.gov.au/ITD/itd_people.html

Ernest Edmonds, Loughborough University of Technology, Computer Human
Interaction Research Centre (LUTCHI), Leics, LE11 3TU, United Kingdom

Phone: +44-(0)509-22-2691 – Fax: +44-(0)509-61-0815

E-mail: E.A.Edmonds@lut.ac.uk

WWW: http://info.lboro.ac.uk/departments/co/lutchi/eae.html

Thomas Elwert, Universität Rostock, Fachbereich Informatik, Albert-Einstein-
Straße 21, D-18051 Rostock, Germany

Phone: +49-381-498-3427 – Fax: +49-381-498-3426

E-mail: telwert@informatik.uni-rostock.de

WWW: http://wwwswt.informatik.uni-rostock.de/~telwert/

Christelle Farenc, Laboratory for Information Science, Université Toulouse I,
Place Anatole France, F-31042 Toulouse Cedex, France

Phone: +33-61.63.35.88 – Fax: +33-61.63.37.98

E-mail : farenc@cict.fr

WWW: http://lis.univ-tlse1.fr/~farenc

Siwar Farhat, Institut National des Jeunes Aveugles, 56, blv. des Invalides,

F-75007 Paris, France

Phone: +33-1-44-49-35-35 – Fax: +33-1-44-49-35-36

E-mail: 100773.1624@compuserve.com, felkateb@tabarly.saclay.cea.fr

WWW: http://www.cea.fr/

 Contributors vii

Christian Fluhr, Institut National des Sciences et Techniques Nucléaires,
DIST/SMTI Bâtiment 528, Centre d'Etudes de Saclay, F-91191 Gif Sur Yvettes,
France

Phone: +33-69.08.70.93 – Fax: +33- 69.08.26.69

E-mail: fluhr@tabarly.saclay.cea.fr

Morten Borup Harning, Informatics and Management Accounting, Copenhagen
Business School, Howitzvej 60, DK-2000 Frederiksberg, Denmark

Phone: +45-3815-2431 – Phone: 45-3815-2400 (department) – Fax: +45-3815-2401

E-mail: harning@cbs.dk

WWW: http://www.econ.cbs.dk/people/harning/

Frank Hofmann, Lehrstuhl für Software-Technik, Gebäude IC 3/44, Ruhr-Uni-
versität Bochum, Universitätstraße, 150, D-44780 Bochum, Germany

Phone: +49-(0)234-700-6791 - Fax: +49-(0)234-7094-427

E-mail: hofmann@swt.ruhr-uni-bochum.de, janus@swt.ruhr-uni-bochum.de

WWW: http://www.swt.ruhr-uni-bochum.de/assis/hofmann.html

Peter Johnson, Department of Computer Science, Queen Mary and Westfield Col-
lege, University of London, Mile End Road, London E1 4NS, United Kingdom

Phone: +44-171-975-5224 – Fax: +44-181-980-6533

E-mail: Peter.Johnson@dcs.qmw.ac.uk

WWW: http://www.dcs.qmw.ac.uk/~pete

Volker Kruschinski, Lehrstuhl für Software-Technik, Gebäude IC 3/43, Ruhr-
Universität Bochum, Universitätstraße, 150, D-44780 Bochum, Germany

Phone: +49-(0)234-700-5918 - Fax: +49-(0)234-700-6914

E-mail: krusch@swt.ruhr-uni-bochum.de, janus@swt.ruhr-uni-bochum.de

WWW: http://www.swt.ruhr-uni-bochum.de/assis/kruschinski.html

Véronique Liberati, Direction Recherche et Développement, Service de Recherche
Technique de la Poste, La Poste, 10 rue de l’Ile Mabon, F-44063 Nantes Cedex 02,
France

Phone: +33-40.69.96.89 – Fax: +33-40.89.60.00

E-mail: liberati@srt-poste.fr

Frank Lonczewski, Institut für Informatik, Technische Universität München, Ar-
cisstraße 21, D-80290 München, Germany

Phone: +49-89-289-22035 – Fax: +49-89-289-28180

viii Computer-Aided Design of User Interfaces

E-mail: lonczews@informatik.tu-muenchen.de

WWW: http://www2.informatik.tu-muenchen.de/persons/lonczews/fralo.html

WWW: http://www2.informatik.tu-muenchen.de/research/ui/ui.html

John Maltby, Southern Cross University, Faculty of Business & Computing, P.O.
Box 157, Lismore, N.S.W. 2480, Australia

Phone: +61-66-203724 – Fax: +61-66-221724

E-mail: jmaltby@scu.edu.au

WWW: http://www.scu.edu.au/buscomp/compmaths/staff.html

Christian Märtin, Fachhochschule Augsburg, Fachbereich Informatik

Baumgartnerstraße 16, D-86161 Augsburg, Germany

Phone: +49-821-5586-454 – Fax.: +49-821-5586-499

E-mail: maertin@informatik.fh-augsburg.de

WWW: http://www.fh-augsburg.de

Christoph Niemann, Lehrstuhl für Software-Technik, Gebäude IC 3/36, Ruhr-
Universität Bochum, Universitätstraße, 150, D-44780 Bochum, Germany

Phone: +49-(0)234-700-7982 - Fax: +49-(0)234-700-6914

E-mail: niemann@swt.ruhr-uni-bochum.de, janus@swt.ruhr-uni-bochum.de

WWW: http://www.swt.ruhr-uni-bochum.de/assis/niemann.html

Philippe Palanque, Laboratory for Information Science, Université Toulouse I,
Place Anatole France, F-31042 Toulouse Cedex, France

Phone: +33-61.63.35.88 – Fax: +33-61.63.37.98

E-mail: palanque@cict.fr

WWW: http://www.cenatls.cena.dgac.fr/~palanque/

Angel Puerta, Knowledge Systems Laboratory, MSOB x215, Stanford University,
CA 94305-5479, United States of America

Phone: +1-415-723-5294 – Fax: +1-415-725-7944

E-mail: puerta@camis.stanford.edu

WWW: http://camis.stanford.edu/people/bio/puerta.html

WWW: http://camis.stanford.edu/projects/mecano

Francisco Saiz, Instituto de Ingeniería del Conocimiento, Universidad Autónoma
de Madrid, Cantoblanco 28049, Madrid, Spain

Phone: +34-1-397-39-73 – Fax:

 Contributors ix

E-mail: saiz@lola.iic.uam.es

WWW: http://www.iic.uam.es/

Siegfried Schreiber, Institut für Informatik, Technische Universität München, Ar-
cisstraße 21, D-80290 München, Germany

Phone: +49-89-289-22035 – Fax: +49-89-289-28180

E-mail: schreibs@informatik.tu-muenchen.de

WWW: http://www2.informatik.tu-muenchen.de/persons/schreibs/schreibs.html

Egbert Schlungbaum, Universität Rostock, Fachbereich Informatik, Albert-Ein-
stein-Straße 21, D-18051 Rostock, Germany

Phone: +49-381-498-3419 – Fax: +49-381-498-3426

E-mail: Egbert.Schlungbaum@informatik.uni-rostock.de

WWW: http://www.icg.informatik.uni-rostock.de/~schlung/

Pedro Szekely, Information Sciences Institute, University of Southern California,
4676 Admiralty Way, Marina del Rey, CA 90292, USA

Phone: +1-310-822-1511 (ext. 641) - Fax : +1-310-823-6714

E-mail : szekely@isi.edu

WWW: http://www.isi.edu/isd/szekely.html

Jean-Claude Tarby, TRIGONE Laboratory, CUEEP Institute, Université Lille 1,
F-59655 Villeneuve d'Ascq Cedex, France

Phone: +33-20.43.32.62 – Fax: +33-20.43.32.79

E-mail: Jean-Claude.Tarby@univ-lille1.fr

WWW: http://www-trigone.univ-lille1.fr/jean_claude/Welcome.html

Jean Vanderdonckt, Institut d’Informatique, Facultés Universitaires Notre-Dame
de la Paix, rue Grandgagnage, 21, B-5000 Namur, Belgium

Phone: +32-(0)81/72.52.55 - Fax: +32-(0)81/72.49.67

E-mail: jvanderdonckt@info.fundp.ac.be, Jean_Vanderdonckt.chi@xerox.com

WWW: http://www.info.fundp.ac.be/~jvd

Stephanie Wilson, Department of Computer Science, Queen Mary and Westfield
College, University of London, Mile End Road, London E1 4NS, United Kingdom

Phone: +44-171 975 5231 – Fax: +44-181 980 6533

E-mail: steph@dcs.qmw.ac.uk

WWW: http://www.dcs.qmw.ac.uk/people/

x Computer-Aided Design of User Interfaces

Takayuki Yamaoka, Information Systems Dept., Advanced Technology R&D
Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Hommachi, Amagasaki,
Hyogo, 661, Japan

Phone: +81-6-497-7141 – Fax: +81-6-497-7289

E-mail: yamaoka@sys.crl.melco.co.jp

Borut Zalik, University of Maribor, Faculty of Electrical Engineering and Com-
puter Science, Smetanova 17, SI-2000 Maribor, Slovenia.

Phone: +386-62-25-461 – Fax: +386-62-225-013

E-mail: zalik@uni-mb.si

WWW: http://www.uni-mb.si/~uelgng03f/index.html

Reviewers

Gregory Abowd, Georgia Institute of Technology, Atlanta, USA

Sebastiano Bagnara, University of Siena, Siena, Italy

Rémi Bastide, LIS, Université de Toulouse I, Toulouse, France

François Bodart, Institut d’Informatique, FUNDP Namur, Namur, Belgium

David Carr, University of Luleå, Luleå, Sweden

Stéphane Chatty, CENA, Toulouse, France

Maria Franceca Costabile, University of Bari, Bari, Italy

Joëlle Coutaz, CLIPS-IMAG, Grenoble, France

Véronique De Keyser, FAPSE, Université de Liège, Liège, Belgium

Alan Dix, University of Huddersfield, Huddersfield, United Kingdom

David Duce, Rutherford Appleton Laboratory, Chilton, United Kingdom

David Duke, University of York, Heslington, United Kingdom

Giorgio Faconti, CNUCE - CNR, Pisa, Italy

Eugene Fiume, University of Toronto, Toronto, Canada

James Foley, Georgia Tech, Atlanta, USA

Phil Gray, University of Glasgow, Glasgow, United Kingdom

Mark Green, University of Alberta, Edmonton, Canada

Robert Jacob, Tufts University, Medford, USA

Chris Johnson, University of Glasgow, Glasgow, United Kingdom

Michael Harrison, University of York, Heslington, United Kingdom

James Landay, Carnegie Mellon University, Pittsburgh, USA

Baudouin Le Charlier, Institut d’Informatique, FUNDP Namur, Namur, Belgium

Jonas Löwgren, University of Linköping, Linköping, Sweden

Thomas Moher, University of Illinois at Chicago, Chicago, USA

xii Computer-Aided Design of User Interfaces

Laurence Nigay, CLIPS-IMAG, Grenoble, France

Monique Noirhomme-Fraiture, Institut d’Informatique, FUNDP Namur, Namur,
Belgium

Dan Olsen, Brigham Young University, Provo, USA

Philippe Palanque, LIS, Université de Toulouse I, Toulouse, France

Fabio Paternó, CNUCE - CNR, Pisa, Italy

Chriss Rouff, NASA Goddard Space Flight Center, Greenbelt, USA

Daniel Salber, CLIPS-IMAG, Grenoble, France

Constantine Stephanidis, ICS-Forth, Heraklion, Greece

Pedro Szekely, ISI, University of Southern California, Marina del Rey, USA

Juan-Carlos Torres, University of Granada, Granada, Spain

Robert Torres, IBM Software Solutions, Roanoke, USA

Jean Vanderdonckt, Institut d’Informatique, FUNDP Namur, Namur, Belgium

Current Trends in
Computer-Aided Design of User Interfaces

Jean Vanderdonckt

Designing interactive applications today could no longer be thought without con-
sidering extensive use of computer systems during the whole life cycle. Any devel-
opment environment is generally expected to provide a complete and consistent set
of software tools that enable designers to develop new applications as fast and as
best as possible. Computer-Aided Design of interactive systems should namely and
significantly participate in a high quality result. In particular, delivering a high quality
User Interface (UI) remains one of the highest return hoped by designers. This leads
us to investigate Computer-Aided Design of User Interfaces (CADUI) as a major
theme for fundamental and applied research theme.

Historically, automatic generation probably appeared as one of the first shapes of
CADUI. In the past, it was more oriented towards simulating and prototyping inter-
active and non-interactive applications.

For example, simulating applications was aimed to study the behaviour of a future
application before fully implementing it and to a priori evaluate its performance.
Some old approaches did consider autonomous or separated automatic generation
of a simulation program [Razouk79, Sol82]. More recent work focused on automatic
generation of a simulation program from functional requirements of the application
[Konsynski76, Winchester81] (e.g., DSL-SIM [IDA88]).

For this purpose, specification languages have been introduced to support the cap-
ture, the editing and the management of any application’s requirements. In particu-
lar, Interactive Design Approach (IDA) methodology [Bodart89] uses a Dynamic
Specification Language (DSL) to describe functional requirements of any application
modelled with appropriate models [Bodart83]. DSL/SPEC [IDA88] gathered an in-
tegrated set of utilities and software tools to

 acquire and store requirements during all development steps;
 select and validate these requirements across validation rules. Two classes of val-

idation rules are generally distinguished : completeness rules should check that
each object class specified in the requirements holds appropriate properties and
values with respect to the model type ; consistency rules should check that vari-
ous object classes are not contradictory with themselves in the same model or
with other classes contained in other models;

xiv Computer-Aided Design of User Interfaces

 extract and retrieve requirements following several presentation styles (e.g., tex-
tual model queries, textual specifications, graphical representation).

DSL has been itself derived from PSL language defined in the ISDOS/PRISE project
by University of Michigan [Teichroew77]. PSL is probably one of the first pioneers
in functional requirements.

During the last decade, automatic generation moved from simulations and proto-
types to complete UIs of interactive applications.

Figure 1. Possible paths for automatic generation of UIs

Figure 1 illustrates six possible paths for automatically generating UIs from these
types of sources (inspired from [Tarby93]):

1. Functional Requirements describe the application syntax and semantics ac-
cording to a consistent formalism which can be textual or graphical or both1.
These requirements generally contain requirements for data, functions, dynam-
ics, resources, but also for a possible UI.

2. Internal UI Representation consists of pieces of code programmed in an ap-
propriate language (e.g., Pascal, C or C++) or a higher level language (e.g.,
Tcl/Tk) for effectively implementing a particular UI.

3. External UI Representation refers to the graphical appearance of a UI which
is visible and manipulable by users.

Let us examine the six possible paths of automatic generation illustrated in figure 1 :

1. From External UI Representation to Internal UI representation : this alternative
remains one of the oldest form of automatic generation, probably because it was
an easy task. This path is aimed to automatically generate the UI code from its
screen appearance. Designers typically edit interaction objects with a direct ma-
nipulation graphical editor ; they draw a possible UI by placing, sizing, arranging
interaction objects so that they represent the different parts (i.e. the screens, the
windows, the dialogue boxes) of a UI.

1 In this case, most of textual parts of the textual requirements possess a graphical counterpart.

External UI
Representation

Internal UI
Representation

Functional
Requirements

(1)

(2)

(3) (4)(5) (6)

 Current Trends in Computer-Aided Design of User Interfaces xv

 This technique has been adopted by many UIMSs (e.g., UofA* [Singh91], Hig-
gens [Hudson86, Hudson88]), toolkits (e.g., Visual User Interface Tool [DEC-
91]), interface builders (e.g., Trillium [Henderson90], Peridot [Myers88], Dialog
Editor [Cardelli88], NeXT Interface Builder [NeXT90], and tools on top of them
(e.g., JADE [vander Zanden90]).

2. From Internal UI Representation to External UI Representation. In this case, the
complete graphical presentation is deduced from parts of the application code
and/or parts of the UI code. This UI program code is then enhanced to become
a complete one.

 For example, MIKE [Olsen86] and MICKEY [Olsen89] automatically generate
windows consisting of labels and edit boxes for all input/output argument found
in a Pascal procedure definition. CHISEL [Singh89] and SCOPE [Beshers-89] au-
tomatically create appropriate UI objects from any variable and type found in the
application code. Some tools (e.g., [Shoval89, Hayhoe90]) also generate full
screen menus and/or a menu bar accompanied with pull down menus according
to functions belonging to the application’s functional core.

 Zalik [Zalik96] proposes a constraint-based system to automatically draw graph-
ical objects from a set of rules expressed in a first-order predicate logic. This
system is particularly interesting for expressing constraints on graphical objects
(e.g., for drawing high-resolution fonts) and can be used to automatically place
any graphical object in a container if appropriate constraints are edited.

3. From Functional Requirements to External UI Representation. This path ex-
ploits the application’s syntax and semantics to derive as automatically as possible
parts or whole of a new UI. The basic idea behind this process is to reuse func-
tional requirements that have been captured before for generating a UI, thus pre-
serving some consistency if appropriate rules are used. A major hope behind this
scene is also the ability to quickly change an existing UI when parts of functional
requirements change. MECANO is particularly addressing this problem in details
[Puerta94b].

 This strategy is today well known as the Model-Based Approach whereas func-
tional requirements (and sometimes other specifications) are contained in models
that describe different parts of an interactive application without implementing
it. Such models include [Puerta94a] : data model, domain models, user models,
task models, context models, presentation models, dialogue models,..., and even
a UI model.

 For instance, IDA required six models [Bodart89] : information structure model
(by way of ERA models), function structure model, functions’ statics model, func-
tions’ dynamics model, resources model, and data-flow model. Its successor ded-
icated to highly-interactive business oriented application, Tools foR an Interac-
tive Development EnvironmeNT (TRIDENT) only considers an extended form
of the information structure model (by way of object-oriented ERA models), a
task model (issued from a contextual task analysis using TKS method [John-
son92c]), and an information flow model (by way of Activity Chaining Graphs)
[Bodart94b, Bodart95c, Bodart95d].

xvi Computer-Aided Design of User Interfaces

 The model-based approach has actively researched as we can observe many en-
vironments more or less falling in this category : ACE and Selectors [Johnson92a],
ADEPT [Johnson91b, Johnson92c, Johnson95, Wilson96], AME [Märtin90, Mär-
tin96], BOSS [Schreiber94a, Schreiber94b, Bauer96, Lonczewski96], COUSIN
[Hayes85], DIANE+ [Barthet88, Tarby93, Tarby96], DIGIS [de Bruin94a], EX-
POSE [Gorny94, Gorny95], FLUID [Lonczewski95a, Lonczewski95b], FUSE
[Bauer96, Lonczewski96], GENIUS [Janssen93, Janssen96, Weisbecker95], HU-
MANOID [Szekely92, Luo93, Szekely93, Moriyón94], IDA [Reiterer95], JANUS
[Balzert94, Balzert95, Balzert96], ITS [Wiecha89], KIISS [Saiz96], MACIDA [Pe-
toud89, Petoud90], MASTERMIND [Szekely95], MECANO [Puerta94b, Puerta96a,
Puerta96b], MODEST [Hinrichs96], SIROCO [Normand92], OMEGA [Metais86],
PLUG-IN [Lonczewski96], TADEUS [Elwert95, Elwert96, Schlungbaum96], TRI-
DENT [Bodart95c, Vanderdonckt95b], UIDE [de Baar92, Foley88, Foley90, Fo-
ley94]. Most of these environments are fully described and discussed in the pre-
sent volume of CADUI.

 Contreras & Saiz [Contreras96] highlight how one of these tools (i.e., HUMAN-
OID [Szekely93]) can be efficiently used for automatic generation of software tu-
toring, proving that way that application area can be as wide as imagination.

4. From Functional Requirements to Internal UI Representation. In the previous
category, we can regret that, if the External UI Representation is generated, only
parts of the Internal UI Representation are generated : e.g., interaction objects
definition, hierarchy of objects, skeleton of interface with application, default at-
tributes of objects, but less code is devoted to the management of the dialogue
and the UI management itself.

 Systems in category 3 generate working interfaces : in this way, they generate part
or whole of the Internal UI Representation that drives the external one. But
sometimes, they only generate the static part of the user without the connection
to the application. Conversely, systems belonging to the current category gener-
ate part or whole of the Internal UI represenation : in this way, they do not nec-
essarily encompass the external UI representation.

 DIGIS [de Bruin94b] and DIANE+ [Tarby96] attempt to remedy this problem by
automatically introducing control structures (MVC architecture for DIGIS,
OPAC objects for DIANE+). TRIDENT is limited to propose a methodological
guide [Bodart95a] showing how we can map some functional specifications to
blocks of programming codes that support some independence.

 A more sophisticated approach to deduce highly interactive dialogues from re-
quirements is suggested in this volume by Bastide & Palanque [Bastide96] : they
show how functional requirements can be efficiently expressed as Petri Nets de-
scribing dialogue structures to be implemented.

5. From External UI Representation to Functional Requirements. This path re-
mains today unstudied not because of lack of research but probably because it
seems utopian to recover requirements only from a UI [Tarby93].

 Current Trends in Computer-Aided Design of User Interfaces xvii

6. From Internal UI Representation to Functional Requirements. This novel feature
is oriented towards UI reverse engineering. AUIDL is an example of trying to
retrieve basic functional requirements expressed in IDL language from the UI
code. From these retrieved requirements, we can re-generate a (possibly better)
UI according to model-based approach, for instance.

A new trend that is also appearing is the Task-Based Approach (figure 2). Rather
than only working on functional requirements to generate a UI, one can start from
task requirements. These requirements can typically be written by task analysts, work
psychologists or ethnologists.

This approach is now followed by most recent UI development environments such
as, for instance, ADEPT [Wilson96], FUSE [Lonczewski96], MASTERMIND [Sze-
kely95], MECANO [Puerta96], TADEUS [Schlungbaum96], TRIDENT [Bodart95c]. Of
course, task requirements can be considered as a task model in itself (or domain
model as in MECANO [Puerta96]), but, rather than using all models together for
generating a UI, task requirements drive the functional requirements and can di-
rectly be incorporated for generating some parts of the External UI Representation
as well as Internal UI Representation.

Figure 2. Task-Based Design

Wilson & Johnson [Wilson96] provide an extensive set of rules for starting from
task requirements. Harning [Harning96] is trying to follow the same path by intro-
ducing a structured approach for deriving External UI Representations from both
Task Requirements and Functional Requirements. Several heuristics can help de-
signers to clearly establish a transformation between them and a possible UI.

In the second part of figure 2, we can see two arrows from Functional Requirements
to both UI Representations since, most of the time, both representations can be
generated in parallel.

External UI
Representation

Internal UI
Representation

Functional
Requirements

Task
Requirements

xviii Computer-Aided Design of User Interfaces

Farenc, Libérati & Barthet follow the inverse path [Farenc95, Farenc96] : their ER-
GOVAL tool starts from the hierarchy of interaction objects with their attribute val-
ues (External UI Representation) and from a resource file (Internal UI representa-
tion) to evaluate whether this UI matches task requirements (figure 3). Since Func-
tional Requirements and Task requirements are not necessarily available, this task is
particularly difficult to achieve and to automate. This is probably why the tool can
be considered as a tool for Computer-Aided Evaluation of UIs.

Comber & Maltby [Comber96] also provide techniques for rating the complexity of
screens of any GUI. Rather than trying to relate this measure to Task requirements
or Functional Requirements, they try to quantify the visual complexity inde-
pendently.

Figure 3. UI evaluation

A second trend that is also appearing is the notion of Computer-Aided Design of
User Interfaces. In the beginning, the generation of a UI was completely automated
forcing designers and developers to pick up the results of the generation and to
manually tailor them according to their personal needs (i.e., Task Requirements).
The problem of adapting UIs is discussed by Farhat & Fluhr [Farhat96] : not only
they highlight how adapting UIs can be of high importance (especially for users with
special needs) but also they emphasise the loops that can be observed on both UI
Representations (figure 4).

External UI
Representation

Internal UI
Representation

Functional
Requirements

Task
Requirements

 Current Trends in Computer-Aided Design of User Interfaces xix

Figure 4. UI adapting

After talking about Computer-Aided Generation of User Interfaces (CAGUI), we
are today talking about Computer-Aided Design of User Interfaces (CADUI) where
designers no longer remain passive. They are actively involved in the process of UI
creation (which is sometimes fully automated, sometimes user-controlled, some-
times completely manual).

The desire to effectively involve designers in the development life cycle is also re-
flected by Yamaoka [Yamaoka96] and by Copas & Edmonds [Copas96]. The first
author argues that recognising the designer’s intention, one of the facets of incorpo-
rating designers during design, can be achieved through Case-Based Reasoning tech-
niques. The second illustrates that interactive planners can clarify a declarative inter-
action.

This book contains the results of the 2nd International Workshop on Computer-
Aided Design of User Interfaces held in Namur (Belgium), 5-7 June 1996. Its acro-
nym —CADUI’96 — has been chosen to reflect the change of scope from the 1st
International Workshop on Computer-Aided Generation of User Interfaces held in
Ulm (Germany), 18-19 November 1993.

We do hope that, in the future, tools and techniques for CADUI presented in this
volume can evolve, merge and integrate to foster better UI development than ever
where

 Designers and developers are recognised as more active persons who can see
their work supported and aided by software tools;

 Final users are respected in the complexity of their interactive tasks.

External UI
Representation

Internal UI
Representation

Functional
Requirements

Task
Requirements

Retrospective and Challenges for
Model-Based Interface Development

Pedro Szekely

Abstract

Research on model-based user interface development tools is about 10 years old.
Many approaches and prototype systems have been investigated in universities and
research laboratories around the world. This paper proposes a generic architecture
for these tools, reviews the different approaches in light of this architecture, and
discusses their progress towards the goals of increasing the quality and reducing the
cost of developing interfaces. The paper closes with a discussion of challenges for
future model-based development tools.

Keywords

Model-based interface development, automatic user interface generation, user inter-
face design.

Introduction

Model-based user interface development tools trace their roots to work on user in-
terface management systems (UIMS) done in the early 1980’s [Myers95]. UIMSs
seeked to provide an alternative paradigm for constructing interfaces. Rather than
programming an interface using a toolkit library, developers would write a specifica-
tion of the interface in a specialised, high-level specification language. This specifi-
cation would be automatically translated into an executable program, or interpreted
at run-time to generate the appropriate interface.

Many early UIMSs focused on dialogue specification [Green86]. They used state
transition diagrams [Jacob86], grammars [Olsen83, Olsen86] or event-based repre-
sentations [Singh91] to specify the interface responses to events coming from the
input devices. The display aspects of the interface were typically specified outside
the specification language, in call-back procedures that painted the screen as appro-
priate.

Some UIMSs used as their main specification the type and procedure declarations
that defined the functional aspects of the application [Beshers89, Olsen89]. Based
on this information, they generated menus to invoke the procedures, and dialogue

xxii Computer-Aided Design of User Interfaces

boxes to prompt users for the information needed to construct instances of the
types.

Through the late 1980’s and early 90’s the specification languages became more so-
phisticated, supporting richer and more detailed representations that allowed the
systems to generate more sophisticated interfaces.

Today’s systems use specifications of the tasks that users need to perform, data mod-
els that capture the structure and relationships of the information that applications
manipulate, specifications of the presentation and dialogue, user models, etc.

The term model-based interface development tools refers to interface construction tools that
use these rich representations to provide assistance in the interface development
process. Tools range from automatic interface generation systems, generators of
help systems for applications, interface evaluation tools, advisors, etc.

Even though model-based interface development tools are much more sophisticated
than early UIMSs, they have not become popular in the commercial sector. Most
software developers use interface builders, toolkits and a programming language to
build the interfaces for interactive systems.

The main goal of this paper is to review the current progress in model-based tools,
and discuss challenges for the next generation of user interface tools in general, and
model-based tools in particular. The paper is organised as follows. The next section
will describe a general architecture of model-based tools that provides a way to clas-
sify model-based tools according to the components of the architecture that they
emphasise.

The sections after analyse the success of model-based work on automatic interface
generation, high-level specification systems, help generation, and design advisors.
The last part of the paper discusses new challenges for user interface software, in-
cluding multi-platform support, intelligent support for the user, multi-modal inter-
faces and end-user tailoring. The paper closes with conclusions about the future of
model-based tools.

1 Generic Model-Based Interface Development Architecture

Figure 1 shows the typical components of a Model-Based Interface Development
Environments (MB-IDE). The rounded rectangles represent tools, the other shapes
represent information produced or consumed by the various tools. The main com-
ponents of the architecture are the modelling tools, the model, the automated design tools,
and the implementation tools. Developers2 use the modelling tools to build the model.
The automated design tools are used to perform certain design activities that devel-
opers either choose or are forced to delegate to the system. The implementation tool

2 This paper uses the term developer to refer to all the people involved in constructing an interactive
application. When appropriate, the more specific terms such as task analyst, graphic designer, program-
mer, etc. will be used.

 Retrospective and Challenges for Model-Based Interface Development xxiii

transforms the model into an executable representation that is linked with applica-
tion code, and delivered to the end-users. The following subsections discuss these
components in more detail.

1.1 Model

The model is the main component of the system. The model typically organises in-
formation into three levels of abstraction. At the highest level are the task and do-
main model for the application. The task model represents the tasks that users need
to perform with the application, and the domain model represents the data and op-
erations that the application supports. Tasks models typically represent tasks by hi-
erarchically decomposing each task into sub-tasks (steps), until the leaf tasks repre-
sent operations supplied by the application.

The second level of the model, called in this paper the abstract user interface specification,
represents the structure and content of the interface in terms of two abstractions,
Abstract Interaction Objects (AIO), information elements and presentation units. AIOs are low-
level interface tasks such as selecting one element from a set, or showing a presen-
tation unit. Information elements represent data to be shown, either a constant value
such as a label, or a set of objects and attributes drawn from the domain model.
Presentation units are an abstraction of windows. They specify a collection of AIOs
and information elements that should be presented to users as a unit. In summary,

Figure 1. Model-Based Interface Development Process

Automated Design

Delivered
Application

Abstract
Design Tool

Concrete
Design Tool

Model

Task, Domain
Models

Abstract UI
Specification

Concrete UI
Specification

Compiler/
Linker

Design
Knowledge

Guidelines

Application
Code

Runtime
System

Implementation
Tool

Toolkit-Ready
File

Modeling Tool
Modeling Tool

Modeling Tools

Developer

Design Critics
Design Advisors

xxiv Computer-Aided Design of User Interfaces

the abstract user interface specification specifies in an abstract way the information
that will be shown in each window, and the dialogue to interact with the information.

The third level of the model, called the concrete user interface specification, specifies the
style for rendering the presentation units, and the AIOs and information elements
they contain. The concrete specification represents the interface in terms of toolkit
primitives such as windows, buttons, menus, check-boxes, radio-buttons, and graph-
ical primitives such as lines, images, text, etc. In addition, the concrete specification
specifies the layout of all the elements of a window.

The models of different MB-IDEs can differ substantially. Different MB-IDEs typ-
ically provide different modelling languages for specifying the contents of the model,
and they also emphasise different levels of the model. For example, MASTERMIND
[Szekely95] requires developers to explicitly specify all levels of the model, whereas
JANUS [Balzert96] only requires a data model.

1.2 Modelling Tools

The modelling tools assist developers in building the models. The main goal of the
modelling tools is to hide from developers the syntax of the modelling languages,
and provide a convenient interface for developers to specify the often large quanti-
ties of information that are stored in the model. A wide range of modelling tools
have been developed, often specialised to the different levels of the model. These
tools range from text editors to build textual specifications of models (ITS
[Wiecha89, Wiecha90], MASTERMIND), forms-based tools to create and edit model
elements (MECANO [Puerta96b]) and specialised graphical editors (HUMANOID
[Luo93, Szekely92, Szekely93], FUSE [Lonczewski96], many others).

1.3 Design Critics and Advisors

Design critics are tools to evaluate designs. The model-based approach provides an
excellent platform for constructing analytic design critics because models contain a
rich representation of interface designs that these tools can analyse. Most design
critics work with the concrete user interface specification layer of the model because
in most cases they provide evaluations about detailed features of the interface (e.g.,
whether the interface provides a way to access all application functionality).

Design advisors are tools that suggest how to refine the abstract layers of the model
into more concrete ones. Design advisors use a knowledge-base of design
knowledge, typically represented as rules. The condition part of the rules identifies
some aspect of a design (e.g., an AIO), and the action part of the rule specifies a way
of refining/transforming the matched design element (e.g., the CIO to use for an
AIO).

1.4 Automated Design Tools

Many MB-IDEs allow developers to only specify certain aspects of a model. These
MB-IDEs feature automated design tools that compute the missing elements of the

 Retrospective and Challenges for Model-Based Interface Development xxv

model from the information that developers do provide. For example, JANUS
[Balzert96] only requires developers to supply a domain model, and it features an
automated design tool that automatically constructs both the abstract and concrete
specifications of the interface.

In contrast ITS and MASTERMIND [Szekely95] require developers to explicitly spec-
ify all levels of the model, so these systems do not offer automated design tools.
What they do offer is the capability to re-use specifications. The following section
discusses automated design tools in detail.

As shown in figure 1, automated design tools often use a repository of design
knowledge or design guidelines that control the behaviour of the design tool. In
most systems developers are not expected to modify the design knowledge, which
is typically specified by user interface specialists and the architects of the MB-IDE3.

1.5 Implementation Tools

The implementation tool translates the concrete specification of the interface into a
representation that can be used directly by a toolkit or interface builder. There are
essentially three kinds of implementation tools. Source-code generators (e.g., Mas-
termind) generate source code in a programming language, typically C++. UIMS
generators (e.g., FUSE) generate a file that can be read by an existing UIMS or inter-
face builder. Interpreters (e.g., ITS and HUMANOID) do not generate an “implemen-
tation file”, but rather interpret the model directly at runtime.

The last step in the interface generation process is to link the toolkit-ready-file with
application specific code and a runtime library. This is typically done using the com-
piler and linker for the programming language used to implement the application.
Interpreter-based systems such as ITS do not use the compiler and linker, but rather
feature a runtime module that reads the models during runtime, and interprets the
concrete specification of the interface.

Many MB-IDEs provide implementation tools that use the model to generate more
than the user interface. For example, JANUS, FUSE, UIDE [Foley91, Foley94] and
HUMANOID can generate significant parts of the help system for an application
based on the information contained in the model. Janus not only generates the in-
terface, but also generates the database schemas for an application, and much of the
data management code. Mastermind generates code for applications that allows
other processes to connect to an application, and to request to be notified when
certain tasks are completed, to be sent snapshots of the application state, and to
remotely invoke application tasks. This facility supports the construction of agents
that can assist users in various ways. This facility was used, for example, to build a
history agent that keeps a history of all the tasks that the user has completed an
allows users to re-invoke previously completed tasks.

3 ITS can be viewed as an automated design tool where developers have to explicitly build the design
knowledge for each application or family of applications.

xxvi Computer-Aided Design of User Interfaces

As interfaces become more sophisticated, and users expect more services from their
interfaces. The ability to provide such additional run-time services for free is one of
the most attractive features of the model-based technology.

2 Retrospective

The following sections provide a retrospective of the main user interface design and
construction problems that have been addressed using the model-based approach.
These sections discuss the various approaches that have been used, and how well
they solve the problems.

The retrospective section is organised into five main topics:

1. Automatic interface design. This section discusses the main approaches for automat-
ing interface design and their limitations.

2. Specification-based MB-IDEs. This section discusses MB-IDEs that do not try to
automate interface design, but rather give developers convenient languages for
expressing designs.

3. Help generation. Many MB-IDEs feature components that automatically generate
help. This section reviews the different approaches and comments on their suc-
cess.

4. Modelling Tools. This section discusses various approaches to modelling tools.
5. Design critics and advisors. This section presents a categorisation of these tools and

discusses their relative benefits.

Note. For each topic one or two tools are discussed in some detail. The chosen tools
are not necessarily the best tools according to some metric, but rather illustrate a
point well, and detailed papers have been published about them. The goal of this
paper is to review the main approaches, not the individual tools.

2.1 Retrospective – Automatic Interface Design

The primary goal of many MB-IDEs is to automate as much as possible the design
and implementation of a user interface. These MB-IDEs emphasise the domain and
task models, and automatically generate the abstract and concrete user interface
specifications from these models. Most MB-IDE in this category are oriented to-
wards database applications and produce interfaces that allow the end-users to
browse the database, to edit the contents of objects, to define new objects, and to
delete objects.

This section argues that automating interface design is intrinsically difficult, so MB-
IDEs should be very selective about the portions of the design that they choose to
automate.

2.1.1 Structure of Automated Design Tools

Model Contents. MB-IDEs whose primary goal is to automatically design use
mainly two kinds of models, a domain model that describes the structure and attributes

 Retrospective and Challenges for Model-Based Interface Development xxvii

of the information that the application provides, and a task model that describes the
tasks that users need to perform. For example, tools like JANUS, and early versions
of MECANO, use only a domain model, whereas tools like TRIDENT [Vander-
donckt94a, Vanderdonckt95b], ADEPT [Johnson95, Wilson96], DON [Kim 93] and
MODEST [Hinrichs96] use primarily a task model, but also have a domain model.

The domain models of the automatic design tools are similar. They describe classes
of objects, inheritance between classes, the attributes of each class together with
their types and cardinality, and relationships between objects. In addition, the mod-
els typically allow the inclusion of user interface specific information. For example
the model of object attributes often includes facets to indicate whether the attribute
should be shown to the user, an ergonomic name, and other information to influ-
ence the choice of abstract interaction object to be used to specify the attribute.

The task models of these tools are also similar. Tasks are usually decomposed hier-
archically, and information is included to specify the sequencing between the tasks
(e.g., and, or, xor, parallel). Often, the task model includes references to the domain
objects needed and produced in each task. The task model is used during automatic
generation to determine the interface dialogue and to determine the information that
should be shown in each window.

MB-IDEs in this category typically do not require developers to specify either the
abstract or concrete specifications of the interface.

Design Process. Most automated design MB-IDEs use the following sequence of
steps to automatically design an interface:

1. Determine the presentation units. This step essentially determines the windows that
will be used, and what information will be shown in each window.

2. Determine the navigation between presentation units. This step computes a graph of
presentation units that defines which units can be invoked from which other
units.

3. Determine the AIOs for each presentation unit. The abstract interaction objects specify
the behaviour of each element of a presentation unit in an abstract way (e.g.,
select one from set).

4. Map abstract interaction objects into concrete interaction objects. The concrete interaction
objects represent the widgets available in the target toolkit.

5. Determine the window layout. This steps determines the size and position of each
concrete interaction object.

The first three steps build the abstract user interface specification, and the last two
build the concrete specification.

Post Editing. Once the concrete specification is built, and the implementation tool
generates the “toolkit-ready” file, the developer has the opportunity to use and in-
terface builder beautify the layout, change fonts, colours, add decorations, and per-
form other cosmetic enhancements.

xxviii Computer-Aided Design of User Interfaces

2.1.2 Difficulties with Automated Design

Even though automatic design MB-IDEs can produce interfaces with little or no
development effort, there is concern about the quality of the generated interfaces.
There is substantial evidence to indicate that it is not feasible to produce good quality
interfaces for even moderately complex applications from just a data and task mod-
els (together with simple annotations of the data model, such as flags that indicate
whether object attributes are relevant to the user interface).

The chapters by Morten Harning [Harning96] and by Stephanie Wilson and Peter
Johnson [Wilson96] describe critical decisions that must be made in the design of an
interface, which the automated design tools cannot currently make appropriately,
and which do not seem feasible to automate.

Harning’s paper contains an excellent example that illustrates the difficulty of auto-
mating steps 1 and 3. Harning’s example is about a project management application
where users want an interface to monitor progress in the various activities involved
in a project. In this application there are four classes of objects represented in the
data model: Employee, Project, Activity, Weekly Estimate, and Time Entry. Harning
demonstrates using examples that of a good interface must satisfy the following
properties:

 Users need windows that show information drawn from multiple objects. In the project
monitoring example, the project display is based mostly on the Project object,
but also shows attributes of the Employee and Activity objects. Furthermore,
the example shows that the choice of attributes is task-dependent, and required
developers to have a deep understanding of the user’s tasks. This means that
step 1 of the abstract design tool is hard, if not impossible to automate.

This property is achieved in the interfaces generated using Trident. The Trident
task model captures the information needed for each task, and the generation
algorithm calculates how the information flows between tasks in order to deter-
mine what information to show in each presentation unit, and where to place it.
Systems like Janus, which only use the data model do not satisfy this property.

 Users do not want the raw information, but rather they need the information to be re-structured
and summarised. In the project monitoring example, users want a weekly report
display that essentially combines the Activity and Weekly Estimate objects on a
weekly calendar display that shows how much effort was spent on each activity
during a specific week. Re-structuring and summarisation cannot be done with-
out a deep understanding of the user’s tasks, and again points to the difficulty
of automating step 1.

Another restructuring problem is that users want to see the names of people in
the Project Leader field as “name (initials)”. This means that rather than using
two AIOs to present two different attributes, a single one should be used to
present a combination of two attributes. This simple example suggests that the
assignment of object attributes to AIOs (step 3) is also a hard problem.

 Retrospective and Challenges for Model-Based Interface Development xxix

 Graphical displays are often more effective than tables and forms. Harning’s paper has an
example of a graphical display that uses a plot with two curves to show how
much time has cumulatively been spent on a project compared to the estimate
of the time remaining to complete the project. This example shows that the set
of AIOs need to be expanded to include more sophisticated elements such as
plots. Of course, then the problem is how to select the appropriate one (step 3),
how to set all its parameters, and then how to map it to concrete interaction
objects (step 4).

There are two main approaches to automatic design, one based on task models, and
the other based on the domain model. The task model approach performs better
because task models have some of the information to satisfy the properties listed
above. The domain model approach does not have access to such information, and
can only produce simple interfaces, typically with one object per presentation unit.

The requirements listed above point to deep issues of interface design, and raise
questions about the utility of completely automating the design process, especially
steps 1 and 3. Even a small amount of developer involvement can have a huge dif-
ference. A simple calculation reveals the economics of the situation. Most of the
automatically designed interface force users to bring up several windows to view the
information they need to perform a task, rather than a single window with all the
information. Ignoring issues about time to assimilate improperly structured infor-
mation and the error rates that can result, bringing up several windows and closing
them can easily take 3 additional seconds. If users do this 20 times a day, in a year,
one full day will be lost per worker. If an organisation has 40 users, 2 man months
will be lost per year. Surely it is worth to have developers spend several weeks work-
ing on a design.

2.1.3 Discussion

The conclusion of this section is that none of the 5 steps should be completely au-
tomated. Rather, collaboration between developers and tools should be built in from
the start. Tools should offer suggestions and alternatives. Developers make the de-
cisions, accepting suggestions, choosing between alternatives or entering their own
solutions.

This means that the abstract and concrete specification layers of the models should
be available to the developers. The specification languages for these layers must al-
low developers to control all features of the interface that they want to control, no
matter how low level. Emphasis should shift from automation to computer aided
design.

A simple, and commonly used approach to computerised design aids is the post-
editing approach. An automated generation tool generates a first draft of the design,
and then the developer edits the draft to produce the final design. This approach has
a serious shortcoming, namely that when developers change the model, they need
to run the generator tool again, and the post-editing changes will be lost.

xxx Computer-Aided Design of User Interfaces

The post-editing approach has been used mainly to allow developers to beautify
layouts. However, many MB-IDEs such as FUSE feature automatic generator of
higher levels of abstraction, and run the risk of running into the same post-editor
problems.

One solution to the post-editing problem is to record the changes performed during
post-editing, and to reapply them to the output of the generation tools. This ap-
proach was used in early versions of MECANO, but it proved difficult to apply the
changes reliably, especially when new elements were introduced to a design, or old
elements were deleted.

A more robust solution requires a deep integration of the computerised advisor and
the modelling tools. In this approach the advisor tools produce design alternatives
and suggestions that developers can incorporate into an evolving design via the mod-
elling tools. There is no batch generation process followed by a refinement phase,
but rather an incremental evolution of the design, where the computerised advisors
and the developers incrementally build the design.

Several MB-IDEs are moving away from automation in the direction of computer-
ised advisors. For example, the TADEUS [Elwert95, Schlungbaum96] system requires
developers to specify steps 1 and 2 in a structure called a dialogue graph. Steps 3 and
4 are table driven. The system builds default tables with default entries, but devel-
opers can edit these tables and override any entry. Step 5 is done automatically, but
TADEUS supports post-editing of the generated implementation file.

The FUSE system described in this book also provides a specification language and
tool (BOSS [Schreiber94b]) that lets developers specify the abstract interface specifi-
cation, and many aspects of the concrete specification. In addition, FUSE provides a
tool (FLUID [Bauer96]) that uses the task and domain model to produce specifica-
tions that can be fed to the BOSS tool to refine and produce an interface. It is unclear
for the published papers whether and how FUSE avoids the post-editing problem.

TRIDENT is perhaps the most sophisticated and robust system that combines auto-
matic generation and computerised advice. TRIDENT developed many different
strategies and algorithms for performing each of the 5 steps listed above. For exam-
ple, they developed six strategies for defining presentation units, and have tools that
can automatically select and apply a strategy based on information contained in the
task and domain model. TRIDENT also offers developers the option of choosing a
strategy, or performing the step by hand. However, it is unclear from the published
literature on TRIDENT whether it uses an integrated approach as described above.

2.2 Retrospective – Specification-Based MB-IDEs

MB-IDEs in this category seek to provide powerful interface specification languages.
These languages provide effective layering or abstraction mechanisms that allow de-
velopers to express interface properties at a convenient level of abstraction to facil-
itate reuse and design modifiability. These languages also seek to give developers
extensive control over all features of the interface, so that developers can express

 Retrospective and Challenges for Model-Based Interface Development xxxi

any design that they can think of. The goal is not to automate design, but rather to
make it easy for developers to express designs, change designs, retarget designs to
new platforms, new classes of users, new tasks, etc.

MB-IDEs in this category are oriented towards data management applications. Most
business-oriented applications fall in this category, but many engineering and data
visualisation applications do not, because they have interfaces whose graphical com-
ponents are too complex to be expressed in their interface specification languages.

2.2.1 Structure of Specification-Based MB-IDEs

The structure of specification-based MB-IDEs is also compatible with the architec-
ture shown in figure 1. They emphasise the model and the implementation tool, and
typically do not have an automated design tool.

The modelling language of these MB-IDEs have facilities for developers to express
models at the three different levels of abstraction shown in figure 1. The models of
these MB-IDEs typically feature a data model, but not always a task model. The data
model is used mostly in the implementation tool to generate the binding between
the interface objects and the application data, so that the interface objects can access
the application objects to retrieve the pieces of information that will be displayed
(e.g., access the name field of a person object).

The modelling languages to specify the abstract and concrete user interface specifi-
cations are designed to maximise reuse. Even though the goals of the different MB-
IDEs in this category are the same, the features of the modelling languages are dif-
ferent. For this reason, this section will not attempt to describe these languages in
general terms, but rather uses the well known ITS system as an example. Other MB-
IDEs in this category include BOSS, HUMANOID and MASTERMIND.

2.2.2 ITS

The ITS system was developed by IBM research, and was used to construct several
large applications such as the information kiosks for the Seville world fair, a pur-
chasing system for a large corporation, an insurance industry application, and many
others.

ITS has modelling components corresponding to the three levels of modelling shown
in figure 1. The domain model is called a data pool, there is no task model, the abstract
specification is called content specification, and the concrete specification is called a style
specification.

The data pool definition language (domain model) supports the specification of
structured objects and sequences of objects, like the domain model in many other
MB-IDEs. The following is an example of the data pool specification for an airline
reservation system.

xxxii Computer-Aided Design of User Interfaces

list listname = flights, numrecords = 10

field destination, rangename = cities, size = 20
field departure_time, size = 10
field departure_date, size = 20
field airline, rangename = airlines, size = 20
field number_stops, size = 5

The content specification (abstract user interface specification) of an interface con-
sists of a collection of frames. Frames can contain lists, forms, choices, information
blocks, and nested frames. These elements specify the information that will be pre-
sented to the user. Top-level frames correspond to presentation units. Lists and
forms specify which elements of the data pool are to be shown in a frame.

Information blocks specify static pieces of information to be shown in a frame.
Choices indicate sets of alternatives that can be chosen by the user, and correspond
to AIOs. Each element specification can be elaborated using an extensive set of
attributes that specify the interface content in detail.

The following is a fragment of the content specification for the airline reservation
example. This frame specifies that five flights are to be displayed, and specifies which
fields of the flights object to display.

frame id = check_today, action = getlist, listname = flights, value = flights.data

list listname = flights, number = 5
list-item field = destination, message = “To”
list-item field = departure_time, message = “Departure”
list-item field = departure_date, size = 20
list-item field = airline, message = “Carrier”

frame message = “To search for selected flights”
...

The style specification (concrete user interface specification) specifies the mapping
from AIOs to CIOs. To quote from Wiecha’s paper, “a style is a co-ordinated set of
decisions on the appearance and behaviour of the interaction techniques used in a
family of applications”. Styles are specified using rules. The condition part of the
rule can test any of the attributes of a frame or its children. The action part of the
rule selects the CIO to use, and specifies values for the attributes. Typically, the rule
set for an application consists of general rules that apply to families of frames (e.g.,
there could be a rule for displaying choices as radio buttons), and specific rules that
match specific frames defined in the content (e.g., a rule for the check_ today frame
defined above). General rules are reused in multiple applications and within a single
application. Specific rules are used to specify the features of a particular interface
that make it different from the generic case.

The following is an example of a style rule. It specifies that if the content is a choice,
then construct a vertical group of a title, and something else, depending on which
of the nested conditions match. If only one element can be chosen, then the second
component is a vertical group, or a collection of horizontal groups, one for every
choice. The horizontal group consists of a dingbat to indicate radio buttons, and a
message. Note that this rule does not completely specify the display of choices.

 Retrospective and Challenges for Model-Based Interface Development xxxiii

Other rules may be used to determine the attributes of the unit types used within
this rule (VertGroup, HorzGroup, Dingbat and Message).

:conditions source = choice
 unit type = VertGroup
 unit type = Title
 :eunit

 :conditions kind = 1_and_only_1
 unit type = VertGroup
 unit type = HorzGroup, replicate = all
 unit type = Dingbat
 :eunit
 :unit type = Message
 :eunit
 :eunit
 :eunit
 :econditions
 …

 …
 :eunit
:econditions

The implementation tool of ITS consists of the rule interpreter and the run-time
support system that fires the rules appropriate rules when actions are invoked and
the contents of the data pool change.

2.2.3 Discussion

The main difference between specification-based systems such as ITS, and auto-
mated design tools such as JANUS is one of philosophy. In specification-based MB-
IDEs the modelling language is open, whereas in automated design tools it is closed.
In automated design tools, developers can only control the design using a few at-
tributes that the tool developers chose to export for that purpose, limiting the de-
velopers’ ability to control the design of interfaces, and ultimately limiting the quality
of the interfaces that can be generated.

Even though ITS is a specification-based MB-IDE, developers do not specify all the
features of every individual window. The main point of ITS is that developers should
not have to do that. Developers using ITS must specify the abstract user interface
specification completely, that is, they have to specify the abstract interface for every
different kind of window. As argued in the previous section, this is good because the
abstract interface is precisely the hardest aspect to generate automatically. However,
developers using ITS do not have to specify the concrete user interface specification
completely. There is no automated designer to do it, but developers can reuse rule
sets from libraries that contain the abstract to concrete mapping for significant por-
tions of the interface specification. This reuse capability enables specification-based
MB-IDEs to incorporate many of the cost savings capabilities of automated design-
ers, while overcoming the most serious problems.

Other specification-based MB-IDEs such as HUMANOID and MASTERMIND share
the design philosophy of ITS, but differ in the nature of the modelling language. In

xxxiv Computer-Aided Design of User Interfaces

a large logistics application developed using HUMANOID, the developers were able
to identify about 13 different families of windows to account for the more than 100
different windows that the system provided. Developers modelled those 13 windows
so they did not have to specify each window separately, as would appear to be nec-
essary with a pure specification-based system. However, the design of the 13 win-
dows was according to user requirements, and it would not have been possible to
design those windows automatically.

The BOSS system, briefly described in Lonczewski’s and Schreiber’s chapter [Lonc-
zewski96], is another example of a specification-based MB-IDE. BOSS is also a mod-
ule of the FUSE system, which is a mixture between automated designer, as imple-
mented in its FLUID module, and a specification system.

2.3 Retrospective – Help Generation

Many MB-IDEs [Lonczewski96, Moriyon94, Pangoli95, Palanque93b, Sukaviriya
90] have the ability to automatically, or semi-automatically generate a help system
for an application based on model information used to construct the user interface
in the first place.

Cartoonist [Sukaviriya90] was the first system to provide a compelling demonstra-
tion of help generation. Cartoonist allowed the user to ask “how do I do X?” ques-
tions, where X could be any of the actions of an application. In response, it would
show an animation showing the exact actions that the user needed to perform with
the mouse and keyboard to invoke the action. A typical example would show the
mouse selecting an object (if one was not selected), then pulling down the appropri-
ate menu, filling out a dialogue box, and finally clicking the OK button.

Cartoonist used the UIDE interface models. The abstract interface specification of
UIDE describes the actions that users can perform. The action specification contains
pre-conditions that specify the contexts in which the action can be performed, and
post-conditions that specify how actions modify the context. The concrete specifi-
cation models the mapping between actions and concrete interaction objects. Using
this information, Cartoonist was able to construct a plan with the sequence of inter-
action techniques that needed to be invoked in order to perform an action. Cartoon-
ist could even determine what other actions need to be invoked before in order to
modify the context to satisfy the preconditions of the action being explained. This
allowed the user to ask for help at any time, even when the context was not appro-
priate to perform the action.

HUMANOID also generated a help system for an application based on the model
[Moriyon94]. The help system provided hypertext help to explain the information
displayed in a region selected by the user (e.g., paper.txt represents a file), and explain
all the commands that the user could issue (e.g., paper.txt can be selected by clicking
with the left button, and then the commands delete, and grep can be applied to it).
An important contribution of the HUMANOID help system is that it used an exam-
ple-based technique to assist developers in specifying the text of the help windows.

 Retrospective and Challenges for Model-Based Interface Development xxxv

HUMANOID first generated text automatically, but developers could select text frag-
ments to edit the wording, and then HUMANOID would interact with the developer
to find an appropriate place in the model to store the edited text fragment. Place-
ment in the model determined the contexts in which the text fragment would appear.

The chapter by Contreras and Saiz in this book [Contreras96b] illustrates how the
knowledge in the models can be used to automatically generate software tutors, and
how the tutors can be customised to different classes of users with different tutoring
needs and preferences.

The chapter on the FUSE system, also describes how the information in a model can
be used to construct a help system. FUSE, like Cartoonist, produces context sensitive
help using the model information. It uses a different style of modelling and also
delivers the help in HTML pages rather than using animation.

2.3.1 Discussion

The ability to generate help systems using the information contained in the model is
one of the main benefits of the model-based technology. All of today’s applications
feature a help system, and significant development effort must be devoted towards
implementing it. Context-sensitive help is especially difficult to implement because
it must reference internal data structures of the interface in order to query the current
context of the interface.

The next sections argue that it is precisely the ability to generate runtime services
such as help, that give the model-based technology an edge over conventional tech-
nologies for implementing interfaces. Using conventional technologies, each
runtime service must be separately designed and implemented. Using the model-
based technology the services are generated for free, or for a small incremental cost.
The reason is that the services use the same information that is used to build the
interface in the first place. In addition, as an interface design evolves, the services
automatically evolve with it to remain consistent with the design.

2.4 Retrospective – Modelling Tools

Interestingly, ITS, the most widely used MB-IDE does not have a graphical model-
ling tool. Developers must learn the syntax of the modelling language, and enter the
models using a text editor. The creators of ITS found that developers learn the syntax
of the language quickly, and that the lack of a modelling tool is not an obstacle to
using the tool. They also report (personal communication) that a syntax directed
editor was built, but developers refused to use it.

The lesson to be learnt from this experience is that it is false that some tool is better
than no tool. A text editor is a powerful tool that is always available. Its most attrac-
tive features are users know how to navigate with it, that it is very fast, that it pro-
vides cut and paste, effective search mechanisms, global replace, the ability to easily
comment out pieces of a design, etc.

xxxvi Computer-Aided Design of User Interfaces

However, experience with widely used CASE tools, and expert system shells such as
Nexpert Object [Nexpert96] and Kappa [Kappa96] suggest that well engineered
graphical tools for building models are useful for the development of large applica-
tions. They can be better than text editors, but they must be well engineered, and
designed to support large applications.

Most MB-IDEs feature simple forms-based interfaces for creating and editing model
entities. Some MB-IDEs such as FUSE and ADEPT provide visual modelling tools.
These tools have not been extensively used, so it is early to comment about their
usability for developing large applications.

An interesting approach to modelling tools is embodied in a tool called Grizzly Bear
[Frank95]. This tool tries to hide from developers the intricacies of the models by
providing an interface that looks like a traditional interface builder or a drawing ed-
itor. The interface provides a palette of building blocks and a drawing area where
developers can draw pictures of the interface. Grizzly Bear builds models by demon-
stration. It extracts model entities from the example interfaces that developers draw.
It can generalise different pictures into different classes, and most importantly, it can
infer dialogue fragments from before and after snapshots of an interface. Grizzly
Bear was used to completely build the model for a simple drawing editor based on
demonstrations of how the editor should work. An interesting feature of this tool is
that it shows developers a textual view of the model as it is being constructed. This
view helps novice developers learn the modelling language, and allows experienced
developers to edit the textual representation directly. Grizzly Bear represents the
first step towards this kind of tool, and further progress needs to be made before
such a tool is ready for serious application development.

2.5 Retrospective – Design Critics and Advisors

Much work on design critics and advisors has been done in the context of model-
based tools [Bodart95d, Fischer93]. The reason is that in order to evaluate a design,
and automated critic has first to analyse the design to determine what it does. The
models provide rich information for critics and advisors to do their work.

The following kinds of evaluation tools have been investigated.

Property verification. The tool verifies that a design satisfies certain properties (e.g., all
application functionality is reachable). Some tools [Foley94, Palanque95] can only
verify a set of pre-defined properties encoded in a knowledge-base. More powerful
tools [Paternó96] allow developers to specify the properties to be verified.

End-user simulation. These tools [Kieras96] simulate a user interacting with an appli-
cation, and make predictions about times to perform tasks, learning times and likely
errors.

Summative evaluation. These tools produce numbers that can be used to rank designs.
An example of such a tool is AIDE [Sears95], a tool to compute metrics based on a
theory of layout quality. Work on such tools is still very preliminary. The chapter by

 Retrospective and Challenges for Model-Based Interface Development xxxvii

Comber and Maltby [Comber96], in this book describes experiments designed to
validate the results of some of these tools.

Many property verification tools [Löwgren92] are designed to detect violations of
standard user interface guidelines (e.g., File menu should have the mnemonic F).
These tools play a similar role to spelling checkers in word processors: they detect
surface problems that show a lack of professionalism. They do not detect problems
related to the semantics of the interface, but nevertheless, they are very useful.

Most style-guide verification tools are not model-based, but rather take as input the
toolkit ready file used in well known toolkits (e.g., resource files for Windows, UIL
files for Motif). The limitations of these tools are discussed in the paper by Farenc
et. al. in this book [Farenc96]. The problem is that the toolkit-ready file does not
contain enough information about a design to verify many of the style rules. In the
context of ERGOVAL, 44% of the rules can be automatically verified using the
toolkit-ready file, and up to 78% could be automated if the evaluation tool had access
to appropriate information. The model-based approach to interface development
should allow tools to get closer to the 78% limit.

For example, Farenc et. al. illustrate the limitations of toolkit-ready files with the rule
that states that “for any input, if there are any acceptable values, such values must
be displayed.”. Such a rule can be automated in the context of most MB-IDEs be-
cause their models contain information about the acceptable values for inputs, and
information about how the inputs are displayed.

There are a few notable examples of design critics aimed at more fundamental design
issues, addressing issues similar to grammar and document content in word pro-
cessing. These critics require very detailed models, more detailed than the models
currently being used in most MB-IDEs. One example of such a tool is NGOMSEL
[Kieras96], which belongs to the end-user simulation category of design critics.
NGOMSEL takes as input a detailed task model where the leaf tasks represent inter-
action techniques (CIO). It can simulate a user interacting with the application, and
predict how long it will take an expert user to complete a high level task. NGOMSEL
can also make predictions about features of an interface that users will find difficult
to learn.

Another example of a sophisticated design critic is embodied in the work of Fabio
Paternó [Paternó95]. His critic is a property verification critic that uses detailed mod-
els of an application specified using the LOTOS [Paternó92] notation. His system
allows developers to specify complex properties using a notation based on temporal
logic.

One of Paternó’s papers [Paternó95] discusses an interesting example about an air
traffic controller application that uses a message area to display messages to the user.
The last message to arrive is shown in the message area, and the previous ones are
queued until the operator gets around to view them. This design could lead to subtle
timing problems where operators delete the wrong message, skip viewing a message,
etc. His paper shows how required properties of this interface can be verified (e.g.,

xxxviii Computer-Aided Design of User Interfaces

the user can read a message several times), or how undesirable effects can occur (e.g.,
user unwittingly deletes the wrong message). The expense of building the complex
models required by this critic can be justified in safety critical applications such as
air-traffic control.

Much work remains to be done before these advanced critics become a useful tool
for developers. These critics require detailed models that are time-consuming to
build, and expressed in specialised notations that most developers do not know.
However, work is in progress to integrate these tools with MB-IDEs (NGOMSEL
with MASTERMIND [Byrne94], Paterno is working on an implementation tool for his
notation). Once this work is complete these design critics will have a more substan-
tial impact on the design and development of interfaces.

An interesting question is the extent to which MB-IDEs can render style-guide ver-
ification tools unnecessary because the kinds of errors that they detect cannot be
committed when using an MB-IDE.

Automatic generation MB-IDEs provide one answer to this question. The design
algorithms of these tools are based on style-guides, so they will automatically be
obeyed. Most violations will be due to exceptions specifically coded in the design
algorithms.

Design advisors provide a different answer to this question, in the context of speci-
fication-based MB-IDEs. Design advisors can be viewed as pro-active critics. Rather
than telling designers what they did wrong, they try to steer designers away from
poor design choices. The most attractive feature of automated design advisors is that
they complement specification-based MB-IDEs so that developers do not have to
construct specifications on their own, but are assisted by advisors whose knowledge-
bases codify expert knowledge and wisdom about interface design.

The work on design advisors has not yet reached a level of maturity that allows a
critical discussion of their approach and effectiveness. Two well known systems are
TRIDENT [Vanderdonckt95b] and EXPOSE [Gorny95].

3 Challenges and Opportunities

The main opportunities for model-based interface technology lie ahead because it is
better suited than traditional technology to meet the new interface challenges that
technology is creating.

Faster machines and networks enable more an more sophisticated applications,
providing users with more capabilities and more information, but at the same time
overwhelming them with more commands and options. Interfaces will need to be-
come more intelligent to assist users in performing their tasks, to help them come
up to speed in a new application, to allow users to customise them to make them
effective for the particular tasks that users perform most often.

Laptops are commonplace. Smaller portable devices such as PDAs and pagers are
getting linked to the networks and provide the ability to access the same information

 Retrospective and Challenges for Model-Based Interface Development xxxix

that is available via workstations and laptops. The need will arise for applications
that scale across a wide range of devices to provide users with the same or a scaled
down version of the workstation functionality. Scaled up versions will also be needed
to take advantage of wall-sized displays.

New modalities such as speech, natural language, hand-writing recognition are ma-
turing. Applications will need to reconfigure their interfaces to take advantage of
whatever modalities are available on the user’s platform. The following sections
discuss why the model-based technology is well positioned to meet these challenges,
and give some suggestions on how MB-IDEs need to evolve.

3.1 Challenge 1 – Task-Centred Interfaces

The main difficulty that users face when interacting with an application is to figure
out how to use the capabilities of the application to perform desired tasks. Applica-
tions often offer many dozens of commands and options, so it is difficult for users
to learn and remember the sequence of commands needed to perform a task. Many
of the most popular and complex applications such as Microsoft Office and its com-
petitors attempt to cope with this problem by offering task assistants.

For example, Microsoft Excel has assistants to construct charts, to pivot tables, to
create templates, etc. Microsoft Word has assistants to format tables, to format doc-
uments, to correct spelling, to do mail merge, etc. The typical behaviour of an assis-
tant is to analyse the current context (e.g., the array of selected cells in a spreadsheet),
and then ask users a sequence of questions about how they want the task performed,
and finally perform the task for the user. Assistants make certain tasks easy to per-
form, even if the limit the set of options that users have.

Related to task assistants are guidance systems. Guidance systems have two main com-
ponents, an indexing component that helps users find the topic they need guidance
on, and a component that component that guides the user in performing the task.
For example, Microsoft’s answer wizard, a kind of guidance system, allows users to
index in several ways: they can use keywords to find topics, of they can browse the
hierarchy of topics. Guidance is given to users using the task assistant technology,
traditional hypertext help windows, enhanced hypertext windows with buttons to
invoke relevant application functionality.

Today’s task assistants and guidance systems are implemented separately from the
interface, most surely at a significant development cost. Developers of these systems
must, at least informally, build a model of the tasks that users are expected to per-
form. For the task assistants they must encode in detail all the steps for performing
the task, taking into account all the contingencies that arise from the different con-
texts in which the assistant is invoked. For the guidance systems, developers must
encode a comprehensive model of the tasks, including the words that can be used
to index them, the steps for each task, pointers to application commands that per-
form particular steps, etc.

xl Computer-Aided Design of User Interfaces

One of the challenges and opportunities for model-based technology is to partially
automate the generation of task assistants and guidance systems. Many MB-IDEs
use a task model to assist with the design of the interface, and also to control the
dialogue at runtime. Such task models already contain much of the information
needed for task assistants and guidance systems. They already contain a representa-
tion of all the tasks, the steps to perform each task, sequencing constraints, infor-
mation needed for each task, etc. The abstract and concrete interface representation
contain the information that links tasks to the interaction techniques that invoke the
various steps of a task. It seems quite sensible to enhance the task model represen-
tation to include any additional information needed for the task assistants and guid-
ance systems, and to generate these services from the model.

As mentioned in a previous section, significant progress has been made in this di-
rection. What is needed is to make the transition from an interesting feasibility
demonstration, to a robust, high quality implementation. Current demonstrations of
help generation work for some of the tasks, not all, generate poor quality text full of
the internal names of objects (e.g., start1stConnection), and for the most part, have
never been user tested or formally evaluated.

The comparison between automated design tools and specification-based tools is
relevant here. Automatic interface generation systems offer interesting demonstra-
tions, but only systems like ITS become successful, because they provide developers
with appropriate control over the design. Likewise, model-generated task assistants
and help generation systems will achieve high enough quality only if developers of
these systems can exert complete control over the text that is produced, and significant
control over the format.

3.2 Challenge 2 – Multi-Platform Support

Most of the user interface tools developed during the late 1980’s and early 90’s were
designed for a canonical platform featuring a mouse, a keyboard, and a 13 inch col-
our monitor. Today’s platforms are stretching the limits of the canonical platform,
often yielding hard to use interfaces.

Large, high resolution monitors cause the displays of some applications to become
unusable because the icons and text become hard to see, and hard to point at with
the mouse. Smaller displays, such as laptop 9 inch displays result in some applica-
tions using almost all the screen space for menus, toolbars, dialogue boxes, leaving
users a tiny window to perform their work. As argued before, the situation will get
much worse once radically smaller (PDA, pager) and larger devices become popular
(wall displays).

Interfaces developed using traditional interface builders and toolkits are hard to
adapt to different platforms because developers must redesign each window for each
new platform. As the set of platforms proliferates, this becomes expensive.

Model-based technology offers a much better approach. For qualitatively similar de-
vices (e.g., workstation and laptop), changes in the AIO to CIO mapping, and the

 Retrospective and Challenges for Model-Based Interface Development xli

CIO parameters are typically enough to appropriately scale the interface. More rad-
ical changes can be done by redesigning the abstract interface specifications. The
important point to bear in mind is that in a system like ITS the amount of work is
proportional to the number of style rules, which is typically much smaller than the
number of windows.

ITS has demonstrated the usefulness of this approach by refining style rules to port
interfaces to use a touch screen rather than a mouse. The change involves making
the target areas larger, and increasing the spacing between adjacent target areas.

One of the interesting challenges in this area is to develop techniques to scale inter-
faces to radically different platforms, such as PDAs and pagers. Figure 2 shows an
example of a first step in this direction. The figure shows simple adaptations explic-
itly represented in Mastermind’s model that cause an interface to adapt to changes
in screen size by progressively removing less important information as the available
space becomes smaller. The fist adaptation causes the first column of scrolling areas
to be replaced by buttons that bring up pop-up windows with the same information.
The second adaptation causes some headings to disappear and remaining heading
fonts to become smaller.

3.3 Challenge 3 – Interface Tailoring

Interface tailoring refers to the ability to customise and optimise an interface accord-
ing to the context in which it is used. Interfaces can be tailored to tasks that different
segments of the user population need to perform most often, to the level of use and
experience of users, to the physical abilities of users, to platform characteristics, etc.

There is a whole spectrum of tailoring possibilities. Interface tailoring can happen at
the factory, that is, developers produce several versions of an application tailored
according to different criteria. Tailoring can also be done at the user’s side, for in-
stance, by system administrators or experienced users. In the extreme, individual
users might tailor the interfaces themselves, or the interface could adapt on its own
by analysing the user’s patterns of use.

No matter when tailoring happens, and what interface features are tailored, tailoring
involves modifying the interface design. The simplest level of tailoring happens at
the concrete level of an interface specification where features such as the layout,
colours and fonts of an interface are changed. More sophisticated tailoring can hap-
pen at the abstract interface specification where the dialogue gets modified, for ex-
ample to shortcut certain steps, to rearrange the order for performing steps, etc. At
the highest level, new tasks might be defined by composing existing tasks.

Many model-based interface tools address some aspects of interface tailoring. For
example, the FUSE system presents examples of how an interface can be tailored
according to the user’s level of experience. However, most of the examples are about
factory tailoring, where developers construct the rules that define how the interfaces
should adapt depending on certain contextual information such as a simple user
model.

xlii Computer-Aided Design of User Interfaces

Figure 2. Scaling an Interface to Multiple Platforms in MASTERMIND

Workstation

Laptop

PDA

 Retrospective and Challenges for Model-Based Interface Development xliii

However, it should be possible to use the automatic interface generation capabilities
of many MB-IDEs to support end-user, or administrator-level tailoring of interfaces.
Such a facility would be a compelling example of the benefits of the model-based
technology.

3.4 Challenge 4 – Multi-Modal Interfaces

New input modalities such as speech, natural language and pen gestures have ma-
tured to the point where they can be effectively used in practical applications. Cur-
rently, applications that take advantage of these modalities are custom built without
much tool support.

Building interfaces that combine these modalities with traditional graphical elements
is hard for several reasons:

 To incorporate speech and natural language developers must define the lexicon
and perhaps the grammar for parsing and interpreting natural language sentences.

 Speech, natural language and pen input are intrinsically ambiguous. No matter
how good the recognisers get, they will always produce a set of alternative inter-
pretations with levels of confidence, rather than a single certain interpretation.
Interfaces must be designed to cope with this uncertainty.

 Users can speak and point at the same time, and the interpretation of the inputs
depends on their relative timing. In addition, the inputs from the various modal-
ities can refer to each other (e.g., put this file <click> there <click>).

New output modalities such as 3D graphics are also becoming cheaper and com-
mon-place.

Currently, not many model-based interface systems are addressing the construction
of interfaces that use these modalities. The model-based interface community runs
the risk that the architectures and tools that are being developed will not work with
these modalities.

One notable exception is the work by Phil Cohen [Cohen96]. His system provides
an open architecture for the development of multi-modal user interfaces. The system
uses a blackboard architecture that allows an open-ended set of agents to collaborate.
Agents collaborate to perform user tasks, to disambiguate natural language requests,
etc.

Conclusion

Much progress has been made towards demonstrating that the model-based ap-
proach provides a viable and effective new technology for developing user inter-
faces. Model-based systems have evolved from simple proof of concept prototypes
that were used on toy applications, to powerful systems that address the construction
of interfaces for realistic applications (ITS, TRIDENT, JANUS, MASTERMIND, etc.).

xliv Computer-Aided Design of User Interfaces

The models of many MB-IDEs have been integrated with mainstream software en-
gineering modelling techniques such as OOA (JANUS), ERA models (TRIDENT, GE-
NIUS [Janssen93]), making it easier to use these tools together with other well estab-
lished software engineering methodologies.

As a community, we need to make progress in two fronts. The first is to build com-
pelling demonstrations of the benefits of model-based tools. The interesting demon-
strations of help generation, platform scalability, design critics need to be proven in
more realistic settings with realistic applications.

The second front is to address the challenges being posed by new technology devel-
opments. As discussed in the last section, these challenges are in fact opportunities
for the model-based technology. The challenges point towards solutions where
models play an important role, so the model-based technology is well positioned to
address them.

Part I.

Model-Based Interfaces
Development Environments

Automatic User Interface Generation from
Declarative Models

Egbert Schlungbaum and Thomas Elwert

Abstract

Automatic user interface generation is a widely discussed topic in the research com-
munity. In recent years several approaches have been developed to support this kind
of generation. There is a need to summarise this. This article should provide a basis
for a founded discussion in this direction. The article gives an overview about model-
based user interface software tools. The special attention is paid to the declarative
models. The process of user interface generation is highlighted on a basis of a cate-
gorisation. The main section contains ideas of TADEUS about automatic user inter-
face generation explained by an example.

Keywords

Model-based user interface software tools, user interface generation.

Introduction

User interface software is often large, complex and difficult to implement, to debug,
and to modify. An average of 48% of the code of application is devoted to the user
interface, and that about 50% of the implementation time is devoted to implement-
ing the user interface portion [Myers92]. As user interfaces become easier to use,
they become harder to create [Myers94].

A lot of user interface software tools was created in order to help the user interface
developer. In our days the state of the art tools are called higher level tools [My-
ers95]. Higher level tools exist in a large variety of forms, for example UIMSs,
UIDEs, IBs, UIDEs1, Application Frameworks and further. They are built on the
top of user interface toolkits.

Brad Myers overviews the current state of the art in user interface software tools
[Myers95]. He introduced a classification of these tools. It is based on the way how

1 Do not confuse this general term with Foley's UIDE - The User Interface Development Environment
[Foley94] the state of the art tool in the area of model-based user interface software tools.

4 Computer-Aided Design of User Interfaces

the designer can specify the layout and the dynamic behaviour of a user interface.
There are tools which require the user interface developer to program in a special-
purpose language (language-based tools in Myers' classification), which allow to design
the user interface interactively (interactive graphical specification tools in Myers' classifica-
tion), or which automatically generate the user interface from a high-level model or
specification (model-based generation tools in Myers' classification).

Language-based tools as well as interactive graphical specification tools are commer-
cially available and frequently used at present. But the development of user interfaces
is still a difficult and time-consuming activity by using one of these tools. Language-
based tools support the specification of the control of the user interface in an easy
way. But the problem is that the developer must specify layout, placement, and for-
mat for each user interface object.

There is an opposite situation with interactive graphical specification tools. On the
one hand the designer creates the layout of the user interface interactively what
seems to be a natural way to develop a user interface and can be carried out by non-
programmers. On the other hand the dialogue control specification has to be added
by using a programming language or by using a special purpose language.

Furthermore, the language-based tools as well as the interactive graphical specifica-
tion tools do not support the developer to follow existing user interface guidelines
and style guides in order to maintain the internal consistency across the user interface
as well as the external consistency with other applications.

A further important lack of language-based tools and interactive graphical specifica-
tion tools is that the results of requirements analysis cannot be directly used for user
interface development in most of existing user interface software tools. Solving this
problem is a issue of extensive current research (e.g., [Coutaz94, EHCI95]).

Olsen et al. [Olsen93] suggest the automatic user interface generation as an essential
part of future user interface development environments. The model-based genera-
tion tools were introduced to solve the mentioned problems. Several model-based
user interface software tools have been built. Some of these are UIDE [Foley94],
HUMANOID [Szekely93], ADEPT [Johnson95, Wilson96], ITS [Wiecha90], MECANO
[Puerta94b, Puerta96b], TRIDENT [Bodart95a], BOSS [Schreiber94b], GENIUS
[Janssen93], JANUS [Balzert95a], MASTERMIND [Szekely95], AME [Märtin96a, Mär-
tin96b].

As shown in figure 1 the common property of all these tools is that the desired user
interface is automatically created from a specification represented by declarative
models.

The model-based approach offers many potential benefits over traditional methods
of building user interfaces (see also [Szekely95]), e.g., powerful design and runtime
tools, support for early conceptual design, consistency and reusability, iterative de-
velopment, integrated development of user interface and application core. But this

 Automatic User Interface Generation from Declarative Models 5

approach is still at the research level (see also [Myers95]), because the user interfaces
that are generated are not good enough.

Furthermore, the specification languages are quite hard to learn and use. Extensive
current research is done to address these problems. On the other hand, there are
tools which primarily focus on design assistance during the user interface develop-
ment process. Examples are EXPOSE [Gorny95], IDA [Reiterer94].

Figure 1. Model-based user interface generation

The purpose of this article was to encourage the discussion during the special track
CADUI workshop. There is a long tradition in CADUI and in our opinion it is
necessary to summarise the research results. For it, the paper is organised as follows.
Different model-based user interface software tools are shortly surveyed in the next
section.

The points of investigation are the use of different declarative models and the com-
puter-based user interface generation from it. After it, the automatic user interface
generation in the TADEUS approach is described in detail.

1 Model-Based User Interface Software Tools

1.1 Representing Information by Declarative Models

As mentioned above there are several model-based user interface software tools. All
these approaches follow one key idea. That is, the information which is required for
user interface development is explicitly represented in declarative models. These
models are accessible by the user interface, the application core and external tools at
design time and at run time.

Summarising shortly the mentioned model-based tools there are some kinds of mod-
els which are used commonly [Puerta94a].

generation

declarative
models

• tasks
• objects
• presentation
• dialogue
• ...

UI
description

file

runtime
system

of existing
UIMS

special
purpose
runtime
system

6 Computer-Aided Design of User Interfaces

A Task model is used to describe the tasks the end-user has to perform. Goals in a
task model specify when a desired state is met, methods describe procedures to
achieve a goal, where atomic methods achieve a goal in one step and composite
methods decompose a goal into subgoals.

An Application model is to specify the services an application provides. It is mostly
object-oriented; objects capture the state of entities and the operations change the
state of objects. It is important that the operations correspond to the atomic meth-
ods specified in the task model.

A Dialogue model is used to describe the human-computer conversation. It de-
scribes when the end-user can invoke commands, select or specify inputs and when
the computer can query the end-user and presents information.

A Presentation model specifies the object and operation appearance, the hierar-
chical decomposition of displays into components, the attributes and layout of each
component.

A Behaviour model is used to specify the input behaviour. The use of a presenta-
tion model and a behaviour model allows to specify the layout and the dynamic
behaviour of the user interface independently.

A Platform model can be used to describe platform characteristics, e.g., input de-
vices, output devices.

A User model specifies the end-user characteristics. A user model can be used in
order to generate individual user interfaces (adapted to stereotypes), to reconfigure
the interface to the end-user, to provide adaptive user interfaces, to provide an ap-
propriate level of help, to actively guide the user during interaction.

A Workplace model can describe workplace characteristics, e.g., cultural character-
istics, environment factors. These models are used in different ways. The first five
of these eight are used mainly; the use of an explicit user model was suggested in the
context of ADEPT only [Kelly92], neither an explicit platform model nor an explicit
workplace model is used in any of the model-based approaches. Furthermore, there
are differences in controlling the designed user interface, e.g., controlling by a spe-
cial-purpose runtime-system that uses the specified models directly or generating a
textual user interface description that is used to control an existing UIMS. Let's look
into some of the mentioned tools.

In UIDE [Sukaviriya93] the designer has to specify an application model that consists
of application actions, interface actions, and interaction techniques. Parameters, pre-condi-
tions, and post-conditions are assigned to each action. The pre- and post-conditions
are used to control the user interface during run time by means of the UIDE runtime
system.

An extension to UIDE [Sukaviriya94] provides an application model and an interface
model. The application model consists of tasks which will be performed by end-users,
their operational constraints, and objects on which these tasks operate. Interface

 Automatic User Interface Generation from Declarative Models 7

components, application-independent interface tasks, and operational constraints on
these tasks are specified in the interface model. The application semantic infor-
mation which is stored in the application model is preserved from design time to
run time. So it can be used for some sophisticated tools to support the end-user, e.g.
automatic generation of context-sensitive help.

HUMANOID [Szekely92, Szekely93] provides a declarative modelling language that
consists of five semi-independent parts: the application semantics represents the objects
and operations of an application; the presentation defines the visual appearance of the
interface; the behaviour defines the input gestures that can be applied to presented
objects, and their effects on the state of the application and the interface; the dialogue
sequencing defines the ordering constraints for executing commands and supplying
inputs to commands; the action side-effects defines actions executed automatically when
commands or command inputs change state (e.g., making a newly created object the
current state). The presentation and the behaviour models are specified by using
templates, the dialogue sequencing is specified implicitly and is derived from the
application model. The designed user interface is controlled by the HUMANOID
runtime system.

In TRIDENT [Bodart94b, Bodart95a] the designer has to specify a task model which
is represented by an Activity Chaining Graph (ACG) and an application model in form
of an entity-relationship diagram. The task model includes the interactive tasks the
end-user has to perform, and the sequencing information for tasks in order to
achieve the related goal. A presentation model represented by presentation units is de-
fined over the ACG. Finally, a textual description of the user interface is generated.

In GENIUS [Janssen93] the designer uses the existing data model to design the user
interface. On the data model he has to define views those are used for explicit dialogue
modelling by means of Dialogue nets and for the layout generation. A textual descrip-
tion of the user interface is generated.

In JANUS [Balzert95a] the user interface is generated from an object-oriented application
model (OOA model that results from object-oriented analysis) by using few
knowledge bases. There are not any further models in JANUS. A textual description
of the user interface is generated.

According to the notation of the central model (mostly the application or task
model) the mentioned model-based approaches can be classified into two classes:
the ones which use their own notation (e.g., UIDE, HUMANOID, TRIDENT) and the
others which use notations well-known from software-engineering (e.g., JANUS, GE-
NIUS). Especially JANUS is a good example how to use a software-engineering model
to generate the user interface. In this way user interface engineering can be integrated
into the general software engineering process what is mentioned as a future direction
of research by a lot of authors (e.g., [Coutaz94, Curtis94]).

According to the generation target there also can be distinguished two groups (see
figure 1): the systems which use their own runtime system (e.g., UIDE, HUMANOID)

8 Computer-Aided Design of User Interfaces

and the systems which generate a textual description of the desired user interface to
animate and to control by means of existing UIMS (e.g., GENIUS, JANUS).

Furthermore, there are some differences in modelling the dialogue sequencing. On
the one hand, such systems like UIDE, HUMANOID, MECANO, or TRIDENT do not
use an explicit dialogue model. The necessary sequencing information is specified by
using pre's and post's (e.g., UIDE), or it is derived from the application model (e.g.,
HUMANOID, MECANO - extended application model called domain model, JANUS)
or task model (e.g., TRIDENT).

On the other hand, some authors argue the importance of explicit dialogue model-
ling [Janssen96, Lauridsen95, Weisbecker95]. This approach allows to involve the
end-user in a participatory user interface design process because of the whole dia-
logue structure can be shown and discussed at a glance. Furthermore, the generation
of the user interface from an explicit dialogue model can lead to a higher quality of
the user interface than the generation from other models.

1.2 Process of User Interface Generation

The idea of automatic user interface generation from some kind of declarative de-
scription (e.g., application model) is not new at all. The first of these tools were
presented about ten years ago, e.g., COUSIN [Hayes85], MIKE [Olsen86]. Currently,
there are a lot of various approaches of automatic user interface generation. They
are different in the use of input information mostly represented by declarative mod-
els (from which the generation is done), the generation target, and the generation
process itself. The first two points are shortly reported above. Now we will discuss
the generation process.

Although there are differences, some common features of the user interface gener-
ation can be identified. Mostly, four basic steps are reported (e.g., [Puerta94b,
Balzert95a, Janssen96, Vanderdonckt95b, Weisbecker95]):

 high-level dialogue generation,
 layout generation,
 low-level dialogue generation,
 layout and design revision.

There are also some extensions. Helmut Balzert [Balzert95b] describes not only the
user interface generation but also extends to application generation too. Jean
Vanderdonckt [Vanderdonckt95b] especially analyses the knowledge-based support
of each generation step, e.g., suggestion of interaction style, selection of interaction
objects, defining the layout of interaction objects, identification of windows, provid-
ing a guideline document.

High-level dialogue generation consists of identification of all windows of the
desired user interface, specification of the navigation structure among these win-
dows in the interface, and assigning of interface objects to each window. The term
Abstract Interaction Object (AIO) is often used instead of the term interface objects,

 Automatic User Interface Generation from Declarative Models 9

e.g., [Morin90, Johnson92a, Vanderdonckt93, Weisbecker95]. AIO takes into con-
sideration behavioural aspects only, they are free of presentational aspects.

TRIDENT uses Presentation Units (PU) defined over the ACG. One or more win-
dows can be identified inside a PU. For it, five identification strategies are suggested
and supported by algorithms [Bodart95b]. The selection process of AIO inside a PU
can be full automatic or computer-aided. For it, additional information from the task
and application model is used [Vanderdonckt93].

GENIUS [Janssen93] automatically assigns a window to each view defined in the di-
alogue model. The views are defined by hand on the data model. The transitions of
the Dialogue nets (Dialogue nets represent the dialogue model in GENIUS) are used
for the generation of navigation structure among windows. AIOs are assigned to
each attribute of entities related to a view.

JANUS [Balzert95a] assigns a window to each non-abstract class defined in the ob-
ject-oriented model. The navigation structure among these windows is generated by
using the relations between the classes defined in the OOA model and by using one
of the knowledge bases in order to generate one pull-down menu item for each win-
dow.

MECANO [Puerta94b] is similar to JANUS. It also assigns a window to each class
defined in the domain model. The navigation structure is derived from the relations
between the classes. In both systems the AIOs are derived from model information,
in JANUS an AIO is assigned to each attribute of a class, and in MECANO to each
slot of a class.

During layout generation each abstract interaction object is assigned to a Concrete
Interaction Object (CIO, e.g., dialogue widgets on toolkit-level) and all CIOs are
placed on their corresponding windows by a layout algorithm that observes interface
design guidelines. Various placement strategies are discussed in the literature (e.g., a
summarising overview [Vanderdonckt94d]).

Low-level dialogue generation deals with the user interface behaviour on the
CIO-level, e.g., disabling of application actions if there is not any selected object.
On this level the systems, that preserve the application semantics from design time
to run time (e.g., UIDE, HUMANOID), are good because of dependencies like that
mentioned above are specified by pre's and post's and can be used to execute the
user interface. In GENIUS the dialogue model was extended with constraints in order
to describe low-level user interface behaviour [Janssen96]. This step is not described
for all the other tools explicitly.

Layout and design revision is done in the most cases manually. It is an essential
step because of automation during layout generation do not guarantee a satisfactory
user interface in all cases. This step is used for participatory design steps on which
the end user of the desired user interface is involved.

10 Computer-Aided Design of User Interfaces

Considering the mentioned methodologies for user interface generation together
with the described generation levels we are developing TADEUS – a task-based meth-
odology supporting the user interface development process.

1.3 User Interface Development by Using TADEUS

At the beginning, we want to describe the TADEUS methodology in general. Then
we outline the TADEUS dialogue model shortly.

The TADEUS approach divides the user interface development process of an inter-
active software system into three stages [Elwert95]. In the first stage, the require-
ments analysis, the designer specifies three domain models (task, problem domain,
and user model) which contain the requirements for the desired user interface. In
the second, the dialogue design stage, the designer develops the dialogue model. Its
initial form is generated from the already created domain models.

The dialogue model describes the static layout and the dynamic behaviour of the
user interface. The third stage is the automatic generation of the prototype of the
final user interface by using a software ergonomics knowledge base and additional
information input provided by an auxiliary dialogue with the dialogue designer in
order to request non-specified information. The generation result is a dialogue de-
scription file for an existing UIMS.

The TADEUS dialogue model distinguishes between two different types of dialogue,
the navigation and the processing dialogue. The navigation dialogue describes the pos-
sible interactions between dialogue views which represent logical and functional
groups of dialogue objects4. The dialogue objects represent objects and methods
stored in the TADEUS problem domain model.

A group called dialogue view can exist in one or more instances. The dialogue views
are transformed later on into windows of the final user interface. The navigation
dialogue can be specified by means of Dialogue graphs.

The processing dialogue deals with the description of the dialogue within a dialogue view
and is expressed by interaction tables. This interaction table stores the design deci-
sion about the representation of objects and methods coming from the problem
domain model in terms of dialogue object, method, dialogue form, transition, ab-
stract interaction object and concrete interaction object. The interaction table covers
the development process from an abstract to a concrete level. In a further develop-
ment step of TADEUS we want to use the Dialogue graph notation for the descrip-
tion of the processing dialogue too.

4 Dialogue objects are close related to task placed in the task model and their related objects and meth-
ods and objects and methods placed in the problem domain model. That means in particular a dialogue
object represents a problem domain object or a releaser of a method of an object. In the following
section we want to use the term interaction object instead of dialogue objects in order to emphasis the
interactive nature of these objects. There is no difference between this both terms but in our opinion
the term dialogue object fits the desired meaning at the best. We use both in this paper in order to
make it easier to find relations to other existing methodologies.

 Automatic User Interface Generation from Declarative Models 11

2 Generation of User Interface Software in TADEUS

The development of the dialogue model and the generation of the user interface
prototype are closely related. The exactness of the dialogue model influences the
effort for the generation of the user interface and its quality. If there are missed
information in the dialogue model the dialogue designer has to answer some ques-
tions during the generation process to add the missed information.

In TADEUS the desired user interface is primarily generated from the dialogue
model which consists of two parts the Dialogue graph and the interaction tables.
Additionally, information represented in the task and problem domain models is
used during the generation process. The presentation layout of the user interface is
generated using the interaction tables and the problem domain model. The dynamic
behaviour of the user interface is generated using the Dialogue graph and the task
model.

The generation process realised in the TADEUS system conforms to the four steps
discussed in the paragraph 1.2. Furthermore, it is similar to the generation steps de-
scribed in TRIDENT [Bodart95a], GENIUS [Weisbecker95]. The TADEUS generation
process contains seven steps:

1. Defining and evaluating the default layout description.
2. Selection of abstract interaction objects for each dialogue form.
3. Mapping from abstract interaction objects to concrete interaction objects.
4. Defining the layout of concrete interaction objects by using the defaults.
5. Placing the concrete interaction objects inside the views automatically.
6. Creation the dynamic behaviour from the Dialogue graph.
7. Generation of the user interface description file for an existing UIMS.

In general, the dialogue designer performs only once the first step for each user
interface project. The default layout description includes some presentation proper-
ties of CIO. For example, one important point of the defaults is the definition of
background and foreground colour relations of CIOs themselves, among different
CIOs, and between windows and CIOs which are placed inside the windows.

During the generation process these default settings support to achieve consistency
and to speed up the generation procedure. The table 1 gives a short impression of
the defaults.

CIO background foreground font cursor type

window white black mask font arrow cursor
group box grey black mask font arrow cursor
edit text white blue text font text cursor

push button dark grey black button font action cursor

Table 1. Default layout description (some examples)

12 Computer-Aided Design of User Interfaces

The real and possible repeated generation process begins at step 2. The highest level
of the TADEUS dialogue model describes views which are transformed into win-
dows during the generation process. That means, the window identification proce-
dure is done by explicit dialogue modelling before the automatic generation starts.
Furthermore, the generation steps from 2 up to 5 must be repeated for each view
(window). The dynamic behaviour among the windows is generated from the tran-
sitions of the Dialogue graph (see below).

An interaction table is defined for each view of a Dialogue graph in order to describe
the processing dialogue. There are some examples of interaction tables in the fol-
lowing section. The dialogue designer can define a dialogue form for each transition
of the Dialogue graph which is assigned to the current view. If there is no additional
information from the task or problem domain model, the default for the dialogue
form is a function call, but the dialogue designer can change this value. The use of
this additional information is a topic of our current research. The information about
the dialogue forms is used to choose AIOs by rules which are derived from table 2.
In the following step the abstract interaction objects are mapped to CIOs by rules
which are derived from table 3.

dialogue form type AIO

function call action trigger
data input free input field; input group

 1:n single selector
 m:n multiple selector

data output output field; output group

Table 2. From the dialogue form to the AIO (some examples)

AIO type CIO
input field free edit text

single selector 1 : n, (n = const., n 7) group box + radio button
 1 : n, (n = const., n > 7) list box
 1 : n, (n = variable) list box

multiple selector m : n, (n = const., n 7) group box + check boxes
 m : n, (n = const., n > 7) list box
 m : n, (n = variable) list box

Table 3. From the AIO to the CIO (some examples)

In the next steps each concrete interaction object is extended by layout parameters
and placed in the corresponding window. The step 4 is solved by the usage of the
default layout description. This description contains information about layout pa-
rameters of each concrete interaction object type (e.g., foreground colour, back-
ground colour, see table 1). The step 5 is supported by grouping information which
is described in the interaction table. This information is not required, but it helps a
lot to improve the quality of the generated layout.

When the static layout of all views (windows) is generated the dynamic behaviour
among these windows is implemented. All transitions of the Dialogue graph are

 Automatic User Interface Generation from Declarative Models 13

transformed into executable rules by generation pattern. A generation pattern is de-
fined for each transition, the following figure gives an impression on the essence of
a sequential transition (left hand side) and a concurrent transition (right hand side).

Figure 2. Generation pattern

Up to this point the result of the TADEUS generation process is an internal user
interface description which is independent of a concrete UIMS. In the last step it is
transformed into a user interface description file of an existing UIMS. So, it is pos-
sible to create the same user interface for different UIMS or on different platforms.

3 Example

Let's use a concrete example to demonstrate the TADEUS generation process. The
example explains a part of the user interface of the TADEUS environment, the user
modelling component [Elwert95]. The necessary parts of the task model and the
problem domain model for the user modelling component are shown in figure 3.

Furthermore, figure 3 shows the views the dialogue designer identified over the task
model. With it, the Dialogue graph shown in figure 4 can be generated (view 1 =
TADEUS, view 2 = user model, view 3 = role).

This example explains two elementary dialogue structures of a GUI of an infor-
mation system like a database application. The first one describes the situation: the
end-user uses the interactive system to support a lot of sub-tasks (e.g., process tasks,
process roles) which he/she can carry out concurrently. It is represented with a con-
current transition in the Dialogue graph between the main view and the view of a
sub-task.

The second one describes the situation: the end-user wants to process a set of ob-
jects of the same type (e.g., different end-users of an interactive application are mod-
elled by different roles). This situation is represented with an object-related concur-
rent transition.

V1 V2

on B1 select
{
 V2.visible := TRUE;
}

V1

on B1 select
{
 V1.visible := FALSE;
 V2.visible := TRUE;
}

B1 B1V2

14 Computer-Aided Design of User Interfaces

Figure 3. Example: task and problem domain model

Figure 4. Example: Dialogue graph

The dialogue designer defines for the view user model the interaction table (see table
4). There are some special features which should be explained. First, the rows of the
interaction table were created automatically. The sequence of the first three transi-
tions confirms to the task model (e.g., the order of sub-tasks from left to right). The
help and quit transition are added by using styleguide information.

Second, the dialogue designer changed the dialogue form of the create role transition
to data input. And third, the dialogue designer had to change the positions in the
second group to achieve suitable sequence of the buttons. The generation result is
shown in figure 5; figure 6 shows the corresponding generation result of the view
role. The next example explains how the generation results will change, if the dialogue
designer uses the generated interaction table (see table 5). Now there are only two
groups, the transitions derived from the task model and the transitions added by
using style guide information. The generation result is shown in figure 7.

role

dialogue experience
problem domain knowledge
system knowledge
...

create role
remove role
modify role

class name

attributes

 problem domain model

legend:

goal

primary
object

legend:

 task model

••• •••

process
tasks

tasks roles

process
roles

TADEUS

roles,tasks,
…

create
role

role

remove
role

role

modify role
attributes

role

1

2

3

 Automatic User Interface Generation from Declarative Models 15

transition dialogue form type group position in group
create role data input free 1 1

remove role function call 2 2
modify role function call 2 1

help function call 3 1
quit function call 3 2

Table 4. Example: interaction table of the view user model

transition dialogue form type group position in group
create role function call 1 1

remove role function call 1 3
modify role function call 1 2

help function call 2 1
quit function call 2 2

Table 5. Example: modified interaction table of the view user model

Figure 5. Generation result of view user model

16 Computer-Aided Design of User Interfaces

Figure 6. Generation result of the view role

Figure 7. Generation result of the modified view user model

Conclusion

In this paper we summarised the work in the area of model-based user interface
software tools in order to come to a basis for automatic user interface generation.
In a lot of various model-based user interface tools some common declarative mod-
els are used to specify the necessary information for automatic user interface gener-
ation.

 Automatic User Interface Generation from Declarative Models 17

The user interface generation process in the TADEUS system was described and
demonstrated by an example. The development of the tool supporting this genera-
tion process is not finished yet. In order to improve the quality of the generation
result, we plan to implement a tool which generates different suggestions of the lay-
out of a view and then the dialogue designer can select the best one. Furthermore,
it is necessary to extend the generation tool by a possibility for the creation of the
system pull-down menu of the desired user interface in order to fulfil styleguide
requirements.

In our opinion, one point of discussion during the CADUI workshop should be the
relation between modelling effort and quality of generation result. As it is obvious,
on the one hand, the modelling effort using the TADEUS environment is high, but
on the other hand, the generation result of user interfaces in the area of information
systems is acceptable.

Furthermore, there are a lot of other points which could be discussed. Important
ones are which steps of user interface generation can be done in a full automatic
way, how many it will cost (e.g., realisation of the tool, required time of the genera-
tion procedure), and what kind of quality we will get as result of this generation
process. Or there are any steps which the dialogue designer must execute (these steps
are unable for automatisation) or should execute (these steps are carried out by the
dialogue designer better than automatisation) in order to achieve an acceptable qual-
ity per acceptable costs.

Acknowledgements

Many thanks to Peter Forbrig for his remarks and proof reading and the anonymous
referees for their helpful comments.

The MECANO Project:
Comprehensive and Integrated Support for

Model-Based Interface Development

Angel Puerta

Abstract

Model-based interface development works on the following central premise: given
a declarative interface model that defines all the relevant characteristics of a user
interface, then comprehensive, automated, user-interface development environ-
ments can be built around such model.

Yet, the high potential of this technology has not been realised because all interface
models built so far are partial representations of interfaces, cannot be readily modi-
fied by developers, are implicitly tied to their associated development environment,
or, importantly, are not publicly available to the HCI community.

The MECANO Project is a research effort that aims to overcome such limitations. It
encompasses two phases: (1) The development of a comprehensive interface model
available as a resource to the HCI community, and (2) the implementation of a open
model-based development environment based on such an interface model. In this
paper, we report on the first phase of the project. We present the MECANO Interface
Model (MIM), and its associated interface modelling language (MIMIC).

We describe a metalevel paradigm for interface modelling that overcomes problems
of flexibility and completeness. The paradigm is also unique in that it not only mod-
els the user interface but also models explicitly the design process of the interface.
This allows the construction of software tools that operate on the design process as
well as on the interface elements. MIM has been validated via a variety of paper-
based interfaces.

Keywords

Model-based interface development, interface models, user interface design.

Introduction

The paradigm of model-based interface development has attracted a high degree of
interest in the last few years due to its high potential for producing integrated user

20 Computer-Aided Design of User Interfaces

interface development environments with support for all phases of interface design
and implementation.

The basic premise of model-based technology is that interface development can be
fully supported by a generic, declarative model of all characteristics of a user inter-
face, such as its presentation, dialogue, and associated domain, user, and user task
features. As depicted in figure 1, with such model at hand, suites of tools that sup-
port editing and automated manipulation of the model can be built so that compre-
hensive support for design and implementation is possible. Typically, users of
model-based environments (i.e., interface developers) refine the given generic model
into an application-specific interface model using the tools available within the en-
vironment. A runtime system then executes the refined model as a running interface.

Figure 1. The model-based paradigm. Design tools operate on a generic interface model to produce
an application-specific refined model that is then executed by a runtime system.

The benefits of model-based development are manifold. By centralising interface
information, model-based systems offer support, within a single environment, for
high-level design as well as for low-level implementation details. Global changes,
design visualisation, prototyping, consistency of resulting interfaces, and software
engineering principles in general are much improved over currently available tools,
such as interface builders, which offer only partial and localised development sup-
port. Over the past few years, several model-based systems [Foley91, Johnson95,
Puerta94b, Szekely93, Vanderdonckt93] have demonstrated the feasibility of the
model-based approach.

Despite all the potential shown, model-based technology is struggling to find its way
out of the laboratories. This is due mainly to the absence of one of the key elements
needed by the technology to truly prosper. The two central ingredients for success
in model-based systems are: (1) a declarative, complete, and versatile interface model
that can express a wide variety of interface designs, and (2) a sufficiently ample sup-
ply of interface primitives, elements such as push-buttons, windows, or dialogue boxes
that a model-based system can treat as black boxes. The need for the first ingredient
is clear: without a vocabulary rich enough to express most interface designs, the
technology is useless.

Editors

Design
Exploration

Critics

Automatic
Design

Design
Assistants

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Workplace

User

Platform

Behavior

Dialogue

Tasks

Application

Presentation

Refinements
Generic

Generated
Interface

Runtime
System

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 21

The second ingredient is also critical because model-based approaches fail if devel-
opers are required to model too low-level details of interface elements—a problem
painfully demonstrated by the erroneous modelling abstraction levels of some early
model-based systems.

Whereas there is little question that good sets of interface primitives are available in
most platforms, researchers have fallen short of producing effective interface mod-
els. The problems with current interface models can be summarised as follows:

 Partial models. Models constructed up-to-date deal only with a portion of the spec-
trum of interface characteristics. Thus, there are interface models that emphasize
user tasks [Johnson95], target domains [Puerta94b], presentation guidelines
[Vanderdonckt93], or application features [Szekely93]. These models generally
fail when an interface design puts demands on the model beyond the respective
emphasis areas.

 Insufficient underlying model. Several model-based systems use modelling paradigms
proven successful in other application areas, but that come up short for interface
development. The Entity-Relationship model, highly effective in data modelling,
has been applied with limited success in interface modelling [Janssen93, Vander-
donckt93]. These underlying models typically result in partial interface models of
restricted expressiveness.

 System-dependent models. Many generic interface models are non-declarative and are
embedded implicitly into their associated model-based system, sometimes at the
code level. These generic models are tied to the interface generation schema of
their system, and are therefore unusable in any other environment.

 Inflexible models. Experience with model-based systems suggests that interface de-
velopers many times wish to change, modify, or expand the interface model as-
sociated with a particular model-based environment. However, model-based sys-
tems do not offer facilities for such modifications, nor the interface models in
question are defined in a way that modifications can be easily accomplished.

 Private models. Interested developers or researchers wishing to obtain a generic
interface model from one of the currently available model-based systems, quickly
find that there is no executable version of an interface model that is publicly
available, or even obtainable via a licensing agreement. The inability to produce
an interface model fit for distribution to third parties is one of the major short-
comings of model-based technology.

1 The MECANO Project

To address the limitations described above, we started at the beginning of 1995 The
MECANO Project. This project draws from our own experience building MECANO
[Puerta94b]—a model-based system where interface generation is driven by a model
of an application domain—and from our examination of several model-based sys-
tems built in the past few years. The project encompasses two phases:

22 Computer-Aided Design of User Interfaces

 Phase one: The interface model. In this phase, we define a generic interface model
with a high degree of completeness, portability, and independence from a corre-
sponding model-based system. The interface model is to be available as a re-
source to the HCI community.

 Phase two: The model-based environment. In this phase, we implement a model-based
environment that supports interface generation based on the phase-one interface
model. The system is to embody an open architecture so that third-party devel-
opers can contribute their own tools to the environment simply by adhering to
the vocabulary and definitions of the phase-one interface model.

In this paper, we present the results of phase one of The MECANO Project. We first
introduce the interface modelling language MIMIC and explain a metalevel approach
to writing interface models that overcomes problems of completeness and flexibility
in interface models. Subsequent sections describe in detail the grammar and features
of MIMIC. Through an example, we show how the generic MECANO Interface
Model (MIM) is written using MIMIC, and how a specific sample interface is defined
with this language. We conclude by detailing our approach towards validation of
MIMIC and MIM, by examining related and future work, and by presenting a set of
conclusions.

2 A Metalevel Approach to Modelling

The requirements of completeness, flexibility, and system independence of an inter-
face model are very difficult to achieve within a monolithic structure for interface
modelling, as is the case with current model-based systems. Even the most elaborate
interface model will run into difficulties if changes or extensions are needed. Fur-
thermore, the idea that a single generic interface model that can express most inter-
faces can be defined is debatable at best, and certainly contrary to experience gath-
ered with the use of model-based systems.

The key reasons why interface models lack flexibility are first that they were not
designed expressly with the intention of being changed once implemented, and sec-
ond, but perhaps more importantly, that they lack an explicit description of the or-
ganisation and structure of the model components. Without such description, it is
difficult to understand the role played in an interface design by the different interface
elements being modelled, and it is also hard to visualise the relationships among
those elements. As a consequence, tools cannot be built to support the model ex-
pansion process, and manual changes are coding exercises usually only accessible to
the original designers of the interface model.

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 23

Figure 2. A multilevel approach to interface modelling. MIMIC defines roles, organisation, and
structure of interface model components. MIM is a generic model whose structure follows the

MIMIC definitions. Interfaces are refined from MIM into application-specific models.

In the MECANO Project, we overcome the various limitations of current interface
models by means of a modelling approach at multiple levels of abstraction, as shown
in figure 2. The result is an interface modelling language, called MIMIC, that can be
used to express both generic and application-specific interface models. We also pro-
vide one generic model called the MECANO Interface Model (MIM). The MIMIC
language follows the following principles:

 Explicit representation of organisation and structure of interface models. MIMIC provides a
metalevel for modelling that assigns specific roles to each interface element, and
that provides the constructs to relate interface elements among themselves.
There is no fixed way to relate elements, so developers are free to build their own
schema (e.g., building a Petri Net of dialogue elements).

 No single generic model. We have discarded the idea that a single, all-encompassing
generic interface model can be built successfully as previously assumed. Instead,
MIMIC supports the definition of generic interface models. We provide one such
generic model in MIM and our model-based system will support that generic
model. However, we envision that developers, and the HCI community in gen-
eral, will produce a number of such generic models, or extensions of generic
models, that are suited for specific user tasks, application domains, or given plat-
forms.

 Explicit interface design representation. Interface models written with MIMIC will de-
fine not only interface elements, but also characteristics of the design process for
the modelled interface. This is a feature lacking in all previous schema for inter-
face modelling, but it is a crucial one if we are to give developers access to and
control of the automated processes of interface generation in model-based sys-
tems.

Meta-Level Modeling:
MIMIC

Generic Models:
MIM

Application-Specific
Models

Organization and
Structure

Vocabulary

Interface
Specifications

define

refine into

24 Computer-Aided Design of User Interfaces

3 The MIMIC Modelling Language

MIMIC is an object-oriented modelling language that follows the general principles
of C++, and is in fact implemented in C++. Thus, the MIMIC grammar is said to
“bottom-out” on the C++ grammar. Inheritance and typing are similar between
both languages.

3.1 The Sample Interface

Within the confines of this paper, it would be difficult to discuss an example of a
complete interface built with MIMIC and MIM. Therefore, we have opted for pre-
senting a simple, but artificial, domain that can be used to highlight features of
MIMIC and to illustrate the building of interface models with MIM. Our validation
of MIMIC, described in a later section, examined more realistic application domains.
The sample interface is shown in figure 3.

The interface controls the firing of a cannon in a ship. The user must load and aim
the cannon using the controls provided. The interface must enforce the restriction
that firing cannot take place until the cannon has been properly loaded and aimed.
The two numeric fields in the interface are used to specify in degrees the rotation at
the base of the cannon (max. 360 degrees), and the firing angle (max. 85 degrees).

Figure 3. The ship protection system. Operators can fire a cannon only after it has been properly
loaded and aimed.

3.2 Keys for Reading the MIMIC Grammar

In reading through the example shown in the following sections, a number of con-
ventions must be observed. The BNF grammar is abbreviated to save space and im-
prove readability. In particular, keywords and separators are not detailed, nor are
some of the less interesting categories. The use of some of these should be obvious
from reading the actual interface model. In addition, the following keys should be
noted:

+ means one or more instances of a category
* means zero or more instances of a category
** means zero or more unique instances of a category

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 25

Finally, in our example application-specific interface model, items marked bold
highlight generic MIM-defined elements that are being referenced by the applica-
tion-specific model.

3.3 Top Level Categories

<interface> ::= <interface-definition>*
 <model-component>+
<interface-definition> ::= <interface-attribute> |
 <interface-relation>
<interface-attribute> ::= <attribute>
<interface-relation> ::= <relation>
<model-component> ::= <user-task-model> |
 <domain-model> |
 <presentation-model> |
 <dialog-model> |
 <user-model> |
 <design-model>

An interface is made up of one or more model components. There is no requirement
for an interface to have all types of model components neither there is a limitation
on the maximum number of components of each type that an interface can have. If
an interface has not defined all types of components then it may or may not be
operational. An operational interface is one that can be implemented as a running
program by a runtime system. If an interface has more than one definition for a type
of model component, then it may be operational at any one time with just one of
the defined instances of the particular component type. Allowing multiple model
components with the same role is useful when examining what-if scenarios and when
dealing with portability. Interface definitions specify attributes and relations, which
we will examine later, that apply to the interface as a whole. For our example, here
is the top-level section of the model:

INTERFACE ship-protection {
 INTERFACE-DEFINITION is-a mecano-interface-model

The interface model is defined as a subclass of the MECANO Interface Model, MIM,
thus inheriting all the attributes and relations defined for that particular generic
model. MIM includes elements that support the 2-D, form- and dialogue-based in-
teraction that our sample interface requires. Throughout the example, applied MIM
elements are highlighted with bold font.

3.4 Global Categories

There are a number of global categories defined by MIMIC. Many, such as name and
value, should be intuitive to the reader and will not be described. The key global
categories that deserve the most attention are relations, attributes, and conditions. We
shall see examples of the use of these categories when we examine the model com-
ponents in our example. In this section, we only present the definition of those cat-
egories.

26 Computer-Aided Design of User Interfaces

<relation> ::= <relation-definition> |
 <relation-statement>
<relation-definition> ::= <name> |
 <allowed-class>
<relation-statement> ::= <name>
 <object>

A relation is the main mechanism to establish links among the objects defined in an
interface model. A relation definition establishes the nature of a relation between
objects (e.g., an is-a relation). The defined relation is one-to-many and specifies the
classes that can be the target of the relation. Relations are typically defined at the top
level of generic interface models, or at the top level of the components of generic
models. The scope of a relation is limited to the class where it is defined and to any
children of that class. In contrast to a definition, a relation statement applies a defined
relation to existing objects.

<attribute> ::= <attribute-definition> |
 <attribute-value>
<attribute-definition> ::= <name>
 <value-definition>
 <attribute-feature>**
<value-definition> ::= <value-type>
 <canonical-form>
 <allowed-values>*
 <default-value>
<attribute-feature> ::= <feature-definition> |
 <feature-value>
<feature-definition> ::= <name>
 <value-definition>

An attribute is a characteristic, or property associated with a class or object in an
interface model. An attribute definition establishes the type and features of an at-
tribute in an interface model. Attributes are typically defined at the top level of ge-
neric interface models, or at the top level of the components of generic models. The
scope of an attribute is limited to the class where it is defined and to any children of
that class. Attributes can have attribute-specific features that are similar in nature to
regular attributes, but that do not allow the definition of additional features within
the feature itself. An attribute value assigns the values of a defined attribute and the
values of that attribute’s features.

<condition> ::= <precondition> |
 <postcondition> |

 <initial-condition>

A condition is a Boolean expression that has a temporal quality. Conditions are used
to specify the applicability at any given time of an activity, such as a user task or a
command, or to specify the state of such activity. A precondition must be satisfied
before an activity can be undertaken. A post-condition is satisfied after an activity
has been completed. An initial condition is satisfied as soon as an activity is started.

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 27

3.5 The User-Task Model Component

<user-task-model> ::= <name>
 <user-task-definition>*
 <user-task>+
<user-task-definition> ::= <task-attribute> |
 <task-relation>
<user-task> ::= <name>
 <task-relation>*
 <goal>
 <subtask>*
 <execution-order>
 <condition>*
 <task-attribute>**
<subtask> ::= <user-task>

A user-task model is a collection of hierarchically-ordered user tasks. A user task is
a definition of an activity that a user desires to perform. A task has a final purpose,
or goal (a Boolean expression), and may be decomposable into several subtasks. The
subtasks are performed according to an execution order under given conditions.
Note that the semantics of the hierarchy built with this model component are left to
the interface developer. Thus, the hierarchy of user tasks may constitute a GOMS
model, or it may constitute some type of activity graph. The user task model for our
example is as follows:

USER-TASK-MODEL protection-tasks{
 USER-TASK-DEFINITION
 is-a mecano-user-task-model
 USER-TASK ProtectShip {
 GOAL (fire-cannon TRUE)
 SUBTASK (load-cannon aim-cannon fire-cannon)
 EXECUTION-ORDER sequence}
 USER-TASK load-cannon {
 GOAL (load-cannon TRUE)}
 USER-TASK aim-cannon {
 GOAL (aim-cannon TRUE)}
 USER-TASK fire-cannon {
 GOAL (fire-cannon TRUE)
 PRECONDITION
 (load-cannon == TRUE && aim-cannon == TRUE)
 POSTCONDITION (load-cannon == FALSE) }}

The task of firing the cannon is decomposed into three subtasks that should be ex-
ecuted in sequence. Note, however, that the developer has chosen not to enforce
the sequence in full by not specifying any conditions for the subtask aim-cannon.
Thus, the model actually allows users to aim first and then load the cannon.

3.6 The Domain Model Component

<domain-model> ::= <name>
 <domain-definition>*
 <domain-object>+
<domain-definition> ::= <domain-attribute> |

28 Computer-Aided Design of User Interfaces

 <domain-relation>
<domain-object> ::= <name>
 <domain-relation>*
 <domain-attribute>**

A domain model is a collection of hierarchically-ordered domain objects that define
all the objects in a domain along with their relationships. A domain object represents
any entity in a given domain. Domain objects are characterised through domain-
specific relations and attributes. Here is the domain model for our example:

DOMAIN-MODEL ship-cannon-system {
 DOMAIN-DEFINITION is-a mecano-domain-model
 DOMAIN-OBJECT cannon {
 DOMAIN-ATTRIBUTE load-state {
 TYPE BOOLEAN
 ALLOWED-VALUES (loaded empty)
 DEFAULT-VALUE empty}}
 DOMAIN-OBJECT aim-coordinates {
 DOMAIN-ATTRIBUTE base-rotation {
 TYPE FLOAT
 ATTRIBUTE-FEATURE range (0 360)}
 DOMAIN-ATTRIBUTE firing-angle {
 TYPE FLOAT
 ATTRIBUTE-FEATURE range (0 85)}}}

The domain model defines the relevant objects of the domain. The range attribute
is defined in the Mecano Interface Model from which this model inherits attributes.

3.7 The Presentation Model Component

<presentation-model> ::= <name>
 <presentation-definition>*
 <presentation-element>+
<presentation-definition> ::= <presentation-attribute> |
 <presentation-relation>
<presentation-element> ::= <name>
 <presentation-relation>*
 <presentation-attribute>**

A presentation model is a collection of hierarchically-ordered presentation elements.
A presentation element represents any entity associated with an interface presenta-
tion, such as windows, displays, buttons, and other widgets. Presentation elements
can be either abstract or concrete as defined by the interface designer. Abstract
presentation elements are useful when dealing with portability issues.

Presentation elements are characterised through presentation-specific relations and
attributes. The presentation model also defines the characteristics of a presentation,
such as layout and general guideline styles. A partial view of the presentation model
for our example follows:

PRESENTATION-MODEL cannon-presentation {
 PRESENTATION-DEFINITION
 is-a mecano-presentation-model

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 29

 PRESENTATION-DEFINITION follows-style normal
 PRESENTATION-DEFINITION
 uses-medium (windows95 vdt)
 PRESENTATION-DEFINITION uses-mode graphical
 PRESENTATION-ELEMENT application-window {
 PRESENTATION-RELATION is-a window
 PRESENTATION-ATTRIBUTE type dialog
 PRESENTATION-ATTRIBUTE
 title “Ship Protection System”
 PRESENTATION-ATTRIBUTE font MS-Sans-Serif-8
 PRESENTATION-ATTRIBUTE border 2
 PRESENTATION-ATTRIBUTE dimensions (200 150)
 PRESENTATION-ATTRIBUTE is-resizable NO}
 PRESENTATION-ELEMENT fire-button {
 PRESENTATION-RELATION is-a push-button
 PRESENTATION-RELATION
 align-horizontal load-button
 PRESENTATION-RELATION
 belongs-to application-window
 PRESENTATION-ATTRIBUTE font MS-Sans-Serif-8
 PRESENTATION-ATTRIBUTE label “Fire Cannon”
 PRESENTATION-ATTRIBUTE dimensions (40 20)}}

The sample presentation model defines a GUI in Windows95. Note the heavy use
of MIM elements in the presentation model (noted in bold), a level of use that
should be typical in most interfaces. Each element of the interface is defined via
attributes and relations. Note that some elements have an absolute window position
while others are positioned via alignment relations. This keeps in line with the gen-
eral philosophy of model-based systems where designers work at higher levels of
abstraction by means of primitives. In this case, developers avoid working at the
layout level of grids and guidelines.

3.8 The Dialogue Model Component

<dialog-model> ::= <name>
 <dialog-definition>*
 <command>+
<dialog-definition> ::= <dialog-attribute> |
 <dialog-relation>
<command> ::= <name>
 <dialog-relation>*
 <goal>
 <subcommand>*
 <execution-order>
 <interaction-technique>+

 <response>*
 <condition>*
 <dialog-attribute>**
<sub-command> ::= <command>
<interaction-technique> ::= <relation>
<response> ::= <initial-response> |

30 Computer-Aided Design of User Interfaces

<final-response>
<initial-response> ::= <relation>
<final-response> ::= <relation>

A dialogue model is a collection of hierarchically-ordered user-initiated commands
that define the procedural characteristics of the human-computer dialogue in an in-
terface model. A command is a definition of a user-initiated activity that a user de-
sires to perform. A command has a final purpose, or goal (a Boolean expression of
arbitrary complexity), and may be decomposable into several subcommands. The
subcommands are performed according to an execution order under given condi-
tions.

Commands are executed via interaction techniques and may produce one or more
system responses. An interaction technique is a special class of relation that links an
existing command with a specific technique for interaction that is carried out via one
or more presentation elements. Thus, performing an interaction technique, such as
a mouse click, on a presentation element, such as a push button, is equivalent to
executing the command within which such interaction technique is specified.

A response is another special class of relation that defines a system reaction to a user
action. Responses have a temporal element that determines at what point during the
execution of a command the responses take place. An initial response occurs imme-
diately after its corresponding command is initiated. A final response occurs imme-
diately after its corresponding command is completed satisfactorily (i.e., the com-
mand goal has been achieved).

As with user tasks, the semantics of the hierarchy of commands are left to the de-
signer who can work with a number of dialogue description schema by using the
dialogue model component. The following is the dialogue model for our example.

 DIALOG-MODEL ship-protection-dialog {
 DIALOG-DEFINITION is-a mecano-dialog-model
 COMMAND launch-application {
 GOAL (fire-cannon TRUE)
 SUBCOMMAND (load-canon aim-cannon fire-cannon)
 EXECUTION-ORDER sequence
 INITIAL-RESPONSE disable fire-button
 FINAL-RESPONSE disable fire-button
 INITIAL-CONDITION (load-cannon == FALSE)
 INITIAL-CONDITION (aim-cannon == FALSE)
 INITIAL-CONDITION (fire-cannon == FALSE)
 POSTCONDITION (load-cannon == FALSE)
 POSTCONDITION (aim-cannon == FALSE)}
 COMMAND load-cannon {
 GOAL (load-cannon TRUE)
 INTERACTION-TECHNIQUE
 left-mouse-click load-button}
 COMMAND aim-cannon {
 GOAL (aim-cannon TRUE)
 INTERACTION-TECHNIQUE edit-float
 (base-rotation-editbox firing-angle-editbox)

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 31

 FINAL-RESPONSE enable fire-button}
 COMMAND fire-cannon {
 GOAL (fire-cannon TRUE)
 INTERACTION-TECHNIQUE
 left-mouse-click fire-button
 FINAL-RESPONSE disable fire-button
 PRECONDITION
 (load-cannon == TRUE && aim-cannon == TRUE)
 POSTCONDITION (load-cannon == FALSE)
 POSTCONDITION (aim-cannon == FALSE)}}}

The dialogue model follows closely the user task model. Note that whereas the re-
quirement that the cannon not be fired until is loaded and aimed is enforced using
enabling and disabling of buttons, the sequence of “load-cannon” before “aim-can-
non” is not actually enforced by any system response or interaction technique.

The parallelism between user-task models and dialogue models in MIMIC is not
coincidental. We consider the user-task model the driving paradigm for the interac-
tion dialogue and expect that automated tools in our model-based system will exploit
such parallelism.

3.9 The Design Model Component

Although the model components shown so far in our example seem to capture a full
description of the interface, there is in fact a wealth of information that remains
implicit in those components and that is crucial if we desire to automate the refine-
ment of interface models.

For example, why were push buttons used to operate the cannon? What is the con-
nection between user tasks, domain objects, and presentation elements? These and
many other similar questions are integral part of an interface design, yet interface
models have failed to capture it. The design model component in MIMIC is used
for exactly that purpose.

<design-model> ::= <name>
 <design-definition>*
 <design-mapping>+
<design-definition>::= <dialog-attribute> |
 <dialog-relation>
<design-mapping> ::= <relation>

<mapping-condition>*

A design model is an unordered collection of design mappings. The mappings es-
tablish design relationships among interface objects. The applicability of a mapping
may be subject to a number of mapping conditions (Boolean expressions). Here is a
partial view of the design model for our example:

 DESIGN-MODEL ship-protection-design {
 DESIGN-DEFINITION is-a mecano-design-model
 DESIGN-MAPPING presentation-assignment
 (FLOAT editbox)

32 Computer-Aided Design of User Interfaces

 DESIGN-MAPPING presentation-assignment (BOOLEAN push-
button)
 DESIGN-MAPPING task-domain-link
 (load-cannon cannon.load-state)
 DESIGN-MAPPING task-domain-link
 (fire-cannon cannon.load-state)}

This view shows that two different user tasks need access to the same attribute in
the domain object. As a consequence, two interface elements are made available to
the user to perform those tasks. The interface elements are push buttons as deter-
mined by the presentation assignment of the type FLOAT of the load state of a
cannon. When modifying designs, developers often change not interface elements
per se but rather the rationale for the existence of those elements. Thus, if a devel-
oper does not wish to use push buttons in the ship protection interface, it may be
more appropriate to operate on the design model to change the presentation assign-
ments than on the presentation model itself.

3.10 The User Model Component

<user-model> ::= <name>
 <user-definition>*
 <user>+
<user-definition> ::= <user-attribute> |
 <user-relation>
<user> ::= <name>
 <user-attribute>**
 <user-relation>*

A user model is a collection of hierarchically-ordered users. A user is a description
of the characteristics of an individual user or of those of a stereotype of a user group.
The user model is not intended to be a description of the mental state of a user. Our
example does not have a user model component.

4 Model Validation

To validate the MIMIC modelling approach, and to refine MIM, we conducted a
process of writing a variety of application-specific interface models. We aimed more
at breadth than at volume of interfaces examined. Both members of our group and
outside contributors were given the MIMIC language specifications along with a
current version of MIM, and were asked to write an application-specific model of
their choice based on an existing interface. Examples worked out ranged widely in
size from toy domains as the one shown here, to subsets of commercial applications
such as Microsoft Word and Netscape Navigator.

While some developers had trouble initially with the semantics of MIMIC, most
changes in the long run were accommodated by modifying, or extending, MIM. Typ-
ically, developers would find the need to define relations or attributes at the applica-
tion-specific level that we would later on incorporate into MIM. Yet, in other in-
stances, developers would suggest defining MIM relations in a different way from

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 33

what was being provided. This experience solidifies our belief that multiple generic
interface models (i.e., multiple MIM) will be necessary eventually. During the next
phase of The MECANO Project, we expect to continue the validation process, this
time from a software-supported, as opposed to manual, point of view.

5 Implementation Issues: Automating Model Building

In the second phase of The Mecano Project, we implement a model-based environ-
ment, called Model-Based Interface Designer (Mobi-D), that supports interface gen-
eration based on the phase-one interface model. The main components of Mobi-D
can be seen in figure 4. The system has three main features:

 User-centred interface development in an integrated and comprehensive environment. Develop-
ers build interfaces manipulating abstract objects such as user tasks and domain
objects. The production of presentation styles and dialogues is automated in
most part by the environment.

 Transparent modelling language. Developers do not need to know the MIMIC mod-
elling language, just the roles of the different components of an interface model.
The environment tools provide the interactive functionality needed to complete
model editing operations without having to read or write in the MIMIC language.

 Open architecture. Third-party developers can enhance the environment by incor-
porating their own design tools. Such tools need only to adhere to the MIMIC
language. This feature is key in supporting machine-learning and other tech-
niques for user-task automation.

Figure 4. The Mobi-D development environment.

Interface
Model

Interface
Model

Model Editing
Tool

Model Refinement
Tool

Interface Preview
Tool

Run-Time System

1 2

3
4

34 Computer-Aided Design of User Interfaces

6 Related Work

There are a number of model-based systems that have been developed over the past
few years. In general, they all suffer from the limitations outlined in the introduction
to this paper. We will highlight here their contributions more than their shortcom-
ings. In general, interface models mentioned here are subsets of MIMIC, do not
support explicit design layers, and do not separate levels of abstraction as MIMIC
does.

ADEPT [Johnson95] drives interface generation entirely from models of the user
tasks. It applies a multistep refinement process that methodically links tasks to ab-
stract interface elements, then to concrete interface elements that can be assembled
into a running interface. Interfaces generated by ADEPT have a high degree of port-
ability thanks to the use of abstract interface elements. Another successful task-
based system is TRIDENT [Vanderdonckt93] which has an excellent knowledge base
of design guidelines that are consistently applied during interface generation. Parts
of the TRIDENT interface model are based on the ERA paradigm, on which the
GENIUS system is based as well [Janssen93]. GENIUS, however, does not define an
interface model but rather models certain dialogue and data elements for interface
generation purposes.

UIDE [Foley91] provided one of the earliest attempts at building an interface model.
The model was mainly a presentation component augmented by data and dialogue
constructs. The system demonstrated the high potential for the automation of inter-
face generation from models.

A related system is HUMANOID [Szekely93] which builds interfaces around applica-
tion models and makes use of pre-defined presentation templates to solve layout
generation problems. Both of these systems are now being combined into a new
generation system called MASTERMIND [Neches93].

MASTERMIND shares some of the goals of The MECANO Project and will certainly
overcome many of the problems of its predecessors. We believe, however, that its
associated interface model and modelling language [Szekely95], built as a single, all-
encompassing structure, will suffer from similar limitations to those outlined at the
beginning of this paper.

ITS [Wiecha90] has been used successfully at the commercial level. Its approach is
particular in the sense that it supports team development, and that it takes an organ-
ised view at the use of rules for interface generation.

Conclusion

We have presented a modelling approach for user interfaces that overcomes many
of the limitations of previous approaches in model-based systems. We implement a
metalevel paradigm for interface model building with a top level that defines the

 The MECANO Project: Comprehensive and Integrated Support for Model-Based Interface Development 35

organisation and structure of interface models, a generic level that defines the vo-
cabulary for model building via generic interface models, and an application-specific
layer where interfaces are modelled.

We introduced the MIMIC modelling language for interfaces, and the generic
Mecano Interface Model, MIM. MIMIC includes as one of its interface roles, a de-
sign model component that explicitly states the relationships among the different
elements of an interface.

We have validated our modelling approach by writing a variety of interfaces in
MIMIC with the support of MIM. The modelling language is to be supported trans-
parently by a model-based development environment, called Mobi-D, featuring an
open architecture.

Acknowledgements

Special thanks to David Maulsby who provided extensive commentary on this paper.
Our thanks to all the reviewers for their thoughtful comments. This work was sup-
ported by the US Government under the Defense Advanced Research Program
Agency (DARPA).

The FUSE–System: an Integrated User Inter-
face Design Environment

Frank Lonczewski and Siegfried Schreiber

Abstract

With the FUSE (Formal User Interface Specification Environment)–System we pre-
sent a methodology and a set of integrated tools for the automatic generation of
graphical user interfaces. FUSE provides tool–based support for all phases (task-,
user–, problem domain analysis, design of the logical user interface, design of user
interface in a particular layout style) of the user interface development process.
Based on a formal specification of dialogue– and layout guidelines, FUSE allows the
automatic generation of user interfaces out of specifications of the task-, problem
domain– and user–model. Moreover, the FUSE–System incorporates a component
for the automatic generation of powerful help– and user guidance components. In
this paper, we describe the FUSE–methodology by modelling user interfaces of an
ISDN phone simulation. Furthermore, the two major components of FUSE (BOSS,
PLUG–IN) are presented: The BOSS–System supports the design of the logical user
interface and the formal specification of layout guidelines. PLUG–IN generates task–
based help– and user guidance components.

Keywords

Automatic generation of user interfaces, model-based interface design, specification
of styleguides, user guidance, user interface design, generated on-line help.

Introduction

Even with the most advanced layout oriented UI construction tools (UI toolkits, UI
builders, UIMS) the task–based and user–oriented development of GUIs remains a
time–consuming and difficult process. Therefore tools for the formal specification
and automatic generation of UIs (MB-IDEs) have gained rising research interest.
Regarding the evolution of model based tools from the early approaches (e.g., MIKE,
MIKEY, HIGGENS) to the most recent ones (e.g., MASTERMIND, TRIDENT,
TADEUS) we recognize that more and more phases of the UI development process

38 Computer-Aided Design of User Interfaces

are supported. The FUSE (Formal User interface Specification Environment)–Sys-
tem described in this paper belongs to this new generation of model based interface
tools. The main goals and properties of the FUSE–System are:

 Tool–based support for all phases of the UI development process.
 Generation of working prototypes in early phases of the development process.
 Standardization of UIs by formal specification of UI styleguides.
 Generation of powerful help– and user guidance components.

The paper is organized as follows: in section 1 we describe the overall methodology
and architecture of the FUSE–System ; in section 2 we demonstrate the capabilities
of FUSE for the generation of UIs in different layout styles and of help– and user
guidance components by using the example of an ISDN phone simulation. Section
3 describes the stages in the development process of the ISDN UI using the FUSE–
System. In section 4 we discuss related work in the field of model-based UI con-
struction. Finally we give an overview about practical experience with FUSE and di-
rections of further research.

1 The FUSE-Methodology: an Overview

The overall architecture of the FUSE–System is shown in figure 1. FUSE consists of
the four components BOSS (BedienOberflächen-SpezifikationsSystem, the german
translation of “user interface specification system” [Schreiber94a, Schreiber94b]),
FLUID (FormaL User Interface Development, [Bauer96]), PLUG–IN (PLan–based
User Guidance for Intelligent Navigation [Lonczewski95a, Lonczewski95b]) and
FIRE (Formal Interface Requirements Engineering [Schwab95]). Each of these tools
may also be used independently of the FUSE–System.

The UI development process with FUSE consists of the phases requirements analy-
sis, design and evaluation. For the UI part of an interactive application no imple-
mentation phase is needed, as FUSE generates running UIs from design–level speci-
fications. Some activities in the development process have to be carried out only
once for a whole class of UIs. As these activities mainly refer to the definition of
software–ergonomic guidelines (dialogue– and layout guidelines, see figure 1), they
belong to the Guideline Definition Layer (GDL). The other activities have to be
carried out in each UI development process. As these activities consist mainly of the
application of the Guidelines defined in the GDL, they belong to the Guideline Ap-
plication Layer (GAL).

In the analysis phase of the development process, an application analyst defines the
requirements for the UI by setting up the formal specification of three models. The
specification of the task model describes the task hierarchy of the application.

The problem domain model (application interface) consists of an algebraic specifi-
cation of the functions and data structures of the UI–relevant part of the functional
core of the interactive application.

 The FUSE-System: an Integrated User Interface Design Environment 39

Figure 1. Overall Architecture of the FUSE-System

The user model is a description of static and dynamic properties of user groups and
individual users which influences both the UI generation process and the kind and
depth of the help offered by the user guidance component. To support the require-
ments analysis phase the FUSE–System contains a component called FIRE (not
shown in figure 1). FIRE provides graphical editors for setting up the three models
and a tool for the generation of an early UI prototype. This prototype represents the
task– and problem domain model in terms of menus and dialogue–boxes and pro-
vides a good basis for discussing the results of the requirements analysis with end–
users.

In the design phase of the UI development process, software–ergonomic guidelines
are formally specified by human factors experts in the roles of dialogue– and layout
guideline designers. Dialogue guidelines describe the transformation of the task–,
problem domain– and user models of interactive applications into formal specifica-
tions of so called logical UIs in a particular dialogue style. At the abstraction level of
logical UIs, static and dynamic properties of UIs are described without considering
presentation issues. Layout guidelines describe the transformation from specifica-
tions of logical UIs into specifications of UIs in a particular layout style. The formal
specification of dialogue– and layout guidelines has to be carried out once for a
whole class of UIs (i.e., belongs to the GDL–layer in the development process) and
can be regarded as the specification of an UI style guide.

Phase in
Development
Process

Guideline Definition Layer (GDL) Guideline Application Layer (GAL)

Application Analyst Application AnalystApplication Analyst

Formal Specification
Problem Domain Model
(Application Interface)

Formal Specification
User Model

Formal Specification
Task Model

FLUID
Formal User Interface

Development

Analysis

Design

Dialog
Design

Dialog
Guideline
Designer

Formal, constructive
Specification of
Dialog Guidelines
(Dialog Style d)

Formal Specification
of logical User Interface
(Dialog Style d)

BOSS
BedienOberfächen

SpezifikationsSystem

PLUG-IN
Plan-based User

Guidance for
Intelligent Navigation

Formal, constructive
Specification of
Layout Guidelines
(Layout Style l1)

Layout
Guideline
Designer

(Layout Style ln)

Layout
Design

Evaluation

Interactive Application

Functional Core
of Application

User Interface
(Dialog Style d, Layout

Styles l1, ... , ln)

Online Documentation,
User Guidance Component
with Simulation & Animation

Elaboration
by Hand

Formal
Specification

Generator Generated
Program

()Dialog Designer

40 Computer-Aided Design of User Interfaces

Within FUSE, the FLUID–System plays the role of an automatic dialogue designer.
From the specifications of dialogue guidelines for a dialogue style d and the specifi-
cations of the task–, problem domain– and user model of an interactive application,
FLUID generates the specification of static and dynamic properties of a logical UI in
this dialogue style d.

This specification may be modified by a human dialogue designer. For the represen-
tation of the design of the logical UI, FUSE employs a specification technique called
Hierarchic Interaction graph Templates (HIT), which is based on attribute grammars
and dataflow diagrams.

Besides the automatic generation with FLUID, which requires a formal specification
of the models in the requirements analysis, FUSE also offers support for designers
not skilled in formal techniques like algebraic specification. Based on an informal
description of the task–, problem domain– and user model a human dialogue de-
signer can elaborate the HIT specification of the logical UI by hand.

From the specifications of layout guidelines for the layout styles l1, ..., ln and the
specification of a logical UI (generated automatically by FLUID or specified by a
human dialogue designer) in a dialogue style d the BOSS–System generates an imple-
mentation of a UI in the dialogue style d, in which the end–user can switch at run–
time between the layout styles l1, ..., ln.

For the formal specification of the layout guidelines BOSS also uses the HIT speci-
fication technique. The separation between logical UIs and UIs in particular layout
styles in the design phase (see figure 1), which is typical for model based UI tools,
can be also found in related research domains like document architecture (see e.g.,
[Eickel90, Schreiber93]).

Based on the specification of the task–model and the specification of the dynamics
of the logical UI generated by FLUID the PLUG–IN–System generates a component
for intelligent user guidance, which is bound (i.e., “plugged in”) to the UI implemen-
tation generated by BOSS. This user guidance component supports the end–users
during their work with the UI by context–sensitive hypertext help–pages. These pro-
vide information about the current state of the UI. Moreover, the generated user
guidance component uses animation sequences to demonstrate how complex tasks
can be accomplished by the user.

2 User Support for an ISDN Phone with FUSE

In this section we present examples of different UI for an ISDN phone simulation
generated with the BOSS system. The ISDN phone simulation is an interactive ap-
plication for the simulation of the real ISDN phone described in [Siemens92]. Fur-
thermore we look into the problems that the user can possibly have when using one
or more of these UIs. We also show the various kinds of help that PLUG-IN provides
for the ISDN phone simulation.

 The FUSE-System: an Integrated User Interface Design Environment 41

2.1 User Interfaces of an ISDN Phone

With the ISDN phone simulation the user can accomplish a number of tasks with
different complexity. An example of a simple task is Create1stConnection. This task
can be decomposed into the subtasks Start1stConnection and DialTelephoneNumber.
If the user at the other end responds, the two parties are connected to each other
afterwards. Other example tasks of the ISDN phone simulation are: DefineDirectCall-
Button, EstablishConference and EstablishConnectionBetweenOtherParties.

In figures 2 and 3 we can see two different UIs of the ISDN phone simulation. The
left figure displays the button interface. The elements of this UI are a handset button,
a liquid crystal display, eight direct call buttons (each one with name and phone
number label), a digit block and five special function buttons. A phone number can
be entered by using the digit block or one of the direct call buttons.

If a direct call button is used, a predefined phone number associated with the button
is dialed. The right figure displays a functional equivalent menu interface for the
phone simulation. Both UIs are generated with the BOSS-System. The user can
change the layout between the two styles presented above during runtime.

The alternative UI of the ISDN phone simulation in figure 3 consists of a menupane
with three menus named BasicFunctions, AdvancedFunctions and PhoneBook. In the
first one the basic phone functions (e.g., to start a phone call) are listed, whereas the
more complex functions (e.g., to create a connection to a second party while already
connected to a first one) can be found in the second menu. With the third menu the
phonebook of the ISDN simulation can be administered.

In comparison to the button interface the menu interface displays the state of the
phone simulation more explicitly by displaying icons under the three labels External-
Line, Line 1 and Line 2. These are helpful for the user as the state of the phone sim-
ulation can be deduced from them. As a smiling face is displayed for Line 1, the user
is currently connected to a party on the first of two available phone lines. If the state

Figure 3. Menu Interface Figure 2. Button Interface

42 Computer-Aided Design of User Interfaces

of the phone simulation changes, the displayed icons change accordingly (e.g. if the
user terminates the phone call, the smiling face will disappear).

One of the more complex tasks of the ISDN phone simulation is StartConference.
In an ISDN phone conference the three participating parties can talk and hear each
other simultaneously. Despite the fact that a Conference button is available on the
button UI (and similarly a StartConference menu entry in the menu AdvancedFunc-
tions of the menu UI), it is a complex task to establish a conference with the phone.

As the interactive phone application simulates the behaviour of a real ISDN phone
[Siemens92], it is not as easy as just pressing the conference button on the UI. If the
phone is not in an appropriate state, only the message “Conference not possible” is
shown on the LCD.

In this situation the user would look into the reference guide of the phone trying to
find out how to establish the conference. While working with an interactive simula-
tion, a user guidance component can offer even more than an on-line reference guide
in hypertext form.

PLUG-IN supports the user of interactive applications with dynamic on-line help and
task-based user guidance. For this purpose all user interactions are observed.

2.2 Task–Based User Support with PLUG-IN

In order to support task-based user guidance, PLUG-IN tries to determine the current
tasks of the user while she is working with an interactive application. If the observed
interactions can be matched with parts of a task valid in the current state, the system
searches for a method to solve the identified task.

A task can be accomplished if its task–goal can be reached. Typically a unique
(sub)state of the UI is associated with each task goal. If the task can be performed
in the current state, the user guidance component helps the user by:

 generating an animation sequence (upon user request) that simulates the neces-
sary user interactions to accomplish the given task;

 updating and visualizing a list of tasks that the user is currently performing out
of the view of the user guidance component.

To provide the task-oriented help, an application analyst first creates the task model.
It contains a layout independent description of the tasks that the user can accomplish
with the application. A task description of the ISDN phone simulation is presented
in section 3.1.

A list of ISDN phone tasks is shown in figure 4. If the user selects a task from the
list while working with the phone simulation, the necessary interaction sequences
are simulated on the UI.

 The FUSE-System: an Integrated User Interface Design Environment 43

2.3 Dynamic On-Line Help with PLUG-IN

The dynamic on-line help is based on the various possible states and state transitions
of the interactive application. As not all possible application states and transitions
are interesting from the user’s point of view, only those relevant for the user support
are taken into account.

This subset can be derived by using the information coded into the task–, problem
domain– and user–model and can be represented as a set of finite state automatons.
The information contained in these can be used to:

 generate help pages (see below);
 visualize the set of finite state automatons as State Transition Diagrams (STDs);
 generate animation sequences that simulate the necessary user interactions to

change the state of the application to another state selected by the user.

As an example a STD for the ISDN phone simulation is shown in figure 5. The
highlighted node NoConnection describes the current state of the phone. The actions
that the user can perform in the different states are denoted by directed arcs.

In the current state the user can only start a phone call. PLUG-IN uses the set of state
transition diagrams to generate dynamic on-line help pages and animation se-
quences. The dynamic on-line help pages can be inspected with a WWW browser
like Netscape or NCSA Mosaic.

One dynamic on-line help page is displayed in figure 6. Each dynamic on-line help
page is typically divided into four regions:

 information about the current state of the application from the user’s point of
view;

 information about the set of possible actions the user can perform in the current
state;

 for each of the possible actions: information about the necessary user interac-
tions to perform the action;

 information about further documentation material, e.g., references to a hypertext
version of the user manual of the application.

Since all operations the user can perform on the original UI can also be triggered
through the WWW browser, it can be regarded as an alternative UI. In contrast to
the original UI, the goal of the WWW-based UI is to guide the user during the work
with the application.

The information displayed helps the user to accomplish a given task. Furthermore,
the user can learn how to interact with the original UI through simulations provided
by PLUG-IN.

44 Computer-Aided Design of User Interfaces

Depending on the current state of the application (in figure 5 this is the highlighted
state NoConnection of the STD) and the chosen layout style for the UI, PLUG-IN
generates different on-line help pages on the fly. The generated on-line help page
corresponding to the current state of the phone’s UI shown in figure 2 is displayed
in figure 6. If the user selects the light bulb icon on the page, the described user
interactions are animated on the UI. In this example PLUG-IN would take control of
the mouse pointer, then change the shape of the mouse pointer to provide visual
feedback for the user. Afterwards it moves the mouse pointer to the handset button
on the UI and selects the button by simulating a click with the left mouse button.
Finally, a new on-line help page is generated and displayed with the WWW browser.

The user can also interact with the displayed STD. Here he simply selects a state
node and PLUG-IN tries to find a path to the selected node. If a path can be found,
the corresponding user interactions are animated on the displayed UI.

PLUG-IN has the capability to deal with different UI layouts with regard to the gen-
erated on-line help pages and animation sequences. If the layout style of the UI
changes during runtime, the description of the necessary interaction steps on the
dynamic on-line help pages are altered correspondingly. Also the generated anima-
tion sequences are tailored to the new layout style. It would be very hard to build a
help system by hand that provides the various kinds of help offered by PLUG-IN,
because the designer has not only to take into account the various possible states of

Figure 6. One Dynamic On-Line Help

Page generated by PLUG-IN
Figure 5. STD for ISDN

Phone Simulation

Figure 4. Task List for ISDN Phone
Simulation

 The FUSE-System: an Integrated User Interface Design Environment 45

the interactive application, but also the various layout styles that can be changed
during runtime. The approach used with PLUG-IN is very flexible, because the help
offered adapts itself automatically to the runtime context.

It is worth mentioning that PLUG-IN can be used independently of the FUSE–Sys-
tem. In this case, PLUG-IN provides a comfortable environment (e.g., a graphical
editor) for creating the required STDs. Within FUSE the FLUID–System [Bauer96]
will provide the automatic generation of these STDs by using the information from
the task–, problem domain– and user model.

3 Modelling the ISDN User Interface with FUSE

In the following we describe the systematic development of the ISDN UI described
in section 2. In section 3.1 we demonstrate how the task– and problem domain
models are represented during the requirements analysis. In section 3.2 we focus on
the design of the ISDN UIs using the BOSS–System.

In this context we show how the logical ISDN UI is designed by a human dialogue
designer “by hand” without using the FLUID–System. The use of the FLUID–System
for generating an initial design of the logical ISDN UI can be found in [Bauer96].

3.1 Defining the Requirements for the ISDN UI

During the phase “requirements analysis” in the UI–development process (see fig-
ure 1) the application analyst defines the requirements for the UI in terms of a prob-
lem domain–, task– and user model.

In the FUSE–System, the conceptual objects and functions of the problem domain
model (Application Interface, AI) are represented as an algebraic specification SpecAI
= <AI , AxAI>. The signature part AI consists of the definitions of sorts (data types)
with associated constructor– and selector functions for the description of the con-
ceptual problem–domain objects. Furthermore AI describes the functionality (argu-
ment– and result parameters) of the so called interface functions, i.e. functions
which end–users apply to conceptual objects.

Figure 7 shows the sorts, constructor– and selector functions of the problem domain
model of the ISDN phone in the graphical notation used in the FUSE–System. The
sort ISDNStateType describes the set of possible states of an ISDN phone. IS-
DNStateType is defined as a tuple with the components ExternalLine (state of the
external line), Line1 and Line2 (state of the two internal lines).

The sort ConnectionStateType describes the possible states (Idle, Dialing, Active, Wait-
ing) of an internal line. The sort PhoneBookType describes the phone book, an ab-
straction of the direct call buttons, as a list of elements of the sort Phone-
BookEntryType (tuple with components Name and PhoneNumber). The sort Phone-
NumberType defines phone numbers as strings out of the ordered character set

46 Computer-Aided Design of User Interfaces

{’1’,...,’9’,’0’}. This character set is also described by the sort DigitType. The func-
tionality of the interface functions in the problem domain model of the ISDN phone
is shown in figure 8.

The function start_1st_connection is used to start a phone call on line 1. The argu-

ment parameter sb (state before) denotes the state of the phone before, the result
parameter sa (state after) the state after calling start_1st_connection. The function
terminate_1st_connection is used to terminate phone calls on line 1. With the function
dial_with_db the user enters a digit (argument parameter d) of the phone number.
With the function dial_with_dcb a complete phone number (argument parameter n)
is entered with one of the direct call buttons.

The semantic part AxAI of the algebraic specification SpecAI of the ISDN problem
domain model describes the semantics of the interface functions in terms of pre–
and postconditions. E.g. for the function start_1st_connection we demand the pre-
condition is_idle(Line1(sb)) is_Idle(Line2(sb)), i.e. the phone is not in use. After call-
ing start_1st_connection, line 1 of the phone should be in the state Active, if there was

ISDNStateType

ISDNState

PhoneNumberType

ConnectionStateTypeConnectionStateTypeExternalConnectionStateType

ExternalLine Line1 Line2

Idle Dialing, Active, Waiting

PhoneNumber

PhoneNumberType

DigitType PhoneNumberType PhoneBookType

CHAR[‘1’, ..., ‘9’, ‘0’] STRING[‘1’, ..., ‘9’, ‘0’]

PhoneBookEntryType

PhoneBookEntry

Waiting Idle

PhoneNumber

PhoneNumberType

PhoneNumberName

STRING

Constructor, Selector Functionslistalternativetuple (i.e. record)

Figure 7. Sorts, Constructor- and Selector Functions for the ISDN Phone

 // ... start and terminate connections on the first line

 start_1st_connection: ISDNStateType sb -> ISDNStateType sa
 terminate_1st_connection: ISDNStateType sb -> ISDNStateType sa

 // ... dial with the digit block (db) or the direct call buttons (dcb)

 dial_with_db: ISDNStateType sb, DigitType d -> ISDNStateType sa
 dial_with_dcb: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

 // ... receive connection request

 receive_request: ISDNStateType sb, PhoneNumberType n -> ISDNStateType sa

 // ... start and terminate inquiries and conferences

 start_inquiry: ISDNStateType sb -> ISDNStateType sa
 start_conference: ISDNStateType sb -> ISDNStateType sa
 terminate_conference: ISDNStateType sb -> ISDNStateType sa
 hand_over: ISDNStateType sb -> ISDNStateType sa
 terminate_2nd_connection: ISDNStateType sb -> ISDNStateType sa
 switch_connections: ISDNStateType sb -> ISDNStateType sa

Figure 8. Functionality of ISDN Interface Functions

 The FUSE-System: an Integrated User Interface Design Environment 47

a phone call request on the external line. If there was no such request, line 1 should
be in the state Dialing. This behaviour is expressed by the axioms
 n PhoneNumberType:

 start_1st_connection(ISDNState(Waiting(n),Idle(),Idle())) = ISDNState(Idle(),Active(n),Idle())

 start_1st_connection(ISDNState(Idle(),Idle(),Idle())) = ISDNState(Idle(),Dialing(<>),Idle())

In a similar way, the semantics of the other interface functions are described. The
information in the algebraic specification SpecAI of the ISDN problem domain
model can be used for different purposes in the UI development process. Using
techniques from theorem proving, the STD for PLUG-IN (e.g., figure 5) can be gen-
erated automatically (see [Bauer96]). Moreover, the information in SpecAI is used for
the specification of the dynamics of the logical UI (see section 3.2.2).

While the problem domain model defines the requirements for the UI from the view
of the application functionality, the task model describes the UI–requirements from
the view of potential end–users. Its content, the task–space, is a decomposition of
tasks into subtasks, actions and associated functions of the problem domain model.
An example is shown in figure 9.

The task EstablishConference can be decomposed into the subtasks Create1stCon-
nection, MakeInquiry and the action StartConference. The subtasks and the action have
to be performed in the order given from left to right, therefore the sequence symbol
() is displayed above the task EstablishConference. Links from actions of the
task space to functions of the problem domain model are denoted by the symbol
. Besides the sequence, other constructs define temporal relations in the task space.
Each nodes pre- and postcondition refering to a particular system state can be used
to define the context in which a task or an action is applicable. The task DialTele-

phoneNumber (figure 9) uses the choice–construct (). Here the user can
choose to dial with the digit block or one of the direct call buttons.

In the property sheet of figure 10 the precondition ISDNStateBefore=ISDNState
(Idle(), Idle(),Idle()) states the fact that this task can be only performed if the phone is
not in use. Other properties of the sheet define the behaviour of the user guidance
component during runtime.

The requirements analysis phase is completed by defining the static and dynamic
properties of the user model. With the static properties of the user model various
user stereotypes are modelled. Examples of static properties are “user’s motivation”,
“user’s application knowledge” and “user’s task knowledge”. All of these properties
can have one value of the set {low, medium, high} and are predefined by the applica-
tion analyst for a whole user class. Besides the static properties, we also plan to in-
corporate dynamic properties into the user model. Dynamic properties are obtained
during runtime. With these it will be possible to give help that is adapted to the user’s
individual interaction behaviour. One example of a dynamic property is the “fre-
quency of already solved tasks”. With this property it is possible to reason about
tasks still unknown to the user. Furthermore the property can be exploited to order
the task-based on-line help with respect to the measured task frequency. Overall, the

48 Computer-Aided Design of User Interfaces

various properties defined in the user model control the behaviour of the user guid-
ance component during runtime.

3.2 Design of the ISDN UI with BOSS

Within the FUSE–architecture, the BOSS–System is the main tool for supporting the
design–phase in the UI development process. During this phase, BOSS is used by an
automatic (i.e., the FLUID–System, see [Bauer96]) or a human (the scenario we as-
sume in this paper) dialogue designer for the specification of the logical structures
of UIs and by a human layout guideline designer for the specification of layout guide-
lines.

Important properties of BOSS include:

 BOSS uses an encompassing specification technique (HIT, Hierarchic Interaction
graph Templates) for the specification of the logical structures of UIs, UIs in a
particular layout style and layout guidelines. The HIT specification technique is
based on two well–known software construction methods: Dynamic Attribute
Grammars (DAG) and Data Flow Diagrams (DFD).

 The HIT specification technique allows the creation of very modular specifica-
tions: The specification of the logical UI can be composed of reusable building
blocks representing single tasks or groups of related tasks (“views”) of the task
model. Moreover, these building blocks can be stored in libraries for reuse in
different projects. Because of this modularity, this HIT specification technique
scales up for modelling complex UIs.

Figure 10. Property Sheet of

 Example Task
Figure 9. Excerpts from Task Space of Phone

Simulation

 The FUSE-System: an Integrated User Interface Design Environment 49

 BOSS offers an Integrated graphical Development Environment (IDE) for work-
ing out HIT–specifications in a visual-programming-like manner (a textual spec-
ification is also possible). HIT–specifications can be transformed into efficient
C++ programs using standard techniques from compiler generation.

In the following we give a brief introduction to the HIT specification technique
(section 3.2.1). In sections 3.2.2 and 3.2.3 we show how HIT is used for modelling
logical UIs and layout guidelines.

3.2.1 The HIT Specification Technique: an Overview

The HIT specification technique extends a well–known technique in compiler con-
struction, DAGs [Ganzinger78], with timing– and event–concepts. A HIT specifi-
cation consists of a set of basic sort (data type) and function definitions and a set of
templates called Hierarchic Interaction graph Templates (HITs). HITs serve as pro-
totypes for creating objects (HIT–instances) that maintain their own state, react in
response to external messages and are connected with other objects in an object
structure.

A definition of a HIT consists of a structural (syntactic) and a semantic part. The
structural definition describes how a HIT h is constructed from “simpler” HITs h1,
..., hn using operators like construction of tuples (i.e., “parallel” composition, h = (h1,
... ,hn)) or alternatives, h = h1 | ... | hn. As in attribute grammars the structural descrip-
tion is enriched by semantic information. Associated with a HIT are various kinds
of data flow constraints between the following entities:

 slots (known as attributes in the context of attribute grammars) store the state of
a HIT instance. Certain slots of a HIT are distinguished: Through its argument–
, argument/result– and result– parameter slots a HIT instance shares part of its
state with related HIT instances in an object structure. Input slots may be modi-
fied by an external entity (e.g. a human user), the values of output slots are rele-
vant to the environment (and have to be visualized by the UI);

 message ports receive events from external entities and distribute messages
across a structure of HIT–instances. Like slots, message ports may serve as pa-
rameters of a HIT or may be used for receiving (input message ports) and send-
ing (output message ports) messages to external entities;

 rules define either a directed equation in a “spreadsheet–like” manner (i.e. one–
way constraints which should hold at every time) or a transaction caused by an
external entity (e.g. an application function called by a user).

Input slots, input message ports and transactions rules may have preconditions.
Each alternative hi of an alternative HIT h = h1 | ... | hn is assigned an applicability
condition depending on the argument parameter slots of hi. Creating an instance of
an alternative HIT h = h1 | ... | hn with argument parameter values a1, ... , anh results
in creating an instance of one of those alternatives with satisfied applicability condi-
tion. When a tuple HIT h = (h1, ... ,hn) is instantiated, instances for each component
HIT hi are created.

50 Computer-Aided Design of User Interfaces

3.2.2 Specification of the Logical ISDN UI

Designing the logical UI consists of designing views which contain user interactions,
system interactions and problem domain objects for a single task or a group of log-
ically related tasks. In our example we follow the goal of designing a logical UI which
is similar to the real ISDN phone. Therefore we introduce four views. With the
BasicFunctions view users gain access to the basic functionality of the ISDN phone
for starting and terminating phone calls on line 1 (i.e., functions start_1st_connection,
terminate_1st_connection, see figure 8). The AdvancedFunctions view provides access
to the advanced functions of the ISDN phone dealing with inquiries and conferences
(i.e., functions start_inquiry, ..., switch_connections, see figure 8). The Dial-
PhoneNumberTask view corresponds to the task DialPhoneNumber (see figure 9) al-
lowing users to dial phone numbers directly digit by digit or to select phone numbers
from the phone book. Finally the LogicalISDNUI view describes the entire logical
ISDN UI, i.e., LogicalISDNUI contains the BasicFunctions, AdvancedFunctions and Di-
alPhoneNumberTask views. Moreover the LogicalISDNUI view should illustrate the
state of the ISDN phone and allow users to add and remove entries from the phone
book.

The views of the logical ISDN UI can be easily represented in the HIT specification
technique. Figure 11 shows how the logical ISDN UI is represented as a tuple–HIT
named LogicalISDNUI. The component HITs BasicFunctions, AdvancedFunctions and
DialPhoneNumberTask represent the views in the logical ISDN UI described above.
Through its argument message port RequestForConnection the HIT LogicalISDNUI
receives phone calls on the external line. The slot ISDNState stores the current state
of the ISDN phone. As the user should be permanently informed about the state of
the phone, ISDNState is declared as an output slot.

Figure 11. LogicalISDNUI view of logical ISDN UI

The slot PhoneBook stores the phone book. As the user should be able to add and
remove entries from the phone book, PhoneBook is declared as an input slot. To
indicate that the state ISDNState can be altered by user interactions in the BasicFunc-

LogicalISDNUIRequestForConnection:
PhoneNumberType

ISDNState:
ISDNStateType

Basic-
Functions

ISDNState:
ISDNStateType

Advanced-
Functions

ISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

DialPhoneNumber-
Task

ISDNState:
ISDNStateType

PhoneBook:
PhoneBookType

receive_request

handle_request

a a r

rISDNState(Idle(),Idle(),Idle())

init_state

h1 hn

h
Definition of
Tuple-HIT

Definition
of Slot

Definition of
Message Port

Port Name:
Port Type

Slot Name:
Slot Type Argument Parameter

Argument/Result-

Result-

Output
Slot/Message Port

Input
Slot/Message Port

argument
function
result

Rule

 The FUSE-System: an Integrated User Interface Design Environment 51

tions, AdvancedFunctions and DialPhoneNumberTask views, the slot ISDNState is con-
nected to the corresponding argument/result–parameter slots of the component
HITs. The slot ISDNState is initialized by the rule init_state to the initial state IS-
DNState(Idle(),Idle(),Idle()) of the phone. A message in the argument message port
RequestForConnection triggers the rule handle_request, which causes an update on
the state of the ISDN phone (value of the slot ISDNState) according to the semantics
of the receive_request function.

Figure 12. BasicFunctions view of logical ISDN UI

Figure 12 shows the HIT–representation of the BasicFunctions view. It groups user
interactions related to start and terminate connections on line 1. As these interac-
tions alter the state of the phone, the HIT BasicFunctions has an argument/result–
parameter slot ISDNState.

Through the transaction rule tr_Start1stConnection the user starts a phone call on line
1 by applying the function start_1st_connection (see figure 8) to the current state
ISDNState of the phone. As the UI should prevent users from calling functions with
parameters violating the function’s precondition, the transaction rule tr_Start1stCon-
nection is guarded by the precondition of the function start_1st_connection taken di-
rectly from the algebraic specification SpecAI of the problem domain model. By trig-
gering the transaction rule tr_Terminate1stConnection the user can terminate a con-
nection on line 1.

In figure 13 we show how the DialPhoneNumberTask view (which corresponds to
the DialPhoneNumber task in the task model, see figure 9) is represented by a corre-
sponding HIT. Like the HITs BasicFunctions and AdvancedFunctions, Dial-
PhoneNumberTask has an argument/result–parameter slot ISDNState to indicate that
the state of the ISDN phone is accessed and altered by user interactions. Through
the argument parameter slot PhoneBook the phone book is passed. As the user is
allowed to enter the phone number digit by digit, the HIT DialPhoneNumberTask
contains an input message port Digit. A message (i.e., a digit of the phone number)
in the Digit message port triggers the rule handle_db, which alters the state of the
ISDN phone according to the semantics of the dial_with_db function. To allow users
to select a phone number directly from the phone book, we introduce an input mes-
sage port PhoneBookEntry.

A message (i.e., a selected entry of the phone book) in the PhoneBookEntry message
port triggers the rule handle_dcb, which updates the state of the phone according to
the semantics of the dial_with_dcb interface function. The preconditions of Digit and

Basic-
Functions

ISDNState:
ISDNStateType

start_1st_connection

a r

tr_Start1StConnection tr_Terminate1StConnection

a r
terminate_1st_connection

PC:
 is_Idle(Line1(ISDNState)) &&
 is_Idle(Line2(ISDNState))

PC:
 is_Dialing(Line1(ISDNState)) ||
 is_Active(Line1(ISDNState))

a r

Transaction Rule

PC: Precondition

52 Computer-Aided Design of User Interfaces

PhoneBookEntry ensure that user interactions with these message ports are enabled
only in appropriate states of the phone. The selection from the phone book is mod-
elled through a HIT OneFromListSelectionTask, whose argument parameter slots are
supplied with a reference to the PhoneBookEntry message port (the selection should
cause a message in PhoneBookEntry) and with the value of the PhoneBook slot (the
list from which the item should be selected). As the user interaction “selection from
a list” appears in many logical UI, the BOSS–System provides a standard library con-
taining HITs like OneFromListSelectionTask for the representation of standard inter-

action tasks.

Figure 13. DialPhoneNumberTask view of logical ISDN UI

The BOSS–System provides a very comfortable, integrated development environ-
ment (IDE) which allows drawing specifications in the graphical notation shown in
figures 11–13. Like the specification of the logical ISDN UI, the specification of
more complex logical UI is made up of small, reusable building blocks. In this way
the HIT specification technique scales up for more complex examples.

3.2.3 Specification of Layout Guidelines

Assuming a given set of layout guidelines, all the steps from a given specification of
the logical UI (e.g., figures 11–13) to the production of a “running” UI implemen-
tation (e.g., figures 2-3) are performed automatically by the BOSS–System. Similar to
the approach followed in the HUMANOID–System [Luo93], layout guidelines within
BOSS describe the mapping from logical UIs to UIs in particular layout styles by
defining the representation of the states and state transitions of the logical UI in
terms of AIOs. As the actual UI layout is computed at runtime, it is possible to
specify context sensitive UI layouts depending on values known only at runtime.
Due to this approach, systems like BOSS or HUMANOID reach a higher degree of
flexibility than systems generating a static UI layout at design time.

In BOSS the HIT specification technique is used both for the representation of the
logical UI and the UI in a particular layout style. Consequently, as shown in figure 14,
layout guidelines in BOSS model the transformation from the HIT–specification of

PhoneBook:
PhoneBookType

DialPhoneNumberTaskISDNState:
ISDNStateType

List:
LIST

OneFromListSelectionTaskRef:
REFERENCE

Reference

PhoneBookEntry:
PhoneBookEntryType

Digit:
DigitType

PC:
 is_Dialing(Line1(ISDNState)) ||
 is_Dialing(Line2(ISDNState))

PC:
 is_Dialing(Line1(ISDNState)) ||
 is_Dialing(Line2(ISDNState))

dial_with_db

a r

a

a r

a

dial_with_dcb

a

r

Number

&handle_dcbhandle_db

&

 The FUSE-System: an Integrated User Interface Design Environment 53

a logical UI into the HIT–specification of a UI in the layout styles described by the
guidelines. Given layout guidelines for the styles l1, ..., ln a HIT h in the specification
of the logical UI is refined into a HIT hStyle_l1_..._ln. hStyle_l1_..._ln contains an
additional argument parameter slot UserModel and additional result parameter slots
CurrentStateLayoutStyle_l1, ... , CurrentStateLayoutStyle_ln. The result parameter slot
CurrentStateLayoutStyle_li contains the layout of the current UI state represented in
terms of AIOs for the layout style li depending on the properties of the user model
passed in the argument parameter slot UserModel. This architecture results in high
flexibility of the generated UI: As hStyle_l1...ln contains layout information for each
style, it’s possible to switch the layout style at runtime.

Figure 14. Layout Guidelines in the BOSS-System

The specifications of layout guidelines for a style li consists of a set of presentation
templates and a set of refinement templates. For each element in the HIT specifica-
tion language dealing with user interaction (input–,output slots, input–, output mes-
sage ports, transaction rules) a specialized presentation template is defined (e.g. a
template PresentOutputSlotStateStyle_li for the presentation of the value of output
slots).

The refinement templates describe the refinement from HITs without layout infor-
mation (e.g., h) to HITs with layout information (e.g., hStyle_l1_..._ln). This refine-
ment is done by attaching the appropriate presentation templates to the interactive
parts of a HIT. E.g., in the HIT LogicalISDNUI, which describes the main view on
the logical ISDN UI, a PresentOutputSlotStateStyle_li presentation template is at-
tached to the output slot ISDNState.

In the BOSS–System, presentation– and refinement templates are defined in the HIT
specification technique itself. E.g., the presentation template PresentOutputSlot-
StateStyle_li is defined as a HIT with argument parameter slots UserModel (the user
model) and OutputSlotState (i.e., the value of the output slot) and a result parameter
slot OutputSlotStateLayout, which delivers a layout in terms of AIOs. The HIT spec-
ification technique is well–suited for representing such presentation templates, as
the typical decision–tree–like structure (see e.g., [Bodart93]) can be expressed easily
through nested alternative HITs.

BOSS

HIT-specification of logical UI (containing a HIT h)

h... ...

(Layout Guidelines Style l1)

Presentation
Templates

Refinement
Templates

(Layout Guidelines Style ln)

HIT-specification of UI in Layout Styles l1, ..., ln (containing refined HITs from logical UI and Presentation Templates)

... ...hStyle_l1_..._ln... UserModel:
UserModelType

... CurrentStateLayoutStyle_l1:
AbstractInteractionObjectType

... CurrentStateLayoutStyle_ln:
AbstractInteractionObjectType

... ...

54 Computer-Aided Design of User Interfaces

As the HIT specification technique allows modular specifications, the specifications
of guidelines for different layout styles differ only in a few presentation and refine-
ment templates. Furthermore, it is possible to combine general–purpose guidelines
with guidelines for a specific problem domain. For the generation of the ISDN in-
terfaces shown in figsures 2 and 3 we combined a general–purpose styleguide with
a ISDN styleguide containing a few specialized presentation templates e.g., for pre-
senting objects of the sort ConnectionStateType as “smilies”.

4 Related Work

In the following we give a brief overview of related work in the field of model based
UI construction. At the end of this section we summarize the main differences be-
tween these approaches and our FUSE–System.

MIKE [Olsen86], MIKEY [Olsen89], HIGGENS [Hudson86] and JANUS [Balzert95a]
are examples of tools, which generate UI based alone on a specification of the prob-
lem domain model. JANUS differs from the first tools in using a much more powerful
technique for data modelling (OOA class diagrams). As none of these tools provides
means for the explicit specification of UI dynamics, they are tailored to applications,
where the UI dynamics can be derived from data models (i.e. data–base oriented
applications).

The ITS–System [Wiecha89] offers a frame–based language for the specification of
logical UI (“dialogue content”). Moreover, ITS allows the specification of style rules,
which describe the mapping between logical UI and UI in a particular style.

In the UIDE–System [Foley94], the UI development process consists of the descrip-
tion of two models. In the application model, the logical UI is described in terms of
application objects and –tasks. The UI–model describes the coupling of the applica-
tion model to a UI layout by linking application tasks to interface tasks, interaction
techniques and –objects. The links between the models are used by a runtime engine
to provide animated help.

HUMANOID [Luo93] divides the UI development process into the activities of ap-
plication design, dialogue sequencing, action side effects, presentation design and
manipulation design. In the first three design dimensions the logical structure of a
UI is described in terms of the structure and the behaviour of so called application
objects.

The mapping of the state of the application objects in a logical UI to a UI layout is
described in the design dimensions presentation– and manipulation design through
presentation and manipulation templates. Based on the model described above, HU-
MANOID is able to provide textual help (see [Moriyón94]). Recently the research on
UIDE and HUMANOID was joined in the MASTERMIND project.

In the ADEPT–System [Johnson92b], a process–algebra–like specification technique
called Task Knowledge Structures (TKSs) is used for the specification of the task

 The FUSE-System: an Integrated User Interface Design Environment 55

model of an interactive application. In the design phase of the UI development pro-
cess, the task model is transformed into the specification of the so called Abstract
Interface Model (AIM), which corresponds to the term “logical user interface” in
figure 1. Based on design rules in a user model, the ADEPT–System derives a Con-
crete Interface Model (CIM) from the AIM by replacing the AIOs in the AIM by
the appropriate CIOs in the CIM.

The GENIUS–System [Janssen93] generates UIs for data–base oriented applications.
In GENIUS, the problem domain model is represented by an ERA–diagram. Based
on this ERA–diagram static aspects of the logical UI are described in terms of so
called views, which can be regarded as abstract representations of UI windows. For
the representation of the dynamics of the logical UI, GENIUS employs a petri–net–
like specification technique (“dialogue–nets”).

For each view in the logical UI, the static UI layout is generated by applying soft-
ware–ergonomic guidelines, which are described as decision tables (e.g., for the se-
lection of interaction objects). A similar approach is presented in the TADEUS–Sys-
tem [Elwert95]. TADEUS differs from GENIUS in the use of different specification
techniques for the representation of the problem domain model (TADEUS uses an
object oriented approach) and the dynamics of the UI (dialogue–graphs).

The TRIDENT–System [Bodart94b] consists of a methodology and a support envi-
ronment for developing UIs for business–oriented interactive applications. TRI-
DENT uses ERA–diagrams for the description of the problem domain model. For
the representation of the task model TRIDENT provides a data–flow–graph–like
specification technique called Activity Chaining Graphs (ACGs). Each ACG is
structured into presentation units. From these presentation units, the static UI layout
can be generated by applying rules for the selection of AIOs, rules for mapping
AIOs to CIOs and rules for the placement of CIOs.

PLUS [Fehrle93] is a task-oriented help system for domain-specific interactive appli-
cations. It uses a database of hierarchical plans described by an application analyst.
With this database the system reasons about the hypothetical tasks the user currently
performs. In the task description knowledge about application– and UI specific (e.g.,
UI layout) properties is combined.

The main difference between FUSE and the approaches presented above is the com-
bination of the following properties: FUSE offers tool–based support across the
whole UI development process, whereas e.g., MIKE, MIKEY, ITS, JANUS or ADEPT
correspond to subsystems of FUSE (BOSS and FIRE). Like in HUMANOID the UI
layout is computed at runtime, which results in a higher flexibility (e.g., the layout
depends on values known only at runtime, the layout style can change at runtime)
compared to systems generating the static UI layout at design time.

The flexibility is also supported by the powerful on-line help– and user guidance
components generated by the PLUG-IN system. In contrast to the approach to online
help used in HUMANOID, PLUG-IN generates dynamic online help pages in HTML
format that can be inspected with a WWW browser. In comparison with the PLUS-

56 Computer-Aided Design of User Interfaces

System, where it is necessary to change the database used for the provision of user
guidance by hand if the application functionality or layout guidelines are changed,
PLUG-IN’s generated on-line help adapts itself automatically to the currently used
layout style of the UI.

Conclusion

The BOSS–System has been implemented in C++ on top of UNIX/X11R6. It
currently supports the Athena and the OSF/Motif toolkits. The animation
component of PLUG-IN is based on Tcl/Tk. The context–sensitive help–compo-
nent of PLUG-IN is based on the WWW browser Mosaic. The FLUID–System (see
[Bauer96]) is currently under development.

The FUSE methodology and tools have been applied successfully to a number of
examples (ISDN phone simulation, UI for a literature retrieval system, UI for a
home banking system, formula editor for LATEX). Important parts of the FUSE
development environment (e.g., the subsystem FIRE) have been specified with BOSS.

Up to now, the FUSE system and especially BOSS have been used by developers
skilled in related methods from software construction (e.g., attribute grammars).
With this background these developers were able to achieve quite soon a high level
of productivity using our tools. However, we are aware of the fact that much more
practical experience has to be gained with the FUSE–methodology and the related
tools. As a first step in this direction we plan to organize a course in UI specification
at the Munich University of Technology.

Acknowledgements

This work has been partially supported by Siemens Corporate Research and Devel-
opment, Department of System Ergonomics and Interaction (ZFE ST SN 51). The
authors would like to thank Werner Schreiber and the anonymous reviewers for their
useful comments and suggestions on draft versions of this paper.

Software Life Cycle Automation for Interactive
Applications: The AME Design Environment

Christian Märtin

Abstract

The model-based design environment AME offers CASE-tool support for all life
cycle activities in the development process for interactive applications. The system
allows the rapid automatic construction of interactive software from object-oriented
analysis models (OOA) and/or OO-modelling information specified at later design
stages. AME provides functionality for UI-structure generation, interaction object
selection, layout prototype generation, dynamic behaviour generation, adaptation to
user-specific requirements, integration of domain-methods and target code genera-
tion. Object-oriented and knowledge-based components provide automatic transi-
tion from one refinement stage to the next. System decisions can be visualised before
code generation and may be revised by the designer.

Keywords

Design automation, life cycle, model-based approaches, object-oriented models,
user interface generators, software engineering.

Introduction

In the next decade application system design will confront the software industry with
a set of tough requirements with respect to complexity, usability, flexibility, multi-
media-management, quality, time-to-market, ease of maintenance and other factors.
In order to meet these challenges, the fields of software engineering and human-
computer interaction have to join forces. Object-oriented analysis and design meth-
ods (OOA/OOD) [Monarchi92] seem to provide a common denominator for inte-
grating software process automation and user interface design:

 Advanced object-oriented CASE-tools support all activities of the software life
cycle. Object technology is now widely used and has become a major driving
force for productivity and quality enhancements.

 Object-orientation has also been the principal design approach for the construc-
tion of interactive software, since the first applications with GUIs appeared
[Goldberg84].

58 Computer-Aided Design of User Interfaces

Most automated design approaches for interactive systems, however, do not use
software life cycle models to define the various user interface development tasks. As
no unified life cycle models exist, the majority of existing design environments for
interactive systems also fail to achieve a true integration of the development require-
ments for the domain parts of the applications and for the user interface compo-
nents.

Life cycle models should define functionality, sequencing and data interface require-
ments of all the activities in the development process for interactive systems: from
analysis (problem definition) to design (solution specification) and implementation.
It is also important to include mechanisms for concurrent design or clustering
[Meyer95] of development tasks. Figure 1 shows an example of concurrent life cy-
cles: the development process is divided into activities for the user interface and
activities for the domain functionality of the system. Life cycle models also have to
support incremental development requirements, especially if they aim to be accepted
by designers of highly interactive systems.

Supporting
Techniques

and Tools for
Problem
Domain

Requirement
Analysis

(e.g.
OOA)

UI Design
Support

Problem
 Domain
Design
Support

(e.g. OOD)

UI
Implementation

Support

Problem
 Domain

Implementation
Support

Runtime
Code

Generation
Support

(Problem
Domain

 and
 UI Parts)

Figure 1. Concurrent life cycle support for user interface and problem domain
software development

The Application Modelling Environment AME, which is discussed in this paper, is
designed around an object-oriented life cycle model for the concurrent development
of user interface and domain parts of interactive systems. AME is a prototypical
model-based development environment for interactive business applications [Mär-
tin93, Märtin95, Märtin96a]. AME offers high-level tools for the automatic refine-
ment and generation of the standard parts of interactive systems as well as flexible
specification tools for more domain-specific application components. At each life
cycle step the designer may either choose to accept the generated solution, or to
adapt it to her or his individual requirements.

The following section examines related work and existing model-based approaches
for designing interactive systems. Section 2 introduces AME´s architecture and goals.

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 59

In section 3 the various activities of AME´s software life cycle are demonstrated for
an example application.

1 Related Work

The design of interactive applications can be supported by the following categories
of tools: implementation- and system-level tools, model-based specification systems,
model-based generators [Forbrig96].

1.1 Implementation- and System-Level Tools

Toolkits and GUI editors are examples of implementation-level tools. UIMSs for user
interface definition, generation and runtime support are system-level tools. Ap-
proaches based on UIMSs do not integrate the results of the design activities for
user interface and domain parts before the final development stages. This is why
results from earlier life cycle activities, i.e., analysis and global design, cannot be ex-
ploited for user interface construction. Visual programming environments that are cou-
pled with extended (object-oriented) programming languages are also system-level
tools. They support the easy reuse and modification of existing interaction object
classes, but leave it to the developer to couple UI designs and program code inter-
actively.

Implementation- and system-level tools may be used as service-suppliers by high-
level-design tools that belong to one of the two research-oriented categories, dis-
cussed in the following sections.

1.2 Model-Based Specification Systems

Model-based specification systems allow system developers to specify the structural,
functional and dynamic features of the user interface of applications in close co-
ordination with the domain parts.

Tools like UIDE [Sukaviriya93] or HUMANOÏD [Szekely93] yield a high-quality and
flexible design-level model of the interactive system, which allows to represent both
application-independent and application-specific interactive requirements in great
detail. The systems support rapid prototyping rather than integrated life cycle mod-
els. The modelling process can be complex and time-consuming, however.

Both systems demand the explicit specification of user interface functionality and
dynamics. The systems provide mechanisms for representing runtime-dependent ap-
plication dynamics. The result of the modelling process is a detailed design specifi-
cation of the interactive system, which can be translated into a working prototype
of the application. UIDE supports the generation of context-based help as well as
layout generation [Kim93]. HUMANOÏD incorporates a co-operative design-goal
management system [Luo93]. The MECANO approach, which is discussed in
[Puerta96b] includes the explicit modelling of design processes in the form of meta-
level models.

60 Computer-Aided Design of User Interfaces

The IDA environment [Reiterer94, Reiterer95] provides advanced tools for the con-
struction of graphical user interfaces of high quality. IDA uses an object-oriented
approach for designing flexible, reusable interface templates. The construction tool
is coupled with a UIMS. A hypertext-based consulting system provides design guide-
lines and presentational support. A knowledge based quality assurance tool evaluates
the modelled prototype and proposes ways for improving the design.

Design critics for co-operative user interface development are also covered in [Fis-
cher93]. EXPOSE [Gorny94, Gorny95] is a consulting expert system for the design
of highly-ergonomic user interfaces. The TADEUS system, provides decision support
and guidance for user interface design on the basis of a task model, a problem do-
main model, a dialogue model and a user model [Elwert94]. The system FUSE
[Lonczewski96] uses algebraic specification techniques for modelling the static and
dynamic parts of interactive systems.

1.3 Model-Based Generators

Model based generators create user interface prototypes from domain data models.
ERA models or abstract object-oriented models are exploited by such tools. Some
generators need additional state-transition-specifications for dynamic modelling.
Generators are supposed to raise software productivity and to help application do-
main experts with the design of consistent user interfaces. However, the flexibility
and the complexity of the generated user interfaces may be restricted.

TRIDENT [Vanderdonckt93] exploits entity-relationship-attributes and attribute-
meta-data for a rule-based selection of interaction objects. Activity Chaining Graphs
(ACG) specify the data flow during task execution and are used for generating dia-
logue dynamics. GENIUS [Janssen93] also exploits ERA models, additional meta-
information and action-names for generating the static user interface of a window.
Petri-net-like dialogue nets are interpreted for generating dialogue dynamics. UIDE
[de Baar92] exploits attributes of domain object classes, action names and meta-data
for generating application windows and their menus. All of these systems require
explicit information about which of the domain data or object attributes will be
grouped together in one target window.

The JANUS-approach [Balzert93, Balzert94, Balzert95a] uses Coad/Yourdon object-
oriented models [Coad91a] for generating multi-window database applications. Each
object class is mapped to a window of the user interface. Rules are used to translate
object-attributes and operations to interaction objects or menu-entries. Inheritance,
aggregation and association between object classes are exploited to construct the
global structure of the user interface and to generate standard functions for navi-
gating between windows. In order to build exploitable OOA models, application
designers have to know the system’s mapping rules. Specifications cannot be
changed at the OOD-level. No explicit dynamic modelling is supported. The speci-
fication systems TADEUS [Schlungbaum96] and FUSE [Bauer96] include compo-
nents for generating user interfaces from model specifications, which explicitly cover
dynamic aspects.

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 61

2 The AME Environment

The Application Modelling Environment (AME), which is discussed in the following,
is an experimental CASE-environment with full life cycle support for interactive
systems development. AME integrates object-oriented and knowledge-based tools
and is able to model, prototype and generate flexible business applications with
graphical user interfaces. The generator produces a complete user interface: static
structure, domain-independent and partly domain-dependent dynamic behaviour
and dynamic links to domain object functionality. Adaptation to specific users or
target environments is supported by standardised user and environment object clas-
ses. The generated prototype can directly be executed as an application under the
target environment (e.g. MS-Windows).

2.1 Design Automation for Interactive Systems

It is a goal of AME to combine the ease of use of model-based generators with the
design flexibility of model-based specification systems. As soon as an OOA model
of the problem domain is available, automatic user interface prototype generation
can be started. No explicit information about the user interface has to be given in
the model. Structural, behavioural and presentational user interface design
knowledge is available to the generator in the form of design methods and forward-
chained rules.

It is not always possible for AME´s generator tools to find optimal mappings from a
given domain object pattern (e.g., [Coad92]) to a group of implementation-level ob-
jects with associated behaviour. Therefore, the designer may introduce additional
specifications at a later stage of the supported software life cycle. Such specifications
may concern the mapping of domain object groups to interaction objects, object
behaviour, user interface presentation and style, as well as user- or environment-
specific features of the user interface. Additional information of this kind may lead
to improved system performance or enhanced usability.

The user interface, however, is only one side of an interactive application. It was also
a goal to support the concurrent evolution of the non-interactive problem domain
components during all life cycle activities. When using an object-oriented modelling
approach, a model of an application can be seen as a set of object clusters or groups
with clear data-interface definitions between the groups. A group may contain clas-
ses for the interactive parts of the system and/or domain problem classes (e.g. for
application functionality, database access, distributed object environments etc.).
Communication between groups has to be managed by specific objects. AME´s
OOA tools support standard object modelling methodologies [Coad91a,
Rumbaugh91] and their grouping concepts.

An OOA model may be passed to AME´s generator tools. OOA classes, whose fea-
tures and inter-class relations are exploitable for user interface generation, will then
first be mapped to generated design patterns (OOD) and later to implementation

62 Computer-Aided Design of User Interfaces

classes (OO-language). Appropriate abstract interaction objects are selected and as-
signed to these classes.

Before code generation, existing method source code is embedded into the gener-
ated class structures. Dummy calls are generated, if no method code for a domain
or user interface class operation is available or can be generated. Although it was no
explicit goal of AME to support method code generation for other than user interface
functionality, external CASE-tools for these purposes can be embedded into the
environment.

2.2 AME Architecture Levels

AME is organised in three levels, as shown in figure 2 : modelling level, construction level
and implementation level.

OODevelopTool

(OOA/OOD)
ODE (OMT)

Model Base

AME

Object-Oriented

Model

Representation

Model Base

Presentation and

Layout

Dynamic

Behavior

Construction

Structure-

Refinement:

OOA to OOD

KAPPA-PC/

Windows3

Runtime

Environment

AME/C++-

Code Generator

Open Interface

UIMS

Code Generator

Interaction Objects

User Profiles

Application Profiles

Structural and

Presentational

Knowledge

Domain Code

Fragments

Modeling
Level

Construction
Level

Implementation
Level

Figure 2. AME architecture

AME was developed under MS-Windows. The modelling tools and generator com-
ponents were implemented using KAPPA-PC by Intellicorp, Borland C++ and Mi-
crosoft Visual C++. At the modelling level AME offers tools for object-oriented anal-
ysis and design. OODEVELOPTOOL is a comprehensive CASE tool that supports
the modelling elements of the OOA/OOD-method by Coad and Yourdon
[Coad91a, Coad91b].

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 63

It provides OOA/OOD class-, attribute- and method-editors, OOD-support for
user interface design, pre- and postconditioning [Meyer88], a design versioning sys-
tem and software documentation mechanisms. ODE is a compact tool for creating
OOA object models using OMT [Rumbaugh91] plus a message-based dynamic link
notation for specifying OOA-level dynamics. Both tools can also be used as stand-
alone components. Models can be translated into AME´s internal object representa-
tion and passed to the construction level.

At the construction level, models are refined into detailed design specifications by a
series of automatic design steps for OOD-structure generation, interaction object
selection, dynamic behaviour construction, presentation and layout design. This
level also provides the functionality for adapting application models to specific target
environment (e.g., MS-Windows 3.x) and individual users. Section 3 discusses the
construction level in more detail. Model features, generated by any of the construc-
tion level components, may be modified interactively by the designer. The final de-
sign specification is passed to the implementation level.

AME´s implementation level offers different ways for generating runtime applications.
A C++-code generator translates static and dynamic parts of the user interface spec-
ification into C++-source code. It also embeds domain methods into the generated
C++ implementation classes. The code is compiled into a Windows application by
the Borland C++-compiler. Other AME-tools generate UIMS-code for Open In-
terface, KAPPA-PC runtime applications from the specification model.

2.3 Representing Application Models and Knowledge

AME supports the following knowledge types: application models, user interface de-
sign knowledge and adaptation knowledge.

2.3.1 Application Model

The scheme for representing the application model in all its development states has
to meet the following requirements:

 Representation of classes and all typical intra- and inter-class modelling elements
used in OOA- and OOD-methods.

 Representation of all structural, functional and dynamic features of the model
during its transition from a very abstract analysis model to a rather concrete de-
sign specification.

 Representation of all generated or designer-specified components of the UI with
their structural, presentational and layout properties.

To provide the required expressiveness and to keep the formalism simple, an object-
oriented representation scheme built on top of the frame-like weak-typing approach
of the KAPPA-PC environment was defined. Frame-based representation schemes
were already used in earlier user interface generators [Wiecha89, Märtin90].

64 Computer-Aided Design of User Interfaces

AME introduces the class Application System Object (ASO) for representing any
OOA or OOD class during the development process. An ASO-object offers about
50 different attributes (slots) for representing the structural and semantic properties
of the application model objects during their lifetime (figure 3).

Application System Object

(ASO)

actions: multiple text
action_types: multiple text
as_action: multiple text
as_components: multiple object
as_construction: multiple text
as_content: text
as_frame: text
as_description: multiple text
as_name: text
as_parent_profile: text
as_presentation: multiple text
as_type: text
Association: multiple object
Association_types: multiple text
attr: multiple text
contents: multiple text
content_types: multiple text
data_type: text
data_length: integer
de_instance: object
dialog_construction: multiple text
dialog_medium: text | multiple text
dialog_object: object | multiple object
dialog_preference: object
dialog_presentation: multiple text

WholePartRelationsFrom: multiple object
WholePartFrom_types: multiple text
WholePartRelationsTo: multiple object
WholePartTo_types: multiple text
GenSpecRelationsFrom: multiple object
GenSpecRelationsTo: multiple object
InstanceCounter: integer
MessageLinksFrom: multiple object
MessageFrom_names: multiple object
MessageFrom_priorities: multiple text
MessageFrom_types: multiple text
MessageLinksTo: multiple object
MessageTo_names: multiple text
MessageTo_priorities: multiple text
MessageTo_types: multiple text
name: text
prototype: object
semantic_neighbors: multiple object
sub_level: boolean
sub_object: multiple object
sub_level_conn_type: multiple text
synthetic: boolean
value: text | multiple text
visible: boolean

MakeDialogObject
Behavior
MakeLayout

Figure 3. ASO class structure. Some attribute values (e.g. content_types, action_types) are inter-

nally specified in more detail to be exploitable by generator components

After OOA-modelling, every class is mapped to an ASO-object. As each OOA-class
may have its own number of attributes, methods and relations to other model clas-
ses, OOA attribute-, method- and relation-specifications are mapped to the entries

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 65

of specific list-valued ASO-slots (contents, content_types, actions, action_types, WholePar-
tRelationsTo, WholePartTo_types etc.).

Most ASO-slots, however, are not specified by OOA tools. They are filled by AME
components during the construction process (e.g., the slot dialog_object is only filled,
if an appropriate abstract interaction object for the OOA class can be assigned).
During the construction process all slot values may be modified dynamically.

2.3.2 User Interface Design Knowledge

AME´s design knowledge for selecting abstract interaction objects and generating
the structural, dynamic, presentational and layout properties of the interactive target
application is provided by methods of the construction level components and in the
form of selection rules.

AME offers separate class hierarchies of abstract interaction objects, interaction me-
dia and domain-specific interface templates. These hierarchies can be exploited for
abstract interaction object selection. Selected abstract interaction objects are linked
to ASO objects via the dialog_object slots.

The presentational settings as specified by the abstract interaction objects are visu-
alised for prototype simulation. They can be modified by the designer or by applied
presentation rules.

The ASO structure may also serve as a runtime data model of the application. Com-
munication between model objects is specified by the designer during OOA and by
the system or the designer after OOD structure generation. After abstract interac-
tion object selection, the required user interface behaviour specification is automat-
ically extracted from the OOD model and mapped to the target system.

2.3.3 Adaptation Knowledge

Special classes are provided for representing user and environment profiles. Objects
of these classes specify usability items. They may also include designer-defined rule
groups, which support specific adaptation requirements for structure, presentation
and layout.

3 AME Software Life Cycle

The AME software life cycle is shown in figure 4. In the following sections, the typ-
ical steps of the life cycle are illustrated for a small example application. The purpose
of the application, named TRANTOOL, is to provide language translation assistance
for an existing text processor.

66 Computer-Aided Design of User Interfaces

Links to
external CASE

tools

Links to
external CASE

tools

Links to
external CASE

tools

Adding OOD-Structure
manually

(e.g. Structure of
Menu-Hierarchy)

Adding Interaction
Objects manually

OOA-Modeling:
Specification

 of Attributes and
Operations of

 Domain Classes

Automatic
 Specification of
UI-Behavior and

Dynamics

Automatic Generation
of User-Specific

UI-Layout-Prototype

Generating C++-
Source Code /

Embedding Domain
Functionality /

Compilation and
Linking

Automatic Generation
of an OOD-Structure
from an OOA-Model

Automatic Selection
and Assignment of
Interaction Objects

Activity 1:
Analysis

Activity 2:
Global Design

Activity 3:
Detailed Object Design

Activity 4:
Generating
User Interface Behavior
Specification

Activity 5:
Adaptation to Specific
Users and Environments

Activity 6:
C++-Program Generation
and Compilation

Figure 4. AME´s automated life cycle for building interactive systems

3.1 Analysis

This is the first activity of the development process supported by AME. An OOA
model is created by the designer. For each domain object class the following intra-
object class modelling data can be specified:

 attributes (name, data type and starting value);
 methods (name, calling parameters, data types of calling parameters, return value,

return type).

The following relation types are available for connecting OOA classes:

 generalisation/specialisation (including multiple inheritance);
 aggregation (including the specification of aggregation multiplicity);

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 67

 association (including the specification of association multiplicity);
 dynamic link (including the specification of a name, message contents, a type, a

priority).

This modelling information is exploited for automatic user interface construction by
later life cycle activities. During OOA the designer does not explicitly specify any
user interface properties. Functional specifications for OOA class methods may be
provided. They can be exploited for domain method code generation by external
CASE tools. The designer may choose one of the available graphical editor tools
OODEVELOPTOOL [Märtin93] or ODE to specify the domain object model of the
application. Figure 5 shows an ODE screen during OOA modelling of the TRAN-
TOOL application.

Figure 5. OOA model for Trantool designed with the ODE-editor

An OOA model can be translated into an internal AME representation by selecting
the item Kappa from the menu Codeerzeugung (code generation). Thus, for each OOA
class, an ASO object is instanciated. Attributes are mapped to contents-slot of the
ASO object as a value list. Attribute types are mapped to a list of values for the
content_types-slot. Content- and content_types-entries with the same index belong to-
gether. Methods and their types are mapped to the slots actions and action_types in a
similar way. Inter-class relations are translated into directed pointers between ASO
objects.

68 Computer-Aided Design of User Interfaces

3.2 Global Design

This activity defines the object-oriented design structure of the application. The rep-
resentation of the OOA model is expanded to an OOD model, which includes the
window structure and the menu and command hierarchy of the application. OOA
classes with multiple exploitable attributes are mapped to patterns of related OOD
classes. This task is accomplished automatically by construction level components.
Additional manual design makes sense, whenever domain-dependent decisions con-
cerning the user interface structure, which are based on information not available to
the system, have to be taken. Such decisions may include the assignment of one or
a group of specific interaction objects to a particular domain object or the command
or menu representation of a domain method in the user interface. If the generated
OOD-structure needs some modifications for efficiency or usability reasons, the
designer may also modify the OOD model.

To provide global design automatically the system needs some basic information
about the target runtime environment at this early stage. The AME prototype uses
structural knowledge about the MS-Windows 3.11 environment (e.g., standard
menus File, Edit, Help, View etc., which appear in typical applications, standard menu
items and their synonyms). Textual pattern matching techniques are used to map the
method names of OOA classes to the synonymous items of standard- or application-
specific pulldown-menus in the Windows environment. It is not easy to automate
this task, because standard Windows applications provide pulldown-menus only for
the main window of an application. Therefore, the matching algorithm has to know
which OOA class will be mapped to which window type (main window, window or
dialogue box).

For this and other structural purposes an object parser is provided. It examines and
exploits the generalisation/specialisation, association and aggregation structure of
the OOA domain model and the internal features of each OOA class. Each attribute
or method can only be inherited once. The parser automatically assigns a window
type to each complex object, i.e., each OOA class with aggregated classes or multiple
exploitable attributes.

The class at the top of the aggregation hierarchy or the topmost non-generic class
in the generalisation/specialisation hierarchy is mapped to the application main win-
dow. If more candidate windows exist, the designer has to choose the main window.
Other complex objects are mapped to dialogue boxes, if they contain Cancel and OK
methods (name synonyms are accepted) or to ordinary windows, if not. The multi-
plicity-value of aggregations is used to specify whether one or more instances of this
window class may be created at the same time.

Methods that belong to main window or window objects are mapped to pulldown menu
entries of the main window. Window methods for which no synonyms can be found
are mapped to an application-specific pulldown menu. If the OOA classes contain
methods for standard services (e.g., Print, Find, Replace, Open, Close), these methods

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 69

are mapped to the corresponding menu items and linked with standardised ASO
objects, which represent the related dialogue box or default action.

To resolve name collisions between methods a menu entry is only generated for the
method that belongs to one window: the one which is itself the main window or the
nearest one to the main window. A button is assigned to the other method(s). Dia-
logue box methods are always mapped to buttons or button groups. At this life cycle
step, neither real menus nor buttons, but only ASO representation objects with the
appropriate slot settings are created. For each OOA method, which could be
mapped to a menu action or a button, a dynamic link to the OOA object is gener-
ated. At a later stage, the code generator exploits these links and creates code for
calling the method, whenever the menu entry or button is selected.

During global design each complex OOA class (e.g., a class representing a data entry
form for a multilingual dictionary) has to be expanded to an aggregation of many
(typically dozens or hundreds) simple OOD-classes. Each exploitable class attribute
is mapped to one or more OOD-classes, representing one interaction object for
some simple component of the entry form (e.g., a list box for selecting the target
language). Each generated OOD class is linked to its origin class by an aggregation
relation. For grouping attributes special content_types settings are available for the de-
signer. Simple OOA classes (with only one content value or attribute) are directly
adopted as OOD classes.

To be exploitable an attribute needs a data type, known to the system and some qual-
ifying meta information. These data are used for mapping each attribute and its con-
tents to an abstract interaction object. The attribute Language of an OOA object
Language Environment with a content_type string:20, for example, is mapped to two
ASO objects, which represent a label with the value Language and an edit field of
length 20. The values of the dialog_object slots, which specify the AIO, are set to Static
and Edit. Two aggregations from the ASO representing Language Environment to the
new ASO objects are generated. To facilitate layout generation the new ASO objects
are connected by associations.

3.3 Detailed Object Design

During this life cycle activity the system selects abstract interaction objects for all
OOD classes. AME uses similar selection techniques as the systems in [de Baar92,
Vanderdonckt93]. Attribute data types, cardinalities and some meta information are
evaluated for this purpose. To find interaction objects for method activations the
calling parameters and return types of the methods are evaluated.

Specific abstract interaction object types (Function, Code, Event) support the integra-
tion of domain functionality, code fragments or event based user interface dynamics.
OOD classes, whose dialog_object was already specified during global design, are re-
visited during detailed design. In some cases abstract interaction objects are refined
to more specific types (e.g., from a group of single buttons to a button group). The
knowledge for selecting abstract interaction objects can be expressed in the form of

70 Computer-Aided Design of User Interfaces

rules. For efficiency reasons, these rules are coded as if-then-else cascades in a global
resource method. The method MakeDialogObject, which was inherited by each ASO,
calls the resource method for choosing the interaction object type. To make the
selection process more flexible, a great number of data type synonyms is known to
the system. A designer can easily change the generated interaction object assign-
ments.

3.4 Automatic Specification of Dialogue Behaviour and Dynamics

The remaining construction level components map OOD object features to inter-
action object features (behaviour mapping) and build the specification for the dynamic
properties of the entire interactive system.

Each ASO object owns the same common Behaviour method. For each abstract in-
teraction object a specific Behaviour method (e.g., ComboBoxBehavior) is provided. Af-
ter an abstract interaction object was assigned to an ASO, the specific method is
activated by Behaviour. It specifies how the contents of the relevant ASO slots should
be mapped to the features of this specific interaction object type. The specification
information is written to reserved ASO slots.

In the target environment, the C++-code generator uses this information for creat-
ing concrete interaction object classes with correct interactive properties. The be-
haviour mapping process also provides information needed to generate menu acti-
vations, external application calls and code for embedding domain objects, which
encapsulate event handlers or application code fragments. For generating these con-
trol specifications ASO-actions with specific action_types (e.g., Create, Delete, Activate)
have to be evaluated together with the dynamic embedding structure of their ASO
objects (see below).

In pure object-oriented systems inter-object communication is specified by messages
(dynamic links) between classes or objects. AME allows the specification of dynamic
links between OOA classes. During global design, additional dynamic links are gen-
erated between each OOA class, representing a window, and all OOD classes, whose
interaction objects (including menus) can dynamically be referenced by this window
at runtime. The configuration of these dynamic links guides the C++-code genera-
tion for window activation and deactivation. Inter-class method calls are also mod-
elled by typed dynamic links between OOA or OOD classes. Message based speci-
fication and generation of interactive dynamics in AME is discussed in more detail
in [Märtin95].

An additional dynamics tool [Schmalzbauer95] is currently being integrated into the
AME environment. This detailed design level tool allows the specification and gen-
eration of message based domain-dependent dynamics for MS-Windows platforms
(e.g. the time- and situation dependent change of the appearance of graphical appli-
cation objects or the availability of menu-entries, if a condition evaluates to True).

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 71

The tool allows the modelling of state-dependent conditions that control the dy-
namic behaviour, the specification of activation messages between OOD objects
and the source code specification of the message handling methods.

OOD attributes may be used as state variables. At runtime state changes (e.g. below
value, above value, changed, exact value or more complex conditions involving multiple
attributes) are watched by generated daemons. An extension to the C++ code gen-
erator exploits these specifications to generate the method implementations.

Figure 6. Simulated Trantool user interface in interactive layout mode

3.5 Layout and Style Generation

To provide a realistic simulation of the application before code generation, proto-
typical instances of all specified interaction objects are created. Instances inherit the
look-and-feel characteristics from AME´s interaction object class-hierarchy.

A specific layout-method (MakeLayout) is assigned and adapted to each OOD object
that represents a window or a dialogue box. The window types and their layout
methods are selected by counting the number of each interaction object type in a
window. A set of window and layout classes and their layout routines were chosen
as AME standard resources by evaluating and comparing the window and dialogue
box types of existing commercial MS-Windows applications. A simplified example
for selecting a layout type for a dialogue box x is shown in the following:

72 Computer-Aided Design of User Interfaces

If (x:number(ComplexInteractionObjects) > 0) /*e.g. spreadsheets*/
Then x:layout_type := linear
Else If (x:number(Edit) > 4) Or (x:number(Editor) > 4)
 Then x:layout_type := entry_mask
 Else If (x:number(Edit) > 0)
 Then x:layout_type := entry_dialog
 Else If (x:number(Listbox) > 0) Or (x:number(Combobox) > 0)
 Then x:layout_type := listbox_dialog
 Else x:layout_type := message_box.

The layout generator also evaluates the association relations specified between OOD
classes to find semantically linked interaction objects. To facilitate layout generation,
each window or dialogue box is divided into rectangular areas. Each resource layout
type (e.g., entry_dialog) defines in which rectangle instances of a certain interaction
object type typically appear. The detailed design (spaces between elements, row and
column ordering, width and height of the window) depends on the actual number
of each element of a given type.

A preview of the layout of all windows is created by activating the layout methods.
Presentational settings like colours, fonts or sizes are inherited from AME´s interac-
tion object resource hierarchy and can be changed by the designer. The user interface
specifications in the layout prototype are still independent of a specific GUI plat-
form. A designer can also add application- or user-specific presentation and layout
rules to the environment- and user-profile. Such rules are activated in a forward-
chained mode. Figure 6 shows the first simulation of the TRANTOOL user interface.
The designer may change the generated layout and presentation. Any changes will
be stored and passed to the target code generator.

3.6 Target Source Code Generation

Finally, the detailed design model that includes the specification of structure, dy-
namics, layout and presentation of the interactive system can be passed to the imple-
mentation level. A code generator at this level exploits the design model to create C++-
source code. The source code can be translated by a Borland C++ compiler and
automatically linked with domain method code. At the generator level, the designer
still may modify the specification, before it is parsed and translated into source code.
To support different target platforms, OOD specifications of applications can be
translated into Open Interface UIMS code.

Conclusion

To compare the AME design process with established conventional approaches sev-
eral application prototypes were developed, including a spreadsheet application and
a simple accounting system. As the system is still developing new application pro-
jects typically require some new interaction object classes and additional construc-

 Software Life Cycle Automation for Interactive Applications: The AME Design Environment 73

tion knowledge. The integration of new resources and design knowledge is a rela-
tively easy task. Once integrated the new functionality can be used by the system like
any other standard resources. This learning process turned out to be quite efficient,
as most parts of the design knowledge are implemented as method-code. Many con-
sistency problems of earlier rule-based generators could be avoided.

Naturally, our approach does not offer solutions to all possible productivity prob-
lems. However, design time can be drastically reduced for those application design
situations, where the existing design knowledge can be applied for generating the
standard parts of the application. AME does not take the domain modelling task
from the designer. If AME´s design resources fit the application domain, however,
an OOA model will be automatically expanded into an OOD model with possibly
several hundreds of ASO objects and their interaction objects.

Without programming, the resulting application provides correct interaction object
mappings, a raw layout, presentation and style attributes, links to all domain code
methods, the menu hierarchy, application-independent interactive dynamics and
part of the application-dependent dynamics.

Acknowledgements

The author would like to thank Johann S. Kempfle, Michael Schmalzbauer, Axel
Struwe, Christian Winterhalder and all others, who did their diploma thesis work
with the AME project, for their contributions.

Part II.

Task Aspects in CADUI

Bridging the Generation Gap: From Work
Tasks to User Interface Designs

Stephanie Wilson and Peter Johnson

Abstract

Task and model-based design techniques support the design of interactive systems
by focusing on the use of integrated modelling notations to support design at various
levels of abstraction. However, they are less concerned with examining the nature
of the design activities that progress the design from one level of abstraction to an-
other. This paper examines the distinctions between task and model-based ap-
proaches. Further, it discusses the role of design activities in such approaches, based
on experience with one task-based technique, and the resulting implications for tool
support and design guidelines. The discussion is contextualised by examples drawn
from a number of case studies where designers applied a task-based approach to
solve one particular design problem: that of developing an airline flight query and
booking system.

Keywords

Automatic generation, design guidelines, model-based design, task-based design,
task models,

Introduction

Current interest in task and model-based approaches to design signifies a trend to-
wards placing greater emphasis on what an interactive system should do and how
people might use it rather than how the system itself works. Designers are encour-
aged to conceptualise designs at a higher level of abstraction than is the case when
working with standard prototyping tools; in particular, they are encouraged to focus
on the behaviour and structure of the user interface rather than on specific details
of low-level interaction objects. This interest is reflected in papers presented at the
DSV-IS workshops [DSV-IS94, DSV-IS95].

Task and model-based approaches to design have many features in common. Most
notably, they both focus on the use of models to represent the various sorts of in-
formation that contribute to the design of interactive systems. For example, there
are models of users’ tasks, domain objects and actions, user characteristics, dialogue

78 Computer-Aided Design of User Interfaces

and interface behaviour, style guidelines, etc. (see also [Puerta96]). The models are
expressed using formal and/or semi-formal notations, and relations may be defined
between the different models. Secondly, both approaches discuss issues pertaining
to the use of the models in design activities (e.g., analysis, evaluation, generation,
verification, etc.), some of which result in the creation of one model from another.
Thirdly, tools of various sorts have been developed to support the design ap-
proaches and their modelling activities; some of these tools have aimed to automate
the design activities, while others have aimed to assist or support designers in their
work.

Broadly speaking, the task and model-based techniques are distinguished by their
ability to model aspects of usage of proposed systems: model-based approaches tend
not to model how a system might be used by users in accomplishing their work tasks.
This distinction is reflected in the extent to which the approaches have focused on
either the design process or the design support tools. We would suggest that, to date,
task-based techniques have displayed greater interest in the former, while model-
based approaches have been more concerned with the latter. Figure 1 compares the
two approaches.

Abstract
interface

description

Interface A Interface B

Design
guidelines

(a) Model-based design: alternative interfaces
generated from the same abstract model, depending
on design guidelines.

(b) Task-based design: alternative abstract interface
descriptions designed to support the same task.

(a)
Task

description

Abstract
interface

description A

Abstract
interface

description B

Interface A Interface B

Design

Design
guidelines

(b)

Figure 1. Comparing model-based design and task-based desigm

Model-based approaches such as UIDE [Foley91, Foley94], HUMANOID [Szekely93]
and MECANO [Puerta94b] were developed in an attempt to provide the designer
with better facilities for constructing user interface software; they aim to improve
interface design by changing the level of abstraction at which it is done and by im-
proving or automating the tools with which it is done. These techniques incorporate
models that allow the designer to express the proposed design at a high level of
abstraction, focusing on the behaviour of the interface. Automatic tools then gener-
ate executable interfaces from these abstract models, usually under the guidance of
other information such as style guides or user models. The abstract model is in effect
a design solution, albeit an abstract design solution. As such, these techniques limit

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 79

their interest in the design process to those processes that occur in the transition
between abstract and concrete (or executable) design solutions. Model-based tech-
niques are not user centred per se; they support the designer more in the construction
than in the design of usable systems, imposing no constraints on how the abstract
design solution is produced.

Task-based techniques such as ADEPT [Wilson93] and MUSE [Lim94] aim to im-
prove design primarily by improving the usability and suitability of the design for
supporting the users’ work. These techniques focus on the process of creating design
solutions: they advocate developing design solutions from information about the
users’ tasks, thus increasing confidence that the system is compatible with the task
it is intended to support. The tool support for task-based design has tended to be
weak, focusing on either editor tools to support task modelling notations or lower-
level generator tools similar to those of the model-based approaches.

The modelling structure in task-based approaches provides a context for interface
design: it offers a framework within which designers can practice their craft. While
much has been reported about the models in these approaches, about notations to
describe them and ways of checking or proving properties about them, considerably
less has been said about exactly how the models should be used to develop designs.

It is only at the level of graphical user interface design, the level addressed by model-
based approaches, that a body of wisdom has been distilled from the collective ex-
perience of the HCI community over the last decade to guide the design process
(e.g., [Smith86, Hix93, Vanderdonckt95c]). This knowledge is most commonly ex-
pressed as design guidelines.

Other than this, little practical guidance has been offered to the design practitioner
to assist in the application of these techniques, although some steps in this direction
have been taken in the context of scenario-based design (see [Rosson95] for exam-
ple.) This gives rise to questions such as what is it to develop a user interface from
a task description? What design decisions are involved? What makes one design
choice better or worse than another? What constitutes a good or bad interface to
support a particular task? In the first instance, it raises the issue of developing prac-
tical guidelines to support the task-based design of interactive systems; in the longer
term it raises the issue of developing task-based design principles.

This paper reflects on these issues in the context of our experience with one task-
based approach to design, ADEPT, and discusses the wider implications of these
experiences for tools to support task-based design. We examine firstly the activities
involved in producing a task model from a number of task analyses; secondly, the
design decisions that take place in moving from a model of existing work to envi-
sioning the tasks that will be supported by a future system; and, thirdly, the design
decisions that take place in moving from envisioned tasks to the design of a system
to support those tasks.

The remainder of this paper is structured as follows. Section 1 provides some essen-
tial background information; it highlights the main features of a task-based approach

80 Computer-Aided Design of User Interfaces

to design and presents an overview of the ADEPT approach in view of these features.
Sections 2, 3 and 4 discuss the creative processes that progress the design from one
modelling activity to another in this design paradigm, and take a first step towards
drawing out some guidelines to support these processes. The discussion is illustrated
with examples taken from a number of case studies where groups of designers were
asked to solve a particular design problem. In each case study the designers were
asked to develop a system that would support the task of airline flight querying and
booking.

This example task is particularly topical in view of the recent advent of on-line flight
schedules and booking systems that are accessible by the general public. The design-
ers applied the ADEPT approach using either pen and paper techniques or the pro-
totype suite of tools developed to support the approach. Section 5 examines the
implications for tool support and the last section concludes the paper with some
reflections on the current state of the art and the future challenges for research and
practice in this area.

1 Task-Based Design and ADEPT

Task analysis is today accepted within the HCI community as making an important
contribution to interactive system design practice. Although its inclusion in user-
centred design approaches has been advocated for some time, it is only recently that
we have seen methods which offer a tighter integration of the task analysis activities
with subsequent design activities, thereby supporting greater use of task information
in creating a design.

Task-based design emphasises the importance of designers developing an under-
standing of users’ existing work tasks, the requirements for changing those tasks and
the consequences that new designs may have for tasks. This places people and their
tasks at the starting point of the design process, meaning that activities such as pro-
totyping are no longer simply a matter of trial and error, where an initial design is
gradually improved by a series of design iterations, but are informed from the outset
by information about the tasks that the system is to support. This is particularly
important in view of the fact that prototyping often fails because designers do not
have the opportunity to iterate from the early prototypes due to time constraints and
external pressures (e.g. from management or customers). Furthermore, the task de-
scriptions can provide a focus for the generation of design ideas, helping to ensure
that novel ideas are motivated by a user-task perspective.

Figure 2 summarises our view of what might be described as a minimal task-based
design process, focusing on the models involved in the process. It starts with an
analysis of the users’ existing tasks, the results of which are expressed as the ‘Existing
task model’. It then progresses, via a process of design, to a description of the tasks
it is proposed that the user will perform with the new system, known as the ‘Envi-
sioned task model’. The process concludes with the detailed design of an interactive
system to support the envisioned tasks, termed the ‘Interface model’. Clearly, this

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 81

simplistic overview does not include evaluation activities, nor does it show the iter-
ative nature of the design activities.

Envisioned

task model

Existing
task model

Interface
model

designdesign

Figure 2. Overview of task-based design

Each of the components shown in figure 2 may be elaborated to reveal further mod-
els and processes. For example, all of the models and processes involved in a typical
model-based approach such as UIDE would be encapsulated within the component
labelled ‘Interface model’. Likewise, a task model might consist of a description of
the task goals and a separate description of task objects.

A further important point is that not all task-based design approaches make this
clear distinction between existing and envisioned tasks. There are a number of dif-
ferent approaches to task-based design and only some of these take an analysis of
existing tasks as a starting point. Others have no description of existing tasks but do
have some form of description of the tasks to be performed with the system or of
the methods involved in using the system.

A number of task-based design approaches have been reported which broadly con-
form to the overview in figure 2 (for example, [Lim94, de Haan94, de Bruin94, Bo-
dart95a]), although they have set out with various aims. For example, to integrate
human factors techniques with software engineering methods or to provide formal
descriptions of user interfaces at various levels of abstraction with a view to verifying
properties of the system. In our work on the ADEPT project [Wilson93, Johnson95],
we set out to investigate how descriptions of users’ tasks should influence and guide
the design of systems to support those tasks, and to show how tool support might
assist the designer in following such an approach.

An overview of task-based design in ADEPT is provided in figure 3 (again omitting
details of evaluative or iterative design processes). We take a work-task to be a mean-
ingful unit of work that a person undertakes in a given domain in the process of
achieving their work goals. Hence, the approach starts with an analysis of the users’
existing work tasks and continues with the development of a description of the en-
visioned tasks as an early design activity.

The envisioned task model is not a description of the methods for using the system,
but a description of how work goals can be achieved for which, as yet, no system
may have been designed. The existing task model forms part of the description of
the problem space for the design, while the envisioned task model forms part of the
proposed solution space for the design.

82 Computer-Aided Design of User Interfaces

design

task
analysis

design

Envisioned
task model

Abstract
interface

model

Prototype
interface

Users, organisations and existing
artefacts

domain
analysis

Requirements,
Existing

task model

Design
guidelines

consequences
for user tasks

generation
automatic

Constraints,
Design ideas

Figure 3. Task-based design in ADEPT

Other aspects of the problem domain are also captured and recorded in the form of
requirements, design constraints and design ideas. These are in no sense finalised at
the point where the analysis activities are completed, but can be supplemented, elab-
orated and modified as the design progresses. This additional information from the
problem domain will influence the design choices that are made at each step in the
process, including the design decisions made during the creation of the envisioned
task model.

Having created an initial vision of the tasks that users will perform with the new
system, the process continues with the development of an ‘abstract interface model’.
This is a high-level description of an interface to support the task, expressed in terms
of abstract interaction objects, groupings of these objects and dialogue information.

Further design decisions at the level of the abstract interface model may have con-
sequences for the envisioned task; these are reflected in the diagram by the backward
arrow. The final stage in the process is the progression from abstract interface model
to prototype interface — a low-level, executable form of the proposed design. Pro-
totype design tools have been provided in ADEPT to support all stages of the design
process, but only this final step is automated under the influence of a set of modifi-
able design guidelines. Once the prototype interface has been produced by the au-
tomatic generator tool, the designer may choose to modify it using an interface
builder tool.

Again, this is a simplistic overview of the complexities of the design process and it
would be naive to believe that design always proceeds in this orderly, top-down fash-
ion. Design is not a simple top-down process, but frequently involves bottom-up
activities as various studies have reported (e.g., [Hartson89]). Design modifications
or decisions made at the level of the more concrete models during bottom-up design
activity may have consequences for more abstract models.

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 83

ADEPT and other task-based design approaches offer a guiding structure for the
design of interactive systems, the structure being provided by the series of explicit
models to be produced at various points during the process.

However, as alluded to in the previous section, these approaches do not offer the
designer guidance in how to progress the design from one modelling stage to an-
other, except at the final stage of the process where existing user interface design
guidelines are influential. While this has the advantage of not constraining or restrict-
ing how design is done, it has the disadvantage that designers are being asked to
design within a new paradigm but yet are offered no practical guidance as to how
this should be achieved. The following three sections of this paper examine this
issue.

2 Analysing and Modelling Existing User Tasks

In this section we consider how designers perform task analyses within the context
of task-based design, and how the results of task analyses may be combined to pro-
duce a coherent model for use in subsequent design activities (summarised later in
figure 6). The method of task analysis used in ADEPT follows our earlier work on
task analysis [Johnson91a], and emphasises the importance of modelling how users
perform tasks at present and their current knowledge of the domain and tasks.

There are a number of data collection, analysis and modelling techniques that may
be employed in performing a task analysis. For example, data collection methods
include direct observation of workers in the workplace, interviews, questionnaires,
demonstrations and techniques that encourage workers to produce their own de-
scriptions of their work. Some techniques are more or less suitable for use in differ-
ent situations.

For example, direct observation may be difficult in hazardous or safety critical situ-
ations (since the presence of an observer may be hazardous to the observer or may
increase the probability of the observed worker making a serious mistake), or in tasks
that are highly cognitive in nature, for example in translating a document, where
there may be very little directly observable behaviour. In contrast, direct observation
of tasks involving much overt activity will provide a rich source of data. Detailed
discussions of the various data collection techniques are given in [Johnson92a] and
[Diaper89]. Some heuristics for selecting data collection techniques are given below:

1. Always use more than one data collection technique since any technique will only
give partial information about a task.

2. Direct and indirect observation techniques are well suited for identifying patterns
of behaviour, temporal aspects of tasks, behaviours and procedural aspects of
tasks, but are poorly suited to predominantly cognitive tasks. The analyst needs
to be aware that observations are time consuming, cannot be used in isolation,
and that interpretation of observations can involve a degree of inference on the
part of the analyst.

84 Computer-Aided Design of User Interfaces

3. Interviews provide a useful technique for identifying general rules, background
knowledge, conditions and constraints upon tasks, the goal structure of a task
and dependencies between tasks, but are poor at identifying temporal and pro-
cedural aspects of tasks. The analyst should be aware that people are better at
remembering conditions given actions, rather than actions given conditions.

4. Questionnaires are best used to obtain shallow descriptions of task properties,
and are useful to identify objects and attributes of a domain and their structural
(class and component) properties, but are poor at providing detailed task infor-
mation or information about context sensitive task behaviours.

Each of the techniques has more specific guidelines for their use in task analysis.
One important point is that the analysis should focus on identifying characteristics
of specific tasks rather than asking users to generalise across many tasks. The analysis
should seek to identify all the variations and individual differences in each task as
well as general characteristics across many tasks.

This is achieved by analysing many different users performing each task, resulting in
a task description for each user on each task. These individual task descriptions carry
all the individual differences regarding how users achieve a given goal. (The tasks are
described in terms of the users' goals, sub-goals, procedures and actions, together
with a description of the objects used in performing the actions. See [Johnson91b]
for details.)

In our case studies, designers were asked to carry out an analysis for the task of
querying and booking a flight. A number of subjects were used in the analysis and
in each case data was collected about the last occasion the subject had booked a
flight — a specific task. This highlighted many individual differences in the way the
task was performed, all of which should be taken into account during the design
process.

Figure 4. Alternative task descriptions for giving travel details

A trivial example of this is shown in figure 4 for one component of the overall task:
giving details of the desired journey to a travel agent. In the first scenario the subject
does not specify which airport they wish to fly from (presumably any local airport is
acceptable to this individual), and they specify that they wish to depart within a cer-
tain time interval (the ‘Departure Window’). In the second scenario the subject

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 85

names specific departure and destination airports, specifies a departure time, a pre-
ferred airline and ticket type.

In order to use the information in design, the analyst must produce a composite task
model from each task description for the same goal. The composite task model
should include all the different ways of performing the task. Developing the com-
posite task model involves identifying all the alternate ways of achieving the same
goal, resolving any conflicting descriptions (e.g., where the same course of action
appears to lead to different sub-goal states) and identifying all the optional and com-
pulsory aspects of a task (the optional ones will be indicated by a high degree of
variance and low occurrence across each of the specific task descriptions, while the
compulsory ones will be indicated by a low variance and high occurrence across each
of the specific task descriptions).

In addition, in developing the composite task model the analyst should identify dif-
ferent objects used in the different specific tasks and any differences in the relevance
of their attributes to the task. The analyst should also identify typical examples of
any object where there are a number of different examples of the same object across
the different task descriptions (for example, in booking an airline flight there may be
many different examples of timetables, some may be atypical in that they exclude
information on time differences, while others may be atypical in that they include
information on in-flight meals for each journey).

Figure 5. A composite object description

86 Computer-Aided Design of User Interfaces

An example of a composite object description, from the ADEPT object browser, is
given in figure 5 where the composite flight specification object consists of a number
of compulsory and optional sub-objects.

Having produced a composite task model for all the relevant tasks in the domain of
work, the analyst should now consider characteristics across tasks. This aspect of the
analysis identifies commonalties of behaviours, common patterns of behaviours and
common objects across the various tasks. In addition, this can identify constraints
and dependencies across tasks. For example, in the domain of international travel,
passenger information may be used by travel agents for invoicing the traveller and
by the airline for advertising new products to potential customers. Similarly, patterns
of behaviour such as the pattern by which the travel agent requests the traveller’s
destination and departure dates may correspond to the pattern that the agent must
use to enter information into a flight enquiry system.

The Development of Existing Task Models

Specific Task
Models:

Identify characteristics of specific tasks in the first instance.

Analyse many different users performing each task.

Identify all variations and individual differences in tasks.

Produce a task description for each user on each task.

Composite Task
Models:

From each task description for the same goal, produce a composite task model
which includes all the different ways of achieving the goal

Identify all the different ways of achieving the same goal.

Resolve conflicting descriptions (e.g. where the same course of action appears
to lead to two or more different goals).

Identify optional aspects of a task (i.e. where there is a high degree of variance
and a low occurrence across the specific task models).

Identify compulsory aspects of a task (i.e. where there is a low degree of
variance and a high occurrence across the specific task models).

Identify commonalities of behaviour, patterns of behaviour and common
objects across the different tasks.

Identify constraints and dependencies across tasks.

Identify the different objects and typical instances of objects where there are a
number of different examples of the same object across the different tasks.

Figure 6. Guidelines for developing extant task models.

3 Envisioning Future User Tasks

In a true task-based design approach, the first real design activities occur with the
consideration of how existing work tasks may be changed or enhanced and the form
that the work tasks will take in the future. In a general design situation the work
might be changed in many ways, such as reorganising the structure of the workforce,
rescheduling working patterns, relocating the work etc. However, in the context of
interactive system design and human-computer interaction it is only those aspects
of work that could be changed by the design and introduction of an interactive com-
puter system that are the focus of concern. What we term the ‘Envisioned task

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 87

model’ is a model of the anticipated nature of work which would come about as a
result of designing an interactive computer system.

The envisioned task model is developed from the existing task model, the require-
ments and the overall design problem statement of the design situation. The overall
design problem might be (as in our case studies) “to increase the quality and effi-
ciency with which air-travellers can book their flights, without increasing the costs
in terms of training time or number of staff required to carry out these tasks”.

The requirements might include constraints on the possible design solutions, such
as the system must be integrated with existing computer systems and must enable
users to transfer between the existing and new systems with minimum retraining.
Working with these requirements, problem statements and the existing task model,
the designers must identify where they might introduce a new interactive system to
improve the quality and efficiency of booking flights.

A first step in this process is to identify any tasks which could be either avoided or
carried by a new system on behalf of the users (where this is seen as desirable).
Additionally, the designers should identify any tasks that are not to be carried out by
the new system and which therefore must be carried out by the users, and any tasks
which will involve the users interacting with the new system. In doing this, they have
begun to define the scope of the new system design and where it impacts the work
domain.

Having defined a potential scope for the new system, a number of other considera-
tions influence the development of the envisioned task model from the existing task
model. These include identifying where sequences of activity can be made easier to
perform, perhaps by removing unnecessary constraints between activities, making it
possible to carry out activities in parallel or in an interleaved fashion where previ-
ously only sequential activities were possible.

For example, in seeking to improve the booking of flights, in the existing task model
it is only possible to make enquiries of specific flights (i.e., of particular dates of
travel and particular destinations), and this forces the user to make repeated queries
whenever they want to know what flights might be available during a given ‘window’
of time for departure and return. One possible design solution would be to allow
the user to make enquiries on more than one departure date and more than one
return date within a single query. This would have the effect of replacing a series of
actions with a new, more efficient action. Further design considerations centre
around the objects that the user interacts with. One design option is to create new
objects that compose or combine many individual objects. By creating such new
objects the designer is attempting to make it possible to carry out actions on those
objects which will be more effective, and to bring together into a single composite
object those attributes of several objects that are all relevant to a particular aspect of
the task. For example, in the domain of air travel the user of a flight booking system
often needs to be able to retain a list of flight options that are available at given dates,

88 Computer-Aided Design of User Interfaces

times, prices and routings. This information is often distributed around several in-
formation objects rather than held in a single object, making it difficult for the user
to carry out actions that involve all the information. By creating a new object that
brings together all the information into a single object, say the "option-list", it not
only makes that information readily available to the users, it also makes it possible
for them to perform actions directly on it, such as redefining the departure dates, or
enquiring about the availability of all items on the option-list.

In developing the envisioned task model from the existing task model, the intention
is to attempt to improve the work situation. One important aspect of work that must
be considered is the safety and security issues. Often safety and security are embed-
ded in the procedures of the work practice. For example, strict patterns of behaviour
and sequences of actions are performed to ensure that an unsafe or insecure state
does not occur. Since such embedding occurs it is possible to reinforce, and in some
cases automate, the safety/security procedures in the new system.

The Development of an Envisioned Task Model

Influences: The envisioned task model is developed from: the requirements, the problem
statement and the existing task model.

Scoping the
design:

Identify any tasks that can be avoided or that are unnecessary.

Identify any tasks that can be carried out completely by the computer.

Identify any tasks that can only be carried out by the user.

Identify where users and the computer will need to interact to carry out a
task.

Improving the
work:

Identify where sequences of activity can be made easier to perform, e.g. by
removing unnecessary constraints between activities, making it possible to
interleave activities and/or carry out activities in parallel.

Create more powerful objects by composing and combining individual
objects, making it possible to carry out actions on those composed objects.

Bring together information that is distributed across several objects but all
required at the same point in a task.

Ensure that safety and security procedures are supported.

Figure 7. Guidelines for developing envisioned task models

However, it is also possible to make a previously safe/secure system become un-
safe/insecure by changing the temporal dependencies between actions, or by chang-
ing the point in time at which particular information is displayed. It is therefore
important to recognise that changes made to increase the efficiency of the work may
inadvertently affect the quality of the work. Figure 7 summarises these guidelines for
developing the envisioned task model.

These design deliberations lead to the development of an envisioned task model
which provides a definition of where a new system is going to fit into the workplace,
what tasks it will support, where users will interact with it, for what purposes they
will interact with it and how it will improve or otherwise change the quality and
efficiency of the work.

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 89

It does not specify how any interaction is to occur or how any information display
will appear. It does provide the constraints that any design of interaction or display
will have to meet: it provides the starting point for the development of the user
interface.

4 Creating an Interface Design

In creating an interface design to support a particular task, the question that arises is
how should the envisioned task description inform the design of the interface? This
progression from task to interface design will, in the first instance, be considered
here as a single step, as might be the case when using paper-based tools, or when
using a paper-based task model in combination with a rapid prototyping tool.

Later, in section 4.4, we will discuss how this progression is actually supported by
existing task-based design tools. This activity starts once the designer has created a
vision of what the users’ future tasks might be and has validated this vision with
users. Various factors then contribute to the development of an interface design,
notably:

 Task descriptions (including task decomposition information, action and object
descriptions, sequencing information).

 Requirements (including functional and usability requirements for the new
system).

 Design ideas (which may be prompted by the task descriptions and the
requirements).

 Design constraints (including hardware, software and organisational constraints
that may render certain design options infeasible or too costly).

 Design guidelines (including layout rules, style guides, colour and typography
guidelines, etc.).

The focus here is on the first of these. A multitude of different interface designs
might be produced, each of which would vary in its fitness to support the users'
tasks.

In a task-based design approach, task information is the primary determinant of the
content, behaviour and structure of the user interface. Other factors such as require-
ments, design ideas and design constraints influence design choices.

The task models contain several different types of information which are used in
different ways to guide the interface development: task decomposition information,
action and object descriptions and sequencing information. These are discussed be-
low and summarised in figure 10.

4.1 Decomposition Information

Task decomposition refers to the goal / subgoal structure identified initially in the
task analysis and subsequently reflected in the envisioned task model. For example,

90 Computer-Aided Design of User Interfaces

figure 8 shows the top-level decomposition for the flight booking task. It involves
the traveller making some initial decisions about their travel dates and then repeat-
edly getting travel options from agents and either booking a flight or perhaps refin-
ing their flight specification because there were no suitable options.

Figure 8. Top-level goals and sub-goals for the flight booking task

This decomposition of a high-level task goal into subgoals, and eventually into the
procedures and actions that the user performs to achieve the goal, should be re-
flected in the overall structure of the interface. Essentially, the decomposition infor-
mation should be reflected in the ‘grouping’ of components in the user interface, i.e.
components of the interface that are intended to support closely related parts of the
task should be grouped together. This grouping of components should be strongest
at the lowest level of decomposition: the actions that the user performs to achieve
some goal should be closely related.

For example, figure 4 showed some specific models for the "Give flight specifica-
tion" component of the task. An interface designed to support either of these sce-
narios should group together the interaction components intended to support the
various actions that make up the flight specification task. Grouping interface com-
ponents may mean placing them in close spatial proximity on the screen, or in close
temporal proximity in the dialogue structure.

4.2 Action and Object Information

The task model includes information about the actions that users perform to achieve
their goals and about the objects involved in the actions. This information also
guides the development of the interface; in particular, it influences the components
that will actually appear in the interface and the ways in which those components
can be manipulated.

Broadly speaking, actions in the task model are indicative of commands that the user
will issue to the system, while objects suggest the information to be manipulated by
the commands or to be displayed on the screen. The action-object groupings there-
fore indicate information that can be manipulated in particular ways. In terms of
choosing interface components, simple task objects and the actions applied to them
can be supported by the sorts of widgets found in standard user interface toolkits.
For example, the task of formulating an initial request to an on-line flight booking

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 91

system involves a number of actions where information (represented as informa-
tional objects) is given to the system. Actions such as specifying preferred airports
or dates of travel can be supported by simple widgets such as type-in text fields.

Figure 9. Examples of interface widgets to support simple task action-object groupings

Figure 9 gives a simple example of widgets that might be selected to support the
actions and objects of the flight specification task. More complex task objects either
require specialised widgets or can be supported by a group of standard widgets. For
example, specialised widgets could allow the user to select departure and destination
airports from a clickable world map or to select a preferred seat from an outline
representation of the aircraft.

4.3 Sequencing Information

The final aspect of the task description that influences the development of the user
interface is sequencing information. As can be seen in figure 8, the ADEPT task
models include detailed information about the temporal ordering of task activities.
If users perform their tasks in a certain order, clearly the systems designed to support
the tasks should support the same task sequencing. In other words, the dialogue
structure of the interactive system should be developed in line with the task sequenc-
ing information.

Our experience has suggested that while it is critical that the system should not vio-
late the task sequencing constraints (i.e., it should not force the users to perform
their tasks in a different order), it can relax the constraints in situations where safety
conditions will not be violated, allowing users to perform tasks either in the sequence
they are currently performed or allowing them to develop new strategies for achiev-
ing their task goals.

92 Computer-Aided Design of User Interfaces

Using Task Information to Guide the Development of Interface Designs

Task decomposi-
tion:

Reflect the goal, sub-goal and action decomposition in the overall structure of
the interface.

Group interface components that support closely related parts of the task.

Let the lowest level of task decomposition (i.e. the actions) be the strongest
determinant of task structure.

Group interface components by placing them in close spatial proximity on the
screen, or in close temporal proximity in the dialogue structure.

Task actions and
objects:

Use task actions and objects to determine the components that will actually
appear in the interface and the ways in which those components can be
manipulated.

Use actions to suggest commands.

Use objects to suggest information to be manipulated and/or displayed.

Use action-object groupings to indicate information that can be manipulated
in particular ways.

Support simple objects, and the actions applied to them, by the sorts of
widgets found in standard user interface toolkits.

Support complex task objects by either specialised widgets or by a group of
standard widgets.

Sequencing:

Let sequencing information in the task model be the major determinant of the
dialogue structure of the interactive system.

Do not violate task sequencing in the interface design.

If desirable, relax sequencing constraints in situations where safety
conditions will not be violated

Figure 10. Guidelines for developing user interfaces to support tasks

4.4 Tool Support for Interface Design

Most task-based design approaches support the transition from envisioned task to
interface design via a number of intermediate steps. As figure 3 showed, this is a
two-stage process in the case of ADEPT: from envisioned task to abstract interface
model and then from abstract interface model to executable prototype (see [Wil-
son93] for details). There are several motivations for this.

Firstly, a high-level description of the user interface, such as that provided by an
abstract interface model, allows the designer to reason at a level of abstraction re-
moved from implementation details, focusing on the behaviour of the interface ra-
ther than the interaction details.

Secondly, it facilitates taking account of existing user interface design guidelines. The
use of task information discussed above primarily governs the transition from envi-
sioned task to abstract interface model, while the further transition to implementa-
tion is governed by a different set of rules. In stark contrast to the paucity of infor-
mation available to guide the transition from envisioned task to abstract interface
model, there is a whole body of guidelines covering issues at the level of screen and
dialogue design. Thirdly, it is easier to provide tool support for the process when it

 Bridging the Generation Gap: From Work Tasks to User Interface Designs 93

is decomposed into a number of sub-activities, each with its own concerns and as-
sociated guidelines. It should be noted that this discussion has focused on the pro-
gression from envisioned task to prototype interface in the context of design; it has
not been concerned with examining the nature of the relationship that exists be-
tween a final description of the envisioned task and the final interface. Others have
specified this as a refinement relationship. However, it is not reasonable to suppose
that the designer will formulate and express a complete design at the level of the
envisioned task at the first attempt. Rather, we can expect that further design deci-
sions may be made at the level of the interface description which have consequences
for the users’ tasks.

5 Implications for Tool Support

As mentioned earlier, there are relatively few usable tools available at present to sup-
port task-based design. However, tool support is clearly an issue when designers are
confronted with large scale design problems where it would be difficult, if not im-
possible, to manage the various models and their relationships on paper in a correct
and consistent manner. Those tools that are available to support the earlier stages of
the design process (task modelling and abstract interface modelling) tend to take the
form of editors. Editor tools offer designers a high degree of flexibility.

They impose no restrictions on the set of task or abstract interface models that may
be described, nor do they constrain or guide the designer in exploring design alter-
natives or in making the design decisions involved in progressing from one model
to the next. In fact, their main contributions to task-based design support are to
ensure that the task information is available in an integrated environment, to ease
manipulation and management of the information and to ensure that the models are
syntactically correct.

While there are relatively few guidelines relating to the actual activities of design in
these approaches, there are rather more guidelines concerned with producing the
final software system. In other words, there are guidelines that offer suggestions as
to appropriate and inappropriate features of user interfaces. These guidelines can be
applied at the transition from abstract interface model to executable interface, and
cover many issues such as selection of interaction objects, layout, use of colour and
platform-specific style guides. This is the stage of the design process that currently
offers the greatest potential for automation, as is evident from the tool support pro-
vided for model-based design. Existing tools have taken advantage of these guide-
lines, although too much automation can come at the expense of insufficient flexi-
bility.

This paper has reported some initial work on providing designers with practical guid-
ance in adopting a task-based approach to design. We are hopeful that further re-
search in this direction could result in the development of task-based design guide-
lines which, in turn, would offer a basis for enhanced tool support. In this context,
we are talking about offering guidance and support to the designer rather than en-
coding rigid guidelines to which the designer must adhere or which would be applied

94 Computer-Aided Design of User Interfaces

automatically. It is clearly premature even to consider automating these essentially
creative design activities, otherwise we would unduly and inappropriately constrain
the design activities. In the longer term, it remains an open question as to how far it
will ever be appropriate to automate these activities: design is by its very nature a
creative process and removing creativity from the process can only result in a lack
of innovation and a deskilling of designers. However, we can assist designers by
removing tedious and mundane jobs, and by providing appropriate support to facil-
itate their creative activities.

The discussion in this paper has intentionally focused on design activities, but eval-
uation activities are also important in task-based design. Guidelines can help in
providing support for evaluation activities; it becomes feasible to assess where good
practice guidelines have been followed and where the design deviates from the
guidelines. For example, guidelines governing the transition from envisioned task to
interface design embody some notion of what it is for an interface to support a task
and could therefore provide the basis for an assessment of the task fit of the interface
design.

Conclusion

This paper has highlighted some important features of task and model-based ap-
proaches to design and has contrasted the two techniques. To date, there has been
little evidence of the uptake of these techniques in design practice. This might be
accounted for by a number of factors such as the immaturity of the techniques and
the prototype status of the design support tools (where they exist at all).

Further, in the case of task-based design, we believe that it is unrealistic to expect
designers to design within a modelling framework without offering practical guid-
ance as to how design should be carried out in this context. These task and model-
based techniques can only hope to move out of the research community when they
begin to address issues beyond those of the form of the models they employ. This
paper has offered some insight into the design activities that occur in a task-based
approach to design, based on actual experience with such an approach. These results
represent a tentative first step towards the development of task-based design guide-
lines; further work in this direction remains a challenge for the HCI design commu-
nity.

Acknowledgements

The ADEPT project was funded by DTI and SERC, grant no. IED 4/1/1573. Our
current research is funded by the EPSRC, grant no. GR/K19211. We are grateful to
the Amodeus project for providing the original idea for the design problem used in
this paper and to the participants at our tutorials on task-based design for their in-
spiration and novel solutions to the design problem. Thanks also to the anonymous
CADUI’96 reviewers for their detailed and helpful comments.

The DIANE+ Method

Jean-Claude Tarby and Marie-France Barthet

Abstract

The DIANE method has been created to solve malfunctions in the use of interactive
software, leading to trouble in the information systems and difficulties in the user
learning and memorisation. The DIANE method aims to integrate the user and his
interaction capability into the current process of designing an interactive software.
DIANE+ extends the DIANE method to make possible the automatic generation of
user interface. This extension concerns the model of dialogue control, and the inte-
gration of an OPAC object data model extending the PAC model. This work is based
upon a key concept: the control sharing between man and machine. Our approach
complements the object methods by integrating aspects relating to tasks and work
stations, and concepts such as the user's level and activity.

Keywords

User interface design, task analysis, computer-aided generation, automatic contex-
tual help, automatic user interface management.

Introduction

With actual UIMSs, user-friendly interfaces can be created with greater decisional
latitude5, direct manipulation, prototyping facilities and code generation. These two
last features can be executed from screen layouts or specifications of the application.
On the other hand, UIMSs have a major default: they do not integrate ergonomics
into the life cycle. These limitations occur at four distinct levels:

1. the user is not modelled in the application, so interactions are treated inde-
pendently of him, and do not take into account his level of knowledge of the
application (from beginner to expert);

2. UIMS do not have any specification method. They are used after specifications
have been made;

3. human engineering is rarely integrated. In general, it is applied to specific cases;

5 The decisional latitude is the user’s freedom of action within the application.

96 Computer-Aided Design of User Interfaces

4. the evaluation of the ergonomic aspects is impossible. The application can only
be tested to see if it corresponds to the specifications.

These remarks depend basically on the application domain. We can distinguish three
types of tasks: procedural (e.g., in information systems), expert (e.g., in knowledge
based systems [Vogel88, Hickmann89, Brunet91]) or creative (e.g., in drawing appli-
cations). Our interest is in applications with procedural processes and decisional lat-
itude, i.e., applications where user intentions are predefined. Our objective is to de-
sign and create a CASE tool which possesses the advantages of UIMS while reducing
the ergonomics problem.

Task-oriented approach and object-oriented approach are both used in application
development. The second approach was first used in implementation but current
object-oriented methods show that it can be integrated in design and specification
[Schlaer88, Bailin89, Colbert89, Coad90, Gibson90, Rumbaugh91]. This has been
true for the task-oriented approach for several years, but the rising need of interac-
tion revealed the limits of this approach. It has, however, proved itself and the hu-
man engineers know that it is easier to describe a job through tasks and goals rather
than objects to manipulate [Sebillotte88, Sebillotte91].

Moreover, a job described through tasks and goals allows extracting and validating
the cognitive user model more completely. So, the task-oriented approach is advan-
tageous in the first phases of application development. It can be used, for example,
with hierarchical decomposition [Sacerdoti74, Sacerdoti77]. The design and imple-
mentation can then be performed with the object-oriented approach. Our work is
based on the first phases of application development, so we use the task-oriented
approach with the DIANE+ method [Tarby93], which allows us to specify human-
computer dialogue. From these specifications, we generate the user interface and a
part of the application’s code. The dialogue controller of our tool runs as an infer-
ence engine. It is responsible for the management of the interface, of the application
and of the help module.

The DIANE and DIANE+ (extension of DIANE) methods are presented in this arti-
cle. The first part is a presentation of the objectives of our work. The second part
presents original concepts of DIANE and their evolution along DIANE+, supported
by the case of preplanified tasks. The third part shows the formalism and its appli-
cation through the electronic mail example. The fourth part presents the mock-up
tool associated to DIANE+. The last part is a discussion beside similar works.

1 Objectives

The DIANE method has been created to solve malfunctions in the use of interactive
software, leading to trouble in the information system and difficulties in the user
learning and memorisation. The DIANE method [Barthet88] aims to integrate the
user and his interaction capability into the current process of designing an interactive
software.

 The DIANE+ Method 97

According to the Seeheim model [Pfaff85], the Diane method, based on the analysis
of tasks and users (aims, decision margin, experience), brings a model and formalism
to describe the dialogue control and its interfacing with the core application.

DIANE+ [Tarby93] extends the DIANE method to make possible the automatic gen-
eration and the automatic management of the user interface. These extensions con-
cern the model of dialogue control and the integration of an object data model called
OPAC (sub-section 2.6).

This work is based upon a key concept: the control sharing between man and
machine. This sharing does exist in any application and is comprised between two
extreme cases: a complete control by machine or a complete control by man. Appli-
cations installed on satellites correspond to the first case, and the second case is close
to creative applications such as drawing software. Any current case needs an accurate
description of the control sharing. But the object methods do not highlight this shar-
ing which is diluted through objects, making difficult a clear evaluation of control
sharing between man and machine.

Our approach complements the object methods by integrating aspects relating to
tasks and work stations, and concepts such as the user's level, activity, etc. In order
to make this approach applicable, we need the concept of data, which is provided
by the OPAC data model referring to current object concepts (inheritance, encap-
sulate, etc.), separately from the "task" aspect. Consequently, an application will be
described first in terms of tasks specifying the control sharing, complemented in a
next step by the manipulated OPAC data.

An objective of this work is to show that an application can be described by means
of aims associated to tasks, these tasks being associated to the work stations of var-
ious kinds of users. This description could make possible to build up the skeleton of
the application, including a provisional complete user interface and the code neces-
sary to manage automatically the application (user interface, key functionalities and
contextual help). In a first stage, our work limits to the domain of preplanified ap-
plications [Rasmussen83] and does not cover the field of expert or creative applica-
tions. Any application with preplanified tasks can be designed with DIANE+, for
example the management of electronic mail that is presented in this paper.

2 Concepts of the DIANE+ Method

The DIANE+ method covers the specification phase of an interactive application; it
makes possible to integrate the results of the analysis phase and can be used during
the phases of analysis and specification as a formalism to describe an interactive
application; it provides a detailed specification which can be used during the design
phase or on automatic generation purpose, as shown in section 4.

The main characteristics of the DIANE+ method are presented below:

 the various representations of an interactive application (sub-section 2.1),
 the abstraction levels (sub-section 2.2),

98 Computer-Aided Design of User Interfaces

 the aims and the user's logics (sub-section 2.3),
 the dialogue control sharing between man and machine (sub-section 2.4),
 the adaptation of dialogue to users (sub-section 2.5),
 the OPAC data model (sub-section 2.6).

All these characteristics make possible a quite complete description of the aspects
relating to tasks and users.

2.1 The Various Representations of an Interactive Application

In order to integrate the human factors into the design of an interactive application,
the DIANE+ method proposes a model of the interactive application including three
viewpoints: the analyst's, the user's and the programmer's viewpoint. The links be-
tween these viewpoints and the concepts of cognitive psychology and ergonomics
are presented in figure 1.

The analyst's viewpoint, called Conceptual Representation, describes for a workstation,
first the general logics of the new information system, then the logics of the interac-
tive processing, that is the dialogue control and the interface with the core applica-
tion as defined in the Seeheim model.

During this phase starts the integration of the cognitive psychology elements relating
to the user (role, experienced, beginner,...) into the characteristics of the task (effec-
tive task, hierarchical planification...) or into the interaction between both (user's
logics). The Conceptual Representation covers the concept of utility [Senach90].

The user's viewpoint, called External Representation, corresponds to the software as it
will be seen and operated by the user. This External Representation is made of two
main parts; the first one translates the elements of the Conceptual Representation
involved in the man-machine interaction; the second one takes into account all the
specific elements of the External Representation (which corresponds to the presen-
tation objects). It integrates all ergonomics elements such as those presented in a
style guide [Scapin93, Smith84] corresponding to the software usability.

The programmer's viewpoint, called Internal Representation, corresponds to the imple-
mentation of both Conceptual and External Representations. No new user specifi-
cation is generated during this phase which integrates no additional element of er-
gonomics. Therefore, it will not be described in this article.

 The DIANE+ Method 99

Figure 1. Cognitive ergonomics and the various representations of
an interactive application

DIANE+ covers all these three representations. The design with DIANE+ covers the
Conceptual Representation; the automatic generation of the user interface and the
automatic management of the application cover the three Representations.

2.2 Abstraction Level

With DIANE+, an interactive application is represented not only by means of three
viewpoints (sub-section 2.1) but also according to various abstraction levels.

The highest abstraction level includes the goals of the application and provides the
most general view of its objectives. In fact, these goals are split up into sub-goals,
sub-sub-goals, etc., corresponding to lower abstraction levels. This splitting ends at
the elementary processes which correspond to the lowest abstraction level.

Whatever the abstraction level is, the designer is always provided with a complete
view of the level. He does not need to know the lower levels to understand the
functioning of the application. The more extended the splitting is, the more accurate
the description of man-machine dialogue is. Thus, concerning the goals, the designer
will specify for instance that goals 1 and 2 are independent from each other, or on
the contrary strongly dependant. Then, in the lower abstraction levels, he will con-
sider required process sequences, constraints on process, modes associated to these

Conceptual
Representation

Internal
Representation

External
Representation

Cognitive psychology

- User's typology
- Anticipated / effective task
- Function and user's logics
- Hierarchical planification

Cognitive psychology

- Short term memory structure
- Experience, automatism

Ergonomics

- Sequencing of operations
- Interaction language
- Input device
- Presentation device
- Response time
- Error processing
- User's guide User

Designer

Programmer

100 Computer-Aided Design of User Interfaces

process, etc. As a result, each process will be completely described at the lowest
abstraction level.

2.3 The Aims and the User's Logics

Because DIANE+ is based on user's task analysis, identifying the aims of the various
users is the starting point of the method. The aims reflect the functions that the
organisation assigns to the workstations. An aim can be concrete like "delete a mes-
sage" or subjective like "use the e-mail".

The aims can be defined:

 top-down, starting from the general objectives (of the user, the company or the
department) and specialising them on the workstation;

 bottom-up, gathering the system functions aiming to the same objective on the
workstation.

Then, for each aim, the user's logics is defined separately from the technical logics.
In the case of preplanified or procedural tasks, this user's logics results in various
procedures leading to the aim (sub-section 2.4).

Example: the management of the electronic mail may be considered as an aim with
several sub-aims (send messages, read messages, organise the messages, etc.)
which can be split up (organise may be split up into order the messages, delete
messages, etc.), and so on.

2.4 Dialogue Control Sharing Between Man and Machine

Defining the control of the dialogue between man and machine is based on four
questions that determine all necessary informations to manage later this control shar-
ing. These informations relate mainly to two DIANE+ concepts which are the opera-
tions and the precedences. A precedence is a sequencing link between operations. An
operation is either a process which can be performed (e.g. print the screen) or a set
of operations, called sub-operations, which can be processes or sets of sub-opera-
tions, and so on.

The four questions are:

1. Who triggers an operation ? The triggering is optional when it is the user, and
automatic when it is the computer. In the first case, only the user can trigger the
operation and decides when to trigger it. In the second case, the user can abso-
lutely not decide to trigger the operation.

2. Who performs an operation ? The operation is manual if it is the user, (e.g., sign
a document), automatic if it is the computer (e.g., disconnect), and interactive if it is
both (e.g., enter a name).

3. Who checks the performing of an operation ? The operation is optional when
the user checks, and required when the computer checks. Example: for the "Rec-
ord a client" aim, the "Enter the name of client" operation is required when the

 The DIANE+ Method 101

"Print a client" operation is optional. All operations of consultation, printing,
etc., are in general optional. Therefore, an optional operation always needs an
optional triggering achieving the associated aim does not depend on the fact this
operation has been performed or not. On the contrary, a required operation may
be associated or not to an optional triggering, but it is absolutely necessary for
the achievement of the aim.

Another kind of operation exists in DIANE+: the constrained operation. A con-
strained operation results of the splitting of an operation into sub-operations,
when a constraint is associated in order to define how many sub-operations must
be performed.

4. Who controls the sequence of operations? The precedence is indicative if the
user controls the sequence, and permanent if it is the computer. When an operation
refers to no precedence, this means that it can be performed at any moment.

Example: figure 2 schematises two equivalent DIANE+ specifications (ellipses
have no particular signification here). Figure 2.a is a simplified example of a real
DIANE+ specification. Figure 2.b shows a strictly equivalent representation of
figure 2.a. In these figures there is only one permanent precedence between op-
erations 1 and 2.

This means that operations 1, 2, 3 and 4 can be performed in any sequence, as
far as the constraint of the permanent precedence between 1 and 2 is fulfilled:
operation 2 can be performed only after operation 1. So, a lot of sequences are
possible, for example (1,2,3,4), (1,3,4,2), (3,1,2,4), (1,4,2,3),..., (1,2,4,2,3,1,4,3,2,4,
2),... We can see in figure 2.a that the DIANE+ formalism is very concise because
we need ten additional arrows to represent the same possibilities in figure 2.b.

Figure 2.a. Figure 2.b.

Figure 2. Example of a simplified DIANE+ specification (2.a) and
its prescriptive equivalent (2.b)

The gathered informations are sufficient to specify the dialogue sharing beside the
tasks, but they are not sufficient to manage data. Hence, the dialogue sharing is also
described in the associated OPAC data model (sub-section 2.6). One role of the
OPAC model is the elementary data processing, such as enter a name, display a post
code, etc. which is taken into account through data and not through the DIANE+
operations.

Operation 1

Operation 4

Operation 3

Operation 2

Operation 1

Operation 4

Operation 3

Operation 2

102 Computer-Aided Design of User Interfaces

2.5 Adaptation of Dialogue to Users

When the user's aims are determined, the next step is their detailed representation
through the operations. For this stage, we use procedures which are formal and detailed
descriptions of the manner to realise an aim. Thus, a procedure is a set of operations
which may be linked by precedences.

The objective of this stage is to make possible an adaptation of the man-machine
dialogue to the various kinds of users (experienced, beginner, level of responsibility,
work habits, etc.), rather than constraining the dialogue control through a single
standard procedure.

Figure 3. Adaptation of the man-machine dialogue to various kinds of users

Figure 3 shows such an adaptation; operations and OPAC data are used by three
different users through procedures, aims and presentations which are dedicated to
these users. The decomposition in operation/OPAC, procedures, aims and presen-
tation may be compared to the Seeheim model (core application, application inter-
face, dialogue controller and presentation).

To reach this goal, we define a minimal procedure presenting the more flexible dialogue
control for the user, since it includes the constraints resulting only from the organi-
sational and management rules.

The other kinds of dialogue, effective and forecast procedures, correspond to current cases,
work habits, and optimisation by the experience. These various procedures must be
compatible with the minimal one.

To represent these procedures, we use a formalism close to the one used in MERISE
[Tardieu83] to describe the procedures and operations. Nevertheless, their semantics

Operations

OPAC Data

Procedures 1

Aims 1

Presentation 1

Procedures 2

Aims 2

Presentation 2

Procedures 3

Aims 3

Presentation 3

 The DIANE+ Method 103

is slightly different since they describe the sequence of operations necessary to the
achievement of a goal by a user and not a domain of the information system.

2.5.1 Forecast Procedures

For each goal, we describe first the forecast procedure which results "naturally" from
interviews and questionnaires essentially with persons who are responsible for car-
rying out the procedure. Describing the current forecast procedure is indispensable
for the next stages of the study. More, they may be used for learning and for help
because they reflect a coherent use of the application.

2.5.2 Effective Procedures

Effective procedures reflect real activity "in situ" or during simulations. To describe
effective procedures corresponding to particular cases or to different work habits, it
is necessary either to interview users more thoroughly, or to carry out observations
or set up sensors or have self-observation forms filled up. Since describing the cur-
rent effective procedures is a highly time consuming task, this analysis is to be un-
dertaken only when the current procedures are not impacted or little impacted by
the system change.

2.5.3 Minimal Procedures

Interviews cannot highlight spontaneously the minimal procedure which includes
information generally not explicit. The point is to define explicitly the decision mar-
gin allowed to the users to do the work assigned to the station. This decision margin
is represented by the kind of triggerings, precedences and operations.

To define the minimal procedure, we start from the forecast procedure previously
collected and we ask questions in order to identify the automatic triggerings, perma-
nent precedences and required operations.

2.6 The OPAC Data Model

The three kinds of procedures mentioned above make easier the adaptation of pro-
cedures to the users for processing purpose. To be complete, the procedures must
include data. The current version of DIANE+ incorporates an object-oriented data
model called OPAC6 [Tarby93] derived from the PAC7 model [Coutaz88].

The OPAC model structures data into elementary or compounded classes whom
instances are capable of providing and managing their external and internal repre-
sentations. This model also provides a set of methods (in the object context) for
their manipulation.

6 OPAC = natural Object PAC. An natural object is an object which have a sense for the user.
7 PAC = Presentation, Abstraction, Control.

104 Computer-Aided Design of User Interfaces

The aim of the model is to unload the basic data management into the data them-
selves. The OPAC model manages data in an elementary way, and DIANE+ manages
data in the context of the application.

For example, OPAC data can display a client number, select characters in a text or
record a date. However, the date validity control, with regard to the application's
data, is processed by the DIANE+ procedures and operations.

The OPAC model provides a set of OPAC classes. These classes are specified once
for all by the designer. The data processed in the DIANE+ specifications are in-
stances of these classes and comprise three parts:

 an Abstraction which:
 contains the data represented by the OPAC, for example a name of per-

son, a question, a list of book titles, etc.
 a Presentation which:

 proposes external representatives with regard to the Abstraction and links
between the OPAC object and the DIANE+ operations. These external
representatives are used during the user interface generation;

 manages, in an elementary way, the associated external representation (se-
lection, scrolling, etc.).

 a Control which:
 provides a set of basic methods (in the object context) to manage the

OPAC data (creation, suppression, display, etc.) independently of the DI-
ANE+ operation;

 maintains the consistency between the Abstraction and the Presentation.

An OPAC may be used partially through external views. These views limit the reach-
able data that contains the Abstraction.

For example, an OPAC which represent a person may have an external view with
only the first name and the last name of the person. This have important conse-
quences during the user interface generation because only widgets associated with
this external view will be generated.

For example, if the OPAC is in input for an operation, two static text fields will be
generated; if the OPAC is in output or input/output, it will be two entry text fields.

An OPAC may be split up into sub-OPACs. This feature is only interesting for the
Internal Representation, i.e. for the designer and the programmer. For the user, the
OPAC remains indivisible.

3 Formalism

DIANE+ uses a formalism (figure 4) created to minimise the designing work on the
two following points:

 The DIANE+ Method 105

 the procedures describe only the characteristics specific to an application, sepa-
rately from the standard actions common to any application such as quit, cancel,
etc. This assumes that the supposed to be standard actions, previously defined,
are really common to any application. Only the cases where they are not applica-
ble are to be described.

 the described procedures are not mandatory; what is not forbidden is allowed
(figure 2).

Automatic operation Required operation
r r

Interactive operation Optional operation
o o

Manual operation Constrained operation
c c

User-triggering Permanent precedence

System-triggering By default Indicative precedence

Pre-condition (Boolean
expression on entry events or
data)

x [0,5]
Automatic operation with sub-
operations constraints

2,5

1,4

Post-condition

C. 1 C. 2 C. 3

Interactive operation with
sub-operations constraints

2,5

1,4

Event (input or output)
Date

Final event

Figure 4. The DIANE+ formalism

3.1 Breakdown of Operations

The breakdown of an operation is submitted to no limit and no constraint. All types
of operations and precedences can be mixed on an unlimited level of abstraction.
The "electronic mail" example illustrates this possibility (figure 8).

3.2 Constrained Operations

When an operation is split into sub-operations, it is possible to apply constraints on
this operation beside its sub-operations. This constraint is indicate with the [a,b]
interval on figure 5. It means that at least 'a' and at most 'b' constrained sub-opera-
tions must be performed. All the sub-operations which are not constrained (required
and optional) are not concerned by this interval (a required sub-operation must al-
ways be performed).

Any operation may have a personal constraint which concerns its number of re-
quired executions. This constraint is indicate with the [c,d] interval on figure 5. It
means that the operation must be performed at least 'c' and at most 'd' times.

106 Computer-Aided Design of User Interfaces

Figure 5. Graphical representation of an operation with constraint

In the following example, the Book number operation is completed after the [1,1]
constraint have been fulfilled and all the required sub-operations have been per-
formed.

The user must choose between a bar code entry and a keyboard entry (only one
operation between Bar code and Keyboard operations), the two others remaining
available to him (optional operations). The Book number operation must be per-
formed at least one time and at most three times.

Figure 6. Example of operations with constraints

3.3 Link with OPAC Data

Figure 7 shows an example of an OPAC data split up into sub-OPAC data (name,
address, phone and title) which can as well be split up (e.g. the address OPAC data).
During the dialogue specification, DIANE+ operations are associated with OPAC
data.

These associations precise the kinds of link with the data (input, output, input/out-
put) and may be completed with an external view on the OPAC data.

When an operation uses a sub-abstraction (e.g., the phone number), this sub-ab-
straction must come from the OPAC data of the highest abstraction level. This
OPAC data gets the requested sub-abstraction from the associated sub-OPAC
which provides the methods to perform the operation.

a,b

c,d

Number of constrained sub-operations
to perform = [a,b]

Number of required executions
associated to the operation = [c,d]

Book
number

1,1

1,3r
Bar code

c
Keyboard

c

Display the
list of books

o

Print the list
of books

o

 The DIANE+ Method 107

AbstractionPresentation

Control

19-33-98-76-54-32

DUPONT Marcel
1, rue de
pompe31000TOULOUSE

Person

display_address
display_name
entry_name
...

Display a
person o

nameDUPONT Marcel

display_name
entry_name
...

address1, rue de la pompe
31000 TOULOUSE

display_address
entry_address...

phone19-33-98-76-54-32

display_phone
entry_phone...

title
display_title
entry_title
...

Name
Address

Legend

external view on the OPAC

OPAC used in input/output by
the Diane+ operation

an OPAC

This decomposition into
sub-OPACs is invisible
for the user.

An OPAC may be
decomposed into sub-
OPACs at any level.

Figure 7. Example of compounded OPAC

3.4 Electronic Mail Example

The following example presents the specification of an electronic mail application.
More constraints than in real have been considered in order to exemplify DIANE+.
A normal session could be as follows:

1. The user must first connect himself to the system. To do this:
1.1. he must be identified by the system (name + password)
1.2. he must enter the e-mail command
1.3. the mailbox is automatically opened by the system

2. Then, the user can work. He can choose between:
- select a message. To do this, he must choose between:

* select the first unread message
* choose himself a message

- read a message,
- delete a message,
- send a message. To do this, he must:

108 Computer-Aided Design of User Interfaces

* first, define the message by writing the subject (only one time) and the text
(at will) in any order,

* second, send the message by choosing a recipient. This last operation brings
on automatically sending the message.

- reply to a message.
3. The user must disconnect from the system, which is done at time of closing the

mailbox.

We note that DIANE+ can represent all the constraints of the above specifications.
All the algorithmic structures do exist in DIANE+. More precisely:

 the ordered sequence is represented by the precedences, e.g., namepassword,
 the unordered sequence is represented by the required operations and by a lack of

precedence, e.g., enter the subject and enter the text in define the message,
 the loop is implicitly represented. An unconstrained user-triggered DIANE+ op-

eration means that the user may execute it as often as he wants, e.g., send a mes-
sage,

 the required choice is represented by an operation with constraint on its sub-opera-
tions, e.g., select a message with constraint [1,1],

 the free choice is represented by an operation without constraint on its sub-opera-
tions, e.g., use the e-mail,

 the parallelism is represented through the triggers and a lack of constraint. The
loops makes possible to perform the same operation many times in parallel, and
several loops can be performed in parallel, e.g., reply to the message may be per-
formed in parallel with send a message, enter the subject, or enter the recipient,
etc.

 the default operations. In the select a message operation, the select the first unread
message operation is the default one. When the user presses the enter key (this
key was chosen by the designer), the select the first unread message operation will
be automatically performed. Consequently, the first element of the list of mes-
sages will be displayed in inverse video.

 the number of times an operation must be performed, e.g., identification must be per-
formed at least one time and at most three times.

 the number of constrained sub-operations to perform, e.g., the [1,1] constraint for select
a message.

 The DIANE+ Method 109

Figure 8. Representation of an electronic mail with DIANE+

Connection 1,1

Open the
mailbox 1,1

oUse the email
Delete the
message o

Read the
message o

User

Message

New
message

Disconnect
r 1,1 User

Select a
message o c

Select the first
unread message c

Select a
message

1,1

r

Enter the email
command r

r

Identification r

Reply to the
message o

Send the message
r

Enter text
r 1,1

Reply
r

Send a message
o

Define the
message 1,1r

Enter the subject
1,1r

Enter the text
r

Send the
message 1,1r

Enter the
recipient 1,1r

Send
r

Send a message
r

Legend

the OPAC is used in input by the operation

the OPAC is used in output by the operation

1,3

Password

Name
r

r

Close the
mailbox r

Disconnect
r

splitting into sub-operations

italic

normal

operation with representation on the interface

operation without representation

110 Computer-Aided Design of User Interfaces

4 Tool

In order to test the DIANE+ method, we are developing a tool (figure 9) making
possible the automatic generation and management of the user interface from con-
ceptual specifications. These specifications are described in detail with the DIANE+
formalism. We precise in this part the expected functionalities and the current limits
of this tool.

4.1 Functionalities of the Tool

The tool must make possible:

 to enter the specification of the human-computer dialogue. This dialogue is de-
scribed through DIANE+ procedures, as shown in the previous parts. The DIA-
NE+ specifications are entered with a dedicated graphic editor.

 to test an application at each level from specification to generation. These tests
consist in:

 verifying the syntax of the DIANE+ procedures i.e. they are able to detect
illegal constraints, errors in the description of an operation, etc. Simple
syntactic checks may be made, for example it is impossible to design an
optional operation without user-triggering, or to design a system-trigger-
ing operation which is split up into user-triggering sub-operations. Before
testing the application, other checks concerning the DIANE+ semantics
are performed, for example an operation with constraint on sub-opera-
tions must have constrained sub-operations.

 checking the consistency between the generated user interface and the in-
terface expected by the designer. For example, the tool must check the
chaining of windows, the management of menus, the accessibility of op-
erations (widgets), etc.

 the interface generation. The aim of this generation is not to obtain automatically
a perfect interface but to provide a basic interface capable to manage itself its
external view8, with all the required elements for a correct behaviour of the ap-
plication. This interface fulfils general criteria of human factors. It is possible to
modify its code by using an UIMS or a resource editor. For example, it must be
possible to modify the spatial disposition of entry fields, reorganise the menus or
the options in the menus. We are thinking about interface generation rules from
DIANE+ specifications. A possibility is to translate goals and sub-goals in menus
and sub-menus, procedures in main windows, and highest level operations in
child windows. The lower level operations may be concerned by other rules such

8 At t1 time, the user activates a widget; this action produces an E event. At t2 time, the interface sends
the message associated to the E event to the application. Between t1 and t2, the interface managed alone
the event. For example, if the user clicks on a menu label, the interface intercepts the click event, opens
the menu and select by default the first option in this menu. More, if an operation becomes disabled,
the dialogue manager notifies the interface that reflects the state on the associated widget.

 The DIANE+ Method 111

as 'user-triggering operations without constraint are represented by push-but-
tons'.

 to provide several External Representations. OPAC objects provide widgets be-
side the external views on their Abstraction and the nature on link with the DI-
ANE+ operations (sub-section 2.6). If there is several possible Presentations for
an association (OPAC data/DIANE+ operation), two possibilities may be envis-
aged: an automatic selection or a selection by the designer.

 the generation of the application objects (Internal Representation). After the op-
erations and procedures have been described, it must be possible to generate
objects which represent them. For example, each operation is an instance of the
Operation class. Likewise, the generation of the interface creates objects used by
this interface (windows, menus, buttons, etc.). The generation of objects repre-
senting data in computer uses the OPAC data objects that represent these data.
OPAC data have been designed and implemented; due to their subjective aspect,
they cannot been generated.

 the automatic management of the application behaviour. Some links are created
during the generation of the interface and of the objects of the application. These
links connect for example an operation to its external representations. The dia-
logue manager have always to know whether an operation is enabled or not for
the user. For each modification of the operation's state, the dialogue manager
updates automatically the external view of this operation. As a result, a menu or
a push button may become enabled or disabled.

 the automatic management of the contextual help. The specification of the dia-
logue allows to manage automatically and entirely the contextual help according
to a user's logics, i.e., from the user's viewpoint and not from the designer's view-
point.

4.2 Implementation Results

A first version of the tool was developed in Smalltalk/V under Windows 3.1. Its two
main components are a DIANE+ editor and a dialogue manager implemented as an
inference engine. The inference engine has to manage the behaviour of the applica-
tion and the contextual help (figure 9).

4.2.1 DIANE+ Editor

The DIANE+ editor is currently a textual editor (figure 10) that makes possible to
create DIANE+ procedures and operations by using specialised editors (not pre-
sented here). It takes into account:

 the splitting of operation into sub-operations,

112 Computer-Aided Design of User Interfaces

Specifications of goals,
procedures and

operations

Description of data
(OPAC)

Code for data,
goals, procedures

and operations
Sequencing rules

User interface's code
(widgets, windows, menus,

basic interface's
management)

Generator

Dialogue controller
(inference engine) Help

Entry by the designer

Automatically generated

Given with the system

Actual parts of the tool

Legend

Figure 9. General working of the tool

 the management of constraints on operations and sub-operations,
 the pre- and post-conditions,
 the chaining rules which are the translation of precedences,
 the trigger (human or computer),
 the mode (interactive or automatic),
 the type (required or optional),
 the state (an operation can be active, locked, etc.),
 the list of the external representatives,
 the owner of an operation (an operation can belong to many owners, and for

each owner there is an instance of this operation with its proper context).

 The DIANE+ Method 113

Figure 10. The DIANE+ editor

Figure 11 shows an example of instance for the name operation which belongs to
the identification operation in the e-mail example.

By using this DIANE+ editor, we can modify in real time the chaining rules and all
the attributes presented before (except the owner and the external representations)
with immediate repercussions on the application.

Since the current version of the tool does not take the generation of the external
view into account, we have to build it entirely. We use Window Builder which is an
UIMS running under Smalltalk/V. This UIMS contains a window editor and a gen-
erator of Smalltalk code (a window = a class). Once the screen layouts are developed,
we connect every widget to its associated DIANE+ operations and procedures with
a simple Smalltalk code line. After this step, the system is ready to run.

4.2.2 Inference Engine

As soon as the DIANE+ specifications and the connections between these specifi-
cations and the user interface layout have been described, the inference engine can
manage automatically the behaviour and the contextual help. In its current version,
the inference engine cannot manage the "what is going on if ...?" question; this limit
is due to technical constraint of Smalltalk concerning the copy of complex objects.

The list of prece-
dences contains the
precedences for the
« connection » op-
eration

Available actions
for procedures, op-
erations and prece-
dences (add, re-
move, modify)

List of first level
operations of the
DSV-IS (email)
procedure

114 Computer-Aided Design of User Interfaces

Three other questions are managed. These are: "how to ...?", "why ... is disabled ?",
and "how to end ... ?".

Figure 11. Operation instance editor

The results validated by the tool are:

 the automatic management of the behaviour for the external view and for the
internal view (sequences, state transition, etc.),

 the automatic management of the contextual help for the three questions,
 the permanent consistency between the conceptual view and the contextual help

and between the conceptual view and the behaviour, since every modification in
the specifications (chaining rules, description of operation, etc.) is immediately
taken into account in the behaviour and in the help.

Example: figures 12.a-f show screen captures of the electronic example (figure 8).
In figure 12.a, the user is at the beginning of the procedure. Only name is enabled9.
The user wants to know how to enable the push-button. The answer is given in

9 It is possible to disable entry field AND label by adding the label widget to the list of external repre-
sentatives of password operation occurrence.

SmallTalk code for
pre- and post-con-
ditions

Operations instance attributes (interactive,
required, user-triggering, etc.)

Current state of the
occurrence

Personal constraint

Constraint on sub-
operations

Owner of the oc-
currence

List of the occurrence’s external
representatives

Other occur-
rences for the
current operation
(name)

 The DIANE+ Method 115

figure 12.b: the identification operation must be ended, and for this DIANE+ says
that the user must end the name operation and after the password operation.

Figure 12.a

Figure 12.b

In figure 12.c, the user asked why password is disabled. The result shows that the
postcondition of name is not verified (we choose "at least one character in the name
field" as post-condition).

Figure 12.d presents the same situation later. The two entry fields are filled correctly.
The user wants to know why name is dimmed (he wants enter an other name for
example). The systems answers (figure 12.e) that the name operation will never be
enabled for this session (identification is ended).

Figure 12.c

116 Computer-Aided Design of User Interfaces

Figure 12.d

Figure 12.e

Figure 12. Example of automatic contextual help management

5 Related Work

We present here a comparison with related works through four topics:

1. design method,
2. user interface generation,
3. automatic user interface management,
4. automatic contextual help management.

5.1 Design Method

MUSE [Lim94] and DIANE+ have both the aim to integrate human factors in design
methods but MUSE is more human factor oriented whereas DIANE+ is computer
science oriented [Palanque94c].

DIANE+ is both task oriented and user oriented. It uses the user's logics through a
task analysis which will become executable [Copas94], but it does not distinguish
kinds of tasks and goals such as interface goals or social goals [Gilmore95]. DIANE+
integrates dialogue sharing between man and machine like the most design methods,
e.g., MAD in its last version [Hammouche93] or UAN [Hix93], but it does not itemise
process such as UAN.

DIANE+ uses both the concepts of tasks and objects like [Rosson95] as opposite of
[Benyon95] which mainly uses the concept of data as support of task description.

 The DIANE+ Method 117

The concepts of precedences is more powerful in DIANE+ as MAD and UAN, but a
recent evolution of UAN (XUAN) [Gray94] may be compared with DIANE+.

In XUAN, the temporal constraints are more powerful than in DIANE+ which is
explicit for the start of operations but not with the end of operation.

5.2 User Interface Generation

In its current version, DIANE+ does not integrate a module for the automatic UI
generation, but proposes generation rules. However, works such as DON [Kim90,
Kim93], UIDE [de Baar92], GENIUS [Janssen93], or TRIDENT [Bodart94a] are very
close with DIANE+.

To be complete, a UI must integrate application domain knowledge [Gulliksen95]
like MECANO [Puerta94b, Puerta96]. This may be possible with DIANE+ through
OPAC data model, OOA [Balzert95a], or TRIDENT [Bodart93, Bodart94c, Bodart
95b, Bodart95d].

DIANE+ generates UI from task specifications, but an reverse approach may be in-
teresting. For example, [Lauridsen95] generates the UI like DIANE+, but generates
elementary dialogue specifications from UI layouts. This may be attractive in the
case of reverse engineering.

DIANE+ uses both the concepts of task and object. DIGIS [de Bruin94a, de Bruin-
94b] is very close with DIANE+ because:

1. It represents data through a data object model called D-PAC. This model is based
on OMT data specification [Rumbaugh91].

2. It uses a task model that is based on UAN [Hix93].
3. Both DIANE+ and DIGIS are aimed to be used by non-progammers.

5.3 Automatic User Interface Management

DIANE+ and UIDE [Foley91] propose both an UI management partly based on pre-
and post-conditions. In both cases, the dialogue management is a dedicated module
which inspects regularly the state modifications of operations (Action objects in
UIDE) and reflects these modifications onto the UI.

Several works use Petri Nets (PN) to represent dialogue specifications. PNs provide
mathematical checking. Coupling such systems with ERA diagrams allows a more
precise dialogue specification and management [Pettersson95]. PNs and DIANE+
may describe dialogue very precisely, but DIANE+ does not aim to describe elemen-
tary process such drag and drop or cut and paste.

The process are either represented in OPAC data or assimilated as standard actions,
but we can specify them in DIANE+ when these two cases are not logical with regard
to the dialogue specification.

118 Computer-Aided Design of User Interfaces

5.4 Automatic Contextual Help Management

Contextual help is more and more present in interactive systems like in UIDE
[Gieskens92] and H3 [Moriyón94]. UIDE answers only two questions (why an inter-
action object is disabled ? How to do ... ?) but integrates animation.

This last alternative should be incorporated into DIANE+ without major difficulties
because DIANE+ inference engine is able to find the sequence of operations and
their external representatives to answer a question.

In its current version, DIANE+'s answers are still limited as opposite as H3 which
displays help through an hypertext. This characteristic is possible with DIANE+ sup-
posing that some parts of text are entered by the designer (like H3), e.g., the meaning
of the operations.

Conclusion

In this part, we present the advantages, the limits, and the foreseen extensions of
our method.

Advantages and Limits

The main advantage of DIANE+ is the merging between a human factor approach
and a software engineering design method, resulting in the adaptation of the design
method formalism and the integration of characteristics of users and tasks.

The second advantage is a rigorous description of the dialogue control providing the
largest flexibility to the users with a perfect consistency in regard to the management
rules of the organisation. This advantage is really relevant in a context of preplanified
or procedural tasks with organisational constraints. On the contrary, in the case of
creative and individual tasks, defining the dialogue control becomes minor and we
recommend to use object methods.

In its first version, DIANE did not include explicit links with objects. This lack was
a major disadvantage for the graphic user interface design. This disadvantage disap-
peared in DIANE+ through the OPAC objects.

DIANE+ may also be reproached a waste of time in the stage of detailed specifica-
tion, compared to RAD processes. This critic relates to the field of application of
DIANE+. The RAD approach applies preferably to creative and computer-aided de-
cision-making tasks, since little information on the current situation is available and
there is no predefined procedures. DIANE+ fits more efficiently to the other kinds
of task.

Extensions

Experimentation of DIANE+ has lead to highlight a designing process starting from
the conceptual level until the external level. This is relevant when the dialogue con-

 The DIANE+ Method 119

trol is more complex than the interaction objects. We intent now to identify appli-
cations for which a designing process starting from the interaction objects until the
dialogue control would be more efficient.

In its current version, the tool manages the user interface and the help. But, the
answers provided by the help are displayed in a poor style. We intent to improve the
help messages, first by adding more text to make the meaning easier to understand,
secondly by increasing the use of the operation attributes, for example to write "you
must do...", "you may do...".

The current version of DIANE+ does not perform the ergonomic evaluation of a
software, but DIANE+ has already been applied to the prior evaluation of an appli-
cation in the field of air traffic control [Zorola95]. We intend to link our tool to
human factors evaluation tools like ERGOVAL [Barthet94, Farenc96] to make the
evaluation possible during the development phase and to provide advice during the
specification phase.

Acknowledgements

The authors would like to thank the anonymous referees for helpful comments on
earlier versions of this paper.

An Approach to Structured Display Design -
Coping with Conceptual Complexity

Morten Borup Harning

Abstract

The methods that provide a structured approach to user interface design, often more
or less ignores the aspects of display design. The structured display design ap-
proaches that exist, seems to have problems coping with conceptually complex in-
terfaces. Building on the relationship between the system data model and the display
design, this article proposes a structured approach to display design. The design is
divided into three steps: conceptual design, logical window design and physical win-
dow design. This structure seems to be a way of coping with the design of concep-
tually complex user interfaces.

Keywords

Display design, conceptual design, conceptual prototypes, user data model, visual
data dictionary, logical window design, structured design method, user interface de-
sign.

Introduction

We know from software engineering that some sort of structured design method
(e.g., Modern Structured Analysis [Yourdon89], OMT [Rumbaugh91] or OOSE [Ja-
cobson92]) is needed in order to manage the design process involved in developing
large and complex computer systems. The structured design methods make design
and development of such systems manageable by dividing the process into smaller
and more focused design tasks. The result is that the design team can focus on a
smaller sets of design issues, one set of issues at the time. This is necessary to main-
tain a general view of the design, as well as to produce time plans and cost estimates.

Most software engineering methods do not deal with the user interface aspects of
the design process. Those that do include such aspects treat them very superficially,
e.g., Multiview [Avison90], Sommerville [Sommerville95]. There exists a number of
structured methods for designing user interfaces, e.g., Foley et. al. [Foley90], MUSE
[Lim92, Lim94], Sutcliffe [Sutcliffe95]. These methods usually describe only the

122 Computer-Aided Design of User Interfaces

functional design, often with a focus on task analysis, whereas they only present a
set of ideas to how the display design should be conducted, e.g. use of metaphors.

There has been presented a huge amount of guidelines concerned with display de-
sign (Nielsen [Nielsen94] lists 100 common usability heuristics, and tries to identify
the most important ones). The general problem of using guidelines or usability heu-
ristics as Nielsen calls them is that they do not help the designer structure the design
process. This means that the guidelines are of little help, when the problem is coping
with the design of large and complex systems. This is not to say that guidelines and
design guides are useless, these are just not enough.

A few recent structured user interface design methods, such as EFDD [Lauesen93],
DIANE+ [Tarby94, Tarby96], TRIDENT [Bodart95a], OMT++ [Jaaksi95], addresses
display design. EFDD and OMT++ have their offspring in software engineering,
whereas DIANE+ and TRIDENT have evolved from the HCI tradition. However
there still remain several problems. The most serious problem is that only EFDD
addresses the issue of early usability testing. The other approaches do not facilitate
usability testing until a prototype has been built. This is a major problem, because
usability testing has turned out to be the most efficient way of identifying usability
problems [Desurvire92]. Another major problem is that the methods do not seem
to address the problems of designing displays for interfacing with large amounts of
conceptually complex information.

In systems that need to support complex problem solving it is important that the
users’ mental model of the system matches the actual conceptual model of the sys-
tem [Staggers93]. Norman [Norman86] suggests that users infer mental models of
the device they work with. Interfaces that need to support this kind of complex
problem solving, hence should help the user to infer an appropriate mental model.

Looking at user interfaces, the information modelled by the systems data model
dominates the visual appearance of an application (e.g. as values shown in entry
fields, tables or graphs), whereas task information such as procedures and operations
only appear indirectly (e.g. through window transitions and greying of command
buttons). Green and Benyon [Green92] among others describe how display designs
can be interpreted as data models. Based on these observations the best way of sup-
porting the inference of an appropriate mental model seems to be to focus on how
the user interface reflects the structure and contents of the data model, because this
is the most apparent part of the conceptual model in the interface.

This article describes an approach to display design that helps coping with concep-
tually complex interfaces. The design is based firmly on the data model to ensure a
conceptually clear design, while task efficiency is ensured by taking in to account the
information required to perform the tasks the system should support.

The complexity of existing user interfaces can be measured by constructing an Entity
Relationship Model of the Information Artefacts (ERMIA) [Green92]. A conceptu-
ally complex user interface is, in this article, a user interface that gives access to a
data model with 10-20 entities or more, and where the user needs to see/work with

 An Approach to Structured Display Design - Coping with Conceptual Complexity 123

information from several entities or several instances of entities simultaneously. The
complexity of a user interface is, however, also influenced by a several other factors,
e.g. the number of relationships in the data model.

1 Method

The display design method described in this article was developed as part of a full
user interface design method. The full method called Entity Flow Dialogue Design
(EFDD) was described in an early version by Lauesen and Harning [Lauesen93].

The revision of the method presented here is based on several sources of experience.
One source of experience has been a series of professional design courses and tuto-
rials based on EFDD offered to professional system designers. Three master level
courses, where the participants spend five weeks in groups developing a user inter-
face using EFDD, has been another important source of experience.

However, the primary source of experience stems from the design and implementa-
tion of a Classroom Scheduling System (CSS). The design and development time
involved in this project was in the proximity of two man years. The system is today
operational and is in daily use for scheduling and administrating the 150 classrooms
at Copenhagen Business School. The design involved designing a graphical user in-
terface according to the CUA'91 guidelines [CUA91].

When it was decided to decentralise part of the classroom administration, the system
was redesigned and later implemented using Oracle SQL*Forms. The user interface
in the final system was character based, because the system needed to run on the
existing VT-220 terminal-based hardware platform, and had to comply with the in-
terface style of the existing administrative applications used at the business school.

The CSS project made it possible to develop and mature the method in settings
similar to the ones found in industry. The project has provided insight in the ap-
plicability of the method in large development projects. The high conceptual com-
plexity of the system combined with the need for both simple form-based windows
and windows visualising the large amounts of information made the project ideal for
the development of a display design method.

2 The Full EFDD Method

The approach to display design presented here is, as stated earlier, part of a complete
interface design method, called EFDD. The method divides the design process into
the following four phases:

1. Compiling a task list and designing a user data model.
2. Designing logical windows and user functions.
3. Initial design of physical windows and dialogue state-transition diagrams.
4. Detailed physical design.

Iteration between the phases is assumed, as in any other structured design method,
but the phases help define where the focus of attention should be in different stages

124 Computer-Aided Design of User Interfaces

of the design. The part of the method presented in this article is the design of a user
data model (part of phase 1) and of the logical windows (part of phase 2), but also
briefly the design of physical windows (part of phase 3 and 4). The issues discussed
in this article have been added since the method was first described [Lauesen93,
Lauesen94].

3 Coping with Complexity and Large Amounts of Information

There seems to be two main types of approaches to display design. The first type of
approach is to derive the display design from task analysis, based on the information
needed to perform the tasks, e.g., AUI [Kuo88], DIANE+ [Tarby94], MUSE [Lim94],
TRIDENT [Bodart95a] and [Sutcliffe95]. Designing the displays to be included in the
user interface involves identifying, for each step in the design procedure, which of
the attributes in the data model needs to be accessed, e.g. by using Activity Chaining
Graph (ACG) as proposed by [Bodart93]. As the number of tasks and the size of
the data model grows, this becomes a very cumbersome process. Ensuring task ef-
ficiency using these approaches seems to be fairly straightforward, however main-
taining a conceptually clear design becomes almost impossible.

The second type of approach is to use the data model or object model as the basis
for the display design. Examples of this type of approach are GENIUS [Janssen93],
Semantic Database Prototypes (SDP) [Baskerville93] and User data modelling
[Lauesen93]. A conceptually clear design can easily be achieved using these ap-
proaches, even for large data models. Whereas it is more difficult to ensure task
efficiency. If a task needs information from several entities, the user will have to
jump between the corresponding windows to collect the information. One of the
important advantages of this type of approach is that it is possible to design a pro-
totype very quickly, and before the functional design has been done. This makes it
possible to submit the design to usability testing, and hereby eliminating possible
conceptual errors [Baskerville93, Lauesen93].

Jaaksi [Jaaksi95] presents in OMT++ an approach that try to balance the two design
goals: (1) designing a conceptually clear display design; (2) ensuring task efficiency.
But this approach deliberately tries to minimise the use of usability testing, and ap-
pears to have problems coping with conceptually complex interfaces, similar to the
task driven approaches. The various work done on visualisation is a good example
of how interface design can cope with high conceptual complexity. These visualisa-
tion techniques make it possible to work with amounts of data that would otherwise
have been unmanageable. Tweedie [Tweedie95] describes a number of visualisations
(Interactive Visualisation Artefacts), and shows how these can be interpreted as de-
piction of a complex data model, showing otherwise "hidden" aspects of the data.

User data modelling as described in EFDD [Lauesen93] was designed to cope with
the window design that was reasonably close to the data model. However, in the
design of the classroom scheduling system the design had to include window designs
like the visualisations described by Tweedie [Tweedie95]. This meant that the design
had two parallel design goals: (1) designing a set of windows that could serve as the

 An Approach to Structured Display Design - Coping with Conceptual Complexity 125

conceptual model of the application and (2) designing a set of windows tailored to
the information demands of the tasks.

In an attempt to balance these design goals, five heuristics were introduced [Laue-
sen94]. However, these often contradictory goals resulted in a more unstructured
design, because the designer had to focus on a set of contradictory design issues.
This made it difficult to determine, when the design of the user data model was
complete. In the design of the CSS the new heuristics resulted in frustration rather
than creativity.

The solution was to divide the initial display design into two design steps: a step
focusing on the conceptual design and a step focusing on the design of logical windows. The first
step ensured a that the design of the conceptual model was clear. The second step
ensured task efficiency, and this step made it natural to consider the need for visu-
alisation techniques, like the ones discussed by Tweedie. By letting the design of
logical windows build on the conceptual design, it was possible to ensure that the
interface remained conceptually clear. The following sections describe these two
steps in detail, using a system for monitoring development activities in a software
company, as the general example.

4 Conceptual Design

Data modelling, e.g. as described by Chen [Chen76], has within software engineering
proven its worth as a tool for conceptual design. Data models following the Chen
or similar notations (e.g., object-oriented notations), will in the following be referred
to as technical data models. Figure 1 shows an example of a technical data model
following the Chen-notation. The data model describes the concepts of a system for
monitoring development activities.

There are a number of shortcomings in the technical data model if it is to form the
basis for a structured design of the visual parts of the user interface. First of all the
notation was not meant to and does not facilitate involvement of the users and hence
any kind of usability testing of the conceptual design [Baskerville93]. This is a major
problem, as mentioned in the introduction. However using design rules such as
those used in GENIUS [Janssen93], Semantic database prototypes [Baskerville93] or
TRIDENT [Bodart95c] it is possible to generate the first version of a user data model.
This makes it possible to submit the conceptual design to usability testing.

To ensure a conceptually clear design, the user data model is designed according to
following three heuristics:

1. Eliminate technical details.
2. Identify the information the user associates with a concept.
3. Identify the appropriate level of detail.

126 Computer-Aided Design of User Interfaces

Figure 1. A data model describing the concepts of a system for monitoring development activities
in a software company, using the Chen notation [Chen76]

4.1 Generating the First Version of the User Data Model

The general idea of producing a user data model is to transform the technical data
model into a simple display design, by applying a simple set of design rules. The goal
of the user data model is to form and evaluate the conceptual design, to be included
in the user interface. Semantic database prototypes as proposed by Baskerville [Bas-
kerville93] were introduced exactly for this purpose. A semantic database prototype
was according to Baskerville [Baskerville93] an effective way of enabling a user
driven evaluation of the conceptual design.

The semantic database prototypes are built from the information in the technical
data model. Figure 2 shows two windows from the semantic database prototype
corresponding to the technical data model shown in figure 1. The transformation is
based on a set of simple design rules, guiding how the different parts of the data
model should be represented in the prototype. A very simplistic description of the
process is that all attributes in the data model are included in the prototype as data
entry fields. The relationships (1:1) between entities are represented by including the
identifying attribute (key field) of the related entity in the display design. The key
fields in figure 2 are marked by a button on the right side of the data entry field, this
button made the prototype jump to the related entity. Other rules specify that 1:n
relationships are represented in the display design as tables. A similar set of design
rules can be found in GENIUS [Janssen93] and TRIDENT [Bodart95a].

m

n 1

n

1 n

m

n 1

n

n

m

1n

Project

interested in

leader of

interested in

responsible
for

spent time on

C
on

si
st

of

Employee

Activity
Weekly
estimatehas a

projnum, projname

actnum, actname, actbud

eyear, eweek, estimate

tyear, tweek, tday, hours

empinit,
empname

 An Approach to Structured Display Design - Coping with Conceptual Complexity 127

This way of presenting the data model made it possible for users without prior
knowledge of data modelling to relate the structure of the data model, and the way
it models the domain concepts.

Figure 2. A semantic database prototype [Baskerville93] for the entities ‘employee’
and ‘project’ in figure 1

The user data model is built according to the same rules used in the semantic data-
base prototype, but goes a step beyond that by applying the three heuristics men-
tioned above. The notation is a bit more relaxed, meaning that any information ar-
tefact [Green92] that reflects the attributes and relationships in the technical data
model can be used. The only requirement is that the ERMIA of the display design
should match the technical data model. This means that graphical representations
can be used instead of tables when appropriate. In a drawing application the user
data model would usually be purely graphical. The more relaxed notation used in the
user data models facilitate including aspects that lack in order to make the conceptual
design useful in the later, more windows oriented, part of the display design. The
following subsections will describe how the heuristics mentioned in the beginning
of this section can be applied to the conceptual design.

EMPLOYEE

EMPINIT EMPNAME

ACTNUM ACTNAME

ACTIVITY

PROJNUM

JPH J. Pries-Heje

1 Req. spec.9511

PROJECT

ACTNUM ACTNAME

ACTIVITY

PROJMAN JPH

PROJNAME DXP version B

PROJNUM 9511

3 Comm. module

2 User interface

1 Req. spec.

Attributes of the employee entity

Keyfield
(eg. initials of the
projectleader)

Button used to
navigate to a
related entity

128 Computer-Aided Design of User Interfaces

4.2 Heuristic 1: Eliminate Technical Details

The first problem is that the technical data model usually contains a number of tech-
nical details that are of no concern to the user, but are necessary in order to imple-
ment the technical algorithms. If the technical data model is to be used in the display
design, it is important to identify the parts of the data model that concern the user.
This is done in order to avoid including unnecessary technical details in the user
interface design, that would only increase the possibility of misunderstandings.

An example of technical details, that should be avoided in the display, are internal
record number used to implement the relationship between records in a relational
database. Such record numbers are often used in the user interface, because entering
these numbers makes the lookup of records easier. However using query languages
like SQL there is no reason to burden the user with such information.

The user data model lets the designer determine through usability testing which parts
of the technical data model that should be excluded from the user interface. The
remaining part of the display design can then be focused on the relevant information,
because the user data model serves as a visual data dictionary in the design of the
logical and physical windows.

4.3 Heuristic 2: Identify the Information the User Associates with a
Concept

The second problem is to find the appropriate level of normalisation. The technical
data model will typically have been normalised to avoid technical problems like re-
dundancy. But when used as a conceptual model, the normalised data model will
seem unnatural to the user. The reason for this is, that when used for user interface
design purposes, any redundancy in the conceptual model will indicate a relationship
between the involved concepts.

E.g., when the name of an employee happens to be the same as the name of the
project leader, the user assumes that this employee is in fact the project leader. This
is a very simple example, but the principle seems to apply to other kinds of redun-
dancy as well. This perception of relationships, based on the redundant information,
is what make the semantic database prototype described above readable to the user.
This may seem like a trivial aspect of the design.

However, in practise many systems exclude information, that is not directly used
when performing a task. By excluding such information it becomes harder to under-
stand the relationship between the information used in different tasks, hence making
it difficult for the user to infer an appropriate mental model.

The design rules used to produce the user data model has been extended compared
to the rules described in the design of a semantic database prototype. This is done
in order to identify which parts of the data model the users associate with a concept
in the conceptual model. The design rules are basically the same, but are used recur-
sively.

 An Approach to Structured Display Design - Coping with Conceptual Complexity 129

Figure 3. The project form in the user data model, as it might look
in the activity monitoring system

Figure 3 show the project form in the user data model as it might look in the system
for monitoring development activities. The form includes all of the information
found in the semantic database prototype, as shown in figure 2. The identification
of the project leader has been extended, to include the full name of the project leader,
because the users perceived this as an attribute of the project. Secondly several col-
umns have been added to the activity table.

The first new column is the person responsible for the activity. This information can
be found by following the relationship between a project and one of the associated
activities, and then the relationship from this activity to the employee responsible
for the activity (this is shown by the dashed arrow in the ERD in figure 3). Using a
similar process columns "Time spent" and "Estimate" was added.

However, because the activity can be related to several time records the column
includes the sum of all related records. Instead of a sum, all of the individual values
could have been shown graphically, because the ERMIA of this design would still
match the technical data model.

Looking at the technical data model, it might seem unnatural to include, in the form
describing the project, status information like “Time spent” and “Estimate” related
to an activity (as shown in figure 3). However, from the user's point of view, such
status information is a natural part of the project description. The status information
is used to assess the overall progress of the project. To the user it would be unnatural
to have to look at each of the activity forms to get this kind of information. Using

Activities

Name

Project leader Jan Pries-Heje (JPH)

Name

Number

Comm. module

9511-2 User interface

Req. spec.9511-1

9511-3

JPH

SL

NCJ

Resp.
100

250

75

Budget
20

10

33

Time spent
80

200

50

Estimate

By the end of week

7/96

Number

DXP version B

9511

Project

Emp. Proj.

Act. Est.

Time

1

2

3

4

1

2 3 4

130 Computer-Aided Design of User Interfaces

the design shown in figure 3, the user would not look at the activity form unless the
status information indicated some kind of problem.

Redundant information is a natural part of the user data model, but should be
avoided in the technical data model to ease the technical implementation and mainte-
nance of the information stored by the system. The redundancy can easily be simu-
lated using query languages like SQL.

4.4 Heuristic 3: Identify the Appropriate Level of Detail

The technical data model is a very detailed model of the domain. The high level of
detail is maintained in order to make it easy to use different aspects of the infor-
mation in the technical algorithms, such as searching. One example of this high level
of detail is the way you see a set of intervals represented in the data model (see figure
4 and discussion below). The technical data model does not have an explicit repre-
sentation for a set of intervals, so the way intervals tend to be modelled is as pairs
of start points and end points, even though the user thinks of the whole set of in-
tervals as one single attribute.

Another example of the high level of detail in the technical data model is the imple-
mentation of multivalued attributes. This can be modelled either by defining a max-
imum number of values or by introducing a new entity, where the entity with the
multivalued attribute is related to multiple instances of the new attribute entity.

An address is an example of a multivalued attribute and hence could be modelled
either by defining a maximum number of address lines (the model might then con-
tain e.g. two attributes called ADR1 and ADR2) or by defining an ‘address line' entity
related to the original entity. Which of the two alternatives is the most appropriate
depends on the technical requirements. The user will however, no matter what al-
ternative is selected, perceive the address as one concept - an address, and it would
be unnatural if the user interface made references to the concept address line.

Figure 4. A form that reflect the typical way of modelling intervals in data models.
A single entry field using a syntax like ‘1-2,5,9-15’ might be more appropriate

It can be an advantage, when identifying the appropriate level of detail to be used in
the user interface, to think of the user data model form as a paper form. Looking at
the interval example mentioned above, it would be unnatural to the user, if the de-
sign of a paper form included a series of fields corresponding to the way the intervals
are modelled in the data model (figure 4 uses this design).

1

5

9

From

2

5

15

To

Reserved weeks

 An Approach to Structured Display Design - Coping with Conceptual Complexity 131

It would be more natural to have one field, where all the intervals could be written
as one entry, e.g., ‘1-2, 5, 9-15'. A notation like that would be just as natural in a user
interface, but is seldom considered because the generally available user interface
tools lack a standard interaction technique that handles this kind of custom-made
syntax. This should however not be an obstacle, because such an interaction tech-
nique easily can be implemented.

Figure 5. The transition from a single form presenting a single time entry to a weekly report pre-
senting the same information in a way close to what the user is used to

Another problem of the high degree of normalisation is that a number of concepts
used by the user are not included in the data model. Looking at the data model of
the activity monitoring system in figure 1, the information bearing relation called
‘spent time on' between the entities ‘employee' and ‘activity' lacks a reference to the
meta concept the user uses to refer to this group of data - a weekly report. The
technical data model is hence too detailed with respect to the tasks the user needs to
perform. The user does not have any tasks that need to refer to the number of hours
spent by a specific employee on a given activity at a given date.

A design close to the data model would be something like the design shown in figure
5 (1). This is just a simple form with room for a date, an activity, an employee and
the number of hours spent on the activity. Using this design the user would, by the
end of the week, have collected a large pile of these small and unrelated notes. The
design in figure 5 (2) is slightly better, but the table will when filled include a lot of
repetitions, e.g. the day. Imagining a possible paper form design matching the tasks
the user needs to perform, a design like the one in figure 5 (3) would be more natural.

Time Entries
Day

Tuesday

Wednesday

Week Year

0-1

9502-4

Hours

Tuesday

Monday MBH Morten B

MBH

MBH

MBH

Morten B

Morten B

Morten B

Req. spec

Req. spec

Lunch

Req. spec

96

96

96

96

6

6

6

6

2,5

3,0

0,5

4,0

9502-4

9502-4

Init. Name Act.no. Act.name

Weekly report
MBH Morten Borup Ha 966

2,5 3,0

Act.no. Act.name

0-1 Lunch

Req. spec9502-4

0,5

4,0

Mo Tu We Th Fr Sa Su

Employee Week/Year

1

2

3

Day

Time Entry

Monday

7

1995

2,5

Week

Year

Hours used

132 Computer-Aided Design of User Interfaces

This design eliminates these repetitions, by using the qualities of the data shown.
This is how the concept lacking in the technical data model would appear.

4.5 Using the User Data Model as a Visual Data Dictionary

The user data model should include all the necessary information needed to present
information in the conceptual model consistently during the design of the logical
and physical windows. Such information includes naming of the individual attrib-
utes, because the technical data model often only includes names like PROJNAME,
where "Project name" might be more appropriate to the user. It should also include
the natural grouping of attributes and layout of the information used when referring
to a concept, e.g. name and initials when referring to an employee (used in figure 3).

If possible most of such design decisions should be made during the conceptual
design, because these decisions will make it easier to present a consistent view of the
concepts in the window design. The idea of collecting this kind of information is
very similar to the idea of a data dictionary, and the user data model might hence be
thought of as a visual data dictionary.

Thinking of the user data model as a visual data dictionary, it is important to include
information on how to present the contents of the attributes. Should a numerical
attribute be presented as a number and if so with how many decimals? Should it be
encoded as a colour and if so, what values should correspond to which colour. De
Baar et al. [de Baar92] and Bodart and Vanderdonckt [Vanderdonckt93, Bodart94c]
provides an idea of how to make this kind of decision according to precision, scale
and other parameters.

It is important to include examples of typical ways of filling out a user data model
form. The examples should include messages shown in status fields, because such
messages are not included in the technical data model. If included, the data model
will typically model messages using a numerical code, or as an enumeration type as
known from languages like Pascal. One of the reasons why including examples in
the user data model are important, is that it helps determine the dimension of tables
and field width etc. Another reason is that it makes it easier for both designers and
users to understand and relate to the content and structure of the model.

If the user data model is used to supplement the technical data model with the kinds
of information mentioned above, it is the experience from the design of the class-
room scheduling system and from several case studies, that the user data model can
be used as a visual data dictionary guiding the design of logical and physical windows.

GENIUS [Janssen93] includes information on grouping in the data model, TRIDENT
[Bodart95a] includes some of this information in the specification of abstract inter-
action object. However, how the information is specified is of less importance, than
using the information in the design of logical and physical windows.

 An Approach to Structured Display Design - Coping with Conceptual Complexity 133

5 Designing Logical Windows - Tailoring the Display to the In-
formation Needs of each Task

The user data model is designed to model the information needed to perform each
of the tasks the system must support, and hence fulfils the information needs of
each task. However, the user data model only presents, the information in a way that
makes it easy to understand the content and structure of the conceptual model, and
this may not be the most efficient way of grouping the information, when it comes
to performing a specific task [Lauesen94].

It is often the case, that a task requires access to information from several forms in
the user data model, both several instances of the same form and several different
forms. In these cases it would be more efficient to gather all of the necessary infor-
mation in one window.

Windows tailored to the information needs of a specific task becomes more im-
portant, as the amount of information needed to perform a task grows. If there is
not a window that combines the necessary information, the user will have to go
through several windows to collect the information, increasing the likelihood of er-
rors and misunderstandings.

The reason for designing logical windows are to ensure the task efficiency of the
display design, while using the user data model as a visual data dictionary to ensure
that the design remains conceptually clear.

Sutcliffe [Sutcliffe95] and Bodart et al. [Bodart95b] design the Logical Windows
(only Bodart et al. uses this term) by selecting the attributes a task needs from the
technical data model. However, this increases the design task significantly compared
to the approach presented here, especially in the design of conceptually complex
interfaces. At the same time selecting individual attributes, makes it harder to main-
tain the conceptual clarity of the user data model.

5.1 Analysis of Information Needs of each Task

The instances of the user data model forms that a task requires access to, are speci-
fied for each of the tasks identified in the task analysis. An example of such a list is
shown in table 1. The design of logical windows are then based on this list. When
designing the logical windows, one of the goals is to keep the number of windows
to a minimum, so if the information needs of two tasks are very similar, designing
only one window should be considered, if such a window would fulfil the infor-
mation needs of both tasks.

134 Computer-Aided Design of User Interfaces

 Task Information need
1. Check the progress of all the projects and

activities you are interested in
Employee (status of the project),
historical activity reports
(development in ‘number of hours used’ and in ‘number
of hours used’+’estimate’)

2. You are asked to check the progress of a
specific project, e.g. “9511 DXP version B”
(not one of the projects you are normally
watching

Project (sum of all activities),
historical activity reports
(development in ‘number of hours used’ and in ‘number
of hours used’+’estimate’)

3. A specific project, e.g. “9511 DXP version
B” is out of control - find the reason.
3.1. Identify activities, that are having

problems
Project (all activities line by line),
historical activity reports
(development in ‘number of hours used’ and in ‘number
of hours used’+’estimate’)

3.2. Find the people, that have been
working on the activity.

Activity report,
Weekly activity report (3-4 weeks back)

3.3. Check what the person responsible
for the activity have been doing apart
from working on the activity in ques-
tion.

Activity report,
Weekly activity report (3-4 weeks back),
Employee report

Table 1. Analysis of information needs for all tasks in the scenario ‘Activity surveillance’

The names in the column called ‘Information need’ in table 1 refers to forms in the
user data model. The note in brackets describes what instances of the form are
needed or if only a small part of the form is needed, what part of the form that needs
to be available. ‘Development in "number of hours used"’ and ‘number of hours
used’+‘estimate’, ‘3-4 weeks back’ are examples of such notes.

If the forms in the user data model fulfil the information needs, they should be used
as logical windows. If a frequently performed task needs access to information scat-
tered over several windows, one or more logical windows should be designed, that
fulfils these information needs in a manner, that suits the user.

This is also the case if a task requires an overview of large amounts of data, in such
cases some kind of visualisation technique should be applied. Examples of visuali-
sations that might be included in the design of logical windows can be found in
Tweedie [Tweedie95] and Ahlberg [Ahlberg95].

However, in most cases only a simple visualisation is needed. For example to fulfil
the information needs of the tasks 1, 2 and 3.1 in table 1, the designer could include
a graphical presentation like the one shown in figure 6. The graphical presentation
supplies the user with a number of progress indicators that would be difficult to
obtain just from looking at the numbers shown in the forms.

 An Approach to Structured Display Design - Coping with Conceptual Complexity 135

Figure 6. Development in ‘number of hours used’ and ‘number of hours used’+
’estimate’ showed in a graphical manner.

The design of logical windows does not necessarily mean radical changes from the
design found in the user data model, more often only a number of minor modifica-
tions are needed. Figure 7 shows an example of how the employee form can be
changed to meet the task requirements. The only changes needed are the order of
two columns and a redefinition of the meaning of the estimate column.

Finally a column has been added that show the portion of the budget that has already
been used. The ‘percent done' field provides the user with valuable insight on the
state of the project, e.g., if the work has just begun. This kind of information is
important when assessing the importance of problem indicators.

By letting the design of the logical windows take its origin in the user data model, it
is possible to maintain the conceptually clear design while obtaining a higher degree
of task efficiency. In order to maintain the conceptually clear design, it is important
to let the design reflect the conceptual model and that the relationship between the
concepts included in a window is accentuated. This can be achieved by keeping the
grouping and layout established by the user data model. It is also important to use
the names found in the user data model consistently.

6 Designing Physical Windows - Compliance with User Inter-
face Standards

Having designed the logical windows only the design of the physical windows remain
in order to complete the display design. The design of the logical windows aims at
ensuring task efficiency, whereas the compliance with user interface standard has
been deliberately postponed to the design of the physical windows.

Estimate of
time remaining

Activity is out
of control

No work is
being done

Week

Hours

Time spent

136 Computer-Aided Design of User Interfaces

Figure 7. Tailoring the logical windows showing the user entity ‘employee’ to fit the information
needed to perform task 1 in table 1.

The transition from the logical display design to the physical display design will usu-
ally be straight forward, because a major part of the design has already been done
during the design of the logical windows and the user data model, such as layout of
information and design of the necessary graphical presentations. The design of the
physical windows is hence primarily a question of finding the best way to implement
the logical design, in a given user interface tool or the user interface standard the
interface design has to comply with.

The physical design will include finding a way to organise the windows, this includes
adapting the layout in the logical windows to possible physical limitations like screen
size or a CUI.

To complete the physical design the functional design and the design of dialogue
state transitions have to be done. The design of these aspects of the user interface
are included in the full EFDD method outlined in section 2.

The identified user functions needs to be implemented as buttons, menu items or
drag-and-drop operations as suggested by the user interface standard. Finally the
design must include a way of visualising the current state of the dialogue, e.g. through
enabling/disabling of fields and buttons, cursor changes.

The design of user functions and dialogue state-transition diagrams are described in
Lauesen and Harning [Lauesen93].

Status of project

Name

Name

Initials

"Tiger"

9511 DXP Version B

XYZ model A9456

9515

JPH

SL

NCJ

Resp.
100

580

120

Budget
20

103

33

Used
80

437

67

Estimate

By the end of week

7/96

Number

Morten Borup Harning

MBH

Name

"Tiger"

9511 DXP Version B

XYZ model A9456

9515

JPH

SL

NCJ

Resp.Number
100

540

100

Estimate
100

580

120

Budget
20

103

33

Used
20%

19%

33%

Percent
done

Added
(calculated as Used/Estimate)

Employee

 An Approach to Structured Display Design - Coping with Conceptual Complexity 137

7 Utilising the Human Ability of Perceptual Organisation

To reinforce the users’ perception of the relationship between the information pre-
sented in the logical windows (and in the user data model form for that matter) it
might help to cast an eye over knowledge available from the gestalt psychology (e.g.,
[Palmer94]). Some of the well-known observations found in gestalt psychology are
that things presented close to each other or things within a frame are perceived as
belonging together (they form a gestalt). The gestalt psychology also proposes a
number of other rules that appear to guide the human perceptual organisation. These
rules can be of great use when applied to the display design. The opposite is of
course also true, that if the design violates some of these rules (e.g. misuse of frames
and a random layout of fields), it results in errors and misunderstandings.

Conclusion

The proposed approach to structured display design have by now been used in sev-
eral design cases and in a large development project. The conclusion is that the ap-
proach helps structure the display design. The result of this seems to be a conceptu-
ally clear display design with good task efficiency. The approach also shows how the
existing structured interface design methods, with a focus on task analysis, can be
combined with a structured display design. Both the user data model, the logical
windows and the physical windows facilitate usability testing, which helps eliminat-
ing usability problems very early in the design process.

The proposed way of designing the user data model increases the creativity by drag-
ging the designer/user through all possible views of the data modelled by the system.
At the same time the two step design process makes it more obvious to consider
appropriate kinds of visualisation techniques. This seems to be helpful, both when
designing user interfaces with high conceptual complexity as well as designing rather
simple interfaces.

By using the proposed approach it is possible to do a structured display design as a
natural part of large development projects, and hence increase the focus on user
interface design. User interface design in such large development projects is other-
wise a problem because it is difficult to apply the traditional HCI approaches like
guidelines, prototyping and usability testing, while maintaining control of cost and
development time.

Acknowledgements

I would like to acknowledge that the initial idea of a user data model was developed
together with Søren Lauesen at Copenhagen Business School. Søren was also the
person that coined the phrase. I would like to thank Jan Pries-Heje for his construc-
tive criticism reading the first drafts of this article, and the CADUI’96 referees that
provided huge amounts of constructive criticism. This project has been funded by a
grant from the Danish Technical Research Council.

138 Computer-Aided Design of User Interfaces

Part III.

Automated UI Generation
And Evaluation

Generating User Interfaces from
Formal Specifications of the Application

Bernhard Bauer

Abstract

The generation of the dialogue description from an algebraic specification of the
application and its restrictions to different user groups are presented. The idea and
motivation for the work is that the development of the application and the UI has
to go hand in hand. Moreover, the UI should be generated since the programming
of UIs is a time consuming and error-prone task. A formal specification of an appli-
cation, characterizing the application in an abstract way, allows the automatic anal-
yses and the generation of specifications, describing the dynamic behaviour of the
UI. The generated (dynamic) specification can be used as an input for an existing UI
Generator (UIG), called BOSS, which is part of a formal UI development environ-
ment, called FUSE.

Keywords

Algebraic specifications, user interface generation, model-based approach, user in-
terface, formal methods, application of theorem provers, links between application
and UI.

Introduction

Nowadays nearly every software project has to deal with the implementation of UIs,
since the end-users of such systems are often computer novices using only the pro-
gram with little or less knowledge about the computer technology. But the program-
ming of UIs is not a trivial task, especially implementing the dialogue control, since
the implementation is a time-consuming, error-prone and complex SE process and
therefore expensive.

Moreover the development of a graphical UI is a very critical point in the software
engineering process, since the complete interaction between the user and the appli-
cation is via the UI and according to [Myers88a] 50-88% of the code of an interactive
application is the code for the UI. Furthermore the price for individual software
should be low to enter into competition with other software developers. Necessary
is the generation of UIs from higher specifications, i.e., “I tell you what, you work it

142 Computer-Aided Design of User Interfaces

out“. The software engineer should only describe the “global“ information of the
UI and define style-guides for the dialogues and presentations. This style-guides have
to be defined once and are usable for the generation of a lot of UIs. These style-
guides allow to get consistent UI for a family of products with the same look and
feel.

Considering a whole application with a UI three layers have to be distinguished:

1. The specification of the presentation (layout) the user is interacting with.
2. The specification of the dialogues or tasks (dynamics) describing all possible

dialogues, in a layout-independent way (as presented for document architecture
systems in [Eickel90]).

3. The specification of the application (functional core) offering an appointed
functionality which must be supported by the UI.

Taking this scheme into consideration and looking at the UI development process
it is obvious that the UI cannot be constructed without the knowledge of the appli-
cation, since the application interface, the dynamics of the UI and the user tasks are
not independent of the application, since the state of the application controls inher-
ent the performable dialogues. Therefore it is necessary to use the application as a
starting point for the UI development.

But which description of the application should be used? An informal specification,
a formal specification or the implementation of the application? Using an informal
specification does not allow the use of machine supported analyzing of the specifi-
cation. On the other side, the implementation of the application is too low-level to
be considered. Furthermore the implementation of the UI has to be done in parallel
to the implementation of the functional core to finish the implementation of both
at nearly the same time.

Working with a formal specification technique allows:

 computer supported analyzation of the specifications,
 elucidating the problem and
 consideration of correctness aspects of the obtained software.

Thus the starting point for the UI and the application development is the same,
namely a formal specification of the application and the software construction of
both can be done hand in hand. In our framework as a starting point for the gener-
ation of UIs, algebraic specifications of the applications are used because on the one
side this technique allows the abstract specification of the application, describes the
input/output behaviour and allows the use of theorem proving techniques for ob-
taining correct software and on the other side are well-studied (cf. e.g., [Ehrig85,
Wirsing90]). The output of the generation process are HIT specifications
[Schreiber96] used for the generation of an executable UI with BOSS [Schreiber94a,
Schreiber94b] (“BedienOberflächenSpezifikationsSystem“ the german translation
of “UI specification system“) and state transition systems. The here presented work
is part of the FUSE system (Formal UI Specification Environment) presented in

 Generating User Interfaces from Formal Specifications of the Application 143

[Lonczewski96] in this volume. The FUSE system consists of the three components
BOSS [Schreiber94a, Schreiber94b], FLUID (Formal UI Development) and PLUG–
IN [Lonczewski 95a, Lonczewski95b] (PLan-based User Guidance for Intelligent
Navigation). Within the FUSE architecture, the FLUID system plays the role of a
theorem prover (cf. [Bauer95]) and an automatic dialogue designer. This contribu-
tion concentrates on the generation of the formal specification of the logical UI -
called in the following often dynamics of the UI - from the formal specification of the
application (i.e., problem domain model and user model).

1 The Problem

As already mentioned in the introduction the programming of UIs is a time-intensive
and expensive SE task. Therefore it would be desirable to generate UIs out of a
higher specification with the aim “I tell you what, you work it out“. One aim is the
re-use of the specification of the application for the generation of the UI. Using
algebraic specifications (being a well-founded formal specification technique, cf. e.g.,
[Wirsing90]) for the generation process allows a unifying starting point for the UI
and application development. The specification of the application is taken as input
of the generation process and the output is a HIT specification or a state transition
system describing the possible dialogues with the UI on a logical view. This HIT
specification in connection with a given runtime system allows the prototypical de-
velopment and evaluation of a UI with BOSS.

1.1 The Starting Point

Following [Larson92] the UI design decision framework consists of the following
five classes:

 The structural and functional decision class determine the end users’ concep-
tual model,

 the dialogue decision class determines the dialogue style and
 the presentation and pragmatic decision class determines the refinement of the

end users’ conceptual model and dialogue style.

In the structural and the functional decision class the structure of the end users’
conceptual model is specified including

 the description of conceptual objects (consumed, produced and/or accessed by
the end user),

 the application functions and
 the description of constraints and relationships that hold among conceptual ob-

jects).

I.e., more or less an abstract datatype with a special observable interface is defined
in the structural and functional decision class. Such an abstract datatype can easily
be specified by an algebraic specification.

144 Computer-Aided Design of User Interfaces

We assume the reader to be familiar with the basic notions of algebraic specifications
such as signature = (S, C, F), -terms T(X), ground terms T, (ground) substitu-
tions , set of partial algebras Algpartial() (for more details see [Ehrig85,
Wirsing90]).

Let = (S, C, F) be a signature consisting of a set of sort symbols S, constructor
symbols C and function symbols F and Ax a set of equations of the form t = r with
t, r T(X), whereby the function symbols in f F with functionality
f : s1, s2,..., sn s may be partial (with s1, s2,..., sn, s S), i.e. there are some
restrictions on the parameters denoted in the following way:

fct(f) = xf, s1 : s1, xf, s2 : s2,..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s

such that f is only defined if Eqf(xf, s1, xf, s2,..., xf, sn) is valid, whereby Eqf(xf, s1,
xf, s2,..., xf, sn) is an equation with the only identifiers in { xf, s1, xf, s2,..., xf, sn }.

A subset Obs of the sorts S is distinguished being the observable sorts.

A partial algebraic specification is a tuple Sp = <, Obs, Ax>.
The semantics is defined by its signature and the behavioural class

Beh(Sp) = { A Algpartial() | A |=beh ax for all axioms ax Ax }.

The behavioural satisfaction |=beh is defined by
A |=beh t = r iff for all context c[zs] of observable sort holds A |= c[t] = c[r]

whereby a -context c[zs] is a term over the signature with a distinguished identi-
fier zs occurring exactly once in c. The application of a context c[zs] to a term t
(denoted by c[t]) is done by substituting the identifier zs by t if t is of sort s. |=
denotes the usual satisfaction relation.

The model class of an algebraic specification is defined by:
Mod(Sp) = { A Algpartial() | A |= ax for all axioms ax Ax }.

The sorts and constructor symbols define the conceptual objects, the function sym-
bols the application functions, the observable sorts characterize those objects which
are observable by the end-user and the parameter restrictions with the axioms de-
scribe the constraints and relationships between the conceptual objects.

The notion of algebraic specifications has to be extended by a set of distinguished
function symbols applicable to the conceptual objects (called in the following interface
functions) which should be supported by the UI and the sort of the application state,
i.e., the sort of the terms representing the state of the functional core. The use of
interface functions cannot be neglected by identifying the function symbols with
observable result sort as the interface function, since it would be desirable to use
application functions only changing the internal state of the application. Further-
more the initial state of an application may be defined.

 Generating User Interfaces from Formal Specifications of the Application 145

Note, that the meaning of the functions (by defining the semantics of the functions
by axioms and parameter restrictions) is specified, but not their format or sequencing
of invocation is defined.

The three important types of decisions made in the dialogue decision class are

 what are the units of information exchanged between the user and the application
(defined by the observable sorts and the interface functions),

 how this units of information are structured into messages between the user and
the application (not considered here) and

 what the appropriate sequences of message exchange are (main issue of this con-
tribution).

The aim of the new approach is to generate the sequence of information exchanged
between the user and the application, namely to automate part of the dialogue deci-
sion class.

1.2 Specification of the Application: an Example

We start with the algebraic specification ISDN-Application of the application. A si-
miliar specification can be found in [Bauer95]. The specification of the ISDN tele-
phone is a syntactical enrichment of the natural numbers (NAT). The sorts describe
the connection with a participant (Connection), the internal state of the telephone
(State) and the state of a connection (Cstate).

The internal state is viewed in an abstract way, i.e., at most two connections can be
achieved with the telephone (mkState). mtCon states an empty connection. A (non-
empty) connection consists of a telephone number (represented by a natural number
being the only observable sort) and the status of the line (mkCon). A line can either
be waiting or telephoning.

The function call describes the telephone call with a single participant, secondCall
starts a telephone call with a second participant and the conference function enables
a conference session between the user of the telephone and the two participants on
the other lines. call, secondCall and conference have parameter restrictions denoted by a
first order formulae after pre.

All telephone calls are ended with endCalls. emptyConnections, singleConnections and dou-
bleConnections are predicates stating none, one and two connections. The interface
functions, i.e., the set of functions which should be supported by the UI are call,
secondCall, conference and endCalls.

spec ISDN-Application =
 enrich NAT by
 sorts Connection, CState, State
 obs-sorts Nat
 cons
 mkState: Connection, Connection -> State,
 mtCon: -> Connection,
 mkCon: Nat, CState -> Connection,

146 Computer-Aided Design of User Interfaces

 waiting, telephoning: -> CState
 opns
 call: Nat, xcall, State : State. pre emptyConnections(xcall, State) = true -> State,
 secondCall: Nat, xsecondCall, State : State. pre singleConnections(xsecondCall, State) = true -> State,
 conference: xconference, State : State. pre doubleConnections(xconference, State) = true -> State,
 endCalls: State -> State,
 emptyConnections: State -> Bool,
 singleConnections: State -> Bool,
 doubleConnections: State -> Bool
 interface functions call, secondCall, conference, endCalls
 axioms forall nr, nr2: Nat, s: State.
 emptyConnections(mkState(mtCon, mtCon)) = true,
 emptyConnections(mkState(mkCon(nr, cs), c)) = false,
 singleConnections(mkState(mkCon(nr, cs), mtCon)) = true,
 singleConnections(mkState(mtCon, c)) = false,
 singleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = false,
 doubleConnections(mkState(mkCon(nr, cs), mkCon(nr, cs))) = true,
 doubleConnections(mkState(c, mtCon)) = false,
 call(nr, s) = mkState(mkCon(nr, telephoning), mtCon),
 secondCall(nr, call(nr2, s)) = mkState(mkCon(nr2, waiting), mkCon(nr, telephoning)),
 conference(secondCall(nr, call(nr2, s))) =
 mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)),
 endCalls(s) = mkState(mtCon, mtCon)
endspec

Because of lack of space (large figures are obtained) and in order to keep the speci-
fication small, not the whole functionality presented in [Lonczewski96] in this vol-
ume is given, especially with endCalls a conference session is ended and the switch-
ing between two participiants is omitted.

These features can easily be added to the specification and the generation would be
analogous. In this paper mainly the generation idea should be described to get a
feeling how the generation is performed.

2 The Generation Idea of the Dialogue Specification

In this section the idea for the generation of the dialogue specifications (HITs and
state transition systems) and their restrictions to different user groups are informally
described.

2.1 Generation of the Dialogue Specifications

The generation process consists of several steps:

As a first step a graph is constructed with nodes marked with function symbols,
identifiers for the arguments and the resulting term for each interface function. The
only non-observable sort is the sort of the state of the functional core, namely State,

marked with and observable arguments are marked with .

 Generating User Interfaces from Formal Specifications of the Application 147

conference(xconference, State)

xsecondCall, Nat

call

endCalls conference

secondCall

xcall, Nat xcall, State
xsecondCall, State

call(xcall, Nat, xcall, State) secondCall(xsecondCall, Nat, xsecondCall, State)

xendCalls, State
xconference, State

endCall(xendCalls, State)

Figure 1. First dependency graph

Now all the parameter restrictions for the functions can be solved by a system solv-
ing existential quantified equations by narrowing like RAP [Hußmann89].
Therefore the solutions for the identifiers in the parameter restrictions must be cal-
culated, i.e., the solutions of the existential quantified formulae:

 xcall, State : State. emptyConnections(xcall, State) = true,
 xsecondCall, State : State. singleConnections(xsecondCall, State) = true and
 xconference, State : State. doubleConnections(xconference, State) = true

The solutions - denoted here as substitutions - can be easily calculated as

1 = { mkState(mtCon, mtCon) / xcall, State },
2 = { mkState(mkCon(nr, telephoning), mtCon) / xsecondCall, State } and
3 = { mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) / xconference, State }

xcall, Nat mkState(mtCon, mtCon) xsecondCall, Nat mkState(mkCon(nr, telephoning), mtCon)

call

call(xcall, Nat, mkState(mtCon, mtCon)) secondCall(xsecondCall, Nat, mkState(mkCon(nr, telephoning), mtCon))

secondCall

conference

mkState(mkCon(nr, waiting), mkCon(nr2, telephoning))

endCalls

xendCalls, State

endCall(xendCalls, State) conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)))

Figure 2. Instantiated dependency graph

148 Computer-Aided Design of User Interfaces

These substitutions can now be applied to the graph, i.e. in the graph the identifiers
xcall, State, xsecondCall, State and xconference, State are substituted by mkState(mtCon, mtCon),
mkState(mkCon(nr, telephoning), mtCon) and mkState(mkCon(nr, waiting),
mkCon(nr2, telephoning)), respectively, resulting in figure 2.

Since the parameter restrictions of call and secondCall influence only the second
argument of sort State and not the first argument of sort Nat there is no restriction
on the telephone numbers. Thus a natural number can be used as an input for the
first argument of call and the first argument of secondCall. The same holds for the
function endCalls which can be applied in every state.

endCalls

mkState(mtCon, mtCon)

conference

mkState(mkCon(xcall, Nat, telephoning), mtCon)

xcall, Nat mkState(mtCon, mtCon)

call

mkState(mkCon(xcall, Nat, waiting), mkCon(xsecondCall, Nat, telephoning))

xsecondCall, Nat

secondCall

mkState(mkCon(xcall, Nat, telephoning), mkCon(xsecondCall, Nat, telephoning))

Figure 3. Putting the instantiated dependency graph together

The result term of the function call is call(xcall, Nat, mkState(mtCon, mtCon)), of the
function secondCall is secondCall(xsecondCall, Nat, mkState(mkCon(nr, telephoning),
mtCon)) and of the function conference is conference(mkState(mkCon(nr, waiting),
mkCon(nr2, telephoning))). Moreover it holds

call(nr, mkState(mtCon, mtCon)) = mkState(mkCon(nr, telephoning), mtCon)),
secondCall(nr, mkState(mkCon(nr2, telephoning), mtCon)) =
 mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)),
conference(mkState(mkCon(nr, waiting), mkCon(nr2, telephoning)) =
 mkState(mkCon(nr, telephoning), mkCon(nr2, telephoning)))
and endCalls(s) = mkState(mtCon, mtCon) for all States s.

 Generating User Interfaces from Formal Specifications of the Application 149

Now the graphs can be merged together (figure 3) and the non-observable state of
the application can be omitted resulting in the graph reproduced in figure 4.

xcall, Nat mkState(mtCon, mtCon)

call

xsecondCall, Nat

secondCall

conference

endCalls

Figure 4. Composed instantiated dependency graph

The obtained graph can now be translated on the one side into a state transition
system and on the other side into a BOSS specification. In this generation process
special dialogue style guides (specifiable in a formal way by defining transformation
rules for the obtained graphs) can be used, e.g., for a user or system driven dialogue
style. We assume here a hard-coded transformation into the dialogue specifications.

A transaction-rule in BOSS (for more details, see [Lonczewski96] in this volume and
[Schreiber96]) is fired by the user, e.g., by selecting a menu-item, or by a pushbutton.,
i.e., each interface function is viewed as a non-repeatable transaction rule and the
observable arguments as input slots, i.e., the user has to enter some information for
it. The corresponding BOSS-specification looks like figure 5.

name:type inputslot

transaction-rule
non-repeatable

xcall, Nat:
Nat

mkState(mtCon, mtCon)
initial state

call

xsecondCall, Nat :
Nat

conference

endCalls

name
secondCall

mkState(mtCon, mtCon)
terminal state

state internal state

Figure 5. HIT specification

150 Computer-Aided Design of User Interfaces

Using non-repeatable transaction rules states, that the whole HIT has to be worked
through starting with the initial state until the termination state is reached. Now a
new instance of the HIT can be made since the termination state is equal to the
initial state.

Depending on the dialogue style different state transition systems are obtained. Let
us first of all construct a state transition system where the arguments are entered
after performing the selection of the interface function.

As a next step a state transition system is considered where all the parameters of the
interface functions have to be known before the interface function is determined.
With the interface functions abstract menu items with the function symbols in cap-
ital letters are assumed, i.e., the abstract menu items are CALL, SECONDCALL and
CONFERENCE.

Starting with an initial state, say s0, CALL can be selected according to the depend-
ency graph in figure 4. Afterwards the telephone number (a natural number) has to
be entered. After performing a call either a second call can be started (beginning
with SECONDCALL and entering the telephone number afterwards) or the tele-
phone call can be ended (ENDCALLS).

After performing a second call either all telephone calls can be ended (ENDCALLS)
or a conference sessions can be started (CONFERENCE) and then all telephone
calls can be ended (ENDCALLS). The obtained state transition system looks like
figure 6.

Nat NatSECOND-
CALL

CON-
FERENCE

ENDCALLS

ENDCALLS
ENDCALLS

s0

CALL

Figure 6. State transition system for dialogue style 1

The other state transition system looks like figure 7.

Nat Nat SECOND-

CALL

CON-
FERENCE

ENDCALLS

ENDCALLS
ENDCALLS

s0

CALL

Figure 7. State transition system for dialogue style 2

Another dialogue style would allow to select the CONFERENCE menu-item and
the system automatically starts the first and afterwards the second call. A state tran-
sition system for such a behaviour of the telephone system can be constructed anal-
ogous.

 Generating User Interfaces from Formal Specifications of the Application 151

2.2 Restricting the Dialogue Specification to Different User Groups

Usual different user groups with a different functionality use a software product.

In the ISDN-example it is possible that a special user group may only use the inter-
face functions call and endCalls but not secondCall and conference.

One solution for this problem is to generate for each user group a different dialogue
description, but some work has to be done twice.

Therefore a more elegant way is to restrict the generated dialogue description to the
interface functions of the user groups, i.e., all the nodes with interface functions,
which are not usable by a special user group, and their argument nodes are “deleted“:

xcall, Nat mkState(mtCon, mtCon)

call

xsecondCall, Nat

secondCall

conference

endCalls

Figure 8. Restricting the dialogue specification to different user groups

resulting in:

xcall, Nat mkState(mtCon, mtCon)

call

endCalls

Figure 9. Restricted dialogue specification

with the corresponding HIT specification and state transition system.

In this section we have shown informally by an example how a HIT specification
and a state transition system, describing the dynamics of a UI out of an algebraic
specification of the application can be generated.

152 Computer-Aided Design of User Interfaces

3 Generating a Specification of the Performable Dialogues

In the previous section we have seen by an example what the idea of generating the
dialogue specification from an algebraic specification is. The starting point is a given
algebraic specification Sp = <(, C, F), Obs, Ax>.

The sorts are splitted up into observable and non-observable sorts and the state sort,
i.e. the observable sorts describe those objects visualizable to the end-user and the
non-observable objects not visible by the end-user and the objects of the state sort
describe the internal state of the application also not visible by the user.

The generation process consists of five phases:

1. Construction of the pure dependency graph.
2. Solving the parameter restrictions.
3. Instantiation of the pure dependency graph with the solutions of the parameter

restrictions.
4. Merging of the instantiated dependency graph.
5. Converting the obtained graph into BOSS notation / state transition system.

3.1 Construction of the Pure Dependency Graph

The pure dependency graph G = (N, E) has two kinds of nodes and edges.

For each interface function f with functionality
fct(f) = xf, s1 : s1, xf, s2 : s2, ..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s

we construct the following graph graphf :

xf, s1 xf, s2 xf, sn...

f(xf, s1, xf, s2,..., xf, sn)

f

Figure 10. Graph of an interface function f

Therefore the nodes N = Nterm Nfunc are splitted up into Nterm the set of terms
and Nfunc the set of function symbols. The edges E = Etermtofunc Efunctoterm Efunc-

tofunc are splitted into edges from nterm Nterm to nodes nfunc Nfunc in the set Etermto-

func, edges from nfunc Nfunc to nodes nterm Nterm in the set Efunctoterm and edges
from nfunc Nfunc to nfunc Nfunc in the set Efunctofunc. Efunctofunc are used later.

The pure dependency graph is the set of graphs of each interface function f.

 Generating User Interfaces from Formal Specifications of the Application 153

3.2 Solving the Parameter Restrictions

In this phase it is tried to solve the parameter restrictions of the interface functions,
i.e. the solution of the parameter restriction for an interface function f with functio-
nality

fct(f) = xf, s1 : s1, xf, s2 : s2, ..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s

are the solutions of the existential formulae:
 xf, s1 : s1, xf, s2 : s2,..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn)

To solve existential quantified formulae theorem provers can be applied, namely the
solutions can be found by narrowing (e.g., by the RAP system [Hußmann89]),
whereby the most general solutions are obtained.

If the parameter restrictions cannot be solved at generation time (because informa-
tion is missing, e.g. with loose specifications is dealt with) the run-time system of
BOSS controls the parameter restrictions (therefor the parameter restrictions have to
be implemented by Boolean functions). Thus for every interface function f with pa-
rameter restriction the following set of solutions is obtained:

(f) = { | Mod(Sp) |= Eqf such that Subst is most general solution }

with fct(f) = xf, s1 : s1, xf, s2 : s2,..., xf, sn : sn . Eqf(xf, s1, xf, s2,..., xf, sn) -> s and Subst is
the set of all substitutions.

3.3 Instantiation of the Pure Dependency Graph with the Obtained
Solutions

Now for every graph graphf obtained from an interface function f the set of instan-
tiated graphs instgraphf is defined by:

instgraphf = graphf, if no solution exists,
instgraphf = (f) (graphf) otherwise

such that (graphf) is defined for graphf of figure 10 by:

(xf, s1) (xf, s2) (xf, sn)...

(f(xf, s1, xf, s2,..., xf, sn))

f

Figure 11. Applying a substitution to a graph

3.4 Merging of the Instantiated Dependency Graphs

After calculating the instantiated set of graphs
InstGraphs = f interface(Sp) instgraphf

154 Computer-Aided Design of User Interfaces

whereby interface(Sp) yields the interface functions of the application. The set of
instantiated graphs InstGraphs is examined whether nodes of sort Nterm can be con-
nected. An edge between two nodes t1, t2 Nterm is drawn if Mod(Sp) |= t1=t2
holds and there exists an edge (t1, f1) Etermtofunc and an edge (f2, t2) Efunctoterm
for some function symbols f1 and f2 and terms t1 and t2. If an edge from t2 to
another term t of Nterm exists then instgraphf is duplicated. The new obtained graph
is merged together in the following way:

If edges (f1, t1) E and (t1, f2) E exist

 and there is no edge (t1, f3) E (with f3 f2) then (f1, t1) and (t1, f2) are deleted
in E and (f1, f2) is added to E.

 and there is an edge (t1, f3) E (with f3 f2) then (f1, f2) is added to E.

3.5 Obtaining a BOSS Specification / State Transition System

The obtained graph of the merging phase is converted into a HIT-specification as
follows:

Each node f of an interface function f is converted into a transaction rule

f
 if f is interface functions and an equational rule

 f
 other-

wise.

The obtained graph of the merging phase is converted into a state transition system
as follows. Depending on the dialogue style different state transition systems can be
constructed. The transformation presented here is performed by first selecting the
abstract menu item of the corresponding interface function and then entering the
arguments.

Each subgraph f

arg2arg1
argn...

 of an interface function f is converted into

...
arg1 arg2 argnf

such that arg1, arg2,..., argn denote the observable arguments which have to be en-
tered. The non-observable arguments are neglected in the state transition system.

Subgraphs of the form

 f

 g

arg2arg1
argn...

 of interface functions f and g are converted
into

...
arg1 arg2 argngf

 Generating User Interfaces from Formal Specifications of the Application 155

such that f denotes the state transition system obtained from the interface func-
tions f and its arguments.

Cycles in the merged instantiated dependency graph are expressed analogous in the
state transition system.

The restriction of the dialogue description for special user groups is done by deleting
the non-usable interface functions from the obtained HIT specification or state
transitition system.

Parallelism can also be taken into consideration in the generation process. Things
can be done in parallel without synchronisation if the output of the fourth phase are
non-dependent graphs. Then each of these graphs can be worked through in parallel.

Converting the graph of the fourth phase into BOSS is the same as described. The
obtained state transition systems have to be put into the construct for expressing
parallelism.

Using the structuring mechanisms well-known from algebraic specifications allows
to use these technique also for larger projects. The experience shows that the gen-
eration of the dialogue description for subspecifications can often be put together
without considering the context in which the subspecifications are used. Otherwise
normalization techniques exists for the structured algebraic specifications and the
normalized specification can be used as the starting point for the generation process.

4 Related Work

MIKE [Olsen86] (Menu Interaction Kontroll Environment) und MIKEY [Olsen89]
generate UIs with menus and dialogue boxes based on a description of the functions
(argument and result parameters) and the data structures in the application interface.

In HIGGENS [Hudson86] a semantic data model of the application interface is used
as the base for deriving views as abstract descriptions of the UI layout.

The JANUS–System [Balzert93, Balzert94a, Balzert95a] uses OOA (Object–Oriented
Analysis) for describing the problem domain model (i.e., application interface) of an
data base–oriented interactive application. Moreover, JANUS allows the specification
of software ergonomic guidelines, which describe the mapping between OOA–
models to the UI description language of a UIMS. JANUS does not provide means
for the explicit specification of the UI dynamics.

In the UIDE system (UI Design Environment) [Foley91, Foley93, Foley94], the UI
development process consists of the description of two models. In the application
model, the logical UI is described in terms of application objects and tasks. The UI–
model describes the coupling of the application model to a UI layout by linking
application tasks to interface tasks, interaction techniques and –objects. The links
between the models are used by a runtime engine to provide animated help.

156 Computer-Aided Design of User Interfaces

HUMANOID [Luo93] divides the UI–development process into the activities appli-
cation design, dialogue sequencing, action side effects, presentation design and ma-
nipulation design. In the first three design dimensions the logical structure of a UI
is described in terms of the structure and the behaviour of so called application ob-
jects. The mapping of the state of the application objects in an logical UI to a UI
layout is described in the design dimensions presentation– and manipulation design
through presentation and manipulation templates. Based on the model described
above, HUMANOID is able to provide textual help.

Recently the research on UIDE and HUMANOID were joint in the MASTERMIND
project.

The GENIUS–System (GENerator for UIs Using Software Ergonomic Rules) [Jans-
sen93] generates UIs for data–base oriented applications. In GENIUS, the problem
domain model is represented by an ERA diagram. Based on this ERA–diagram static
aspects of the logical UI are described in terms of so called views, which can be
regarded as abstract representations of UI windows. For the representation of the
dynamics of the logical interface, GENIUS employs a petri–net–like specification
technique (“dialogue–nets”). For each view in the logical UI, the static UI–layout is
generated by applying software–ergonomic guidelines, which are described as deci-
sion tables (e.g., for the selection of interaction objects).

A similar approach is presented in the TADEUS–System (TAsk based DEvelopment
of UI Software) [Elwert95]. TADEUS differs from GENIUS in the use of different
specification techniques for the representation of the problem domain model
(TADEUS uses an object oriented approach) and the dynamics of the UI (dialogue–
graphs, an extension of dialogue–nets). In this system the dynamics of the applica-
tion is not taken into consideration or the specification of the application is not used
for dynamics considerations of the application.

ITS (Interactive Transaction System) [Wiecha89] offers a frame based language for
the specification of UIs in its logical structures (“dialogue content”). Moreover, ITS
allows the specification of style rules, which describe the mapping between logical
UIs and UIs in a particular style.

In the ADEPT system [Johnson92b, Wilson96], a process–algebra–like specification
technique called Task Knowledge Structures (TKS) is used for the specification of
the task model of an interactive application. In the design phase of the UI–develop-
ment process, the task model is transformed into the specification of the so called
Abstract Interface Model (AIM), which corresponds to the term “logical UI”. Based
on design rules in a user model, the ADEPT–System derives a Concrete Interface
Model (CIM) from the AIM by replacing the AIOs in the AIM by the appropriate
CIOs in the CIM.

The TRIDENT (Tools foR an Interactive Development ENvironmenT) system [Bo-
dart94a, Bodart94b] consists of a methodology and a support environment for de-
veloping UIs for business–oriented interactive applications. TRIDENT uses ERA–
diagrams for the description of the problem domain model. For the representation

 Generating User Interfaces from Formal Specifications of the Application 157

of the task model TRIDENT provides a data–flow–graph–like specification technique
called Activity Chaining Graphs (ACGs). Each ACG is structured into presentation
units. From these presentation units, the static UI layout can be generated by apply-
ing rules for the selection of AIO, rules for mapping AIO to CIO and rules for the
placement of CIO.

These systems start more or less with the specification of the dynamics of the UI
which is the output of the FLUID system and can therefore be seen at the same level
as the BOSS system in the FUSE system. But they do not take the dynamic semantics
of the application into consideration.

Conclusion

The FLUID system, whose theoretical foundations were presented here, is currently
under development, whereby prototypes of BOSS and PLUG-IN already exist. The
FUSE methodology and tools have been applied successfully to a number of exam-
ples (ISDN phone simulation, UI for a literature research system, UI for a home
banking system, formula editor for LATEX).

In the future we plan to increase the level of compatibility of the FUSE development
environment to other model based methodologies and tools. E.g., for setting up the
problem domain model, we want to support OOA, BON and ERA data models in
addition to the currently supported algebraic specification technique.

In order to gain more practical experience with the FUSE–methodology and the re-
lated tools, we plan to organize a course in UI specification and generation at the
Munich University of Technology.

Acknowledgements

This work has been partially supported by Siemens Corporate Research and Devel-
opment, Department of System Ergonomics and Interaction (ZFE ST SN 51). The
author would like to thank Siegfried Schreiber and the anonymous reviewers for
their useful comments and suggestions on draft versions of this paper.

Automatic Ergonomic Evaluation:
What are the Limits?

Christelle Farenc, Véronique Liberati, and Marie-France Barthet

Abstract

There are currently automatic evaluation tools the purpose of which is to implement
the knowledge gained by ergonomics experts, with a view to enabling non-experts
and particularly user interface designers themselves to carry out this evaluation. Cap-
turing the description of the User Interface to evaluate automatically this interface
is one of the main objectives of these automatic evaluation tools. The question that
comes to mind is knowing the limits of these tools and just how far evaluation com-
puterisation can go. This article presents a study whose aim is to precise the qualita-
tive and quantitative aspects of those limits.

Keywords

Evaluation, ergonomic rules, knowledge base, user interface.

Introduction

Current software development methods tend increasingly to take the user into ac-
count very early on by integrating, from the design phase on, ergonomic guidelines
aimed at ensuring easy use and functional adequation. Indeed, most development
tools and UIMS implement a certain number of these guidelines. However, this
number remains limited and the tools are rather permissive.

Furthermore, although guides exist which bring together these recommendations,
there are many of them and they are complex for developers to implement. Conse-
quently, a posterior ergonomic testing is still necessary to confirm the ergonomic
quality of interfaces produced.

There are currently automatic evaluation tools the purpose of which is to implement
the knowledge gained by ergonomics experts, with a view to enabling non-experts
and particularly computer scientists themselves to carry out this evaluation.

The question that comes to mind is knowing the limits of these tools and just how
far evaluation computerisation can go. Indeed, the principle of these tools rests on
the comparison between observed values, i.e. the description of the interface, and

160 Computer-Aided Design of User Interfaces

reference values contained in the ergonomic guidelines. An automatic evaluation
tool must therefore be able to obtain the description of the interface without the
help of a human operator.

This article presents a study aimed at defining, from rules implemented in the ER-
GOVAL [Barthet94] an ergonomic evaluation aid tool, those rules that it is possible
to computerise, and those that cannot be computerised, because they require infor-
mation that can only be described by a human operator.

1 The Problem

Evaluation as offered by automatic evaluation tools falls within the framework of
analytical methods and is based on formal interface quality models [Senach90].

The principle behind analytical methods is the interlinking of a standard set of at-
tributes of the object under evaluation using a measurement scale which integrates
reference values.

Formal interface quality models seek to identify measurable qualities characterising
the requirements that a user-friendly interface must satisfy (consistency, readabil-
ity,...). They elaborate abstract representations of the object under evaluation that
make it possible to predict user performances. These models are less interested in
what the subject has to do with the device to achieve his task, than in the actual
structure of the interface being used.

In contrast with empirical evaluation with testing it out on end users, analytic evalu-
ation is based on HCI models and on ergonomic criteria and recommendations.

In the life cycle of a software program, this evaluation can be done very early on,
from the specification phase. It relies on a structured knowledge base implemented
in an expert system. The evaluation method is represented in figure 1.

Work carried out within the framework of the ERGOVAL design, in particular the
production of a breadboard model to validate the knowledge base, have underscored
the importance and complexity of the interaction between the tool user and the
knowledge base. Indeed, with this model, many items of information (values of the
attributes of graphical objects and contexts where rules come into force) have to be
described by the user for evaluation of the interface ; this description is very cum-
bersome for the user.

Before coming to a precise definition of the modes of tool/user interaction, it there-
fore seems important to reduce the amount of information to be described by the
user.

This is why the study presented in this article has centred on the computerisation of
the description of the interface and more precisely, the "Specify" action in the eval-
uation process. In the rest of the article, we will use the term "computerise" in this
precise meaning.

 Automatic Ergonomic Evaluation: What are the Limits? 161

Characteristics
of the context

Structural
breakdown

Interface
description

CriteriaSelect

Evaluation
variable

Compare

Specify

Reference
value

Described
value

Deviation

Determine

Justification

Specify

Figure 1. Diagram of the evaluation method

2 Automatic Evaluation Tools

The computerisation of the interface description has been envisaged in a variety of
ways in different automatic evaluation tools: KRI/AG (Knowledge-based Review of
user Interfaces) [Löwgren92], SYNOP [Kolski91], CHIMES (Computer Human Inter-
action Models) [Jiang92]. The use of these three tools requires at least two of the
three following principles:

 a specific format for interface description files;
 the interface developed in the MOTIF environment;
 restricting oneself to presentation aspects.

Concerning this study, the automatic evaluation aims to be applied to any specific
software or software package developed in the Windows environment, regardless of
the development tool used. Moreover, the considered ergonomic rules are not
strictly limited to the presentation aspects.

In view of this aim, the problem with automatic retrieval of the interface description
is more complex than for the three tools. Indeed, unlike tools that have restricted
their evaluation to a particular file format (KRI/AG, SYNOP, CHIMES), and perhaps
even to a development tool (SYNOP), ERGOVAL has to be capable of recovering the
interface description for any software written under Windows.

162 Computer-Aided Design of User Interfaces

In contrast with the MOTIF environment, each Windows development tool uses a
specific format for its source files. Recovering data from these files means that ER-
GOVAL must be capable of decoding every type of Windows source file in existence,
and not just for the tools quoted here. In addition, when evaluating a software pack-
age, the source files are not available, which means that the evaluation can only be
carried out from one of the application's run files.

Finally, unlike the three tools mentioned, ERGOVAL includes in its knowledge base
rules on the semantic and pragmatic levels that require information which a priori
does not appear in the interface description files. In this way, whereas the method
followed in designing the KRI/AG tool involved integrating computational rules
only, the method followed for ERGOVAL is a completely different one. The aim of
ERGOVAL has been to achieve as exhaustive an evaluation as possible, which in-
volved integrating into the tool a large number of ergonomic rules that were repre-
sentative of ergonomic knowledge as regards interfaces. The next step of the ER-
GOVAL design then involved seeking as far as possible to computerise this evalua-
tion, in such a way as to avoid it becoming too unwieldy to use in proportion to the
tool's value in terms of software design.

Technical requirements for utilisation of ERGOVAL and the scope of its field of ap-
plication mean that problems posed by automatic retrieval of interface descriptions
cannot be solved as easily as for the tools described. Before we even start searching
for the specific technical means of recovering data on the interface, we may ask
ourselves just how far such computerisation is going to be possible, and with regard
to the set of ergonomic rules, what can we hope to evaluate with no user interven-
tion.

The study presented below determines in the case of ERGOVAL the very lowest au-
tomatic evaluation level that it is possible to provide and in what conditions such a
level of automation can be improved.

3 The Limits of Automatic Evaluation

The ergonomic recommendations integrated in the knowledge base come from lit-
erature [Smith86, Bastien91, Vanderdonckt94e]. These recommendations were se-
lected in function of two principal criteria:

 a good level of accuracy;
 taking into account, in as representative a way as possible, the various elements

involved in ergonomic expertise, namely : the diversity of objects involved ; lex-
ical, syntactic, pragmatic, semantics levels ; and ergonomic design principles.

Moreover, the knowledge base was structured by organising the graphic objects:
these objects are grouped into classes of objects all concerned by the same set of
recommendations.

These recommendations are, for the most part, in a style guide written for Post Of-
fice designers : the graphic interface design guide MICE/D [MICE93]. As regards

 Automatic Ergonomic Evaluation: What are the Limits? 163

the pragmatic level, only those guidelines that did not require in-depth analysis of
the task were incorporated.

The capability of computerising the recovery of information required to check the
rules was not a decisive criterion in the first instance ; it should be remembered that
the prime objective was rather evaluation quality.

The purpose of the survey shown hereinafter is to specify the automation limits of
these ergonomic rules, whatever the automation methods implemented in a tool are.

In order to do this, the first step of this survey is to determine the minimum limit of
the automation, i.e., the percentage of rules that can be easily automated.

It is considered that a rule can be easily automated, when all the information required
to verify it is included in the source files.

These source files must include the interface description as data and not code, so
that the automation can still be considered ‘easy’. Example : « Any dialogue box or
window should have a title ». This rule can easily automated, since any dialogue boxes
or windows as well as their title appear in the source files. This rule is therefore easy
to verify.

After this, rules are classified into two classes: rules that can be automated with
source files and rules that can not be automated with source files.

The second step is to determine the maximum limit of the automation, i.e. the per-
centage of ergonomic rules that can be automated, even if the methods to be imple-
mented for retrieving the information required for running these rules, are complex.

It is considered that a rule can be automated, whatever the implemented methods
are, when all of the information required to verify it, can be found in the system.
Example : « Any non-accessible action must be greyed ». At a « t » moment, it is
virtually possible to know all of the actions that can not be accessed. It also possible
to know whether the object of this action is greyed or not. All of the information is
in the system, therefore the rule can be automated.

After this, rules are classified into two classes: Rules that require information auto-
matically retrievable whatever the implemented methods are, and rules that require
information not automatically retrievable whatever the implemented methods are.

In order to determine why certain rules can not be automated, it is necessary to
separate each of these classes in two sub-classes: Rules that require information re-
lated to items included in the application and rules that require information related
to items not included in the application. For both classes, rules are also classified
based on the type of information required for running them. A summary of these
various classifications is shown in figure 2.

164 Computer-Aided Design of User Interfaces

Ergonomic rules used

Rules inherently
respected

t ti

Rules that can be
automated with source files

Rules that can not be
automated with source files

Rules that can not be automated.
Information not automatically
retrievable whatever the
implemented methods are

Rules that can be automated.
Information automatically
retrievable whatever the
implemented methods are

Information related to
items included in the
application

Information related to
items not included in
the application

Information of the
semantic type

Information of the
pragmatic type

Information of the
« semantics of the
text » type

Information of the
« semantics of the
object » type

Figure 2. Classification of ergonomic rules.

3.1 Minimal Automatic Evaluation

For software programs developed under Windows, it is sometimes possible to re-
cover information about the interface in text format from "rc" resource files. Such
information is mainly to do with the static description of the interface and is very
simple to recover by means of tools such as the [Borland91].

Ergonomic rules integrated into ERGOVAL have been analysed in such a way as to
count the percentage of rules that are concerned by the automatic recovery of data
from these resource files.

For all ergonomic rules contained in the ERGOVAL rule base, rules have been placed
in the following categories:

 rules directly obeyed by construction, knowing that this figure may vary de-
pending on the development tool used to design the interface. For the purposes
of this study, it has been taken as read that the development tool used was the
Resource Workshop;

 rules requiring automatically recoverable information because they are con-
tained in the resource files;

 rules requiring not automatically recoverable information because it does
not appear in the resource files.

 Automatic Ergonomic Evaluation: What are the Limits? 165

The rules were also divided into two main categories, rules that focus on static in-
terface presentation and those that focus on interface or system behaviour (dynamic
presentation, data flow,...). The purpose of this division was to check that most of
the information contained in the resource files does indeed concern static interface
presentation, but also to determine whether the recovery of resource files is suffi-
cient to evaluate static interface presentation as a whole. Table 1 shows how the
rules are distributed for the above two categories in function of the aforementioned
classes.

 Rules /presentation Rules /behav-
iour

Total

Rules inherently respected (1) 28 64 93 (22.9%)
Rules that can be automated with
source files (2)

82 2 84 (20.6%)

Rules that can not be automated with
source files (3)

161 69 230 (56.5%)

Total 271 135 406

Table 1. Summary chart of the computerisation of ergonomic rules from resource files

Examples of class (1) rules:

 as regards static presentation: "Labels for push buttons must be centred";
 as regards behaviour: "In a menu bar, a drop-down menu, a cascading menu, and

a system menu, the cursor must run automatically from the last option to the
first".

Examples of class (2) rules:

 as regards static presentation: "All boxes and windows must have a title";
 as regards behaviour: "All boxes and windows must be movable".

Examples of class (3) rules:

 as regards static presentation: "For any input field, if there are any acceptable
values, such values must be displayed";

 as regards behaviour: "If the system's response time is of between two and five
seconds, a wait pointer must be displayed".

Thus, it emerges from this table that the majority of recoverable rules at resource
file level are indeed rules of static presentation: 82 out of 84. On the other hand,
recoverable information in these files is not sufficient to evaluate static presentation
as a whole, for whilst this recovery ensures the checking of 82 static presentation
rules, it does not do so for 161 others. These files do not therefore provide a precise
enough description of the interface to ensure that a fair percentage of ergonomic
rules governing the static presentation of the interface are checked.

Lastly, if we consider the 22.9% of rules that are obeyed automatically and the 20.6%
of rules that can be executed automatically on the basis of data from resource files,
this leaves 56.5% of rules that cannot be evaluated on the basis of the content of

166 Computer-Aided Design of User Interfaces

these files. If we are to be able to claim to have a valid automatic method of evalua-
tion, it seems we have to reduce this percentage of outstanding rules and therefore
achieve automatic retrieval of further data on the interface.

The following paragraph presents an analysis of information that does not figure in
resource files and that is required for the execution of these remaining rules.

The aim of this analysis is to define:

 whether it is possible to increase the number of executable rules through auto-
matic retrieval of the data required to run them;

 what the limits are to the computerisation of an evaluation process based on
ergonomic rules by determining the number of rules dependent on data that is
not automatically recoverable.

3.2 Maximum Automatic Evaluation

The aim is to determine the percentage of ergonomic rules that it will be possible to
evaluate automatically, whatever the technical resources used, as opposed to an
« easy » automation.

The rules considered are the 230 rules (56,5 %) that can not be automated with
source files. One distinction can be established depending on whether the rules:

 require information that focuses on elements that are in the application.

For example, for the rule "If there are acceptable values within the system, then they
must be displayed", the information "there are acceptable values within the system"
refers to the element "acceptable value", which is within the application, and to be
more precise in its functional core.

 require information on elements that are not contained in the application.

For example, for the rule "When a selection is displayed by default by the applica-
tion, this selection must be relevant for the user", the information "this selection is
relevant for the user" refers to the element "relevance for the user", which is not
contained in the application.

As regards the former category of rules, it is clear that if an element does not exist
in the application, no information that needs to be attached to this element can be
found in it either. Therefore since this information is not contained in the applica-
tion, it cannot be automatically retrieved from it.

On the other hand, for the former category of rules, information on these elements
may be found in the application, but it must be noted that this is not systematic.

The following table presents the distribution of these rules with respect to the infor-
mation source, in order to distinguish between those which are potentially compu-
tational and those which, although having a bearing on elements contained in the
application, can never be automated.

 Automatic Ergonomic Evaluation: What are the Limits? 167

Rules Information auto-
matically retrievable

Information not auto-
matically retrievable

Total

Elements in the application 140 62 (1) 164
Elements not in the application 0 66 (2) 66

Total 140 (60.87%) 90 (39.13%) 230

Table 2. Summary chart of the grading of rules by source of the information
required for their verification.

It should be noted that the sum of (1) and (2) does not correspond to the total
number of the rules requiring non recoverable information, because 38 rules require
information on elements from both within and outside the application. These 38
rules are therefore posted twice at the level of Table 2. One example of this type of
rule : "if there are codes in an input field literal, then these codes must be known to
the user". The context "if there are codes" is linked to the meaning of the displayed
text, and the displayed text is « written » in the application. On the other hand, the
action part "then these codes must be known to the user" relates to the user and is
not in the application.

It is therefore potentially possible to recover from the system the data required in
order to verify 60.87% of rules remaining after utilisation of the resource files, that
is to say 34,49% of the total number of rules included in the knowledge base. If we
refer to the Seeheim model [Pfaff85], data to be found within the application is either
at functional core level or at dialogue controller level, or again at presentation com-
ponent level. Whilst it is relatively easy to recover data contained in the presentation
component, on the other hand recovering information contained in the functional
core or the dialogue controller can prove extremely complex, and all the more so in
the case of applications developed with different tools.

As regards the 39.13% of remaining rules (table 2), that is to say 22 % of the total
number of rules included in the knowledge base, these can only be run if the data is
supplied to the system by a human operator.

These results demonstrate that ergonomic rule verification cannot be made totally
automatic without the intervention of a human operator.

The following paragraph presents an analysis of the nature of all the data that cannot
be recovered automatically in order to explain why this is so, and to determine the
type of information and knowledge that will have to be supplied by a human opera-
tor.

3.3 Data that is not Automatically Recoverable

Qualitative analysis of this data has shown that it is of two kinds:

 pragmatic,

For example: for the rule "When the data input, selected or restored consists of units
of measure, then the unit displayed must be the one commonly used by the user".

168 Computer-Aided Design of User Interfaces

The information "commonly used by the user" is information of the pragmatic type,
one that varies according to the task for which the software is being used.

 semantic.

For example: for the rule "If a message signals an error, it must contain the cause of
the error", the information "must contain the cause of the error" is information of
the semantic type.

In the case where the necessary information focuses on elements from outside the
application (cf. preceding paragraph), rule distribution is as follows:

Semantic 21
Pragmatic 45

Total 66

Table 3. Summary chart indicating the nature of information
about elements outside the system.

 An example of a rule requiring semantic information: "If a literal or title contains
an abbreviation, such an abbreviation must comply with abbreviation norms."

 An example of a rule requiring pragmatic information: "If a literal or title contains
a code, the meaning of this code must be known to the user".

In the case where the necessary information focuses on elements to be found within
the application, (cf. previous paragraph), it is interesting to distinguish two kinds of
information of the semantic type:

 information linked to the semantics of the text displayed, for example: "if
there are any codes in a literal";

 information linked to the semantics of the graphical objects of the interface,
for example: "If there are any acceptable values in the system, are they displayed
?". The context corresponds to an item of information that is present within the
application, but to test if the acceptable values are displayed, we need to know
the "meaning" of the graphical objects displayed on the screen.

The rules are distributed as reported in table 4.

Semantics of displayed text 39
Semantics of graphical objects 23
Total 62

Table 4. Summary chart of the source of information within the system.

 An example of a rule requiring information about the semantics of the text dis-
played: "If a text message signals an error, it must contain an explanation of the
cause of that error".

 An example of a rule requiring information on the semantics of the graphical
objects: "A list box literal must be presented above the object that it designates".
In this case, at interface level, there is a text restore field that is located "near"

 Automatic Ergonomic Evaluation: What are the Limits? 169

the list box, but the system does not know whether or not the purpose of this
restore field is to label the list box.

Note that in this second instance, no rule requiring information of a pragmatic na-
ture was found.

Although the results presented in this paragraph are not unexpected, it is nonetheless
important to underscore the fact that in addition to the task-linked information, any
human operator will also have to be able to provide the tool with information as to
the meaning of objects within the interface.

Conclusion

This article attempts to indicate the limits to the computerisation of ergonomic rules
in a graphic interface evaluation tool, that is to say, just how far it is possible to
recover automatically the data required to execute ergonomic rules without the need
for intervention by a human operator.

In other words, it seemed interesting to define more precisely what such limits in
terms of quantity and quality involved.

MIN
44 %

MAX
78 %0 100%

ERGOVAL
knowledge base

Figure 2. Limits to computerisation of ergonomic rules

Knowing that the rules contained in ERGOVAL represent 100%, 44% of these rules
are automatically verifiable using the resource files. This percentage represents the
minimum number of rules that can be automated inasmuch as recovering resource
files is the easiest thing to do.

Furthermore, the maximum percentage of ergonomic rules that can be incorporated
into a totally automated evaluation is 78%.

The effective limit that computerisation of rules is bound to reach falls somewhere
between these maximum and minimum figures. This limit depends on the aims set
upon the tool: evaluation benchmarks, cost, modes of operator/tool cooperation.

Finally, 32% of these rules of necessity require the intervention of a human operator.

It appears that the information needing to be described by a human operator is
mainly of a semantic and pragmatic type. Computerisation will therefore be dealing
primarily with lexical and syntactic rules. Automatic evaluation remains however a
useful preliminary to tests with users, because it makes it possible to correct design
errors that penalise these tests. This is because users are liable to focus their attention

170 Computer-Aided Design of User Interfaces

on such errors rather than on the functional adequacy that these evaluations are
designed to confirm.

Research work has demonstrated that to be reliable, i.e. to identify 80% of design
errors, an analytic evaluation must be carried out by 3 experts [Pollier91]. If this
result deserves a more thorough study, it is true that an automatic tool has the ad-
vantage of systematising the verification of ergonomic rules for all the graphical ob-
jects. In fact, a greater number of design errors can be identified.

Moreover, an automatic tool shall help the designer to built the ergonomic recom-
mendations into his product thought successive self-evaluation.

In conclusion, to increase the number of rules evaluated, and hence the effectiveness
of the tool itself, requires that a human operator be integrated into the evaluation
process. It is therefore necessary to achieve an aid tool capable of both executing
some rules automatically and at the same time cooperating with a human operator
to execute others.

A Framework for the Automatic Generation of
Software Tutoring

Javier Contreras and Francisco Saiz

Abstract

Interactive Systems present an ever increasing complexity both to their users as well
as to their designers. These systems may require a great effort to be mastered by a
new user. Therefore, some kind of tutoring for these applications must be provided,
in such a way that it does not represent duplicating the work of the designer. This
paper describes an approach for automatically generating a tutoring system for the
tasks defined in an application, using some particular information on tutoring that
these tasks may have. At the same time an editor of these tasks is provided to the
designer. The kind of tutoring automatically generated has a variable degree of flex-
ibility in face of user actions, according to the designer's criteria, and it is performed
using the real application, not a simulation. This means that the final user can actually
work while he is learning how to perform a task. The ideas here presented have been
implemented in two small prototypes, Teach me While I Work (TWIW) and Task
Models Editor (TME).

Keywords

Software tutoring, task models, user interface design, interactive systems specifica-
tion, programming by demonstration.

Introduction

As Interactive Systems become more and more complex, more help must be pro-
vided to the final user. Standard help systems will soon become obsolete, since they
are very rigid and static, not taking into account the dynamic aspects of the Human-
Computer Interaction, nor the context in which help is demanded by the user. In
this scenario, flexible and powerful tutoring systems seem more appropriate in order
to instruct a new user of an Interactive System. But achieving higher flexibility and
power for tutoring systems involves an ever higher cost. In this paper we will present
an approach that allows the designer of an Interactive System to incorporate a tu-
toring system for his application in a very easy manner. Our approach has been
tested in two prototype tools, TWIW and TME.

172 Computer-Aided Design of User Interfaces

TWIW is the tool in charge of generating the tutoring at run-time. To do so, it has to
access information that is contained in task objects. As we shall see, these are the
appropriate objects for sharing the information between an application and the cor-
respondent tutoring system. These objects have a much richer semantic information
than single commands can have.

Moreover, the kind of tutoring generated has great benefits for the final user, as he
will receive tutoring on the tasks that can be performed in an application at the same
time he is working and actually carrying out these same tasks. This allows him to
practice progressively those tasks he has already learned, and also to incorporate its
use into new interaction techniques he learns. This is in sharp contrast with current
tutoring techniques, as we shall see in the Related Work section.

To work, TWIW needs that the tasks of the application that are going to be tutored
have been defined. This must be done by the designer of the application. To avoid
increasing the burden of the designer, TME is provided. It is an editor of tasks that
incorporates techniques of Programming by Demonstration, that turns the edition
of the task models into a very easy commitment.

Regarding the working environment, both TWIW and TME were developed accord-
ing to the Model-Based Interface Design paradigm, using the HUMANOID tool [Sze-
kely92], although we needed to introduce slight changes in the original language
[Saiz95]. The model-based approach in HUMANOID leads to an interface design en-
vironment that supports design reuse, delay of design commitments and help to
understand design models; benefits not found in current interface building tools
[Luo93]

One of the main benefits for working using the Model-Based Paradigm has been
already exploited by other systems too [Luo93, Moriyón94]: it is easy to reason about
the models. In our case, TWIW reasons about the task models, and TME creates
interactively these same models. The techniques used by TME can also be found in
[Cypher93].

Although a model-based approach provides the benefits above, it does so at a cost
of additional specification effort. To avoid this, both TWIW and TME were built
using the KIISS editor [Saiz96], which in turn lies on top of HUMANOID.

The paper is organized as follows: we first describe related work, followed by a gen-
eral overview of our system and a more detailed section on its architecture. We then
present an example, showing the kind of tutoring a user would receive while work-
ing. Then we introduce the TME editor, with another example in which the designer
specifies tasks for his application. Finally we extract some conclusions and point out
relevant ideas for future work.

 A Framework for the Automatic Generation of Software Tutoring 173

1 Related Work

We shall start by considering the development of help systems, a related field where
a lot of activity has taken place for many years both in the development of commer-
cial applications and in the search of new techniques that enhance the capabilities of
previous systems. Help systems can be considered as the most simple software train-
ing tools that provide the user information about how to accomplish tasks with the
software at hand.

During the last years, with the advent and wide spread of graphical user interfaces,
graphical help systems have become usual, and all the main suppliers of such appli-
cations have developed their own help systems. Apple, as a pioneer in this direction,
has used Balloon Help already for a long time [Macintosh95]. Microsoft has relied
more on hypertext style, and its development environments like Visual Basic© or
Visual C++© include specific means for the construction of help for applications
[Microsoft91].

More recently, Microsoft has also included the possibility to add to an application
small rectangles of explanatory text that appear when the mouse stays long enough
over a specific region of the screen, or when the user clicks on it after asking for
help. All these interactive help systems are characterized by their static nature (they
can only give help about a fixed predetermined portion of the screen), and by the
fact that the only information they can give for complex tasks is through explicit text
explanations. As an example, we consider the following help the user receives when
asking how to create a link when using the CorelDRAW© program:

To link an object from CorelDRAW:

Choose Insert Object from the File menu.

1. Select Create from File.
2. Select Link.
3. Type the name, including the path and extension, of the file you want to link. If

you don’t know the name of the file or its location, click the Browse button to
display the Browse dialogue box.

4. If you want the object to appear as an icon, select Display as Icon. The icon
that’s currently associated with the selected application appears. You can choose
another icon from the dialogue box displayed by clicking the Change Icon but-
ton.

5. Choose OK.

This type of recipe-help is difficult to follow by a new user.

During the last years there has been some research in the HCI community related
to the development of high level tools for the construction of help systems. They
can be seen in some sense as ancestors of the system we present in this paper, so we
shall explain briefly their more relevant aspects.

174 Computer-Aided Design of User Interfaces

N. Sukaviriya [Sukaviriya90] has developed a system that is able to give context sen-
sitive help with animations about a user interface. For example, the user can ask how
to read mail in a mail tool, and the system will answer with an animation showing
how to select a message from the list using the mouse and then click on the Read
button. Sukaviriya's system is based both on a backwards chaining inference engine
and a facility for the animated simulation of mouse events. The backwards chaining
engine uses pre and postconditions associated to interactive actions to search for a
chain of events that can accomplish the desired task, and then shows it using the
corresponding animations.

R. Moriyón, P. Szekely and R. Neches [Moriyón94] have developed another tool for
the generation of help systems, HHH. It produces automatically a help system for
any application built using HUMANOID, a high level tool for the development of
user interfaces from the University of Southern California. It also allows the designer
to change the resulting help system to adapt it better to his specific application.
HHH generates automatically help messages in hypertext form that include refer-
ences to different parts of the interface. To do so it uses a forwards chaining infer-
ence engine. HHH messages are context sensitive, and adapt themselves dynamically
to the state of the interface.

Finally, Pangoli and Paternó [Pangoli95] have a system that is able to generate help
about the achievement of complex tasks. This system is built on top of a tool for
the specification of user interfaces that includes the ability to define user tasks. What
their work has in common with ours is the identification of the user tasks as being
essential in giving high level help (tutoring, in our case) with important semantic
content.

Comparing these systems with TWIW, both Sukaviriya’s and HHH systems give a
very close to atomic interaction help, being the user the one to decide how to split a
complex task in a sequence of simpler subtasks. This is not the case with Pangoli’s
system, that relies on user tasks hierarchies to achieve better help generation. But in
contrast, this system does not permit the user to have guided practice, with immedi-
ate feedback, as is the case with TWIW.

With respect to software tutoring systems, the state of the art is still far from a situ-
ation like the one we have just described for help systems. There are no specific
tools that simplify the development of courses on the use of software. Some excep-
tions are a few projects that are under way for the development of documentation
for applications (ARPA is financing such a project at ISI/USC), and general frame-
works for course development. All of them ignore completely the specific charac-
teristics and possibilities derived from the fact that the subject of the course is itself
a computer program.

Most of the software tutoring systems that exist nowadays include just some kind of
"movie" that shows how the system accomplishes determined tasks, including an
animated view of the movements of the mouse, etc. The most advanced software
tutoring systems allow the student to practice using an emulation of the real software

 A Framework for the Automatic Generation of Software Tutoring 175

being tutored. But building this emulator is a costly process, that is more costly as
more complex the emulator ought to be, and usually the student has the feeling that
he is dealing with a canned version of the application. In particular, he can never
save the result of his work, and starting a tutoring session is something clearly dif-
ferentiated and isolated from working with the application. Complex activities like
the ones arising in engineering processes (design, emulation, etc.) can be learned
better in a more flexible tutoring environment like the one we describe in this paper.

2 TWIW: Teach me While I Work

TWIW is able to do tutoring on applications that incorporate a model of the tasks
that can be accomplished with them. The tasks that are part of an application con-
stitute a hierarchy, where complex root tasks are decomposed into simpler ones, and
so on until atomic tasks are reached.

Each task incorporates information about how it will be tutored. TWIW constructs
automatically a default tutoring system for each application by adding to it standard
information about its tutoring method. The designer of the application can modify
and refine the tutoring system automatically generated by modifying the tutoring
information corresponding to its tasks.

A special task provided by TWIW, the Tutoring-Task, takes care of the generic aspects
related to tutoring. TWIW also incorporates a Task Manager that is responsible for the
execution of the appropriate actions when the user interacts with the application.

The overall structure of the tasks model of an application can be highly complex.
For example, several tasks can be accomplished in parallel. Hence, a tutoring system
must include a module that allows the user to learn about this complexity by showing
him the different tasks he can perform at a given moment and their relationship.
TWIW incorporates several standard windows that show the user different views of
the task system and its current state.

Figure 1 is just one of these windows, the one that shows a list of all the root tasks
defined in a Mailtool application. This is the first window shown when a user ex-
presses his intention to learn about tasks by hitting the appropriate key. By using the
menu-bar the user can change this visualization, to obtain only the list of currently
active tasks. By selecting individual tasks on any of these windows, suitable tutoring
actions can be performed on them.

On the other hand, individual root tasks can also show arbitrary big complexity by
the nesting and branching of their associated tree. TWIW can help the user to under-
stand these aspects by showing him individual information about specific tasks. The
actual information TWIW is able to give right now in this respect is very similar to
the one included in [Pangoli95], which in turn is closely related to the information
given by Sukaviriya’s Help System [Sukaviriya90].

176 Computer-Aided Design of User Interfaces

Figure 1. Main window of the TWIW system

It consists of a tree shown in a dedicated window, from which the user can ask for
a textual description of individual subtasks, as well as to flash the parts of the screen
related to each step of the task under consideration. This kind of help has proven to
be much more effective than the static help we can find in many applications, de-
scribing all the commands available, but without direct reference to where we can
invoke them, and how we can assemble them to perform a complex task.

Taken by itself, the functionality described so far of TWIW does not deserve the
name of tutoring functionality. It would be best described as advanced help func-
tionality. It is the features explained in the next paragraph that makes TWIW a pow-
erful tool for the automatic construction of tutoring systems.

The fundamental aspect of TWIW, that allows real tutoring of interactive applica-
tions, takes place when the user asks for training on a specific task. The user will
then receive complete information about the selected task and how to perform it.

After that, while the user tries to perform the task interacting with the original ap-
plication, TWIW will watch if the correct steps of the selected task are being taken,
and in the right order. According to the tutoring-information associated to this par-
ticular task, TWIW will do the following:

 if the action is correct, it will execute it, look for the next step on the task model
and perform a preliminary tutoring action associated with it, typically showing an
explanation about what should be done next;

 if the action does not correspond to what is expected, two things can happen: if
the Tutoring-Task is in strict mode (which is the default tutoring behaviour) an
error message will pop up in a window, explaining what the user was supposed

 A Framework for the Automatic Generation of Software Tutoring 177

to do, and the action will not be executed. On the contrary, if the Tutoring-Task
is in free mode, a warning message will be displayed, but the action will be executed.
Intermediate modes are also available, leaving to the designer the decision about
where, how, and when a user can act while learning a certain task.

Of course we can abandon tutoring at any moment, or simply reach the end of the
task. This simple tutoring style is complemented by some variations of it where, for
example, the system teaches a whole course about the application or it makes the
user train randomly different tasks. In this case, it can follow the user’s accomplish-
ments and take this into account in the successive training proposals it makes.

3 Architecture

The ideas here presented can be implemented in any environment that supports
object-oriented programming and allows the specification of the interactive behavior
of graphical objects, encapsulating the low-level events produced by the user activity.

We have chosen HUMANOID [Szekely92] to implement both TWIW and TME. HU-
MANOID is a model-based interface design and construction tool where interfaces
are specified by a declarative description (model) of their presentation and behavior.

The main components of the TWIW tool, necessary to implement the approach de-
scribed above are:

3.1 Task Models

Our prototype includes a simple task model that has allowed us to concentrate on
how to perform tutoring on tasks, and at the same time control the user activity.
There are two basic types of tasks: atomic tasks and composite ones. Both are KR
objects, the language used to define objects in HUMANOID.

With them the designer builds the task hierarchy of the application, the atomic tasks
being the leaves of the tree. These atomic tasks are directly related to atomic inter-
actions coming from the user, via the HUMANOID behaviors.

The task objects also have tutoring information. This information can be specified
by the designer, or he may choose to use the default behavior. The knowledge con-
tained here is used by the Tutoring-Task, and basically determines:

1. where the user can interact with the application while doing tutoring on some
task;

2. pre and post-actions for each node of the tree, used normally to guide him
through the task and provide feedback;

3. how the system should behave if the user action was not expected.

178 Computer-Aided Design of User Interfaces

3.2 Task Manager

This component incorporates an interpreter of the user’s actions with respect to the
tasks defined. This is a delicate point due to the asynchronous character of the user’s
activity.

Although the Task Manager is an essential part of TWIW, it is sufficiently general as
to be incorporated in other systems that modify the behavior of applications. As an
example of such a modification, one could build a system that helps in the debugging
of an application, just by providing a task object specialized on that, or in other
words, substituting the Tutoring-Task by a Debugging-Task. The rest of the com-
ponents of TWIW would work exactly the same with this new tool.

3.3 Tutoring Task

This is an atomic task provided by TWIW. All the behavior described above, that
takes place when the user is in tutoring mode, is encapsulated within this atomic
task. Besides that, this atomic task is similar to the others, and it is treated in exactly
the same way by the Task Manager.

When the user enters tutoring mode, the Tutoring-Task is activated, while all the
other application tasks are deactivated. In this way, while in tutoring mode, this task
is emulating the others according to the user activity and the states of the other tasks.
In figure 2 we can see how these components are assembled in TWIW.

Figure 2. Architecture of TWIW

When the user tries to interact with the application, an event arrives to the system.
TWIW will first try to match this event with all the atomic tasks that can be activated.
If the matcher can actually associate the input event with an atomic task, indicated
in the figure by number 1, this information will be passed to the Task Manager, that
will execute the action specified by the atomic task.

If we are in tutoring mode, the single atomic task that can be activated is the Tutoring
Task, TT in the figure. This is the situation labeled by number 2. The Tutoring-Task
will watch for the state of the task being tutored, and decide if it is an appropriate

M
at

ch
in

g

TA1

TA3

TA2

TT

1

2

2

2

Ta
sk

M
an

ag
erEvent

Wait for Next Event

 A Framework for the Automatic Generation of Software Tutoring 179

action from the user. If this is so, it will emulate the atomic task concerned, in this
case TA2, and perform some actions to guide the user with the tutoring information
contained in TA2.

What we want to stress here is that the tutoring behavior is contained in the Tutor-
ing-Task. The Task Manager and the matcher are absolutely independent of this.
The information is distributed in such a way that we could easily modify the behavior
of an application putting some knowledge related with our goals in the task objects
and creating a new task that knows how to deal with this knowledge. The rest would
work exactly in the same way.

4 An Example

In figure 3 we can see two task objects defined for a CAD application. If the user
decides to receive tutoring on the “Give Shadow to a 3D Object” task, TWIW will
display a window with the message:

“This task permits you to give shadow to a 3D object selected in the design area”

and an OK button to continue. This information is contained in the root task. Then
it will display another window with the message:

“First you have to select the object you want to shadow, that must be a 3D object.
This can be done by selecting the Pointer in the ToolBar and then marking a zone
that completely contains the object desired”

Figure 3. Two tasks defined in a CAD application

This second window has two buttons: The OK button and the Flash button, who
will highlight the widgets referred to in the explanation, if the user desires. This in-
formation is contained in the first subtask. Then it is the moment for the user to act.

If he tries to do a different thing from what he was told, and the system is in strict
mode, his action will not be executed and he will receive an error message explaining
the situation and the same explanation as before about what he is supposed to do.
This is usually the case if it is the first time the user tries to accomplish this task,
even if there are related tasks as the one we show in the second tree of figure 3.

Later, if the user has already mastered the first task, or meets any other criteria spec-
ified by the designer, the user could be allowed to change position of light as he
receives tutoring on the first task. In this case, the system would be in an intermedi-
ate mode between free and strict. If the user begins executing the actions specified

Give Shadow to a 3D Object

Select 3D Obj. Shadow It

TA1 TA2 TA3

Change Point of Light TA1: Select Pointer from ToolBar
TA2: Mark Zone with Pointer in Body
TA3: Press Shadow Button from Button Panel

TA4: Select Light Spot with Pointer in Body
TA5: Select Light Position from the Options
 Menu in MenuBar
TA6: Type in Coordinates in Dialog Box
TA7: Press OK Button

Select Light Spot Change It

TA1 TA4 TA5 TA6 TA7

180 Computer-Aided Design of User Interfaces

in the second task, he would receive a warning message, informing him that his ac-
tion is not directly related to the tutored task, but this action would be performed.

In this case he would be able to change the point of light in the graphics application
and then continue with the tutoring of the tutored task, about giving shadows to 3D
objects.

5 TME: Task Models Editor

Once the designer has finished to create his application, he must define the tasks
that are available to the user and that will be used by TWIW to generate tutoring. The
designer can specify the task models using an editor and the HUMANOID language,
exactly as he has done previously to define the application.

Proceeding this way there is an easy part, namely the one related to slots which con-
tent is textual (e.g., name, description, etc.).

The difficult part arises when the designer is defining the atomic tasks and has to
specify what interaction from the user is associated with this task. To do so, the
designer would have to know the name of a big number of HUMANOID behaviors
used in is application. TME was created to overcome this requirement. It provides
the designer of the application with:

 a graphical way to define the tasks’ hierarchy, by means of a tree of nodes labeled
with the name of the tasks he defines;

 a convenient way to bind user actions with atomic tasks, by means of program-
ming by demonstration techniques. When the designer needs to make such an
association, s/he expresses so to TME. Then he can directly interact with the
interface of his application (that is present all the time) and do what the final user
is supposed to do. TME will capture this event, do the corresponding translation
to obtain the appropriate behavior and will introduce it in the atomic task that is
being defined.

When the designer has finished editing the task models he can ask TME to generate
the corresponding HUMANOID code, homogeneous with the rest of the application.

6 Another Example

In this example we can see a small CAD application created using the KIISS editor
on top of HUMANOID. The designer is specifying the task models of his application,
using TME. In figure 4 we see both interfaces. The upper part of TME contains the
hierarchy or tree of the root task that is being edited.

 A Framework for the Automatic Generation of Software Tutoring 181

Figure 4. Defining tasks in an application using TME

Using the Edit menu, the designer can cut and paste tasks previously defined and
introduce them in the current one. When he selects a node from the tree, a list of
slot-value pairs corresponding to the selected task appear on the bottom part of the
editor. The slots that contain textual information, e.g., name, description, etc. can be
edited in this part of the window.

When the task that is being edited is an Atomic Task the Capture Interaction button
is activable, otherwise it is dummy, since Composite Tasks do not have the interac-
tion slot. In the figure, the designer is defining the Atomic Task TA3 and is going
to set the interaction slot of this task pressing directly the button in the HCAD
application he wants to refer to. TME will capture this behavior and introduce the
correct value for this slot.

Conclusion

We have seen an approach to the automatic generation of software tutoring systems
starting from a description of tasks. This relieves the designer from the burden of
the infinitude of small details that these systems must take into account and allows
him to concentrate on the most conceptual aspects of the tutoring by specifying the
tasks. To avoid programming at this level, a tool called TME is provided.

On the other side, the kind of tutoring provided is essentially of a new type, as learn-
ing how to use an application and really working on it can be done at the same time.
This represents a great saving in time with respect to those systems that need a pre-
vious and separated training phase, without loosing safety, since in our system, in

182 Computer-Aided Design of User Interfaces

tutoring mode the user’s activity is supervised. In current systems the user must re-
ceive tutoring with pre-prepared examples, not necessarily related with his own
work, and after that he must try to apply what he has learned.

As possible extensions to our system, we consider:

 extending the task models, including a more sophisticated behavior and sequenc-
ing. In this work we have concentrated on the tutoring information the tasks of
an application must have to be used by a tool similar to TWIW. Real applications
have a more complex decomposition of tasks than the one we have used. This
includes the possibility of defining alternative tasks to achieve the same goal,
specifying tasks that can be accomplished in parallel, etc.

 adapting the tutoring not only to the tasks, as it is the case now, but also to the
user. The tutoring could be more guided if our system had a model of the student.
This would be possible if we incorporate the work done in [Kobsa90].

 an improvement in the TME usability would consist in the possibility of specify-
ing all the interactions sequentially instead of how it is done now, where the de-
signer must select each time from the tree (the upper part of TME) which task he
is editing.

Acknowledgements

We gratefully acknowledge the key role Roberto Moriyón has played in helping us
develop these ideas, as well as Ricardo Orosco who helped us with the images of
this paper. Finally, we would like to thank the anonymous reviewers who contributed
in a great deal in the quality of this presentation.

This work was partially supported by the Plan Nacional de Investigación, Spain,
Project Number TIC93-0268.

The JANUS Application Development
Environment—Generating More than

the User Interface

Helmut Balzert, Frank Hofmann, Volker Kruschinski,
and Christoph Niemann

Abstract

The increasing pressures of competition demand greater productivity and quality in
the development of software. These goals are attainable by generating as much as
possible and programming as little as necessary. Beginning with an OOA modeling
of the problem domain component, this article will show how the user interface as
well as the linkage to data keeping can be generated through an integrated approach.
In addition, a client/server configuration is also possible. A OOA model upon which
two generator systems are installed is the basis for generating.

Keywords

User interface generation, OOA model, object oriented database, rapid prototyping,
application framework.

Introduction

The ever increasing demands on the productivity and quality of software develop-
ment necessitates extensive automated support for application development. If one
examines object oriented application development (figure 1), the way from the prob-
lem domain to an object oriented analysis model (OOA model) cannot be auto-
mated. This step shall continue to belong to one of the most ambitious tasks of
software development.

If an OOA model is created, it forms the basis for any additional steps of develop-
ment. The concepts available today describing an OOA model (class, inheritance,
association, aggregation, object life cycle, interaction diagrams, subsystems, see also
[Coad91a, Booch94, Rumbaugh91]) allow close to real-world situation modeling of
the problem domain.

184 Computer-Aided Design of User Interfaces

Figure 1. The way to an application starting at the problem domain

The following must be done to obtain a usable application from a OOA model:

• Integration into the system software of the target system.
• Design and connection of the user interface to the problem domain components.
• Connection to the desired data base management system (DBMS).
• Design and connection of the help system.
• Creation and connection of various services (e.g., multiple user administration,

client administration, etc.).

Analyzing the jobs to be completed, one ascertains that a large part of these tasks
can be automated by generators. The term "automated" is intentionally used instead
of "automatic". Automated is intended to express that generating does not run fully
automatically, but rather that the developer retains the possibilities to intervene and
make decisions during the generating process.

Therefore, the optimal goal consists of generating nearly all additional necessary
tasks from an OOA model. The semantics of a problem domain component are
principally incapable of being generated, i.e., the technical semantics have to be im-
plemented by the software developer. He uses the desired programming language
(inner column of figure 1).

Nov. 93 Benk

GUI Client-
Server

OOA

OOD

OOP

Problem

Domain

Ser vices

H elp Data-
keeping

System

Designed by the
Systemanalyst

Generating the
Application

Frame

 The JANUS Application Development Environment—Generating More than the User Interface 185

Even in this area, however, much can be generated. Today’s OOA/OOD tools al-
low the corresponding program frameworks to be generated from the OOA model,
e.g., the tools Together/C++, Paradigm Plus and ObjectiF. To have a practical ben-
efit of generating system components the developer needs an integrated system
which will combine all fragments.

Furthermore, it is not enough to generate all components from the same starting
point (e.g., an OOA-model) an integration of all generated parts can be done auto-
mated. Therefore we have developed the JANUS Application Development Frame-
work (JADE10). It is a further development of the JANUS-system [Balzert93, Balzert-
94, Balzert95a, Balzert95b]. The JANUS-system was capable of generating and ani-
mating a graphical user interface from an OOA model using the capabilities of an
UIMS.

The advanced system now produces the user interface, the code frame for the ap-
plication domain, the database schema, further services (e.g., a help system, printing
facility) and ‘last but not least’ the connection between all these parts. The starting
point is still an OOA-Model. JANUS requires the model in a well defined input lan-
guage, the JDL (JANUS Definition Languages) which is an extension of ODL and
IDL. To avoid that the user has to code his OOA model using this language directly,
we have built interfaces to some popular OO CASE tools. Currently JDL can be
exported by the case tools Paradigm Plus and Together C++.

The result of the generation process is a ready-to-work-with application offering
basic functionality. The user is able to create and modify objects of classes defined
in OOA by using entry forms. If a corresponding relationship (association or aggre-
gation) exists in the OOA model the user can establish links between objects, too.
Additionally a list view of all objects that have been created for each class is provided.

Functionality for sorting and deleting objects is also generated. All data entries are
kept persistent in an underlying database. Until now the software developer has not
written a single line of code. The only work that has been done was defining an exact
OOA model of the application’s problem domain.

The generated program will however be the fundamental frame of a final system. A
programmer will have to complete the application. He has to implement the opera-
tions defined in the OOA model to provide the application’s core functionality. Ad-
ditional features—especially regarding the GUI—can be added to the generated
code. To ease this JANUS generates C++ source code for all parts of the program.
These can be edited and compiled the normal way. This paper describes the concepts
of integrating all parts. It gives examples of the transformation process and its re-
sults.

10 This JADE system has nothing in common with JADE [VanderZanden90] but the name. It seems that
we have no luck in choosing the right name for our system.

186 Computer-Aided Design of User Interfaces

1 As to the Situation

The situation today is characterized by increasing attempts to automate separate ar-
eas of the software development process. Class libraries in combination with a
graphical editor are used today in the development of GUIs. GUI class libraries are
hierarchically organized and provide predefined interface objects at higher abstrac-
tion levels. The activation of the underlying window system is undertaken by internal
operations and remains hidden from the developer. The design of the GUI using
this technique leads to two results:

 A code frame will be generated in the desired programming language (usually
C++). The combined interface objects can be created dynamically using this
code. The I/O operations of these objects have to be manually linked to the
OOA model.

 Characteristics of interface objects such as position, size, labeling, and shape will
be placed in resource files. Each resource object contains an identification
through which the connection to the objects implemented in the programming
language is made. A special resource translator transforms the resources into ob-
ject code, which will later be linked to the application.

It was shown under the JANUS system [Balzert93, Balzert94, Balzert95a, Balzert95b]
that a GUI can be generated and subsequently animated from an OOA model based
upon expert knowledge of software ergonomics.

However, the linkage to data keeping in particular is missing in order to attain a
usable application. When using an object oriented database (OODB), the object
model is defined in an Object Definition Language (ODL). The developer separates
the declaration (data and interfaces) of an application from the implementation. A
declaration preprocessor for the ODL takes over the following tasks:

 The ODL is transformed into a declaration conforming to a programming lan-
guage which then can be translated by a compiler together with the implementa-
tion of the application.

 A database with the database schema obtained from the ODL declaration is cre-
ated in which the object model of the application is also established as a meta
schema.

The implementation of the technical semantics of the OOA model occurs in the
selected programming language. To handle persistent objects, an Object Manipula-
tion Language (OML) is provided by an external library. This library comes with the
chosen database management system. With this, the programmer can manipulate
persistent objects with the same concepts (pointer, list,...) known from the program-
ming language as usual.

The declarations transformed in the programming language and the implementation
are translated by the compiler into object code. The runtime system ODBMS is
added to the object code during linkage so that the finished application can access
the predefined database. To allow the generation of persistent classes, all persistent

 The JANUS Application Development Environment—Generating More than the User Interface 187

classes have to be marked in the OOA model. All other information is already pre-
sent to generatively couple an object oriented database.

A corresponding coupling to a relational database is similarly possible by utilizing
the respective class libraries, e.g., DBtools.h++. Appropriate transformation rules
are describe (e.g., in [Blaha94]).

A three-layered-architecture comprising a GUI layer, the actual application layer, and
data keeping layer arises as the software architecture. The application layer not only
contains the implementation of the technical semantics but also contributes the con-
nection between the GUI layer and data keeping. In particular, the overall goal is to
encapsulate the layers as closely to one another as possible in order to make an ap-
propriate client-/server distribution feasible.

It has now been shown that a partial generation does not appropriately take the
global aspects of the application environment into consideration. If, for example,
solely the interface is generated without taking the coupling of data into considera-
tion, it will lead to problems in subsequent application development. The commu-
nication between the GUI level, application level, and data keeping level has to be
manually established. This requires detailed knowledge of the code at all levels and
is costly. An integrated overall plan is therefore necessary.

2 An Integrated, Technical, and Comprehensive Plan

As mentioned above a OOA model is the basis for the generation process. In the
moment the JANUS generator system uses only information given by a class diagram
representing the application’s object model of the problem domain. The elements
of these class diagram (classes, attributes, operations, relations, etc.) have to be spec-
ified in detail.

To provide this information to the generator system, the OOA meta model in figure
2 has been developed. The OOA model of a specific application is a single instance
of the OOA meta model. The meta model can be instantiated by a special file using
the JDL grammar. JDL input files describe an OOA model CASE tool independent
and implementation language independent.

Not only problem domain and database specific characteristics but also GUI rele-
vant properties are represented by the OOA meta model. It is important to mention
that all GUI relevant properties have default values which work very well in most
cases. But the OOA analyst (or a consulted GUI specialist) should have the possi-
bility to override these values to customize the generated GUI whenever needful.

The meta model was expanded with characteristics of the object models of the
OMG [OMG91] and ODMG [Loomis93]. As before, the most important common
concepts of the object oriented methods according to Rumbaugh [Rumbaugh91],
Coad/Yourdon [Coad91a] and Booch [Booch94] are found in this model.

188 Computer-Aided Design of User Interfaces

Description
Persisten
ClassGlobal
Primary
ReadOnly
WriteOnly
UIRelevant
Mandatory
Unit

Attribute

Description
Persisten
Abstract
Extent
UIRelevant

Class

Description
ClassGlobal
Polymorph
ReadOnly
UIRelevant

Operation

Description
UIRelevant

Subsystem

Description
Persisten

Relation

Description

Model

Description
Type
Cardinality
UIRelevant

Path

Subclass

Superclass 2

DefaultValue

Type

TypeSpec
LowerBoun
UpperBound
ConstraintExp

NumericType

SelectableElem
SelectMin
SelectMax
Extensibl
ExtentPersisten
ExtentScope

EnumTypEmbeddedType

In
Out
ByReference

Parameter

Returntyp

MinLength
MaxLength
RegularExpr

StringTyp

Figure 2. Meta model as the generator’s base

The information contained in the meta model is utilized by a GUI- and an App-
generator (application generator). The meta model's operations (not included in fig-
ure 2) take over the control and coordination of these generator systems.

The App-generator creates the code frames for the OOA model as well as the con-
nection to the database and, if requested, additionally the client-server distribution.
In addition to the code frames, the operations for read and write access to all attrib-
utes are also generated. On the one hand, for each attribute, one operation is created
for read and write access to the attribute value. On the other hand, each class con-
tains one operation which assists in reading and/or writing each attribute belonging
to this class irrespective of its type. If the systems analyst has set restrictions (e.g.

 The JANUS Application Development Environment—Generating More than the User Interface 189

ranges or dependencies between attributes), they will be checked for the applicable
attribute before write access.

The GUI generator similarly rests upon the meta model. The previously mentioned
JANUS system [Balzert93, Balzert94, Balzert95a, Balzert95b] was expanded and mod-
ified for this. Only the generation of static layout and some aspects of dialog dynam-
ics have been supported up until now. This information is placed in a resource file.

It is additionally necessary to create GUI code, which accesses the resources and
connects the individual interface objects with the objects and attributes of the OOA
model. For each dialogue identified in the OOA model a class is generated in order
to automatically couple the created interface with the OOA model. By coupling with
the App-generator, the operations supplied there become available for access to the
attribute values irrespective of type. Thus, it only then becomes possible to generate
an interface closely coupled to the OOA model with justifiable expense, and there-
fore, to obtain a complete, detailed application.

In the next section we will describe a simple example that shows the input and the
output of a generated application and explains some important actions that have to
be taken to get a running application

3 A Simple Example

Figure 3 depicts the OOA model of a simple sample application. The OOA model
had to be entered into a CASE tool manually. Generally a complete OOA model
consists of at least the graphical class diagram and the textual specification of all
attributes and services.

Name
Legal form

Company Last name
First name
Date of birth
Sex

Person
{abstract}

Positon
Salary
Employed since

EmployeeStaff

Employer

Figure 3. OOA model of the simple example

In order to support a systems analyst in this task, a form was drafted that makes the
information accessible by the generator system. As an example, one can indicate the
following specifications for the some attributes of the class Company:

Attribute Name:

190 Computer-Aided Design of User Interfaces

 Ergonomic Name: Company Name
 Type: String, 30 characters maximum
 Mandatory Attribute
 Part of the Primary Key
 persistent

Attribute Legal_Form:
 Type: Enumeration, not expandable,
 0 to N selections
 Selection Possibilities: inc, ltd, corp, co-op
 no default value
 persistent

If the system analyst has finished his work he can export the OOA model form the
OOA CASE tool in form of a JDL file. Appendix A shows the JDL file correspond-
ing to the OOA model of figure 3. Now the generation can be carried out with this
JDL file. The result is an application whose generated code for the problem domain
component corresponds to the OOD model depicted in figure 4.

Name
FirstName
Birthdate

Person

Name

Company

Salary
Begin

Employee

SexT

Value

FunctionT

LegalFormT

EmployeeList

EmployeeStatic

PDObject Persistent Object

Valid

FunctionTStatic

Figure 4. Simplified OOD model of the generated application

Each class of the OOA model inherits PDObject, an abstract base class. The opera-
tions provided by PDObject for typeless access to the attributes are of course rede-
fined in the classes of the OOA model. They serve primarily to connect to the user
interface and are described later.

All classes with persistent attributes or relations have to inherit from the class
d_Object. This is a mixin-class which implements the manipulation components of
the ODMG conforming database. As a general matter, each class has to know the
instances it produced. Therefore, each class is assigned a list which collects refer-
ences to all objects of that class. This list is implemented as a class attribute. Since
the ODMG standard does not support persistent class attributes, an aid must be
constructed. An object of the EmployeeStatic class saves the persistent class attributes
of employees, being the necessary lists in this case. The generated code ensures that

 The JANUS Application Development Environment—Generating More than the User Interface 191

only one instance of EmployeeStatic exists in the database at any given time (depicted
only for the Employee class in figure 4).

Another aid is necessary for the description of enumeration types. A new class has
to be generated for each enumeration type since the characteristics of the enumera-
tion types (multiple choice, expandability) go beyond the concepts provided by the
programming languages.

If one examines the attribute Function of the class Employee, another problem be-
comes apparent. This enumeration type is to be expandable, and the expansions are
to be persistently cared for in the entire application. Therefore, the lists of the ex-
pansions have to be a persistent class attribute of the data type FunctionT and, thus,
have to be administered in a further help class, FunctionTStatic.

The GUI generator creates the user interface itself as well as its linkage to the prob-
lem domain component. First, an interaction object corresponding to the attribute
type in OOA is selected for each attribute to appear on the user interface. Further,
the generator first evaluates the information prepared in an instance of the meta
model. If the selected interaction objects would not fit into the window, the gener-
ator decides to use either less space consuming interaction objects (if such alterna-
tives exist in its knowledge base) or to split the window into sub windows.

The position of the individual interaction objects in the dialogue windows is deter-
mined by the class definition in the object model and by the evaluation of inheritance
hierarchies [Balzert93].

Associations and aggregations are transformed in lists. Figure 5 depicts two entry
forms generated for the example described above. The class Person is abstract and
therefor does not appear as an own dialog. It is however visible as a group in the
entry form of Employee. Since an aggregation with the employees exists in the funda-
mental specification of the class Company, a list of the employees employed by the
company is found in the Company dialog.

Conversely, the class Employee is the part-of class of this aggregation. Therefore, the
employer does not appear in an employer’s entry form. The transformation of a
relationship to the GUI selected here is just one of the many possibilities. Software
ergonomics can both globally prescribe the transformation to be used as well as
subsequently change it in particular cases. Of course, this not only applies to the
depiction of relationship, but also applies to other aspects of user interface genera-
tion (color preferences [Heintzen95], fonts, selection of interaction objects [Bo-
dart94c],...).

The generator system additionally connects the GUI with the code frame represent-
ing the problem domain. When selecting ”Employee create...“ from the application’s
main menu the entry form for employee is opened. In the same moment a new
problem domain object employee is created and linked to the entry form.

Now the user is able to enter the new employee’s data. By clicking the OK button
the entered data will be transferred from the GUI to the linked problem domain

192 Computer-Aided Design of User Interfaces

object. If all values are valid (as specified in the OOA model) the entry form closes
and the linked object receives the message to store itself in the database.

Figure 5. Generated dialog windows for the sample application

The connection GUI-problem domain works even in the other direction. If the user
wants to modify the former entered data he has first to select the special employee
via a list view. When selected a single employee the employee’s entry form opens.
The entry form is linked with the corresponding problem domain object. The data
are now transferred from this object to the controls of the entry form. The user is
able to access the previously entered data for further processing.

4 Technical Solution: Designing the User Interface

Before generating the source code for the application, the data keeping, the interface
and the binding, the user interface has to be designed. The starting point is the OOA
model. Combining the model’s semantics with the selected design strategy will pro-
duce all necessary windows including their controls. The standard transformation of
a model is described in [Balzert95a, Balzert95b]. The dialog design strategy gives
information which additional and standard functionality is taken into consideration,
including its appearance.

Additionally the decision is made which possibility is chosen when there are different
theoretical possibilities. For example, displaying an association as a table or simply
making it a menu entry that calls a connection window when selected. Most strate-
gies are adjustable, so using a different strategy will lead to several different user
interfaces of the same problem domain.

 The JANUS Application Development Environment—Generating More than the User Interface 193

The basic controls are chosen from the attribute specification of the OOA model.
Normally each attribute is transformed into an control with a belonging label, ex-
ceptions are elements that are marked as non UI relevant. Supported controls are:
edit field, text field, combo boxes, drop-down combo boxes, list box, drop-down
list box, check boxes, radio buttons and tables. The result of the transformation, is
an object network with windows and their elements. They have to be arranged for
generating the source of the user interface.

Figure 6a. Different layout by choosing different settings: window A

Figure 6b. Different layout by choosing different settings: window B

JANUS uses several placement strategies and has access to ergonomic knowledge. So
once again, different static layouts can be produced for a single application, because
the user working with JANUS can change aspects of the layout strategy to change the
layout. Finally the version fitting the user’s needs best can be chosen for the appli-
cation.

The main goal of the layout component of JANUS is to get a well balanced layout.
So there is a special focus on alignment of the elements. To get equilibrium mask
the two column placement [Vanderdonckt94d] gives the best results. The different
between the strategy of GENIUS [Janssen93] is the involving of groups to combine
equal information. The benefit is a more compact layout.

194 Computer-Aided Design of User Interfaces

Groups result from inheritance or embedded types (structs) in the OOA model. So
there is the possibility for arranging all elements into two columns or placing the
groups into two column. One column layout is also possible, it will depend on the
number of interaction elements and the setting of the layout component.

All interaction elements will be left justified. There will be an overall alignment of
interaction elements, whether they are in groups or not. The push button for navi-
gation or for the operations can be placed left or at the bottom. It is adjustable if
they are centered, set in a block or if they are set from left/top with equal distances.

In addition to the placement strategy the over grid, and all distances between inter-
action elements are to be set. All settings are saved in initialization files, so a simple
reuse is possible. It is also possible to define parts of style guide in the settings.
Figures 6a and 6b show a result of choosing different settings. Further examples are
shown in figures 4, 10 and 11.

5 Technical Solution: Connecting the GUI with the Problem
Domain Component

In all of the later mentioned approaches, the automated linkage of the generated
user interface to the core of the application is not taken into consideration. This
problem is solved by the improved JANUS system envisaged here with the help of
the JANUS Application Framework (JAF). This is a highly specialized class library which
serves the preparation of the basic functionality in the considered environment.

The environment is characterized by an ODMG conforming, object oriented data-
base, a GUI development system, and an object oriented programming language
(C++). The research prototypes of PICASSO [Rowe91] and ACE [Johnson93, Zar-
mer92] as well as the commercial products like zApp [Inmark94] contributed to the
draft of the JANUS Application Framework.

The user interface constitutes a limited number of various elementary interface ob-
jects or GUI widgets which differ substantially by their position, appearance, as well
as relationship to one another. The GUI generator has to first select the appropriate
interface objects and see to the technically correct placement and appearance from
the objects' parameterization.

Conventional GUI development systems require a programmer to couple the final
user interface with the technically specific portion of the application using Callback
mechanisms. The tasks of Callback procedures may be assigned to various categories
[Myers91].

• The interaction object's internal representation often differs from the expected
representation the application object's attribute. The type conversions have to be
expressly carried out by a programmer.

• It must be checked whether the application satisfies the restrictions specified in
the problem domain component before an application further processes data en-
tered from an end user.

 The JANUS Application Development Environment—Generating More than the User Interface 195

• The links among the interface objects have to be established to let the user nav-
igate through the application

To solve this problem, JAF provides special operations at higher abstraction levels.
Access operations automatically created by the App-generator are used on the at-
tributes of the OOA objects in these operations. This results in a significant reduc-
tion of the complexity of the user interface specific code.

These facts are reflected in the generated source code. The code fragments for the
implementation of the same interface objects in miscellaneous contexts vary sub-
stantially by a different parameterization in their dynamic creation. The generated
code is significantly shorter than previously since a large portion of the aforemen-
tioned tasks are encapsulated in the classes of the application framework.

In most cases, controls function on a string basis. To keep the costs on the GUI side
low and to ease the adaptation to various GUIs, the linkage of the interaction objects
to an OOA model's attribute of a random type was solved with the parameterization.

An interaction object only has to know the name of the appropriate attribute and a
reference to the respective object. The type of the attribute bound to the interaction
object does not need to be known although the type, of course, has an impact on
the parameterization of the interaction object. For example Boolean types are rep-
resented by two radio buttons etc.

Therefore, each class of the OOA model has to provide a single operation which
allows read and/or write access to all attributes. Since a strict type concept is to be
at the target language's disposal but the interaction objects do not have the type
information, a data type has to be found upon which random types can be repro-
duced. Therefore, the use of strings and/or lists of strings is ideal for an exchange
format between the GUI and the OOA model. An operation's declaration in C++
for reading a random attribute of a class can be expressed as follows:
bool GetAll(const char *name, String &val) const;

The first parameter serves to select the attribute. The second parameter is a place
holder which receives the value of the attribute converted to a string. Whether an
attribute with the desired name exists or not is shown by the Boolean return value
of the operation. If the attribute does not exist in the class requested, all of the base
classes must naturally be consulted first. The failure of the operation will be reported
only if the attribute searched for is not present here.

196 Computer-Aided Design of User Interfaces

GetPDObject
routeEvent

UIView

ActivateGetControlData
ActivateSetControlData

UIContainer

GetControlData
SetControlData

UIControl

UIEdit

UIPushbutton

UIObjectTableUIGroup

UIDialog

UIWorkspace

...

...

...

Attribute

Class

Operation

GUI - layer part of the
meta model
(see fig 2)

GUI
class library

Janus
Application
Framework
(JAF)

Figure 7. Communication between GUI - and application layer

Another (overloaded) version of these operations supports the reading and writing
of an attribute with the help of a list of strings where such a list makes sense. Lists
can be used, for example, for accessing an enumeration type which allows several
simultaneous selections.

Figure 7 demonstrates the effects of these technical solutions on the architecture of
the Janus Application Framework. Conventional GUI class libraries are expanded by
subclasses. The new classes are attached as leafs to the inheritance hierarchy of the
class library. By multiple inheritance from the abstract classes of UIView,
UIContainer, and UIControl, they obtain operations which produce a connection to
the attribute (and/or the operation) of the OOA class and/or of the object.

The cost of expanding a GUI class library with the desired functionality depends
upon its structure. A UIMS with a C based API (Open Interface [Neuron91, Neu-
ron93]) as well as the purely object oriented implemented UI builder (zApp) [In-
mark94] and StarView [Star93] were expanded to meet the additional requirements.
UIView presents an abstract base class for all visible elements of the user interface.
It expands its derived classes to concepts for the connection of the OOA model’s
objects.

 The JANUS Application Development Environment—Generating More than the User Interface 197

All GUI classes that inherit characteristics from UIView have the possibility to com-
municate with the OOA model objects by the polymorph (virtual) operation
GetPDObject(). Every UIView class can be directly linked to an object of an OOA
class by subclassing. The newly formed classes are enhanced with the reference to
the OOA object which can be accessed by the redefined operation GetPDObject().
However, only container objects or complex controls are generally directly linked to
an OOA object. Simple controls can access an OOA object through the overarching
container object.

To make these mechanisms available, the UIControl and UIContainer classes form
specializations of UIView with which the characteristics of atomic interaction objects
and their groupings can be described.

Interaction objects are always positioned in an object of the UIContainer class that
administrates it. Container objects can, however, also contain subordinate contain-
ers. All messages, which a container receives, are automatically forwarded to its sub-
containers. By activating the operation GetControlData(), the UIContainer object can
command its interaction object to register its contents in the corresponding attrib-
utes of the OOA object.

Conversely, the UIContainer object with help from GetControlData() sees to the trans-
fer of the attribute values from the OOA object to the representation of the respec-
tive interaction objects. Groups and windows are the various variants of the
UIContainer class.

Contrary to conventional GUI class libraries, the UIGroup class does not only serve
the visual arrangement of multiple interaction objects. The described mechanisms
create a simplistic means to access the attributes of several OOA objects in one
window. An object of the UIWorkspace class functions as an application's main win-
dow. It administrates its sub-windows and offers the functionality to arrange these
windows or to switch between them. If the application window is closed, the appli-
cation will be quit. Apart from that, a Workspace object has to establish a link to the
object oriented database which is used for the application's data keeping.

The end user can access data from the OOA model using dialogue windows. One
or several OOA objects can be displayed or modified by the dialogue window. At
the beginning of a dialogue, an OOA object has to be assigned to the dialogue win-
dow and to each of the groups or complex interaction objects which might be pre-
sent inside of this window. The attribute values of the OOA objects are transformed
in the internal representation of the interaction objects and presented to the user.

If the end user has changed the content of the interaction objects and chooses to
save them, a message is sent all interaction objects subordinate to the dialogue com-
manding them to remit their contents to the attributes of the corresponding OOA
objects.

UIControl is the baseclass for all of the controls supported by the corresponding GUI
class library. Each control is linked to an attribute of a specified OOA model class.

198 Computer-Aided Design of User Interfaces

This link can be removed and changed during runtime. Each control not directly
linked to an OOA object knows its UIContainer object and thereby has access to the
specific OOA object which is supposed to represent it. Complex controls can also
be directly linked to an OOA object by forming sub-classes. The moment for trans-
ferring the attribute values to and from the OOA object can be controlled by sending
messages to the control.

Every control provides two polymorph operations, SetControlData() and GetCon-
trolData() for this, which are redefined in each of the classes derived from UIControl.

SetControlData() copies the data from the OOA object to the internal representation
of the control. This occurs in the following steps:

 With help from the operation GetPDObject(), the control receives a reference to
the assigned OOA object over a direct link (C++ pointer or ODBMS intelligent
pointer) or its UIContainer object.

 Since each control is assigned to an attribute, the OOA object's GetAll() opera-
tion can be called to get the current attribute value.

 The attribute value is transformed to the internal representation of the control
and presented to the user. This transformation is actually done by the generated
GetAll() operation of the OOA object.

The GetControlData() operation does the transformation in the other direction in a
similar way. Additional actions can be taken in it if the internal value of the control
cannot be filed as an attribute value. The reason for this may be a limit error or a
violation of a restriction which was defined in the OOA model for that particular
attribute. In the current version of the JADE system, the PutAll() operations return
an error code in such cases. The user interface component uses this error code to
display a dialog box which tells the users which attribute has an illegal value and why
the value is wrong.

The table has a special role under the interaction objects. One or more attributes
from a set of OOA objects can be reported with the assistance of the UIObjectTable
class. The OOA objects to be displayed in the table are generally instances of the
same class. At least they have to inherit from the same base class.

Access to the string based GetAll() and SetAll() operations separates the complicated
internal design of a table object from its mere interface. Aside from that, this pro-
gram allows the modification of the display shape of a table during the application's
running time.

In this way, for example, the order of the attributes to be displayed, as well as the
selection of the attributes themselves, can be interactively adjusted by the end user.
The effort required to create appropriate dialogues to activate these preferences is
drastically reduced if the meta data are a permanent part of the problem domain
component.

 The JANUS Application Development Environment—Generating More than the User Interface 199

It is also easy to achieve direct editing of the attribute values in the table by exchang-
ing data with the OOA object using strings and the above mentioned mechanism.

6 Technical Solution: the Generator Systems

The target language which is to be used also plays a role in the generation process.
As a rule, code for multiple target languages must be created depending on the ap-
plication environment. If the application is to be client-server capable using CORBA
standards [OMG91], the interface of all classes has to be generated in the declarative
language IDL. A similar situation is presented by the use of an ODMG conforming,
object oriented database. The code here has to be created in the language ODL.

The App-generator system as well as the GUI generator system builds on assump-
tions about the target language. The following concepts are to be supported:

 the module concept;
 the ability to define additional data types;
 the pointer concept (or a similar concept that allows smart pointers);
 the ability to define ”free functions“ (functions not belonging to any class).

Figure 8. The generator systems

All other information is encapsulated in a general generator core in a meta model of
the utilized programming language. Figure 8 depicts the generator system with the
corresponding inputs and outputs. It is possible to change the target language within
the scope of the displayed limits by changing the meta model. The individual gener-
ators are linked to the respective language by a temporary association. In this way it
is possible to generate parts of the application in different languages without altering
the generators' interfaces.

It is to be shown by means of example how the declaration of a specific class's op-
eration can be described with the assistance of a generator core. The result is the
generation of an operation for reading any attribute of the class the operation be-
longs to.

Input Generators Output

Resource C++ Sourcecode

Application

Database

GUI-Link

Core-
Functionality

Database-Link

Access
Data/Information-Flow

GUI-
Knowledge

OOA-
Model

Meta-
Model

GUI

GUI

App

Core

200 Computer-Aided Design of User Interfaces

This operation contains the name of the attribute to be read in the first parameter.
It is a string constant. The temporary association for the generator core is repre-
sented by L. It is a pointer to a C++ object.
JParameter p1(L->AttribName(), L->String(),
 NULL, Param_In);

The second parameter will be filled with the value of the attribute. This is a reference
to a string functioning as an output parameter.
JParameter p2(L->AttribVal(), L->String(), NULL,
 Param_Out | Param_Ref);

This example shows that the purpose of JParameter is to describe Parameters of an
Operation to be generated. Each Parameter has a mandatory name an type and op-
tionally a default value and some flags that describe special characteristics of the
parameter.

The operation's actual declaration is generated by the following command:
L->Method(decl, L->Bool(), GetName(),
 L->GetAll(), p1, p2,
 Meth_Poly | Meth_Declare | Meth_Const);

By calling this Operation of the Language class, an Operation with the Name given
by L->GetAll(), belonging to a class that is named by GetName(), is declared. The
return type is boolean (L->Bool()), and the parameter list is p1, p2. The generated
operation is to be constant (only read access to the attributes) and polymorph (late
binding). This is specified by the flags Meth_Poly and Meth_Const. The declaration
will be written to the ostream object decl.

If one observes the generation of the resource files for which the aforementioned
generator core cannot be used, one discovers basically comparable situation. The
syntax for defining resources in different window systems or UI builders is different
for the same interface objects, although the semantics basically remain the same.

Each generator system is specialized for a particular area of tasks. Therefore, the
mechanisms for code generating describe above have to be individually controlled.
In the case of the App-generator, the controlling mechanism is already given by the
application's meta model. The generator system's task is to read information from
the model and transform it to the generating commands. Dependencies between
individual classes, which can affect the distribution of the created code in different
files, have to be taken into consideration.

The GUI generator system consists of three levels. The lowest level provides the
functionality described above for simplified source generating as well as for creating
resource files. The middle level comprises a meta model of the JANUS Application
Framework.

A class is implemented in the generator for each corresponding class in the JANUS
Application Framework. This middle level can independently create the resource
files and the accompanying source code in the target language by using the lowest
level. The main problem is the parameterization of the middle level.

 The JANUS Application Development Environment—Generating More than the User Interface 201

A third level serves to solve this problem. It controls the course of events in the
generation and establishes a link to the application's OOA model. Preferences are
made in it that affect the application's screen display.

Dialogue information, layout information, conventions, and the application's self-
portrait flow in here [Balzert94]. In accordance with these defaults and the transfor-
mational rules, an object network of the interface object-meta model, which is de-
fined in the second level, is created. The completed user interface results from this.

7 A More Complex Example

To evaluate whether JANUS can handle more complex OOA models and to see the
advantages of JANUS, we have tested our system with a model of a seminar organi-
zation (see figure 9). The model describes the problem domain of a company that
organizes seminars. Data of customers, lectures, companies (in the role of custom-
ers), booking and the seminaries themselves can be created, stored or changed.

Also information about connections can be handled, e.g., which lecture can lecture
on which kind of seminar. For further information, see figure 9. The model includes
15 classes, 67 attributes, 17 operations and 8 connections (associations or aggrega-
tions, not counting inherited connections).

The model was made with the OOA tool Paradigm Plus. All necessary specifications
were made with this tool. By using a self written script the Paradigm Plus generates
a JDL file. This file is the input of the JANUS system. The generation process results
in four C++ files consisting of 22566 LOC that can be compiled to a running appli-
cation. About 50% of the generated code implement the GUI. The rest implements
the problem domain with the implicit operations and the connection to the GUI
and database. The GUI code implements 826 GUI widgets.

The resulting application—remember: finished without writing a single line of
code—was tested with some demonstration data. The application JANUS has pro-
duced includes all the described basic functionality, including persistence and an ac-
ceptable graphical user interface.

Figure 10 shows how to handle single objects by using the list view. For this example
we have chosen the lectures class. Figure 11 shows all established connections (up-
per list in the front dialog) and how to modify the connections between the classes
lecture and type of seminar.

202 Computer-Aided Design of User Interfaces

Number
Name
Address
Date of birth
Date of first registration
Notes
$General letter

Print address
$Create general letter

Person

Shortname
Name
Address
Customer since
Turnover
Contact
Notes
$General letter

Print address
Print message
Calculate turnover
$Create general letter

Company

Password
Authorization

Teachware
employee

Biography
Fee per day

Lecturer

Position
Turnover

Calculate turnover

Customer

Shortname
Title
Price
Duration
Participants (min)
Participants (max)
Target group
Contents oversight
Schedule
Documents
Prerequisites

Typ of seminar

Number
Date of confirmation
Date of cancelling
Date of invoice
Date of Payment

Cancel
Print invoice
Register Payment
$List unpaid bookings

Booking
Number
Duration
Participants (max)
First day
Last day
Beginning first day
Ending last day
Normal beginning
Normal ending
Locality
Cancelled

Cancel

Seminar

Cancellation charge
Participants (min)
Participants (current)

Create list of participants
Create diploma

Public seminar

Flat rate

Internal seminar

lectures

Customer booking

Company booking

books

books

cooperates

Supported seminars

Cooperation partner

manages

Manager

Seminar to menage

Staff Employer

is able to lecture

Salutation
Title
Surname
Prename

NameT

Street
Postcode
City
PO box
Phone
Fax

AddressT

Name
Phone
Department
Day of birth

ContactT

Figure 9. The OOA model of the seminar organisation

8 Related Research Approaches

MB-IDEs [Foley91, Szekely93, Szekely96] offer the possibility to describe user in-
terfaces at a higher level of abstraction. They demonstrate a beginning basis for an
automated GUI development from the data model of the actual application. The
UIDE environment was expanded from a data model by de Baar et al. [de Baar92] to
tools for generating the static layout.

Even other approaches deal with knowledge-based selection of interaction objects
corresponding to a data model [Johnson92a, Vanderdonckt93] and their layout in
dialogue windows [Kim93]. In an additional step, parts of an application's dynamic
behavior will be included in GUI generating. Gieskens and Foley [Gieskens92] en-
hance the interface objects used by UIDE with pre- and post-conditions to thereby
describe their relationships.

 The JANUS Application Development Environment—Generating More than the User Interface 203

Figure 10. Navigating from list to single objects

Figure 11. Establishing connections between objects

204 Computer-Aided Design of User Interfaces

Janssen et al. [Janssen93] use a graphical editor in GENIUS in addition to an entity-
relationship-data model in order to input special dialogue networks for each appli-
cation. These approaches have the disadvantage of necessitating exceedingly high
costs on the part of the developer particularly for complex applications, and there-
fore neutralizes the advantages of automated generation.

Both JANUS [Balzert93, Balzert94, Balzert95a, Balzert95b] and MECANO [Puerta-
94b, Puerta96] use the relationship between the objects identified in the problem
domain component and a generation of the dynamic behavior of an application.
While a language of its own similar to LISP was drafted for MECANO to describe
the problem domain component, the modeling of the problem domain component
for the JANUS system was based on the object oriented analysis (OOA).

Conclusion: Actual Status of Development

The system for automated application development described has been essentially
completed. Beginning with an OOA model, the application is completely generated
with the standard functionality (new, change, delete, find) including a user interface
and linkage to an ODMG compatible (Poet 4.0 or O

2
), object oriented data base

management system, and subsequently can be put into used. The expansion of the
App-generator system is in the works in order to also be able to generate cli-
ent/server capable applications. The client/server part will be based on an object
request broker that conforms to the OMG standard.

The generator itself is written in C++ and consists of about 130,000 lines of code.
It runs on systems with an AT&T 3.0 compatible C++ compiler and was success-
fully tested using various compilers and operating systems. The generated applica-
tions need the zApp or StarView class library to run. These libraries are available for
various GUIs so that the generated application runs at least under Windows, Motif
and OS/2. When generating for the Windows environment, an online help system
using the windows help format is also generated. For the Unix platform we generate
the same information as HTML files. These files can be browsed by any HTML
viewer such as Netscape or Mosaic.

A versioning system that allows to preserve the user added code for implementing
the problem specific functions of each application is also part of the Janus system.
This system is very robust against modifications of the OOA model. For example it
is possible to change an operation’s name in the OOA model without losing the
hand made implementation of it.

In the future we will try to connect more CASE tools to our system for entering the
model data. We also plan to support different user interface management systems
and more database systems including relational DBMS.

For more up to date information you might want to visit our web server at
http://www.swt.ruhr-uni-bochum.de.

 The JANUS Application Development Environment—Generating More than the User Interface 205

Appendix A. Exported JDL file from Paradigm Plus.
// JANUS Definition Language
// Generated by Paradigm Plus on: Tue Apr 09 17:44:40 1996
// Paradigm: RUMBAUGH
// Project: company
// Diagramm: Company Model
MODULE Company_Model
(
 ERGNAME "Company Model"
 DESCRIPTION "A simple example"
)
{
 // interface forward reference(s)
 INTERFACE Company;
 INTERFACE Employee;
 INTERFACE Person;
 INTERFACE Company
 (
 EXTENT CompanyList
 KEY Name
 ERGNAME "Company"
 DESCRIPTION "represents a company with its name its legal form"
 ABSTRACT false
 UIRELEVANT true
):PERSISTENT
 {
 // Attribute(s)
 ATTRIBUTE STRING<30> Name
 (
 ERGNAME "Company Name"
 DESCRIPTION "Full name of the company"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY true
 DEFAULTVALUE ""
);
 ATTRIBUTE ENUM Legal_formT {inc,ltd,corp,co_op} Legal_form
 (
 ERGNAME "Legal form"
 DESCRIPTION "legal form(s) of the company"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 ITEMS "inc","ltd","corp","co-op"
 SELECTMIN 0
 SELECTMAX 4
 EXTENSIBLE false
);
 // Relation(s)
 RELATIONSHIP LIST<Employee> Staff inverse Employee::Employer
 (
 PATHTYPE Part
 ERGNAME "Staff"
 DESCRIPTION ""
 CARDINALITY [0,N]
 UIRELEVANT true
 UIINFORM true
);
 };
 INTERFACE Employee : Person
 (
 EXTENT EmployeeList
 ERGNAME "Employee"
 DESCRIPTION "represents an Employee (person with special properties)"
 ABSTRACT false
 UIRELEVANT true
):PERSISTENT
 {
 // Attribute(s)
 ATTRIBUTE FLOAT Salary
 (
 ERGNAME "Salary"
 DESCRIPTION "The monthly salary of an employee (in Dollars)"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE 2000
 LOWERBOUND 0
 UPPERBOUND 100000
);

206 Computer-Aided Design of User Interfaces

 ATTRIBUTE DATE Employed_since
 (
 ERGNAME "Employed since"
 DESCRIPTION "Date of employment in the associated company "
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE "current"
);
 ATTRIBUTE ENUM PositionT {clerk,manager,developer,consultant} Positon
 (
 ERGNAME "Position"
 DESCRIPTION "The employee's position in the company "
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 ITEMS "clerk","manager","developer","consultant"
 DEFAULTSELECTED "clerc"
 SELECTMIN 1
 SELECTMAX 1
 EXTENSIBLE true
);
 // Relation(s)
 RELATIONSHIP Company Employer inverse Company::Staff
 (
 PATHTYPE Whole
 ERGNAME "Employer"
 DESCRIPTION ""
 CARDINALITY [1,1]
 UIRELEVANT true
 UIINFORM true
);
 };
 INTERFACE Person
 (
 EXTENT PersonList
 KEYS Last_name, Date_of_birth
 ERGNAME "Person"
 DESCRIPTION "abstract class which holds a person's commonly used attributes"
 ABSTRACT true
 UIRELEVANT true
):PERSISTENT
 {
 // Attribute(s)
 ATTRIBUTE STRING<30> Last_name
 (
 ERGNAME "Last name"
 DESCRIPTION "Surname(s) of a person"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY true
 DEFAULTVALUE ""
);
 ATTRIBUTE STRING<30> First_name
 (
 ERGNAME "First name"
 DESCRIPTION "Christian name(s) of a person"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE ""
);
 ATTRIBUTE DATE Date_of_birth
 (
 ERGNAME "Date of birth"
 DESCRIPTION "the person's birthday"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 DEFAULTVALUE ""
);
 ATTRIBUTE ENUM SexT {male,female} Sex
 (
 ERGNAME "Sex"
 DESCRIPTION "the sex of a person can be a male or female"
 UIRELEVANT true
 CLASSGLOBAL false
 MANDATORY false
 ITEMS "male","female"
 DEFAULTSELECTED "male"
 SELECTMIN 1
 SELECTMAX 1
 EXTENSIBLE false
);
 };
};

Part IV.

Computer-Aided Design of
Graphical User Interfaces

Investigating Layout Complexity

Tim Comber and John Maltby

Abstract

This paper presents work-in-progress in assessing the usefulness of a layout com-
plexity metric in evaluating the usability of different screen designs. The metric is
based on the Shannon formula from communication theory. Initially the metric was
applied to thirteen Windows applications where thirty subjects were asked to rank
screens on the basis of “good” design. A significant negative correlation was found
between the subjects’ rankings and the complexity ratings, indicating that users do
not like “simple” screens. For the next stage a pilot application, “Launcher”, was
developed in Visual Basic to calculate complexity and collected usability data. Seven
subjects provided some evidence that a layout complexity metric could be of benefit
to the screen designer. However, though Launcher proved useful in collecting data,
some problems need to be overcome, namely more concise data collection and a
better method for building screens, before more data can be collected. The final
version of “Launcher” should provide conclusive evidence of the worth of the lay-
out complexity metric as well as showing that usability metrics can be built into the
design environment.

Keywords

Layout complexity, GUI, interface, usability.

Introduction

Computer systems usually rely on VDTs for essential interaction between humans
and computers. Users’ acceptance of a computer system and performance with that
system can be greatly influenced by the presentation of information on the computer
screen [Tullis88b]. Shneiderman [Shneiderman92] agrees, stating that successful
screen design is essential to most interactive systems. However, despite the im-
portance of screen displays, there are few empirical studies relating to modern, bit-
mapped screens, [Tullis88a, Galitz93] even though clearly most new computer sys-
tems use some form of GUI [Nielsen90].

Authors of guidelines, e.g., [Mayhew92, Galitz93] admonish the interface designer
to keep the interface simple and well-organised but does this apply to a GUI? Are

210 Computer-Aided Design of User Interfaces

simple interfaces the most usable? And, how can the designer know that a simple
interface has been achieved?

One answer is to use complexity theory to provide a numerical measure of the qual-
ity of the layout design. The complexity metric provides a measure of the horizontal
and vertical alignment of objects and their positional alignment [Bonsiepe68]. Lay-
out complexity has been applied to alphanumeric displays on computer terminals
with results that do show an effect on usability [Tullis81, Tullis83, Tullis88a, Tul-
lis88b] but no effort has been made to determine if complexity theory can be usefully
applied to more complex GUI’s even though screen design guidelines frequently
recommend that design goals should be to minimise the complexity of a display or
make screens as predictable as possible [Mayhew92, Galitz93, Shneiderman92].

The screens that Tullis studied only displayed information and his research looked
at information retrieval and users’ preference. GUI screens can display information
but they also present a dynamic interface to the underlying software and tend to be
object-oriented and event-driven.

Firstly a survey was used to determine whether complexity theory could be applied
to GUI design and if indeed it measured some aspect of design “quality” [Comber-
94]. This was followed by a pilot experiment [Comber95] with layout complexity as
the independent variable and effectiveness, learnability, and attitude as the depend-
ent variables. The dependent variables are collectively referred to as “usability”. The
final version of “Launcher” should provide conclusive evidence of the worth of the
layout complexity metric as well as showing that usability metrics can be built into
the design environment.

1 Complexity Theory

1.1 Shannon: Mathematical Measure of Information Flow

Shannon [Shannon62] investigated mathematical measures for the amount of infor-
mation produced by a communication process consisting of n classes of event,
where an event is the transmission of a specific “unit” of information. In an English
language communication, for example, we might consider the letters of the alphabet
to be the communication units, in which case n = 26 (slightly more if we include
spaces and punctuation symbols). Shannon obtained a formula for H, the measure
of uncertainty in the occurrence of a specific event in a sequence of events:

H K p p
i i

i

n

 log

1

 (1)

where:
 K = a positive constant
 n = number of events
 pi = probability of occurrence of the ith event.

 Investigating Layout Complexity 211

Shannon pointed out that the form of H is identical to that of entropy in statistical
mechanics, where entropy is a measure of the disorder of a system that can be ar-
ranged in a large number of different ways. The meaning of H is best appreciated by
considering a system with 2 event classes (equivalent to a 2-letter alphabet or a 2-
word language). If in such a system the probabilities of each class of event are p and
q, then (putting K = 1 for simplicity) the formula for H reduces to:

H p p q q (log log) (2)

where q = 1 - p.

For this relationship, H is plotted in figure 1 as a function of p.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

p

H
 B

IT
S

Figure 1. Entropy in the case of two possibilities with probabilities, p and (1 - p). (Modified
from [Shannon62])

It can be seen from figure 1 that there is the least uncertainty when the probabilities
of one or the other event are highest and the most uncertainty when the probabilities
are equal. Thus in a communication using a two-word language, the recipient is the
most uncertain about which word is coming next if p = q, and the least uncertain if
p = 0 or q = 0.

Shannon lists the advantages for using the H quantity:

 H becomes zero when there is no uncertainty.
 For any number of events, H is at its largest and equal to log n when all the

probabilities are equal.
 Where there are joint events H is less than or equal to the sum of the individual

H.
 As the probabilities approach equality H increases.
 The entropy of a joint event is the uncertainty of the known event plus the un-

certainty of the remaining event.

Entropy is a maximum if
events in all classes occur
with equal probability. ie
when there is most uincer-
tainty

212 Computer-Aided Design of User Interfaces

 Knowing the uncertainty of one event does not increase the uncertainty of an-
other joint event.

1.2 Weaver’s Contribution to Shannon’s Theory

In his commentaries on Shannon’s mathematical theories of communication, Wea-
ver [Shannon62] points out that communication includes not only speech but also
pictures, music, ballet and so on. A GUI can be viewed as a communication system
between CPU and user (figure 2).

Figure 2. Diagram of a GUI communication system (after Shannon 1962)

Understanding this communication process has three levels (table 1). These levels
overlap. It may appear that the theory only applies to the technical level but closer
thinking reveals that problems at the technical level affect the semantics and effec-
tiveness of communication. For example, a button with too small a font may not
convey meaning and thus prevent the user from completing a task.

 Weaver GUI
Technical accurate transmission of data layout, screen resolution etc
Semantic attachment of meaning to the data meaningful labels, error messages
Effective changes in the recipient by the data enables task completion

Table 1. Levels of the communication process

1.3 Information and Entropy

In Weavers’ writings, information is thought of as a measure of the freedom of
choice when selecting a binary event to send down a communication channel. This
event can be either a single bit or a complete message. A channel capable of trans-
mitting a single message from two alternatives is arbitrarily given an information
value of unity: associated with this information value are the 2 possible messages, or
meanings of the communication. Similarly, a channel capable of transmitting two
binary messages has an information of 2 and 4 possible message combinations or 4
possible meanings; a channel with an information of 3 has 8 possible meanings, etc.
According to Weaver, therefore, the information is proportional to log2 of the mean-
ings. The entropy H of the transmission, however, depends upon the probability that
a particular combination of messages will be sent at any given time. For a system
with an information of unity, this will be according to Equation (2) and figure 1: if
each message is equally likely to be transmitted, then p = q in Equation (2) and H is

CPU Monitor Eyes Brain

Noise

Message GUI Image Message

 Investigating Layout Complexity 213

a maximum. In general, for a system with an information of n, H is a maximum if
all 2n messages are equiprobable.

For instance, in a GUI system consisting of a single check box, the user is free to
check or de-check the box, resulting in the transmission of one of two alternative
messages to the system. The information is thus unity and there are two possible
system states. If there are three check boxes, then the system will have an infor-
mation of 3 and 8 possible states.

However, the entropy of the system will depend upon the probability of occurrence
of each check box state, and this in turn will depend upon the task being undertaken
by the user and the nature of the GUI “language” being used [Maltby95a,
Maltby95b]. Only if each of the 2n check box states is equally likely to occur will H
be a maximum.

These concepts apply in general to more complex situations. When a user runs a
GUI based program, the GUI designer has used the basic building blocks of the
GUI environment to communicate to the user. The user can start at one point and
continue till a task is completed. When the user begins, any interaction object can be
chosen, but once the first object has been chosen then probability can be used to
indicate the next choice. For instance, if the user reads the label “Help” then the
odds are high that the user would next press the “Help” button. The user’s choice
of the next object in a sequence is dependent upon the order of prior objects in the
sequence.

Entropy in the physical sciences is a measure of the state of disorder of a system:
the more disorder, then the higher the entropy. In communication theory, entropy
describes the amount of uncertainty in the progress of a message. In a highly organ-
ised transmission the amount of information (entropy) is low and there is little ran-
domness or choice.

The entropy of a message H can be compared to the maximum possible entropy
HMAX of the language to give the relative entropy. Subtracting this ratio from unity
gives what Shannon calls the “redundancy” of the message, thus

R = 1 - H/HMAX (3)

This is the amount of the message that is determined by the statistical rules of the
message language and is not due to free choice. The loss of this amount of the mes-
sage would not destroy the meaning of the message.

It is easy to conjecture just how much of a GUI interface is redundant. For instance,
a common guideline is to place the “Exit” button on the bottom right-hand corner
of the screen. If this guideline is followed then labelling the button “Exit” is redun-
dant. If an icon is also placed on the button then that is redundant as well. Unfortu-
nately, the guideline is frequently ignored by designers and is not universally known
to users. Therefore redundancy becomes important in a GUI, because users do not
know the language.

214 Computer-Aided Design of User Interfaces

Weaver points out that about 50% of the English language is redundant, that is about
half of the letters or words used are open to the free choice of the user. Of course,
one virtue of redundancy in the English language is that it allows the listener or
reader to still get the meaning of a message even when some detail is missing e.g.:

1. Omit much words make text shorter.
2. Thxs, wx cax drxp oxt exerx thxrd xetxer, xnd xou xtixl maxagx prxttx wexl.
3. Thng ge a ltte tuger f w alo lav ou th spce. [Lindsay72, p.135].

Of course, it is harder to interpret a message with missing detail of this nature, and
more effort must be made by the reader, but without redundancy in the language it
would be impossible to interpret if any detail at all was missed out. A command
language interface is a low entropy interface much like the third example for the
English language.

For example, in the Unix operating system, cp stands for copy, ls -l means give a long
listing of the files in the directory. The commands are often abbreviated and there is
frequently only one way to do things. This lack of redundancy is one feature that
makes command languages difficult to learn and remember. In contrast, GUI’s have
a much higher redundancy. Often a task can be completed using different methods
such as direct manipulation, menus or keyboard shortcuts.

However, it is important to remember that the entropy of Equation (1) can be in-
creased both by increasing the number of classes in the GUI language (ie the number
of symbols) and by increasing the probability of use of each class. This latter can
only be achieved by design: a badly designed object will be infrequently used and a
well designed object will be frequently used.

Weaver observes that the best measure of the capacity of a communication channel
is the amount of information that can be transmitted not the number of symbols or
classes. By analogy, the entropy of a GUI is maximised by having objects of few
classes with all classes equally usable and reduced by having objects of many classes
with a wide range of “usabilities”.

1.4 Bonsiepe: Application of Complexity Theory to Typography

One statistical interpretation of entropy is that it is a measure of the disorder of the
system. This interpretation provides a justification for Bonsiepe [Bonsiepe68] to use
the Shannon formula as a measure of the order or complexity for the typographic
design of a printed page.

Bonsiepe believed that mathematics could provide design with “a series of instru-
ments for the conscious and controlled generation of forms” [Bonsiepe68, p. 204].
This idea is now being extended for computer supported design [Vanderdonckt94d,
Sears93, Hudson93] for example. However, Bonsiepe does take it for granted that
“order is preferable to a state of disorder” [Bonsiepe68, p. 205] and offers no justi-
fication other than that creating order is the business of designers. A related issue is

 Investigating Layout Complexity 215

how to recognise order, particularly in multimedia applications where objects may
not have simple symmetries [Vanderdonckt94c].

Bonsiepe identifies two types of order; system order and distribution order. System
order is determined by classifying objects according to common widths and com-
mon heights and distribution order is determined by classifying objects by their dis-
tance from the top of the page and from the left side of the page. This, of course, is
based on the top-to-bottom, left-to-right pattern of reading evidenced in Western
culture.

Bonsiepe’s technique is to draw contour lines around each typographical object. The
proportion of objects in each class is then used to determine the complexity C of
the layout using a modified version of the Shannon formula. This C corresponds to
Shannon’s H, the measure of the uncertainty in the occurrence of an event. Bon-
siepe’s formula states that the complexity C of a system is given by:

C N ip ip
i

n

 log2

1
 (4)

where:

i

ip n
n

and:
N = total number of objects (widths or heights, distance from top or side of

page)
n = number of classes (number of unique widths, heights or positions)
ni = number of objects in the ith class
pi = proportion of the ith class.

Bonsiepe tested the applicability of this formula by comparing two versions of a
printed catalogue. It was found that the new version was 39% more ordered than
the original version.

Subjective observation agreed with the mathematical theory, and the formula gave a
measure of the difference in perceived “complexity” or “orderliness” between the
new and old versions. In essence, Bonsiepe’s work offers a justification for the grid
system commonly advocated for the layout of printed documents, e.g., [Porter83]
and for computer screens, e.g., [Hudson93].

1.5 Tullis: Complexity Theory Applied to Computer Screens

[Tullis83] reviewed the literature dealing with computer-generated, alphanumeric
monochromatic screen displays to understand how formatting affected the pro-
cessing of the information by the viewer. One metric he used was Bonsiepe’s layout
complexity. Minimising layout complexity with tables, lists and vertical alignment
increases the user’s ability to predict the location of items and thus improves the
viewer’s chance of finding the desired information.

216 Computer-Aided Design of User Interfaces

In other words, Tullis was attempting to lower the entropy of the system; to lower
the freedom of choice of the viewer. When Tullis applied Bonsiepe’s technique to
screens that had been identified in the earlier study [Tullis81] as narrative and struc-
tured, he found that the structured screen returned a lower complexity figure than
the narrative screen.

Tullis [Tullis88b] later decided to determine if the complexity measure was a useful
usability metric. Again using alphanumeric data, he prepared 26 formats that were
viewed by ten subjects in different trials.

He found that layout complexity did not help in predicting the time it takes for a
user to find information. This is an interesting result. If there is less uncertainty about
the placement of objects then it should be easier to find information.

However, he did find that it was an important predictor of users’ rating of the usa-
bility of screens. In a second experiment using different displays and subjects, Tullis
[Tullis88b] attempted to predict the subjective ratings. He found that, along with
other measures, layout complexity helped to predict the users’ rating of the usability
of the different screens.

2 Usability and Complexity

This research aims to develop a metric for evaluating object placements in a graph-
ical user interface based on complexity theory or to put it simply “where is the best
place to put things”.

This metric, along with others already available, should be capable of being incor-
porated into the software environment so that the software developer can have im-
mediate feedback on the layout quality of the GUI.

It is hypothesised that there is a trade off between usability (U) and complexity C
with a relationship of the form U = f(C) where U is a maximum for some interme-
diate value of C (figure 3).

As the complexity figure becomes smaller, it becomes more difficult to distinguish
different interface objects and the interface takes on an artificial regularity. On the
other hand, the interface becomes more predictable. At the other extreme as the
interface approaches maximum complexity, it looks artificially irregular.

What is more important, it becomes impossible for the designer to group objects
with similar functions on the basis of size or position. However, the increase in en-
tropy does mean that the user has more information and therefore more choice of
operations.

 Investigating Layout Complexity 217

Figure 3. Relationship between complexity and usability

3 Research

3.1 Initial Investigation

Table 2 shows the results of applying Bonsiepe’s technique to thirteen different Mi-
crosoft Windows applications. Four of the screens (MSRecorder, STW, Chartist and
Rockford) are shown below demonstrating the range of complexity: figures 4, 5, 6
and 7. The total complexity, C, is given by C = CS + CD, where CS and CD are given
by equation 4 with the pi ’s representing common widths and heights for CS and
positions on a page for CD. The complexity per object CO is also computed and is
given by CO = C/N.

It is seen that there is a large variation in complexity figures for the thirteen displays,
with the complexity of the most complex display screen (from Rockford) being
some 66 times greater than the complexity of the least complex screen (from Mi-
crosoft Recorder).

Application Obj. No.
N

System comp.
CS

Dist. Comp.
 CD

Total
C

Ratio
CO

MSRecorder 5 10.46 13.22 23.68 4.74

MSCalendar 17 76.59 101.28 177.87 7.54

Arachnid 60 96.22 388.89 485.11 8.09

MSCardfile 11 36.82 53.35 90.17 8.20

STW 23 50.75 122.60 173.35 8.60

Chartist 31 85.67 199.94 285.61 9.21

MSSolitaire 14 64.24 69.44 133.68 9.55

MSObjectPackager 23 89.73 143.55 233.28 10.14

ObjectVision 20 57.19 114.82 172.01 10.46

MSPaintbrush 61 239.61 467.89 707.50 11.60

MSWord 74 305.86 591.79 897.65 12.13

MSExcel 79 312.55 656.06 968.61 12.26

Rockford 104 582.42 989.56 1571.98 15.12

Table 2. Comparison of thirteen different screens in ratio order

Optimum Complexity

Com plexity
U

sa
b

il
it

y

218 Computer-Aided Design of User Interfaces

Figure 4. MSRecorder - Microsoft Recorder

Figure 5. STW: Software Toolworks Multimedia Encyclopedia

 Investigating Layout Complexity 219

Figure 6. Chartist

Figure 7. Rockford
3.1.1 Discussion

Both system order and distribution order are difficult to calculate manually. One
good empirical measure of complexity might be the time it took to analyse an appli-
cation. The more complex the layout of an interface, the more difficult it can be to
determine the class of object.

Ideally a development environment such as Borland’s IDE or the Visual Basic editor
would calculate the size and position of objects and return a complexity figure auto-
matically. Shneiderman [Shneiderman92] points out the lack of a computer program
to do these computations for text screens though his recent work is attempting to
remedy this [Shneiderman95].

3.1.2 Conclusions

The simplest measure of the layout complexity of a GUI screen is to count the num-
ber of objects. A screen with more objects is more complex than one with fewer
objects. This does not take into account the difference between an ordered display
and one where objects are scattered. The number of objects is also determined by
the functionality of the interface.

An application that provides more functions needs more objects. Clearly layout
complexity measures something but the question remains: does layout complexity

220 Computer-Aided Design of User Interfaces

matter? In other words, how is usability affected by interfaces exhibiting differing
degrees of layout complexity?

3.2 Screen Complexity and User Design Preference in Windows Ap-
plications

3.2.1 Method

Both Bonsiepe and Tullis have indicated that designs with high values of C are less
desirable than designs with low values of C; this would also intuitively seem to be
the case. On this basis, it would be expected that if users were asked to rank appli-
cation screens in order of “goodness” of their design, then the ranking would be
similar to that given in table 3, i.e., Microsoft Recorder would be considered to be
the best design and Rockford the worst.

A survey was therefore carried out to determine whether Bonsiepe’s technique
would provide a predictive measure for users’ ranking of different designs. Subjects
were recruited from the local campus (both students and staff) and from off-campus.
All subjects were volunteers and no rewards were offered.

The survey took between 5 and 10 minutes to conduct. A grey-scale 300dpi laser
print was made of each screen and inserted in a plastic envelope. They were asked
to sort the screen prints from best design to worst design, with no ties. No attempt
was made to define what was meant by “goodness” of design, this interpretation
being left up to the subject.

3.2.2 Results

There was found to be a significant agreement in screen rankings among all thirty
subjects, with Kendall’s coefficient of concordance giving W = 0.25 and 2 = 91.1
at a significance level of < 0.00005. The results indicate that there was a common
interpretation of “goodness” of design. However, the distribution of the results was
unexpected.

The least complex screen for either C or CO is from MS Recorder. This screen was
ranked as being the second worst design by 12 out of the 30 subjects. The most
complex screen for either C or CO is from Rockford. This screen was ranked as
being the best design by 4 subjects, although 9 other subjects ranked it as the worst.

The rankings by user perception are compared with the rankings by complexity in
table 3 and in figure 8. Whilst the rankings by CO show some positive agreement
with the rankings by C, it is seen that there is lack of such agreement between either
of these rankings and the rankings by user perception. The Spearman correlation
between ranking by perception and ranking by C gives a negative coefficient of rs =
-052 at a significance level of 0.07, and a Spearman correlation between ranking by

 Investigating Layout Complexity 221

perception and ranking by CO gives a negative coefficient of rs = -047 at a signifi-
cance level of 011. Both of these correlations indicate that users show a greater
preference for the more complex screens.

Application ID Mean Perceived Rank Rank by total C Rank by CO
MS Paintbrush 1 4.4 10 10

MS Excel 2 4.5 12 12
MS Word 3 5.2 11 11

MS Solitaire 4 5.5 3 7
STW 5 6.0 6 5

Arachnid 6 6.1 9 3
ObjectVision 7 6.8 5 9

Chartist 8 7.0 8 6
MS Calendar 9 7.9 4 2

Rockford 10 8.1 13 13
MS ObjectPackager 11 9.5 7 8

MS Recorder 12 9.6 1 1
MS Cardfile 13 10.3 2 4

Table 3. Expected ranks compared to mean ranks

Comparison of complexity and perceived
rankings

Application ID

R
a

n
k

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

perceived
rank

C Co

Figure 8. Mean ranks compared to expected ranks

3.2.3 Discussion

The expectation based upon the work of Tullis and Bonsiepe was that good layout
design strives to be simple. This was not borne out by the results. A number of
applications, including Microsoft Word and Excel, received rankings opposite to
that expected. This suggests that users prefer more complex layouts.

There are clearly a number of problems with comparing screen designs for different
applications. Some users reported being more familiar with certain designs and
judged them better because of familiarity, suggesting that screens may be judged to
be “good” because users can map them to what they know the applications can do.
However, as we have seen, the results show a high degree of correlation in screen

222 Computer-Aided Design of User Interfaces

rankings between all thirty subjects (2 = 91.1, = 0.00005), indicating that famili-
arity with the screen was not a major factor in the ranking.

3.2.4 Conclusions

The most interesting result is the degree to which people like complex interfaces. At
first glance this is counter-intuitive but further thought indicates that people usually
do tend to judge a tool by its perceived functionality. This research suggests that it
would be a good idea for interface designers not to open an application with a simple
interface. Having shown that layout complexity is both measurable for GUI’s and
that at least one aspect of usability, attitude, is affected by the metric, the next stage
was to determine the metric’s utility by building an application and measuring the
effect of layout complexity on usability.

3.3 Evaluating Usability of Screen Designs with Layout Complexity

3.3.1 Launcher

Usability has been defined as consisting of effectiveness, learnability, flexibility, and
attitude [Lindgaard94]. The pilot experiment was designed to test three of these
components of usability; effectiveness, learnability, and attitude.

The pilot consisted of a simple application, Launcher (figure 9), running under Mi-
crosoft Windows that calculated layout complexity for each design iteration.
Launcher was originally designed as an example application for a Visual Basic tuto-
rial and provides an alternative to the Window’s “Program Manager” and “File Man-
ager”. Visual Basic (VB) was chosen to build the application and collect data as it
could provide the necessary information about the dimensions and positions of most
objects. It also could be used to track the user’s progress with a task, keeping a record
of each event and time taken.

Figure 9. The application, “Launcher”, used in this experiment

 Investigating Layout Complexity 223

3.3.2 Screen Layouts

Four different screen layouts were designed, each with a different complexity score
(figures 10, 11, 12 and 13).

Figure 10. Screen 1 - Complexity equals 156 Figure 11. Screen 2 - Complexity equals 170

Figure 12. Screen 3 - Complexity equals 186 Figure 13. Screen 4 - Complexity equals 228

The screen with the lowest score consisted of objects arranged in a neat grid with
almost uniform sizes. The next two screens consisted of almost normal layouts and
the final screen had every object with a different size and position.

Table 4 shows the complexity ratings for each of the four screens used in the exper-
iment. The theoretical minimum was not achievable in VB, when using different
objects, as some objects could not be resized to match other objects ie objects in
VB have a fixed size relationship to other objects.

Complexity Scores for 17 Objects
 Theory min. Scr. 1 Scr. 2 Scr. 3 Scr. 4 Theory max.

C 71 156 170 186 228 272
% 0% 42% 49% 57% 78% 100%

Table 4. Complexity scores for 17 objects

224 Computer-Aided Design of User Interfaces

3.3.3 Procedure

Seven experienced computer users volunteered to take part in the pilot study. Each
subject was asked to read an ethics disclaimer and answer some basic questions
about computer usage and experience. They were then requested to select a file, add
it to a list, change its name and quit for each screen. At the completion of the first
stage they were asked to indicate their preferences for the different screens.

They were given the choice of looking at printed copies of the screens or selecting
images of the screens. The application was designed to record the time it took users
to complete each step in a task and to record any errors. The subjects were then
asked to run through the experiment again thus giving a second set of data for the
same task and screen. It was expected that any improvement in performance for the
second run would indicate an interface that was more learnable and memorable.

3.3.4 Results and Discussion

Each subject scored 1 if the screen was completed correctly and 0 if any mistake was
made. This provided a simple measure of error rates. Table 5 shows the percentage
correct for each screen design and for each run of the experiment.

 Percentage error-free screens

Run Screen1 Screen2 Screen3 Screen4

First 29% 71% 100% 71%

Second 43% 86% 71% 71%

Mean 36% 79% 86% 71%

Table 5. Percentage of screens that were completed without errors

There were no errors for Screen 3 in the first run and in the second run Screen 2
had the least errors. The two screens at either end of the complexity scale exhibited
more errors, however the results for Screen 1 were confounded by confusion about
the task and which object to choose.

The total time spent on each screen is presented in table 6. It can be seen that there
was an overall improvement in task completion time from the first run to the second
run. Screen 1 and Screen 4 were slower to complete. The times for Screen 1 were
possibly affected by the same problems as mentioned previously.

Total Time Spent (s)

Run Scr. 1 Scr. 2 Scr. 3 Scr. 4 Total

First 221 165 147 145 678

Second 133 125 129 148 535

Total 354 290 276 293

Table 6. Time spent completing the task for each screen and run

 Investigating Layout Complexity 225

The subjects were asked to choose the most preferred screen (table 7). The votes
for re-design are shown as minus figures to highlight the negative nature of the state-
ment. Some subjects changed their minds on the second run. The reasons for this
were not explored.

User Preferences

 Scr. 1 Scr. 2 Scr. 3 Scr. 4 None

Attractive 4 3 3 4 0

BestDesign 2 4 7 1 0

EasyToUse 5 0 7 1 1

ReDesign -7 0 -1 -6 0

Rating 4 7 16 0 1

Table 7. Users evaluation of the different screen designs

Both the least and most complex screens were rated poorly even though more users
found them attractive. It is also interesting, that even though it was a small homog-
enous group, there was still quite a divergence of preferences.

Summary

Usability Scr. 1 Scr. 2 Scr. 3 Scr. 4

Complexity 156 170 186 228

Error-free 36% 79% 86% 71%

Time 354 290 276 293

Rating 4 7 16 0

Table 8. Summary of usability

Table 8 summarises the results. The screens with a mid-range complexity, screens 2
and 3, rate better overall than the screens at either end of the complexity scale. How-
ever these results do need to be treated cautiously because of the small number of
subjects and the limited number of screens.

Visual Basic did prove a useful tool for calculating complexity though there were
some problems. It was also useful for collecting data about the user’s interaction
with the application.

However one shortcoming in this pilot was using different forms for each screen.
The results from this pilot showed differences in usability between screens differing
in complexity. Graphic design manuals [Galitz93] stress the importance of using a
grid to layout objects. Complexity theory offers a means for determining if objects
have indeed been laid out in a grid but is a perfect grid pattern the best way to layout
a screen?

The least complex screen, which most followed an exact grid, was not the most
usable though the limited number of subjects, tasks and screens do suggest treating
the results with caution.

226 Computer-Aided Design of User Interfaces

The application will be extended to present more screens and more tasks and a wider
cross-section of users will be involved in the next iteration. Extra metrics will also
be added including “layout appropriateness” [Sears93], percentage white space and
sampling of mouse pointer position to determine whether the user has “wandered”
looking for the correct button.

Conclusion and Further Research

The designer of a GUI application is exposed to many guidelines, standards and
rules [Vanderdonckt95c]. How the screen is actually designed depends on the de-
signer’s interpretations of these rules. A popular admonition to interface designers
is to keep the screen simple and well organised [Mayhew92, Galitz93, Hix93].

In his influential and popular book on interface design, Galitz [Galitz93, p. 244]
asserts that graphical interfaces can reduce usability because of the “variety and com-
plexity” of interface objects. He indicated that an important requirement of users is
that screens have “an orderly, clean, clutter-free appearance” [Galitz93, p. 60] to not
reduce usability. Shneiderman [Shneiderman92, p.315] even goes so far as to state
that “dense or cluttered displays can provoke anger”. These authors have in com-
mon an idea that the interface designer agrees with them in what makes a simple,
ordered interface. This research attempts to quantify this concept to enable objective
design decisions to be made.

There are two groups that require a method of evaluating GUI applications.

1. Application designers need to be able to choose between competing layouts.
2. Prospective purchasers need to be able to compare different applications for de-

sign quality.

Bonsiepe’s technique enables the designer to compare two versions of the same ap-
plication and allows for an objective measure of their complexity. For this to be a
practical technique would require the development environment to calculate the
complexity figure as manual calculations are slow and prone to error. Recent work
[Shneiderman95] shows it is possible to produce reports on the usability of an inter-
face but we believe that it is a better approach to give feedback to the designer whilst
work is in progress.

To this end, the layout complexity metric developed in this paper, and other metrics
such as Tullis’s measures [Tullis81, Tullis83, Tullis88a, Tullis88b], Kim’s symmetry
and balance [Kim93] and Sear’s layout appropriateness [Sears93], could be imple-
mented as functions that can be added to the Visual Basic software being developed
and removed when development is complete. This will enable designers to modify
their design “on-the-fly”, according to the values of these metrics as continually pro-
vided during the interface design process.

However, the most important aspect of this research is to determine the relevance
of these metrics to usability and to the ergonomic criteria, such as compatibility,
consistency, workload, adaptability, dialogue control, representativeness, guidance

 Investigating Layout Complexity 227

and error management, which are known to lead to efficient and user friendly inter-
faces [Farenc95]. It might then be possible to provide a composite usability index
from relationships such as the one suggested in figure 3. Eventually, a user interface
development environment could be developed that automates part of the generation
of a particular GUI and then lets an evaluation module compute these metrics and
the associated index.

If the usability index and related metrics were provided to the prospective purchaser
of software it would allow for an objective comparison of the interfaces. Ideally, the
measures would be calculated either for some standard subset of the interface or for
all screens in the interface. It would then be possible for software publishers to state
the results of usability tests as a selling point.

Acknowledgements

We would like to thank the CADUI’96 anonymous reviewers for their helpful com-
ments and suggestions. We would also like to thank Jean Vanderdonckt for encour-
aging us to submit to this conference.

An Interactive Constraint-Based Graphics Sys-
tem with Partially Constrained Form-Features

Borut Zalik

Abstract

The paper considers a 2D constraint-based geometric modelling system which dis-
tinguishes between an auxiliary and a visual geometry. The former consists of points,
lines, and circles, and the later includes line segments, arcs, circles and cubic Bézier
curve segments. Geometric constraints are applied only upon the auxiliary geometry.
Some constraints and the majority of auxiliary geometry are extracted by the system
automatically what liberates the user from giving self-understandable facts. This sep-
aration of the geometry enables developing a simple but efficient approach to con-
strain the cubic Bézier curves. The system can work with under-constrained parts of
geometric objects what makes it interactive entirely. The paper includes a practical
example of the design in the constraint-based environment and gives an insight into
a user interface used..

Keywords

Geometric constraints, interactive constraining process, constraint solving, user in-
terface.

Introduction

In the paper, a 2D constraint-based geometric modelling system is described. In
such a system, it has been required frequently that exactly all needed constraints are
inserted before constraint solver is made active. Two main drawbacks can be iden-
tified quickly within such an approach. First, the inability to support an interactive
work and second, a requirement for specifying a correct set of constraints at once.
The presented approach offers a new, more flexible way of inserting constraints and
enables the user to follow their effects. The system automatically extracts self-evi-
dent constraints and in this way the number of constraints which have to be inserted
manually by the user is reduced.

230 Computer-Aided Design of User Interfaces

Geometric modelling systems usually do not support the work with so called auxil-
iary geometry. The user can only use guiding lines or grids, but the rest of the auxil-
iary geometry cannot be represented and stored. Because of this, the huge number
of construction techniques which have been developed by engineers cannot be used.
Our system efficiently supports auxiliary geometry which is needed during the con-
struction, and stores it together with so called visible geometry.

1 Background

In geometric modelling, geometric entities such as line segments, circles, arcs, and
splines describe the shape of designed artefacts. Because of the speed, reliability and
offered construction possibilities, computer programs for drawing have already be-
come unavoidable tools of a design environment. To further increase the designer’s
productivity, a reusability of already constructed parts of artefacts is a new desired
property [Zalik93].

Today, the geometric entities which logically fit together can be grouped, uniquely
named, and independently stored to be reused again in different situations. In gen-
eral, the grouping is done in a very simple way just by selection of all elements of a
group. Unfortunately, the reusability of such defined groups of geometric entities is
very limited. Users can perform only basic geometric transformations (translation,
rotation, and scaling), but they cannot change the key geometric parameters of the
group, like distances or angles (figure 1).

Figure 3. Instances generated by geometric transformations (on the left) and from the parametric
representation of the generic object (on the right)

The reason for this is the primitive way of describing the groups of geometric enti-
ties. To further increase the reusability of designed geometric objects, a correspond-
ing parametric representation has to be performed. If a mechanism for combining
the groups of parametricaly represented geometric entities is available, then the
meaningful collection of geometric and topological entities is named form- or geo-
metric-feature [Rossignac90]. The parametrisation of the geometric features can be
achieved in different ways [McMahon92]. One of the possibilities is to introduce

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 231

geometric constraints. Groups of geometric entities, which beside topological and
geometrical information also include constraints, show much higher level of reusa-
bility.

1.1 Constraints

A constraint describes a relation that should be satisfied [Freeman-Benson90]. Ex-
amples of constraints in geometric modelling are: line is vertical, point lies in the
middle of two other points, two parallel planes are at distance d, two faces are per-
pendicular, etc.

Constraints are usually expressed in a declarative way by predicates. Following Al-
defeld’s division, the predicates defining constraints in our system are divided in
three main groups [Aldefeld91]:

 Structural constraints (see table 1) determine spatial relationships between geo-
metric entities which will not change. As will be shown in the rest of the paper,
some of them can be determined by the system automatically.

Predicate Meaning - effect
HLine (li) line li is horizontal

VLine (li) line li is vertical

Through (li, pj) line li passes through point pj

On (pi, lj) point pi lies on line lj

Perpendicular (li, lj) lines li and lj are perpendicular
Parallel (li, lj) lines li and lj are parallel

Middle (pi, pj, pk) point pj is in the middle of points pj and pk

Symmetric (li/pi, lj, lk/pk) lines li and lk (or points pi and pk) are symmetric

regarding the reference line lj

Coincidence (li/pi, lj/pj) lines li and lj (or points pi and pj) coincide

Table 1. Predicates of structural constraints

 Dimensional constraints determine positions, distances, coordinates, and angles.
They include variables which are parameters of geometric objects. Examples of
dimensional constraints implemented in our system are shown in table 2.

Predicate Meaning - effect
Point (pi, x, y) point pi gets absolute coordinates (x, y)

AngleValue (li,) line li gets absolute value of its slope

Distance (pi, pj, d) distance between points pi and pj is d

Distance (li, lj, d) distance between parallel lines li and lj is d

Angle (li, lj,) angle between lines li and lj is

Table 2. Predicates of dimensional constraints

232 Computer-Aided Design of User Interfaces

 Predicates of numerical constraints provide a mechanism for connecting param-
eters of dimensional constraints. Examples of these are depicted in table 3.

Predicate Meaning - effect
Product(a, b, c) c = a * b; a = c * b-1; b = c *a-1;
Sum(a, b, c) c = a + b; a = c - b; b = c - a;
SameValue(a, b) a = b; b = a;

Table 3. Predicates of numerical constraints

1.2 Problems at Constraint Description

The declarative approach of expressing geometry and geometric relations (con-
straints) should be closer to the human way of thinking than the procedural ap-
proach. Unfortunately, it turns out that a lot of serious problems are associated with
such an approach. For example:

 The user is required to insert exact number of constraints. We distinguish among
following cases [Fudos93]:
 geometric object is well-constrained if it has a finite number of solutions;
 geometric object is under-constrained if it has an infinitive number of solu-

tions;
 geometric object is over-constrained if it has no solutions.

This requirement is very hard and therefore different authors have already sug-
gested different approaches how to avoid it. Borning and his group introduced
the hierarchy of constraints [Borning87], Ando et al. suggested to use default
constraints [Ando89], Hel-Or introduced probabilistic constraints [Hel-Or93].

 In real applications a huge number of constraints have to be specified. The man-
ual inserting of constraints is an awkward, tedious, and error-prone work. There-
fore, an automatic constraining procedure based on multiply snapshots has been
proposed by Kurlander [Kurlander93]. However, this approach requires the ob-
ject of interest to be already constructed.

 Ordinarily, current constraint-based geometric modellers include the basic geo-
metric entities such as points, lines, and circles. For the majority of them the
complexity of free-form entities (as Bézier cubics or NURBS) seems to be too
difficult. However, very recently Fudos and Hoffmann integrated successfully
parametric conics into a constrained-based environment [Fudos96].

1.3 Form-Features

In geometric modelling, there are many definitions of what the word form-feature
means (see for example [Falcidieno89, Rossignac90]). It depends on an application
how to choose, define and name form-features. We choose fonts (in fact the font
outlines) as the geometric objects of interest and they will be used in the continua-
tion. If the characters of a certain font family (like Times Roman) are observed, a lot

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 233

of identical parts can be noticed quickly (see figure 2). For Times Roman font family,
a stem, a bar, a slant, a bow, and a serif have been suggested [Karow90].

Figure 4. Character outlines consist from font-features

Although everything seems perfect with the fonts inside modern computerised en-
vironment, some problems still exist. Today's applications require a huge number of
different fonts of different sizes and orientations. This requires a vector representa-
tion of individual characters upon which required geometric transformations can be
applied easily.

Unfortunately, the majority of output devices use raster data, and work within the
finite resolution. Because of this, the vector representation of fonts has to be raster-
ised quickly and accurately before any character is displayed. However, due the
rounding errors caused by the finite arithmetic of digital computers, the result of
rasterising algorithms can lead to unpleasant visual effects [Karow90]. To reduce
them, the vector representation of font outlines is equipped by an additional infor-
mation how to perform the rasterisation also visually correct. This information is
usually called a hint or an instruction. If the hints are associated with individual form-
features, then specifying them for the whole character set is easier and quicker. This
is particularly important in large character sets (for example Kanji [Duerst93]).

Herz and Hersch developed an auto-hinting system for typographic shapes [Herz-
94]. They limited their discussion on stems and bars, that is on form-features, where
only line segments are presented. The procedure is based on successive steps begin-
ning with extraction of straight line segments within prescribed deviation, their
merging, classification, and at least production of the hints. However, we feel that
in our system the generation of hints can be done much easier by using the existed
information about topology, geometry, and described constraints. The introduced
constraints directly carry the information which is needed for the visual correct ras-
terisation process as for example: a line is vertical, or two Bézier curves are symmet-
ric regarding a reference line.

234 Computer-Aided Design of User Interfaces

However, the focus of the paper is entirely on the interactive techniques employed
to constrain the form-features and to achieve an appropriate level of their reusability,
and does not touch the font design problems.

2 Constraint Solving

The heart of any constraint-based geometric modelling system is a constraint-solving
engine which has to solve given constraints without help of the designer. There exist
different approaches for constraint solving. Our system uses the local propagation
of known states. Although this method has some remarkable drawbacks (it cannot
solve cyclic constraints), its ability to support interactive design was a good reason
for its selection. A geometric example where the local propagation of known states
fails is given in [Zalik95a].

To represent the local propagation of known states a graph is used in the most cases
[Leler88]. The local states propagate through arcs of the graph. When a graph node
gets enough local information to be solved, it fires and offers its data (the result of
solving of the local constraints) to the neighbouring graph nodes. These nodes then
check, if they obtained enough information to be fired. The process works as a
chain-like reaction while there are any graph nodes to be solved. The solver stops
and waits for a new constraint to be inserted or informs the user that the considered
geometric object is completely constrained already.

For the local propagation of known states in geometric environment, a special data
structure, called biconnected constraint description graph has been developed by
Zalik [Zalik95a]. To enable a fast constraint solving, the scope of supported types of
geometric entities is usually limited. As it has been already mentioned in the intro-
duction, geometric entities in our system have been divided into two groups:

 The auxiliary geometry consists of three types of geometric entities: points, lines,
and circles. The constraints refer only to the entities of this group. In this way
the constraint solver is not burdened with too many different types of geometric
entities and its implementation is easier. This, however, does not limit the power
of the constraint solver significantly, because the majority of engineering con-
structions involve only lines and circles. Of course, the auxiliary geometry should
be switched off when the final shape of a geometric object has to be displayed.

 Upon the auxiliary geometry, the visible geometry is built. It consists of line seg-
ments, arcs, and cubic Bézier curves. If the auxiliary geometry is constrained,
then the visible geometry is constrained, too (vice versa is not necessary true).
Each entity of the visible geometry has its topological counterpart, while the ge-
ometric entity of auxiliary geometry has not.

In figure 3a, line l which is a member of the auxiliary geometry, carries two line
segments (ls1 and ls2). If, for example, the slope of line l is changed, the slopes of
both line segments have to be changed, too. In this way, the constraints which force
both line segments to lie on line l are satisfied.

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 235

Figure 5. Two examples of the visible and the auxiliary geometry a) two line segments carried by
a line b) Bézier cubic and associated auxiliary geometry

In a similar way, the constraining of the Bézier cubic is done. The approach is very
simple but efficient. Instead of constraining the curve directly, we constrain its con-
trol points which are treated as entities of the auxiliary geometry.

Constraining of the anchor Bézier control points (p0 and p3 in figure 3b) is obvious.
It is the same as constraining the end points of the line segment. For the inner Bézier
control points the following procedure is applied:

a) At the Bézier anchor points, tangent vectors are calculated and they are placed
on carrying lines passing through the anchor control points (see figure 3b). This
implies that the control points lie on these lines.

b) Distances between respective anchor and inner control points (figure 3b) are
then determined.

c) An intersection point between carrying lines is calculated (denoted as point p4 in
figure 3b).

d) The distances between the anchor points and the intersection point p4 are calcu-
lated.

e) The rates of the distances (denoted qd1 and qd2) are calculated and stored beside
the constraining scheme. The rates are evaluated as follows:

qd
p p

p p
1

0 4

0 1

| , |

| , |
 and qd

p p

p p
2

3 4

2 3

| , |

| , |
.

To aid interaction, the user has the opportunity to change the position of the Bézier
control points, and hence the curve shape. The user can move the inner control
points along the carrying lines. This causes the rates of qd1 and qd2 are changed
accordingly.

236 Computer-Aided Design of User Interfaces

2.1 Interactive Constraining Process

The serif as one of the form-features shown in figure 2 are used to highlight the
facilities of our constraint-based geometric modelling system. The serif is described
probably by an untrained user as a feature having three line segments and two curves
(suppose they are Bézier cubic). According to our previous discussion, these entities
determine the visible geometry. This description, however, can be treated as being
very desultory because it does not include any relations between used geometric en-
tities.

Since users do not think about spatial relations between geometric entities at this
stage of design, a good system should not force users to express these relations un-
less this is necessary (and therefore more natural). In our approach, the actions of
the designer are just observed by the system and it generates automatically all self-
understandable spatial relations - constraints. Of course, it is a question which con-
straints are self-understandable and always expected by the user. In our system, an
automatic extraction of constraints which would be determined on the base of "a
small number " is avoided. Beside a question how small the should be, it could
happen easily that the system “becomes to clever” and just confuses the user.

A typical scenario would be a line drawn (almost) horizontal. It would be easy to
detect such case and to constrain the line within the tolerance with the HLine
constraint. However, we cannot be sure that the user really wants this constraint.

Perhaps he/she needs a line with a very small slope indeed or intents to establish the
Parallel relation with some other line which is not horizontal. It could happen that
the user would even like to vary the slope of this line. In such cases, the user should
abandon the HLine constraint manually. To abandon a constraint which he/she
does not inserted explicitly may only confuse the user. Because of these reasons,
automatic detection of constraints based on the "small number " are excluded in
our implementation. Instead, in such cases it is required that the user explicitly ex-
presses his/her design intent.

On the other hand, the constraints which are always desired are the connectivity
constraints represented by the predicates On and Through (see table 1). Let us con-
sider a simple example. If the user draws a circular arc as an element of the visible
geometry, there are the following self-evident facts:

 the arc lies on the circle which becomes a member of the auxiliary geometry;
 the arc is bounded with two end points (members of auxiliary geometry), which

lie on the circle (two predicates On are determined automatically);
 through the centre of the circle and through both end points of the arc pass

auxiliary lines and the angle between them determines which part of the auxiliary
circle is part of the arc. Thus, beside two auxiliary lines the constraints connecting
line segments with arc end points and the centre of the circle are generated auto-
matically, too.

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 237

All these facts are generated by the system without a fear that some of them could
be redundant or wrong. To constrain the arc completely, the user must constrain the
circle (its centre point and the radius) and the end points of the arc. This, however,
can be done in different ways depending on construction.

It has been just noticed that the same geometric object can be well-constrained in
different ways. Of course, a question appears which constraining scheme to employ.
In the case of constraining of form-features, this depends on the way, how individual
form-features are bound together. In the final object (a character in our case), the
constraints should propagate from one form-feature to another. At first sight it
seems there exist two possibilities to solve this problem:

 more than one constraining schemes of the same form-feature are prepared and
the user then chooses the most suitable one;

 only one constraining scheme exists and by using a transformation algorithm one
can derive a desired constraint description.

Both solutions are difficult to realised in practice. The first one could increase enor-
mously the number of prepared form-features and it would be difficult to find the
appropriate one. The problem of the second proposal is that universal and reliable
transformation algorithms do not exist. They depend on the internal representation
of the form-features, an implementation of the constraint solver, and they have to
be guided by the user in many cases [Zalik93].

Therefore, we employ a new strategy: The form-features need not be constrained
completely. Instead, the majority of structural and just some geometric constraints
are included in such a constraining scheme. The complete constraining of the form-
feature can be done during the process of combining of individual form-features. In
this way the constraining process is more natural and therefore less demanding.

3 Demonstration of our system

Let us demonstrate how the serif in our system is generated. The construction be-
gins, for example, with drawing the bottom line segment. The first point of the line
segment is marked by clicking the mouse, the mouse is then moved to the end point
of the line segment and clicked again.

When the line segment is drawn, the program automatically creates required auxiliary
geometric entities. These are: the start and the end points, and a line on which the
drawn line segment lies. In addition, the system creates automatically a set of self-
understandable constraints which define the spatial relationships between the line
segment and the carrying line, and adds them to the description of the form-feature.

Figure 4 shows the situation after adding two line segments. The main window con-
tains a menu, two toolbars, and sub-windows. The vertical toolbar stores drawing
tools while the horizontal toolbar is used for a file and window management. The
system offers the following sub-windows:

238 Computer-Aided Design of User Interfaces

 The drawing sub-window is the main interactive working area of the system. At
the moment, it contains two connected line segments with associated auxiliary
lines. The user can decide whether to see the generated auxiliary geometry during
the drawing or not. By default the auxiliary geometry is turned-off. The drawing
window is the only one which is opened automatically; all other sub-windows are
opened only on the user’s request.

Figure 6. Beginning of the construction of the serif

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 239

Figure 7. The sketch of the half-serif

 The information sub-window is on the left side of the screen. It displays the
geometric and topological information of inserted geometry in a textual form.
The description begins with the auxiliary geometric entities. Five elements of the
auxiliary geometry are presented: the start point, the common point, the end
point of both line segments, and the lines on which the line segments lie.

Points are defined with coordinates and the lines with points they pass through
and their slopes. All these values have initial approximate values which will be
fixed by adding more constraints. These approximate values are used until the
geometric entities are not constrained and they have also an active role during
the constraint solving process [Zalik95a]. Each geometric entity in the infor-
mation sub-window has a unique name within the form-feature (for example
point P0). Next group are the elements of the visible geometry. At the moment
it includes two line segments, both determined by two points. The last group
contains the topological information.

240 Computer-Aided Design of User Interfaces

 The constraint sub-window on the top left side of figure 4 lists all constraints
which have been determined automatically by the system. The constraints are
described with predicates and a list of associated parameters. The corresponding
biconnected constrained description graph has been generated, too, but it is not
shown to the user. For a simple identification of constraints a visual link between
the constraint sub-window and the drawing sub-window should be established.
For example, if the user would pick at a constraint in the constraint sub-windows
this constraint would be displayed in the drawing sub-window. For this purpose
a set of visual symbols for each type of constraints would be introduced. How-
ever, at the moment of writing this feature has not been implemented in the
system, yet.

Figure 5 shows the situation after a Bézier cubic segment has been inserted11. Again,
the needed auxiliary geometry has been added automatically (compare it with figure
3), structural constraints have been extracted, the topology has been changed, and
both windows with textual information have been updated.

Till now, the user has not been aware that he/she has worked inside the constraint-
based environment because the system has behaved as a classical drawing program.
Because the initial sketch does not look "nice", the user can correct it easily by man-
ually giving a few constraints. This is done in a very simple and natural way. The user
opens the new window (figure 6) where he/she chooses a desired constraint and
then simply picks required geometric entities.

For example, if we would like to tell the system, that lines li and lj are parallel, then
we must choose the predicate Parallel and pick both lines by the mouse. This new
fact is accepted immediately by the system and it tries to solve the given constraint.
Therefore, the biconnected constraint description graph is extended by the new in-
formation and then the constraint solver is activated. The solver must be prepared
to handle the following three cases:

1. The slope of one of the picked lines is already determined (constrained) and the
slope of the second is not. Of course, the slope of the second line is changed and
becomes the same as the slope of the first line.

2. None of the involved line segments have the slopes already determined (con-
strained); they both contain only approximate data. In this case, the slope of the
second picked line is set to be equal to the slope of the first picked line. In this
way the system efficiently uses the approximate data and modifies them progres-
sively according to the given constraints.

3. The slopes of both lines are already constrained. A message is generated to the
user because an over-constrained case occurred. A list of involved constraints is
shown to him/her. If the user still wants to establish this relation then he/ she
must abandon one of the constraints which constrain the slopes of the lines.

11 The inner Bézier control points are not visible well because of reduction of the taken picture. They
can be seen better in figure 6.

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 241

In the first two cases, the result - the lines become parallel - is shown to the user
immediately. The system performs the propagation of constraints from those bicon-
nected graph nodes which have been changed. In this way the whole shape is recal-
culated and updated regarding the new facts. It is easy to show that the worse time
complexity of the constraint propagation is O(N2) where N is the number of in-
volved geometric entities of auxiliary geometry [Zalik95a] and this means that it can
be done quickly enough.

Figure 8. The situation after adding manually the last four constraints

To obtain the situation shown in figure 6, four constraints have been inserted:

 At first, the bottom line of the half-serif is said to be horizontal (constraint
HLine(l0) in figure 6).

 The perpendicular relation between the bottom half-serif line and the left half-
serif line is established (constraint Perpendicular(l0, l1)).

242 Computer-Aided Design of User Interfaces

 After that, the Bézier auxiliary lines are aligned to be parallel with lines l0 and l1
(constraints Parallel(l0, l1) and Parallel(l1, l4)).

Till now, we have not given any metric constraint and because of this, of course, our
object is under-constrained.

However, we have been able to work with it entirely interactive and we could follow
the effect of given constraints. The only difference between well-constrained and
under-constrained parts of a geometric object visible to the user is the colour of
geometric entities. The geometric entities drawn in green are already constrained and
those drawn in black are not.

Figure 9. Generated serif and its auxiliary geometry

Now we have two possibilities how to continue with the generation of the serif:

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 243

1. The obtained half-serif can be stored into a library. Then we can generate two
instances of the stored feature, and glue them into a new form-feature - a serif.
The procedure how to perform this can be found in [Zalik95b].

2. We simply continue with the design to generate the whole serif. For the serif, the
symmetrical property can be easily identified. Therefore, a line of symmetry is
added as shown in figure 7. With a few additional operations, all performed by
the mouse, the resulting shape is obtained quickly and easily.

Figure 10. In instance of the serif

Let us suppose now, the user would like to generate an instance of described serif.
Depending on how the serif is used, different parameters are needed and they are
provided by the use of the metric constraints. The instance of the serif shown in
figure 8 (the auxiliary geometry has been switched off) is obtained by giving the
following metric constraints:

 the exact position of the left bottom serif point (predicate Point(point shown
by mouse, 90, 300));

 the length of the horizontal line (predicate Distance(point shown by mouse,
point shown by mouse, 240));

 the distance between end points of both Bézier cubics (predicate Distance(line
shown by mouse, line shown by mouse, 50));

 the height of the whole serif (predicate Distance(line shown by mouse, line
shown by mouse, 150);

244 Computer-Aided Design of User Interfaces

 the height of the vertical line segment (predicate Distance(point shown by
mouse, point shown by mouse, 30).

Conclusion

The paper describes an interactive 2D constraint-based geometric modelling system.
It bases on distinguishing between two types of geometry. An auxiliary geometry is
controlled by geometric constraints, and a desired geometry (we named it a visible
geometry) is built in the framework defined by the auxiliary geometry. The auxiliary
geometry has been used widely in the past at hand-made blueprints, but it is not
handled at all in the present drawing packages.

Therefore, the presented system addresses surely a new approach in computer-based
geometric modelling systems and gives directions how to realise an efficient user
interface.

Although we can follow the development of constraint-based geometric modelling
systems from the early beginning of the computer graphics in the sixties, the first
commercial products have arisen very recently. The reason for this delay was the
lack of interactivity caused by the problems of constraint solving (section 1.2 gives
a brief survey of them). With presented approach we aim to minimise the described
pitfalls with the following techniques:

 The local propagation of known states is chosen as a method for constraint solv-
ing because it can support an interactive design.

 The system automatically extracts all self-understandable constraints by follow-
ing the designer’s actions. The number of constraints required of the user is im-
portantly reduced in this way.

 We developed a natural way of constraining Bézier cubics (the approach can be
easily extended to other types of free-form curves). Again, this could be achieved
by splitting the presented geometry in the auxiliary and the visible part.

 The system can handle well-constrained and under-constrained geometrical ob-
jects. In the case of an under-constrained object, the initial approximate geomet-
rical data of geometric object entities are used. In this way, the user can see the
under-constrained object and he/she can even change parameters which are al-
ready associated with partially well-constrained parts of a geometric object. In
this way, the reusability of designed form-features is increased importantly.
Additional constraining can be done later, when these parts are used to be bound
together into the final shape. In this way, the time of giving additional constraints
is synchronised with user’s needs and, in this way, the whole constraining process
is much easier. During the process of combining individual form-features we
have to establish spatial relationships again, and therefore the same set of con-
straints, the same user interface, and the same constraint solver could be used.

The system has been written in C++ and runs on personal computers in MS Win-
dows environment.

 An Interactive Constraint-Based Graphics System with Partially Constrained Form-Features 245

Acknowledgements

This research is funded by Ministry of Science and Technology of Republic Slovenia
under grant no. J2-5147-0796-94. The author would like to thank to Simon
Kolmanic for his help during programming and the referees for their valuable com-
ments and suggestions for improvements. I would like to thank also to dr. Fiaz
Hussain from De Montfort University Milton Keynes, U.K. for his advice to apply
presented approach to fonts.

A Tool for Adapting Visual Interfaces
to Blind People

Siwar Farhat and Christian Fluhr

Abstract

A graphical user interface generally uses standard components such as windows,
menus, edit boxes, list boxes... offering improvements in human-computer interac-
tion exploiting the abilities of sighted users. So, blind people using this kind of in-
terfaces cannot profit from these advantages. That is why these interfaces should be
adapted for them. This can be done either by using a standard method for all the
application screens or by individualising the adaptation of each application. This
makes it possible to optimise the manipulation of interfaces by blind people but it is
complicated because there are many versions of the any one product and it is often
necessary to readapt them. The new approach is to make the adaptation simple and
easy through an authoring system which adapts visual interfaces. The behaviour of
the interfaces can be altered according to different situations, even those which were
not foreseen. This system can modify completely or partially the visual interface by
adjusting it for the visually handicapped using a database of rules and rebuilding it
as a multimodal interface.

Keywords

Adaptation tool, non-visual interface, human-computer interaction, multimodal,
user model, authoring system, blind people.

Introduction

Until recently, interfaces contained information displayed in ASCII characters. Vis-
ually handicapped persons were able to use these interfaces, thanks to software
which reads the screen buffer and transmits information to a speech synthesiser and
Braille terminal. Graphical interfaces forced the technical solutions used since the
eighties to change, so that blind people could use them. Access to these interfaces
and interactivity between humans and computers requires new methods and differ-
ent conceptions. Therefore graphical interfaces should be rebuilt and adapted them
to blind people’s behaviour and capabilities.

248 Computer-Aided Design of User Interfaces

The developed system consists in realising an adaptation of any software running
under Ms-Windows. This adaptation does not force blind people to be submitted to
the interactivity mode of Ms-Windows. The project’s goal is the accessibility of soft-
ware to visual handicapped persons in order to facilitate their social and professional
integration. Different axes are defined to realise this project. Their essential goal is
to answer the following questions:

 Who will be using this interface ? What will their visual constraints be and how
will they work with software tools ?

 How can we modify an existent graphical application’s interface so that it con-
siders their different handicaps ?

 Which are the conceptions and techniques that ensure these adaptations ?

This project has several steps and proposes to resolve:

 The problem of access to the information displayed on the screen.
 The way to reconstruct the screened information according to the user’s profile.

We will describe a certain number of systems already used in this field, the contri-
bution and the advantage of our approach in comparison with the existent situation.
This project is funded by I.N.J.A (Institut National des Jeunes Aveugles).

1 Description of Visual Interface: Environment

Ms-Windows is a graphical environment that allows conviviality and many other
possibilities that do not exist in Ms-Dos.

 It allows many applications to run simultaneously (multi-tasking).
 It is independent from the hardware.
 It allows communication between applications (for instance, by Dynamic Data

Exchange).

There are many tools that allow the creation of applications running under Windows
and its interface for seeing users. They are all efficient and contain ways to build
interfaces. The programmer chooses a tool suited to his needs and knowledge.

Example. Borland C++, Visual C++ or Visual Basic generate easily a variety of
graphical interfaces. Each one has its own graphical interface generating tool such
as Borland C++’s workshop or Visual C++’s AppStudio. An application’s interface
has dialogue boxes containing several controls (list box, edit box, combo box, static
and button controls). It also has menus, icons, bitmaps, tables and text,... Every
Windows application has some basic objects (Windows predefined controls). Their
behaviour is the same in all applications and can be generally captured with their
content. Some particular cases will be explained later.

Two dialogue boxes, belonging to the same application and containing controls such
as list boxes, send and receive the same messages; however their initial behaviour
can be changed. Widgets also communicate with the other applications exchanging

 A Tool for Adapting Visual Interfaces to Blind People 249

messages. To enable visually handicapped people access to standard Windows ap-
plications presents two problems:

1. First, how to access, in real time, data used by the Ms-Windows operating system
(windows, windows content and messages).

2. Second, how to represent this data to « non-seeing » users. It is hard to translate
visual display into Braille or speech synthesis. This is why specific models of
communication are developed and propose an interface adapted to blinds’ prob-
lems. These models consider habits and mental representations of blind persons.

2 Data Access: General Filter

In order to allow blind users to interact with graphical interfaces, a great deal of data
must be extracted from the graphical environment. The data extraction is done by a
filtering system. This system intervenes between the application and the final user.
The user’s actions and the data sent to peripherals (such as the screen) are filtered.
Data is saved in appropriate data structures. A screen model is built and refreshed
in real time. Different types of filters are necessary to filter a whole Ms-Windows
application:

 a filter of messages sent and received by the applications;
 a filter of widgets (e.g., dialogue boxes, buttons, edit boxes);
 a filter of windows contents (e.g., bitmaps, tables, text).

The general filter aims to retrieve a maximum of the events generated by either the
application or the user. Our approach is to select certain events via a specialised filter
in order to initiate the application. It differs from that of others, e.g., Guib Project
and Mercator in that the specialised filter creates a database for the adaptation tool’s
use.

3 Information Retrieval

There are two possibilities used in our application to represent extracted information
and to allow an appropriate utilisation of applications:

 A basic model built by our application. This information model is static in the
developed program and has the same behaviour in all applications. It describes
user interactions and the application interface.

 A specific model created by the adaptation tool. This tool is another interactive
system. It will be the focus of our paper and its utility and description will be
examined below.

There are many problems with the adaptation of visual interfaces for blind people:

 identification of the main characteristics of blind people and their interaction
with computers in a graphical environment [Fellbaun94];

 problems linked to accessing graphical data;

250 Computer-Aided Design of User Interfaces

 how to rebuild non visual messages out of those which are designed for a visual
interface;

 finding the most appropriate software design and environment for creating mul-
timodal interfaces and adapting of existent graphical interfaces;

 how to transform display to speech synthesis or to Braille, and at which moment
to present them to the user;

 how to mentally represent the structure of documents;
 how to use Braille, speech synthesis and vocal recognition, singly or in combina-

tion to represent the different types of information;
 how to rebuild tables, images, texts.

The last two points will be developed in a separate paper.

4 Existing Products

Below are examples of existing products. Having presented them we will move on
to the exposition of our own work.

4.1 VisioBraille

This system filters different widgets [Handialogue94]. This allows the user to pilot
standard screens with particular commands which are the same for each application.
Standard behaviour is given to non standard screens by the developer. The particular
commands of a software are practically non existent.

4.2 Guib-Access

This approach consists in saving widgets and their contents in a data base (Off
Screen Model). This data base can be explored by using functions.

An adaptation of a particular software needs programming which is long and needs
to be done by an experienced programmer. The technique of formulating requests
to the data base slows down the system [Outspoken89].

4.3 JAWS (Job Access With Speech) Windows Version

This software allows the adaptation of visual interfaces for blind people. It creates
macro-commands that will be executed when the application is running. A macro is
a sequence of actions. These are grouped together in one operation. A key combi-
nation executes the macro. For instance, the following macro means: if the « Page
Down » key is activated, the words “ Page Down ” are pronounced [Henter-
Joyce95]:

MacroBegin
{page down
saystring(“page down”)}
MacroEnd

 A Tool for Adapting Visual Interfaces to Blind People 251

4.4 Guib Project (Textual and Graphical User Interfaces for Blind
People)

The adaptation of the two chosen environments (Ms-Windows and X-Windows) is
based on [Fellbaun94]:

 interfacing of suitable peripherals ;
 filters that extract information from the graphical environment ;(general filter)
 screen readers for the presentations of information.

There are different screen readers that have to be written for different environments,
to match differences between them, taking into account the organisation of the dia-
logue in the human-machine interfaces and the effectiveness of implementable fil-
ters. There are three screen readers for example for Ms-Windows:

1. Screen reader based on the GUIDE display.
2. Screen reader based on the virtual Braille display.
3. The speech-only screen reader.

5 Our Approach: an Adaptation Tool

5.1 Description of Adopted Approach

We can adapt by either giving the application screens a standard behaviour, i.e. a
general behaviour, or by individualising the adaptation of each application. This
makes it possible to optimise interfaces for blind people but it is complicated and
time-consuming because there are many versions of any one product and it is often
necessary to readapt them.

A new approach is to make adaptation simple and easy through an authoring system,
this represents the adaptation tool adapting visual interfaces. The behaviour of the
interfaces can be altered according to different situations, even those which were not
foreseen. These changes are introduced into the system by the sighted user (the au-
thor) in a flexible manner using the authoring interface which allows the association
of macro instructions with events coming from the users and/or application. The
authoring system will generate the database of rules.

This system can modify completely or partially the visual interface by adjusting it for
the visually handicapped using a database of rules and rebuilding it as a multimodal
interface.

The information can be given in vocal or Braille form depending on the users’ needs
and visual deficiency level. This authoring system can be used by experts or ergo-
nomics.

Let us exemplify adaptation:

252 Computer-Aided Design of User Interfaces

 If a software package sends a warning message which contains important infor-
mation to the screen, the software will put the message in evidence. An adapta-
tion system that cannot adapt its interface to a particular software, will not be
able to establish the presence of a warning message, and will not be able to in-
form the blind user. The blind user would have to explore the screen to notice
the presence of this warning. In MS-Windows, we cannot identify this type of
message. The event will be translated by the adaptation tool, because the author
knows its meaning12.

 We may give the example of the Harrap's French-English dictionary. The only
thing that distinguishes an English word from a French word is the character
typography (normal or italic). An adaptation system that explores text windows
in the same way, cannot differentiate between the two languages and cannot as-
sociate each typography to the relevant language. The consequence is that the
speech synthesis will be meaningless, in one of the two languages, because the
system does not notify the speech synthesis which language it is to use. This kind
of problem may be solved by using our approach.

 The adaptation tool establishes, if necessary, links between different controls,
which permits a system based not only on the controls’ display but also their
meaning. These links are used to mention audibly, for example, that the listbox
in the "Open" dialogue box contains the files of the current directory. The static
control "List of files" is associated to that listbox. This kind of help is not perti-
nent for sighted people, because they can see a complete representation of the
screen, which is not the case of the blind user.

 The rendering of information captured from the interface can be modified. For
example, when the blind user calls down the menu of his application he can re-
ceive menu items and information that differ (in order to make them more ex-
plicit) from those displayed on the screen. The author can modify the commen-
tary displayed information, reducing or adding explanations, depending on the
blind user's needs. We can even change the application’s language by adding a
translation tool.

A particular adaptation allows for different behaviours for different users. Let us
consider these two examples:

 an adaptation for novice users : talkative and close to the commands used in the
visual application, so the user can explore the software and have an easier collab-
oration with the sighted users.

 an adaptation for expert users : user shortcuts and maker the blind user more
rapid than the sighted user.

12 The author is a sighted person who uses the adaptation tool.

 A Tool for Adapting Visual Interfaces to Blind People 253

The interface objects in Ms-Windows have a rudimentary organisation which corre-
sponds to their order of creation. This organisation cannot be easily accessed by
blind people.

So how can we represent window components in an efficient way? Must we change
the initial functioning of the application to adapt it to the blind users or must we
keep it?

It was necessary to ask potential users and have their opinion in order to develop a
conception of a convenient system for the blind. A preliminary study has proven
that everything depends on the user.

The user who knows Windows prefers to keep the original functioning, organisation
and commands. Other users wish to have a different functioning. User models are
then necessary, which can be defined as data structures containing the available and
pertinent information about a class of users.

5.2 The Adaptation Tool Characteristics

5.2.1 General Aspect

Our project aims to give the visually handicapped the means to access graphic inter-
faces via the hook system and the adaptation tool. The main goal consists in:

 Making a model of the interface concepts, in order to have, at anytime, a descrip-
tion of the software environment.

 Presenting an adapted interface depending on the degree of handicap. Different
actions can be done to realise this aim, for example:

– ignore certain messages of the application;
– lock, send or modify other messages;
– add or remove controls;
– add specific processing to controls, dialogue boxes, menus,...
– add specific help for the user : description of the interface or the use of con-

trols, the presence of warnings or error messages.

The following figure describes the general aspect of our project (figure 1) :

254 Computer-Aided Design of User Interfaces

Figure 1. The developed system
integrating the filter and

tool adaptation

When the user is
communicating with

the application via a keyboard, the data flow passes through a hook to be analysed
and processed according to the user model created by the adaptation tool. This is a
rule based hook constituted by the proposed tool.

Example of modification of an initial processing after having used the tool
adaptation. The author decides (for a specific class of users) to replace the use of
the "tab" key by that of the direction arrows in order to move from one control to
another inside a dialogue box (, , ,). Keys , allow the passage from
objects of the same group, to another group. Keys , allow the passage from one
object to another inside a same group. This is a hierarchical exploration method that
permits interface standardisation.

5.2.2 Multimodality and Ergonomic Needs

The interface is the most important part of an application. Its conception is a fun-
damental activity in the software production, because its success has a determinant
influence on the software’s success. We must take into account ergonomic needs in
order to lead to the conception of the interface. In this case, the adaptation tool will
solve certain ergonomic problems.

Taking the user into account. For ergonomist and psychologist, the human-ma-
chine interface represents the cognitive and physical phenomena that occurs in the
realisation of computerised tasks [Coutaz90]. The interactive system developer
should draw up a full description of the user cognitive processes and should give an
accurate report of their representation in the software [Coutaz90].

Choosing the situation adapted mode. Multimodality is a means of improving
software systems for the visually handicapped. It is one of the directions in which
human machine interface is oriented. So, the system of multimodal interfaces offers

Application General filter

Filtering of cer-
tain events and as-
sociated actions

Application
and user
model

Adaptation
tool

Representation
of screen

 A Tool for Adapting Visual Interfaces to Blind People 255

the possibility for users to have interaction strategies adapted to their needs
[Burger92]. The channel for transmitting messages, depends on the circumstances.
A warning message should be transmitted via a speech synthesis system, while rele-
vant information should be transmitted via a Braille display. The use of only one
sensory channel, (sense of touch or sense of hearing) in restrictive. At the moment,
the developed system restores information as speech synthesis.

Information about the context. Another aspect, is to give information about the
context in order to improve any poor information. In this project, we reproduce this
context by giving users information about:

 the type of the current processing;
 the different widgets to be manipulated;
 the different commands to be executed;
 messages sent by the application;
 the content of the different widgets;
 the different operations that users can execute at a given time.

5.2.3 Technical Aspect: Using the Authoring System

The author executes the application to be adapted in order to create a user model.
This application runs under the control of the author system. To create an adapted
interface, he will be able to explore all the application steps and associate macro-
instructions to controls.

Description of the steps of the adaptation process:

 adaptation tool places a filter to detect present windows;
 the controls displayed on the screen will be analysed automatically;
 when a main window is detected, all the controls and the menu (if it exists) are

extracted and saved in well-defined structures;
 each main window is characterised by its title, type, and the number of controls

it contains;
 each window runs dynamically in memory, its deletion or creation induces the

removal or addition of structures;
 when a main window is visible on the screen, the author has the possibility to use

a macro-command (keyboard key or mouse button) to associate a specific pro-
cessing to each of the window’s controls for a given event;

 the author chooses one of the Control from the filtered objects list in order to
match it with a sequence of instructions;

 s/he activates the button « Event management » and another window appears
(figure 5);

 s/he selects the element to treat and associates a macro-instruction.

This last point can be repeated by selecting other events for the same control. In the
same way, we can iterate the same treatment for other filtered-controls:

256 Computer-Aided Design of User Interfaces

 the specific processing is a sequence of instructions called « macro-instruction »;
 the macro-instructions is defined according to the visually handicapped user's

needs;
 the specific processing of controls can be changed dynamically during the execu-

tion of the application;

The following figure describes the functioning of the adaptation tool’s system (figure
2)

Figure 2. Adaptation tool

The Adapting Tool generates an internal structure for an application according to a
given profile represented in figure 3. In this figure, the « Dialogue Box File » contains
the sequence of dialogue boxes which the author has associated with treatment. The
« Sequence of events and instructions for one control (file 3) » consists of a rule
based system containing the sequence of events which one matched to macro-in-
struction. The internal structure of file 3 is : Event1 Instruction1 Parameter1,
Paremeter2 ; Event2 Instruction 1 Instruction 2 Parameter1,...

The different versions of a given application can easily be changed according to the
user. The Adaptation Tool generates a rule based system standing on the macro-
instructions adapted to a specific profile : novice, trained, or expert. Using the Fil-
tering System, the user selects his/her profile and the desired application, the Exe-
cution System loads according to this profile the corresponding Dialogue Box File
(DDB).

This DDB is composed of specific processing associated to controls that the author
has chosen to execute operations. Hence, for any application, a directory is created
by the Adaptation Tool in which the rule based system is generated depending on
the user’s profile. This rule based system will be automatically loaded at every exe-
cution of the given application. Moreover, a change of this system will be done if
the user selects an other profile or an other application. The Base generation was
achieved through specifying events processing using the various interfaces proposed
by the Adaptation Tool.

 Application to
adapt Filter

Adaptation Tool

Application
and user
model

 A Tool for Adapting Visual Interfaces to Blind People 257

Figure 3. Application profile.

It is user-friendly because there is no code to generate and to compile. Actually, it
only needs a scenario conception using the Adaptation Tool Principle that is pro-
posed and based on the interaction between the Tool interface and the sighted au-
thor.

Example of Macro-Instructions:

CLASS-Control “ Edit Box” ID==100
 Case event of:
 “ ACTIVE ”: Treat1-List(100);// Handle is an identification of list box
 END Case
END CLASS;

Function Treat1-List(Identification)
Begin
SayText(“ Utility of this edit is to show different actions than you can do ”)
Wait(500);
SayText (“The Content of Edit is”).
Handle=RecupWindow(Identification); //Returns the handle of the window
ReadContents(Handle, Buffer); //Reads the contents of the EditBox
DisplaySon(Buffer);

Application 1

Novice Trained Expert

Dialog Box File

Menu items Sequence of control
of one dialog

Sequence of events and instructions
for one control (file 3)

258 Computer-Aided Design of User Interfaces

HandleButtonOk=RecupWindow(1); //Returns the handle of the button Ok
 // of the dialogue box
SendClic(HandleButtonOk, x, y, BUTTONLEFT);

// Active Button OK, that allows to close the dialogue
// box that contain the edit box.

End

The description of the adaptation tool’s mechanism is:

1. The macro-command gives the sequence of the controls displayed in the main
active window (figure 4).

Figure 4. Interface that gives the sequence of a listbox controls

2. Definition of a macro-instruction to process a given event (figure 5).

Figure 5. Interface to define a macro

 A Tool for Adapting Visual Interfaces to Blind People 259

5.3 Rebuilding of the Visual Interface and Information Retrieval: Ex-
ample

We already mentioned that the rendering of information depends on the user's hand-
icap level, so we thought of two types of retrieval : one adapted for the blind users
and the other for visually deficient users and we defined three types of user profiles,
novice, expert and intermediate. In this project we only took the blind user case into
account.

5.3.1 Control Restitution for Blind People: Dialogue Box Representation

The adaptation of a dialogue box for a given profile depends on the information it
contains. A dialogue box generally contains a sequence of controls or windows that
are themselves, dialogue boxes. Each widget can contain other controls, or make
references to other controls.

Here follows a description of a multimodal scenario to adapt a "Spirit" dialogue box.
(Spirit is an information retrieval system using natural language queries). The dia-
logue box appearing after selecting a data base (figure 6).

The dialogue box consists of:

 EditBox to enter the question.
 EditBox to show keywords of the question.
 EditBox to show wrong words.
 Five buttons, each corresponding to application functions of the application.

Figure 6. Spirit dialogue box : Question in natural language

We notice that one control (EditBox) has three different uses. We can filter infor-
mation from each control, but we cannot describe the meaning of each control. For
example, we cannot know that words contained in the third EditBox represent

260 Computer-Aided Design of User Interfaces

wrong words, this is not a problem for the sighted user who sees the static field
(« Incorrect words ») associated with the EditBox.

To solve this problem, the author can ask the application to mention via a warning
message the changes of the EditBox contents and send the cursor to the first incor-
rect word in the EditBox to make a search easier for the user. This kind of help is
differs from application to application. Here is an example of multimodal scenario:

 When the dialogue box « Question in natural language » appears on the screen,
the text describing the utility of each control and the action required to initiate it
is pronounced.

 For the EditBox « Incorrect words », if the content changes, the following macro-
instruction is executed:

1. SayText (“There are incorrect words in the question”).
2. ReadContents(Handle); //Reads the contents of the EditBox
3. DisplayBraille("first incorrect word in the list");

This scenario corresponds to a rule for a given event.

5.3.2 Document Retrieval for Blind People

Actual retrieval system development is dominated by the conception of hypertexts
allowing easy and fast access to huge databases. These hypertext links are evidenced
by a particular typography. The information retrieval system « Spirit » has the ad-
vantage of producing less bulky documents than those in Braille.

A text reading system has been developed to break down the information into
words, sentences or paragraphs. For example it also allows the activation of the hy-
pertext link at the request of the blind user by the simulation of a click. The system
also allows for reference to change in typography if necessary. This system is cur-
rently being developed and will be the subject of further articles.

6 Generalisation of the Developed System

The Adaptation Tool which represents a helping system to visual interface design
allows to specify a given application. Indeed, our filtering system corresponds to a
generic application which use can be specified through the helping system use.

The Filtering System generally retrieves information displayed on the screen at a
specific moment T : text, pictures, dialogues boxes, typography, warning messages,...
The base generated by the Filtering System could be exploited according to our
needs using the authoring system that allows to adapt the application to be executed.
The interfaces of this one will be rebuilt in accordance with our usage purpose, the
user’s needs or a given profile.

We can adapt its GUI and restore the information under different forms. For exam-
ple, from the generated base, we can choose to restitute the information for blind
people as a speech synthesis or a braille message.

 A Tool for Adapting Visual Interfaces to Blind People 261

For impaired people, the restoring could be the enlarging of the GUI depending on
a coefficient defined by the user, e.g., his/her colour preferences. Impaired people
differ from each other by their perception of colours.

We can even use this base for other aims as multi-linguism, and computer-assisted
teaching. We can generate a teachware from the information base : add to the origi-
nal application an on-line help, and many learning screnarii of the application use.
The student could backup any problem encountered during his/her learning via an-
notations in order to show them to the teacher. As described before, the generic
application can create several usage possibilities for a chosen application (e.g., for
Microsoft Word®).

Conclusion

The adopted approach seems to be conclusive. A prototype has been realised and
evaluated by blind users at the I.N.J.A. (Institut National des Jeunes Aveugles) in
Paris and at the C.E.A. (Centre d’Etudes Atomiques). Testing the adaptation of
some applications shows that the authoring system lacks some functions : cursor
management in word processor applications, taking into account MDI applications.

This system could become an industrial product ready for sale though it needs to be
tested. We would suggest that specialists in software adaptation for blind people test
it in order to create new adaptations using this system.

Realising software adaptation can be rapid and simple. This should provide the
means for progress in ergonomist research in the field of blind users. In the current
version of the project we only considered input through keyboard, but in future
version we will also consider speech recognition.

Part V.

CADUI Techniques

Declarative Interaction through
Interactive Planners

Conn Copas and Ernest Edmonds

Abstract

Recent progress in planning has enabled this technique to be applied to some signif-
icant real-world problems, including the construction of intelligent user interfaces.
Previous research in interactive planners has emphasised their dynamism and
maintenance advantages. This paper adopts a user-interaction perspective, and ex-
plores the theme that a paradigm shift in human-computer interaction is now a pro-
spect: away from the requirement to instruct machines towards a more declarative,
goal-based form of interaction. This initiative necessarily involves consideration of
the design of goal description languages, and some alternatives are analysed. Some
implementation issues involved with embedding planners within a user interface
management system are examined. The general planning strategy of constructing
executable models of causality within some domain is discussed in the context of
human-computer interaction specification methods. Some advantages of planners in
contrast to process algebras are described, and it is also shown how Petri nets could
usefully incorporate some initiatives from planning research.

Keywords

Intelligent user interfaces, model-based systems, user interface management systems,
formal specifications, executable specifications, task analysis, planning, geographic
information systems, Petri nets, declarative interaction, goal description languages.

Introduction

Planning techniques have long been considered to hold potential for injecting intel-
ligence into interactive systems. The general principle is that interactive planners are
the recipients of goals which describe some desired state(s) of a computer-based
system. These planners possess knowledge about various actions (typically corre-
sponding to user-level commands), including in particular the preconditions and ef-
fects of these actions. The planning task is to search (nondeterministically) for com-
mand combinations which will achieve the goal. At that point, the planner may either

266 Computer-Aided Design of User Interfaces

recommend a course of action to the user, or automatically execute the script which
has been generated.

Planners have historically been hampered by problems of poor expressiveness, poor
performance and, to a lesser extent, ambiguous completeness, but recent research
progress suggests their potential may be closer to realisation.

For example, expressiveness has improved with the advent of algorithms for accom-
modating conditional action effects [Pednault88], disjunctive preconditions, and
quantification over dynamic object universes [Weld94]. Performance has simultane-
ously improved to the point where quasi real-time, interactive planners are being
reported in domains such as network searching within the Unix operating system
[Etzioni94a] and image processing [Chien94].

One of the aims of this paper is to report on the feasibility of employing interactive
planners within another domain: that of user interaction with a geographic information
system (GIS). These systems, along with many other so-called high-functionality sys-
tems [Fischer91] have a poor reputation for usability. As discussed in section 1, con-
ventional engineering solutions to this problem, such as the construction of graph-
ical user interfaces, suffer from inherent limitations which planners may overcome.

More significantly, the little existing work on interactive planners has tended to em-
phasise the maintenance and dynamism advantages which these possess in compar-
ison to systems which operate in a more procedural fashion, and has only addressed
end-user concerns indirectly. A further aim of this paper is thus to investigate in
section 2 some HCI issues, with particular reference to the design of goal description
languages.

Planners have typically been built by Artificial Intelligence (AI) workers for the purpose
of implementing some problem-solving system. However, the underlying knowledge
representation (including operators, preconditions and effects) is itself of HCI rele-
vance, given the interest in appropriate specification techniques within fields such as
UIMSs, CSCW and TA.

Planners necessarily involve an executable model of causality within some domain,
which aligns them with model-based approaches to software development in gen-
eral, and which gives them a close correspondence in particular with techniques
which specify the semantics of state transitions, such as high-level Petri nets (PNs).

A subsidiary aim of this paper is to compare and contrast developments in planning
with executable specification practices in HCI, in section 3. It is contended that
planning offers a number of features which could profitably be incorporated, includ-
ing a more expressive formalism in many cases, and the possibility of more dynamic
run-time control.

1 GIS User Interfaces

Consider the following simple visualisation task facing some GIS users, which will
be used for illustration throughout the remainder of this paper. The system includes

 Declarative Interaction through Interactive Planners 267

a number of data themes, representing roads, elevation, population, etc, with the
display currently being blank. The users' desire could be paraphrased as follows: "I
would like to see the roads map in plan view, superimposed upon a white back-
ground, containing a legend in the bottom right corner and a scale-bar in the top
centre". The expected output of the system is depicted in figure 1.

Figure 1. the output of a GIS visualisation goal

It may be objected that this task is undemanding, as it does not involve any particular
sophistication in spatial analysis on the part of the user. However, it is a good exam-
ple for precisely that reason, because even users who have a clear idea of their goals
must still translate those goals into a sequence of GIS instructions which is both
syntactically correct and semantically coherent. Employing the command-driven in-
terface of the public-domain GIS Grass4.1 [CERL93], seven instructions are neces-
sary for achieving the goal, as depicted in figure 2.

 d.mon start=x0
 d.erase color=white
 d.rast -o map=roads
 d.scale at=0,0
 d.frame frame=frame0 at=0,40,75,100
 d.erase color=black
 d.legend map=roads

Figure 2. A typical GIS command sequence, or plan

As may be inferred from figure 2, GIS tend to possess a large, relatively primitive
command-set out of a concern for general-purpose capability and thus resemble the
Unix operating system, or a (spatial) statistics package. A typical response to this

268 Computer-Aided Design of User Interfaces

usability problem is the construction of menu-driven, graphical interfaces; an exam-
ple of which is shown in figure 3.

These have the obvious advantage of eliminating errors of command retrieval and
construction, but are not themselves beyond criticism. One feature of menus is that,
linguistically, the items are usually imperatives and, in the simplest case, correspond
to application commands. Thus, the influence of the command-line lingers. A fur-
ther design innovation is to supply some iconic representation of the objects which
comprise the system's universe of discourse, thus allowing users to manipulate these
in a pseudo-direct fashion.

Within the GIS sphere, however, direct manipulation is rare; for example, only ex-
perimental systems allow one to perform map overlays by dragging icons into some
viewing area [Egenhofer93]. Part of the problem is that it is difficult to represent all
of an object's methods (particularly abstract methods) in a gestural or pictorial fash-
ion. More commonly, although there may be some iconic representation of objects,
their methods are invoked by selection from some pop-up or pull-down menu. It
could thus be argued that the imperative languages in which most systems are pro-
grammed eventually permeate through to the user interface, despite the best efforts
of designers to construct various facades.

Figure 3. A menu-driven, graphical GIS user interface

 Declarative Interaction through Interactive Planners 269

It is at this point that planners offer a design alternative. Interactive planners, apart
from being 'intelligent', are distinctive because the user inputs goals rather than pro-
cedures. That is, the interaction is declarative; a feature of planning's basis in logic
and nondeterministic search.

Thus, a prospect which has been tantalising for some time is closer to realisation:
users, instead of issuing numerous instructions in order to achieve their goals, may
instead interact with machines in the converse fashion, by describing their goals and
relying on the machine to infer the necessary instructions. It is slightly ironic that, if
planning technology becomes sufficiently well-understood to be appropriated by the
mainstream (in the manner of the relational calculus, for example), then these sys-
tems are less likely to be deemed intelligent and may come to be regarded as routine
constraint satisfiers!

This concept of the utility of declarative interaction rests upon the assumption that
it is easier or at least preferable for users to describe goals rather than generate sets
of instructions. It is recognised that planners could be said to foster an interaction
style of indirect manipulation, because such support systems intervene between the
user and the (representation of the) domain objects.

One may anticipate that planners may be perceived as introducing superfluous over-
heads when supporting the kind of simple and self-evident tasks which currently
admit well to direct manipulation or, for that matter, to imperative interaction in
general. More specifically, it may be hypothesised that the acceptability of interactive
planners may be expected to increase as the unit tasks in any domain involve longer
sequences of instructions for their completion. The most practical scenario is one in
which a variety of forms of interaction are available to the user.

2 An Interactive Planner for GIS

The work reported here employs the public-domain planner Ucpop4.0 [Weld94],
written in Common Lisp. Planners may be distinguished by various features, which
merit description at this point. The essential features of Ucpop are that it:

1. is regressive, i.e. search proceeds by selecting operators which can achieve the
goal state, then placing the preconditions of these operators onto an agenda of
revised goals, until the current state is reached. This strategy is more focused than
progressive search methods, and thus has performance advantages in domains
where there are a large number of operators compared to the average number of
goals involved in any plan.

2. builds plans from first-principles, as opposed to the strategy of composing a
larger plan from some pre-existing library of plan fragments. This latter approach
effectively enables learning or experience to enhance performance, but is often
described as hierarchical or abstract planning instead. Planners which cannot
work from first principles may suffer from inflexibility due to the assumption
that one may anticipate users' goals and store a compiled response [Tenen-
berg91].

270 Computer-Aided Design of User Interfaces

3. is partially ordered or nonlinear, i.e. if alternate action sequences can achieve the
same goal state, then the algorithm avoids committing to any one sequence un-
necessarily, with consequent gains in performance, end-user support, and flexi-
bility of execution (i.e., it is possible to infer opportunities for parallel execution).

4. is domain-independent, i.e., the various choices which arise during planning are
made without recourse to any domain-specific heuristics, such as "always draw
maps before displaying legends". The employment of this general search control
strategy preserves completeness, at the cost of some performance. A program-
mer's interface allows the incorporation of more specific heuristics, which effec-
tively imparts some of the character of an expert system to the planner.

5. assumes that the planner has access to all necessary information about the state
of the world, and that action effects are both instant and deterministic. These
restrictions may be regarded as unreasonable within certain real-world domains
(which has led to a concern for planners based upon fuzzy or modal logics), but
are more reasonable in the case of some artificial software worlds.

The visualisation goal described in Section 1 is represented using existentially-quan-
tified, first-order predicates and Ucpop4.0 syntax in figure 4 (universally-quantified
goals and negation are also supported).

This example was chosen partly because of the comparative length of the plan which
is required to satisfy the goal. In a previous imperative interface, this goal was iden-
tified as a unit task requiring the most involved macro. An example of a relatively
complex operator representation is shown in figure 5.

The entities in this domain are both persistent, e.g. data files, and more ephemeral,
e.g. the contents of graphics windows. The main features of this example are, first,
conditional effects (e.g., the effects of the command are different depending whether
the window contains any frames) and, secondly, universal quantification over a dy-
namic object universe (e.g., the above command has the effect of destroying all ex-
isting contents of the window, without having to nominate those contents explicitly).

Assuming that it is desired for the planner to mediate the user-application interaction
in a UIMS fashion, two interfaces require attention. The first is between the planner
and the application. It is routine to transform the output of the planner into a series
of application callbacks, but deeper discussion is deferred until Section 2.1.2. The
main interface concern at this point is with the user.

Clearly, after criticising contemporary GIS user interfaces, it would be inconsistent
to claim that the predicate logic interface of figure 4 represents an advance in usa-
bility! In its raw form, this interface poses a number of hurdles for casual users:

1. mastery of Lisp/Ucpop syntax;
2. mastery of the semantics of predicate calculus, including conjunction, negation,

and existential/universal quantification;
3. lack of guidance about the types of goal statements which are possible.

 Declarative Interaction through Interactive Planners 271

:goal (exists (window ?window)

(exists (frame ?frame)
(exists (scale-bar ?scale-bar)
(exists (map ?map)
(exists (legend ?legend)
(and

(background-colour window ?window white)
(displayed-in window ?window map ?map)
(kind map ?map two-d)
(refers-to map ?map data roads)
(contains window ?window frame ?frame)
(position frame ?frame "0 40 75 100")
(displayed-in frame ?frame legend ?legend)
(refers-to legend ?legend data roads)
(displayed-in window ?window scale-bar ?scale-bar)
(position scale-bar ?scale-bar "0 0")))))))

"I would like to see the roads map in plan view, superimposed upon a white back-
ground, containing a legend in the bottom right corner and a scale-bar in the top
centre"

Figure 4: A GIS goal, expressed in terms of both first-order predicate logic and natural language
(variables are prefixed with '?')

It may be recognised that these types of problems are also familiar from the database
world, which has the advantage of providing conceptual leverage.

For example, it allows one to compare and contrast goal description languages (and
techniques) with more familiar database query strategies, despite the fact that plan
synthesis is not generally regarded as an information retrieval task.

The predicate logic interface of figure 4 may be seen as an analogue of SQL: declar-
ative (in comparison to its predecessors), demanding (for inexperienced users), and
also limited by its first-order formalism (i.e., it is not possible to pose a meta-query
about which predicates are available).

272 Computer-Aided Design of User Interfaces

__
(:operator d-rast
 :parameters (?container ?name ?data ?map)
 :precondition (and (selected ?container ?name) (data ?data))
 :effect (and
 (displayed-in ?container ?name map ?map)
 (kind map ?map two-d)
 (refers-to map ?map data ?data))
 (forall (?A ?B)
 (when (displayed-in ?container ?name ?A ?B)
 (not (displayed-in ?container ?name ?A ?B))))
 (forall (?frame ?id ?X ?Y)
 (when (and (contains ?container ?name ?frame ?id)
 (displayed-in ?frame ?id ?X ?Y))
 (not (displayed-in ?frame ?id ?X ?Y))))
 (forall (?colour)
 (when (background-colour ?container ?name ?colour)
 (not (background-colour ?container ?name ?colour))))
 (forall (?frame1 ?id1 ?colour1)
 (when (and (contains ?container ?name ?frame1 ?id1)
 (background-colour ?frame1 ?id1 ?colour1))
 (not (background-colour ?frame1 ?id1 ?colour1))))))

"The effect of displaying some raster data is that the currently selected window
now has that map present in it. Whenever the window already has contents, this
map overwrites both the background colour and the previous contents of the win-
dow, including that of any frames contained within the window".

Figure 5: A planning representation of a GIS command, also expressed in terms of natural lan-
guage (variables are prefixed with '?')

On the other hand, planners and conventional databases do differ quite markedly in
that their underlying formalisms emphasise either the dynamic or structural aspects
of some domain, respectively. As a result, whilst the behaviour (i.e., the state transi-
tions) of the GIS domain is explicated by the planning model, the universe of dis-
course is only implicit. This may, however, be explicated using an ERA diagram, as
shown in figure 6.

One advantage of the data model of figure 6 is naturally that the ontological structure
of the domain is revealed, e.g., it is apparent that some predicates function as attrib-
utes of entities (position, background-colour) whereas others serve to relate two
entities (contains, displayed-in, refers-to).

 Declarative Interaction through Interactive Planners 273

WINDOWid

colour

DISPLAYED
 IN

DISPLAYED
 IN

SCALE
BAR

MAP

id
position

id, kind

CONTAINS FRAME DISPLAYED
 IN

LEGEND

id
position

id

background
REFERS
 TO

REFERS
 TO

DATA

id
kind

m

1

m

m

m

1m11

1

1

1

Figure 6. An entity-relationship representation of the universe of discourse underlying a GIS do-
main

It is also notable that one entity (window) is not present in the natural language goal
specification of figure 4, i.e., this entity is consequential upon the goal of displaying
maps. Similarly, one relation (refers-to) is effectively implicit in the natural language
specification. It would seem important to impress these distinctions upon end-users.

As a preliminary measure, the logic-based interface may usefully be augmented with
some standard, higher-order predicates, such as 'entity', 'attribute' and 'relation' (ne-
glecting for the moment esoteric modelling issues such as whether attributes may be
considered to be a special entity). This initiative provides the basis for a certain
amount of guidance if one then postulates a meta-query facility; however, the prob-
lems of mastery of logic remain, and a new problem of meta-query construction
arises. Graphical interfaces, alternatively, provide the general features of revealing
domain ontologies and reducing problems of syntax in the interaction. An example
of this approach for the GIS domain is shown in figure 7.

Figure 7. A form-filling interface for specifying goals to an interactive planner

274 Computer-Aided Design of User Interfaces

Not unexpectedly, this style of interface resembles a form-filling interface to a rela-
tional database. In the spirit of deductive databases, details of whether the plan is
being 'retrieved' or 'derived' are suppressed. One design issue which is not immedi-
ately apparent from such a static example is that of dialogue control; for example, it
is ambiguous whether the dialogue is driven by selection of relations or by selection
of entities. A relation-driven dialogue requires that the user selects one or more re-
lations of interest, in order that further entity/attribute fields are subsequently pre-
sented for selection or input. Insofar as relations may be interpreted as functions or
procedures, this approach violates somewhat the ideals of declarative interaction (see
[Etzioni94a] for an example). An entity-driven dialogue possesses the virtue of pre-
senting a more object-oriented view to the user. Currently, both approaches are ac-
commodated.

The user interface is context-sensitive, in more than one respect. First, the data
model specifies certain constraints, e.g., that maps but not data can be displayed.
This knowledge is used to cause appropriate forms to be displayed, based upon prior
selections. Secondly, it is occasionally desirable to impose an order of field filling
upon the user, which is achieved using field disabling techniques. For example, it is
deemed inappropriate at the interaction point in figure 7 for the user to nominate a
map identifier. These dynamics have at present been achieved simply by writing pro-
cedural graphics code, without any prior specification. It is recognised that standard
UIMS practice is to construct an executable specification of interaction-object be-
haviour, and it is intended to investigate planning formalisms for this purpose.

Somewhat curiously, one other example of a form-filling interface to a planner
[Etzioni94a] appears to be based upon neither an explicit data model nor typed pred-
icates. It is claimed that the form-filling approach overcomes users' discomfort with
logic. More precisely, such an approach may be expected to reduce problems of
syntax, but the ability of graphics to facilitate a grasp of the semantics of logic is
considered in this paper to remain an empirical question. One potentially trouble-
some feature, and one which distinguishes the above interface from that for a rela-
tional database, is the requirement for the user specifically to employ quantified iden-
tifiers.

The form-filling interface may be criticised for its linguistic nature, which contrasts
with the graphical nature of the ERA diagram on which it is based. One progression
is to propose that entities in the goal have an iconic representation. For example, if
the user wishes to delete data file "F" or close window "W", then conventional
graphical interface techniques allow one to establish a relationship between icons
and their referents. The planning situation, however, is complicated by the require-
ment to accommodate quantifiers (e.g., "I would like to see a map of some/every
data file"). This requires some graphical representation of both anonymous entities
and sets; an example of the latter being the palettes employed within interactive
drawing packages. A further design issue is the graphical specification of relations
and attributes. Conveniently, some of the predicates in the example GIS domain
(position, contains, displayed-in), by virtue of their spatial connotations, may be

 Declarative Interaction through Interactive Planners 275

readily defined by drawing. For example, a map icon may be dragged inside a win-
dow icon in order to convey that the former is 'displayed-in' the latter. Negated
predicates, alternatively, are challenging to represent graphically.

It is ironic that, if this notion of graphical goal specification could be carried to its
extreme, then the user interface would resemble an advanced direct manipulation
interface to a GIS, albeit augmented with quantifiers and negation. Such an interface
must depart further from conventional direct manipulation, however, by being in-
sensitive to the sequence of operations. For example, it must be legitimate to drag a
scale-bar followed by a map into some viewing area representation (in order that the
planner can infer how to display both these entities), whereas in the actual applica-
tion the scale-bar would become occluded by this sequence. Iconic planner inter-
faces therefore may gain some design inspiration from direct manipulation, but also
must support a form of visual, automatic programming.

2.1 Implementation issues

The work reported in section 2 was intended to demonstrate two concepts:

1. that contemporary planners possess sufficient expressiveness to support signifi-
cant tasks within a GIS domain;

2. that enhancements may be made to the programmer's interface such that at least
satisfactory user interaction becomes feasible.

In itself, this demonstration distinguishes this work from most previous reports of
interactive planners, such as [Senay89]. However, a variety of further practical con-
siderations must be addressed before contemplating putting this system into pro-
duction. Performance is one major concern; the less the system responds in real
time, the less its suitability as a UIMS component, and the more its potential status
becomes relegated to that of on-line help. Other considerations include the feasibil-
ity of interfacing the planner to an application, and the software development effort
required.

2.1.1 Performance

The work reported in this paper employs a restricted, although intentionally chal-
lenging, sub-set of GIS operators. A complete GIS might involve 300 operators, and
so scalability is obviously an issue. Regressive planners scale-up well provided that
the application commands tend to have unique effects, suggesting that performance
degradation may be as much a function of the compiler as it is of the planning algo-
rithm.

Theoretically, a major influence on planner performance is the average branching
factor in a domain [Weld94], which broadly corresponds to the number of alterna-
tive actions which must be considered at any choice point. Less formally, an 'ideal'
domain is one in which all actions have unique effects, and no action negates any of
the preconditions of other actions. One distinctive feature of this GIS domain ap-
pears to be operator complexity, with a rule-of-thumb being that increases in the

276 Computer-Aided Design of User Interfaces

average number of effects per operator increase the probability of operator inter-
dependencies. Apart from the domain itself, a second influence on performance is
the type of queries which are posed of that domain.

For example, quantifiers in the goal statement tend to increase solution times. As a
crude generalisation, our experience is that plans of three steps are synthesised in
subjective real time on a Unix workstation. The seven step plan of figure 2 is re-
turned in 2-3 s, as something of an extreme example (although some planning fail-
ures may take as long to report). In an image processing domain, it has been indi-
cated that plan lengths of 10 steps may be typical, and that reliance on both domain-
dependent search heuristics and pre-existing plan libraries is required [Chien94].

Without resorting to these measures, other options are available for improving per-
formance:

1. The employment of search heuristics which supplement those of Ucpop, but yet
which need not be considered domain-specific, e.g., work on the hardest/ easiest
goals first, avoid considering action sequences which 'undo' each other, use few-
est operators, distinguish between 'primary' and 'incidental' effects. These may
be regarded as metaplanning heuristics. Provided they weight choices rather than
prohibit avenues of search, completeness is retained.

2. It should also be noted that latitude exists for improved planning algorithms; in
particular, the possibility of extending the least commitment approach to incor-
porate typed operators. By reasoning with classes rather than instances of oper-
ators, a planner ought to be able to gain performance in the same way that Ucpop
does by reasoning with classes rather than instances of the arguments of those
operators. Existing work into typed operators has not had direct performance
concerns [Anderson88, Kramer94]. It may be shown that typed operators de-
pend upon an object taxonomy [Tenenberg91], also a research frontier for plan-
ners, which incidentally reinforces the comments about the desirability of data
models which were made in the context of user interface construction.

The usual assumption made in planning is that the shortest plan (found by breadth
or best first search) is of most interest. However, if one postulates that the user may
wish to inspect a range of alternative plans, possibly with some associated explana-
tion, then both performance and completeness considerations become even more
crucial. Considerations of interactivity result in the further design stimulus that there
could be advantages in analysing the goal before it is submitted to the planner; in
particular, with a view towards estimating solution time. This requires that some
comparatively naive heuristics are employed; otherwise, the actual planning process
provides the definitive estimate! For example, an analyser may readily ascertain how
many different actions will be required for plan solution, and may then investigate
in a preliminary fashion the degree of independence of those actions. It is also pos-
sible to envisage a dialogue in which an interactive user is invited to assent to mod-
ification of the goal statement, e.g., by the binding of existential quantifiers, or by
the deletion of certain predicates.

 Declarative Interaction through Interactive Planners 277

2.1.2 Application Interface

One standard assumption of many research planners is that exogenous events do
not cause the state of the environment to change, i.e. the world is assumed to be
closed. In the case of a single-user application, it is also reasonable to assume that
the operating system prevents exogenous users from changing the state of the file
system, the graphics display, etc. On the other hand, the execution of any plan needs
to be followed by a process in which the planner updates its notion of the current
application state, as it is unsafe simply to rely on inference for this information.

Therefore, the application must provide commands which return state information,
in addition to commands which effect state changes. The planner may then reason
about how it can obtain state information, alongside reasoning about how it can
achieve target goal states. This requires that planning and execution are interleaved.

In the GIS domain, the implementation of these principles has proved to be prob-
lematic, as the application supplies more facilities for altering its state than it supplies
for verifying its state. Regarding the planner as a software robot, it could be said that
any artificial entity which interacts with the application is hampered by an imbalance
between effectors and sensors, reflecting once again a legacy of imperative applica-
tions. One solution is to supplement the application with more state-interrogation
routines, but at the cost of some extensive low-level programming. It would be ideal
if the application could be reprogrammed to signal the planning system after every
state change, and this strategy has in fact been adopted for a Unix domain
[Etzioni94b].

Without indulging in such modifications, one less than satisfactory approach is to
restrict user goals to those which may subsequently be verified by the planner. The
discussion so far has assumed that the planner constitutes an intelligent front-end to
an imperative application, and thus the perennial UIMS issue arises of how aware
the application should be of its user interface. Alternatively, if developing an object-
oriented application, then the planner might function as an executable schema.

A further refinement is to address the problems which may occur if the application
changes state between the time of planning and the time of execution. In that case,
error recovery and replanning are required, generating advanced robotics issues such
as how the planning system might become aware of execution errors, and whether
it should replan partially or totally.

2.1.3 Software Development Effort

Planners are knowledge-based systems, and so knowledge acquisition is a practical
issue which should not be neglected. In contrast to rule-based expert systems con-
struction, however, there are a number of advantages. The latter generally require
the encoding of personal experience, which is elusive almost by definition, whereas
planners involve the more rationalist enterprise of constructing accurate models of
the 'physics' of some domain. The level of abstraction of those models is driven by
an analysis of prospective goals. Some application knowledge may be expected to be

278 Computer-Aided Design of User Interfaces

found in user manuals and documentation, and thus planner development may in-
volve explicating the implicit.

Specialised planner development environments are rare. In the case of Ucpop, code
may be written using a Lisp-aware text editor and checked for syntactic and basic
semantic conformity. A graphical debugger allows the developer to trace reasons for
anomalous or failed plans at run-time. Greater scope certainly exists in the area of
static analysis of the knowledge-base, for example, by inferring action categories
[Anderson88], or by depicting networks of action dependencies [Murata91].

3 Planning and HCI specification

Planning essentially requires that a knowledge-base containing descriptions of oper-
ator (or action) semantics is wedded to a search engine in order to produce problem-
solving behaviour. In HCI, action descriptions or representations are also of interest,
given the general concern with specifying the dynamics within domains such as
UIMS, CSCW and TA. Discussions of HCI specification are typically not wide-rang-
ing, and it is occasionally possible to detect the slightly myopic view that each of
these domains has unique representation problems, and thus requires a unique for-
malism. This is not to deny that research has discovered some useful, specific ab-
stractions (one example being the notion of roles within CSCW), but that the differ-
ences between these fields may not be as deep as is sometimes implied.

A second observation which needs to be made at this point is that there is not un-
qualified enthusiasm for dynamics specification. One long-standing controversy
within the UIMS field has been whether the employment of explicit dialogue control
models leads to a rigid form of interaction, e.g., [Took90]. Frustration about the lack
of user acceptance for systems based upon group work-flow models has existed
within the CSCW field almost from its inception, e.g., [Fitzpatrick94]. TA has been
suggested to be something of a HCI panacea but, more recently, reservations have
arisen about the sophistication of systems derived from temporally-ordered task net-
works, e.g., [Copas94]. Whilst these problems have their individual features, a com-
mon theme also emerges: that specification tends to lead to inflexible systems.

Responses to this problem range from the irrational (that specification should be
abandoned in the hope that the implementors of the system will make satisfactory
design decisions), to the naive (that problems of inflexibility will be solved by more
rigorous analysis), to capitulation (that systems should simply possess modeless dy-
namics, even if analysis does suggest dependencies between actions). A more satis-
factory response is that specifications should express constraints rather than hard-
coded action sequences, although it could not be said that there is general apprecia-
tion of the implications of this view within the HCI field.

One implication is that specifications are required to be more declarative, i.e. these
should state relations which must be preserved.

A second implication is that some constraint solver should be available for generat-
ing the dynamics at run-time, as opposed to the strategy of enumerating most of the

 Declarative Interaction through Interactive Planners 279

dynamics at compile-time. The representation employed is obviously a large factor
in the success of any constraint solver, and so it is preferable not to consider speci-
fication in isolation.

In the UIMS dialogue modelling field, it is commonly accepted that event models
are more powerful than context-free grammars and state transition networks
[Green86], and this is reflected in the widespread adoption of specifications based
upon process algebras. These support run-time constraint satisfaction in the minimal
sense that, if one or more actions are specified as alternatives within some sequence,
then any dialogue generator would be required to make a choice on some basis.

More sophisticated reasoning, however, would seem to require domain axioms re-
ferring to system state. Intuitively, the concept of constraint satisfaction may be seen
to be related to the concept of context-sensitive dialogues, a feature potentially sup-
ported by rule-based models. It has been shown that a simple rule-based formalism
employing propositions (rather than predicates) subsumes the expressiveness of
event models [Olsen90]. Rule-based systems, however, have been criticised within
AI for various reasons, including their lack of structure, and also because they en-
courage the encoding of a comparatively shallow association between situations and
conclusions. Model-based reasoning is seen as a progression, in which deeper, phys-
ical knowledge is employed.

Planners epitomise the model-based reasoning approach because of the causal rela-
tionship which is captured between preconditions and effects. This paper also
demonstrates that planners epitomise the constraint satisfaction approach to gener-
ating system dynamics, as plans are constructed at run-time as a result of symbolic
problem-solving. The distinction between planners and some forms of rule-based
systems, however, is not as clear as these observations might imply. The operator
descriptions contained within planner knowledge bases may be reinterpreted as rules
of the general form "if preconditions and action is chosen, then effects". Model-
based knowledge may therefore be regarded as a representation discipline which is
imposed upon the rule-based tradition. Similarly, model-based reasoning may be re-
garded as a development of the reasoning supplied by production system interpret-
ers. In other words, planners may be regarded as specialised inference engines, which
accounts for the occasional attribution that regressive planners, for example, employ
backward chaining.

Causal action knowledge is also a feature of one influential UIMS, namely UIDE
[Sukaviriya93]; however, this employs a different form of inferencing than planners.
Such model-based UIMS reason in a projective fashion, i.e. given a sequence of one
or more actions, the system computes the next state of the application (in contrast
to planners, which find partially-ordered paths between states). Projection algo-
rithms are computationally unremarkable in comparison to planning, as these appear
to be deterministic and do not involve backtracking. (It is unclear whether parallel
actions are supported, which potentially might require the system to resolve con-
flicts).

280 Computer-Aided Design of User Interfaces

UIDE has been promoted as an automatic dialogue generator, but also subscribes
broadly to constraint satisfaction principles; one qualification being that the simula-
tion performed by the constraint solver is probably too routine to be deemed intel-
ligent. Projection does have the advantage of supporting the provision of advice
about the consequences of executing nominated command sequences, and it may be
anticipated that projection and planning tend to be reciprocal cognitive activities of
the user (as illustrated respectively by two prototypical questions: "what if... ?" and
"how can I... ?"). Thus, an ideal UIMS would accommodate both forms of reasoning.

Contemporary planners may be further distinguished from UIMS by their expres-
siveness, with the incorporation of negation, existential and universal quantification,
and conditional effects frequently being considered necessary for modelling anything
other than toy domains. As indicated previously, one major deficiency of planners is
their general disregard of data models, although this paper demonstrates that a hy-
brid technique is straightforward. Contemporary UIMS take the additional step of
employing object-oriented data models, with inheritance naturally increasing the ex-
pressiveness of structural aspects of the domain.

Causal knowledge is also an implicit feature of some formalisms which claim no
direct heritage in knowledge-based systems. In general, techniques which model the
semantics of state transitions, such as high-level PNs, fit into this category. An early
comparative review of UIMS formalisms which includes PNs is provided by [Cock-
ton87]. Discussion about PNs is complicated by the facts that, firstly, the technique
is highly fluid and thus provides great opportunity for individualistic extensions and,
secondly, extant applications of PNs within HCI have tended not to exploit their
full power. Because of PN diversity, it may not be particularly meaningful to regard
these as a formalism in their own right, but instead as a transition network which is
augmented with both input and output information for each transition. (An example
of a particular form of PN is shown in figure 8, with more discussion to follow
shortly). Some HCI examples of PNs employ deterministic nets (i.e., nets containing
no choice points), in which case the expressiveness degenerates to something ap-
proaching a finite state machine. It is also customary for authors to emphasise that
PNs explicate parallelism, which provokes the issue of whether the nets are intended
to represent transition possibilities or, instead, actual sequences of transitions. In
the latter case, the net effectively degenerates to a graphical process description, alt-
hough examples of nets containing explicit parallelism directives are in fact quite
rare.

In order to position PNs within the context of this paper, it may be observed that
most HCI examples to date, e.g., [Palanque95], employ a form in which actions are
effectively associated with both preconditions and effects, expressed as single states.
If these states are subjected to a finer grain of analysis and represented as a conjunc-
tion of predicates, then a predicate/transition net is obtained, as depicted schemati-
cally in figure 8.

 Declarative Interaction through Interactive Planners 281

T1

T2

T3

P1

P2

P3

P0

T4

 KEY

 predicate action

 conjunctive
 precondition

 disjunctive
 precondition

 conjunctive
 effect

Figure 8. Schematic diagram of a predicate/transition net

The representation of figure 8 is akin to that employed by either planners or existing
model-based UIMS, with the main difference being that the unit of representation
is not the individual action but instead a network of actions related by their inter-
dependencies. PNs may thus be regarded as the visible output of a dependency anal-
ysis of some action knowledge-base. This observation provokes the issue of why
modellers should be burdened with performing the analysis manually, as is current
practice.

Regressive planners, for example, continually search for actions whose effects will
satisfy the preconditions of other actions. [Murata91] presents an algorithm for a
basic form of PN generation, which effectively involves joining the 'nets' represent-
ing individual actions on the basis of common places.

It may be speculated that an ideal system would provide the modeller with graphical
editing facilities for the knowledge-base, suggesting that PNs could also mediate user
input. Figure 9 summarises this discussion regarding the inter-relationship between
existing model-based UIMS, planners, and PNs.

In order to illustrate the commonalities between planners and PNs, it was originally
intended to represent the GIS domain of this paper in PN form. However, expres-
siveness problems instantly arose when attempting to represent the semantics of the
commands of figure 2.

282 Computer-Aided Design of User Interfaces

Knowledge base

Operators
 .preconditions
 .effects

Model-based
 UIMS

Planner
 .regressive
 .progressive

Predicate/
transition
 net

+ path-finding algorithm

+ projection algorithm

+ dependency analysis

Figure 9. The inter-relationship between existing model-based UIMS,
planners, and Petri nets

First, there is the problem of conditional effects (for example, the effects of the
'd.rast' command of figure 5 are different depending upon whether any other maps
are already on display). One way of proceeding is to model each condition as a pre-
condition of a set of related commands. The Ucpop planning algorithm effectively
performs such a command cloning, but that is no justification for engaging in such
inelegance at the representation level. In addition, there are problems of both nega-
tion and universal quantifiers (for example, one of the effects of the 'd.rast' com-
mand of figure 5 is that all previous contents of the window are now not displayed).
It has been proposed that negation might be accommodated within PNs by the use
of so-called inhibitor arcs [Anglano94], but we are unaware of techniques for repre-
senting universal quantification.

These expressiveness problems may readily be solved by a small number of nota-
tional extensions. It would be preferable if these extensions could be introduced in
an ontologically unambiguous fashion, which is arguably not currently the case with
the language of 'places', 'tokens', etc.. It may also be preferable if any extensions that
were introduced were tempered by considerations of executability, as is customary
with planning. The commonly-held advantages of specifying independently of im-
plementation are recognised; however, a more integrated approach can have the ad-
vantage of providing guidance for a specification process which is under refinement.

For example, PN modellers are at liberty to graft procedural programming con-
structs and other extra-logical features onto their nets. These extensions increase the
versatility of the technique, but potentially at a cost of reduced conceptual coher-
ence; an issue which has received no attention in the HCI literature to date. As a
second example, PNs theoretically permit disjunctive (i.e., nondeterministic) effects;
a controversial issue within planning. There is general consensus that real-world
planners ought to be able to function with incomplete information about the envi-
ronment; however, there is less consensus about the utility of functioning with an
incomplete model of one's capabilities.

Regarding the executability of PNs, 'reachability analysis' is recognised as important,
and broadly corresponds to the planning task of finding a sequence of operators
which will transform the current state to some target state. At its most simplistic,

 Declarative Interaction through Interactive Planners 283

reachability involves using existing planning techniques, e.g., [Zhang90]. Progressive
planning has typically been employed and, as indicated previously, this approach is
generally not considered to scale-up well. Isolated instances of regressive planning
(known as 'backward reachability' in PN parlance) have been reported [Murata91,
Anglano94]. One unique contribution of PN research is the use of matrix equations
to generate reachability solutions; a potentially exciting feature given the perfor-
mance problems which plague heuristic search. Unfortunately, the former technique
has a narrow range of application [Murata89], apparently being restricted to deter-
ministic nets.

The discussion so far has had a UIMS dialogue flavour although, as indicated previ-
ously, principles of dynamics modelling are of more general relevance. The TA field
exhibits less formal diversity, partly because of an entrenched view that TA should
involve task decomposition and sequence description, e.g., [Hartson90]. This ap-
proach has the unfortunate effect of resulting in a comparatively static task network,
which has implications for the sophistication of any user-computer dialogues, ad-
vice-giving systems, etc., which might be derived from that network.

This restricted view of what constitutes 'task analysis' also tends to neglect that,
firstly, TA could involve knowledge acquisition and, secondly, that high-level cogni-
tive simulations (i.e., those unconcerned with the micro-architecture of cognition)
typically involve some task representation which is necessarily executable. If a
broader focus is adopted, then many expert systems may also justifiably be regarded
as executable TA, typically employing a rule-based model.

Isolated examples of more constraint-oriented approaches to TA exist. One of the
original examples of a cognitive simulator, GPS [Newell72], also happens to be one
of the original examples of a planner, with a more contemporary incarnation in
[Blandford93]. ETKS [Borkoles92] employs a formalism based upon actions, pre-
conditions and effects, but neglects task-plan generation in favour of compile-time
specification. [Palanque95] employs what is effectively a predicate/transition net to-
wards TA (although it is unclear whether tasks or devices are actually being mod-
elled). In the last two examples, an object-oriented data model is also employed in
order to represent structural aspects of the user's conceptual world.

One research issue associated with using formalisms based upon action semantics
within TA is the readiness with which higher-level, conceptual actions may be iden-
tified. As possible evidence of difficulty, some models which are said to derive from
either a cognitive simulation or task analytic perspective in practice are barely distin-
guishable from lower-level application models, e.g., [Blandford93, Palanque95]. On
the occasions when this anomaly is acknowledged, the usual justification is that ex-
perienced users are expected to possess faithful mental models of cause-and-effect
within the application or device with which they are interacting. This lack of dis-
crimination between user and application models is undesirable in those cases where
TA is being used to enhance some application. Referring back to the example goal
which has been used throughout this paper, GIS users typically do not wish to dis-
play maps, etc., for idle reasons. Instead, they may have higher-level goals, such as

284 Computer-Aided Design of User Interfaces

planning routes, or deciding upon regional zoning policies. The existing planner can-
not support those goals directly because the 'awareness' of the application is limited
to files, maps, legends, etc. If it is wished to provide support for higher-level goals
like route planning, then the application needs to be augmented so that it, firstly,
contains higher-level data types such as routes and, secondly, provides higher-level
commands (or methods, in an object-oriented application) such as 'compare routes'
which operate on those data types. This approach requires that the user's conceptual
world may be modelled independently of the application's world.

Conclusion

This paper has demonstrated that contemporary planners are sufficiently expressive
that it is feasible to build intelligent interfaces which support some significant user
tasks within a GIS domain. A broad view of these developments suggests that more
is involved than just the provision of intelligence: paradigms of user interaction may
be enabled to evolve from an imperative towards a more declarative style.

The advent of interactive planners raises design issues of goal description tech-
niques, and some alternatives have been analysed. It was shown that the user inter-
face to planners cannot be constructed in a methodical fashion without access to an
explicit data model of the domain; something lacking in existing planners. The per-
formance of contemporary planners has been found to be encouraging for these to
mediate the user-application interaction in a UIMS fashion, although further re-
search is required into both performance enhancement and interactive facilities.

The advent of interactive planners raises concerns about an imbalance in conven-
tional application command sets; between commands for effecting state changes,
and those for verifying current state. Constraint satisfaction techniques have been
proposed as a general approach for solving the problem of inflexible system dynam-
ics, and planners have been shown to support that approach. Planning representa-
tions have been analysed in relation to HCI specification practices, with the conclu-
sion that many model-based formalisms could usefully exploit either the expressive-
ness of planners, or the dynamic run-time control which planning algorithms pro-
vide.

Acknowledgements

The authors wish to thank the anonymous reviewers of this paper for their construc-
tive comments.

Implementation Techniques for Petri Net
Based Specifications of Human-Computer

Dialogues

Rémi Bastide and Philippe Palanque

Abstract

Modern window-based user interfaces are actually a special kind of reactive system,
and Petri nets may be fruitfully used to design such user-computer dialogues. This
paper describes two techniques allowing to produce an executable system from a
Petri net based specification of dialogue, namely interpretation and compilation. We
first describe the compiled solution, where the Petri net structure is translated into
conventional algorithms and data structures that can be implemented into any con-
ventional event-driven UIMS. We then detail the object-oriented software architec-
ture of an environment based on the interpreted approach, where the net structure
is preserved at run-time, and present an original algorithm for interpreting high-level
Petri nets in an event-driven environment.

Keywords

User interface design, computer tools for nets, high-level Petri nets.

Introduction

State of the art user interfaces are developed nowadays in graphical, window-based
and mouse-driven environments. Once a very tedious and error-prone task, the de-
velopment of such user interfaces is now greatly aided by interactive interface con-
struction tools. Although the software marketplace abounds in such commercial
products, the aim of such UIMS is usually somewhat limited : most available prod-
ucts only deal with the external appearance of the interface (its presentation).

Usually, the software designer is able to choose the interaction components from a
large palette (buttons, menus, checkboxes, etc. which we will from now on call in-
teractors), to partition the user interface into several windows, to define the layout
of the interactors in the windows and to set various cosmetic properties.

However, currently available tools usually provide no help in the design of the dy-
namic behaviour of the interface. That behaviour consists in specifying the various

286 Computer-Aided Design of User Interfaces

reactions of the system to user-triggered events, in stating in some way the sequence
of user commands that the application is able to accept, and in designing the visual
response performed by the application in answer to user actions. This kind of spec-
ifications is actually made rather difficult by the event-driven nature of those event-
driven dialogues. In current tools, this specification is postponed until the actual
implementation of the system, since the dynamic behaviour is only defined by asso-
ciating event-handling procedures, written in some algorithmic programming lan-
guage such as C, to the various events that the user is able to trigger.

Our research team has been advocating for the past few years the use of Petri nets
for the design of the dynamics of event-driven interfaces. We have proposed such
an approach at the specification and design level [Palanque94b, Palanque93c], have
investigated the use of Petri net theory to provide formal correctness proofs on the
behaviour of interactive systems [Palanque95], and have also applied Petri net anal-
ysis techniques for providing contextual help systems [Palanque93c].

The executable nature of Petri nets make them a good candidate for an actual devel-
opment language for that kind of system. The present paper describes our current
work in providing automatic generation of executable systems from our interface
specification approach. We first describe the compiled solution, where the Petri net
structure is translated into conventional algorithms and data structures that can be
implemented into any conventional event-driven UIMS. We then detail the object-
oriented software architecture of an environment based on the interpreted approach,
where the net structure is preserved at run-time, and present an original algorithm
for interpreting high-level Petri nets in an event-driven environment.

1 Event-Driven Programming

The vast majority of interactive applications are nowadays developed with the aid of
so-called UIMS tools. Despite the great diversity of graphical systems, all of those
tools rely on a common programming paradigm, called event-driven programming.

In that kind of user interface, any command may be triggered through the use of
some graphical interactor (icon, button, menu), accessible to the user by direct ma-
nipulation. This type of interaction is characterized both by a great freedom of action
and an good level of guidance for the user (any forbidden action is presented as a
greyed out or otherwise inactivated interactor).

Such interactive applications may be ranked among reactive systems [Pnueli86] :
They do not act as transformational black boxes providing a result according to a
given input, but maintain an ongoing interaction with their environment (in that
case, the user). W. Reisig [Reisig92] states that most reactive systems should be better
termed as « interactive systems ». The reverse is also true : modern interactive soft-
ware do function like reactive systems, and thus deserve the same methodological
treatment.

However, interactive applications differ from real-time, industrial reactive systems
by two important points :

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 287

 Interactive applications are most often programmed in a non-preemptive way,
where a given event-handler, while activated, retains control over the application
without being interrupted. This gives rise to cooperative multitasking environ-
ments, where several dialogues may proceed at once, provided that each event
handler relinquishes control to the event manager, which may then dispatch a
pending event. Interactive applications are in that respect easier to program than
« hard » real-time systems, since the programmer does not have to deal with in-
terrupts, critical sections, semaphores and the like. Each event-handler may be
considered like a critical section in itself.

 Ergonomic rules state that, in such applications, the inner state of the system
must always be perceptible to the user, and that each user action must always
provide a visible feedback. In that respect, event-driven user interfaces bring a
new and difficult task to their designers : they must ensure that the external
presentation always faithfully reflect the internal state, by accurately displaying
information, or by activating/deactivating several interactors. Such a process is
known as rendering.

2 Designing Event-driven Interfaces with Petri Nets

Petri nets very naturally come into play for the design of the Dialogue component
of the Seeheim model. They allow for an easy description of complex, concurrent
control structures, they offer several structuring constructs, and, for the high-level
models, they cleanly integrate the data structure aspects by allowing tokens to hold
structured data.

In our approach, we will consider that (as it is often the case with current develop-
ment methods) the presentation component is handled by specialised tools of the
UIMS category. Moreover, we will consider that the non-interactive application ker-
nel is designed in an object-oriented approach. If this is not the case (for example,
if the application kernel is a relational database) the Application interface component
will provide the necessary object-oriented layer.

We have proposed a Petri-net based, object-oriented formalism called Interactive
Cooperative Objects (ICO) dedicated to the design of interactive systems [Palan-
que93c]. The formal definition of the ICO formalism is rather lengthy, since it needs
to cope with concepts borrowed both from the object oriented approach (classifica-
tion, inheritance, polymorphism, dynamic instanciation and use relationship) and
from the Petri nets theory. Therefore the presentation in this paper is informal and
only limited to the Petri net related aspects, but the interested reader may refer to
[Palanque93a] for more details.

ICOs use a high-level dialect of Petri nets, where tokens are objects in the sense of
object-oriented languages. In this paper, we will use the C++ notation for the de-
scription of classes, since the current implementation is in C++, and that C++ syn-
tax is used for the annotations of the nets.

288 Computer-Aided Design of User Interfaces

The places in the nets are typed, stating the type of tokens they may receive. Any
C++ type (built-in, class type or pointer) may be used, and the C++ type system
may be used to provide polymorphism for the tokens. The arcs hold variables that
allow to state the flow of objects in the net. The variables on the arcs act as formal
parameters for the adjacent transition. The type of those variables is deduced from
the type of the places they are connected to. The transitions feature an action part,
which may create or delete objects or call methods on the objects denoted by the
arc variables. Transitions also feature a precondition, a boolean expression of the
input variables acting as a guard.

Such a Petri net, called the Object Control Structure (ObCS), is associated with each
window in the interactive application.

The ObCS plays the role of the Dialogue component in the Seeheim model. The
Application interface and Application kernel are modelled by the classes of the tokens
flowing in the net. The Presentation component is made of a set of interactors (widg-
ets) that may display and edit data (for example text entry fields or radio buttons),
or trigger events of interest to the application (for example, menu items or buttons).

The communication between the Dialogue component and the Application kernel is
thus described both by the flow of tokens in the net and by the calling of tokens
methods in the transitions’ actions.

The communication between the Dialogue component and the Presentation compo-
nent is more complex to describe, since several aspects are to be taken into consid-
eration :

 The Presentation component influences the dialogue through the occurrence of
events. This occurrence is modelled in the ObCS by special places called event
places. The Presentation component is able to deposit tokens in those event places
after the occurrence of an event. A transition in the ObCS net may have at most
one input event place. A transition with an input event place is called an event
transition. The very notion of interface place is made necessary by the fact that a
given incoming event may trigger different actions in the system, according to
the system’s inner state. This is modelled by two or more event transitions in the
ObCS sharing a common event place. Those transitions are therefore in struc-
tural conflict, and this indeterminism has to be relieved by the structure of the
ObCS.

 Conversely, the state of the Dialogue component (i.e., the marking of the ObCS
net) influences the Presentation component : according to this state, several events
may be disabled, and their associated interactor greyed out. This is described by
associating event transitions to one or several interactors in the presentation :
when a transition is not fireable, all of its associated interactors are greyed out or
disabled.

 Lastly, the state of the ObCS net must be displayed by the presentation. This is
done by associating a rendering action to each place of the ObCS. Such actions

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 289

may call methods of the tokens held in the place in order to display whatever
information is appropriate.

The example chosen to illustrate the use of the formalism is a fairly common one:
an editor for information about customers stored in a relational database table. This
editor allows adding new customers into the database, deleting customers, selecting
customers from those already stored and changing their values. Of course, our goal
is to provide a fully user-driven dialogue, as opposed to a menu-driven one.

Figure 11. Presentation of the customer edition window

The overall look of the interface is shown in figure 11. Three different areas can be
distinguished in that window:

1. The editing area, in which the attributes of a selected customer may be edited
through the use of standard interface components (radio buttons, simple-line en-
try field).

2. A command zone in which database operations (creation, deletion, ...) may be
launched by clicking on command push-buttons.

3. A scrollable list (list box) shows the customers in the table. Items in this list may
be selected by clicking on them with the mouse.

The actions available to the user change through time and depend on the state of
the dialogue. Those dialogue rules are expressed here informally. One of the goals
of the modelling is to make formal and non ambiguous such natural language infor-
mal requirements:

 It is forbidden to select a customer from the table when another one is being
edited.

 It is forbidden to quit the application while the user is editing a customer. In any
other case it must be possible to quit.

 It is forbidden to delete a customer whose value has been modified by the user.

290 Computer-Aided Design of User Interfaces

 After a modification of the current customer, only the actions Add, Replace and
Reset are available.

 The user must be able to act on the items of the editing area at any time.

The application kernel is modelled by a single class : class Customer. The declarations
for that class (figure 12) feature a constructor, used to generate new instances. The
code for this constructor should query the various interactors in the edit zone to
gather the values for the new Customer’s attributes. This code is not shown here for
it is highly dependent on the graphical system providing the user interface.

class Customer {
public:
 Customer(); // Constructor for the class
 ~Customer(); // Destructor for the class
 void Render() const;// Display attributes in the window
protected: // Data structure of the object
 String ID;
 String Name;
 enum { Card, Check, Cash } Payment;
};

Figure 12. Excerpt from the C++ class Customer

The constructor should also take care of inserting the new instance in some kind of
persistent storage, for example a database table. Conversely the destructor, called on
object deletion, should take care of removing the instance from the persistent stor-
age. Lastly, the class features a method called Render, whose purpose is to display
the values of the instance’s attributes in the window. The ObCS for the dialogue is
shown in figure 3. The event places are greyed out, and all of the transitions are
event transitions. The interactor associated to each transition is apparent from the
transition’s label (e.g., the push-button Add is associated to the transition labelled
Add) except for a few cases :

 The transition labelled Select is associated with the selection of a new element in
the list box. This action is considered to deposit a pointer to the selected cus-
tomer in the transition’s input event place.

 The three transitions labelled Edit are associated with any of the interactors in
the editing area. Any modification in those interactors will deposit a token in the
input event place of those transitions.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 291

Default
List

Selected

Edited

Select

Edit

Reset EditReplaceAdd
o = new Customer;

Delete Delete

Edit

delete o;

T1

T2

T3

T4

T5

T6

T7

T10

T11

T8
QuitT9

Add
<x>

<o>

<o>

<o>
<o>

<o>

<x>

<o>

<d> <o>
<o> <o>

<o>

<x>

<x>

<o>

<o>

<d> <o>
<o>

delete o;

o = new Customer;

delete o;

o = new Customer;

Figure 13. ObCS of the example dialogue

The places List, Selected and Edited are of type <Customer *>, i.e., they may hold
pointers to instances of the class Customer. Place Default holds simple (untyped) to-
kens. Only the place Selected has a rendering action : it only calls the Render method
on the Customer objects that enter that place.

From the initial marking pictured in figure 13, only the two events Edit and Add
(or transitions T1 and T2) may occur.

The occurrence of the Add event creates a new Customer object from the values
held by the interactors of the edition area. The newly created object is set in place
Selected.

From now on, the table holds one customer. As the place Selected is the only one
holding a token, only the Edit and Delete events may occur. The occurrence of the
Delete event puts the net back in its initial state. The inhibitor arc between the place
List and the transition T3 means that this transition may only occur if the place is
empty, i.e. if the customer to be deleted is the last in the list. The occurrence of the
Edit event transfers the token from place Selected into the place Edited.

While the place Edited holds a token, several services may occur:

 Modify the values of the attributes in the editing area by the occurrence of the
event Edit.

292 Computer-Aided Design of User Interfaces

 Replace the original by the new values through the event Replace.
 Cancel all changes by the occurrence of the service Reset (the original values of

the Customer token are redisplayed, through the rendering function of place Se-
lected).

 Add the edited customer to the table; the added customer becomes selected,
while the original one becomes unselected.

If this edit / add cycle is performed a number of times, we might reach the state
where the place Edited is empty, the place Selected holds one token - a customer whose
identifier value is “CS_001” -, and the place List contains at least tokens correspond-
ing to the customers CS_001, CS_002, and CS_003 (figure 11). This picture shows
three inactivated push-buttons, which correspond to the currently forbidden user
operations on the database. The active or inactive state of the push-buttons is fully
determined by the possible occurrence of the transitions they relate to in the ObCS.
For example, the Add button is not activated, since place Edited holds no token.

3 The Compiled Solution

The process is divided in two main stages: The first one aims at transforming the
ObCS into several intermediate representations, while the second aims at producing
the code of the application.

The first stage of the automatic code generation process is the transformation of the
ObCS into an augmented transition network. The second stage processes the state-
transition matrix, which is an equivalent description of the ATN. This matrix is cor-
related with the activation function, which relates the widgets to the actions to be
performed. From these two components, the generation of the event-handlers for
the widgets is quite simple, and essentially follows the process described in
[Green86].

3.1 Transformation of the ObCS into an ATN

The techniques to calculate an ATN from a Petri net based description have been
extensively studied [Wood70, Peterson81].

3.1.1 Calculation of the Marking Tree

The marking tree of a Petri net provided with an initial marking explicitly details
the set of reachable states from this initial marking, as well as the sequences of tran-
sitions needed to reach those states. Each node in this tree represents a reachable
marking of the net, and each arc is labelled with the name of the transition which
causes the corresponding change to the marking. In many cases, the set of reachable
markings is infinite, and the marking tree is thus also infinite. This infinite tree may
be reduced to a finite structure called the covering tree of the net.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 293

3.1.2 Calculation of the Marking Graph

The marking graph of a Petri net is a state transition diagram whose behaviour is
strictly equivalent to that of the marked Petri net. The marking graph is easily de-
duced from the marking tree. The nodes of the marking tree which are associated to
an identical marking are collapsed into a single node. Each node of the marking
graph corresponds to a state of the dialogue. The marking graph is usually used to
prove initial marking dependent properties of the net.

3.1.3 Calculation of the ATN

The marking graph automatically produced from the ObCS of an ICO cannot be
represented by a finite state automaton, but it can be by an Augmented Transition
Network (ATN) [Wood70].

In the graphic representation of an ATN, states are depicted by ellipses (initial state
being thick lined) and transitions by arcs. The arc of a transition is labelled by: the
service / the assignments, if any/ the preconditions, if any, as shown in figure 4.

Registers

state 1

state 2

States correspond to the following
markings of places
(default, selected, edited, list):
state 1 : (1, 0, 0, 0)
state 2 : (0, 1, 0,)
state 3 : (0, 0, 1,)
state 4 : (0, 0, 0,)

n : number of tokens in the list place

state 3

state 4

Delete //n=0

Replace

Edit

Add / n++

Add

Select // n>0Delete/n--/ n>0

Reset

Quit

Quit

Edit

Edit

Figure 14. The ATN of the Editor

An ATN is essentially a finite state automaton provided with a set of registers which
may be checked and modified when a changing of state occur. Thus, an ATN whose
set of register is empty is a Finite State Automaton.

This ATN is built from the covering graph of the ObCS. Only the states from which
a transition associated to a service may occur are kept, and there is one register for
each unbounded place of the ObCS (a place for which the number of token has no
upper limit) being an input place of such a transition.

294 Computer-Aided Design of User Interfaces

Figure 14 shows the ATN of the Editor, and thus the command language at the
user’s disposal.

Although the ATN in figure 14 may appear simpler than the original ObCS, we are
convinced that the ObCS is actually simpler to design than the ATN. In effect, for
a complex dialogue, the most intricate parts to manage in the ATN construction are
the definition and the handling of the registers.

These complex tasks may be dispensed of in the construction of the ObCS. Moreo-
ver, the Petri net description allows for an easy description of parallel dialogue and
of synchronisation that are needed in multi-threaded application and are especially
difficult to model in a sequential formalism such as ATN.

3.1.4 Construction of the State-Transition Matrix

An ATN may be described by a matrix, a representation which makes it easier to
process by computer programs. This matrix is constructed in the following way:

 Each transition in the ATN is associated with a line in the matrix.
 Each state in the ATN is associated with a column in the matrix.
 Each cell in the matrix is divided into three components.

The first one represents the conditions imposed on the triggering of the transition.
These conditions may come from preconditions in the original ObCS transition, or
may concern the value of one of the ATN registers.

The second component of a cell represents the action to be performed when the
transition occurs. This action is deduced both on the action in the original ObCS
transition and on the modifications to be applied to the value of the ATN registers.

The third component describes the state reached after the occurrence of the transi-
tion.

3.1.5 Construction of a State-Service Matrix

In the state-transition matrix each line concerns one transition. As it is possible for
a service to be related to several transitions it is possible for the matrix to contain
several lines related to the same service. For example, the service Add is associated
to the transitions T2 and T4 (see figure 13). The state-service matrix is constructed
by merging all the lines related to a same service into one single line.

3.2 Code Generation

The steps we have described so far are independent of any given UIMS. Of course
the details of the final step, which is the actual code generation, depend heavily on
the UIMS at hand and on the Application Programming Interface (API) it supports.

The activation function is used to generate the part of the application code that is
aimed to dispatch the incoming events to the right event handlers.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 295

In some UIMSs (such as the C language interface to the MS-Windows toolkit), this
is done by explicitly generating a complex switch statement, where the first dispatch-
ing is done according to the identifier of the widget which has received the event,
and the second dispatching is done according to the type of event received.

With higher level APIs, this dispatching is often hidden to the programmer, and
implemented with more powerful language constructs.

This may be done for example by associating a widget identifier to a virtual member
function in a class representing the window (such as in the Borland C++ ObjectWin-
dows API), or the dispatching process may be at the very basis of the programming
environment (such as in Microsoft Visual Basic), and thus totally transparent to the
programmer.

In any case, the activation function holds sufficient information to automatically
generate the dispatching code.

From the components that have been produced so far, its possible to generate the
code of the application.

3.2.1 Production of the Procedures Associated to the Services

A call-back procedure is automatically generated for each service. All the procedures
to be generated have the same framework : a procedure is basically a switch structure
according to the set of possible values for the state variable (corresponding to the
columns of the state-service matrix).

Each switch is filled in with the contents of corresponding cell of the state-service
matrix. Each branch of the switch will consist in four parts, the first three of which
are directly extracted from the sub-cells of the corresponding cell in the matrix.

The first one is a pre-condition test, the second part holds the semantic action, and
the third one sets the state reached after the occurrence of the service.

The fourth part of the branch corresponds to the visual feedback of the newly
reached state. This part results in visually showing which user actions are enabled in
the newly reached state. The necessary enabling and disabling actions are calculated
from the state-service matrix and the activation function.

The services for which the cell corresponding to the new state is empty have all their
associated widget disabled.

As an example, the call-back procedure associated to the add service is described in
figure 5 and clearly shows the four parts.

296 Computer-Aided Design of User Interfaces

Call-back procedure ADD;
Switch (CurrentState) { // test of the state variable
 case state1 :
 // no pre-condition to test
 // semantic action
 o.add // add the tuple o to the table
 // state changing
 CurrentSate = State2 // change the current state
 // feedback of the commands available in the new state
 disable(PushButtonAdd)
 disable(PushButtonReset)
 disable(PushButtonReplace)
 enable(PushButtonClose_Box)
 enable(PushButtonDelete)
 enable(PushButtonListBox)
 case state2 :
 // no action
 case state3 :
 o.add // add the tuple o to the table
 CurrentSate = State2 // change the current state
 n++ // increment the number of tuples in the table
 // show the commands available in new state
 disable(PushButtonAdd)
 disable(PushButtonReset)
 disable(PushButtonReplace)
 enable(PushButtonClose_Box)
 enable(PushButtonDelete)
 enable(PushButtonListBox)
}

Figure. 15. Callback procedure automatically generated for the service Add

3.2.2 Set-Up of the Event Handlers

The final step to produce a executable application is to associate an automatically
generated procedure to a couple (widget, user-action). the details of this process de-
pend completely on the API of development environment, and thus are not detailed
here, but the process is usually straightforward. When the dispatching is done by the
system (such as in Visual Basic), a empty procedure has only to be filled in with a
call to the corresponding call-back procedure.

4 The Interpreted Solution

We have constructed a software environment to support the design of user inter-
faces where the dialogues are described by Petri nets in the approach described
above. This tool is integrated with a commercial UIMS which allows to generate the

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 297

presentation part of the application in the Motif environment. The graphical repre-
sentation of Petri nets make them a powerful debugging tool in the domain of user-
interface design : the net may be displayed in a window along with the window which
dialogue is being debugged, and the designer may then spot design flaws more easily
by inspecting the marking of the ObCS net. At present, however, there is no possi-
bility to interactively change and test some parts of the net, since its execution in-
volves some C++ compilation and linking.

The kernel of the tool is a high-level Petri net interpreter developed in the C++
language. The architecture of this interpreter is original, and makes use of the pow-
erful object-oriented features of C++ to achieve a high level of genericity.

A Petri net interpreter maintains a data structure isomorphous to the structure of
the net it is playing : it has data structures for places, for transitions and for the
incidence matrixes Pre and Post. The interpreter does its job by actually moving data
structure representing tokens between data structure representing places.

In our case, the nets to be played differ from one another only by the nature of
tokens that can be moved around (described by C++ classes), and also by the actions
to be performed when firing a transition or when setting a token into a place (de-
scribed by fragments of C++ code). This characteristic is very important for us,
since we wish to be able to provide a user interface to any application written in
C++.

We have therefore developed a generic C++ Petri net interpreter, made up of several
interrelated classes : the generic Place, describing the basic data structure of a place,
which allows it to store tokens ; The generic Transition, containing the code to de-
termine if the transition is fireable and to fire it, etc.

To achieve the interpretation of an actual ObCS, several new C++ classes have to
be generated from the structure of the net and of its component. For example, a
transition with a special action will give rise to a subclass of the generic transition,
with the overloading of one or several methods. The process necessary to generate
a complete interactive application from the ObCS net is illustrated in figure 16.

Actually, no algorithmic code is generated by the translator, since all of that code is
already contained in the generic classes. The code for the derived classes is mainly
devoted to setting up data structures (such as the Pre and Post incidence matrix),
and to insert cleanly the various elements of code given by the designer in the pre-
conditions and actions of the transitions, and in the rendering actions of the places.

Most simple Petri nets interpreters are based on the basic structure given in figure 17.
The most time-consuming step in that algorithm is step 4, and sophisticated data
structure may be used to enhance that step, by avoiding unnecessary recomputations
at each cycle. However, such an interpretation algorithm is not convenient in our
approach, since this algorithm is preemptive. It does not fit with the basic structure
of event-driven applications, for there is no place in this structure for such a « never

298 Computer-Aided Design of User Interfaces

ending » control flow, which would prevent user events to be processed and dis-
patched.

Graphic editor

Translator

C++ Compilation
and link

ASCII representation
of the ObCS

Concrete interpretor :
C++ derived classes

Generic interpretor :
C++ abstract base classes

Executable
interactive application

Non-interactive
application kernel

...

..................................

..................................

...
...
...

...

..................................

..................................

...
...
...

...

..................................

..................................

...
...
...

...

..................................

..................................

...
...
...

Figure 16. Architecture of the environment

Of course, one could think of implementing this algorithm as a separate process or
thread, and of implementing the communication with the event-handlers as some
kind of interrupt service.

We have chosen another approach, which avoids such complex constructs that
might not be available or portable in every operating system. The solution chosen
fits cleanly into the event-driven approach, and only uses event-driven constructs to
achieve the same result.

set up the net structure
set up the initial marking
repeat
 search for t, a transition enabled by the current marking
 if t can be found then
 fire t, modifying the current marking
 end if
until t cannot be found

Figure 17. Basic algorithm of a Petri net interpreter

The basic idea is to associate with a dedicated event type the code necessary to pro-
cess only one cycle of the loop described in figure 17. The program must then ensure
that this event is triggered each time a transition might be fireable in the ObCS net.

The implementation of a Petri net interpreter in a purely event-driven system thus
requires some primitives from the supporting environment :

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 299

 The ability to register new, « application defined » types of events, beyond those
initially supported by the system. We will call this primitive Register Event.

 The ability to trigger the occurrence of a given event under the program’s control.
The event is inserted in the event queue, and later processed by its event-handler
as though it had been triggered by an external action. We will call this primitive
PostEvent.

Those primitives are actually quite common, and are present in one form or another
in any UIMS we have had access to.

The basic algorithms for implementing a Petri net interpreter in an event-driven
fashion is divided in three procedures : an initialization part, to be called in the main
procedure of the program, a event-handler procedure whose role is to execute a
single cycle of the interpretation loop, and a framework of code to be associated
with any user-triggered event.

 set up the net structure
 set up the initial marking of the interaction net
 RegisterEvent(one_more_try)
 associate the event-handler one_step to the event
 one_more_try
 provide the rendering of the initial state
 PostEvent(one_more_try)
 activate the main event loop

Figure 18. Initialization procedure of the event-driven interpreter

The initialization procedure (figure 18) has to set up the various data structures nec-
essary to represent the ObCS net. In the following algorithms, we will distinguish
between what we call the interaction net, (i.e., the complete ObCS including its
event places) and the internal net (The ObCS where all event places and their out-
going arcs are removed).

 search for t, a transition enabled by the marking of the
 interaction net
 if t can be found then
 fire t, modifying the current marking
 provide rendering according to the new marking
 post_event(one_more_try)
 end if

Figure 19. One_step event-handler procedure

The initialization procedure registers a new event type (called one_more_try). This
event is to be triggered when one loop through the interpretation code has to be
performed.

300 Computer-Aided Design of User Interfaces

The interpretation process is started in the initialization procedure by posting the
event one_more_try. The event handler to be called on each occurrence of the
one_more_try event is called one_step. This procedure is given in figure 9.

The procedure tries to find a fireable transition, and, if found, posts a new
one_more_try event to make sure that any other fireable transition will be found when
the event is processed.

parameters : it : Interactor, ev : Event,
 create a new token tok according to ev attributes
 set tok in the event place associated with it
 post_event(one_more_try)

Figure 20. Framework for the event-handler associated to each interactor

The code framework to be associated to each interactor is given in figure 20. When
an event triggered by an interactor occurs, the procedure computes a new token, and
sets its into the event place associated with the interactor. A one_more _try event is
now posted, since this new token may make some other transition fireable in the
ObCS net.

As is apparent from the algorithm presented above (figures 18, 19 and 20), all the
preemptive control structures in the interpreter have been replaced by a purely
event-driven code.

The basic principle is that the one_step event-handler will be called once after the
initialization phase of the program (this call is triggered by the post_event clause in
line 5 of figure 18), and will be called again each time it detects an activated transition
(call triggered by the post_event clause in line 5 of figure 19).

This ensures that any activated transition will fire. In most cases, the net will quickly
reach an « dead » state, where no transitions are activated13. The only thing that may
trigger an evolution is then an external action, via one of the interface’s interactors.

Only the active interactors (i.e., those associated with a user transition fireable in the
internal net) may be triggered, and thus the triggering of an interactor will deposit
one token in the ObCS net, which will allow at least its associated transition to fire
(and maybe some other internal transitions, not associated with any interactor).

Conclusion : Compilation vs. Interpretation

We have presented how Petri nets integrate in the process of designing modern in-
teractive software. Petri nets might be used only for the specification phase, allowing
to state in a concise manner complete and non ambiguous requirements for the con-

13 This may not always be the case, e.g., if the dialog features a « background task », modeled by a
sequence of transitions that remains constantly enabled during the processing.

 Implementation Techniques for Petri Net Based Specifications of Human-Computer Dialogues 301

trol structure of interactive systems. With the help of the two implementation tech-
niques described here, Petri nets can be retained throughout the development pro-
cess, until the development phase.

The two techniques presented above (compilation and interpretation) both aim at
executing an ICO specification of Human-Computer dialogue. This end is however
achieved by very different means.

Obviously, the compiled solution will be much more efficient in terms of execution
speed. The interpreted solution is time consuming, since the task that consists in
checking which transitions are enabled in the ObCS net is computationally intensive.
This drawback must be weighted, however, by the fact that this computation occurs
in the interval of time between user-generated events, which is large with regards to
machine efficiency. The ObCS nets are object-structured, and remain usually very
simple, addressing the usual complaint about Petri nets being unstructured. The in-
terpretation process can thus be made efficient enough to provide response times
compatible with user expectations.

An advantage of the interpreted solutions is that the net structure is preserved at
run-time, thus allowing for debugging facilities (e.g. animating the net representation
during user activity). Moreover, the fact that the net structure is available at run-time
allows for run-time reasoning about user interaction in terms of the dialogue model
itself. We have explored ways to provide contextual help from this representation,
for example [Palanque93b]. With the interpreted solution, the ICO formalism is
amenable to a « model-based UIMS » environment, where the interface model is
preserved until run-time.

A Case-Based Design Support Method Incor-
porated with Designer’s Intention Recognition

Takayuki Yamaoka and Shogo Nishida

Abstract

In creative design processes, the designer may intentionally generate a result which
is satisfactory for his/her intention. Accordingly, if a computer system reveals the
designer303s intention, and then provides the related information, that might make
the design process more efficient. We will propose a framework and an architecture
to support intentional design processes, incorporating a case-based intention recog-
nition method with a case-based method to support the design process. A CBR
method has possibilities to avoid to prepare fixed and detailed knowledge sources,
to output flexible and various information, and to extend knowledge sources step
by step. We will also present a prototypical system (YAAD) for electric facilities
layout design based on the proposed framework.

Keywords

Interactive system, computer-aided design, intention recognition, collaboration,
case-based reasoning, knowledge-based system.

Introduction

One of the reasons why human can communicate efficiently is that they can under-
stand the intentions of each other. In conversations, for instance, one is able to make
a better response by understanding the intention. Conversely, one may say «What is
the intention of the utterance?» in a conversation, when understanding states of both
participants of the conversation may be quite separate. It is a problem in communi-
cation not to grasp the intention of the opponent.

Also in collaboration, the lack of mutual understanding of the participants becomes
an obstacle both of to efficient communication and efficient problem solving.
Therefore, the system303s ability to grasp the intention of users and to use it effec-
tively becomes an important function for effective problem solving in HCI.

Despite the importance of the function to grasp intention, in the design support
field, there has been little research which presents such function to put it in a clear

304 Computer-Aided Design of User Interfaces

range [Tomiyama92]. In this paper, we will discuss a computer support method
which incorporates an intention presumption function for design problems.

What is Intention in Design?

The difficulty of a so-called synthetic problem like a design is that there would be
two or more candidates of solution to satisfy the input problem and they would
cause the explosion of the combination. The basic approach to the synthetic prob-
lem is to solve constraints satisfaction, but it is a rare case that a definite solution
can be derived from constraints given beforehand. However, since one convincing
answer is finally demanded in a design, the designer should give a certain plan to
determine a definite solution. That is, the designer has to make decisions of selection
from possible solution candidates.

In this paper, we call the designer304s regard which influences the decision making
on, «design intention», and call the concrete solution plan selected based on the de-
sign intention, «means». So we can say «the intention is achieved by the means».

For instance, when the designer has selected one from two parts, both which met
the given specification and offer an equal function, by the reason with a beautiful
design, we can say the designer had the intention which s/he wanted to finish the
product up beautifully and had taken a concrete means to use the beautiful parts.
We also say the design task done in this way, «intentional design». Moreover, we call
the structure of the causal relationship between the design intention and the means,
«intention structure».

Notice that the design intention is not always the design goal or the functional end
the final product to perform, but is a kind of mental state of the designer in the
design process. If alternatives to achieve the goal exist, designers could make deci-
sions to choose the preferred means to satisfy the intention.

Intentions of human designers are varied and depend upon the situation especially
in creative design, such as in case of a new product development. Therefore it is
difficult a priori to describe rules concerning the intention. Even if such rules can be
described, flexible processing according to the situation to support creative design
is difficult in fixed rules.

Using Case-Based Reasoning

In this paper, we propose a method for computer interactively to presume the design
intention and a design support method to provide useful information for design
according to the intention presumed, both based on the framework of CBR. CBR
methods generally have the following characteristics:

1. to avoid preparing a priori fixed and detailed rules and knowledge sources;
2. to provide flexible and various information through the modification and adap-

tation processes;
3. to extend knowledge sources step by step.

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 305

Therefore it is possible to avoid to describe rules concerning the design intention,
and the system becomes to have a function to present various information.

We also present an application system of the method to a layout design task. In the
early process of most layout design, that is in the conceptual design phase, the de-
signer305s intention would be heavily concerned with the results of the design.

Thinking about the state of the art and the ability of creativity of computer systems
so far, it is reasonable to entrust creative judgements to human designers. On the
other hand, the computer does not dislike taking pains such as to retrieve necessary
data among huge databases, while it may be annoying work for a human. A basic
form of the design support of which the method proposed in this paper aims is not
design automation by the computer system, but promotion of design activity of hu-
man designers by way of computer retrieval and presentation of useful information.

In section 1, we analyze an intentional design process and propose a framework to
support the intentional design incorporating an intention recognition method using
CBR methodology. In section 2, the method to recognize the design intention using
CBR is described in detail. In section 3, a system architecture and a prototype system
as an implementation of the method are presented. Then, the system is evaluated in
section 4.

In this paper, «design» will be referred to as a creative non-regular design in cases
when the new product is developed, and examples have been taken from the electric
facilities layout.

1 Case-Based Design Support

1.1 Conventional Design Support

Conventional CAD systems at present, such as graphical drawing tools, can only
support lower level operations of the designer or tend to aim at fully automated
systems, but cannot sufficiently support creative aspects of design processes. In the
field of intelligent CAD, the major aim is to support regular design work as a proxy
of the designer by adopting the knowledge engineering approach for each phase of
design.

In this sense, expert systems and simulators, which are related to CAD systems, tend
to aim partially to automate or support the analysis, the calculation, and the evalua-
tion of complex design tasks. Systems mentioned above seem not to contribute to
support flexible decision making in the phase round which the design intention af-
fects directly.

UI research possibly contributes to supplement the part which the CAD systems
mentioned above did not directly treat. The purpose of UI research is to pursue the
ease of the system to use and understand, such as multi-media systems, and to help
human-computer communication lubrication, such as in interactive systems. Media

306 Computer-Aided Design of User Interfaces

technologies currently play the major role to implement an UI system, but the ten-
dency of current media technologies seems to emphasize only graphic display
and/or multi-media presentation. In this sense, the current media technologies seem
not to offer a fundamental technology to grasp the intention of the user in commu-
nication, which is important to support decision making in conceptual design and
collaborate with the human designer.

In this paper, we propose a framework and a method to support the conceptual
phases of design through human-computer interaction, by permitting the human
designer directly to operate design objects in the UI of the system, by presuming the
designer’s intention from the sequence of the designer306s operations and the de-
sign status, and by showing the information related to the intention presumed to the
designer.

1.2 Form of Supporting Intentional Design

If the design intention of the designer becomes clear in the design process, support
accordingly becomes possible. Situations where the designer regards the design task
with the design intention are enumerated as follows:

1. The design intention is clear in the designer, but the concrete means cannot be
taken account of.

2. The designer can present a concrete means partially and intuitively, but cannot
explain the design intention and the direction well.

3. The designer wants to refer to something for the present, although s/he has var-
ious ideas. (The intention is not fully decisive.)

For instance, (1) is a situation which the beginner often encounters. (2) might be a
situation where the skilled designer often do. And (3) is where the designer starts a
new problem s/he has not ever experienced. In most creative design processes, be-
cause the trial and error is repeated, phases shown above often appear one after
another. Support forms by computer systems which correspond to the situations
above are enumerated as follows:

1. To present concrete means which satisfy the design intention the designer
showed.

2. To presume the design intention, then to present the presumed intention and
overall means corresponding to the intention.

3. To present examples of intentions and means in various situations.

Anyhow, to achieve the support of such forms, it is necessary for computer systems
to have knowledge concerning the relation between the intention and the means.
Especially, it is necessary to presume the designer306s intention from the de-
signer306s behavior and the design status.

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 307

1.3 Design Support Method

Kolodner [Kolodner91] has insisted on the effectiveness of support by CBR to the
decision making process in human creative works and artistic judgments. Goel et al.
[Goel91] also pointed out that CBR is the right technique for building design systems
and better suited for aiding designers in conceptual design. Because the authors
grasp the essence of an intentional design as non-regular decision making based on
the preference and sensibility of designer, it is good for supporting the intentional
design to take an approach based on CBR framework. A main role of the computer
in this approach is to accumulate and maintain information and knowledge concern-
ing problem solving, and to present the content according to the situation of the
design and the demand and the intention of the designer.

To achieve to support the intentional design by the CBR approach, the following
functions in addition to the functions of the standard CBR framework, such as case
retrieval, case modification, case memory and so on, are needed:

Reference by the intention: to retrieve and present the case where the design in-
tention is reflected, when the intention is input.

Intention presumption: to presume the intention from conditions which is chang-
ing according to the operation of the designer.

1. Input design
requirements

Has intention?

3. Input intention

2. Case retrieval
for requirements

7. Case modification

4. Retrieval for
intention strucuture

9. Case storage

5. Operation
on objects

Satisfied?

8. Modification for
intention structure

6. Intention
presumption

No Yes

Problem

Candidates

Intention

No

States changed

Intention
structure

Result

Candidates

Yes

Intention
structure

Designer System

Figure 1. Block diagram of intentional design support

Figure 1 depicts the flow of the processing of the case-based design support method
in which the functions mentioned above are used. The input problem includes the
goal, objects, constraints, and so on. Step 3 may be performed if the designer explic-
itly has a particular design intention, otherwise step 5 is performed. Step 6 is achieved
by the intention recognition method (see section 2 for details). In step 8, the designer
can also modify any symbol of mental statement in the intention structure to reflect
his/her design intention. Each step of the system corresponds to a particular phase

308 Computer-Aided Design of User Interfaces

in a typical CBR process: 2 and 4 to the case retrieval, 7 to the modification, 8 to the
adaptation, and 9 to the case storage, respectively.

The design support method described has the following characteristics:

 A flexible design according to the situation becomes possible by permitting the
designer free operations for the editing and the modification.

 Mutual understanding of the design intention and good communication is possi-
ble between the designer and the system by the intention recognition and the
modification.

 There is a possibility that various solution candidates can be synthesized, because
the designer can refer to various cases both similar to the intention of the ongo-
ing design, and to the requirements and specifications of the entire design.

2 Case-Based Intention Recognition

2.1 Using Case-Based Reasoning

The problem of conventional techniques to recognize an intention such as the plan
recognition technique [Allen80, Johnson90] is that it is assumed that complete
knowledge (plan) is given beforehand. It is obviously difficult to describe the inten-
tion and belief strictly and to prepare plans beforehand as standard knowledge
sources. Moreover, even if such knowledge could be described and the inference
could be done well, flexible output according to the situation cannot always be ob-
tained with the conventional rule-based plan recognition. In this paper, we adopt a
CBR method in order to avoid the bottleneck of the knowledge description and
acquisition, and propose the intention presumption method by which flexible output
is possible. The method is good for attacking the conventional problems, mainly
because the CBR method generally has the following characteristics and possibilities:

1. to avoid preparing fixed and detailed rules and knowledge sources beforehand;
2. to provide flexible and various information through the modification and adap-

tation processes;
3. to extend knowledge sources step by step.

2.2 Representation of Intention Structure

We represent an intention structure as a labeled graph. An example of the represen-
tation of the electric facilities layout design is shown in figure 2. It consists of four
types of nodes, vocabulary, object, physical and mental node, and labeled links
between them. An object node consists of a set of attributes, where each attributes
name is a link label and value is a vocabulary. A physical node consists of a set of
objects(the predicate name and arguments), and generally stands for a physical state,
such as «left» or «center». A mental node consists of a set of any nodes, and generally
stands for a mental state, such as «beautiful» or «compact».

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 309

PART

GIS

cylindrical

line

GIS-1 Line-1 GIS-2
rightleft

symmetry

beautiful

Left-1 Right-1

Symmetry-1

Beautiful-1

physical node

object node

vocabulary

PRED

SIZE

mental node

PRED ARGS

ARGS ARGS

PRED

PRED

PART

SUBJ SUBJOBJ OBJ

PART

SIZE

SIZE

SHAPE
SHAPE

large

SHAPE
long Power line

Figure 2. An example of data structure

In this representation, intention in the design is shown mainly by a mental node, and
means is shown by sets of physical nodes such as «right» and «left». Moreover, in-
tention structure is a sub-graph which can be traced from a certain mental node. An
intention structure which has a mental node in the upper rank will be called a «partial
intention structure», such as «symmetry» in figure 2. A certain design case can be
represented by the gathering of some partial intention structures. The example in
figure 2 is arranged by the design intention that is to be «beautiful» in an electric
facilities layout of sub-station.

The main advantage of this representation is to be able to represent both the struc-
ture and functions of product at a time. On other hand, the shortcoming is in the
data preparation. It is hard to classify and set words into the types, and hard to de-
scribe the initial data or copy from real design data, such as drawings. But this short-
coming could apply to a greater or lesser extent of representations for conceptual
design support systems.

2.3 Incremental Partial Synthesis and Interactive Modification of In-
tention

Intention recognition based on CBR will be achieved by recognizing the states which
were done by the operations of the designer as the input and by retrieving the similar
case for the case base of intention structures. However, the intention presumed by
simple application of this method might not show the intention of the designer ad-
equately. The one due to case shortage and the one due to the individual variation
are thought the reason. In this paper, we will propose a more adequate method of
grasping intention by incrementally synthesizing partial structures and by modifying

310 Computer-Aided Design of User Interfaces

an intention structure through the interaction, to confirm the intention to the de-
signer.

Sparse

Beautiful

Symmetry

Case-Base

wide wide left right

Borad-1 Path-1 Terminal-1 Line-1 GIS-1 GIS-2

Figure 3. Synthesis of intention structures

The incremental partial synthesis is a process which gradually catches states which
were changed by the operation of the designer, at any time, to presume a partial
intention by case retrieval, and to synthesize the partial structure retrieved and the
intention structure that the system has already presumed and maintained. Generally,
the goal of the entire design can be achieved by synthesizing the divided sub-goal.
Similarly, it seems that the intention of the entire design is composed of the synthesis
of the intention to a partial object. If it is assumed for the designer to concentrate
on the achievement of a partial intention at a time, it is appropriate to pay attention
only to the means done in a certain phase in the design, then to presume the inten-
tion of the phase, and finally to presume the entire intention by syntheses of the
parts.

The basis of the synthesis is to retrieve an upper intention which includes these
partial structures. Figure 3 is an example of synthesizing partial intention structures.
This example shows that «beautiful» was retrieved and presumed as an upper inten-
tion by the synthesis, a partial intention «symmetry» is presumed in this phase with
a partial intention of «sparse» presumed before. This is achieved by retrieving an
intention structure which contains nodes similar to two partial intentions from the
case which became a retrieval result before or the case base. At this time, the means
of each intention need not be always necessarily similar, because the design of a
concrete means and the design in the conceptual level can be separated to some
degree.

The modification of the intention structure is to permit the designer interactively to
modify the intention structure presumed to the current intention in any phase of the
design. The designer can change the name of an arbitrary mental node. As a result,

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 311

the separation between the intention presumed and the intention which the designer
actually imagines can be corrected.

1. Get input states
from designer

2. Retrieval

3. Synthesis

4. Modification

C. Case base

B. Prior buffer

A. Presumed
structure

set of states

partial
intention
structure

intention
structure

go the next phase

result

input

source cases

U
se

d
in

te
nt

io
n

st
ru

ct
ur

e

Figure 4. Block diagram of intention recognition

The case modified by the designer is stored to the case base and becomes new
knowledge. Moreover, because a lot of various cases will be used through the incre-
mental partial synthesis and a new structure will be produced dynamically crossing
while designing, the separation of mutual understanding due to case shortage will be
decreased. On the other hand, the problem of the individual variation, which seems
to depend mainly upon the difference of the vocabulary used and the difference by
the situation, will be corrected only through the interactive modification function by
the designer at present. However, we guess that there are few obstacles to proceed
the entire design by the intervention of such an interactive processing in an interac-
tive support system.

Figure 4 shows the flow of the intention recognition process explained above. The
solid line in the figure shows the flow of the data to be processed, and the dashed
line shows the flow of intention structures or cases which are the sources for the
retrieval.

2.4 Case Retrieval and Similarity Measurement

In the retrieval of figure 4, several partial intention structures similar to the input are
retrieved from intention structures used before or source cases in order of A, B and
C. In the synthesis, several partial intention structures which mainly consist of men-
tal nodes, are retrieved from the sources in order of B and C, then those are tried to
synthesize with the input structure presumed before (A. in figure 4).

The presumed (intention) structure and the prior buffer are empty at the start of the
design. The prior buffer is a push-down stack which maintains the cases which con-
tain intention structures which the system judged to be similar in processes 2 and 3.

312 Computer-Aided Design of User Interfaces

Using this buffer, the source case which became a retrieved source recently can be
retrieved at first, and efficiency improvement of the retrieval processing can be ex-
pected.

The similarity measurement of the cases is done by a graph matching method and a
distance measurement using a vocabulary database. The vocabulary database is a
database which defines vocabularies used in the system and the distance degree be-
tween them.

S1

D=w1*D1+w2*D2

L1L1 L2L2

T1 T2

T0

S2

S0

D1=d1+d2

IF similar

V1 V2

V0

Vocabulary database

T,S: nodes
L: link name
D: similarity
 between nodes
d: distance between
 vocabularies
w: weight on link

d2 d1

Figure 5. Similarity measurement

The similarity between two arbitrary data structures (graph) can be defined as fol-
lows:

1. The similarity between vocabularies is a distance degree obtained from the vo-
cabulary database.

2. The similarity between data structures other than the vocabulary is a minimum
sum total in the similarity combination between the subordinate nodes.

3. A stable penalty is added to the similarity of the upper node for the remaining
node not combined, when the number of subordinate nodes is different. This
must be done only in the target(input) side.

The image of this similarity measurement processing is shown in figure 5.

The check for the similarity combination in the above graph matching (2.) needs the
exponential amount of the calculation. Then, it runs by the following rules:

1. The combination of the subordinate nodes between physical nodes takes corre-
spondence only by the link name of the argument.

2. The order of processing the combination of the subordinate nodes of mental
nodes follows the temporal reverse order of the order operated by the designer

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 313

for the input side.

3 System

In this section, a system architecture and a prototype system which achieves the
described design support method with the intention recognition function are de-
scribed.

3.1 System architecture

The system architecture is shown in figure 6.

Case-Base

Synthesis

Buffer

Retrieval

Edit

Distance

Interpretation

Scoping

Menu Work Space Network Editor

Statements

Vocabularies

Objects

Input
Interpretation

User Interface

Memory

Inference Kernel

Similarity

OperationDisplayOperationProblem

Data/Knowledge

Input/Output

Process

Figure 6. System Architecture

The UI is a graphical one in which a user can directly manipulate design materials
and edit graph structures which represent the causal structure of the design intention
and the means (figure 7). The input interpretation part interprets operations and
states in the UI and transfers them to the internal data structures (graph), using the
objects and statements KB.

The inference kernel is the main part of CBR, including the retrieval and synthesis
programs and the prior buffer described in section 3. The memory part maintains
cases as intention structures and provides an editing facility to change structures for
users to modify and adapt them to reflect the design intention.

314 Computer-Aided Design of User Interfaces

3.2 YAAD: Layout Design Support Prototype System

Figure 7. Screen Copy of YAAD

We implemented a prototype « Yet Another CAD system�» (YAAD) for electric
facilities layout design using C and Motif on a UNIX workstation. A screen copy of
YAAD is shown in figure 7. This figure is a snapshot of Gas Insulated Sub-station
(GIS) layout design. Designers can do some layout operations on objects and edit
the intention structures in the left hand window (the working area), while a retrieved
layout example and its intention structures are shown in the right hand window (the
case area). Most operations in YAAD can be done only by mouse operations.

To support a more detailed information reference, the following data reference func-
tions among each window were achieved in YAAD:

1. Reference from arbitrary node in the intention structure to the correspondent
object or the set of objects in the working area.

2. Reference from arbitrary object or state in the working area to the correspondent
one in the case area.

3. Reference from arbitrary node of the presumed intention structure to the corre-
spondent state of the retrieved case in the case area.

These reference functions can be achieved by leaving correspondence information
in the matching process of the similarity measurement. Such reference functions
contribute to the ease of the designer314s understanding of the behavior of the sys-
tem.

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 315

3.3 Design Example by YAAD

The electric facilities layout design in the sub-station is generally done considering
particular conditions of the location and the required specifications, such as the
power output degree. To match the requirements from the customer in addition to
these conditions and realize the characteristic of the design, the design group exam-
ined design policy from various aspects. Especially in the equipment layout, the de-
signer often considers an abstract policy «fine sight», «economy», or «maintenance
and extendibility», etc.

Moreover, the designer has used a CAD tool in the actual drawing and referred to
drawings accumulated in the past design. However, to what example the designer
refers and what example existed in the past have not been well supported and have
been retrieved by the experience of the designer so far. In this way, the embodiment
of the examined design policy is rich depending on the experience of the designer.

Figure 8. Retrieving parts

We made YAAD prototype a tool which supported such a layout design. In the
prototype, total 132 vocabularies, 12 parts data and 6 physical statements, all related
to the electric facilities, are registered as the databases. The vocabulary database is a
thesaurus form which is extracted from a Japanese synonym dictionary. Four past
design examples were input as initial cases, and divided into 54 intention structures
in total concerning the GIS layout by the authors referring to actual design docu-
ments.

In the following, an example use of the prototype is explained. Figure 8 indicates a
result of retrieving from the whole input parts. The reversing parts indicate the ref-
erence linked by the similarity measurement process.

316 Computer-Aided Design of User Interfaces

Figure 9. Retrieving results

Figure 9 is a result of retrieving from the scope specified by the designer, after he
did a rough layout in the working area. A similar intention structure case in which
«beautiful» is the intention was found here. In the case area, parts in the intention
structure corresponding to the scope are displayed in reverse.

Moreover, the intention is copied to the presumed intention window (a pop-up win-
dow) and the working intention window. In this way, the designer can refer to past
examples and the intention similar to the condition now.

Figure 10 is a result of retrieving from another scope and presuming the upper in-
tention by synthesizing the intention structures. It is indicated that a partial intention
structure labeled «sparse» is first retrieved (shown in the case intention area), then it
is synthesized with «economy» to the upper intention «order»(shown in the pre-
sumed intention area).

In figure 11, the means of intention «economy» presumed and synthesized in figure
10 is flushed in the case area, then referring to it the designer can modify the layout
in the working area. In addition, the name of the first intention structure «beautiful»
is changed to «COST» and «economy» is added to the upper intention in the work
intention area. In this way, the designer can produce the layout and its intention
structure which satisfies his intention by referring to various information. Also, it
can be memorized as a case, and can be used in the future.

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 317

Figure 10. Alternative retrieving results

Figure 11. Applying "economy" intention

318 Computer-Aided Design of User Interfaces

4 Evaluation

At present, though the information offer function and the intention presumption
function with this system are under evaluation through a prototype trial, the follow-
ing subjective opinions were obtained from several design engineers:

 Satisfactory points:
 The possibility of referring to various ideas for a new problem is effective.
 The idea was able to enhance starting with a certain intention expression pre-

sumed from operations and save the time finding out the related information
in the conventional way.

 It is good to be able to examine the case where the means is different even if
the intention is the same closely and to be able to take a partially different
idea according to situation of the problem.

 The intention structure of a past case explained what I want to do.

 Dissatisfied points:
 It is annoying to specify the scope of objects in a phase frequently. Such a

part should be automated because there is a part where the layout can be done
regularly.

 It is hesitant to modify the intention structure, because the name thought of
at first is influenced by the vocabulary of a past example.

5 Future problems

Though the support function of presuming and using the design intention, which is
the main purpose of this research, has been almost achieved in YAAD, it is necessary
to clear the following problems for feature improvement.

 Vocabulary setting. In general, the output of CBR system is largely controlled
by the similarity measurement. The similarity depends on the distance degree
between vocabularies, and, the change of the degree largely influences the result
of both the layout and the intention presumption processing. On the other hand,
there are individual and situational variations of the expression of intention, so
that it would be a problem to reflect these variations to the result. Thus, a vocab-
ulary edit function by which the designer can easily change the settings to reflect
the individual preference will be necessary in the future. Moreover, it is vital to
add an automatic modification function by an induction learning technique.

 Integration with conventional design support. The main purpose of YAAD
is supporting a creative design in the scene that the preference of the designer is
valued. However, considering the support of the entire design task, including
regular design tasks, it is necessary to unite approaches in which conventional
approaches, such as using design object models, qualitative models of the do-
main, simulations, rule-based automation, and so on, and the case-based ap-
proach are well integrated.

 A Case-Based Design Support Method Incorporated with Designer’s Intention Recognition 319

 Explosion of the retrieval calculation. In CBR systems, the explosion of the
amount of the case retrieval calculation cannot be avoided, especially when the
amount of stored cases and/or the number of input objects become large. So,
developing an efficient method to retrieve cases from the case-base, including
parallel and/or intelligent search algorithms, and an effective mechanism to
maintain the case-base are future goals.

Conclusion

A case-based method to support intentional design incorporating the intention
recognition ability was proposed and a prototype system YAAD based on the
method was described. In creative design tasks, the intention of the designer is
largely reflected in the final result. Therefore, in order to support the creative design
effectively, it is important to grasp the design intention according to the situation.

The proposed case-based method provides the supporting information related to
the design intention by presuming and using the intention situationally and interac-
tively. Moreover, the load of knowledge description concerning the intention is
evaded by incremental case storing which is an original characteristic of CBR. We
explained a design example using YAAD prototype for electric facilities layout, and
verified the effectiveness of some functions through the trial use.

It is important to devise the evaluation method concerning the effect of the design
support. In the future, at the same time as groping for the evaluation technique, we
want to confirm the effectiveness of the method described in this paper by using it
in other application fields.

Acknowledgments

The authors would like to thank the reviewers for providing substantive comments
and editorial assistance during writing of the manuscript.

Part VI.

Reports from Working Groups

Issues in Automatic Generation of
User Interfaces in Model-Based Systems

Angel Puerta

List of Participants

Mark Addison (Phillips Research, UK), Bernhard Bauer (TU Munich, Germany),
Javier Contreras (UAM, Madrid), Martin Fischer (University of Bonn, Germany),
Fernando Gamboa (INRIA, France), Frank Hofmann (University of Bochum, Ger-
many), Volker Kruschinski (University of Bochum, Germany), Frank Lonczewski
(TU Munich, Germany), Angel Puerta (University of Stanford, USA), Siegfried
Schreiber (TU Munich, Germany), Jean-Claude Tarby (U. Lille, France), Pedro Sze-
kely (ISI, University of Southern California, USA)

Introduction

The working group examined the issue of what level of automation is desirable, or
effective, in interface development, especially in model-based systems. Two camps
emerged that were very much apart at the beginning and made small concessions
towards the end. One camp advocated using no automation at all, instead letting
interface developers make design decisions, perhaps with decision support from a
system. The second camp proposed that maximum automation of interface design
should be the goal of a model-based systems.

The Positions

These are the arguments made by researchers who favour automation in interface
development:

 Well-defined interface design processes are feasible. It is possible to develop methodolo-
gies and theories that establish processes for completing interface designs. For
example, it has been shown that generation of layouts from data models is fast
and efficient in a fully-automated way.

 No conceptual problems, just technical ones. Any limitation currently faced by MB-
IDEs is due to the lack of appropriate methodologies for automation, which
can be eventually developed, and not due to inherent technical barriers.

 Facilitates rapid prototyping. The gains in rapid prototyping via automation cannot
be duplicated by model-based systems that offer only developer support.

324 Computer-Aided Design of User Interfaces

 It’s cheaper even if it is not better. The saving in resources for development in auto-
mated systems clearly outweighs the loss in quality and flexibility inherent to
automation.

In contrast, those opposing automation in development environments for interfaces
put forth these points:

 Interface design knowledge is a moving target. One of the basic problems with model-
based systems is that by the time that current interface design knowledge has
been coded into the system, such knowledge is obsolete.

 Knowledge representations are too complex. We have not defined an efficient way to
represent interface design knowledge. Most methods that have been used do
not scale up well, or cannot be generalised.

 Developers don’t want generated interfaces. One of the most pressing practical barriers
to automation is that more often than not developers are not happy with the
generated product. This creates a need for customisation that automated sys-
tems cannot efficiently provide due to its own nature.

The Points

Group members were able to coincide in a number of points:

 Minimum input. Any model-based system, regardless of the intended level of au-
tomation must count with a minimum input. This input normally consists of
user-task and domain model information. This fact is a reflection that the field
does not have a good understanding of the methodologies or theories that could
be used to generate such information from other input formats.

 Automated generation must be studied by model component. The level of automation
must be examined component by component of an interface model. Thus,
within each components it is possible to identify subprocesses where automa-
tion is agreed to be desirable.

 Tool support is not automated generation. It is important to distinguish these terms.
Support consists of any tool or set of tools that allow developers to define parts
of an interface model. Automation consists of any tool or set of tools that pro-
duces a part of an interface model based on another part of the same (or an-
other) model.

 Automation possible is inversely proportional to abstraction level. This seems clear but it
is worth emphasising. Abstract objects such as user tasks are much more im-
probable targets of automation than, say, the layout of widgets.

The Conclusions

 Systems must have an automation «knob». The idea here is that while automation vs.
support may be a lively debate, users of model-based systems should not have
to be limited to just one side of the issue. It is important, therefore, that model-
based systems offer the capabilities that would allow developers to control, to a

 Issues in Automatic Generation of User Interfaces in Model-Based Systems 325

certain extent, the degree of automation that the system provides. Some devel-
opers may opt for fully automated interface production whereas others may opt
for manual design, or more likely, a mixed approach.

Figure 1. Desirable automation knobs would have separate settings for
each component of an interface model

 Knobs must exist for each model component. Because of the various points raised
above, a single knob would not do the job. Each model component, and each
design process, or group of processes, should be adjustable for automation.

 Current systems do not have any knobs. It is quite clear that no model-based system
either constructed or under construction offers much in the way of adjustable
knobs. This should be an immediate goal in systems under development

 Automated generation has only been proven in narrow application domains. There is no
evidence that automated generation of interfaces can be extended beyond the
restricted application spaces that have been examined already. This may be an
inherent limitation.

Reflections on Model-Based Design:
Definitions and Challenges

Stephanie Wilson

List of participants

Mark Addison, Tom Bösser, Con Copas, Peter Forbrig, Andreas Homrighausen,
Frank Lonczewski, Josef Voss, Stephanie Wilson, Takayuki Yamaoka.

Abstract

This paper reports a working group discussion addressing various issues pertaining
to model-based design raised at the CADUI’96 workshop. Since the term ‘model-
based design’ was first applied in the context of interactive system design its usage
has been broadened beyond the original definition to include a wide range of design
approaches that involve modelling activities. Therefore, a key question for the nine
participants of the working group was what constitutes model-based design? The
working group further reflected on the current state of the art in model-based design,
the limitations of the techniques and challenges for the future.

Introduction

The CADUI'96 workshop offered a timely opportunity to review progress in the
field of model-based design, to examine the current state of the art and to look to
future challenges. This paper reports the deliberations of one working group con-
vened during the workshop which reflected on these issues.

The nine participants in this working group shared common interests in model-
based design, automatic generation and task modelling, although they represented a
variety of backgrounds (industrial / academic, software engineering / psychology).
The working group was charged with addressing three discussion points:

 What models could or should be used in model-based design?
 How can the models be used at run-time?
 What are the limits / problems of model-based design?

The discussion on each of these points is reported in sections 2, 3 and 4. However,
much of the available time was spent establishing a common ground for the discus-
sion and reflecting on issues raised by the workshop so far. One important issue for

328 Computer-Aided Design of User Interfaces

the group was the question of what constitutes model-based design; this is reported
in section 1 as it provides the basis for the remainder of the discussion. Some general
concerns were also voiced by the group.

For example, the observation that while a plethora of model-based techniques have
been reported recently in the research literature, there are few reports of industrial
application. Moreover, many of the systems are markedly similar in their capabilities,
suggesting that few advances are being made and that there is perhaps a tendency to
repeat the same mistakes in different systems.

It should be noted that due to timing constraints, the working group had only one
opportunity for discussion during the CADUI’96 workshop. This report has been
compiled from that discussion and subsequent contributions made by the partici-
pants.

1 What constitutes model-based design?

As a preliminary to considering the models that could or should contribute to design,
a significant part of the discussion was devoted to addressing the question of what
constitutes model-based design. Participants had different interpretations of the
term model-based design. There was general agreement that the term originated
from domain modelling and problem solving literature in the AI community. Sys-
tems such as UIDE [Foley91] were probably the first to coin the term 'model-based'
in the context of user interface design, and had a clear connection to the use of the
term in AI. These systems incorporated declarative models, inference engines and
problem solving techniques. However, many of the approaches and systems pre-
sented at the CADUI’96 workshop would characterise themselves as model-based,
in spite of the fact that they make no use of problem solving techniques.

This led into a discussion of what is a model, where there were two distinct views.
One view held that models are abstract declarative representations of real world en-
tities that can be used for reasoning, and that therefore a design technique is only
model-based if there is a tool providing some level of automation or reasoning. The
alternative view held that anything which provides an abstract representation of
some information may be regarded as a model, and that any design process based
around models could be termed model-based, irrespective of whether or not the
models are used for reasoning. The latter view appears to reflect the commonly
adopted terminology in the HCI community at present.

This currently accepted understanding of model-based development can be summa-
rised by this characterisation offered by one participant, Josef Voss:

- model-based development works with a set of related models tailored to the
problem domain in general and the project under consideration;

- models are fixed points in the development process, guiding the progress from
abstract / user-centred concepts to system realisation;

- the development process itself can take various paths between these fixed
points;

 Reflections on Model-Based Design: Definition and Challenges 329

- each model has a certain level of abstraction and provides a certain view of the
project.

A final discussion point on the theme of what is a model was "what is a task model"?
Again, there were a number of different viewpoints, highlighting the fact that people
from different backgrounds had rather different perspectives.

Some comments were made concerning the appropriate level of abstraction for a
task model: should it describe the work that people do or should it give a detailed
account of their interaction with a particular system? This led to the question of
whether or not a task model can be independent of the technology.

The generally held view was that, at some level, a task model can be independent of
any specific interactive system, in the sense that it can be independent of the specifics
of presentation details and of low-level interaction with particular widgets. Other
questions concerned whether hierarchy and sequencing should be expressed in a
task model, and, if so, how should they be represented.

2 What models could or should be used in design?

The discussion on this point attempted to understand what aspects of a design situ-
ation should be modelled during the design process. Given the time constraints, the
discussion was somewhat inconclusive and it was only possible to touch upon some
of the models that have contributed, or might contribute, to a model-based ap-
proach. These included:

• problem domain models (including domain object models);
• task models (of existing and envisioned user tasks);
• user models;
• interaction models (at different levels of abstraction and including information

about dialogue and user interface components);
• models of design knowledge;
• implementation platform models.

These models do not represent all the information that is used during the design
process, nor are they ever likely to do so. The important point is that the models
should make explicit, and focus attention on, important information that might oth-
erwise be overlooked, and that they should do so in a manner which facilitates the
designer making use of the information in the creation of cost-effective and usable
design solutions.

3 How can the models be used at run-time?

Current model-based techniques are largely concerned with supporting interface de-
velopers in the creation and realisation of interactive system designs. They are in-
tended for design-time use. Run-time use, on the other hand, means moving towards
supporting the users in their interaction with the resulting systems. Of course, the
fact that design models have the potential for run-time use does not mean that it is

330 Computer-Aided Design of User Interfaces

necessarily a good idea to use them in this way. Further research is required to de-
termine how effective the design models might be in supporting the users at run-
time.

Many of the opportunities for run-time use rely on the fact that models created dur-
ing the design activities persist in machine-readable form in the run-time environ-
ment. (However, there are also other 'run-time' uses for the models. For example, a
task model might be used as the basis for producing a training manual.) In order to
make use of design models at run-time, the run-time system must track and maintain
references between models. References in both directions are useful: up-stream ref-
erences from system-level models to user-level models, e.g. from a button to a task
description, and downstream references from user-level models to system-level
models, e.g. from a task action to a button. This would, for example, allow help to
be supported in both directions, “What does this button do?” and “How can I ac-
complish this task?".

Different models offer different possibilities for run-time use: high-level models
such as task or domain models can be exploited in the provision of powerful help
systems. A user model can offer information, not just about user preferences, but
about forms of interaction or representations that might be appropriate for a given
user population performing a particular task. Lower-level models can support the
user by explaining the structure of the system itself and can provide a basis for user
modification /configuration of the system. For example, the interaction model could
be interpreted at run-time, facilitating configuration by users, or it could be regener-
ated interactively at run-time, allowing modifications to be made at the level of the
task, user or problem domain models.

4 What are the problems / limitations of model-based de-
sign?

There were two main thrusts to the discussion on this point. Firstly, the problems
and limitations of the model-based approaches in general were considered, and, sec-
ondly, those of automatic generation in particular were addressed. Many of the opin-
ions expressed by participants in the working group reflected views voiced elsewhere
during the workshop, notably by Pedro Szekely during his plenary presentation [Sze-
kely96].

There was general consensus that model-based techniques have not, as yet, lived up
to the expectations and claims of their proponents by demonstrating their value in
practice. It was suggested that we can only start to examine specific limitations of
model-based techniques after detailed study of realistic applications, of which there
are remarkably few at present. Certain data-centred approaches have been successful
in generating business-oriented applications where the emphasis is on visualising
and/or modifying form-based data, but the general worth of model-based tech-
niques has not been demonstrated for other types of interactive systems, such as
professional systems (e.g., medical equipment).

 Reflections on Model-Based Design: Definition and Challenges 331

Some participants held the view that model-based design, and specifically model-
based generation, of user interfaces works best in restricted application domains and
for precisely defined work procedures such as the typical form-filling interfaces for
transaction processing mentioned above. Others questioned this view, believing that
while this may reflect the current state of the art, it is not an inherent limitation of
the approach.

Not surprisingly, a second point of discussion regarding the problems of model-
based design focused on the problems and limitations of automatic generation. This
had proved to be a contentious issue throughout the workshop. Some participants
were wholly convinced of the merits of the idea and were keen to incorporate as
much automation as possible into systems, with increasingly sophisticated generator
tools and complex design guidelines.

They offered arguments such as that this approach meant more rapid application
development times (by reducing the designer's workload), that it guaranteed the gen-
erated system would meet some minimum standards, that it resulted in consistency
across user interfaces, etc. Other participants were less convinced, believing that au-
tomatic generation is a difficult problem and that it is therefore unrealistic to expect
any automated tool to ever be good enough. They cited reasons such as the difficul-
ties in coping with the diversity of application domains and the potential lack of
innovation or novelty in the generated design solutions (while automation might
guard against bad design solutions, it was thought unlikely to result in the 'best' so-
lutions).

Further arguments centred on the observation that by the time design knowledge
has been assimilated and embodied in a set of sophisticated design guidelines, the
user interfaces generated by these tools tend to lag a generation behind current de-
velopments. While model-based techniques are currently approaching the point
where it is possible to generate limited WIMP type interfaces, current technology
has moved forward to multimedia and virtual reality systems.

It was felt that some form of design assistance, rather than full automation, could be
an alternative avenue to explore for supporting interactive system design. In this
scenario, automatic generation and manual development would be combined so as
to complement each other. For example, a transformation step starting with only a
part of the source model could be used to extend or complete a manually created
model. Automatic generation should be used primarily for activities that are tedious
to perform manually and are well understood (so that a body of design knowledge
exists to guide the automation). For example, it could help with low-level prototyp-
ing or implementation activities, it could provide default translations between dif-
ferent models, or it could assist in model visualisation.

Finally, it should be noted that different forms of automatic generation are possible,
some of which may be more or less feasible in practice and in their acceptability to
the design community. The term is usually taken to mean either the generation of

332 Computer-Aided Design of User Interfaces

abstract interaction models from task, user and problem domain models, or the gen-
eration of concrete user interfaces from abstract interaction models and design
guidelines. However, automatic generation can be used to produce resources other
than the interface itself. For example, task models could be used to generate evalu-
ation scenarios and test cases, while task models and abstract interaction models
could contribute to the generation of help systems.

5 Summary and future challenges

Within the working group there was some sense of reflecting on the state of the art
in model-based user interface design and on the future challenges for research and
development work in this field. To date, researchers have demonstrated that model-
based techniques can support the design of interactive systems and have shown how
models capturing various forms of design information can contribute to such a de-
sign process. They have also provided numerous examples of software tools to sup-
port these techniques, for example, tools to support the construction of models,
reasoning about models, or the generation of models.

The immediate challenge for the model-based design community is to offer evidence
of the practicality of these techniques. This requires the application of the techniques
to real world design problems and a more rigorous assessment of their strengths and
weaknesses in such use. In particular, we need to examine the validity of claims such
as "model-based techniques offer a cost effective approach to the design of usable
systems". How do the costs of a model-based approach compare with those of other
design techniques, and how effective are the resulting designs? We need also to ex-
amine whether these techniques, and their supporting tools, are capable of delivering
systems in the technologies of today rather than yesterday.

Modelling is frequently a time-consuming, and therefore expensive, activity. The
added value of choosing to model certain information explicitly during design is
likely to vary between one design situation and another. Therefore, there are ques-
tions to be asked concerning the costs and benefits of modelling information explic-
itly, as opposed to leaving it implicit in the design context. For example, what, if any,
is the added value of using explicit user models? Similar questions must be asked of
the tools. We need to determine where software tools are the most effective ap-
proach to supporting design-time modelling activities, and where other approaches
might be more appropriate (e.g., paper-based models). Likewise, we need to investi-
gate where model-based tool support might genuinely enhance the user's interaction
with a system at run-time.

The final challenge discussed by the working group lies in the area of automatic
generation. Can we reconcile the two opposing schools of thought evident at the
CADUI'96 workshop, with one party eager to increase the level and sophistication
of automation, while others believed that, at some level, design decisions are best
left in the hands of the designer? The group felt that some compromise may offer
the best solution by taking advantage of the strengths of each approach.

Abbreviations
AIO = Abstract Interaction Object
CBR = Case Based Reasoning
CIO = Concrete Interaction Object
CADUI = Computer-Aided Design of User Interfaces
CASE = Computer-Aided Software Engineering
CPU = Central Processing Unit
CSCW = Computer-Supported Cooperative Work
CUA = Common User Access
CUI = Character-based User Interface
DB = Data Base
DBMS = Data Base Management System
DSV-IS = Design, Specification, and Verification of Interactive Systems
ERA = Entity-Relationship Approach
GIS = Geographic Information System
GUI = Graphical User Interface
HCI = Human-Computer Interaction
HTML = HyperText Mark-up Language
IDL = Interface Description Language
IS = Information System
KB = Knowledge Base
KBS = Knowledge Base System
OOA = Object-Oriented Analysis
OOD = Object-Oriented Design
OOP = Object-Oriented Programming
PAC = Presentation, Abstraction, Control
RAD = Rapid Application Development
SE = Software Engineering
SQL = Structured Query Language
TA = Task Analysis
UI = User Interface
UIDE = User Interface Development Environment
UIMS = User Interface Management System
VDT = Visual Display Terminal
VDU = Video Display Unit
WWW = World Wide Web

References
[Abowd90] Abowd, G.D., Agents: Communicating Interactive Processes, in [Interact90],
pp. 143-148.

[Ahlberg95] Ahlberg, C., Truvé, S., Tight Coupling: Guiding User Actions in a Direct Ma-
nipulation Retrieval System, in [HCI95], pp. 305-322.

[Aldefeld91] Aldefeld, B., Malberg, H., Richter, H., Voss, K., Rule-Based Variational
Geometry in Computer-Aided Design, in « Artificial Intelligence in Design », D.T. Pham
(Ed.), Berlin, Springer-Verlag, 1991, pp. 131-139.

[Allen80] Allen, J.F., Perrault, R.C., Analyzing Intention in Utterances, Artificial Intelli-
gence, Vol. 15, No. 3, 1980, pp. 143-178.

[Anderson88] Anderson, J.S., Farley, A.M., Plan Abstraction Based on Operator General-
ization, in Proceedings of 7th National Conference on Artificial Intelligence AAAI'88
(St Paul, August 1988), Vol. 1, Morgan Kaufmann, Palo Alto, 1988, pp. 100-104.

[Ando89] Ando, H., Suzuki, H., Kimura, F., A Geometric Reasoning System for Mechanical
Product Design, in « Computer Applications in Production and Engineering », F. Ki-
mura, A. Rolstadas (Eds.), Elsevier Science Publishers, Amsterdam, 1989, pp. 131-
139.

[Anglano94] Anglano, C., Portinale, L., B-W Analysis: a Backward Reachability Analysis
for Diagnostic Problem Solving Suitable to Parallel Implementation, in Proceedings of 15th
International Conference on Application and Theory of Petri Nets (Zaragoza, June
1994), R. Valette (Ed.), Springer-Verlag, Berlin, 1994, pp. 39-58.

[Apple92] Macintosh Human Interface Guidelines, Apple Computer Inc., Addison-Wes-
ley, 1992.

[Avison90] Avison, D.E., Wood-Harper, A.T., Multiview: An Exploration in Information
Systems Development, McGraw-Hill, 1990.

[AVI94] Proceedings of 2nd Workshop on Advanced Visual Interfaces AVI'94 (Bari,
1-4 June 1994), T. Catarci, M.F. Costabile, S. Levialdi, G. Santucci (Eds.), ACM
Press, New York, 1994.

[Bailin 89] Bailin, S.C., An Object-Oriented Requirements Specification Method, Communi-
cations of the ACM, Vol. 32, No. 5, May 1989, pp. 608-623.

[Balzert93] Balzert, H., Der JANUS-Dialogexperte: Vom Fachkonzept zur Dialogstruktur,
in Softwaretechnik Trends, Band 13, Heft 3, Proceedings der GI-Fachtagung Soft-
waretechnik, Dortmund (8-10 November 1993), pp. 62-72.

338 Computer-Aided Design of User Interfaces

[Balzert94] Balzert, H., Das JANUS-System: Automatisierte, wissensbasierte Generierung
von Mensch-Computer-Schnittstellen, in Informatik-Forschung Entwicklung, Vol. 9,
Springer-Verlag, Heidelberg, 1994, pp. 22-35.

[Balzert95a] Balzert, H., From OOA to GUI - The JANUS-System, in [Interact95], pp.
319-324. http://www.swt.ruhr-uni-bochum.de/forschung/janus/lillehammer. html

[Balzert95b] Balzert, H., Hofmann, F., Niemann, C., Vom Programmieren zum Gener-
ieren - Auf dem Weg zur automatischen Anwendungsentwicklung, in Proceedings of GI-
Fachtagung Software-technik'95 (Braunschweig, October 1995), 1995, pp. 126-136.
http://www.swt.ruhr-uni-bochum.de/forschung/swt95/artikel.htm

[Balzert96] Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C., The JANUS Ap-
plication Development Environment-Generating More than the User Interface, in this volume,
pp. 183-206.

[Barthet88] Barthet, M.-F., Logiciels interactifs et ergonomie, Ed. Dunod Informatique,
Paris, 1988.

[Barthet94] Barthet, M.-F., Liberati, V., Ponamale, M., ERGOVAL - A Software User
Interface Tool, in Proceedings of the 12th Triennal Conference of International Ergo-
nomics Association IEA'94 (Toronto, 15-19 August 1994), Vol. 4, Human Factors
Association of Canada, Toronto, 1994, pp. 428-431.

[Baskerville93] Baskerville, R., Semantic database prototypes, Journal of Information Sys-
tems, Vol. 3, 1993, pp. 119-144.

[Bastide90] Bastide, R., Palanque, P., Petri Net Objects for the Design, in [Interact90],
pp. 625-631. http://www.cenatls.cena.dgac.fr/~palanque/Ps/interact90.ps.gz

[Bastide93] Bastide, R., Palanque, P., Cooperative Objects : a Concurrent Petri Net Based
Object-Oriented Language, in Proceedings of the IEEE / System Man and Cybernetics
93 « Systems Engineering in the Service of Humans » (Le Touquet, 17-20 October
1993), IEEE Press.

[Bastide94] Bastide, R., Palanque P., Theoretical Foundations of Recent Formal Approaches
in HCI Design, Research Symposium CHI’94 (Boston, 23-30 April 1994).
http://www.cenatls.cena.dgac.fr/~palanque/Ps/rschi94.ps.gz

[Bastide96] Bastide, R., Palanque, Ph., Implementation Techniques for Petri Net Based Spec-
ifications of Human-Computer Dialogues, in this volume, pp. 285-301. http://www.
cenatls.cena.dgac.fr/~palanque/Ps/cadui96.ps.gz

[Bauer95] Bauer, B., Proving the Correctness of Formal User Interface Specifications, in [DSV-
IS95], pp. 224-241.

[Bauer96] Bauer, B., Generating User Interfaces from Formal Specifications of the Application,
in this volume, pp. 141-158.

[Beaudoin-Lafon91] Beaudouin-Lafon, M., Interfaces Homme-Machine: Vue d'ensemble et
perspectives, Revue Génie Logiciel et Systèmes Experts, No. 24, September 1991.

 References 339

[Beck95] Beck, A., Janssen, C., Weisbecker, A., Ziegler, J., Integrating Object-Oriented
Analysis and Graphical User Interface Design, in [ICSE94].

[Bellik95] Bellik, Y., Ferrari, S., Neel, F., Teil, D., Interaction multimodale: Concepts et
Architecture, in Proceedings of 4èmes Journées Internationales « Interface des mondes
reels et virtuels » (Montpellier, 26-30 June 1995), pp. 37-45.

[Benyon95] Benyon, D., A Data Centred Framework for User-Centred Design, in [Inter-
act95], pp. 197-202.

[Beshers89] Beshers, C.M., Feiner, S.K., SCOPE: Automated Generation of Graphical In-
terfaces, in [UIST89], pp. 76-85.

[Bittner92] Bittner, U., Hesse, W., Schnath, J., Untersuchungen zum Methodeneinsatz in
Software-Entwicklungsprojekten, Softwaretechnik-Trends, Band 12, Heft 3, August
1992, pp. 48-60.

[Blaha94] Blaha, M., Premerlani, W., Shen, H., Converting OO Models into RDBMS
Schema, IEEE Software, May 1994, pp. 28-39.

[Blandford93] Blandford, A., Young, R.M., Developing Runnable User Models: Separating
the Problem Solving Techniques from the Domain Knowledge, in [HCI93], pp. 111-121.

[Bodart83] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Masson, O., Pigneur, Y.,
DSL-DSA: A System for Requirements Specification, Prototyping and Simulation, in Proceed-
ings of IFIP TC 2 Working Conference on System Description Methodologies
(Kecskemet, June 1983), North Holland, Amsterdam, 1983.

[Bodart85] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Pigneur, Y., Computer-
Aided Specification, Evaluation and Monitoring of Information Systems, in Proceedings of 6th
International Conference of Information Systems (Indianapolis, June 1985).

[Bodart89] Bodart, F., Pigneur, Y., Conception assistée des système d’information - méthodes,
modèles, outils, 2nd edition, Dunod, Paris, 1989.

[Bodart93] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Sacré, I., Vanderdonckt,
J., Architecture Elements for Highly-Interactive Business-Oriented Applications, in
[EWHCI93], pp. 83-104.

[Bodart94a] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J., To-
wards a Dynamic Strategy for Computer-Aided Visual Placement, in [AVI94], pp. 78-87.

[Bodart94b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Vander-
donckt, J., A Model-based Approach to Presentation: A Continuum from Task Analysis to
Prototype, in [DSV-IS94], pp. 77-94.

[Bodart94c] Bodart, F., Vanderdonckt, J., On the Problem of Selecting Interaction Objects,
in [HCI94], pp. 163-178. http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper?
RP-94-018

[Bodart95a] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Sacré, B.,
Vanderdonckt, J., Towards a Systematic Building of Software Architectures: the TRIDENT

340 Computer-Aided Design of User Interfaces

Methodological Guide, in [DSV-IS95], pp. 262-278. http://www.info.fundp.ac.be/cgi-
bin/pub-spec-paper?RP-95-019

[Bodart95b] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Vanderdonckt, J., Com-
puter-Aided Window Identification in TRIDENT, in [Interact95], pp. 331-336. http:
//www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-021

[Bodart95c] Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Zucchinetti,
G., Vanderdonckt, J., Key Activities for a Development Methodology of Interactive Applica-
tions, in « Critical Issues in User Interface Systems Engineering », D. Benyon, Ph.
Palanque (Eds.), Springer-Verlag, Berlin, 1995, pp. 109-134. http://
www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-96-025

[Bodart95d] Bodart, F., Vanderdonckt, J., Using Ergonomic Rules for User Interface Eval-
uation by Linguistic Ergonomic Criteria, in [HCIint95], pp. 367-372. http://www.
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-023

[Bonsiepe68] Bonsiepe, G.A., A Method of Quantifying Order in Typographic Design, Jour-
nal of Typographic Research, Vol. 2, 1968, pp. 203-220.

[Booch94] Booch, G., Object-Oriented Analysis and Design with Applications, The Benja-
min/Commings Publishing Company, 1994.

[Borland91] Resource Workshop Editor V1.0, Reference Manual, Borland Interna-
tional, 1991.

[Borkoles92] Borkoles, J., Johnson, P., ETKS: Generative Task Modelling in User Interface
Design, in Proceedings of Hawaii International Conference on System Sciences
(Kailua-Kona, January 1992), B.D. Shriver (Ed.), Vol. 2, IEEE Computer Society
Press, 1992, pp. 699-708.

[Borning87] Borning, A., Duisberg, R., Freeman-Benson, B.N., Constraint Hierarchies,
in Proceedings of Conference on Object Oriented Programming, Systems, Lan-
guages and Applications OOPSLA’87 (Orlando, 4-8 October 1987), pp. 48-60.

[Brunet91] Brunet, E., KADS: Engineering Knowledge Method, Génie Logiciel et Sys-
tèmes Experts, No. 23, June 1991, pp. 24-34.

[Burger90] Burger, D., Sperandio, J.-C., Humbert, R., Lebreton, M., Liard, C., Eva-
luation ergonomique expérimentale des systèmes d'entrée/sorties permettant à des aveugles la prise
d'informations affichées sur des écrans d'ordinateurs, XXVI congrès de la Société d'Ergono-
mie de Langue Française (Montréal, 3-5 October 1990).

[Burger92] Burger, D., La multimodalité: Un moyen d'améliorer l'accessibilité des systèmes
informatiques pour les personnes handicapées, in Proceedings of ERGO-IA’92 (Biarritz, 7-
9 October 1992).

[Burger93] Burger, D., Interfaces non-visuelles, état de la question, nouvelles perspectives, IN-
SERM U88, 1993.

 References 341

[Burger94] Burger, D., Improved Access to Computers for the Visually Handicapped: New
Prospects and Principles, IEEE Transactions on Rehabilitation Engineering, Vol. 2, Sep-
tember 1994, pp. 111-118.

[Byrne94] Byrne, M.D., Wood, S.D, Sukaviriya, P., Foley, J.D., Kieras, D.E., Auto-
mating Interface Evaluation, in [CHI94], pp. 232-237.

[Cardelli88] Cardelli, L., Building User Interfaces by Direct Manipulation, in [UIST88], pp.
152-166.

[Carneiro93] Carneiro, L.M.F., Cowan D.D., Lucena, C.J.P., ADVcharts : a Graphical
Specification for multi-modal Interactive Systems - Abstract Data Views in Perspectives, in
[York93].

[Carroll88] Caroll, J., Mack, R.L., Kellogg, W.A., Interface Metaphors and User Interface
Design, in « Handbook of Human-Computer Interaction », M. Helander (Ed). Else-
vier, Amsterdam, 1988, pp. 67-85.

[Cattel93] Cattel, R.G.G., Object Databases: The ODMG-93 Standard, Morgan Kauf-
mann, New York, 1993.

[CERL93] CERL Grass 4.1, Reference Manual, US Army Construction Engineering
Research Laboratory, 1993.

[Chen76] Chen, P., The Entity-Relationship Model - Toward a Unified View of Data, ACM
Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.

[CHI85] Proceedings of the Conference on Human Factors in Computing Systems
CHI’85 (San Francisco, 14-18 April 1985), L. Borman, B. Curtis (Eds.), ACM Press,
New York, 1985.

[CHI88] Proceedings of the Conference on Human Factors in Computing Systems
CHI’88 (Washington, 15-19 May 1988), E. Soloway, D. Frye, S.B. Sheppard (Eds.),
ACM Press, New York, 1988.

[CHI89] Proceedings of the Conference on Human Factors in Computing Systems
CHI’89 « Wings for the mind » (Austin, 30 April-4 May 1989), K. Bice, C. Lewis
(Eds.), ACM Press, New York, 1989.

[CHI90] Proceedings of the Conference on Human Factors in Computing Systems
CHI’90 « Empowering People » (Seattle, 1-5 April 1990), J. Carrasco, J. Whiteside
(Eds.), ACM Press, New York, 1990.

[CHI91] Proceedings of the Conference on Human Factors in Computing Systems
CHI’91 « Reaching through technology » (New Orleans, 27 April-2 May 1991), S.P.
Robertson, G.M. Olson, J.S. Olson (Eds.), ACM Press, New York, 1991.

[CHI92] Proceedings of the Conference on Human Factors in Computing Systems
CHI’92 « Striking a balance » (Monterey, 3-7 May 1992), P. Bauersfeld, J. Bennett,
G. Lynch (Eds.), ACM Press, New York, 1992.

342 Computer-Aided Design of User Interfaces

[CHI94] Companion of the Conference on Human Factors in Computing Systems
CHI’94 « Celebrating Interdependence » (Boston, 24-28 April 1994), C. Plaisant
(Ed.), ACM Press, New York, 1994.

[CHI95] Proceedings of the Conference on Human Factors in Computing Systems
CHI’95 « Mosaic of Creativity » (Denver, 7-11 May 1995), I.R. Katz, R. Mack, L.
Marks, M.B. Rosson, J. Nielen (Eds.), ACM Press, New York, 1995.

[CHI96] Companion of the Conference on Human Factors in Computing Systems
CHI’96 « Common Ground » (Vancouver, 13-18 April 1996), M.J. Tauber, V. Bel-
lotti, R. Jeffries, J.D. Mackinlay, J. Nielsen (Eds.), ACM Press, New York, 1996.

[Chien94] Chien, S., Using AI Planning Techniques to Automatically Generate Image Pro-
cessing Procedures, in Proceedings of Second International Conference on Artificial In-
telligence Planning Systems (Chicago, June 1994), K. Hammond (Ed.), AAAI Press,
Menlo Park, 1994, pp. 219-224.

[Claes88a] Claes, G., Contribution de l'intelligence artificielle pour l'enseignement assisté par
ordinateur, Ph.D. thesis, Université de Paris-Sud, Orsay, 1988.

[Claes88b] Claes, G., Ounis, O, Razoarivelo, Z., Salembier, P., Shridharan, M.S.,
Starguide: un générateur de systèmes d'autoformation à l'usage de logiciels, T.S.I., Vol. 7, No.1,
1988, pp. 69-78.

[Coad91a] Coad, P., Yourdon, E., Object-Oriented Analysis, Prentice-Hall, 1991.

[Coad91b] Coad, P., Yourdon, E., Object-Oriented Design, Prentice-Hall, 1991.

[Coad92] Coad, P., Object-Oriented Patterns, Communications of the ACM, Vol. 35,
No. 9, September 1992, pp. 152-159.

[Cockton87] Cockton, G., Interaction Ergonomics, Control and Separation: Open Problems
in user Interface Management, Information and Software Technology, Vol. 29, No. 4,
1987, pp. 176-191.

[Cohen94] Cohen, P.R., Cheyer, A., Wang, M., Baeg, S.C., An Open Agent Architecture,
in Proceedings of AAAI Spring Symposium (March 1994), pp. 1-8.

[Colbert 89] Colbert, E., The Object-Oriented Software Development Method: A Practical
Approach to Object-Oriented Development, in Proceedings of TRI-ADA’89 (Pittsburgh,
23-26 October 1989), C. Engles and J. Foreman (eds.).

[Comber94] Comber, T., Maltby, J. R., A Formal Method for Evaluating GUI Screens, in
Doctoral Consortium of ACIS'94 (Melbourne, 1994), Dept. of Information Services,
Monash, Australia, 1994.

[Comber95] Comber, T., Maltby, J. R., Evaluating Usability of Screen Designs with Layout
Complexity, in Proceedings of OZCHI'95 (Wollongong: CHISIG), 1995.

[Comber96] Comber, T., Maltby, J., Investigating Layout Complexity, in this volume, pp.
209-227.

 References 343

[Contreras96a] Contreras, J., Moriyon R., Automatic Generation of Software Tutoring
based on Tasks, submitted to CALISCE'96, San Sebastian, Spain, 1996.

[Contreras96b] Contreras, J., Saiz, F., A Framework for the Automatic Generation of Soft-
ware Tutoring, in this volume, pp. 171-182.

[Copas94] Copas, C.V., Edmonds, E.A., Executable Task Analysis: Integration Issues, in
[HCI 94], pp. 339-352.

[Copas96] Copas, C.V., Edmonds, E.A., Planners as Agents: User Interaction, in this
volume, pp. 265-284.

[Coutaz88] Coutaz, J., Human-Computer Interface: Design and Implementation, Ph.D. the-
sis, Université Joseph Fourier, Grenoble, France, 1988.

[Coutaz90] Coutaz, J., Interfaces Homme-Ordinateur Conception et réalisation, Dunod In-
formatique, 1990.

[Coutaz94] Coutaz, J., Taylor, R.N., Introduction to the Workshop on Software Engineering
and Human-Computer Interaction: Joint Research Issues, in [ICSE94], pp. 1-3.

[Cowan93] Cowan, D.D., Durance, C.M., Giguere, E., Pianosi, G.M., CIRL/PIWI:
A GUI Toolkit Supporting Retargetability, Software-Practice and Exprerience, Vol. 23
No. 5, May 1993, pp. 511-527.

[CUA91] CUA Systems Application Architecture: Common User Access Advanced Interface
Design Reference, SC34-4290-00, IBM, October 1991.

[Curtis94] Curtis, B., Hefley, B., A WIMP No More - The Maturing of User Interface
Engineering, ACM Interactions, Vol. 1, No. 1, 1994, pp. 22-34.

[Cypher93] Cypher, A. (Ed.), Watch What I Do: Programming by Demonstration, The MIT
Press, Cambridge, 1993.

[de Baar92] de Baar, D.J.M.J., Foley, J., Mullet, K.E., Coupling Application Design and
User Interface Design, in [CHI92], pp. 259-266. ftp://ftp.gvu.gatech.edu/pub/gvu/
tech-reports/91-10.ps.Z.

[de Bruin94a] de Bruin, H., Bouwman, P., van den Bos, J., A Task Oriented Methodology
for the Development of Interactive Systems as used in DIGIS, in Proceedings of the 15th
Interdisciplinary Workshop on Informatics and Psychology, Interdisciplinary Ap-
proaches to System Analysis and Design (Schaerding, 1994).

[de Bruin94b] de Bruin, H., Bouwman, P., van den Bos, J., Modeling and Analyzing
Human-Computer Dialogues with Protocols, in [DSV-IS94], pp. 95-116. ftp://ftp.cs.few.
eur.nl/pub/doc/papers/digis/diamodel.ps.Z

[de Haan94] de Haan, G., An ETAG based approach to the design of user interfaces, in
Proceedings of the 15th Interdisciplinary Workshop on Informatics and Psychology,
Interdisciplinary Approaches to System Analysis and Design (Schaerding, 1994).

344 Computer-Aided Design of User Interfaces

[DeCarolis93] DeCarolis, B., Rosis, F., Modelling Adaptive Interaction in OPADE by
Petri Nets, in [York93].

[DEC91] DEC Visual User Interface Tool (DEC VUIT) V2.0, User’s Guide, Maynard,
October 1991.

[Desurvire92] Desurvire, H.W., Kondziela, J.M., Atwood, M.E., What is Gained and
Lost when using Evaluation Methods other than Emperical Testing, in [HCI92], pp. 89-102.

[Dewan87] Dewan, P., Solomon, M. , DOST: An Environment to Support Automatic
Generation of User Interfaces , SIGPLAN Notices, Vol. 2, No. 1, January 1987, pp. 150-
159.

[Diaper89] Diaper, D., Task observation for HCI, in « Task Analysis for HCI », D.
Diaper (Ed.), Ellis Horwood, Chichester, 1989.

[Dix93] Dix, A., Finlay, J., Abowd, G., Beale, R., Human-Computer Interaction, Pren-
tice-Hall, London, 1993.

[DSV-IS94] Proceedings of 1st Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, 8-10 June 1994), F.
Paternó (Ed.), Focus on Computer Graphics Series, Springer-Verlag, Berlin, 1995.

[DSV-IS95] Proceedings of 2nd Eurographics Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’95 (Château de Bonas, 7-9 June 1995),
R. Bastide and Ph. Palanque (Eds.), Eurographics Series, Springer-Verlag, Vienna,
1995.

[Duerst93] Duerst, M.J., Coordinate-Independent Font Description using Kanji as an Exam-
ple, Electronic Publishing, Vol. 6, No. 3, September 1993, pp 133-143.

[Egenhofer93] Egenhofer, M.J., Richards, J.R., Exploratory Access to Geographic Data
Based on the Map-Overlay Metaphor, Journal of Visual Languages and Computing, Vol.
4, 1993, pp. 105-125.

[EHCI89] Proceedings of the 1st IFIP TC 2/WG 2.7 Working Conference on En-
gineering for Human-Computer Interaction EHCI’89 (Napa Valley, 21-25 August
1989), G. Cockton (Ed.), North-Holland, Amsterdam, 1990.

[EHCI95] « Engineering for Human-Computer Interaction », Proceedings of the 6th
IFIP TC 2/WG 2.7 Working Conference on Engineering for Human-Computer In-
teraction EHCI’95 (Grand Targhee Resort, 14-18 August 1995), L. Bass, C. Unger
(Eds.), Chapman & Hall, London, 1995.

[Ehrig85] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specifications 1, EATCS Mon-
ographs on Theoretical Computer Science, Vol. 6, Springer, Berlin, 1985.

[Eickel90] Eickel, J., Logical and Layout Structures of Documents, Computer Physics
Communication, Vol. 61, 1990, pp. 201-208.

 References 345

[Elwert94] Elwert, T., Forbrig, P., Schlungbaum, E., Meta Models for Task-oriented User
Interface Development, in Proceedings of the 1st Workshop on Cognitive Modelling and
Interface Development (Vienna, 15-17 December 1994), pp. 163-172.

[Elwert95] Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User In-
terfaces in the TADEUS Approach, in [DSV-IS95], pp. 193-208. http://www. infor-
matik.uni-rostock.de/~schlung/TADEUS/paper/DSV-IS95.html

[Elwert96] Elwert, T., Continuous and Explicit Dialogue Modelling, in [CHI96], pp. 265-
266. http://www.informatik.uni-rostock.de/~schlung/TADEUS/paper/CHI -96-
all.html

[Etzioni94a] Etzioni, O., Weld, D., A Softbot-Based Interface to the Internet, Communi-
cations of the ACM, Vol. 37, No. 7, July 1994, pp. 72-76.

[Etzioni94b] Etzioni, O. et al., OS Agents: Using AI Techniques in the Operating System
Environment, Technical Report 93-04-04, University of Washington, Seattle WA,
1994. ftp.cs.washington.edu:/pub/etzioni/os-agents.ps.Z

[EWHCI93] Proceedings of the East-West International Conference on Human-
Computer Interaction EWHCI’93 (Moscow, 1993), L. Bass, J. Gornostaev and C.
Unger (Eds.), Lecture Notes in Computer Science, Vol. 753, Springer-Verlag, Berlin,
1993.

[EWHCI94] Proceedings of the East-West International Conference on Human-
Computer Interaction EWHCI’94 (St. Petersburgh, 1994), B. Blumenthal, J. Gor-
nostaev, C. Unger (Eds.), Lecture Notes in Computer Sciences, Vol. 876, Springer-
Verlag, Berlin, 1994.

[Falcidieno89] Falcidieno, B., Giannini, F., Automatic Recognition and Representation of
Shape-Based Features in a Geometric Modeling System, Computer Vision, Graphics, and
Image Processing, Vol. 48, No. 1, October 1989, pp. 93-123.

[Faraht96] Faraht, S., Fluhr, Ch., A Tool for Adapting Visual Interfaces for blind people, in
this volume, pp. 247-261.

[Farenc95] Farenc, Ch., Palanque, Ph., Vanderdonckt, J., User Interface Evaluation: is it
Ever Usable?, in [HCI95], pp. 329-334. http://www.cenatls.cena.dgac.fr/~palan-
que/Ps/hciiergo95.ps.gz

[Farenc96] Farenc, Ch., Liberati, V., Barthet, M.-F., Automatic Ergonomic Evaluation:
What are the Limits?, in this volume, pp. 159-170.

[Fellbaun94] Fellbaun, K., Crispien, K., Interface vocales et auditive destinées à des utilisa-
teurs non-voyants, in Proceedings of « Interface multimodale pour handicapés visuels »
(Paris, 7 November 1994), pp. 21-34.

[Fehrle93] Fehrle, T., Klöckner, K., Schölles, V., Berger, F., Thies, M., Wahlster, W.,
PLUS - Plan-based User Support, Deutsches Forschungszentrum für künstliche Intel-
ligenz, Technical report RR-93-15, 1993.

346 Computer-Aided Design of User Interfaces

[Fields93] Fields, B., Harrison, M., Wright, P., From Natural Language Requirements to
Agent-Based Specification : An Aircraft Warning Case Study, in [York93].

[Fischer91] Fischer, G., The Importance of Models in Making Complex Systems Comprehen-
sible, in « Mental Models and Human-Computer Interaction 2 », M.J. Tauber, D.
Ackermann (Ed.), North-Holland, Oxford, 1991.

[Fischer93] Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., Sumner, T., Embedding
Computer-Based Critics in the Context of Design, in [InterCHI93], pp. 157-164.

[Fitzpatrick94] Fitzpatrick, G., Welsh, J., Process Support: Inflexible Imposition or Chaotic
Composition?, in [OZCHI94], pp. 147-152.

[Fluhr88] Fluhr, C., Arsac, J., Beriot, A., Techniques de l'ingénieur, 1988.

[Fluhr93] Fluhr, C., Methods of text presentation, in Proceedings of Colloque INSERM
« Non-visual human-computer interactions prospects for the visually handicapped »,
Vol. 228, 1993.

[Foley84] Foley, J.D., Wallace, V.L., Chan, P., The Human Factors of Computer Graphics
Interaction Techniques, IEEE Computer Graphics & Applications, Vol. 4, No. 11, No-
vember 1984, pp. 13-48.

[Foley88] Foley, J.D., Gibbs, C., Kim, W.C., Kovacevic, S., A Knowledge-Based User
Interface Management System, in [CHI88], pp. 67-72.

[Foley90] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics:
Principles and Practice, Addison-Wesley, Reading, 1990.

[Foley91] Foley, J.D., Kim, W.C., Kovacevic, S., Murray, K., UIDE - An Intelligent
User Interface Design Environment, in « Intelligent User Interfaces », J.W. Sullivan, S.W.
Tyler (Eds.), Addison Wesley, ACM Press, 1991, pp. 339-384.

[Foley94] Foley, J.D., History, Results and Bibliography of the User Interface Design Environ-
ment (UIDE), an Early Model-based Systems for User Interface Design and Implementation, in
[DSV-IS94], pp. 3-14.

[Forbrig96] Forbrig, P., Märtin, C., Automatisierte Entwicklung interaktiver Software:
Spezifikation, Generierung, CASE-Integration, Offene Systeme, Vol. 5, No. 1, 1996, pp.
11-25.

[Fowler95] Fowler, S.L., Stanwick, V.R., The GUI Style Guide, AP Professional, Cam-
bridge, 1995.

[Frank95] Frank, M., Grizzly Bear: A Demonstrational Learning Tool For A User Interface
Specification Language, in [UIST95], pp. 75-76.

[Freeman-Benson90] Freeman-Benson, B.N., Maloney, J., Borning, A., An Incremen-
tal Constraint Solver, Communications of the ACM, Vol. 33, No. 1, January 1990, pp.
54-63.

 References 347

[Fudos93] Fudos, I., Hoffmann, C.M., Correctness Proof of a Geometric Constraint Solver,
Technical Report CSD 93-076, Department of Computer Science, Purdue Univer-
sity, West Lafayette, December 1993, ftp://arthur.cs.purdue.edu/pub/ cmh/Re-
ports/EREP/Erep4.ps.Z.

[Fudos96] Fudos, I., Hoffmann, C.M., Constraint-based parametric conics for CAD, Com-
puter-Aided Design, Vol. 28, No. 2, February 1996, pp. 91-100.

[Galitz93] Galitz, W.O., User-Interface Screen Design, Q.E.D. Information Sciences,
Wellesley, 1993.

[Ganzinger78] Ganzinger, H., Optimierende Erzeugung von Uebersetzerteilen aus implemen-
tierungsorientierten Sprachbeschreibungen, PhD thesis, Technische Universitaet
Muenchen, 1978.

[Gibson 90] Gibson, E., Objects. Born and Bred, Byte, October 1990, pp. 245-254.

[Gieskens92] Gieskens, D.F., Foley J.D., Controlling User Interface Objects through Pre-
and Postconditions , in [CHI92], pp. 189-194.

[Gilmore95] Gilmore, D., Interface Design: Have we got it wrong?, in [Interact95], pp.
173-184.

[Goel91] Goel, A.K., Kolodner, J.L., Pearce, M., Billington, R., Towards a Case-Based
Tool for Aiding Conceptual Design Problem Solving, in Proceedings of Case-Based Rea-
soning Workshop (Washinton, 8-10 May 1991), Ray Rareiss (Ed.), Morgan Kauf-
mann, pp. 109-120.

[Goldberg84] Goldberg, A., Smalltalk 80. The Interactive Programming Environment, Ad-
dison-Wesley, 1984

[Gorny94] Gorny, P. et al., Projekt EXPOSE, Expertensystem zur phasenorientierten Soft-
ware-Ergonomie-Beratung bei der Benutzerschnittstellen-Entwicklung, 2. Zwischenbericht,
Universität Oldenburg und Universität Rostock, 1994.

[Gorny95] Gorny, P., EXPOSE - An HCI-Counseling for User Interface Design, in [In-
teract95], pp. 297-304.

[Gray94] Gray, P., England, D., McGowan, S., XUAN: Enhancing to Capture Temporal
Relationships among Actions, in [HCI94], pp. 301-312.

[Green86] Green, M., A Survey of Three Dialogue Models, ACM Transactions on
Graphics, Vol 5, No. 3, July 1986, pp. 244-275.

[Green92] Green, T.R.G., Benyon, D., Displays as Data Structures: Entity-Relationship
Models of Information Artefacts, Technical Report no. 92/22, The Open University
Computing Department, Milton Keynes, 1992.

[Grønbæk 91] Grønbæk, K., Hviid, A., Trigg, R.H., APPLBUILDER - An Object-Ori-
ented Application Generator Supporting Rapid Prototyping , in Proceedings of « Le Génie
Logiciel et ses Applications » (Toulouse, 9-13 December 1991), pp. 257-272.

348 Computer-Aided Design of User Interfaces

[Gulliksen95] Gulliksen, J., Sandblad, B., Domain-Specific Design of User Interfaces, In-
ternational Journal of Human-Computer Interaction, Vol. 7, No. 2, 1995, pp. 135-
151.

[Gurminder90] Gurminder, S., Hong, C., Ye, T., Druid: A System for Demonstrational
Rapid User Interface Development, in [UIST90], pp. 167-177.

[Hammouche93] Hammouche, H., De la Modélisation des Tâches à la Spécification d'Inter-
faces Utilisateur, Research report INRIA No. 1959, July 1993.

[Handialogue94] HANDIALOGUE, VisioBraille, système autonome et connectable sous MS
DOS et MS-Windows pour non-voyant, Reference manual, Paris, January 1994.

[Harning96] Harning, M. An Approach to Structured Display Design - Coping with Com-
plexity, in this volume, pp. 121-138.

[Hartson89] Hartson, H.R., Hix, D., Toward Empirically Derived Methodologies and Tools
for Human-Computer Interface Development, International Journal of Man-Machine Stud-
ies, Vol. 31, 1989, pp. 477-494.

[Hartson90] Hartson, H.R. et al., The User Action Notation: a User-Oriented Representation
for Direct Manipulation Interfaces, ACM Transactions on Information Systems, Vol.8,
No.3, 1990, pp. 181-203.

[Hayes85] Hayes, P.J., Szekely, P.A., Lerner, R.A., Design Alternatives for User Interface
Management Systems Based on Expierence with COUSIN, in [CHI85], pp. 169-175.

[Hayhoe90] Hayhoe, D., Sorting-Based Menu Categories, International Journal of Man-
Machine Studies, Vol. 33, No. 6, Decembre 1990, pp. 677-705.

[HCI92] Proceedings of British Conference on Human-Computer Interaction
HCI’92 « People and Computers VII », A. Monk, D. Diaper, M.D. Harrison (Eds.),
Cambridge University Press, Cambridge, 1992.

[HCI93] Proceedings of British Conference on Human-Computer Interaction
HCI’92 « People and Computers VIII », J.L. Alty, D. Diaper, S. Guest (Eds.), Cam-
bridge University Press, Cambridge, 1993.

[HCI94] Proceedings of British Conference on Human-Computer Interaction
HCI’94 « People and Computers IX » (Glasgow, 23-26 August 1994), G. Cockton,
S.W. Draper, G.R.S. Weir (Eds.), Cambridge University Press, Cambridge, 1994.

[HCI95] Proceedings of British Conference on Human-Computer Interaction
HCI’95 « People and Computers X » (Huddersfield, 1995), M.A.R Kirby, A.J. Dix,
J.E. Finlay (Eds.), Cambridge University Press, Cambridge, 1995.

[HCIint93] Proceedings of 5th Internatioinal Conference on Human-Computer In-
teraction HCI International’93 (Orlando, 8-13 August 1993), G. Salvendy, M.J.
Smith (Eds.), Advances in Human Factors/Ergonomics Series, Vol. 19B Software
and Hardware Interfaces, Elsevier Science B.V., Amsterdam, 1993.

 References 349

[HCIint95] Proceedings of 6th International Conference on Human-Computer In-
teraction HCI International’95 (Yokohama, 9-14 July 1995), Y. Anzai, K. Ogawa
and H. Mori (Eds.), Advances in Human Factors/Ergonomics Series, Vol. 20A Sym-
biosis of Human and Artifact: Future Computing and Design for Human-Computer
Interaction, Elsevier Science B.V., Amsterdam, 1995.

[Heintzen95] Heintzen, P., Kruschinski, V., Balzert, H., Ein wissensbasiertes System zur
Unterstützung des Benutzers bei der ergonomischen Farbzusammenstellung für Dialogmasken,
Tagung Software-Ergonomie’95 (Darmstadt, 1995).

[Hel-Or94] Hel-Or, Y., Rappoport, A., Werman, M., Relaxed parametric design with
probabilistic constraints, Computer Aided Design, Vol. 26, No. 6, 1994, pp. 426-434.

[Henderson90] Blomberg, J.L., Henderson, A., Reflections on Participatory Design: Les-
sons from the Trillium Experience, in [CHI90], pp. 353-359.

[Henter-Joyce95] JAWS for Windows, Technical Reference, Henter-Joyce, January
1995.

[Herz94] Herz, J., Hersch, R.D., Towards a Universal Auto-hinting System for Typographic
Shapes, Electronic Publishing, Vol. 7, No. 4, 1994, pp. 251-260.

[Hickmann 89] Hickmann, F.R., Killin, J.L., Land, L., Porter, D., Taylor, R.M., Anal-
ysis for Knowledge Based Systems. A Practical Guide to the KADS Methodology, Ellis Hor-
wood, Chichester, 1989.

[Hinrichs96] Hinrichs, T., Bareiss, R., Birnbaum, L., Collins, G., An Interface Design
Tool based on Explicit Task Models, in [CHI96], pp. 269-270.

[Hix93] Hix, D., Hartson, H.D., Developing User Interfaces - Ensuring Usability Through
Product and Process, John Wiley & Sons, New York, 1993.

[Hudson86] Hudson, S.E., King, R., A Generator of Direct Manipulation Office Systems,
ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986, pp.
132-163.

[Hudson88] Hudson, S.E., King, R., Semantic Feedback in the Higgens UIMS, IEEE
Transactions on Software Engineering, Vol. 14, No. 8, August 1988, pp. 1188-1206.

[Hudson89] Hudson, S.E., Graphical Specification of Flexible User Interface Displays, in
[UIST89], pp. 105-114.

[Hudson93] Hudson, S.E., Hsi, C.-N., A Synergistic Approach to Specifying Simple Num-
ber Independent Layouts by Example, in [InterCHI93], pp. 285-292.

[Hurlburt78] Hurlburt, A., The Grid, Van Nostrand Reinhold, New York, 1978.

[Hußmann89] Hußmann, H., Geser, A., The RAP System as a Tool for Testing Cold
Specifications, in « Algebraic Methods », M. Wirsing, J.A. Bergstra (Eds.), Lecture
Notes in Computer Sciences, Vol. 394, Springer-Verlag, Berlin, 1989, pp. 331-347.

350 Computer-Aided Design of User Interfaces

[IBM92] IBM Corporation, Object-Oriented Interface Design: IBM Common User Access
Guidelines, Que Corporation, Carmel, 1992.

[ICSE94] Proceedings of the Software Engineering and Human-Computer Interac-
tion ICSE’94 Workshop (Sorrento, 16-17 May 1995), J. Coutaz, R.N Taylor, (Eds.),
Lecture Notes In Computer Science, Vol. 896, Springer-Verlag, Berlin, 1995.

[IDA88] DSL V2.1 Reference Manual, DSL-SPEC V2.A Reference Manual, DSL-
SIM V2.1 Reference Manual, DSL-PROTO Reference Manual, METSI (Méthodes
et Technologies des Systèmes d’Information), Viroflay, 1988.

[Inmark94] zApp Application Framework V2.2, Programmers Guide, Inmark Develo-
pment Corporation, , Mountain View, 1994.

[Interact90] Proceedings of the 3rd IFIP TC13 Conference on Human-Computer
Interaction INTERACT’90, Cambridge, 27-31 August 1990, D. Diaper, D. Gilmore,
G. Cockton and B. Shackel (Eds.), Elsevier Science Publishers, Amsterdam, 1990.

[Interact95] Proceedings of the 5th IFIP TC13 Conference on Human-Computer
Interaction INTERACT’95, Lillehammer, 25-29 June 1995, K. Nordbyn, P.H.
Helmersen, D.J. Gilmore and S.A. Arnesen (Eds.), Chapman & Hall, London, 1995.

[InterCHI93] Proceedings of the Conference on Human Factors in Computing Sys-
tems INTERCHI’93 « Bridges Between Worlds » (Amsterdam, 24-29 April 1993),
S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, T. White (Eds.), ACM Press,
New York, 1993.

[ISO94] ISO ISO/WD 9241 Ergonomic requirements for office work with visual display termi-
nals (VDTs), Draft, International Standard Organization, 1994.

[Jaaksi95] Jaaksi, A., Object-oriented Specification of User Interfaces, IEEE Software - Prac-
tice and Experience, Vol. 25, No. 11, 1995, pp. 1203-1221.

[Jacob86] Jacob, R.J.K., A Specification Language for Direct-Manipulation User Interfaces,
ACM Transactions on Graphics, Vol. 5, No. 4, October 1986, pp. 283-317.

[Jacobson92] Jacobson, I., Object-oriented Software Engineering, A Use Case Driven Ap-
proach, ACM Press-Addison-Wesley, New York, 1992.

[Janssen93] Janssen, C., Weisbecker, A., Ziegler, J. , Generating User Interfaces from Data
Models and Dialogue Net Specifications, in [InterCHI93], pp. 418-423.

[Janssen96] Janssen, C., Dialogentwicklung für objektorientierte, graphische Be-
nutzungsschnittstellen, Springer, Berlin, 1996. Also Ph.D. thesis, University of Stuttgart,
1996.

[Jessen87] Jessen, E., Valk, R., Modelle für Rechensysteme, Springer-Verlag, Berlin,
1987.

 References 351

[Jiang92] Jiang, J., Murphy, E., Bailin, S., Truszkowski W., Szczur M., Prototyping a
Knowledge Based Compliance Checker for User-Interface Evaluation in Motif Development En-
vironnements, in Proceedings of Second Annual International Motif Users Meeting
MOTIF’92, Open Systems, Bethesda, 1992, pp. 258-268.

[Johnson90] Johnson, W.L., Understanding and Debugging Novice Programs, Artificial In-
telligence, Vol. 42, No. 1, February 1990, pp. 51-97.

[Johnson91a] Johnson, H., Johnson, P., Task Knowledge Structures: Psychological basis and
integration into system design, Acta Psychologica, Vol. 78, 1991, pp. 3-26. ftp://
ftp.dcs.qmw..ac.uk/publications/91-JohnsonH-1.ps.gz

[Johnson91b] Johnson, P., Johnson, H., Knowledge Analysis of Tasks: Task Analysis and
Specification for Human-computer Systems, in « Engineering the Human-Computer Inter-
face », A. Downton (Ed.), McGraw Hill, London, 1991.

[Johnson92a] Johnson, J.A., Selectors: Going Beyond User Interface Widgets, in [CHI92],
pp. 273-279.

[Johnson92b] Johnson, P., Markopoulos, P., Johnson, H., Task Knowledge Structures:
A specification of user task models and interaction dialogues, in Proceedings of 11th Interdis-
ciplinary workshop on informatics and psychology, Vol. 6, 1992.

[Johnson92c] Johnson, P., Human Computer Interaction: psychology, task analysis and soft-
ware engineering, McGraw-Hill, Maidenhead, 1992.

[Johnson93] Johnson, J.A., Nardi, B.A., Zarmer, C.L., Miller, J.R., ACE Building In-
teractive Graphical Applications, Communications of the ACM, Vol. 36, No. 4, April
1993, pp. 41-55.

[Johnson95] Johnson, P., Johnson, H., Wilson, S., Rapid Prototyping of User Interfaces
Driven by Task Models, in « Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development », J. Carroll (Ed.), John Wiley & Sons, London, 1995,
pp. 209-246.

[Jurain91] Jurain, T., Etude et classification des aides logicielles au développement d'interfaces
graphiques, Génie Logiciel et Systèmes Experts, No. 24, September 1991.

[Kappa96] PowerModel® The Object Power Tool. http://www.intellicorp.com/power-
model.html

[Karow90] Karow, P., Font Technology, Springer-Verlag, Berlin, 1990.

[Karsenty91] Karsenty, S., La construction d'interfaces utilisateurs, Génie Logiciel et Sys-
tèmes Experts, No. 24, September 1991.

[Kelly92] Kelly, C., Colgan, L., User Modelling and User Interface Design, in [HCI92], pp.
227-239.

[Kieras96] Kieras, D.E., A Guide to GOMS Model Usability Evaluation using NGOMSL,
in « The handbook of human-computer interaction », M. Helander, T. Landauer
(Eds.), Second Edition, North-Holland, Amsterdam, 1996.

352 Computer-Aided Design of User Interfaces

[Kim90] Kim, W., Foley, J.D., DON: User Interface Presentation Design Assistant, in
[UIST90], pp. 10-20.

[Kim93] Kim, W.C., Foley, J.D., Providing High-level Control and Expert Assistance in the
User Interface Presentation Design, in [InterCHI93], pp. 430-437.

[Kobsa90] Kobsa, A., Modeling the User’s Conceptual Knowledge in BGP-MS, a User Mod-
eling Shell System, Computational Intelligence, Vol. 6, 1990.

[Kolodner91] Kolodner, J.L., Improving Human Decision Making through Case-Based De-
cision Aiding, AI Magazine, Vol. 12, No. 2, Summer 1991, pp. 52-68.

[Kolski91a] Kolski C., Moussa F., Une approche d'intégration de connaissances ergonomiques
dans un atelier logiciel de création d'interfaces pour le contrôle de procédés, in Proceedings of
« Le Génie Logiciel et ses Applications » (Toulouse, 9-13 December 1991), pp 181-
194.

[Kolski91b] Kolski, C., Millot, P., A rule-based approach to the ergonomic static evaluation
of man-machine graphic interface in industrial processes, International Journal of Man-Ma-
chine studies, Vol. 35, No. 5, 1991, pp 657-674.

[Konsynski76] Konsynski, B.R., Macro Simulation in Design of Information Systems, in
Proceedings of 9th Hawai International Conference of System Sciences, Western
Periodicals, 1976.

[Korn92] Korn, P., Drees, B., GUI ACCESS: a developers's Toolkit Overview Information,
30 December 1992.

[Kramer94] Kramer, M., Unger, C., A Generalizing Operator Abstraction, in « Current
Trends in AI Planning », C. Bäckström, E. Sandewall (Eds.), IOS Press, Amsterdam,
1994, pp. 185-198.

[Kuo88] Kuo, F.-Y., Karimi, J., User Interface Design From a Real Time Perspective, Com-
munications of the ACM, Vol. 31, No. 12, December 1988, pp. 1456-1466.

[Kurlander93] Kurlander, D., Feiner, S. Inferring Constraints from Multiple Snapshots,
ACM Transactions on Graphics, Vol. 12, No. 4, October 1993, pp. 227-304.

[Larson92] Larson, J.A., Interactive Software: Tools for Building Interactive User Interfaces,
Yourdon Press, Prentice Hall, Englewood Cliffs, 1992.

[Lauesen93] Lauesen, S., Harning, M.B., Dialogue Design Through Modified Dataflow and
Data Modelling, in Proceedings of Vienna Conference on Human-Computer Interac-
tion VCHCI’93 (Vienna, September 1993), Lecture Notes in Computer Science Vol.
, Springer-Verlag, Berlin, pp. 172-183.

[Lauesen94] Lauesen, S., Harning, M.B., Grønning, C., Screen Design for Task Efficiency
and System Understanding, in Proceedings of OZCHI'94, S. Howard, Y.K. Leung
(Eds.), Melbourne, 1994, pp. 271-276.

[Lauridsen95] Lauridsen, O., Generation of user interfaces using formal specification, in [In-
teract95], pp. 325-330.

 References 353

[Leler88] Leler, W., Constraint Programming Language, Addison-Wesley, Reading, 1988.

[Lim92] Lim, K.Y., Long, J.B., Silcock, N., Integrating Human Factors with The Jackson
System Development Method: An Illustrated Overview, Ergonomics, Vol. 35, No. 10, 1992,
pp. 1135-1161.

[Lim94a] Lim, K.Y., Long, J., The MUSE Method for Usability Engineering, Cambridge
University Press, Cambridge, 1994.

[Lim94b] Lim, K., Long, J., Structured Notations to Support Human Factors Specification of
Interactive Systems, in [HCI94], pp. 313-326.

[Lindgaard94] Lindgaard, G., Usability Testing and System Evaluation, Chapman & Hall,
London, 1994.

[Lindsay72] Lindsay, P., Norman, D., Human Information Processing, Academic Press,
New York, 1972.

[Lonczewski95a] Lonczewski, F., PLUG--IN: Using Tcl/Tk for Plan Based User Guid-
ance, in Proceedings of the Tcl/Tk Workshop (Toronto, 6-8 July 1995), USENIX
Association, 1995, pp. 141-144.

[Lonczewski95b] Lonczewski F., Using a WWW-Browser as an alternative user interface
for interactive applications, in Poster Proceedings of the 3rd World Wide Web Confer-
ence (Darmstadt), R.Holzapfel (Ed.), Fraunhofer Institute for Computer Graphics,
1995, pp. 132-135.

[Lonczewski96] Lonczewski, F., Schreiber, S., The FUSE-System: an Integrated User
Interface Design Environment, in this volume, pp. 37-56. ftp://hpeick7.informatik. tu-
muenchen.de/pub/papers/sis/fuse_cadui96.ps.gz

[Loomis93] Loomis, M.E., The ODMG Object Model, Journal of Object-Oriented Pro-
gramming, Vol.6, No.3, June 1993, pp. 64-69.

[Löwgren92] Löwgren, J., Nordqvist, T., Knowledge-Based Evaluation as Design Support
for Graphical User Interfaces, in [CHI92], pp. 181-188.

[Lucongsang87] Lucongsang, A., Valentin, A., L'ergonomie des logiciels, Collection Ou-
tils et Méthodes, December 1987.

[Luo93] Luo, P., Szekely, P., Neches, R., Management of Interface Design in HUMANOID,
in [InterCHI93], pp. 107-114. http://www.isi.edu/isd/CHI93-manager.ps

[Macintosh95] Macintosh System 7, Apple Computer. 20525 Mariani Ave. Cupertino,
CA 95014, 1995

[Madani92] Madani, K., Contribution à la réalisation d’une plate-forme d’assistance « Intelli-
gente », Modélisation de l’utilisateur et conception d’un système d’accueil, Ph.D. thesis, Univer-
sité de Paris-Sud Centre d'Orsay, Paris, 1992.

354 Computer-Aided Design of User Interfaces

[Maltby95a] Maltby, J.R., Operational complexity of direct manipulation tasks in a windows
environment, Australian Journal of Information Systems, Vol. 2, No. 2, May 1995, pp.
30-49.

[Maltby95b] Maltby, J.R., Towards a language for GUI dialogues, in Proceedings of the
CHISIG Annual Conference OZCHI’95 (Melbourne, 27-30 November 1995),
Helen Hasan, Cathy Nicastri (Eds.), Australia, pp. 30-35.

[Martial92] Martial, O., Audicône: Le défi des interfaces graphiques, Journal d'information
de visuaide 2000, Vol. 1, No. 2, September 1992.

[Marcus92] Marcus, A., Graphic Design for Electronic Documents and User Interfaces, ACM
Press, New York, 1992.

[Martin90] Martin, J., Information Engineering, Book II Planning and Analysis, Prentice
Hall, Englewood Cliffs, 1990.

[Märtin90] Märtin, C., A UIMS for Knowledge Based Interface Template Generation and
Interaction, in [Interact90], pp. 651-657.

[Märtin93] Märtin, C., Winterhalder, C., Integrating CASE and UIMS for Automatic
Software Construction, in [HCIint93], pp. 291-296.

[Märtin95] Märtin, C., Generating the Dynamic Behavior of Interactive Applications from
High-Level Object-Oriented Models, in Proceedings of the International Conference on
Industry, Engineering and Management Systems IEMS´95 (Cocoa Beach, 1995),
G.C. Lee (Ed.), Univ. of Central Florida, 1995, pp. 180-185.

[Märtin96a] Märtin, Ch., Modellierung, Entwurf und automatische Konstruktion interaktiver
Softwaresysteme, Entwurf der modellbasierten Entwicklungsumgebung Application
Modeling Environment (AME), Ph.D. thesis, University of Rostock, 1996.

[Märtin96b] Märtin, C., Software Life Cycle Automation for Interactive Applications: The
AME Design Environment, in this volume, pp. 57-74.

[Mayhew92] Mayhew, D.J., Principles and Guidelines in Software User Interface Design,
Prentice Hall, Englewood Cliffs, 1992.

[McMahon92] McMahon, C.A., Lehane, J., Williams, H.S., Webber G., Observations
on the Application and Development of Parametric-Programming Techniques, Computer-Aided
Design, Vol. 24, No. 10, October 1992, pp. 541-546.

[Meinadier91] Meinadier, J.P., L'interface utilisateur, pour une informatique conviviale, Du-
nod, Paris 1991.

[Metais86] Metais, T., OMEGA V1.2, Présentation Méthodologique, Electricité de
France-Gaz de France, 1 October 1986.

[Meyer88] Meyer, B., Object-Oriented Software Construction, Prentice Hall, Englewood
Cliffs, 1988.

[Meyer95] Meyer, B., Object Success, Prentice Hall, Englewood Cliffs, 1995.

 References 355

[Mice93] Guide de conception des interfaces graphiques, MICE - Sous-groupe D Interfaces
Utilisateurs, La Poste, December 1993.

[Microsoft91] Microsoft Visual C++, Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052, 1991.

[Microsoft92] The Windows Interface - An Application Design Guide, Microsoft Press,
Redmond, 1992.

[Microson92] Sonolect 5.0. un éditeur vocal d’écran, User Guide, Microson, 1992.

[Monarchi92] Monarchi, D.E., Puhr, G.I., A Research Typology for Object-Oriented Anal-
ysis and Design, Communications of the ACM, Vol. 35, No. 9, September 1992, pp.
35-47.

[Morin90] Morin, D., Working Group Discussion: Current Practice, in Proceedings of Eu-
rographics Workshop on User Interface Management Systems and Environments
(Lisbon, June 1990), Duce, D.A., Gomes, M.R., Hopgood, F.R.A., Lee, J.R. (Eds.),
Eurographics Seminars, Tutorial and perspectives in computer graphics, Springer-
Verlag, 1990, pp. 51-56.

[Moriyón94] Moriyón, R., Szekely, P., Neches, R., Automatic Generation of Help from
Interface Design Models, in [CHI94], pp. 225-231. http://www.isi.edu/isd/CHI94-
Help.ps

[Mullet95a] Mullet, K., Organizing information spatially, Interactions, Vol. 11, No. 3,
July 1995, pp. 15-20.

[Mullet95b] Mullet, K., Sano, D., Designing Visual Interfaces, Prentice Hall, Englewood
Cliffs, 1995.

[Murata89] Murata, T., Petri Nets: Properties, Analysis and Applications, Proceedings of
the IEEE, Vol.77, No.4, 1989, pp. 541-580.

[Murata91] Murata, T., Nelson, P.C., A Predicate-Transition Net Model for Multiple Agent
Planning, Information Sciences, Vol. 57-58, 1991, pp. 361-384.

[Myers88] Myers, B., Creating User Interfaces by demonstration, Academic Press, Boston,
1988.

[Myers89] Myers B.A. et al. , The Garnet Toolkit Reference Manuals: Support for Highly
Interactive Graphical User Interfaces in Lisp, Carnegie Mellon University, Computer Sci-
ence Department, Technical Report CMU-CS-89-196, November 1989

[Myers90a] Myers, B.A., et. al., Garnet: Comprehensive Support for Graphical, Highly-Inter-
active User Interfaces, IEEE Computer, Vol. 23, No. 11, January 1990, pp. 71-85

[Myers90b] Myers, B.A., A New Model for Handling Input, ACM Transactions on In-
formation Systems, Vol. 8, No. 3, July 1990, pp. 289-320.

[Myers91a] Myers, B.A., Graphical Techniques in a Spreedsheet for Specifying User Interfaces,
in [CHI91], pp. 243-256.

356 Computer-Aided Design of User Interfaces

[Myers91b] Myers, B.A., Separating Application Code from Toolkits: Eliminating the Spa-
ghetti of Call-Backs, in [UIST91], pp. 211-220 (1991)

[Myers92] Myers, B.A., Rosson, M.B., Survey on User Interface Programming, in [CHI92],
pp. 195-202.

[Myers93a] Myers, B.A., Lapidary, in « Whatch What I do: Programming by Demon-
stration », A. Cypher (Ed.), The MIT Press, Cambridge, 1993.

[Myers93b] Myers, B.A., McDaniel, R.G, Kosbie, D.S., Marquise: Creating Complete
User Interfaces by Demonstration, in [InterCHI'93], pp. 293-300.

[Myers94] Myers, B.A., Challenges of HCI Design and Implementation, Interactions, Vol.
1, No. 1, pp. 73-83.

[Myers95] Myers, B.A., User Interface Software Tools, ACM Transactions on Computer-
human Interaction, Vol. 2, No. 1, March 1995, pp. 64-103.

[Neches93] Neches, R., Foley, J.D., Szekely, P., Sukaviriya, P., Luo, P., Kovacevic,
S., Hudson, S., Knowledgeable Development Environments Using Shared Design Models, in
Proceedings of ACM/AAAI International Workshop on Intelligent User Interfaces
(Orlando, 6-9 January 1993), ACM Press, New York. http://www.isi.edu/
isd/ii93.ps

[Neuron91] Open Interface V3.0, Open Interface Toolkit, Neuron Data, Inc., Palo Alto,
1991.

[Neuron93] Open Interface V3.0, Development Guide, Neuron Data, Inc., Palo Alto,
1993.

[Newell72] Newell, A., Simon, H.A., Human Problem Solving, Prentice-Hall, Eng-
lewood Cliffs, 1972.

[Nexpert96] Neuron Dataelements Environment. http://www.neurondata.com/

[NeXT90] Interface Builder, NeXT, Inc., Palo Alto, 1990.

[Nielsen90] Nielsen, J., Traditional dialogue design applied to modern user interfaces, Com-
munications of The ACM, Vol. 33, No. 10, October 1990, pp. 109-118.

[Nielsen94] Nielsen, J., Enhancing the Explanatory Power of Usability Heuristics, in
[CHI94], pp. 101-107.

[Norman86] Norman, D.A., Cognitive Engineering, in « User Centered System De-
sign », D.A. Norman, S.W. Draper, Lawrence Erlbaum Associates, Hillsdale, 1986.

[Normand92] Normand, V., Le modèle SIROCO: de la spécification cocneptuelle des interfaces
utilisateur à leur réalisation, Ph.D. thesis, Université Joseph Fourier, Grenoble, April
1992.

[Olsen83] Olsen, D.R., SYNGRAPH : a Graphical User Interface Generator, ACM Com-
puter Graphics, Vol. 23, No. 3, July 1983, pp. 43-50.

 References 357

[Olsen86] Olsen, D.R., MIKE: The Menu Interaction Kontrol Environment, In: ACM
Transactions on Information Systems, Vol. 5, No. 4, pp. 318-344.

[Olsen89] Olsen, D.R., A programming language basis for user interface managment, in
[CHI89], pp. 171-176.

[Olsen90] Olsen, D., Propositional Production Systems for Dialog Description, in [CHI90],
pp.57-63.

[Olsen93] Olsen, D.R., Foley, J.D., Hudson, S.E., Miller, J., Myers, B.A, Research di-
rections for user interface software tools, Behaviour & Technology, Vol. 12, No. 2, 1993,
pp. 81-97.

[OMG91] The Common Object Request Broker: Architecture and Specification, OMG
Document Number 91.12.1, December 1991.

[OSF94] OSF/Motif Style Guide, Revision 2.0, Open Software Foundation (OSF),
Prentice Hall, Englewood Cliffs, 1994.

[Ounis91] Ounis, O., Modélisation de l'apprenant dans un système de formation, Ph.D. thesis,
Université Paris-Sud, Centre d'Orsay, December 1991.

[Outspoken89] Berkeley system, Outspoken for Macintosh, Reference manual, 1989.

[OZCHI94] Proceedings of OZCHI’94 (Melbourne, November 1994), S. Howard,
Y.K. Leung (Eds.), CHISIG of Ergonomics Society of Australia, 1994.

[Palanque93a] Palanque, P., Bastide, R., Sibertin, C., Dourte, L., Design of User-Driven
Interfaces using Petri nets and Objects, in Proceedings of 5th Conference on Advanced
Information Systems Engineering CAISE’93 (Paris, June 1993), F. Bodart, C. Rol-
land, C. Cauvet (Eds.), Lecture Notes in Computer Science No. 685, Springer-Ver-
lag, Berlin, 1993. http://www.cenatls.cena.dgac.fr/~palanque/Ps/ caise93.ps.gz

[Palanque93b] Palanque, P., Bastide, R., Contextual Help for Free with Formal Dialogue
Design, in [HCI93]. http://www.cenatls.cena.dgac.fr/~palanque/Ps/hciinter 93.
ps.gz

[Palanque94a] Palanque, P., Bastide, R., Formal specification of HCI for increasing software's
ergonomics, in Proceedings of ERGONOMICS'94 (Warwick, 19-22 April 1994).
http://www.cenatls.cena.dgac.fr/~palanque/Ps/ergono94.ps.gz

[Palanque94b] Palanque, P., Bastide, R., Petri Net based Design of User-Driven Interfaces
using the Interactive Cooperative Objects Formalism, in [DSV-IS94], pp. 383-400.
http://www.cenatls.cena.dgac.fr/~palanque/Ps/dsvis94.ps.gz

[Palanque94c] Palanque Ph., Long, J., Tarby, J.-C., Barthet M.-F., Lim, K., Ergonomic
Application Design: a Method for Computer Science and a Method for Human Factors, in Pro-
ceedings of ERGO-IA’94 (Biarritz, October 1994), Imprimerie Andre Larre, Ba-
yonne, 1994, pp. 394-405. http://www.cenatls.cena.dgac.fr/~palanque/Ps/ ergo-
ia94.ps.gz

358 Computer-Aided Design of User Interfaces

[Palanque95] Palanque, P., Bastide, R., Verification of an Interactive Software by Analysis
of its Formal Specification, in [Interact95], pp. 191-196. http://www.cenatls. cena.
dgac.fr/~palanque/Ps/interico95.ps.gz

[Palmer94] Palmer, S., Rock, I., Rethinking perceptual organization: The role of uniform con-
nectedness, Psychonomic Bulletin & Review, Vol. 1, No. 1, 1994, pp. 29-55.

[Panet94] Panet, G., Letouche R., MERISE/2, Modèles et techniques avancés, Les Edi-
tions d'Organisation, 1994.

[Pangoli95] Pangoli, S., Paternó, F., Automatic Generation of Task-oriented Help, in
[UIST95], pp. 181-187.

[Parnas69] Parnas, D.L., On the use of transition diagrams in the design of a user interface for
an interactive computer system, in Proceedings of 24th ACM Conference, 1969, pp. 379-
385.

[Paternó92] Paternó, F., Faconti, G., On the Use of LOTOS to Describe Graphical Inter-
action, in [HCI92], pp. 155-174.

[Paternó95] Paternó, F., Mezzanotte, M., Formal Verification of Undesired Behavious in
the CERD Case Study, in [EHCI95], pp. 213-226.

[Pednault88] Pednault, E., Synthesizing Plans that Contain Actions with Context-Dependent
Effects, Computational Intelligence, Vol. 4, No. 4, 1988, pp. 356-372.

[Peterson81] Peterson, J.L., Petri net theory and modeling of systems, Prentice-hall. Eng-
lewood Cliffs, 1981.

[Petoud89] Petoud, I., Pigneur, Y., An Automatic and Visual Approach for User Interface
Design, in [EHCI89], pp. 403-419.

[Petoud90] Petoud, I., Génération automatique de l'interface homme-machine d'une application
de gestion hautement interactive, Hautes Ecoles des Etudes Commerciales de l'Université
de Lausanne, Ph.D. thesis, Chabloz, Tolochenaz, 1990

[Pettersson95] Pettersson, M., Designing the User Interface on Top of a conceptual Model, in
Proceedings of 7th International Conference on Advanced Information Systems
Engineering CAISE'95 (Jyväskylä, 12-16 June 1995), G. Goos, J. Hartmanis, J.van
Leeuwen (Eds.), Lecture Notes in Computer Science Vol. 932, Springer-Verlag, Ber-
lin, pp. 231-242.

[Pfaff85] Pfaff, G. (Ed.), Proceedings of Eurographics seminar (November 1983),
Tutorial and perspectives in computer graphics; user interface management system, Springer-Ver-
lag, Berlin, 1985.

[Pnueli86] Pnueli, A., Applications of Temporal Logic to the Specification and Verification of
Reactive Systems: A Survey of Current Trends, Lecture Notes in Computer Science Vol.
224, Springer-Verlag, Berlin, 1986, pp. 510-584.

[Pollier91] Pollier, A., Evaluation d’une interface par des ergonomes : Diagnostics et Stratégies,
Research report INRIA No. 1391, February 1991.

 References 359

[Porter83] Porter, T., Goodman, S., Manual of Graphic Techniques, Charles Scribner's
Sons, New York, 1983.

[Puerta90] Puerta, A.R., L-CID: A Blackboard Framework to Experiment with Self-Adap-
tation in Intelligent Interfaces, Ph. D thesis, University of South Carolina, Columbia,
South Carolina, USCMI Report No. 90-ESL-6, July 1990.

[Puerta93] Puerta, A.R., Tu, S.W., Musen, M.A., Modeling tasks with mechanisms, Inter-
national Journal of Intelligent Systems, Vol. 8, No. 1, 1993, pp. 129-152.

[Puerta94a] Puerta, A.R., Szekely, P., Model-based Interface Development, CHI'94 Tutorial
Notes, 1994.

[Puerta94b] Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A., Beyond Data
Models for Automated User Interface Generation, in [HCI94], pp. 353-366. http://www-
ksl.stanford.edu/KSL_Abstracts/KSL-93-62.html

[Puerta96a] Puerta, A.R., The MECANO Project: Enabling User-Task Automation During
Interface Development, in Proceedings of AAAI’96 Spring Symposium on Acquisition,
Learning & Demonstration: Automating Tasks for Users (Stanford, March 1996),
AAAI Press, pp. 117-121.

[Puerta96b] Puerta, A., The MECANO Project: Comprehensive and Integrated Support for-
Model-Based Interface Development, in this volume, pp. 19-35.

[Rasmussen83] Rasmussen, J., Skills, rules and knowledge; signals, signs and symbols,and
other distinctions in human performance models, IEEE Transactions on Systems, Man and
Cybernetics, 1983.

[Ravden89] Ravden, S., Johnson, G., Evaluating usability of human-computer interface. A
practical method, Ellis Horwood Books, 1989.

[Razouk79] Razouk, R., Vernon, M., Estrin, G., Evaluation Methods in SARA- The
Graph Model Simulator, SIGSIM, Vol. 11, No. 1, Fall 1979.

[Reisig92] Reisig, W., Combining Petri Nets and Other Formal Methods, in Proceedings of
ATPN’92 (Sheffield, June 1992), Lecture Notes in Computer Science Vol. 616,
Springer-Verlag, Berlin, 1992, pp. 24-44.

[Reiterer94] Reiterer, H., User Interface Evaluation and Design, GMD-Report No. 237,
Oldenbourg, 1994.

[Reiterer95] Reiterer, H. IDA – A Design Environment for Ergonomic User Interfaces, in
[Interact95], pp. 305-310.

[Rossignac90] Rossignac, J.R., Issues on Feature-Based Editing and Interrogation of Solid
Models, Computer & Graphics, Vol. 14, No. 2, 1990, pp.149-172.

[Rosson95] Rosson, M.B., Carroll, J.M., Integrating Task and Software Development for
Object-Oriented Applications, in [CHI95], pp. 377-384.

360 Computer-Aided Design of User Interfaces

[Roudaud90] Roudaud, B., Lavigne, V., Lagneau, O., Minor, E., SCENARIOO: A New
Generation UIMS, in [Interact90], pp. 607-612.

[Rowe91] Rowe, L.A., Konstan, J.A., Smith, B.C., Seitz, S., Liu, C., The PICASSO
Application Framework, in [UIST91], pp. 95-105.

[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.,
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, 1991.

[Sacerdoti 74] Sacerdoti, E.D., Planing a Hierarchy of Abstraction Spaces, Artificial Intel-
ligence, Vol. 5, No. 2, Summer 1974, pp. 115-135.

[Sacerdoti 77] Sacerdoti, E.D., A Structure for Plans and Behavior, Elsevier Computer
Science Library, New York, 1977.

[Saiz95] Saiz, F., Contreras, J., Moriyón, R., Virtual Slots: Increasing Power and reusability
for User Interface Development Languages, in [CHI95], pp. 236-237.

[Saiz96] Saiz, F., Contreras, J., Moriyón, R., KIISS: a system for interactive modification of
model-based interfaces, IIC Research Report 06-96, 1996.

[Savidis95a] Savidis, A., Stephanidis, C., Developing Dual Interfaces for Integrating Blind
and Sighted Users: the HOMER UIMS, in [CHI95], pp. 106-113.

[Savidis95b] Savidis, A., Stephanidis, C., Building non-visual interaction through the devel-
opment of the Rooms metaphor, in Companion of the CHI’95 conference in Human Fac-
tors in Computing Systems, Denver, Colorado, May 7-11, 244-245.

[Scapin89] Scapin D.L, Pierret-Golbreich, C., Towards a method for task description:
MAD, Work with display unit, Amsterdam, Elsevier, 1989.

[Scapin93] Scapin D.L., Bastien, J.M, Ergonomics Criteria for the Evaluation of Human-
Computer Interfaces, Report INRIA No. 156, June 1993.

[Schlaer 88] Schlaer, S., Mellor, S.J., Object Life Cycles: Modeling the World in States,
Yourdon Press, Prentice Hall, Englewood Cliffs, 1991.

[Schlungbaum95] Schlungbaum, E., Elwert, T., Modellierung von Graphischen Benutzung-
soberflächen im Rahmen des TADEUS-Ansatzes, in Software-Ergonomie95 Mensch-
Computer Interaktion Anwendungsbereiche lernen voneinander, H.-D. Böcker,
Teubner, Stuttgart, 1995, pp. 331-348.

[Schlungbaum96] Schlungbaum, E., Elwert, T., Automatic User Interface Generation from
Declarative Models, in this volume, pp. 3-18. http://www.informatik.uni-ros-
tock.de/~schlung/TADEUS/paper/CADUI96.html

[Schmalzbauer95] Schmalzbauer, M., Generierung der Dynamik interaktiver Anwendungen
aus abstrakten Objektmodellen unter Windows, Diploma Thesis, Fachhochschule Augs-
burg, Fachbereich Informatik, October 1995.

 References 361

[Schreiber93] Schreiber, W., Prosaische Logik fuer Dichter und Denker -- Textverarbeitung
massgeschneidert, Forschung fuer Bayern, Vol. 6, Technische Universitaet Muenchen,
1993.

[Schreiber94a] Schreiber, S., The BOSS System: Coupling Visual Programming with Model
Based Interface Design, in [DSV-IS94], pp. 161-179. ftp://hpeick7.informatik. tu-
muenchen.de/pub/papers/sis/eg94.ps.Z

[Schreiber94b] Schreiber, S., Specification and Generation of User Interfaces with the BOSS-
System, in [EWHCI94], pp. 107-120. ftp://hpeick7.informatik.tu-muenchen.
de/pub/papers/sis/ewhci94.ps.Z

[Schreiber96] Schreiber, S., Spezifikationstechniken und Generierungswerkzeuge für gra-
phische Benutzungsoberflächen, Ph.D. Thesis, Munich University of Technology, 1996.

[Schwab95] Schwab, R., Generierung von Standardbedienoberflaechen aus Applika-
tionsbeschreibungen, Master's thesis, Technische Universitaet Muenchen, 1995.

[Sears93] Sears, A., Layout appropriateness: A metric for evaluating user interface widget layout,
IEEE Transactions on Software Engineering, VoL. 19, No. 7, 1993, pp. 707-718.

[Sears95] Sears, A., AIDE: A step toward metric-based interface development tools, in
[UIST95], pp. 101-110.

[Sebillotte 88] Sebillotte, S., Hierarchical Planning as Method for Task Analysis: the Exam-
ple of Office Task Analysis, Behaviour and Information Technology, Vol. 7, No. 3,
1988, pp. 275-293.

[Sebillotte 91] Sebillotte, S., Task Description according User's Objectives, Le Travail Hu-
main, Vol. 54, No. 3, 1991, pp. 193-223.

[Senach90] Senach, B., Evaluation ergonomique des interfaces homme-machine: une revue de la
litterature, Report INRIA No. 1180, March 1990.

[Senay89] Senay, H. et al., Planning for Automatic Help Generation, in [EHCI89], pp.
293-311.

[Shannon62] Shannon, C.E., Weaver, W., The Mathematical Theory of Communication,
University of Illinois, Urbana, 1962.

[Shneiderman92] Shneiderman, B., Designing the User Interface: Strategies for Effective Hu-
man-Computer Interaction (2nd ed.), Addison-Wesley, Reading, 1992.

[Shneiderman95] Shneiderman, B., Chimera, R., Jog, N., Evaluating spatial and textual
style of displays, Technical report No. CAR-TR-763, CS-TR-3451, ISR-TR-95-51,
HCIL, University of Maryland, 1995.

[Shoval90] Shoval, P., Functional Design of a Menu-Tree Interface within Structured System
Development, International Journal of Man-Machine Studies, Vol. 33, No. 5, Novem-
ber 1990, pp. 537-556.

362 Computer-Aided Design of User Interfaces

[Sibertin-Blanc94] Sibertin-Blanc, C., Cooperative nets, in Proceedings of the 15th In-
ternational Conference on Application and Theory of Petri nets, Lecture Notes in
Computer Science No. 815, 1994.

[Siemens92] Telefon Bedienungsanleitung Hicom Standard 300, Siemens AG, 1992.

[Singh89] Singh, G., Green, M., CHISEL: A System for Creating Highly Interactive Screen
Layouts, in [UIST89], pp. 86-94.

[Singh91] Singh, G., Green, M., Automating the Lexical and Syntactic Design of Graphical
User Interfaces: The UofA* UIMS, ACM Transactions on Graphics, Vol. 10, No. 3,
July 1991, 213-254.

[Smith84] Smith, S.L., Mosier, J. N., A design evaluation checklist for user-system interface
software, Report MTR-9480 EDS-TR-84-358, The MITRE Corporation, Bedford,
1984.

[Smith86] Smith, S.L., Mosier, J.N., Design Guidelines for the User Interface Software,
Technical Report ESD-TR-86-278 (NTIS No. AD A177198), U.S. Air Force Elec-
tronic Systems Division, Hanscom Air Force Base, Massachusetts, 1986.

[Sol82] Sol, H.G., Simulatin in Information Systems Development, Ph.D. thesis, Rijksuni-
versiteit te Groningen, Groningen, 1982.

[Sommerville95] Sommerville, I., Software Engineering, Addison-Wesley, Reading,
1995.

[Staggers93] Staggers, N., Norcio, A.F, Mental Models: Concepts for Human-Computer
Interaction Research, International Journal of Man-Machine Studies, Vol. 38, No. 1993,
pp. 587-605.

[Star93] Star Division, StarView programmer’s guide, 1993.

[Stoors95] Storrs, G., The Notion of Task in Human-Computer Interaction, in [HCI95],
pp. 357-365.

[Sukaviriya90] Sukaviriya, P., Foley, J.D., Coupling a UI Framework with Automatic Gen-
eration of Context-Sensitive Animated Help, in [UIST90], pp. 152-166.

[Sukaviriya93] Sukaviriya, P., Foley, J.D., Griffith, T., A Second Generation User Interface
Design Environment: The Model and the Runtime Architecture, in [InterCHI93], pp. 375-
382

[Sukaviriya94] Sukaviriya, P., Muthukumarasamy, J., Frank, M., Foley, J.D., A Model-
based User Interface Architecture: Enhancing a Runtime Environment with Declarative
Knowledge, in [DSV-IS94], pp. 181-197.

[Sun90] OPEN LOOK Graphical User Interface Application Style Guidelines, Sun Microsys-
tems Inc., Addison-Wesley, Reading, 1990.

[Sutcliffe95] Sutcliffe, A.G., Human-Computer Interface Design, Macmillan Press, Lon-
don, 1995.

 References 363

[Systa93] Systa, K., Specifying User Interfaces in DisCo, in [York93].

[Szekely92] Szekely, P., Luo, P., Neches, R, Facilitating the Exploration of Interface Design
Alternatives: The HUMANOID Model of Interface Design, in [CHI92], pp. 507-514.
http://www.isi.edu/isd/CHI92.ps

[Szekely93] Szekely, P., Luo, P., Neches, R., Beyond Interface Builders: Model-Based Inter-
face Tools, in [InterCHI93], pp. 383-390. http://www.isi.edu/isd/Interchi-be-
yond.ps

[Szekely95] Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Salcher,
E., Declarative interface models for user interface construction tools: the MASTERMIND approach,
in [EHCI95], pp. 120-150. http://www.isi.edu/isd/Mastermind/Papers/ ehci95.ps

[Szekely96] Szekely, P., Retrospective and Challenges for Model-Based Interface Devel-
opment, in this volume, pp. xxi-xliv. http://www.isi.edu/isd/Mastermind/Internal/
Files/DSVIS96/paper.ps.Z

[Tarby93] Tarby, J.-C, Gestion Automatique du Dialogue Homme-Machine à partir de Spéci-
fications Conceptuelles [Automatic Human-Computer Dialogue Management from Conceptual
Specifications], Ph.D. thesis, Université de Toulouse I, Toulouse, September 1993.
http://www-trigone.univ-lille1.fr/jean_claude/publis.htm

[Tarby94] Tarby, J.-C., The Automatic Management Of Human-Computer Dialogue And
Contextual Help, in [EWHCI94]. ftp://trg03.univ-lille1.fr/FTP/pub/Publis/JC.
TARBY/ewchi.ps.gz

[Tarby96] Tarby, J.-C., Barthet, M.-F., The DIANE+ Method, in this volume, pp. 95-
119.

[Tardieu83] Tardieu, H., Rochfeld, A., Coletti, R., La méthode MERISE, Principes et
outils, Ed. Organisation, Paris, 1983.

[Teichroew77] Teichroew, D., Hersley, E.A. PSL-PSA: A Computer-Aided Technique
for Sturtcured Documentation and Analysis of Information Processing Systems, IEEE Transac-
tions of Software Engineering, Vol. SE-3, No. 1, January 1977.

[Tenenberg91] Tenenberg, J.D., Abstraction in Planning, in « Reasoning About Plans »,
J.F. Allen, Kautz, H.A., Pelavin, R.N., Tenenberg, J.D. (Eds.), Morgan Kaufmann,
San Mateo, 1991, pp. 213-283.

[Trefz89] Trefz, B., Ziegler, J., The User Interface Management System DIAMANT, in
[EHCI89], pp. 177-195.

[Tomiyama92] Tomiyama, T., Kiriyama, T., Yoshikawa, H., Intelligent CAD Systems:
Today and Tomorrow, Journal of Japanese Society for Artificial Intelligence, Vol. 7, No.
2, March 1992, pp. 187-196.

[Took90] Took, R., Putting Design into Practice: Formal Specification and the User Interface,
in « Formal Methods in Human-Computer Interaction », M. Harrison, H. Thimbleby
(Eds.), Cambridge University Press, Cambridge, 1990, pp.63-96.

364 Computer-Aided Design of User Interfaces

[Tullis81] Tullis, T.S., An Evaluation of Alphanumeric, Graphic, and Color Information Dis-
plays, Human Factors, Vol. 23, No. 5, 1981, pp. 541-550.

[Tullis83] Tullis, T.S., The formatting of alphanumeric displays: a review and analysis, Human
Factors, Vol. 25, No. 6, 1983, pp. 557-582.

[Tullis88a] Tullis, T.S., A system for evaluating screen formats, in « Advances in Human-
Computer Interaction «, H.R. Hartson, D. Hix (Eds.), Ablex Publishing, 1988, pp.
214-286.

[Tullis88b] Tullis, T.S., Screen design, in « Handbook of Human-Computer Interac-
tion », M. Helander (Ed.), Elsevier Science Publishers B.V. (North-Holland), Am-
sterdam, 1988.

[Tweedie95] Tweedie, L., Interactive Visualisation Artifacts: How can Abstractions Inform
Design?, in [HCI95], pp. 247-265. http://www.ee.ic.ac.uk/research/information/
www/LisaDir/DIVA/DIVA.html

[UIST88] Proceedings of the 1st Annual Symposium on User Interface Software and
Technology UIST’88 (Banff, 17-19 October 1988), ACM Press, New York, 1988.

[UIST89] Proceedings of the 2nd Annual Symposium on User Interface Software and
Technology UIST’89 (Williamsburgh, 13-15 November 1989), ACM Press, New
York, 1989.

[UIST90] Proceedings of the 3rd Annual Symposium on User Interface Software and
Technology UIST’90 (Snowbird, 3-5 October 1990), ACM Press, New York, 1990.

[UIST91] Proceedings of the 4th Annual Symposium on User Interface Software and
Technology UIST’91 (Hilton Head, 11-13 November 1991), ACM Press, New York,
1991.

[UIST92] Proceedings of the 5th Annual Symposium on User Interface Software and
Technology UIST’92 (Monterey, 15-18 November 1992), ACM Press, New York,
1992.

[UIST95] Proceedings of the 8th Annual Symposium on User Interface Software and
Technology UIST’95 (Pittsburgh, November 1995), G.C. van der Veer, S. Bagnara
and G.A.M. Kempen (Eds.), ACM Press, New York, 1995.

[Vanderdonckt93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection, in [InterCHI93], pp. 424-429. http://www.
info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-93-005

[Vanderdonckt94a] Vanderdonckt, J., Automatic Generation of a User Interface for Highly
Interactive Business-Oriented Applications, in [CHI94], pp. 41 & 123-124.

[Vanderdonckt94b] Vanderdonckt, J., Gillo, X., Visual Techniques for Traditional and
Multimedia Layouts, in [AVI94], pp. 95-104. http://www.info.fundp.ac.be/~jvd/
public.html

 References 365

[Vanderdonckt94c] Vanderdonckt, J., Information Presentation for Multimedia Business
Oriented Applications, Workshop on Standardisation of Multimedia User Interface De-
sign during meeting of ISO/TC 159/SC 4/WG 5 (Paris, 29 August-2 September
1994), September 1994.

[Vanderdonckt94d] Vanderdonckt, J., Ouedraogo, M., Yguietengar, B., A Comparison
of Placement Strategies for Effective Visual Design, in [HCI94], pp. 125-143. http://
www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-94-019

[Vanderdonckt94e] Vanderdonckt, J., Guide ergonomique des interfaces homme-machine,
Presses Universitaires de Namur, Namur, 1994.

[Vanderdonckt94f] Vanderdonckt, J., The "Tools for Working with Guidelines" Bibliog-
raphy, SIGCHI Bulletin, Vol. 26, No. 3, July 1994, p. 92. Also in Technical report
94/1, Facultés Universitaires Notre-Dame de la Paix, Institut d'Informatique, Na-
mur, March 1994. http://www.info.funp.ac.be/fundpdocs/publications/TN/ TN-
94-001.ps.Z. Also see http://www.twi.tudelft.nl/Local/HCI/Guidelines-
Tools.html

[Vanderdonckt95a] Vanderdonckt, J., Accessing Guidelines Information with SIERRA, in
[Interact95], pp. 311-316. http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper?
RP-95-020

[Vanderdonckt95b] Vanderdonckt, J., Knowledge-Based Systems for Automated User Inter-
face Generation: the TRIDENT Expierence, Technical Report RP-95-010, Facultés Uni-
versitaires Notre-Dame de la Paix, Institut d'Informatique, Namur, 1995.
http://www.info.fundp.ac.be/cgi-bin/pub-spec-paper?RP-95-010

[Vanderdonckt95c] Vanderdonckt, J., Tools for Working with Guidelines, Tutorial #12
notes, 6th International Conference on Human-Computer Interaction HCI Interna-
tional’95 (Yokohama, 10 July 1995), 1995.

[vander Zanden90] vander Zanden, B., Myers, B.A., Automatic, Look-and-Feel Inde-
pendent Dialog Creation for Graphical User Interfaces, in [CHI90], pp. 27-34.

[Wasserman85] Wasserman, A.I., Extending State-Transition Diagrams for the Specifica-
tion of Human-Computer Interaction, IEEE Transactions on Software Engineering, Vol.
11, No. 8, August 1985, pp. 699-713.

[Weisbecker95] Weisbecker, A., Ein Verfahren zur automatischen Generierung von software-
ergonomisch gestalteten Benutzungsoberfläachen, Springer, Berlin, 1995, Also Ph.D. thesis,
University of Stuttgart, 1995.

[Weld94] Weld, D.S., An Introduction to Least Commitment Planning, AI Magazine, Vol.
15, No. 4, 1994, pp. 27-61.

[Wellner89] Wellner, P.D., Statemaster: A UIMS based on Statecharts for Prototyping and
Target Implementation, in [CHI’89], pp. 177-182.

[Wiecha89] Wiecha, C., Bennett, W., et al., Generating Highly Interactive User Interfaces,
in [CHI89], pp. 277-282

366 Computer-Aided Design of User Interfaces

[Wiecha90] Wiecha, C., Bennett, W., Boies, S., Gould, J., Green, S., ITS: A Tool for
Rapidly Developing Interactive Applications, ACM Transactions on Information Systems,
Vol. 8, No. 3, July 1990, pp. 204-236.

[Wilson93] Wilson, S., Johnson, P., Kelly, C., Cunningham, J., Markopoulos, P., Be-
yond hacking: a model based approach to user interface design, in [HCI'93], pp. 217- 231.
ftp://ftp.dcs.qmw..ac.uk/publications/93-WilsonS-1.ps.gz

[Wilson96] Wilson, S., Johnson, P., Bridging the Generation Gap: From Work Tasks to
User Interface Designs, in this volume, pp. 77-94.

[Winchester81] Winchester, J., Requirements Definition and its Interface to the SARA De-
sign Methodology for Computer-Based Systems, Ph.D. thesis, University of California at Los
Angeles, Los Angeles, 1981.

[Wirsing90] Wirsing, M., Algebraic Specifications, in « Handbook of Theoretical Com-
puter Science », J. van Leeuwen (Ed.), North Holland, 1990, pp. 676-788.

[Wood70] Wood, W.A., Transition network grammars for natural language analysis, Com-
munications of the ACM, Vol. 13, No. 10, October 1970, pp. 591-606.

[Yamaoka96] Yamaoka, T., Nishida, S., A Case-Based Design Support Method Incorporated
with Designer's Intention Recognition, in this volume, pp. 303-319.

[York93] York Workshop on Formal Methods for the Design of Interactive Systems
(York, 1993).

[Young90] Young, D.A., The X Window System, Programming and Applications with Xt,
OSF/Motif Edition, Prentice Hall, Englewood Cliffs, 1990.

[Yourdon89] Yourdon, E., Modern Structured Analysis, Prentice Hall, Englewood
Cliffs, 1989.

[Yunten85] Yunten, T., Hartson, H.R., A Supervisory Methodology and Notation (SUPER-
MAN) for Human-Computer System Development, in « Advances in Human-Computer In-
teraction », H.R. Hartson (Ed.), Ablex Publishing, Norword, pp. 243-281.

[Zalik93] Zalik, B., Guid, N., Vesel, A., Reusability of Parametrized Geometric Objects,
Programming and Computer Software, Vol. 19, No. 4, July/August 1993, pp. 165 -
176.

[Zalik95a] Zalik, B., Guid, N., An approach of Applying Constraints in Geometric Modelling,
Journal of Computing and Information Technology, Vol. 3, No.4, 1995, pp. 229-
244.

[Zalik95b] Zalik, B., Font Design with Incompletely Constrained Font-Features, in « Com-
puter Graphics and Applications », S.Y. Shin, T.L. Kunii (Eds.), World Scientific
Publishing, Singapore, 1995, pp. 512-526.

[Zalik96] Zalik, B., An Interactive Constraint-Based Graphics System with Partially Con-
strained Form-Features, in this volume, pp. 229-246.

 References 367

[Zarmer92] Zarmer, C.L., Cew, C., Frameworks for Interactive, Extensible, Information-
Intensive Applications, in [UIST92], pp. 33-41.

[Zhang90] Zhang, D., ROPES: A Tool for Generating Robot Plans, in Proceedings of
16th Annual Conference of IEEE Industrial Electronics Society IECON'90, (Pacific
Grove, November 1990), Vol. 1, IEEE Press, Los Alamitos, 1990, pp. 210-215.

[Zorola95] Zorola Villareal R., L'évaluation des IHMs Multi-utilisateurs dans le Travail
Coopératif, PhD. thesis, Université Toulouse I, October 1995.

Keywords index

Adaptation tool, 247
Algebraic specifications, 141
Application
 framework, 183
 of theorem provers, 141
Authoring system, 247
Automatic contextual help, 95
Automatic user interface
 generation, xxi, 37, 95
 management, 95
Blind people, 247
Case-based reasoning, 303
Collaboration, 303
Computer-aided
 design, 303
 generation, 95
Computer tools for nets, 285
Conceptual
 design, 121
 prototypes, 121
Constraint solving, 229
Declarative interaction, 265
Design automation, 57
Display design, 121
Ergonomic rules, 159
Evaluation, 159
Executable specifications, 265
Formal
 methods, 141
 specifications, 265
Generated on-line help, 37
Geographic information systems,
265
Geometric constraints, 229
Goal description languages, 265
Graphical user interface, 209
High-level Petri nets, 285

Human-computer interaction, 247
Intelligent user interfaces, 265
Intention recognition, 303
Interactive
 constraining process, 229
 systems, 303
 specification, 171
Interface model, 19
Knowledge base, 159
Knowledge-based system, 303
Layout complexity, 209
Life cycle, 57
Links between application and UI,
141
Logical window design, 121
Model-Based
 approach, 57, 141
 interface
 design, 37
 development, xxi, 19
 environment,
 systems, 265
 user interface software tools, 3
Multimodal, 247
Non-visual interface, 247
Object-oriented
 database, 183
 models, 57, 183
Petri nets, 265
Planning, 265
Programming by demonstration, 171
Rapid prototyping, 183
Software
 engineering, 57
 tutoring, 171
Specification of styleguides, 37
Structured design method, 121

370 Computer-Aided Design of User Interfaces

Task
 analysis, 95, 265
 models, 171
Usability, 211
User
 data model, 121
 guidance, 37
 interface, 141, 159, 211, 229

automatic generation of,
xxi, 37, 57
design, xxi, 19, 37, 95,
121, 171, 285

 generation, 6, 57, 141, 183
 management system, 265
 models, 19
 model, 247
Visual data dictionary, 121

Author index

Ahlberg, C., 134
Aldefeld, B., 231
Allen, J.F., 308
Anderson, J.S., 276, 278
Anglano, C., 282-283
Ando, H., 232
Avison, D.E., 121
Bailin, S.C., 96
Balzert, H., xvi, xxiv-xxv, 4, 8-9, 54,

60, 117, 155, 183, 185-186, 189,
191-192, 201, 204

Barthet, M.-F., xvi, 95-96, 119, 159-
160

Baskerville, R., 125-127
Bastide, R., xvi, 285
Bastien, Ch., 162
Bauer, B., xvi, xxxi, 38, 45, 47-48, 56,

61, 141, 143, 145
Benyon, D., 116
Beshers, C.M., xv, xxii
Blaha, M., 187
Blandford, A., 283
Bodart, F., xiii, xv-xvii, xxxvii, 4, 7, 9,

11, 54-55, 81, 117, 122, 124-125,
127, 132-133, 157, 191

Bonsiepe, G.A., 210, 214
Booch, G., 183, 187
Borkoles, J., 283
Borning, A., 232
Brunet, E., 96
Burger, D., 255
Byrne, M.D., xxxviii
Cardelli, L., xv
Chen, P., 125-126
Chien, S., 266, 276
Coad, P., 60-63, 96, 183, 187

Cockton, G., 280
Cohen, P., xliv
Colbert, E., 96
Comber, T., xviii, xxxvii, 209-210
Copas, C., xix, 116, 265, 278
Contreras, J., xvi, xxxv, 171
Coutaz, J., 4, 8, 104, 254
Curtis, B., 8
Cypher, A., 172
de Baar, D., xvi, 60, 69, 117, 132, 202
de Bruin, H., xvi, 81, 117
de Haan, G., 81
Desurvire, H.W., 122
Diaper, D., 83
Duerst, M.J., 233
Edmonds, E.A., 265
Egenhofer, M.J., 268
Ehrig, H., 142, 144
Eickel, J., 40, 142
Elwert, T., xvi, xxx, 3, 9, 13, 55, 60,

156
Etzioni, O., 266, 274, 277
Falcidieno, B., 232
Farenc, Ch., xviii, xxxvii, 119, 159,

227
Farhat, S., xviii, 247
Fehrle, T., 55
Fellbaun, K., 250-251
Fischer, G., xxxvii, 60, 266
Fitzpatrick, G., 278
Fluhr, Ch., 247
Foley, J.D., xvi, xxvi, xxxvii, 4, 20,

34, 54, 78, 117, 122, 155, 202, 328
Forbrig, P., 59
Frank, M., xxxvi
Freeman-Benson, B.N., 231

372 Computer-Aided Design of User Interfaces

Fudos, I., 232
Galitz, W.O., 209-210, 225-226
Ganzinger, H., 49
Gibson, E., 96
Gieskens, D.F., 118, 202
Gilmore, D., 116
Goel, A.K., 307
Goldberg, A., 58
Gorny, P., xvi, xxxix, 5, 60
Gray, Ph., 117
Green, M., xxi, 279, 292
Green, T.R.G., 122-123, 127
Gulliksen, J., 117
Hammouche, H., 116
Harning, M.B., xvii, xxviii, 121
Hartson, H.R., 82, 283
Hayes, P.J., xvi, 8
Hayhoe, D., xv
Heintzen, P., 191
Hel-Or, Y., 232
Henderson, A., xv
Herz, J., 233
Hickmann, F.R., 96
Hinrichs, T., xvi, xvii
Hix, D., 79, 116, 226
Hofmann, F., 183
Hudson, S.E., xv, 54, 155, 215
Hußmann, H., 147, 153
Jaaksi, A., 122, 124
Jacob, R.J.K., xxi
Jacobson, I., 121
Janssen, Ch., xvi, xliv, 4, 7-9, 21, 34,

55, 60, 117, 124, 126-127, 133,
156, 194, 204

Jiang, J., 161
Johnson, H., 83
Johnson, J., xvi, 194, 202
Johnson, P., xvi, xxvii, 4, 9, 20-21,

34, 55, 77, 81, 83-84, 156
Johnson, W.L., 308
Karow, P., 233
Kelly, C., 6
Kieras, D.E., xxxvii
Kim, W.C., xxvii, 59, 117, 202, 226
Kobsa, A., 182

Kolodner, J.L., 307
Kolski, Ch., 161
Konsynski, B.R., xiii
Kramer, M., 276
Kruschinski, V., 183
Kuo, B., 124
Kurlander, D., 232
Larson, J.A., 143
Lauesen, S., 122, 123-125, 133, 136
Lauridsen, O., 8, 117
Leler, W., 234
Liberati, V., 159
Lim, K.Y., 79, 81, 116, 122, 124
Lindgaard, G., 222
Lindsay, P., 214
Lonczewski, F., xvi-xvii, xxiv, xxxiv,

37-38, 60, 143, 146, 149
Loomis, M.E., 187
Löwgren, J., xxxvii, 161
Luo, P., xvi, xxiv, 52, 54, 59, 156,

172
Maltby, J.R., 209, 213
Märtin, Ch., xvi, 4, 57-58, 64, 67, 70
Mayhew, D.J., 210, 226
McMahon, C.A., 230
Metais, T., xvi
Meyer, B., 58, 63
Monarchi, D.E., 57
Morin, D.A., 9
Moriyón, R., xvi, xxxiv- xxxv, 54,

118, 172, 174
Murata, T., 278, 281, 283
Myers, B.A., xv, xxi, 3-5, 141, 194
Neches, R., 35
Newell, A., 283
Nielsen, J., 122, 209
Niemann, Ch., 183
Nishida, S., 303
Norman, D.A., 122
Normand, V., xvi
Olsen, D.R., xv, xxi-xxii, 4, 8, 54,

155, 279
Palanque, P., xxxiv, xxxvii, 116, 281,

283, 285-287, 301
Palmer, S., 137

 Author index 373

Pangoli, S., xxxiv, 174-175
Paternó, F., xxxvii
Pednault, E., 266
Peterson, J.L., 292
Petoud, I., xvi
Pettersson, M., 117
Pfaff, G., 97, 167
Pnueli, A., 286
Pollier, A., 170
Porter, T., 215
Puerta, A.R., xv-xvii, xxiv, 4-6, 8-9,

19-22, 60, 78, 117, 204, 323
Rasmussen, J., 97
Reisig, W., 286
Reiterer, H., xvi, 5, 60
Razouk, R., xiii
Rossignac, J.R., 230, 232
Rosson, M.B., 79, 116
Rowe, L.A., 194
Rumbaugh, J., 62-63, 96, 117, 121,

183, 187
Sacerdoti, E.D., 96
Saiz, F., xvi, 171-172
Scapin, D.L., 98
Schlaer, S., 96
Schlungbaum, E., xvi-xvii, xxx, 3, 61
Schmalzbauer, M., 70
Schreiber, S., xvi, xxxi, 4-5, 37-38,

40, 142-143, 149
Schwab, R., 38
Sebillotte, S., 96
Sears, A., xxxvii, 215, 217, 226, 228
Senach, B., 98, 160
Senay, H., 275
Shannon, C.E., 210-212
Shneiderman, B., 209-210, 219, 226
Shoval, P., xv
Singh, G., xv, xxi
Smith, S.L., 79, 98, 162
Sol, H.G., xiii

Sommerville, I., 121
Staggers, N., 122
Sukaviriya, P., xxxiv-xxxv, 6-7, 59,

174-175, 280
Sutcliffe, A., 122, 124, 133
Szekely, P., xvi-xvii, xxi, xxiv-xxv, 4,

7, 20-21, 35, 59, 78, 172, 177,
202, 330

Tarby, J.-Cl., xiv, xvi-xvii, 95-97, 104,
122, 124

Tardieu, H., 103
Teichroew, D., xiv
Tenenberg, J.D., 270, 276
Tomiyama, T., 304
Took, R., 278
Tweedie, L., 125, 134
Tullis, T.S., 209-210, 215-216, 226
Vanderdonckt, J., xiii, xvi, xxvii,

xxxix, 8-9, 21, 34, 60, 69, 79, 132,
162, 193, 202, 214-215, 226

vander Zanden, B., xv
Vogel, D.R., 96
Weisbecker, A., xvi, 8-9, 11
Weld, D.S., 266, 269, 275
Wiecha, C., xvi, xxiv, 4, 35, 54, 64,

156
Wilson, S., xvi-xvii, xxvii-xxviii, 4,

77, 79, 81, 92, 156, 327
Winchester, J., xiii
Wirsing, M., 142-144
Wood, W.A., 292-293
Yamaoka, T., xix, 303
Yourdon, E., 121
Zalik, B., xv, 229-230, 234, 237, 239,

241, 243
Zarmer, C.L., 194
Zhang, D., 283
Zorola V.R., 119

Sponsors and cooperating societies

Eurographics

http://www.cwi.nl/Eurographics/

FNRS

Fonds National de la
Recherche Scientifique

Siemens-Nixdorf

http://www.sni.be

Sun Microsystems

http://www.sun.com

Facultés Universitaires
Notre-Dame de la Paix

http://www.fundp.ac.be

Institut d’Informatique

http://www.info.fundp.ac.be

City of Namur

http://www.ciger.be/namur/
welcome/index.html

Namur - Europe - Wallonie

http://www.ciger.be/namur/
nrc/new.html

Official CADUI’96 WWW site at : http://www.info.fundp.ac.be/~jvd/dsvis/ca-
dui96.html

340 Computer-Aided Design of User Interfaces

