Re-Engineering Graphical User Interfaces
from their Resource Files with UsiResourcer

Oscar Sanchez Ramén'?, Jean Vanderdonckt', Jesus Garcia Molina®

'Louvain Interaction Laboratory, Louvain School of Management (LSM) — Place des Doyens, 1
Université catholique de Louvain (UCL) — B-1348 Louvain-la-Neuve, Belgium
*University of Murcia, Facultad de Informatica, 30100 - Campus de Espinardo — Murcia (Spain)
{oscar.sanchez, jean.vanderdonckt} @uclouvain.be — {osanchez,jmolina}@um.es

Abstract—This paper addresses the problem of modernizing
graphical user interfaces of interactive applications by re-
engineering their resource files in four phases: resource decompi-
lation, which extracts resource files from the executable code of
an interactive application; modeling the source user interface,
which transforms extracted resources into a resource model; re-
source to user interface transformation, which transforms the re-
source model into a Concrete User Interface model, and forward
engineering, which offers two alternatives: after editing the user
interface model, a new interface could be generated or recom-
piled into a resource to be incorporated back. The paper moti-
vates and details this re-engineering approach by focusing on
methods and algorithms implemented in UsiResourcer, a software
tool that reverse engineers MS Windows resource files into a
Concrete User Interface Model for further process. A discussion
on the generalization of the approach is also provided.

Index Terms— User Interfaces, Modernization, Model Driven
Engineering, Reverse Engineering, Reengineering.

I. INTRODUCTION
The life duration of an interactive application is an impor-
tant, yet challenging, aspect. The code we write for an interac-
tive application is expected to run for a long time. It is not de-
sired that it becomes outdated after a few years. A same inter-
action application could be also produced for a vast range of
product lines (i.e., multiple versions) [1] and contexts of use

(i.e., user, platform, and environment) [2] and not just one line

or context. The Graphical User Interface (GUI) of an interac-

tive application is subject to an intrinsic complexity that goes
beyond merely programming algorithms [3]. GUIs are submit-
ted to continuous changes in their development life cycle and
organizations must therefore devote significant efforts to their
maintenance and evolution to quickly adapt the GUIs to these
changes [1]. As the technologies evolve, the requirements
evolve too (e.g., additional versions [4], migration to the web

[5], retargeting to other platforms [6]). The constant evolution

of computing platforms and their associated Integrated Devel-

opment Environments (IDEs) requires more efforts to cope
with portability of interactive applications and their associated

GUI. Different cases of GUI evolution may occur from the

point of view of the existence of the GUI models and/or speci-

fications and the GUI code obtained from them:

o Specifications and/or models exist that are of enough ex-
pressiveness to turn a legacy GUI [4] (e.g., using an old-
fashioned technology like Character User Interfaces) into a
modern GUI (e.g., using today’s technology).

o Specifications and/or models are no longer accessible, but
the code of the interactive application still exists. When the
source code exists, transcoding techniques [7] could reverse

engineer the GUI code into a new one; when the source

code is lost, when no documentation (e.g., a conceptual

model of the application) still exists, but the executable ap-
plication is still available, a critical case appears where
these techniques are no longer applicable.

Re-engineering GUIs remains an open challenge when
there is a need to modernize an interactive application [8], to
adapt its GUI to a new context of use [9], whether these appli-
cations are legacy or not. GUI revamping [7] requires widgets
to be syntactically modified without changing the underlying
functional core. Reengineering GUIs to a new computing plat-
form [10] requires dealing with intricate issues in each stage
(reverse engineering, restructuring and forward engineering).

In some IDEs such as the native applications for Windows
that use the Windows API (formerly Win32 API), applications
use Resource Files that define some GUI resources to be used,
such as menus, dialogs, icons, or key accelerators. A resource
file is a text file which defines resources for structural or behav-
ioral aspects of GUIs. Resource files are compiled to machine
code and are loaded into memory at runtime only when they
are required in the execution, thus inducing file swapping when
needed. We have tackled the reengineering of resource files-
based GUIs when only compiled files are available and we
have developed the UsiResourcer tool to support our reengi-
neering approach. This paper presents these aspects.

In our proposal, resource files are an expressive starting
point for performing GUI reverse engineering to feed a re-
engineering process in four phases: (i) decompile resource files
in textual format from the executable files, (ii) parse the re-
sources defined in the resource files and instantiate a resource
model reflecting the resources’ contents, (iii) transform the
platform-dependent resource model in a platform-independent
Concrete User Interface (CUI) model by use of parameterized
derivation rules, and (iv) edit this model for getting a new GUI.

The remainder of this paper is organized as follows. The
next section shows that this approach is original with respect to
the related work. Section 3 defines a resource file and its con-
tents while motivating the conceptual differences between tra-
ditional GUI reverse engineering and our approach based on
resource files. Section 4 explains the four phases of the re-
engineering process based on resource files exemplified on a
running example. Section 5 presents UsiResourcer, the soft-
ware that supports resource recovery, illustrates some real-
world cases, and also discusses how to extend the approach to
various formats of resources files and its generalization. Sec-
tion 6 concludes the paper by discussing existing shortcomings
and presenting some future avenues.

II. RELATED WORK

Reverse engineering [7] is "the process of analyzing an ex-
isting system to identify its components and their interrelation-
ships and create representations of the system in another form
or at a higher level of abstraction. Reverse engineering is usual-
ly undertaken in order to redesign the system for better main-
tainability or to produce a copy of a system without access to
the design from which it was originally produced."

TABLE I. STATE-OF-THE-ART IN GUI REVERSE ENGINEERING.

Software Input Output Techniques
Vaquita, HTML 4.0 XIML CUI | Static analysis
2001 [6,10] site model
WebReven- HTML 4.0 CTT Task Static analysis
ge, 2002 [13] | page model
GUIRipping GUI CUI Static and dynamic analyses
2003 [19]
ReversiXML | HTML 4.0 UsiXML Static analysis, model-to-
2005 [12] site CUI, AUI, model transformation, deri-
user, device | vation rules
Swing2Script | Java CUI, then Static analysis, abstract in-
2007 [16] Ajax terpretation
ReverseAll- XHTML, CUI, then Static analysis, operator
Uls 2007 VoiceXML | AUI, then merging, XLST transfor-
[14] task model mation
Wrapper, GUI SOA Static analysis
2008 [5]
Event han- Any GUI Dialog Dynamic analysis and model-
dlers, 2010 model to-model transformations
[8, 24]
GUISurfer, Any GUI Behaviou- Static analysis, syntactic tree
2010 [20] ral model building, code slicing
UI Controls, Web appli- | Control Static analysis of HTML, ab-
2011 [18] cation representa- stract interpretation of JavaS-
tion cript
PureXML, Java GUI, UsiXML Image analysis, pattern-
2011 [4] screenshots | CUI model | matching, static analysis
Prefab, 2011 Any GUI GUI own Image analysis, pattern
[17] representa- | matching, pixel-based meth-
tion ods
Muhairat Java GUI Domain Static and dynamic analyses,
2011 [23] model capturing into a Petri net,
(UML class | normalization and translation
diagram
ReGUIL, 2011 | Windows Spec# CUIL Dynamic analysis of MS
[25] GUI model Windows code and tree
building
Maria- HTML 5 MariaXML | Static analysis of HTML
Reverse, site CUI model code and CSS, encapsulation
2012 [15] of JavaScript
UsiResour- GUI re- UsiXML Static analysis, binary de-
cer, 2013 source file CUI model | compilation, parameterized
derivation rules, model-to-
model transformation

Table 1 compares related works by chronological order ac-
cording to three criteria: the “Input” column specifies the GUI
type, the “Techniques” column lists all techniques used to sup-
port the reverse engineering, and the “Output” column charac-
terizes its results by mentioning the level of abstraction accord-
ing to the Cameleon Reference Framework (CRF) [2]: task &
domain models, Abstract User Interface (AUI) model that is
independent of any interaction modality, or Concrete User In-
terface (CUI) model that is for a given interaction modality
(e.g., graphical), but independently of any implementation.

All existing approaches transform some GUI source code

because it is available (e.g., from the past development process
[4,22]) or accessible (e.g., HTML and JavaScript codes down-
loaded from the web [10,12,13,15]) into some CUI model.

Vaquita [10] statically analyses pages of a web site and turn
them into a CUI model expressed in eXtensible Interface
Markup Language (XIML — www. ximl.org), which serves for
retargeting [6] to other platforms or apply a complete reengi-
neering process [11]. The same process is used in [9] for re-
verse engineer a GUI also in XIML. ReversiXML [12], the suc-
cessor of Vagquita [6,10,11], does the same job into a CUI
model, a user model, and a platform model expressed jointly
expressed in User Interface eXtensible Markup Language
(UsiXML V1.8.0 - www.usixml.org). The CUI Model, ob-
tained by derivation rules, is then abstracted into an AUI Model
by model-to-model transformations. Legacy GUIs [6], by static
analysis [21], are integrated into a Service-Oriented Architec-
ture (SOA).

WebRevenge [13] directly transforms a HTML web page
into a CTT-compliant task model that could then serve for
launching a forward engineering approach or any other pur-
pose. Skipping intermediate levels (from final GUI to task
model) is seducing, but challenging since many design inten-
tions could be hidden at different levels of abstraction. For this
reason, ReverseAllUls [14] jointly reverse engineers a XHTML
web page and a VoiceXML document into respective CUI
models that are merged in an AUI model, from which a task
model is obtained. ReverseMaria [15], the successor of We-
bRevenge [13], automatically generates a CUI model expressed
in MariaXML from any web page (local or remote) expressed
in HTML, along with CSS and JavaScript. In [16], Java GUI
code is also reverse engineered into an Ajax script, which re-
mains at the Final User Interface (FUI) level [2].

Prefab [17] applies image and pattern-matching filters and
algorithms to graphically detect which interaction style or tech-
nique is active on GUI widgets, to record it, and to reproduce
it. This system is independent from any computing platform
since its algorithm works on raw pixel-based screen definitions.
Prefab also detects any hierarchy of widgets and their contents
to perform customization. Sometimes, only controls are subject
to reverse engineering as in FireCrow [18], with or without
event handlers [8], as opposed to entire web pages or entire
GUI containers, thus providing some degree of flexibility.

GUIRipping [19] automatically recreates a Concrete User
Interface model of a GUI in order to submit it to model-
checking or test case generation. Although the primary goal of
this software is to automate the software testing process, the re-
sulting model could also be used for re-engineering.

GUISurfer [20] automatically extracts a behavior model
from GUI source code by static analysis in order to test it, to
maintain it, and to make it evolving with respect to new re-
quirements. For this purpose, a language-dependent parser
transforms the GUI source code into an abstract syntax tree,
which then gives rise to a CUI model by code slicing. Then,
language-independent software acts on the resulting models.

Interaction traces [21] detect the user behavior and suggest
GUI optimizations according to the most frequently used inter-
action traces. They are also reverse engineered from C++
source code [22]. A software suite presented in [4] enables de-
signers or end users to draw GUI prototypes in GUILayout++
(with both low and high levels of fidelity) that are automatical-

ly abstracted into an AUI model. In this suite, PureXML sup-

ports loading GUI screenshots from a GUI design or an exist-

ing interactive application, and creating prototypes for those
screenshots. These prototypes then initiate a CUI model for
multiple purposes.

Muhairat et al. [23] combine static and dynamic analyses in
order to reverse engineer a domain model (expressed as a UML
Class Diagram) from a Java GUI in three steps: capturing the
static and the dynamic aspects of the GUI into a Petri net with
transitions expressing potential navigation schemes, normaliz-
ing the transitions, and translating it into a Class Diagram.

ReGUI [25] performs some dynamic analysis of a Windows
GUI code in order to build a CUI model expressed in the Spec#
description language that covers both the presentation and the
navigation between the various windows, menus, and controls.

UsiResourcer, listed in the bottom line of Table 1, is differ-
ent according to the three criteria considered:

- For the “Input”, UsiResourcer is the only software that per-
forms GUI reverse engineering from a resource file coming
from the executable code of the application, and not its
source code, thus requiring adequate handling of this for-
mat. Conceptual differences between a GUI expressed by
its source code (e.g., as in HTML) and a resource file are
significant: more controls are described (e.g., menu bars,
pull-down menus, error and information messages, icons)
with more static attributes (e.g., shortcuts, mnemonic keys,
multi-resolution, multi-languages aspects, style effects) and
dynamic attributes (e.g., activation/deactivation, normal vs
default state, style behavior).

- For the “Output”, UsiResourcer relies on UsiXML, a fifth-
generation User Interface Description Language (UIDL)
that not only captures various models, but also the traceabil-
ity of the relationships between these models, all according
to the same meta-models.

- For the “Techniques”, UsiResourcer combines low-level
techniques (e.g., static analysis, binary decompilation) and
high-level techniques (e.g., parameterized derivation rules
and model-to-model transformation) to uncouple the re-
source file format from the reverse engineering process.

III. GUI RESOURCE FILE

A resource file is a structured text file that contains re-
sources which are useful to one or many GUISs of an interactive
application. The resources can be icons, menus, dialog boxes,
strings tables, user-defined binary data, and other types of
items. Once compiled into a suitable format, a resource file can
be incorporated directly into an executable file, containing both
functional code and GUI resources. At run-time, the interactive
application can use the resource items in the embedded file. A
resource file is particularly useful for the following reasons:
development independence (the GUI development is clearly
separated from the rest of the development of the interactive
application), separation of concerns (the GUI design could be
conducted by usability experts without requiring extensive pro-
gramming, while the rest is conducted by developers), reusabil-
ity (any GUI resource could be reused from one application to
another), and consistency (a same resource could be systemati-
cally incorporated in different applications). All modern com-
puting platforms (e.g., Windows 7, Mac OS, Linux) use some
form of resource files with their own proprietary format.

This paper focuses on Windows 7 resource files as an ex-
ample throughout the re-engineering process. The approach
could be equally used with other formats, as discussed later on
in Section 6, where the generalization of the approach is dis-
cussed. In a Microsoft Windows 7 interactive application, re-
sources are usually stored in the executable file (*.exe) or in a
separate Dynamic Link Libraries file (*.dll). As the name sug-
gests, these libraries are not statically linked to the executable
when the application is run, but dynamically loaded into the
system memory at runtime. A typical example of resource li-
brary is the Common Dialog Library (comdig32.dll) that pro-
vides common dialogs used by Windows applications such as
the open file and print dialogs. A W7 resource file is composed
of resource-definition statements falling into three categories:

1. Resources: are static elements that can be used at any time,
such as: strings, bitmaps, icons, cursors, accelerators, ap-
pearance and function of menus.

2. Controls: define the GUI widgets in terms of types, such as:
check box, combo box, pushbutton, scroll bars.

3. Statements: assign values to control properties, such as cap-
tion, font, language, style, menus, and menu items.

IV. THE OVERALL RE-ENGINEERING PROCESS

The overall re-engineering process is composed of four
phases (Figure 1): (i) a resource decompilation in order to ex-
tract designated resource files from the original executable file
and to get a textual representation of these resources, (ii) mod-
eling the source GUI, which transforms extracted resources in-
to a resource model; (iii) resource to CUI transformation,
which transforms the resource model into a Concrete User In-
terface (CUI) model by parameterized derivation rules; and (iv)
forward engineering, which applies changes on the model ac-
cording to any new requirement (e.g., a change of context, a
new platform, an update of the GUI). Two cases occur: re-
source recompilation, which produces a new interactive appli-
cation shipped with the newly obtained GUI or generation,
which re-generates a new graphical user interface from the CUI
model, for instance in a programming or markup language. The
main difference between resource recompilation and generation
in phase 4 is: in the former, the new GUI is transformed again
in a resource file that becomes re-incorporated into the original
application code (by resource compilation and re-insertion in
the code), thus preserving the whole functional core; in the lat-
ter, the GUI will be reused for another application in another
language. Resource recompilation is primarily required when
the original application should be preserved while generation is
preferred when there is a need to recover an existing GUI defi-
nition and make it gracefully evolve to a new version in anoth-
er application, e.g., for direct reusing, for ensuring consistency,
for repurposing a GUI to a new context of use.

The four phases of Figure 1 are further detailed in the next
sub-sections, based on the running example of the Microsoft
Windows standard dialog box for finding words in a text. This
dialog box is introduced here for the purpose of understandabil-
ity. More complex case studies will be discussed in Section V.
Figure 1 reproduces some excerpts of the artifacts resulting
from each phase: the textual representation of the resource file
of the corresponding CUI model is partially reproduced in or-
der to give the flavor of the approach.

)

heav t

<?xml version="1.0" encoding="UTF-8"2>
<cuiModel id="SdTE_Find-cui_23" name="SdTE_Find-cui">
<dialogBox id="dialog_box_component_0" name="dialog box 400 simplified"
defaultContent="Find" width="423" height="172">

A=lhry 40 an
<O0X iG=G0X_1 iia

<box id="box_1_1" namezrbox_i_l“ type="vertical" rela

hbox111§ Findwhat: | =l \ Find Next | "true" isFditah
"""""""" o icrosoft Sans Serif" maxLength="35"
[[: m:::f:iewm il ; (Jre;pm ‘ =k hbox1 numberOfLines="1" numberOfColumns="35" glueHorizontal = "right"/>
hbox112 = il </box>
Reaul Down Cancel 70X
fE v:guargwremn : <box id="box_1_2" name="box_1_2" type="vertical" relativeWidth="30" relativeHeight="100">
rap around vbox1121 | vbox1122 = . B "
s <button id="button_component_2" name="default push button 1
. 5 defaultContent="Find Next" isVisible="true" isEnabled="true"
vbox11l textSize="8" textFont="Microsoft Sans Serif" glueHorizontal = "middle"/>
Find <button id="button_component_3" name="push button 245"
defaultContent="Mark All" isVisible="true" isEnabled="true"
Fodwfat: textSize="8" textFont="Microsoft Sans Serif" glueHorizontal = "middle"/>
2" Match whole wgrd only H </d'<|/b0;> .
Match " ialogBox
T ut = </cuiModel >
Requ\ar;:q:resi.ion :
Wrap around 5 H
& Transfom backsiash gxpressions H
. Phase 2: Phase 3: Resource to CUI / Phase 4: Forward engineering \ T
Modeling the source GUI M2M transformation 2
UsiResourcer: GrafiXML: GrafixmL: || 2
resource Resource Cul CUI Model New CUI GUI B
k model recovery model editing model generation Q
o
A J 8
G Phase 1: Resource decompilation <
hew NewGUI |3
New Re- ew o
Executable Resource Resource Executable =
e Resource source ot i 2
Interactive decompilation) ; recompilation Interactive =
icati files file application g
application pp T
- o x 1] @
TR - e Find X
Dmxd-wulewmwo Direction 0 —
e e sy
[Reguer gravession € Ooown @ [_Caeed) P o
[Wrap around &) ™ Wiap aound
DTm#ormhadmlad\wmo I Tranefom backeiash expressions
Direction
CONTROL "Fi&nd what:", -1, STATIC, SS_LEFT | WS_CHILD | WS_VISIBLE | WS_GROUP, 5, 7, 45,8 Cup |
CONTROL ™", 222, COMBOBOX, CBS_DROPDOWN | CBS_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 50, 5, 145,50 © Down Vo AL

CONTROL "Match &whole word only”, 232, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 22, 120,10
CONTROL "Match &case", 233, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 34, 130,10

CONTROL "Regular &expression”, 239, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 46, 120,10
CONTROL "Wrap aroun&d", 240, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 58, 120, 10
CONTROL "Transform &backslash expressions”, 241, BUTTON, BS_AUTOCHECKBOX | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 5, 70, 160,10
CONTROL "Direction”, -1, BUTTON, BS_GROUPBOX | WS_CHILD | WS_VISIBLE | WS_GROUP, 135, 22, 60, 34

CONTROL "&Up", 234, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP, 140, 30, 45, 12

CONTROL "&Down", 235, BUTTON, BS_AUTORADIOBUTTON | WS_CHILD | WS_VISIBLE, 140,42, 45, 12

CONTROL "&Find Next", 1, BUTTON, BS_DEFPUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP, 205, 5, 65, 14

CONTROL "&Mark All", 245, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 205, 23, 65, 14

CONTROL "Cancel’, 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 205,41, 65, 14

FIGURE 1. THE OVERALL RE-ENGINEERING PROCESS EXEMPLIFIED ON THE “FIND” DIALOG BOX.

A. Phase 1: Resource Decompilation

When an interactive application is built, a resource compil-
er transforms resources from their initial format (structured text
or XML format) into binary files to be linked with the applica-
tion. Resource decompilation does the opposite: it unlinks and
decompiles binary files into textual resource files. There are
several applications that can decompile executable files in or-
der to retrieve the resources, such as Resource Builder (http://
www.resource-builder.com), Tuner (http://www.restuner.com),
and Resource Hacker (http://www.angusj.com/resourcehacker).
Since that the tools apply their own algorithms to detect and in-
terpret bit patterns in the binary files and a window can be de-
scribed in different ways, the resource file generated by each
tool for the same window may not be the same. A comparative

analysis of 6 resource decompilers was conducted on 8 case
studies. Resource Hacker was observed as the one providing
the most expressive, complete and accurate resource files in
terms of properties, values and recovery rate (ratio between the
controls recovered by decompilation and the total amount of
controls in the GUI).

The resources such as dialogs can contain controls. Each
control is attached to flags expressing constraints acting on the
control: constraints inherited from the parent object (i.e., the
parent window) and specific constraints that are local to the
control. Such constraints affect properties such as, but not lim-
ited to: Child, Disabled, Visible, Border, TabStop, Group, Verti-
calScrollBar, HorizontalScrollBar. For instance, a combo box
cannot use all the specific attributes of list box and edit con-

trols: only the AutoHScroll, LowerCase, OEMConvert, Upper-
Case, Sort, DisableNoScroll, HasStrings, NolntegralHeight,
OwnerDrawFixed and OwnerDrawVariable attributes. Most
constraints are expressed with type declaration with enumerate
values. For example, a menu item can be disabled and greyed
at the same time, a title bar cannot contain a question mark
(ContextHelp = true) with a maximize box or a minimize box
(MaximizeBox or MinimizeBox = true). Flags attached to con-
trols can be expressed by means of a combination of textual
identifiers (Figure 2) and/or a hexadecimal number that repre-
sents the bits of a flag. For example, the 19 different types of
static controls are grouped in the five first bits, thus represent-
ing 2° = 36 flags. Resource decompilers only extract the hexa-
decimal number, thus preventing it from determining appropri-
ate static definitions of controls. For instance, a decompiler
cannot differentiate whether the text of a static control is both
centered (SS_CENTER flag) and right-justified (SS_RIGHT flag)
in the rectangle, or it has an icon (SS_ICON flag). It is our re-
sponsibility to correctly associate this hexadecimal value to
corresponding values of properties.
SS_LEFT[ﬁﬁ“f]lilﬁ
Ss_CENTER[CICICICIV]
SS_RIGHT VI
SS_ICON [VI[/1
SS_BLACKRECT[_|[v]|

SS_GRAYRECT[|[|/|[I¥]
SS_WHITERECT [[][]ZI¥1]
SS_BLACKFRAME][|[/][7]/

SS_GRAYFRAME[CIZICICIC]
SS_WHITEFRAME[CIVICICI¥]

FIGURE 2. FLAGS FOR CONTROLS IN WINDOWS.

4 32 10
SS_USERITEM[C[VICIVIC]
ss_SIMPLE[|[Z|C V]V
SS_LEFTNOWORDWRAP[_|[/][/][][]
SS_OWNERDRAW[][7][Z][][/]
SS_BITMAP[|[/]][V
SS_ENHMETAFILE[[/
SS_ETCHEDHORZ [V|[CICICIC]
SS_ETCHEDVERT[Z][]| v/

=

SS_ETCHEDFRAME/|[I[C1[V]

Figure 1 (bottom center) contains an excerpt of the textual
resource file obtained for the “Find” dialog box decompiled by
Resource Hacker. In this resource file, the first field after the
CONTROL keyword is the name of the control, the second field
is the identifier of the control and the third field is the type of
control (e.g., BUTTON or COMBOBOX). The following field
represents the flags that affect the appearance and behavior of
the control (e.g., WS_VISIBLE means that the control is visible
and WS_TABSTOP means that the control can be navigated by
means of the TAB key). The four last fields represent the X and
Y coordinates of the upper left position of the control, its width
and its height respectively.

B. Phase 2: Model the source GUI

We need to manipulate and query intensively the infor-
mation contained in the resource files, so an approach that di-
rectly deal with the physical text files would be neither practi-
cal nor efficient. In this case, a model-driven reverse engineer-
ing process is a better option. Reverse engineering tasks can
take advantage of Model-Driven Engineering (MDE) tech-
niques. Metamodels are appropriate to represent at a high-level
of abstraction the information harvested from the software arti-
facts, and model-to-model transformations allows the extrac-
tion process can be automated. In UsiResourcer, no transfor-
mation engine has been used. Rather, each transformation has

been developed manually in a separate Java method. The defi-
nitions of the source metamodel (resource metamodel) and the
target (CUI model) are obtained automatically by reflection of
their definition into internal records.

Based on the definition of the Windows 7 resource file
format, a large collection of resource files has been examined
in order to come up with a metamodel for representing the GUI
elements as expressed in resource files. An excerpt of the met-
amodel is showed in Figure 4. Only metaclasses needed to un-
derstand the approach are reported here.

In a graphical Windows-based application, dialog boxes
(DIALOG) as well as graphical controls (CONTROL) are consid-
ered as windows (WINDOW) because each control is technical-
ly managed as a small window with predefined properties. A
window (WINDOW) of the application has a style (GeneralStyle
attribute), which can be:

e A popup window, which is a temporary subsidiary window.

e A child window, which divides a window in regions.

e An overlapped window, which is used as a main applica-
tion window.

Dialog boxes (DIALOG) are windows which communicate
with the user and to provide services that are not located in a
menu. A dialog box is defined as a pop-up window (Gen-
eralStyle= popup) containing various child control. A modeless
dialog box allows the user to switch between the dialog box
and the parent window, which is convenient when the dialog
box should remain active. Dialogs have a thin border (Bor-
der=true), a caption bar and a potential system menu box (Sys-
temMenu=true).

The controls (CONTROL) are contained in a dialog box and
they allow performing input and output tasks. Controls are
child windows (GeneralStyle=child) that many manipulate the
attributes of the windows, such as a thin-line border (Border =
true), the possibility that the control is navigated through the
TAB key (TabStop=true), or that the element is visible but can-
not be used (Disabled = true). Note that the TAB key is particu-
lar useful for recovering the ordering of fields in the naviga-
tion. For example in Figure 1 (bottom left), the windows
“Find” shows this ordering based on that information.

The type of most attributes in the metamodel is Boolean
because of the amount of flags that are available to modify the
aspect and behavior of the graphical elements.

In order to adequately process the textual resource files, an
Extended Backus-Naur Form (EBNF) abstract grammar has
been defined to recognize the syntax of the resources. The bidi-
rectional mapping between a metamodel and a grammar is a
solved problem in MDE. The EBNF grammar covers each
metaclass and its related attributes belonging to the metamodel
of Figure 2. UsiResourcer therefore parses any resource file
(e.g., the bottom right of Figure 1), identifies in the EBNF
grammar the rules for each occurrence of a class of Figure 2,
and creates an internal record. The structure of this record has
been automatically generated from the EBNF grammar. Chang-
ing the ENBF automatically propagates the changes into the
record structure.

WINDOW

[Text - Sting MENUBAR
(GaneralStyle : {popup, oveiapped, child) MenulD

Border : Boolean

o) Language : String
ipChicren : Boolean 5
|CiipSimblings : Boolean Sublanguage : String
Disebled Boclean

DiclogFrame : Boolean

|Group : Boolean
[TabStop : Boolean

MaximizeBox : Boolean
Maximized : Boolean
MinimizeBox : Boolean
Minimized : Boolean
|Systemienu : Boolean

0.* 0.*%
(ClientEge - Boolean

DialoghlodalFrame - Boolean
StaticEdge - Boolean
[WindowEdge : Boolean
|AccepiFies - Boolean

POPUPMENU
Text : String

State : {enabled,disabled,grayed} 0.1
Position -

op Boolean
|ControlParent : Boolean
ExContextrelp : Boolean
Layered : Boolean

0.1

NolnherilLayout : Boolean
NoParentNotify : Boolean
olear

RightScrolar : Boolean
RTLReading - Boolean
TootWindow : Boclean
Tophost : Boolean 0.*
[Tansparent - Boolean

co‘mwox MENDITEM SEPARATOR
I -
By sm: i 'I:;::I?smng Position : Integer

e 0.0 e Checked : Boolean
e aeuer o oger | ¥t the buddy window of Glue To State : {enabled,disabled,grayed}|

Position : Integer| Position : Integer

lean
AbsoluteAlignment : Boolean
Boolean

ContextHelp : Boolean ‘ ‘ | ‘
et D LISTBOX EDIT TRACKBAR UPDOWN TREEVIEW e LSTVIEW [saruear_|
A Regroup [Sorted - Boolean [Alignment : {ef,right, center} (AutoTicks : Boolean [Alignment : (ef. right,none)| [CheckBoxes - Boolean [Type - {tabs buttons} View : {icon,smallicon,list,report) SizeGrip : Boolean|
VodalFrarme. Bogesn IMultipeSelecton : Boclean Mulne : Booiean wLef : Bodlean |Arowkeys : Boolean DisableDragOrop ¢ Boclean Botiom : Booiean Aignment : (et top) Toois - Boolean
NoFaicreate - Boolean Boolean Boolean Bodlean |AutcBuddy Boolean EdiLobels - Bolean FixedWicth : Boolean ilLabels : Boclean Top : Boolean
Noidellessage : Boolean Boolean Bodlean FixeeLonght - Scclean Horizonta Boolean FulRowSelect - Bocean FatButtons Bodlean OunerData : Bodlean
SetForeGround - Boolean Multicotum : Boclean PasswordFied : Bookean NoThumb: Boolean HolTrack : Bociean HasButons - Booloan FocusNewer - Bookean ShereimageLists : Boclean
et BUTTON INoSelecton : Bociean Boclean NoTicks : Boolean NoThousands : Boolean asLines - Boolean Boolean Boolean
. T INoiy : Boolean UpperCase : Bodlean Orentation: {horizonta rica) SeiBudyit - Boclean oy - Boolean ForcoLot - ponoconfabel) Singleselect : Bookean
SetFont . Boolean [HorizontalAlignment : f center,ight Boolean Boolean Reversed : Boolean |Wrap : Boolean Lines AtRoot : Boolean HotTrack : Boolean SortAscending : Boolean
Fartiame ; St e e (OwnerDrawVarable : Boolean | |ReadOniy Booiean TickMarks : (ttom top e, ght bot) Boolean Multin : Bootean SoriDescending : Booiean
FontSize : Integer Mutiine : Bodlean HasStrings : Boolean [Number : Boolean ToolTips : Bodlean Noneventeigh : Boolean [Multiselection : Boolean (CheckBoxes : Boolean
ol : Boolea Notiy : Boolean INohtegralHeight : Boolean WardRetum : Boclean NoScrol - Boclean |OwnerDrawFixed : Boolean OneCickActiat : Boolean
Weight : Ineger |UseTabstops : Boolean OEMComert - Boolean HEADER NoToolTips : Boclean |RaggedRigh : Boolean TrackSelect : Boolean
e WaniKeyBoardinput : Boclean utions - Boolean RightToLefReading : Bolean Right - Boolean TwoCickActnate : Boolean
INoDate - Boolar IDragDrop : Boolean SrowSelectionaivays : Boolean| | |Rightustiy - Boolean AutoArange - Bodlean Boolean
[NoRecraw : Boolean FilerBar: Booiean SingieExpand : Boclean IScrolOpposie - Bookean NoLabeWrap: Boolean oirection : frorizontaletcal|
STATIC
ipaEtud it Sosean [TrackSalect : Bodlean ooips” Bootean oo S
R it e o e e
0.1 7 ify : Boolean Horizontal : Boolean| OunerDrawFixed : Boolean
isebieloscrarioccieanl] TextSiyle: e ight center,simpleltNOWordWrap.undeinec |Fiomons Baoimen IOO(EAR L ot
PUSHBOX CoMEOBOX oPrefs : Booiean LToreg : Bool E ™
 — NOIME Boolean (GustomErase : Booiean il sHEoleen
ault - Boolean — Type i SelfiME : Boolean ek soes i HoaderDragDrop : Boolean
|Content : {text bitmap,icon Caastenshhs Bogleed Sunken : Boolean patiHpeh o) REBAR T e Subltemimages : Boolean
i piconl| CUSTOMBUTTON | | [NoEditimage : Boolean Vot B WordEllpsis : Boolean ransparont : Boolear
NoSizeLimit : Boolean Frame : {black.gray, white, undefined} |AutoSize : Boolean |List : Boolean
ADORIToR PathwordBreakProc : Boolean Rectangle : black,gray,while,undefined) BandBorders : Boolean [RegisterDrop : Boolean DATETIMEPICKER MONTHCALENDAR
[Auto - Book CHECKBOX Etched : fame horzonialetcalundefned) DoubleCiickToggle : Bockean TeaTps: Bodean AopCamParss Bodlean Da7SEE
feopliBodesn) e ocar e [Fomnat : fongDate,shortDate,shortDateCentury.timel| Multisetection : Boolean
RightButon - Boolean| [Auto : Boolean e Nohider: Boolean INoResize : Booiean et e e oo
Pushike : Boolean | [3state : Bookean [SCROLLBAR I] s [Registertrop: Book INoParentAlign : Boolean A B e ey Bl
(Centermage : Boolean egisterDrop : Boclean Shawone - Boolean NoTodayCirlo : Booloan
RignhtButton : Boolean| [Type : {horizontalvertical,sizeBox, sizeGrip} | [Type smooth]| | ReaiSizelmage : Boolean |Vareight : Boolear [Bottom : Boolean UnDown - Boolean WeekNumbers : Boolean|
PushLike : Boolean |Alignment : {left, | Vertical : Boolean RightAdust : Boolean |VerticalGripper : Boolean NoDivider : Boolean da ar - d ear
Vertol : Boolean |Adiustabe : Bookean

FIGURE 3. WINDOWS 7 RESOURCES METAMODEL.
[umose]

[Bcreationdate - sting
|BschemaVersion : stringl
 —|

Biovriconae s
o | Biooics g

TogicalOperator

[BBvaiue - (AND, OR, XOR. IMPLIES)
——

0 &name : string | Bid - string.
|BBdefauticon : uri

WetrodCall ranstion
[Bmethodame : Sing| [RBansiionielstg|
] i]

f

[@icomponentidRef - string
| @componentProperty : string|
DretumValue sting

| BBcurentValue : string

strng
|[Bname : string
|[Bdescription - string

=
JAY

nalComponent

orephicallgment

ocaTransiion

\ocalAdjacen

facency nsitonType - sting
[BociayTime - intege]
L

nsitonEfle : sting|
1| T 1|

=

‘gaticalCointainment
‘gaphicalAdacency

|SBisUpDown : sting

on
[Blexpression : string|
 E—

J

toolTipContent

[BivansitonType : stfing
- ur
[BiransparencyRate - intoger =

po
ransitonEfct : siring

-
|Bvolume:
| @itch - st

intoger

| @intonation - integer|
ting
A

——
[BBgueVertical : string

|BBglueHorizontal - string

‘gaphicalContaner

| @émnemonic - String
i sing

eie] | [enten]
—1

w‘

ioBution
jtState - bootean|
Neme string

combogen ||
[Eatadl boodn
[Biravinevie |

[BBeitemateimage - uri
[BBeutoplay : boolean

|[BBstep - integer
|BBodentation : string

Loop iteger
[BuitinConirol - boean|
|BBsubute : boolean

|BBsubttieContent : ur

eutPositon - inieger]

|BsFooter : boolean

[[BmageHoih integor

it AT flePicke
(Simagenorer” teoer T aung epicker
R | Hamaot omitsiae 5o Bvve sy
Biovarcanion sing Rheiiypernktoet ‘ |
o g & g % 0
Fiow : boolean [Biscrotstyio- sting e —

Scrollable - boolean
Sgrawidth - sting
[Berickoight - string

on N
stBox

VertcalAln :sting [scrolvenicaiSpace - meger
xtHonzontalAlgn:sting crllAmount - ntage [Bmaxinevisiie - eger
tor- un [Biscrolineay : n [BsEditaie : boolean

[cotautritor: sting [EBumberofColumns ntoger n [Smuitpl._seloction - ooiear|
jsPassword :boolean [Boumberotines - integer [icoordiates - coors e ———

f —

FIGURE 4. USIXML CUI METAMODEL.

The EBNF can be edited with a grammar editor. For in-
stance, the grammar for expressing a dialog is:

<id> DIALOGI[EX] <x>, <y>, <width>, <height> [, <helpld>]
STYLE <style>* [EXSTYLE <ex_style>*]
CAPTION "<text>" LANGUAGE <language>, <sublanguage>
FONT <pointsize>, "<typeface>" [, <weight>, <italic>]
{<control_def>}

where

e <S>:any entity of syntactical category S

e <S>*: suite of 0, 1 or more entities of category S, separat-
ed by the token |

e text, typeface: a character string (fext may contain escape
caracters, e.g. quote \”, new line \n, tab \t, backslash \\)

id: entire number or a character string

x, v, width, height, helpld, pointsize: integer numbers

style: window flag beginning with WS_ or a dialog box
flag begining with DS__

o ex style: extended window style flag (beginning with
WS_EX)

e language: primary language identifier flag beginning with
LANG_

o sublanguage: sublanguage identifier flag beginning with
SUBLANG_

A =B : Ais defined by B

a b: a followed by b

a & b: a and b (note that this meta-language symbol is dif-
ferent from the language token | used to combine several
styles)

e val(A) : value of the attribute A, which may requires a bi-
nary or hexadecimal to integer or string conversion
upper(A): converts the text A in upper case.

[A]: A may occur only in a extended dialog box template
(that is, a DIALOGEX resource and not a DIALOG re-
source)

e control_def: may contain any combination of control defi-
nitions (one by line)

Similarly, the grammar production rule that is used to rec-
ognize the controls is structured according to the following
format:

CONTROL "<text>",<id>,<class>,<style>* ,<x>,<y>,<width>,
<height>[,<ex_style>* ,<helplD>]

Based on these grammars, parameterized derivation rules,
an extension of derivation rules [12], are used to derive object
instances and their properties from the resources. Table II pro-
vides an example of the parameterized derivation rules to map
the controls of type PushButton into elements of the Re-
sources metamodel. In the left column there is a list of the to-
kens that can be identified (according to the grammar produc-
tion rule for controls that we have represented above), and the
right column expresses the mapping to the metamodel ele-
ments, this is, the values that are assigned (with the <- opera-
tor) to the properties of the object. In the mapping we use two
auxiliary functions.

The first function is val(), which obtains a concrete value of
an alphanumeric string contained in the resource file. The sec-

ond function is new() that creates an object of a specific type in
the model. The mappings of the table are applied from the
more concrete attributes to the general ones. It is not possible to
know the type of the object just by looking at the class. There-
fore, the flags must be considered. For instance, in order to
identify a PushButton, we need to check that class = BUTTON
and that either BS_PUSHBUTTON or BS_DEFPUSHBUTTON is
specified for the control. Then, the PushButton attributes are
set. After that the Button attributes are set, the Window attrib-
utes are finally specified.

TABLE II. RESOURCE MAPPINGS.

Token identified Rules derivation for Resources

metamodel
CONTROL keyword -
<id> Ctrlid <- val(id)
<x> X <-val(x)
<y> Y <-val(y)
<width> Width <- val(width)
<height> Height <- val(height)
<helpID> HelpID <- val(helpID)
<position> Position <- val(position)

<class>=BUTTON -

<style> =BS_TOP VerticalAlignment <- top
<style>=BS_VCENTER VerticalAlignment <- center
<style>=BS_BOTTOM VerticalAlignment <- bottom
<style> = BS_LEFT HorizontalAlignment <- left
<style>=BS_CENTER HorizontalAlignment <- center
<style> = BS_RIGHT HorizontalAlignment <- right
<style> = BS_FLAT Flat <- true

<style> = BS_MULTILINE Multiline <- true

<style> = BS_NOTIFY Notify <- true

<class>=BUTTON and new(PushButton) and
<style> = BS_PUSHBUTTON Default <- false

or
<class>=BUTTON and new(PushButton) and
<style>= Default <- true

BS_DEFPUSHBUTTON
<style> = BS_TEXT
<style> = BS_BITMAP
<style> = BS_ICON

Content <- text
Content <- bitmap
Content <- icon

A notation can be used to express parameterized derivation
rules for a Ul specified in any language (or source model). The
rules are applied on trees representing a Ul: 7 is the source tree
(an instance of the diagram modeling a Windows dialog box
resource) and 7 is the target tree (an instance of the CUI mod-
el). The nodes of a tree T store hierarchically the elements
composing the Ul. Each connection (or arc) represents a con-
tainment relationship between the parent and the child. Each
node of the tree represents the different elements composing
the UI. Each node can possess zero or more attributes. To con-
struct 7;, I will use the following predefined basic update op-
erations:

- AddNode(class, id): add a new node with the identifier id
storing an element which is an instance of class.

- AddAttribute(id, name, value): add to the node id the at-
tribute name initialised to value.

- ModifyAttribute(id, name, newname, newvalue): suppress
the attribute name of the node id and add the attribute
newname with the value newvalue.

- AddArc (idSource,idTarget): connect the parent node id-
Source with its child node idTarget.

C. Phase 3: Resource to CUI transformation

In this section, we explain how a resource model can be
transformed into a Concrete User Interface (CUI) model thanks
to mappings between. This is a desirable step since the CUI
models are platform-independent, unlike the resource model
that in our case is tied to the Windows 7 platform (Figure 3).
The UsiXML (User Interface eXtensible Markup Language)
user interface description language was selected as the CUI
definition formalism because its CUI metamodel (Figure 5 —
only sections with a colored background are exploited by
UsiResourcer) is publicly available, as well as its correspond-
ing CUI model editor, GrafiXML [26]. Other User Interface
Description Languages (UIDLs) could be equally used, such as
MariaXML, as used in [15], or XIML as used in [9] without
any loss of information or generality. Figure 4 reproduces the
metamodel used for defining the CUI level.

An excerpt of the UsiXML CUI model for the “Find” dia-
log box is shown in Figure 1 (top right). The CUI model, ex-
pressed in XML, is hierarchically composed of Concrete Inter-
action Objects (CIOs). A CIO is any entity that the user can
perceive and manipulate used for the acquisition or restitution
of information. CIOs are grouped into two types: graphical
containers (such as a window, a dialog box or a group box) and
graphical individual components (such as an image, a check
box or a progression bar). Graphical containers are arranged re-
cursively in terms of vertical or horizontal boxes. The proper-
ties of each final element in the hierarchy, their specific and in-
herited attributes, are limited to describe characteristics of high
common interest, independently from any GUI rendering.

D. Phase 4: Forward engineering

Once the GUI is represented by means of a platform-
independent model (the CUI model), manual or semi-automatic
transformations can be applied to perform changes in the origi-
nal software. Two common scenarios prevail (Figure 1):

e Resource recompilation: the CUI model is transformed
(e.g., for GUI adaptation, customization, localization or
globalization) an into a new resource file that can be com-
piled again and re-incorporated into the executable file of
the initial interactive application, thus creating a new ver-
sion of this original application. For instance, some controls
have been removed (Fig. 1 bottom center) and the new re-
source is recompiled into the original application.

o New GUI generation: the CUI model is transformed (e.g.,
by moving controls, re-aligning or reshuffling controls) in
order to create a different CUI model and generate a new
interface from this model. For instance, the “Find” dialog
box has been reformatted to fit the constraints imposed by
another screen resolution, here the one of a vertical Pock-
etPC (Figure 1 bottom right).

CUI models are serialized in UsiXML format by applying a
generator that interprets transformation rules expressed with a

template language (such as XSLT). When no transformation is
applied, the CUI model is simply preserved, which is useful
when a CUI element is to be reused in a consistent manner
from one interactive application to another.

TABLE III. M2M TRANSFORMATION FROM WINDOWS 7 TO USIXML.

DIALOG dialogBox or window
graphicalCio isVisible = true

box #ype = vertical

digIiD =n cio name =n

Width =w graphicalContainer width =
w*4/xChar + 2*border width
(where xChar is the average width of the
dialog box font character in pixel)

box width = w*4/xChar

Height=h graphicalContainer /eight =
h*8/yChar + title bar height
+ bottom border width (where yChar is
the average height of the dialog box font
character in pixel)

box height = h*8/yChar

Text =t and Caption =
true and t # null

cio defaultContent =t

FontName = n and
SetFont = true

graphicallndividualComponent
textFont =n

ShellFont = true and
FontName = "MS
Shell DLG"

graphicallndividualComponent
textFont = "Tahoma"

ShellFont = true and
FontName # "MS
Shell DLG"

graphicallndividualComponent
textFont = "Tahoma"

FontSize =s and
(SetFont = true or
ShellFont = true)

graphicallndividualComponent
textSize = s

SetFont = false and
ShellFont = false

graphicallndividualComponent
textSize = 8,

textFont = "Tahoma"

Extended = true and
(SetFont = true or
ShellFont = true) and
Weight > 550

graphicallndividualComponent isBold
= true

Extended = true and
(SetFont = true ¢t or
ShellFont = true) and
Italic = true

graphicallndividualComponent
isltalic = true

Disabled = true graphicalCio isEnabled = false

ThirckFrame = true window isResizable = true

TopMost = true graphicalContainer isAlwaysOnTop =

true

V.THE REENGINEERING TOOL

The resource recovery phase outlined in Figure 1 has been
implemented in UsiResourcer, a plug-in for the GrafiXML [26]
IDE, that is capable of importing/exporting a CUI model in the
required format. UsiResourcer consists of +5,500 Java 5 LOC
in GrafiXML which itself consists of £110,000 Java LOC. In
this GUI builder, the developer does not need to read, under-
stand, or modify the internal representation of the CUI model,
but only its visual appearance: controls can be dragged from a
palette and dropped onto a working area. Selecting any ele-
ments enable editing its related properties, such as default val-

ues, colors, fonts, and location. The integration of Usi-
Resourcer in GrafiXML is motivated by the following reasons:
from the usage viewpoint, the developer does not need to ma-
nipulate the internal representation of the CUI model (e.g., in a
XML-compliant format), the results of the reverse engineering
are immediately available and visible in the editor; from a de-
velopment viewpoint, the editor already contains built-in meth-
ods to generate and manage elements at the desired level of ab-
straction after having defined transformations rules, export in
other formats is also available (e.g., XUL, Java, XHTML). The
main window of UsiResourcer can be seen in Figure 5. The
tool allows the user to select the resource file (in text format)
and select the resources to be recovered.

£ Import Resources @
Select resources for import: Importing resources: Preview:
- MEMU MERNL 400 DIALOG 30, 73, 275, 84 ~
=-DIALOG BOX = DIALOG BOX STYLE DS_3DLOOK |DS_SETFONT |D3_MOD.
ABOLIT CAPTION "Find™
GOLINE FONT 8, "N Shell Dlg"
GREP LANGUAGE LANG ENGLISH, 1
INSABEREY i
PARAMETERS CONTROL "Fitnd what:", 65535, "STAT
PARAMETERSHOMMODAL CONTROL "",222, "COMBOBOX", CES_DRO
TABSIZE CONTROL "Match svhole word enly"”,;
255 CONTROL "Match sease', 233, "BUTTON
401 CONTROL "Regular sexpression”, 239

CONTROL "Wrap arounsd”, 240, "EUTTO
CONTROL "Transform shackslash exp
CONTROL "Directiaon®, 65535, "EUTTON
CONTROL "&Up",234, "BUTTON",BS_AUT:
CONTROL "&Dawn™, 235, "BUTTON", ES_&
CONTROL "&Find Mext”,1,"BUTTON",B!wy

< 2 < >
FIGURE 5: USIRESOURCER MAIN WINDOW.
Target platform =
= N el e |
Components
Choose compaonents Choose |
Resizing rules [0 selected]
Moving rules [0 selected]
............. Interactor transformations [0 selected] H
D = Choose components
B s) Choose by type ar hierarchy
I~ Color picker - ~
* Hierarch Type
[~ Combo box i s
[Date picker Choose by level
I~ File picker iz I =
I~ Fort picker
™ Hour picker - Al
I Hyperlik =5 I_ window_companent_0
I Litb _ = box_t
55 80X output_text_component_2
5| equiten [input_text_component_3
™ Radio buttons {(group) LI

oK | Cancel |

Image transFormations [0 selected] |

Splitting rules [0 selscted] |

Freview Apply

FIGURE 6. TRANSFORMATIONS APPLIED FOR GUI REFORMATTING.

VI. CASE STUDIES AND DISCUSSION

UsiResourcer was applied in two real-world case studies:

1. GUI reformatting: in this case study, an information
system for submitting and displaying basic data of a hotel and
related touristic locations was initially developed for a
1420x1024 screen resolution of a desktop environment. As
soon as touristic locations decided to buy a tactile interactive
kiosk with a screen resolution of 1024x768, thus smaller than
the initial screen resolution. Since only the executable code was
available, it was not possible to redesign the GUI directly. This
information system was a simple application containing only
standard windows and controls (2 menu bars, 11 interactive

forms containing a total amount of 268 controls). In order to
reformat these controls, five types of transformations were ap-
plied on the CUI model resulting from the reverse engineering:
resizing rules, moving rules, concrete interactor transfor-
mations, image transformations, and splitting rules (Figure 6).
In this case, the recovery rate was about 95% since all controls
were statically defined in standard windows.

2. GUI localization: one extreme situation exists when
there is a need to localize an interactive application, for which
only the executable code remains available. GUIResourcer
could recover appropriate resources. Then, textual resources
could be automatically translated (for instance, some on-line
translation services localizes GUI strings from one native lan-
guage — say French - to another one — say English, while pre-
serving keywords, reserved terms, etc.). For this purpose, tex-
tual resources are converted into .CSV files and submitted on-
line to automatic translation. Then, translated .CSV are sent
and converted back into resource files to be compiled in order
to obtain the new executable interactive application. GUI-
Resourcer was used to localize a knowledge-based system for
which no translation was available and for which only the exe-
cutable code was available, because the development company
went bankrupt. This case study involved: 52 windows and dia-
log boxes, 3 menu bars (used in different contexts) with 5 pull-
down menus, for a total amount of 305 controls. GUIResourcer
recovered 271/305 controls, giving a recovery rate of 88%. All
textual resources have been automatically translated. Figure 7
reproduces a dialog ox that was localized in English (transla-
tion and revamping of the GUI).

Controls that escape from the reverse engineering process
were essentially controls that were programmatically defined in
the code of the application itself, therefore outside the scope of
the reverse engineering process based on resource files. In this
case, some other controls were not supported because they
were statically defined in the resources, but only created: they
were defined as invisible depending on the radio button on the
top panel displayed in Figure 7. Again, their visibility was
managed in the code of the application itself. Decompiling this
code is too hard and imprecise in order to derive a significantly
expressive behavior.

Selection of interaction styles

» Context = Selections + Questions Bules

EI +| Display Question Previous | Hext I

Question |Whal are the prerequisites imposed by the task?

Thsk prerequisites denote the amount of knowledge ;I
required to the user to properly cany out the tazk with the
intended Ul LI

Guideline

[1] minimal

[2] moderate

[3] maximal

[4] minimal to moderate

[5] moderate to maximal

Add selection |
Add rule |

Selection

Delete selection |
Delete rule |

? Help

FIGURE 7: GUI LOCALIZED.

VII. SHORTCOMINGS AND GENERALIZATION

Based on experience using UsiResourcer in various case
studies and trials, several shortcomings of this approach were
identified that are discussed in this section. These shortcomings
need to be considered when generalizing the approach to other
resource files than Windows 7: this also discussed at the end of
this section.

1) Lack of mappings

When performing the mapping from the resource mode to
the CUI model, the maximum number of attributes of the CUI
model must be filled in with information found in the resource
file. The issue is that both metamodels can have different levels
of expressiveness, i.e. not all the GUI attributes defining the
appearance and behavior are covered by both metamodels
(Figure 8): for example, a mnemonic of a menu item can be
specified in both the resource file and the CUI model (intersec-
tion part of Figure 8), editability vs. read-only definition of a
combo box can be specified in the CUI only, the visibility of
the list box that is displayed permanently is not included in the
CUI model.

. - » graphicalCio, toolTipDefaultContent = "Save the file to disk"
-

CUI

COMBOBOX, Type = simple
combobox, isEditable = true

WINDOW, Text ="&Save"
graphicalndividual Component, defaultnemonic = S

"~ = - » LISTBOX, Multicolumn = true

cio, defaultcontent = "Save"

FIGURE 8: COMMONALITIES BETWEEN WINDOWS RESOURCES AND CUI.

WinDirStat - Settings &‘

General | Directory List | Treemap | Cleanups | Report

Bright- Cushion Height Scale
ness Shading Factor

Style
@ KDirstat

Light Incidence

Dlshowcrd [l Grid Color

|
i |

Resst to

Highight Rectangle| Defaults

O sequoiaview | [|

Static Static Static Static Static

Bright- Cushion Height Scale
ness Shading Factor

Light Incidence Static

e I™ Show Grid Grid Color
" KDirStat =

s Highight Rectangle I

FIGURE 9: EXAMPLE OF AN UNSUPPORTED WIDGET:
(A) INITIAL WINDOW. (B) RECOVERED WINDOW.

2) Unsupported widgets

All widgets that are statically expressed through resource
files are good candidates for reverse engineering according to
our approach. Some widgets are outside this expression model:
non-standard widgets (e.g., widgets that are not native in the
Windows Software Development Toolkit), custom widgets that
are typically hard-coded (e.g., with a dynamic behavior), pro-
grammatically-defined widgets (e.g., GUIs for specific tasks
such as information visualization also escape from this han-
dling. Widgets with dynamic behavior may require a dynamic
analysis by observing its behavior over time and an analysis of
interaction traces could be useful [22]. For example, Figure 9a
reproduces a screenshot of a GUI including a color visualiza-
tion tree that is lost in the translation as seen in Figure 9b. The
custom widgets specifying the grid color and the highlight rec-
tangle in Figure 10a are equally lost; the label “Reset to De-
faults” also disappears since it is defined in the program code.

Fundamenta Cherd Chart Fundamenta (Bt st

B - & oo | KKK KX iw
Chord E nset Chard., | | | Chord o Insen Chord.. |
M = [=]
ik 5 5 EckDiagan Fith 5 [Eaisgan -
Ninth: i Hinth: e mri234¢
Inversions: Inversions:

Onit L -

e mE

G Basic Chard Postion X Cose Nane: X o |

o e e e e AR [j v oK

FIGURE 10: CUSTOM WIDGETS LOST IN THE PROCESS.

3) Not-understandable resource definitions

Some widgets contained in resource files are accessible for
decompilation, but are expressed in a proprietary format that
prevent any reverse engineering to properly deduce a resource
model from it. Such cases include binary, protected definitions,
encrypted widgets (like in most Microsoft applications), thus
preventing our approach to “steal” a GUI definition. Table 4
shows some mappings established between the resources and
the CUI, especially for the PushButton control. There exists a
one-to-one mapping for most of the attributes. It is worth re-
marking that to generate the name of the new control we use
the line number of the textual resource file. The reason is that
doing it this way they can be localized easily and mostly in a
unique way.

TABLE IV. MAPPINGS BETWEEN THE RESOURCE MODEL
AND THE CONCRETE USER INTERFACE MODEL.

Resource model CUI model
PushButton Button
Position = n name = “control "+ n

X, 'Y, Width, height

Serve to the creation of boxes
with eventually some
graphicalAlignment between
two components inside a box

Disabled = true

isEnabled = false

Visible = false

isVisible = false

Text =tand ‘&’ is a character
of t and the control is a radio
button, a push button, a
customised button or a check
box

defaultMnemonic = the
character following ‘&’ in t

Text = t and Content = text

defaultContent = t without the
‘& character

Text = t and Content # text

defaultContent = t

Default = true

graphicalEmphasis

4) Dimension of the dialogs
The dimension of a graphical container is expressed in pix-
els, whereas a resource file expresses the measures in horizon-
tal dialog units and vertical dialog units. The dimensions in

Windows are then defined in term of characters. One horizontal

(vertical) unit equals 1/4 (1/8) of an average character width

(height) of the font used. In order to work out the precise size

of the dialogs, the average width and height of the different

font types (with different font size) must be taken into account.

In our case we assume an 8-point Tahoma font, which is the

most common font type and font size in Windows 7 dialogs.

5) Layout of the controls
For a graphical control, the concept of position and dimen-
sion inside a window is absent in the CUI model. To place each
component, horizontal and vertical boxes (Box metaclass) have
to be defined, which requires analyzing the position and dimen-
sion of all the controls specified in the resource model. This

task is particularly addressed in [8].

6) Dimensions of a control
The dimensions of a container (graphicalContainer meta-
class) can be specified in the CUI, in contrast to the controls

(graphicalindividualComponent) which do not have attributes

to keep these data. The actual dimension of the buttons, radio-

Buttons, checkBoxes and toggleButton is defined by the length

of the text which appears in it, and it cannot have a larger size.

If an image is displayed in the button instead of text, its size is

undefined since this image resource is not available. ListBox

controls also present the same problem: the size depends on the
length of its items because the strings contained in a list box are
not specified in a resource file.

7) Platform-dependent colors

Sometimes resources use colors that are defined based on the

Windows system colors. This means that you can use a color

that depends on the system configuration (for example, the de-

fault color that is used to fill the window background). This
kind of information is not present in the resource files, so the
configuration of the platform must be also required.

8) Generalization of the approach

In order to generalize the approach and its support software

UsiResourcer to other resource files, the following actions need

to be undertaken:

- For another decompiler in the same computing platform: re-
source decompilers produce potentially inconsistent results,
as shown in the preliminary study. Therefore, supporting
another resource decompiler requires writing another EBNF
grammar to reflect its structure. The rest is left unchanged:
the Windows 7 resource metamodel does not change, only
its injection from another format should change.

- For another version of the same resource file in the same
computing platform: formats of resource file constantly
evolve over time with new versions of operating systems.
Thus, supporting another version or another format requires
updating the resource metamodel and the corresponding
EBNF grammars. Then, the transformations and the model
injection need to be updated. The rest is left unchanged.

- Another UIDL for the CUI model. Since various UIDLs
could be used, supporting another UIDL requires imple-
menting the M2M transformations in the terms incorporated
in the new UIDL. The rest is left unchanged.

VIII. CONCLUSION

In this paper, we have presented a re-engineering method in
which the GUI resource files contained in its executable files
are exploited to recover a CUI model from which various oper-
ations can take place, such as GUI editing, regeneration of a
new GUI, or any modification. For this purpose, a resource me-
ta-model has been created so as to establish mappings between
any resource model obtained from these resource files and CUI
model by model-to-model transformations. There are still cases
where this process does not produce the full results that have
been discussed, such as when resources files contain non-
standard widgets, are programmatically defined, or encrypted.

ACKNOWLEDGMENTS

The authors would like also to acknowledge the support of
the ITEA2-Call3-2008026 UsiXML (User Interface eXtensible
Markup Language) project supported by Région Wallonne
DGO6 as well as the FP7-ICT5-258030 SERENOA project
supported by the European Commission.

REFERENCES

[1] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and challenges
in software reverse engineering,” Communications of the ACM, vol. 54,
no. 4, April 2011, pp. 142-151.

[2] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J.
Vanderdonckt, “A Unifying Reference Framework for Multi-Target Us-
er Interfaces,” Int. with Comp., vol. 15, no. 3, June 2003, pp. 289-308.

[3] P. Wegner, “Why Interaction is more Powerful than Algorithms,” Com-
munications of the ACM, vol. 40, no. 5, 1997, pp. 80-91.

[4] F. Montero, V. Lopez-Jaquero, and P. Gonzalez, “Model-based Reverse
Engineering of Legacy Applications User Interfaces,” in Proc. of 2" Int.
Workshop on User Interface Description Languages UIDL’2011 (Lis-
bon, September 6, 2011). Paris: Thales, 2011, pp. 128-133.

[5] G. Canfora, A.R. Fasolino, G. Frattolillo, and P. Tramontana, “A wrap-
ping approach for migrating legacy system interactive functionalities to
service oriented architectures,” Journal of Systems and Software, vol.
81, no. 4, April 2008, pp. 463—480.

[6] L. Bouillon and J. Vanderdonckt, “Retargeting of Web Pages to Other
Computing Platforms with VAQUITA,” in Proc. of 9" IEEE Working
Conf. on Reverse Engineering WCRE’2002 (Richmond, October 28-
November 1, 2002). Washington: IEEE Press, 2002, pp. 339-348.

[7] E.J. Chikofsky and J.H. Cross, “Reverse engineering and design recov-
ery: A taxonomy,” IEEE Software, vol. 7, no. 1, 1990, pp. 13—17.

[8] O. Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina, “Mod-
el-driven reverse engineering of legacy graphical user interfaces,” in
Proc. of 25™ IEEE/ACM Int. Conf. on Automated Software Engineering
ASE’2010 (Antwerp, Sept. 20-24, 2010). ACM Press, pp. 147-150.

[9]1 G. Di Santo and E. Zimeo, “Reversing GUIs to XIML Descriptions for
the Adaptation to Heterogeneous Devices,” in Proc. of the ACM Sympo-
sium on Applied Computing SAC’2007 (Seoul, March 11-15, 2007).
New York: ACM Press, 2007, pp. 1456—-1460.

[10] J. Vanderdonckt, L. Bouillon, and N. Souchon, “Flexible Reverse Engi-
neering of Web Pages with VAQUITA,” in Proc. of 8" IEEE Working
Conf. on Reverse Engineering WCRE’2001 (Stuttgart, October 2-5,
2001). Washington: IEEE Computer Society Press, 2001, pp. 241-248.

[11] L. Bouillon, J. Vanderdonckt, and K. Chieu Chow, “Flexible re-
engineering of web sites,” in Proc. of ACM Int. Conf. on Intelligent User
Interfaces IUI’2004 (Funchal, January 14-16, 2004). pp. 132—-139.

[12] L. Bouillon, Q. Limbourg, J. Vanderdonckt, and B. Michotte, “Reverse
engineering of web pages based on derivations and transformations,” in
Proc. of 3" IEEE Latin American Web Congress LA-Web’2005 (Buenos
Aires, October 1 - November 2, 2005). IEEE Press, 2005, pp. 3—13.

[13] L. Paganelli and F. Paterno, “Automatic Reconstruction of the Underly-
ing Interaction Design of Web Applications,” in Proc. of 14" Int. Conf.
on Software Engineering and Knowledge Engineering SEKE’2002 (Is-
chia, July 15-19, 2002). New York: ACM Press, 2002, pp. 439—445.

[14] R. Bandelloni, F. Paterno, and C. Santoro, “Reverse Engineering Cross-
Modal User Interfaces for Ubiquitous Environments,” in Proc. of IFIP
Conf. on Engineering Interactive Systems EIS’2007 (Salamanca, March

[15

[16

[17

[18

[19

[20

22-24, 2007). Lecture Notes in Computer Science, Vol. 4940, Berlin:
Springer, 2008, pp. 285-302.

] F. Bellucci, F. Ghiani, F. Paterno, and C. Porta, “Automatic reverse en-
gineering of interactive dynamic web applications to support adaptation
across platforms,” in Proc. of Int. Conf. on Intelligent User Interfaces
1UI’2012 (Lisbon, Feb. 14-17, 2012). ACM Press, 2012, pp.217-226.

] H. Samir, E. Stroulia, and A. Kamel, “Swing2Script: Migration of Java-
Swing Applications to Ajax Web Applications,” in Proc. of 14" IEEE
Working Conf. on Reverse Engineering WCRE’2007 (Vancouver, Octo-
ber 28-31, 2007). Washington: IEEE Press, 2007, pp. 179-188.

] M. Dixon, D. Leventhal, and J. Fogarty, “Content and hierarchy in pixel-
based methods for reverse engineering interface structure,” in Proc. of
ACM Conf. on Human Aspects in Computing Systems CHI’2011 (Van-
couver, May 7-12, 2011). New York: ACM Press, 2011, pp. 969-978.

] J. Maras, M. Stula, and J. Carlson, “Reusing web application user-
interface controls,” in Proc. of the 11" Int. Conf. on Web engineering
ICWE’2011 (Paphos, June 20-24, 2011). Lecture Notes in Computer
Science, Vol. 6757, Berlin: Springer, 2011, pp. 228-242.

] A. Memon, 1. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engi-

neering of graphical user interfaces for testing,” in Proc. of the 10" IEEE

Working Conf. on Reverse Engineering WCRE’2003 (Washington, No-

vember 13-16, 2003). IEEE Computer Society, 2003, pp. 260-269.

J.C. Silva, C.E. Silva, R.-D. Gongalo, J. Saraiva, and J.C. Campos, “The

GUISurfer tool: towards a language independent approach to reverse en-

gineering GUI code,” in Proc. of 2" ACM Int. Conf. on Engineering In-

[

[21]

[22]

[23]

[24]

[25]

[26]

teractive Systems EICS’2010. ACM Press, 2010, pp. 181-186.

E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, and B. Matichuk, “Re-
verse engineering legacy interfaces: An interaction-driven approach,” in
Proc. of the 6" IEEE Working Conf. on Reverse Engineering WCRE’99
(Atlanta, October 6-8, 1999). IEEE Press, 1999, pp. 292-303.

P. Tonella and A. Potrich, “Reverse engineering of the interaction dia-
grams from C++ code,” in Proc. of the 19™ IEEE Int. Conf. on Software
Maintenance ICSM’2003 (Amsterdam, September 22-26, 2003). Wash-
ington: IEEE Computer Society Press, 2003, pp. 159-168.

M.I. Muhairat, R.E. Al-Qutaish, and B.M. Athamena, “From Graphical
User Interface to Domain Class Diagram: A Reverse Engineering Ap-
proach,” Journal of Theoretical and Applied Information Technology,
vol. 24, no. 1, 2011, pp. 28-40.

O. Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina, “Re-
verse Engineering of Event Handlers of RAD-Based Applications,” in
Proc. of 18" IEEE Working Conf. on Reverse Engineering WCRE’2011
(Limerick, October 17-20, 2011). IEEE, 2011, pp. 293-302.

I.C. Morgado, A.C.R. Paiva, and J.P. Faria, “Reverse Engineering of
Graphical User Interfaces,” in Proc. of the 6™ Int. Conf. on Software En-
gineering Advances ICSEA’2011 (Barcelona, October 23-29, 2011),
IARIA Press, 2011, pp. 293-298.

B. Michotte and J. Vanderdonckt, “GrafiXML, A Multi-Target User In-
terface Builder based on UsiXML,” in Proc. of 4" Int. Conf. on Auto-
nomic and Autonomous Systems ICAS’2008 (Gosier, March 16-21,
2008). IEEE Computer Society, Washington, 2008, pp. 15-22.

Appendix. Correspondence between Resource file (physical name) and Meta-model (logical name) for a dialog box in Windows 7: (a)
portion of the meta-model concerned; (b) resource template; (c) static definition; (d) derivation rules; (e) flags.

Y-
T J
mih
E
L
[

W

dialog box template :
<id> DIALOG[EX] <x>, <y>, <width>, <height> [, <helpld>]
a STYLE <style>*
CAPTION "<text>"
[EXSTYLE <ex_style>*]
LANGUAGE <language>, <sublanguage>

FONT <pointsize>, "<typeface>" [, <weight>, <italic>]
Ol {
Q 0 [=l= =] <control_def>
Q =JOL= ¥
Class DIALOG DIALOG Flag value
Aggregation relationshi,
n> 1 is the number of relationship instances { } and n > 1 is the number of lines in <control def>
in which the DIALOG instance participates <id>::= val(DIgID)
Attibutes DIALOGEX
DigID <x> = val(X)
Extended = true c <y>:=val(Y) d e
X, Y <width> ::= val(Width)
Width, Height <height> ::= val(Height)
HelpID # -1 <helpld> ::= val(HelpID)
3Dlook = true <style> ::= DS_3DLOOK
AbsoluteAligment = true <style> ::= DS_ABSALIGN 0x00000004
Center = true <style>::= DS_CENTER 0x00000001
CenterMouse = true <style> ::= DS_CENTERMOUSE 0x00000800
ContextHelp = true <style> ::= DS_CONTEXTHELP 0x00001000
DialoglIsControl = true <style> ::= DS_CONTROL 0x00002000
FixedSys = true <style> ::= DS_FIXEDSYS 0x00000400
LocalEdit = true <style> ::= DS_LOCALEDIT 0x00000008
ModalFrame = true <style> ::= DS_MODALFRAME 0x00000020
NoFailCreate = true <style> ::= DS_NOFAILCREATE 0x00000080
NoldleMessage = true <style> ::= DS_NOIDLEMSG 0x00000010
SetForeGroud = true <style> ::= DS_SETFOREGROUND 0x00000100
SysModal = true <style>::= DS_SYSMODAL 0x00000200
val(Language) not NULL <language> ::= LANG_upper(val(Language)) 0x00000002
val(Sublanguage) not NULL <sublanguage>::=SUBLANG_<language>_upper(val(Sublanguage))
SetFont = true <style> ::= DS_SETFONT
FontName <typeface> ::= val(FontName) 0x00000040
FontSize <pointsize> ::= val(FontSize)
Ttalic = true, Italic = false <italic> ::= TRUE, <italic>::= FALSE
Weight # -1 <weight> ::= val(Weight)
ShellFont = true <style> ::= DS_SHELLFONT 0x00000048

Other attributes can be inherited from the WINDOW class (in addition to the attribute GeneralStyle always set to popup)

