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Abstract

We consider a continuous-time variant of the classical Economic Lot-Sizing (ELS) problem.
In this model, the setup cost is a continuous function with lower bound Kmin > 0, the demand
and holding costs are integrable functions of time and the replenishment decisions are not
restricted to be multiples of a base period. Starting from the assumption that certain operations
involving the setup and holding cost functions can be carried out efficiently, we argue that this
variant admits a simple approximation scheme based on dynamic programming: if the optimal
cost of an instance is OPT, we can find a solution with cost at most (1 + �)OPT using no

more than O
�

1
�2

OPT

Kmin
log OPT

Kmin

�
of these operations. We argue, however, that this algorithm

could be improved on instances where the setup costs are “generally” very large compared
with Kmin. This leads us to introduce a notion of input-size σ that is significantly smaller than
OPT/Kmin on instances of this type, and then to define an approximation scheme that executes

O
�

1
�2σ

2 log2
�

OPT

Kmin
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operations. Besides dynamic programming, this second approximation

scheme builds on a novel algorithmic approach for Economic Lot Sizing problems.
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1 Introduction

Economic Order Quantity (EOQ) and Economic Lot-Sizing (ELS) are two classical problems in
inventory management [Harris(1990), Wilson(1934), Wagner and Whitin(1958)]. In both problems
the cost decomposes into a fixed ordering/production cost that is charged each time there is a
production order, and the holding costs that are charged proportional to the stock level. The
main trade-off in EOQ and ELS is between low setup costs (few batches) and low holding costs
(many batches or just-in-time production). This captures a key aspect of most production planning
problems. The two problems differ by some key aspects: EOQ assumes constant cost functions
and demand rate on a continuous-time infinite time horizon and admits an analytical solution while
ELS assumes time-varying costs and demand in a finite discretized planning horizon and is solved
by dynamic programming.

In this work, we consider the natural generalization of both EOQ and ELS: we handle time-
varying cost and demand rates in continuous time in a finite planning horizon. In practice, con-
sidering decisions in continuous time is becoming more and more realistic as production processes
become fully automated. Moreover, in industrial context, discetization of time in ELS is typically
made before input data is known. As will appear below, our algorithm considers only a finite set of
possible times for placing setups, implicitly building a discretization of the time horizon. Therefore,
a good discretization of the time horizon is part of the decisions made by our algorithm.

Formally the input of the problem we consider is given by the following objects: an integrable
demand function d : [0, T ] → R+, an integrable holding cost function h : [0, T ] → R+, and a
continuous setup cost function K : [0, T ] → [Kmin,Kmax] with a strictly positive lower bound
Kmin > 0. The interval [0, T ] is called the planning horizon. A feasible solution for this problem
is any finite sequence of strictly increasing setups {si}i=1..n ⊆ [0, T ] with s1 = 0. Because h is
non-negative, it is always optimal to produce as late as possible given the setup sequence; therefore
the setup times implicitly partition the time horizon into n windows [si, si+1) (for convenience,
sn+1 ≡ T ), where the inventory required to fulfill demands in [si, si+1) is ordered at si. The order
at si incurs a total holding cost of

Hi ≡
∫ si+1

si

h(t)Ds(t)dt, where Ds(t) =

∫ si+1

t
d(u)du.

and a setup cost of
Ki ≡ K(si).

The objective of the ELS problem is to find a feasible solution {si}i=1..n minimizing the total cost∑n
i=1 (Ki +Hi). The restriction to K(·) ≥ Kmin > 0 ensures that this minimum always exists. In

the remaining of the paper, we will assume without loss of generality that Kmin = 1.
Massonnet [Massonnet(2013)] is the only work we are aware of to give an approximation

guarantee for the continuous-time ELS problem with general time-varying demand rate. Assuming
a constant setup cost function K, he shows that balancing setup and holding cost in each window
yields a 2-approximation algorithm. We dramatically improve this result by describing efficient
approximation schemes while removing the constant setup cost assumption.

Summary. In Section 2, we define several basic notions that turn out to be non-trivial. More
specifically, we discuss the complexity model we use, then the associated oracles and finally define
the size of an instance σ that we will use. We also deal with some notational issues.

In Section 3, we give a simple approximation scheme based on dynamic programming. It finds
an (1 + ε)-approximated solution using O

(
1
ε2
OPT logOPT

)
oracle calls. As discussed above, this
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is efficient if Kmax = O(1), but not in general. In Section 4, we describe a constant approximation
algorithm that performs O (σ log (OPT)) oracle calls. This algorithm significantly departs from
the standard approaches to solve ELS in discrete time, and is built on new ideas that could be of
independent interest.

In Section 5, we combine the ideas from the algorithms introduced in sections 3 and 4 in order to
obtain an approximation scheme where the number of oracle calls is bounded by a function of σ. It
performs O

(
1
ε2
σ2 log2 (OPT)

)
oracle calls to obtain a (1 + ε) approximation. Finally, in Section 6,

we briefly discuss how the measure σ can be strengthened, by defining yet a stronger parameter
σ ≤ σ, and a constant approximation algorithm that executes O (σ logOPT) oracle calls.

2 Preliminaries

2.1 Complexity of the problem

In the discrete setting (that is, when demand and holding cost functions are replaced by sequences)
the theoretical notion of efficient algorithm is that of a polynomial time algorithm. Wagner and
Whitin [Wagner and Whitin(1958)] solved the discrete ELS in time quadratic in the number of pe-
riods; more recently, Wagelmans et al. [Wagelmans et al.(1992)Wagelmans, van Hoesel, and Kolen,
Federgruen and Tzur(1991)] reduced the running time from quadratic to linear. Because reading
the input data already requires linear time, the algorithm of Wagelmans et al. is considered essen-
tially best possible in terms of execution time.

In the continuous setting the situation is blurrier. For some problems involving continuous
inputs, the theoretical computational time to solve them can still be bounded by a reasonable
function of the input description. But often this is not the case, and ad-hoc approaches are used
to justify, in theory, the efficiency of the proposed procedures to solve them. An example of these
approaches is called information based complexity [Traub and Werschulz(1998), Sikorski(1985),
Plaskota(1996)], where we impose conditions on the input so that an approximate solution can be
found via some discretization of the input. This is used in numerical analysis, where sufficiently
regular functions can, among several operations, be approximately integrated using finitely many
sampled function values [Traub and Werschulz(1998)].

In this paper, we describe approximation algorithms for the continuous-time ELS problem
that are efficient under a model of computation specifically tailored to the characteristics of this
problem. It is based on the oracle model from computer science [Papadimitriou(1994)], that takes
the computation of certain complex operations for granted; an algorithm executes these operations
by calling an hypothetical procedure called the oracle, but in the total running time it is only the
number of calls to the oracle that counts.

In the oracle model, the existence of efficient algorithms for a problem is subjugated to the
existence of an efficient method for implementing the oracle. Because the operations encapsu-
lated by the oracle are often deemed necessary for most thinkable algorithms for the problem,
there is usually a weak, informal, correspondence between efficient algorithms for a problem and
efficient implementations of the corresponding oracle. For example, in computational geometry,
oracles are used to test membership to certain geometric sets (e.g. for volume estimation of convex
bodies [Lovász and Vempala(2006)]); in combinatorial optimization, oracles are used to test mem-
bership to certain collection of subsets (e.g. for computing a maximum-weight independent set in
a matroid [Schrijver(2003)]); in continuous optimization, oracles are used to determine any point-
wise gradient or Hessian (e.g. for solving an optimization problem using any the gradient-based
algorithm [Boyd and Vandenberghe(2004)]).
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2.2 Oracles

Through the paper, we consider the two following oracles:

Oracle 1. For any s ∈ [0, T ] and c > 0: the last time x where K(x) +
∫ x
s h(t)Ds(t)dt ≤ c. For

convenience, we will denote x ≡ S(s, c).

Oracle 2. for any s ∈ [0, T ]: the earliest time x > s where K(x) ≤ K(s)/2, or∞ if no such x exists.

We will also need to evaluateK(s) for any s, and the accumulated holding costH[s,s′) ≡
∫ s′
s h(t)Ds(t)dt

in any interval [s, s′]. We consider these as basic operations.
Oracles 1 and 2 are non-trivial one-dimensional optimization problems themselves of the form

minx∈[a,b]{x : f(x)/leqc} for f(x) continuous and f(a) > c. Note that assuming we can solve
minx∈[a,b] f(x) for any [a, b], then one can efficiently solve the former problem to arbitrary precision
by binary search as follows. Solve x∗ = minx∈[a,a+b

2
] f(x). If x∗ ≤ c, then the solution lies in

[a, x∗] ⊆ [a, a+b
2 ], otherwise the solution lies in [a+b

2 , b]. Therefore the oracles we assume are not
really stronger than assuming that K(x) +

∫ x
s h(t)Ds(t)dt and K(x) can be minimized on any

interval. These in turn seem very reasonable and natural assumptions. We now briefly discuss a
few specific cases where these oracles can be implemented efficiently.

(Piecewise) convex setup cost K(t) and (piecewise) increasing demand rate d(t). In this case,
since

∫ x
s h(t)Ds(t)dt is (piecewise) convex in x, both K(x) and K(x)+

∫ x
s h(t)Ds(t)dt are (piecewise)

convex. Therefore both functions can be minimized on any interval in time linear in the number
of pieces, and the oracles can be implemented efficiently.

Non-decreasing setup cost K(t). Oracle 2 will always return∞. Moreover K(x)+
∫ x
s h(t)Ds(t)dt

is non-decreasing in x so that Oracle 2 can be implemented using Secant or Newton methods.
Discrete time and non-decreasing setup cost K(t). Even if it is not the focus of our work,

it is interesting to see what are the implications for the more classical discrete time setting. By
discrete time, we mean here that setups can only be placed in a finite predefined set of time periods
{s1, . . . , sn}. Again non-decreasing setup cost implies that Oracle 2 is trivial. With n discrete time
periods, Oracle 1 can be implemented by binary search in O(log n) time assuming that both the
accumulated demand and the accumulated holding cost on [1, t] can be queried in constant time
for any period t. We need to be cautious here. If we assume that the input data of the discrete
problem is accessed only by querying the demand and unit holding cost for any period t, then we
cannot query the accumulated demand and cost in constant time. But the opposite is true: if we
can directly query the accumulated holding cost and demand since the beginning of the horizon,
we can compute the demand in any given period t in constant time, and the unit holding cost in
any period as well.

2.3 Size of an instance

As discussed above, the input of an instance of continuous-time ELS are 3 continuous functions
that we access by the oracles described below above. Therefore there is no meaningful notion of
input size here. More interesting is to consider n, the size of the setup sequence {si}i=1..n output
by an algorithm. One attractive definition of instance size would be nOPT , the number of setups
in an optimal solution. An algorithm would be efficient if the number of oracle calls is polynomial
in nOPT and 1

ε .
However, we want to briefly argue that this is too ambitious, unless one would assume unrea-

sonably powerful oracles. Indeed, it is easy to construct a family of instances parametrized by
an integer N with uniform unit setup cost and where the optimal solution is to place one single
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setup at time 0, but with unbounded holding cost N . These instances have N small bursts of
demand ever more spaced in time. It is hard to imagine how to solve these instances for growing
N (and differentiate them from similar instances where the optimal solution places many setups)
in a constant number of oracle calls.

One natural solution is to incorporate the holding costs in the instance size. When the setup
function is constant and equal to 1, this suggests to use the value of the optimal solution OPT
as the instance size. Note that the complexity of the natural 2-approximation of Massonnet
[Massonnet(2013)] is linear in OPT (and not in nOPT ).

When the setup cost function K(t) varies over time, the holding cost does not provide anymore
a right measure for the instance size because it is expressed in different units than the number of
setups. Let {si}i=1..n be an arbitrary solution for an ELS instance defined by functions K,h, d in
[0, T ]. Let us define the size of the solution as

σ({si}i=1..n) =

n∑
i=1

(
1 +

Hi

minsi≤s≤si+1 K(s)

)
.

The function σ({si}i=1..n) counts the number of setups in the solution, while it weights the
holding costs in a window with respect to the minimum setup cost there. Let us define the following
instance-dependent parameter:

σ = min
n∈N

min
{si}i=1..n

σ ({si}i=1..n) ,

that is clearly equal to OPT when K(t) = 1 and smaller in general. In fact, when the setup costs
are large within large enough time intervals, σ can be (arbitrarily) smaller than OPT. This is the
main input size measure that we will use throughout the paper. In Section 6 we will describe a
slightly stronger input size measure and associated algorithms, but at the expense of slightly more
powerful oracles.

2.4 Notational and end-of-horizon issues

All the algorithms we present in the paper build solutions {si}i=1..n in a serial fashion. However,
they do it in such a way that the (unnatural) expression K(si+1) +H[si,si+1) becomes more conve-
nient to state the cost of a window [si, si+1). This causes two complications we prefer to address
beforehand. First, the last window [sn, T ) would need to be handled differently. To avoid this spe-
cial case, we artificially enlarge the time horizon, by extending K ≡ 0 in [T,∞) (the discontinuity
at T will not affect the analysis) and by attaching a fictitious setup sn+1 ≥ T that signals the end
of the last window. We remark that this setup will never be indexed in {si}i=1..n. We will also need
to extend h ≡ d ≡ 1 in [T,∞). The need for this horizon extension artifact will be apparent once
the algorithms are described. The second issue is that none of the cost terms K(si+1) + H[si,si+1)

accounts for the setup at time s1 = 0. However, we can entirely remove the initial setup at time
s1 = 0 from the ELS model; the approximation factor of the algorithms under this modified model
are also valid for the original one.

With the convention above, a solution {si}i=1..n (plus the implicit fictitious setup at time
sn+1 ≥ T ) induces n windows [si, si+1] with cost K(si+1) +H[si,si+1).

3 A simple approximation scheme

Given input functions h, d : [0, T ]→ R+ and K : [0, T ]→ [Kmin,Kmax] for the continuous-time ELS
problem, let us define Tc ∈ [0, T ], for c ∈ R+, as the maximum time for which the truncated input
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K,h, d : [0, Tc] → R+ has a feasible solution with cost no larger than c. Clearly, the optimal cost
OPT of the instance can be computed as OPT = min{c : Tc ≥ T}; our aim is to approximately
compute OPT by approximately computing the values Tc using dynamic programming.

Note that, since the total cost of a solution is additive with respect to the cost of their defining
windows, we have the recursive formula

Tc = max
c′∈R+

S(Tc−c′ , c
′),

which, if applied to compute OPT, would need to be evaluated for 0 ≤ c ≤ OPT only. In order
to obtain an efficient dynamic programming algorithm from this recursion, we approximately solve
it, by searching only through the set of feasible solutions where the cost of each defining window
is a multiple of ε and an approximate power of (1 + ε). The following lemma shows that this set
contains a (1 + 2ε)-approximation of the optimum.

Lemma 3.1. For all instances of the continuous-time ELS problem and for every ε > 0, there
exists a solution with cost no larger than (1 + 2ε)OPT, where all its defining windows have costs
that are powers of (1 + ε) rounded up to the nearest multiple of ε.

Proof. Let {si}i=1..n be the setup times in an arbitrary, but fixed, optimal solution of an ELS
instance. Let {ci}i=1..n be the costs of the corresponding windows defined by this solution.

Starting from this optimal solution, we build a (non-optimal) feasible solution {si}i=1..n as
follows. For i = 1, . . . , n, let ci = (1 + ε)ki + εi, where ki is the smallest integer with (1 + ε)ki ≥ ci,
and 0 ≤ εi < ε is the only real number that makes (1 + ε)ki + εi an integer multiple of ε. Beginning
from s1 = 0, define inductively si+1 = S(si, ci) for i = 1, . . . , n. Note that {ci}i=1..n, the costs of
the corresponding windows induced by {si}i=1..n, satisfy ci ≤ ci ≤ (1 + ε)ci + εci for i = 1, . . . , n.

By induction, we can easily show that si ≥ si for all i = 1, . . . , n+ 1. The induction statement
is true for i = 1. If si ≥ si, then either si ≥ si+1, and the induction is complete, or si ≤ si < si+1

and then si+1 = S(si, ci) ≥ S(si, ci) ≥ S(si, ci) = si+1, and the induction is complete. From here,
we obtain that sn+1 ≥ sn+1 = T . Hence, the solution {si}i=1..n has cost at most

n∑
i=1

ci ≤
n∑
i=1

(1 + 2ε)ci = (1 + 2ε)OPT,

and satisfies the properties stated in the lemma.

Let cε,i ≡ b(1 + ε)i/εcε, i ∈ N. We are ready to describe the dynamic programming algorithm
to approximately compute Tc, that we will call Algorithm 1.

Let Tjε ∈ [0, T ] be the maximum time for which there is a feasible solution to the truncated
input h, d : [0,Tjε]→ R+ of cost no larger than jε and where each of its defining windows has cost
cε,i for some i ∈ N.

Similar to Tc, we can compute Tjε recursively:

Tjε = max
i∈N

S(Tjε−ci,ε , ci,ε)).

Lemma 3.1 implies that Tj∗ε ≥ T for j∗ = d (1+2ε)OPT
ε e, therefore, to obtain a (1 + 2ε) approx-

imation we only need to evaluate the recursion for j = 0, 1, . . . , j∗; in turn, each of these terms
requires to compute the maximum over dlog1+εOPTe+ 1 terms, hence the total time to compute
the recursion is O

(
OPT
ε2

logOPT
)
. Putting all together, we obtain:
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Theorem 3.1. Algorithm 1 runs in O
(
OPT
ε2

logOPT
)

and performs this same number of oracle
calls.

A major disadvantage of this algorithm is that it ignores the setup costs: the dynamic program
advances by ε units of total cost even when the setup costs are very large. We address this issue in
the following sections.

However, Algorithm 1 already improves the state-of-the-art in two particular cases. Firstly, for
constant setup cost K(t) = 1, it improves on the 2-approximation of Massonet [Massonnet(2013)]

by providing an approximation scheme at an additional cost of O
(

logOPT
ε2

)
only. Secondly, in

the discrete setting with increasing setup cost, Algorithm 1 runs in sub-linear time (e.g. when
the optimal solution value and the number of setups are much smaller than the number of time
periods). This shows that by allowing some approximation error ε, one can solve this specific
discrete lot-sizing problem without querying all input data of the problem.

4 A constant approximation algorithm

We now describe a constant approximation algorithm whose number of oracle calls grows at most
linearly in log(Kmax). Because any approximate solution cannot place setups at times s where
K(s) = Ω(OPT), it is possible to replace log(Kmax) by O(logOPT).

The algorithm places setups iteratively: assuming that s1, s2, . . . , si have been placed, the
algorithm places si+1 at the latest time where K(si+1) + H[si,si+1) = 2K(si) or the earliest time
where K(si+1) = K(si)/2, whichever happens first. The algorithm stops once si+1 exceeds T . We
call this Algorithm 2.

In the more compact notation that we will use from now on, Algorithm 2 determines windows
[si, si+1) where the setup cost is at least Ki/2 and where either Ki+1 +Hi = 2Ki or Ki+1 = Ki/2.
Although the algorithm is simple, it is not immediate why it gives a good approximation. This is
shown in the following result.

Theorem 4.1. Algorithm 2 is a 8-approximation algorithm.

Proof. Let {si}i=1..n and {Hi}i=1..n be the setup times and the holding costs of the corresponding
windows of the solution returned by the algorithm; also, let {si}i=1..m be the setup times in a fixed,
but arbitrary optimal solution.

If the window [si, si+1) contains a setup from OPT, we say that si+1 is an extreme (ext.) setup.
We partition non-extreme setups si+1 as follows: we call them increasing (inc.) if Ki+1 +Hi = 2Ki

and Ki+1 ≥ 3Ki
2 ; we call them constant (cons.) if Ki+1 +Hi = 2Ki and Hi > Ki/2; otherwise, they

must satisfy Ki+1 = Ki/2 and we call them decreasing (dec.).
Note that if [si, si+1) contains a setup sj , then K(sj) ≥ Ki/2. Therefore,∑

si+1 ext.

(Ki+1 +Hi) ≤
∑

si+1 ext.

2Ki ≤
∑

si+1 ext.

∑
sj∈[si,si+1)

4K(sj) ≤ 4OPT

It is easy to see also that∑
si+1 cons.

(Ki+1 +Hi) =
∑

si+1 cons.

2Ki ≤
∑

si+1 cons.

4Hi ≤ 4OPT,

where we used the fact that the window [si, si+1) has no setup from the optimum.

7



In the remaining of the proof, we provide a similar type of bound for increasing and decreasing
setups. Let {si}i=k..l be a maximal sequence of increasing setups. Note that

i+1=l∑
i+1=k

(Ki+1 +Hi) = 2

i+1=l∑
i+1=k

Ki ≤ 2

l−k+1∑
i=0

(
2

3

)i
Kl−1 ≤ 6 · 2

3
Kl = 4Kl

We now give an upper bound on Kl as a function of OPT. This upper bound will depend on
whether the setup sl+1 is extreme, constant or decreasing:

• If sl+1 is a constant setup, then Hl > Kl/2. The optimum does not place setups in [sl, sl+1],
so it “fully” pays Hl.

• If sl+1 is a decreasing setup, then Kl+1 = Kl/2; since sl is increasing, then Kl + Hl−1 =
2Kl−1. Altogether, this gives Kl+1 = Kl/2 ≤ Kl−1 ≤ Kl. On the other hand, we have that
K(·) ≥ Kl+1 in [sl, sl+1]; by continuity, there is s ∈ [sl, sl+1] where K(s) = Kl−1. Note that
K(t) +H[sl−1,t) is a continuous function of t, with a non-negative first term and a increasing
unbounded (because of the horizon extension) second term. Therefore, if K(s) + H[sl−1,s) <
2Kl−1 then sl could not have been an increasing setup. Hence, K(s) +H[sl−1,s) ≥ 2Kl−1 and
so H[sl−1,sl+1) ≥ H[sl−1,s) ≥ Kl−1 ≥ Kl/2. Again, the optimum places no setups in [sl−1, sl+1),
so it “fully” pays H[sl−1,sl+1).

• If sl+1 is an extreme setup, then there is an optimal setup sj in [sl, sl+1). It follows that
K(sj) ≥ Kl/2.

Adding all, we obtain∑
si inc.

(Ki+1 +Hi) ≤
∑

sl inc.,sl+1cons.

4Kl +
∑

sl inc.,sl+1dec.

4Kl +
∑

sl inc.,sl+1ext.

4Kl

≤
∑

sl inc.,sl+1cons.

8Hl +
∑

sl inc.,sl+1dec.

8H[sl−1,sl+1) +
∑

sl inc.,sl+1ext.,sj∈[sl,sl+1]

8K(sj)

≤ 8OPT.

With a similar argument, we can bound the number of decreasing setups. The main difference
is the change from 2/3 to 1/2 in the geometric sum. This gives:∑

si dec.

(Ki+1 +Hi) ≤ 4OPT

Finally, adding the bounds for each type of setup, we obtain ALG ≤ 24OPT. It is not hard
to see that if we aggregate all the different types of setups before establishing the comparison with
OPT, this analysis gives ALG ≤ 8OPT.

By further elaborating on the proof of Theorem 4.1, it is easy to show that Algorithm 2 performs
no more than O (OPT logKmax) oracle calls. This bound is not better than the bound in number
of oracle calls performed by Algorithm 1 when we aim for the same approximation guarantee.
However, Algorithm 2 not only seems to advance faster on instances with larger setup costs; it is
indeed faster than Algorithm 1 in these cases. This is formalized next.

Theorem 4.2. Algorithm 2 places no more than O(σ logKmax) setups.
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Proof. Let {si}i=1..n and {Hi}i=1..n be the setup times and the holding costs of the corresponding
windows in the solution returned by the algorithm; also, let {si}i=1..m and {H i}i=1..m be the setup
times and the holding costs of the corresponding windows in a fixed, but arbitrary solution SOL.

We partition the setups performed by the algorithm exactly as in the proof of Theorem 4.1,
except that OPT is replaced by SOL: if a window [si, si+1) contains a setup from SOL, we say
that si+1 is an extreme setup. We partition non-extreme setups si+1 in increasing setups if
Ki+1 + Hi = 2Ki and Ki+1 ≥ 3Ki

2 ; constant setups if Ki+1 + Hi = 2Ki and Hi > Ki/2; and
decreasing setups if they are none of the above.

We now bound the number of setups of each type, as a function of σ. These bounds use similar
ideas to those found in the proof of Theorem 4.1, so here we only sketch them:

• The number of extreme setups placed by the algorithm is not larger than the number of
setups in SOL, and therefore no larger than σ.

• Constant setups satisfy Hi ≥ Ki/2. In particular, the constant setups contained in a window
[sj , sj+1) of SOL satisfy Hi ≥ minsj≤s≤sj+1 K(s)/2. It follows that no more than

2Hj

minsj≤s≤sj+1 K(s)

constant setups can be contained in the window [sj , sj+1). Therefore, no more than 2σ of
these setups can exist in {si}i=1..n.

• To bound the number of increasing setups, let {si}i=k..l be a maximal sequence of increasing
setups contained in a window [sj , sj+1) from SOL. The bound depends on what type of setup
sl+1 is:

– If sl+1 is an extreme (resp. constant) setup, then no more than σ (resp. 2σ) of these
maximal sequences can exist. This follows from the bounds we already stated for the
number of extreme (resp. constant) setups.

– If sl+1 is a decreasing setup, then let us recall that, from the proof of Theorem 4.1,
H[sl−1,sl+1) ≥ H[sl−1,s) ≥ Kl−1. Also, SOL places no setups in [sl−1, sl+1), so the algo-
rithm fully pays H[sl−1,sl+1). With an argument similar to the one used in the constant
setup case, there cannot be more than σ of these maximal sequences.

Since no more than log3/2Kmax increasing setups can be consecutive, it follows that there are
at most 4σ log3/2Kmax increasing setups.

• The number of decreasing setups can also be bounded by 4σ log3/2Kmax, with the same
argument.

Overall, this gives the desired bound O(σ logKmax) for the total number of setups.

5 Another approximation scheme.

We now describe an approximation scheme for the continuous-time ELS problem with time-varying
setup costs. It builds on the ideas developed for the algorithms we have seen so far; in particular,
the solution SOL = {sj}j=1..m, found by Algorithm 2 plays a crucial role.

9



The approximation scheme, that we will call Algorithm 3, builds an increasing sequence of cost
values {ci}i=1..n for which it computes the grid points

Tci ≡ max
l=1..i−1

S(Tcl , ci − cl)

via dynamic programming (with Tc1 = 0). Implicitly, a grid point Tc corresponds to the maximum
time for which the truncated input h, d,K : [0, Tc] → R+ has a feasible solution of a certain type
with cost no larger than c. While all of the above closely mimics the description of Algorithm 1,
the computation of {ci}i=1..n is much more involved. Roughly speaking, when Tci is in a window
[sj , sj+1) of SOL, the algorithm will try and make ci+1 = ci + εK(sj)/2, except when this puts
Tci+1 out of the window [sj , sj+1); there, the step of εK(sj)/2 has to be reduced carefully so that
the sequence does not exit the window too quickly.

Starting from c1 = 0, we build the sequence of cost values iteratively. Suppose that c1, c2, . . . , ci
have been computed and that Tci ∈ [sj , sj+1) for some j. Let ki be the largest integer such that 2ki+1

is no larger than the cost of each setup placed by SOL in [sj , Tci+ε2ki ]; equivalently, ki is maximized

subject to 2ki ≤ K(sj′)/2 for every sj′ ∈ [sj , Tci+ε2ki ]). Note that −1 ≤ ki ≤ log(K(sj)/2). We

then set ci+1 = ci + ε2ki as the next cost in the sequence. Algorithmically, determining ki requires
no more than log logKmax calls to the oracle, using binary search. For convenience, through all
this section we denote by k̄j ≡ log(K(sj))/2 the maximum exponent ki we can achieve inside the
window [sj , sj+1).

We first show that Algorithm 3 is indeed an approximation scheme.

Theorem 5.1. Algorithm 3 determines a solution with cost at most (1 + ε)OPT.

Proof. Let OPT = {sl}l=1..m be an arbitrary optimal solution, and SOL = {sj}j=1..m′ be the
solution found by Algorithm 2. Also, let {c̄l}l=0..m be the sequence defined by c̄0 = 0, and c̄l+1 =
c̄l +K(sl+1) +H[sl,sl+1), for 1 ≤ l ≤ m.

We now show, by induction, that for every setup sl from the optimum, there exist a grid point
Tci(l) ≥ sl such that ci(l) is at most (1 + ε)c̄l. Suppose the induction statement is true for a certain
l. If sl+1 ≤ Tci(l) , then i(l + 1) = i(l) completes the induction. Otherwise, let Tci′ be the grid
point satisfying Tci(l) ≤ Tci′ < sl+1 ≤ Tci′+1

and let sj′ be the latest setup in SOL satisfying

sj′ ≤ Tci′ . Algorithm 2 chooses ki′ so that 2ki′ ≤ K(sj)/2 for all sj ∈ [sj′ , Tci′+1
]; the properties

of SOL guarantee that K(sl+1) ≥ minsj∈[sj′ ,Tci′+1
]K(sj)/2 ≥ 2ki′ . Hence, ci′+1 − ci′ ≤ εK(sl+1).

We also have ci′ − ci(l) < K(sl+1) + H[sl,sl+1). Adding these two inequalities, we obtain ci′+1 ≤
ci(l)+(1+ε)(K(sl+1)+H[sl,sl+1)) = (1+ε)c̄l+1, and therefore i(l+1) = i′ completes the induction.

The following lemma gives a bound on the number of grid points in any window of SOL.

Lemma 5.1. There are no more than O(1/ε) + logKmax grid points between any two consecutive
setups of SOL.

Proof. Let Tci be a grid point contained in a window [sj , sj+1] defined by SOL. Then, we have the
property that Tci′ > sj+1 whenever ci′ − ci > K(sj+1) +H[Tci ,sj+1); this follows from the fact that
the dynamic program considers the possibility of adding an extra setup with cost ci′ − ci, after
placing a setup at Tci . The property implies, in particular, that there are no more than

O

(
K(sj+1) +H[sj ,sj+1)

ε2k̄j

)
= O

(
K(sj)

ε2k̄j

)
= O

(
1

ε

)
grid points Tci in [sj , sj+1] for which ki = k̄j .
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Now, suppose that Tci and Tci+1 are two consecutive grid points in the window [sj , sj+1]. If
ki < k̄j , then Tci+1+ε2ki = Tci+ε2ki+1 > sj+1. Note that this necessarily implies that either ki+1 < ki
or Tci+2 leaves the window. In particular, the sequence of cost differences is always decreasing inside

a window [sj , sj+1]; and it can be constant only when it equals ε2k̄j . It follows that there are no
more than logKmax grid points Tci in [sj , sj+1] for which ki < k̄j .

Adding the two bounds for the number of grid points with ki = k̄j and ki < k̄j , we obtain the
desired result.

The result above can be strengthened for certain setups. We will need the notions of increas-
ing/decreasing setups from Algorithm 2.

Lemma 5.2. Let {sj+1}j=l..l′ be any sequence of decreasing (resp. increasing) setups. Then,
Algorithm 3 places no more than O((l′ − l)/ε) + logKmax (resp. O((l′ − l)/ε) ) grid points on
[sl, sl′+1].

Proof. This proof builds on ideas already used in Theorem 5.1; here we only sketch them. Consider
an arbitrary sequence {sj+1}j=l..l′ of increasing setups. Let Tci be any grid point in one of the
windows [sj′ , sj′+1], l ≤ j′ ≤ l′. Because {K(sj)}j=l..l′+1 is an increasing sequence, we have the
equivalence

2k ≤ K(sj)/2 for every sj ∈ [sj′ , sl′+1] ⇐⇒ 2k ≤ K(sj′)/2,

and therefore ki = k̄j if Tci+1 ≤ sl′+1. In the proof of Lemma 5.1, we showed that no more than
O(1/ε) grid points Tci ∈ [sj′ , sj′+1], satisfy ki = kj ; the bound on the number of grid points in an
increasing setup sequence follow directly from this.

On the other hand, if {sj+1}j=l..l′ is an arbitrary sequence of decreasing setups, then {K(sj)}j=l..l′+1

is a decreasing sequence. Therefore, for any sl ≤ sj′ < sj′′ ≤ sl′+1

2k ≤ K(sj)/2 for every sj ∈ [sj′ , sj′′ ] ⇐⇒ 2k ≤ K(sj′′)/2,

which implies that sequence of cost differences between grid points is decreasing in the whole interval
[sj′ , sl′+1]. Using similar ideas to those found in the proof of Theorem 5.1, we conclude that there
are no more than O((l′ − l)/ε) + logKmax grid points in [sl, sl′+1].

Aggregating the results of the previous two lemmas, we obtain our desired bound on the exe-
cution time and number of oracle calls performed by the algorithm:

Theorem 5.2. Algorithm 3 places no more than O(σ logKmax/ε) grid points and executes no more
than O(σ2 log2Kmax/ε

2) oracle calls.

Proof. In the proof of Theorem 4.2 we showed that i) the number of setups in SOL that are neither
increasing nor decreasing is O(σ); and ii) the number of maximal sequences of either increasing
setups or decreasing setups, is also O(σ). Using Theorems 5.1 and 5.2, we obtain the desired bound
on the total number of grid points.

The bound on the number of oracle calls follows from the fact that this amount is dominated by
the number of oracle calls realized during the dynamic program, which is quadratic in the number
of grid points.
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6 An improved input-size measure and algorithms

At expense of slightly stronger oracles than the ones we have used so far, we can obtain a better
approximation algorithm. The algorithm (call it Algorithm 2A) is similar to Algorithm 2, but it
uses

H̃[s,s′) ≡
∫ s′

s
h(t)

∫ s′

t

d(u)

mint≤v≤uK(v)
du dt

as a “normalized” holding cost measure. It places setup si+1 at the latest time where K(si+1) +
K(si)H̃[si,si+1) = 3

2K(si) or the earliest time where K(si+1) = K(si)/2, whichever happens first.

Note that H̃[si,si+1) ≤ 1.
Let {si}i=1..n be an arbitrary solution for an ELS instance defined by functions K,h, d in [0, T ].

Let us define the size of the solution as σ̄({si}i=1..n) =
∑n

i=1

(
1 + H̃[si,si+1)

)
. Let σ̄ be the minimum

of σ̄(·), over all possible solutions for this instance. Note that H̃i ≤ 2Hi
Ki

, for all i, and therefore
σ̄ ≤ σ.

We can prove a result analogous to Theorem 5.1, with σ̄ playing the role of σ. We need however,
a different lower bound on the optimal solution.

Lemma 6.1. Let {si}i=1..n be the output of Algorithm 2A. Then,
∑n

i=1H[si,si+1) is a lower bound
on the cost of the optimal solution.

Proof. Let OPT = {s̄j}j=1..m be an arbitrary optimal solution. For t ≥ 0, let nexts(t) (resp.
nexts(t) be the earliest setup in ALG (resp. OPT) that is placed after t. Clearly,

H[si,si+1) =

∫ si+1

si

h(t)

∫ nexts(t)

t
d(u)du dt+

∫ si+1

si

h(t)

∫ nexts(t)

nexts(t)
d(u)du dt.

Let h(OPT) be the holding cost of the solution OPT. We have:

n∑
i=1

H[si,si+1) =

∫ T

0
h(t)

∫ nexts(t)

t
d(u)du dt+

∫ T

0
h(t)

∫ nexts(t)

nexts(t)
d(u)du dt.

≤ h(OPT) +

∫ T

0
h(t) · 1{nexts(t)≤nexts(t)}

∫ nexts(t)

nexts(t)
d(u)du dt.

= h(OPT) +
n∑
i=1

∑
sj∈(si,si+1)

∫ sj

max{si,sj−1}
h(t)

∫ si+1

sj

d(u)du dt

≤ h(OPT) +

n∑
i=1

∑
sj∈(si,si+1)

∫ sj

si

h(t)

∫ si+1

sj

d(u)du dt,

obtaining the lower bound

OPT ≥
n∑
i=1

H[si,si+1) +
∑

sj∈(si,si+1)

(
K(sj)−

∫ sj

si

h(t)

∫ si+1

sj

d(u)du dt)

) .

To conclude, we just need to argue that the inner sum in the expression above is non-negative.
This follows from the fact that, if s̄j ∈ [si, si+1) is an arbitrary setup from OPT, then
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1

K(sj)

∫ sj

si

h(t)

∫ si+1

sj

d(u)du dt ≤
∫ sj

si

h(t)

∫ si+1

sj

d(u)

minsj≤v≤uK(v)
du dt ≤ H̃[si,si+1) ≤ 1.

Theorem 6.1. Algorithm 2A is an O(1)-approximation algorithm that places no more than O(σ̃ logKmax)
setups.

Proof. We only sketch the proof, as we use similar ideas than those found in the proof of Theo-
rem 4.1. We utilize the simplified notation that appears in that theorem, extending it to H̃ as well. If
{si}i=1..n is the output of Algorithm 2A, let us call a setup si+1 constant if Ki+1 ≤ 8Hi. Lemma 6.1
implies that the total cost of constant setups is at most 9OPT. We classify a non-constant setup
si+1 as increasing or decreasing according to whether Ki+1 +KiH̃i = 3

2Ki or Ki+1 = Ki/2 holds.
We now bound the total cost of the increasing setups. Let {si}i=k..l be a maximal sequence of

increasing setups. We have that 3
2Ki = Ki+1 +KiH̃i ≤ Ki+1 + 2Hi ≤ 5

4Ki+1 that is, Ki+1 ≥ 6
5Ki.

As in Theorem 4.1, a geometric sum argument gives that the total cost of an increasing sequence of
setups is at most 6Kl +

∑l
i=kHi. By Lemma 6.1, the sum over all maximal increasing sequences,

of the term
∑l

i=kHi, is at most OPT. We will now show that the sum, over all maximal increasing
sequences, of the term 6Kl, is at most 32OPT. We split the analysis into two cases:

• If sl+1 is a constant setup, then Kl
2 ≤ Kl+1 ≤ 8Hl.

• If sl+1 is a decreasing setup, then Kl+1 = Kl/2; since sl is an increasing setup, Kl +

Kl−1H̃l−1 = 3
2Kl−1. Altogether, this gives Kl+1 = Kl/2 ≤ 3Kl−1

4 . Because sl−1 is an in-

creasing setup, Kl+1 +Kl−1H̃[sl−1,sl+1) ≥ 3
2Kl−1. It follows that

H̃[sl−1,sl+1) ≥
3
2Kl−1 − 3

4Kl−1

Kl−1
≥ 3

4
.

Finally, note that H[sl−1,sl+1) ≥
Kl+1H̃[sl−1,sl+1)

2 ≥ 3
8Kl+1 = 3

16Kl. Either OPT places a setup

in [sl−1, sl+1), paying at least Kl+1/2 in setup costs, or it does not, paying at least 3
16Kl. In

both cases, the optimal solution pays at least 3
16Kl.

Aggregating, the total cost, of all possible maximal setups is at most 33OPT.
In order to prove that Algorithm 2A places no more than O(σ̄ logKmax) setups, consider a

fixed solution {si}i=1..n. We will prove that on each window [si, si+1), Algorithm 2A places no
more than 1 + H̃[si,si+1) setups. We need to slightly redefine the notions of constant, increasing

and decreasing setups. We call a setup si+1 constant if H̃i ≥ 3
4 . Increasing and decreasing setups

are the non-constant setups si+1 satisfying Ki+1 + KiH̃i = 3
2Ki and Ki+1 = Ki/2, respectively.

Clearly, the number of constant setups in [si, si+1) is at most H̃[si,si+1). Consider now a maximal
sequence {si}i=k..l of increasing setups. We have two cases:

• If sl+1 is a constant setup, then we immediately have H̃i ≥ 3
4 . It follows that there are no

more than 4
3H̃[si,si+1) maximal increasing sequences in the window.

• If sl+1 is a decreasing setup, we can show as before that H̃[sl−1,sl+1) ≥
3
2
Kl−1− 3

4
Kl−1

Kl−1
≥ 3

4 .

Again, no more than 4
3H̃[si,si+1) of such setups can exist.

Since each of these increasing maximal sequences can have at the most, O(logKmax) setups,
this gives an overall total of 4

3 σ̄ logKmax of these setups.
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7 Open Questions

We have presented the first efficient approximation schemes for Economic Lot-Sizing in Continuous
Time, using reasonable oracles. There are several interesting questions and problems that we
have left open. It would firstly be interesting to see if our algorithms can be adapted to rely on
approximate oracles instead of exact ones. This makes sense as the assumed oracle are themselves
continuous optimization problems. Secondly, there is a lack of lower bound on the complexity under
our oracle models. Last, it would be interesting to study which (stronger) oracles are necessary to
get an approximation scheme that runs in something polynomial in nOPT (the number of setups in
an optimal solution) instead of σ (our instance size measure).
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