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Abstract 
We propose an estimation method that circumvents the path dependence problem existing in Change-
Point (CP) and Markov Switching (MS) ARMA models. Our model embeds a sticky infinite hidden 
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of regimes as well as of the specification : CP or MS. Furthermore, CP and MS frameworks usually 
assume that all the model parameters vary from one regime to another. We relax this restrictive 
assumption. As illustrated by simulations on moderate samples (300 observations), the sticky IHMM-
ARMA algorithm detects which model parameters change over time. Applications to the U.S. GDP 
growth and the DJIA realized volatility highlight the relevance of estimating different structural breaks 
for the mean and variance parameters. 
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1 Introduction

Econometricians have been proposing models with evolving parameters for more than twenty

years. In the context of abrupt switches in the parameters it really started with the framework

of Hamilton (1989). It consists in enriching a model with a discrete latent variable so that the

parameters can abruptly switch from one state to another. By assuming Markovian transi-

tions, a forward-backward algorithm has been designed for direct evaluation of the likelihood

by integrating the latent variable (Rabiner (1989)). Hamilton developed the methodology for

recurrent states that is now known as Markov-switching (MS) model. Some years afterwards,

Chib (1998) designed the Change-point (CP) model. It arises when the transitions are not

reversible, a feature that brings non-stationarity. During the last two decades these two frame-

works have been intensively used due to their flexibility (e.g. Hamilton and Susmel (1994),

Pesaran, Pettenuzzo, and Timmermann (2006)). However the methodology relies on an as-

sumption problematic for models exhibiting path dependency such as the Auto-regressive

Moving Average (ARMA, David and Whittle (1952)) and the Generalized Auto-regressive

Conditional Heteroskedastic (GARCH, Bollerslev (1986)) models. The difficulty occurs be-

cause a hidden variable at time t (the lagged error term in the ARMA model) depends on the

entire path of states that have been followed until time t. The computation thus exponen-

tially grows with time (at least for MS framework) and becomes infeasible for relatively small

time series. Recently a lot of efforts have been devoted to the CP- and MS-GARCH models

resulting in important improvements in estimation methods (see among others Haas, Mittnik,

and Paolella (2004), Francq and Zakoian (2008), Bauwens, Preminger, and Rombouts (2010),

Bauwens, Dufays, and Rombouts (2011)). We rely on this literature to propose a new flexible

estimation approach for CP- and MS-ARMA models.

Selecting the number of regimes has also been considered as a relevant question for many

years. Current methods usually apply penalized-likelihood approaches. In Bayesian inference

it leads to the computation of the marginal likelihood. Although many numerical tools have

been developed for its estimation (for a recent review see Ardia, Hoogerheide, and van Dijk.

(2009)), it still remains a tedious calculation for complex models (e.g. Bauwens, Dufays, and

Rombouts (2011)). The sticky infinite hidden Markov model (sticky IHMM) (Fox, Sudderth,

Jordan, and Willsky (2007)) allows bypassing the marginal likelihood computation by build-
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ing a Markov-chain with a potentially infinite number of states. It therefore encompasses

any number of regimes. Dirichlet process (Ferguson (1973) and Sethuraman (1994)) and hi-

erarchical Dirichlet process (Teh, Jordan, Beal, and Blei (2006)) constitute the core of the

IHMM. The framework has successfully been applied in various fields such as genetics (Beal

and Krishnamurthy (2006)), visual recognition (Kivinen, Sudderth, and Jordan (2007)) and

economics on Auto-regressive models (Jochmann (2010) and Song (2011)) and on GARCH

models (Dufays (2012)).

Our contribution is twofold. Estimating CP- and MS-ARMA models is challenging. Relying

on Dufays (2012), we estimate these models by combining the model of Klaassen (2002) with

a Metropolis-Hastings step. By embedding the sticky IHMM framework, the model encom-

passes the CP and the MS settings by covering a potentially infinite number of regimes. We

thus innovate by efficiently estimating the CP- and the MS-ARMA models and by incorporat-

ing the sticky IHMM into these models. Secondly, standard CP and MS models assume that

all the parameters of the model vary from one regime to another. Another contribution of

the paper lies in relaxing this assumption. We propose a model that allows for different break

dates in the mean and in the variance. Given the flexibility of the sticky IHMM framework,

this can be easily extended to any parameters of the model.

In Section 2, we present the model and Section 3 discusses how to relax the standard assump-

tion stating that all the model parameters change from one regime to another. The Section

4 covers the estimation procedure. The prior elicitation and the label switching problem are

addressed in Section 5. The sticky IHMM algorithm is explored on artificial data in Section 6.

Two applications, namely on the U.S. quarterly GDP growth and on the DJIA daily realized

volatility, are finally proposed in Section 7. A general conclusion ends the paper.
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2 The model

We consider the sticky infinite hidden MS-ARMA(1,1) (sticky IHMM-ARMA) model defined

as

yt = µsat + βsat yt−1 + φsat εt−1 + εt

εt ∼ i.i.d. N(0, σ2
sbt

)

where sat , s
b
t are integer random variables taking values in N2. We define Y1:T = {y1, ..., yT }′,

Sa1:T = {sa1, ..., saT }′ and Sb1:T = {sb1, ..., sbT }′ where T denotes the sample size. The set

Θ = {µ1, . . . , µj , . . . , β1, . . . , βj , . . . , φ1, . . . , φj , . . . , σ1, . . . , σj , . . .}′ gather all the ARMA pa-

rameters of the model and the set Θj = {µj , βj , φj , σj}′ contains all the continuous parameters

of the regime j. The latent state processes {sat , sbt} are independent first order Markovian

with transition matrices (see Section 3 for à priori dependent latent state vectors)

P a =



pa11 pa12 pa13 ...

pa21 pa22 pa23 ...

... ... ... ...

pai1 pai2 pai3 ...

... ... ... ...


, P b =



pb11 pb12 pb13 ...

pb21 pb22 pb23 ...

... ... ... ...

pbi1 pbi2 pbi3 ...

... ... ... ...


.

These transition matrices characterize a Markov-switching model (MS) with a potentially

infinite number of breaks. Note that another distributional assumption than the normal one,

a different number of latent state vectors or a higher order dimension than the ARMA(1,1)

configuration can be handled.

Inferring on an infinite number of breaks can be dealt with a sticky infinite hidden Markov

model (sticky IHMM, Teh, Jordan, Beal, and Blei (2006), Fox, Sudderth, Jordan, and Willsky

(2008)). A complete estimation procedure is developed in Dufays (2012) for univariate and

multivariate GARCH models. Dufays (2012) relies on the beam sampler (Van Gael, Saatci,

Teh, and Ghahramani (2008)) to tackle the infinite dimension. This paper rests on the degree

L weak limit approximation (Ishwaran and Zarepour (2002)) of the Dirichlet process that

suggests estimating a truncated model given a large finite L number of regimes instead of

an infinite one. If the number of regime L is large enough, the results are scarcely different
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(Kurihara, Welling, and Teh (2007)). Under the degree L weak limit approximation, each row

of the transition matrix is truncated by a finite Dirichlet distribution (instead of being driven

by a Dirichlet process) given a hierarchical structure composed of univariate sticky IHMM

parameters (∀j ∈ [a, b], αj ∈ <+ and κj ∈ <+ and global weights πj = {πj1, . . . , π
j
L} ∈ [0, 1]L):

pai = {pai1, pai2, ..., paiL}|πa, αa, κa ∼ Dir(αaπa1 , α
aπa2 , ..., α

aπai + κa, ..., αaπaL)

pbi = {pbi1, pbi2, ..., pbiL}|πb, αb, κb ∼ Dir(αbπb1, α
bπb2, ..., α

bπbi + κb, ..., αbπbL)

The global weights which build the entire transition matrices follow a finite symmetric Dirich-

let prior given the IHMM parameters (ηa ∈ <+ and ηb ∈ <+) :

πa = {πa1 , πa2 , ..., πaL}|ηa ∼ Dir(
ηa

L
,
ηa

L
, ...,

ηa

L
)

πb = {πb1, πb2, ..., πbL}|ηb ∼ Dir(
ηb

L
,
ηb

L
, ...,

ηb

L
)

Throughout the paper the sticky IHMM parameters α = {αa, αb}, κ = {κa, κb}, η = {ηa, ηb}

are brought together in the parameter set HDir.

The parameter set Θ also benefits from a hierarchical layer in order to take into account infor-

mation from existing regimes. As advocated by Song (2011), the structure improves the birth

of new regimes by drawing realistic parameters from a common distribution. Table 1 displays

the hierarchical structure of the model parameters. The hyper-parameters µ,Σ, V , v, ea, fa

and fb are defined in Section 5.

Hierarchical Distributions of the ARMA parameters

For each regime i : {µi, βi, φi} ∼ N(µ̄,Σ̄) δ{|βi|<1,|φi|<1}

Hierarchical parameter : µ̄ ∼ N(µ,Σ) Hierarchical parameter : Σ̄−1 ∼ W (V , v)

Hierarchical Distributions of the variances

For each regime i : {σ−2
i } ∼ G(ē,f̄)

Hierarchical parameter : ē ∼ Exp(ea) Hierarchical parameter : f̄−1 ∼ G(fa, fb)

Table 1: Hierarchical Distributions of the model parameters. δ{a>0} is the Dirac function

taking the value one if the constraint a > 0 holds and zero otherwise.
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3 Multiple state vectors

Standard CP and MS frameworks implicitly assume that all the model parameters vary from

one regime to another. However it is highly likely that only a subset of parameters evolves

when facing a structural break. Holding to this hypothesis can spuriously increase the number

of parameters and lead to inefficient estimates. Clearly, relaxing this assumption would help

to keep a more parsimonious model while taking structural breaks into account, but it also

seriously hardens the estimation.

A straightforward solution to this estimation problem consists in increasing the number of

state vectors and in linking them with the model parameters (see Eo (2012)). In classical

CP and MS approaches, where the optimal number of regimes is computed by maximizing

a criterion such as the marginal likelihood, assuming that L denotes the maximum number

of regimes that we want to consider and q stands for the number of parameters, the strategy

leads to estimate Lq different models. For instance 81 posterior distribution and marginal

likelihood estimations are required for the MS-ARMA(1,1) model with a maximum of consid-

ered regimes equal to three. The method is too computationally demanding and not optimal.

By incorporating the sticky IHMM, as done in the previous Section, the same strategy can

be used without having to consider more than one model. Indeed the sticky IHMM allows

for self-determining the optimal number of regimes whatever the number of state vectors in

presence. Before covering the model estimation by MCMC algorithm (Section 4), we first

discuss different possible implementations of using a sticky IHMM structure with several

latent state vectors.

3.1 Discussion on the priors

In order to limit the number of model parameters, the state vectors could share the same

transition matrix. This configuration would rule out quick and slow switches for the same

regime for different parameters and would strongly restrict the model. We therefore prefer to

assume two different transition matrices for the state vectors.

Specifying that the transition matrices are à priori independent, as in Section 2, is not realistic.
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In most cases, the state vectors should indeed be correlated in some sense. For example, we

could expect that a switch in the variance is more likely to occur when a change in the mean

has just happened (and vice versa). Incorporating dependence between the state vectors can

therefore be relevant and could be captured by a specific parameter λ = {λ1, ..., λL}′ ∈ [0, 1]L

that denotes the probability of staying in the same regime when the other state vector switches

to another one. The dependence of the variance state vector with respect to the mean state

vector can be modelled as follows :

f(sbt |sbt−1 = i, P b, dt, λ) = pbi if dt > D (1)

= {1− λi
L− 1

, ..., λi, ...,
1− λi
L− 1

} otherwise (2)

where dt stands for the duration of the last observed regime at time t in the mean state vector

Sa1:t and D is a user-defined distance parameter. The parameter D will typically be equal to

4 for quarterly data, 12 for monthly data and 25 for daily data. Under this framework, the

parameter λj related to the regime j is driven by a Beta distribution :

λj |αb, πb, κb ∼ Beta(αbπbj + κb, αb(1− πbj)) (3)

The posterior distribution of λj given the other parameters of the model is conjugated with

the prior distribution and turns out to be a Beta distribution. When dependence between

state vectors is à priori assumed, the MCMC scheme is then just embedded with L additional

Gibbs steps. The applications in Section 7 are performed with and without including the

dependence parameter λ.

3.2 Discussion on the state vector updates

The state vectors can be jointly or independently sampled. The former approach theoretically

leads to a better exploration of the support, an enjoyable feature for the MCMC algorithm.

Sampling the state vectors jointly is unquestionably the best technique for models without

any path dependency problems. However in the presence of path dependence models the

state vector updates rest on a Metropolis-Hastings (M-H) step (as it will become clear in

the next Section) that could stick the MCMC simulation if the proposal distribution (of the

M-H step) turns out to be a poor approximation of the targeted conditional distribution.

Jointly updating several state vectors increases the dimension problem and more rejections
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of the proposal draws are bound to happen. The sampling strategy of the state vectors is

therefore model-specific. In our exercises, we disunite the drawing of the break dates of the

mean with the one of the variance. As it is well-known in the MS literature, the mean state

vector exhibits a path dependence problem and must be for example sampled with the M-H

forward-backward algorithm of Section 4. On the contrary the variance state vector does not

display such a dependency. We can directly apply the standard forward-backward algorithm

conditional to the mean state vector without any additional difficulty. This observation made

us choose to separately draw the two state vectors.

4 Estimation

Estimation is feasible by explicitly treating Sa1:T , S
b
1:T as parameters. To infer the model

parameters we develop an MCMC sampler that iteratively draws from eight full conditional

distributions (see Table 2).

1. f(Sa1:T |Θ, P a, Sb1:T , Y1:T ) 5. f(Θ|µ̄, Σ̄, ē, f̄ , HDir, S
a
1:T , S

b
1:T , Y1:T )

2. f(P a|Θ, HDir, π
a, Sa1:T , Y1:T ) 6. f(µ̄, Σ̄, ē, f̄ |Θ, HDir, S

a
1:T , S

b
1:T , Y1:T )

3. f(Sb1:T |Θ, P b, Sa1:T , Y1:T ) 7. f(πa, πb|Θ, P a, P b, HDir, S
a
1:T , S

b
1:T , Y1:T )

4. f(P b|Θ, HDir, π
b, Sb1:T , Y1:T ) 8. f(HDir|P a, P b, πa, , πb, Sa1:T , S

b
1:T , Y1:T )

Table 2: sticky IHMM-ARMA MCMC sampler.

Besides sampling the mean state vector from f(Sa1:T |Θ, P a, HDir, π
a, Y1:T ), drawing from the

other full conditional distributions (from 2 to 8) are standard. The entire MCMC scheme

is detailed in Appendix A. We now concentrate on the most challenging item of the Gibbs

sampler : f(Sa1:T |Θ, P a, Sb1:T , Y1:T ).

Updating the state vector is usually done by the forward-backward algorithm (Rabiner (1989),

Chib (1998)). The algorithm perfectly works for Auto-regressive (AR) model but fails for

moving average processes due to the path dependence exhibited by the lag of the error term.

In an AR model, the likelihood only depends on the current state while in the MA model,

the likelihood depends on the whole path that have been used so far. The forward-backward
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method is then completely intractable since the computation exponentially grows with time.

Here we adapt the method of Dufays (2012) that combines a M-H approach with an approxi-

mate model. We sample a state vector from a modified MS-ARMA model that gets rid of the

path dependence problem. The M-H step then ensures that the posterior distribution is not

altered. GARCH and ARMA models are closely related when tackling the path dependence

problem. Reliable approximations of the MS-GARCH have been proposed by Gray (1996),

Klaassen (2002), Haas, Mittnik, and Paolella (2004). We focus on the Klaassen (2002) model1

and accommodate it to the current specification :

yt = µsat + βsat yt−1 + φsat ε̃t−1,sat
+ εt

where ε̃t−1,sat
= E[εt−1|Y1:t−1, s

a
t ,Θ, P

a, Sb1:t−1]. We derive the computation of ε̃t−1,sat
in

Appendix B. The approximation rules out the path dependence problem since the vector

ε̃t = {ε̃t,1, ..., ε̃t,L}′ is known at time t for any regime.

We therefore sample a new state vector Sa
′

1:T from the MS-ARMA approximation employing

the forward-backward algorithm. The proposed parameter is then accepted according to the

M-H ratio :

α(Sa
′

1:T , S
a
1:T |Y1:T ,Θ, S

b
1:T , P

a) = min{1,
f(Sa

′
1:T |Y1:T ,Θ, S

b
1:T , P

a)q(Sa1:T |Y1:T ,Θ, S
b
1:T , P

a)

f(Sa1:T |Y1:T ,Θ, Sb1:T , P
a)q(Sa

′
1:T |Y1:T ,Θ, Sb1:T , P

a)
}

= min{1,
f(Y1:T |Sa

′
1:T ,Θ, S

b
1:T , P

a)f(Sa
′

1:T |P a)q(Sa1:T |Y1:T ,Θ, S
b
1:T , P

a)

f(Y1:T |Sa
′

1:T ,Θ, S
b
1:T , P

a)f(Sa
′

1:T |P a)q(Sa
′

1:T |Y1:T ,Θ, Sb1:T , P
a)
}

where q(.|Y1:T ,Θ, S
b
1:T , P

a) is the proposal distribution of Sa1:T derived from the forward-

backward algorithm and is equal to

q(saT |Y1:T ,Θ, S
b
1:T , P

a)q(saT−1|YT , saT ,Θ, Sb1:T , P
a)...q(sa1|Y1:T , S

a
2:T ,Θ, S

b
1:T , P

a)

1The model of Haas, Mittnik, and Paolella enjoys interesting features such as a simple implementation and

explicit statistic derivations but, as documented in Dufays (2012) for GARCH model, the Klaassen’s model

seems to provide a better approximation of the MS-GARCH model. In our case, estimations with an adapted

model of Haas, Mittnik, and Paolella have also been carried out and lead to similar results to those obtained

from the Klassen’s model. However Klaassen’s acceptance rates are always higher than those of Haas, Mittnik,

and Paolella.
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The proposal Sa
′

1:T will be hardly accepted if an entire state vector is drawn from the MS-

ARMA approximation in one block. To ensure good MCMC mixing properties we update the

state vector in small block of random size (see e.g. Chib and Ramamurthy (2010) in a DSGE

context). It avoids some sticking situations where the MCMC algorithm always rejects the

proposed parameter and also enhances the acceptance rate.

5 Prior elicitation and label switching problem

Table 3 reports the prior distributions and their related hyper-parameters. Regarding the

sticky IHMM parameter set, the priors are chosen to get conjugate posterior distributions

as advocated by Fox, Sudderth, Jordan, and Willsky (2008). A hierarchical Normal-Wishart

distribution is assumed for the ARMA parameters. Gathering information of existing regimes,

this structure facilitates births of new regimes whilst not complicating the MCMC simulation

by providing conjugate distributions. A similar structure is applied to the variance (see e.g.

Pesaran, Pettenuzzo, and Timmermann (2006)).

The posterior distribution is invariant to the label of the state vector. If a label switch occurs

in the state vectors during the MCMC simulation, the usual summary statistics such as the

posterior means and standard deviations are misleading. Indeed these statistics depend on

the label of the state. Different solutions exist to solve the issue. The prior distributions can

be chosen to rule out the label switching problem by constraining the support of the parame-

ters given the regimes (see Bauwens, Preminger, and Rombouts (2010)). Nevertheless finding

appropriate constraints to preclude all the possible switches without truncating the posterior

distribution can be difficult. Otherwise as advocated by Geweke (2007), the label switching

issue can be completely ignored in the MCMC simulation. In this case either the reported

summary statistics are label invariant (see Song (2011), Dufays (2012)) or a loss function is

used to sort the posterior draws in one specific label ordering (see e.g. Marin, Mengersen,

and Robert (2005), Bauwens, Dufays, and Rombouts (2011)). We apply the latter approach

but with a new sorting strategy.

In the empirical exercise, we are interested in the posterior distribution given a fixed number

of regimes (say La for the mean and Lb for the variance). In order to sort the posterior

sample, note that the posterior distribution Θt|Y1:T , La, Lb is label invariant and constitutes
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Prior Distributions of the Dirichlet parameters

For the Mean: η ∼ G(5, 1) λ+ κ ∼ G(125, 1
5) ρ = κ

λ+κ ∼ Beta(10, 1)

For the Variance: η ∼ G(5, 1) λ+ κ ∼ G(1000, 1) ρ = κ
λ+κ ∼ Beta(10000, 6)

Prior Distributions of the ARMA parameters

For each regime i : {µi, βi, φi} ∼ N(µ̄,Σ̄) δ{|βi|<1,|φi|<1}

Hierarchical parameter : µ̄ Hierarchical parameter : Σ̄

µ̄ ∼ N(µ,Σ) Σ−1 ∼ W(V ,v)

µ = {0, 0, 0} V = 1
5v I3

Σ = 0.1I3 v = 5

Prior Distributions of the variances

For each regime i : {σ−2
i } ∼ G(ē,f̄)

Hierarchical parameter : ē Hierarchical parameter : f̄

ē ∼ Exp(ea) f̄−1 ∼ G(fa,fb)

ea = 1
2 fa = 8

fb = 4

Table 3: Prior Distributions. Id stands for the identity matrix of dimension d and δ{a>0} is

the Dirac function taking the value one if the constraint a > 0 holds and zero otherwise.
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an interesting candidate for recovering the posterior distribution of each regime. We only

need to find a period of time where the posterior distribution of each regime matches with

the label invariant distribution. We develop the procedure for the mean parameters and

apply the same algorithm for the variance parameters in the simulations and applications.

The sorting strategy consists in three steps (where the set θ = {µ1, ..., µL, β1, ..., βL, φ1, ..., φL}′

gathers all the ARMA parameters and θj = {µj , βj , φj}′ denotes the ARMA parameters of

the regime j) :

1. Apply a K-means algorithm (e.g. MacQueen (1967)) on the posterior approximation of

E[θt|La, Lb, Y1:T ] for all t ∈ [1, T ] with La number of clusters.2 The output is the best

repartition of the regimes (say S∗1:T ).

2. For each regime j = 1, ..., La and for all t such that s∗t = j, find the time tj such that

the squared Euclidean distance loss function on the empirical standardized standard

deviations of θt|La, Lb, Y1:T is minimized. This loss function is intuitively minimized for

the time where the probability of being in regime j is maximized.

3. For each regime j = 1, ..., La, match the posterior distributions : θj |La, Lb, Y1:T =

θtj |La, Lb, Y1:T .

6 Simulation

The proposed algorithm is used on artificial data. We first expose our data generated processes

(DGPs) and then report the simulation results.

Data generated processes

Four different scenarii allowing a structural break in each model parameters are specified.

One artificial data of 300 observations is sampled from each DGP displayed in Table 4 and

the sticky IHMM-ARMA model is then estimated on it. The DGPs are MS specifications

with two switches: one occurring after the 99th observation and the second one after the

199th observation. The first regime therefore counts 200 observations.

Results

The MCMC simulations iterate 45000 times with a burn-in phase of 5000 draws. The maxi-

mum number of states is set to 10 for the two different Markov-chain specifications (i.e. mean

2The K-means algorithm is available in mathematical programs such as Matlab or R.
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Name Type Regimes Break point µ β φ σ2

DGPµ MS 2 {99, 199} obs. {1.5;−0.5} {0.8; 0.8} {0.5; 0.5} {1;1}

DGPβ MS 2 {99, 199} obs. {0.5; 0.5} {0.5; 0.9} {0.2; 0.2} {1;1}

DGPφ MS 2 {99, 199} obs. {0.5; 0.5} {0.8; 0.8} {0.5;−0.2} {1;1}

DGPσ MS 2 {99, 199} obs. {0.5; 0.5} {0.8; 0.8} {0.2; 0.2} {1;2.5}

Table 4: Data Generating Processes of the four simulated series.

and variance) and the starting point consists in the maximum likelihood estimates given no

structural breaks. This specification will be used throughout the paper.

Table 5 shows the posterior probabilities of having a specific number of regimes. For each

artificial data, the right specification has been identified.

DGPµ

# Regimes (ARMA,Variance) [1,1] [2,1] [3,1] [2,2] [4,1] [3,2] [5,1]

0 0.73 0.19 0.04 0.02 0.01 0.00

DGPβ

# Regimes (ARMA,Variance) [1,1] [2,1] [3,1] [4,1] [2,2] [3,2] [5,1]

0 0.46 0.27 0.10 0.07 0.04 0.03

DGPφ

# Regimes (ARMA,Variance) [1,1] [2,1] [3,1] [4,1] [5,1] [2,2] [3,2]

0 0.53 0.30 0.10 0.02 0.02 0.01

DGPσ

# Regimes (ARMA,Variance) [1,1] [1,2] [1,3] [2,2] [2,3] [3,2] [3,3]

0 0.36 0.35 0.08 0.07 0.03 0.03

Table 5: Posterior probabilities of the number of regimes for four simulated series generated

from DGP displayed in Table 4. The true number of regimes is in bold.

The posterior means and their standard deviations are reported in Table 6. We also display

the maximum likelihood estimates given the true states. The posterior estimates and their
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MLE counterparts are always very similar and thus confirm the estimations.

7 Applications

In this section, the sticky IHMM-ARMA model is estimated on two (low- and high-frequency)

empirical series: the quarterly U.S. GDP growth and the daily Dow Jones Industrial Average

realized volatility. Allowing for two different break vectors (one for the mean and a second

for the variance) clearly enhances the flexibility of the model and sheds some lights on widely

known structural breaks in the literature. For instance, focusing on the U.S. GDP growth,

the sticky IHMM-ARMA model confirms that the beginning of the great moderation era is

characterized by a drop in the variance while no change in the mean parameters is observable.

Regarding the realized volatility, the sticky IHMM-ARMA model also turns out to be a

promising alternative to volatility models estimated on returns series.

7.1 Breaks and cycles in U.S. GDP growth

In this section, we revisit the seminal paper of Hamilton (1989) on the business cycles by

applying the sticky IHMM-ARMA model to U.S. quarterly GDP data from 1959Q1 to 2011Q3

(211 observations). More specifically, we complicate the Hamilton’s approach since the Auto-

regressive specification is augmented with an MA term. To begin with, Table 7 provides the

summary statistics of the series. It exhibits a small but significant auto-correlation. The

normality assumption is rejected for the entire sample but seems plausible for the first part

of the series (until 1985). Finally, the tests assuming under the null the stationarity of the

variance over the series clearly reject this assumption. It confirms the great moderation

phenomenon and indicates that breaks should be taken into account.

The results, reported in Table 8, provide evidence of three regimes for the mean parameters

and two regimes for the variance.

As reported in Table 9 and in Figure 1, we first observe that a break occurs in the variance

in 1983, at the beginning of the Great Moderation, as originally detected by Kim and Nelson

(1999), and Perez-Quiros and McConnell (2000), with a volatility divided by four after 1983

(see Table 10). Secondly, we note that the model identifies separate breaks for the variance

13



Regime µ β φ σ2

DGPµ

MCMC MLE MCMC MLE MCMC MLE MCMC MLE

1 1.77 1.67 0.75 0.76 0.51 0.49 1.08 1.07

(0.31) (0.33) (0.04) (0.05) (0.06) (0.07) (0.09) (0.09)

2 -0.60 -0.58 0.76 0.75 0.36 0.37 — —

(0.15) (0.16) (0.04) (0.05) (0.09) (0.10) — —

DGPβ

MCMC MLE MCMC MLE MCMC MLE MCMC MLE

1 0.39 0.39 0.64 0.61 0.05 0.06 0.92 0.92

(0.12) (0.12) (0.09) (0.08) (0.12) (0.11) (0.08) (0.08)

2 0.91 1.02 0.84 0.82 0.22 0.22 — —

(0.38) (0.34) (0.06) (0.06) (0.11) (0.11) — —

DGPφ

MCMC MLE MCMC MLE MCMC MLE MCMC MLE

1 0.57 0.58 0.73 0.73 0.60 0.57 1.02 1.02

(0.18) (0.17) (0.06) (0.06) (0.08) (0.07) (0.09) (0.08)

2 0.51 0.48 0.80 0.80 -0.12 -0.16 — —

(0.18) (0.20) (0.07) (0.07) (0.14) (0.12) — —

DGPσ

MCMC MLE MCMC MLE MCMC MLE MCMC MLE

1 0.55 0.59 0.78 0.76 0.19 0.22 0.99 0.95

(0.11) (0.13) (0.03) (0.04) (0.05) (0.07) (0.11) (0.09)

2 — — — — — — 2.54 2.52

— — — — — — (0.48) (0.36)

Table 6: Posterior means and standard deviations related to the most observed number of

regimes for the four different simulated data.
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Table 7: Summary statistics of quarterly U.S. GDP data.

Average 0.75977
Std error 0.88397
Skewness -0.31552
Excess kurtosis 1.4286
First auto correlation 0.25152
P-val. ACF test (LBQ) with 4 lags 5.5372e-008
P-val. normality test (JB) 0.0020581
P-val. normality test (1st half sample) 0.37691
P-val. normality test (2nd half sample) 0.001
F-test : same variances (half-sample) 0.037655
Bartlett test : same variances (5 batches of equal size) 0.0012432
Nb. Obs 210

# Regimes (ARMA,Variance) [3,2] [4,2] [2,2] [5,2] [6,2] [3,3]

Prob. 0.33 0.23 0.21 0.11 0.04 0.02

Table 8: U.S. GDP growth : posterior means of the probability of having a specific number

of regime

and the mean, since the break in the variance in 1983 has no simultaneous counterpart in the

mean equation. As regards the mean equation, the model switches between bust and boom

periods (second and third regimes), known as business cycles, as captured by the Hamilton

(1989)’s approach. Figure 1 emphasizes that most NBER breaks have been detected by the

model. We finally note that a first regime in the mean equation captures the specific 2008-

2009 recession.
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Mean dynamic Variance dynamic

Date Regime Date Regime

1959Q3 2 into 3 1983Q4 1 into 2
1960Q3 3 into 2 — —
1960Q4 2 into 3 — —
1973Q4 3 into 2 — —
1975Q1 2 into 3 — —
1979Q4 3 into 2 — —
1980Q3 2 into 3 — —
1981Q1 3 into 2 — —
1982Q3 2 into 3 — —
1990Q1 3 into 2 — —
1991Q1 2 into 3 — —
2000Q4 3 into 2 — —
2001Q1 2 into 3 — —
2001Q2 3 into 2 — —
2001Q3 2 into 3 — —
2007Q3 3 into 2 — —
2008Q2 2 into 1 — —
2009Q1 1 into 2 — —
2009Q3 2 into 3 — —

Table 9: U.S. GDP growth : break dates for the mean and the variance.
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INSERT FIGURE 1

Regime µ β φ σ2

1 -0.70 0.29 0.05 1.01

(0.74) (0.42) (0.54) (0.16)

2 0.41 0.38 -0.04 0.28

(0.31) (0.24) (0.33) (0.05)

3 0.52 0.37 -0.13 —

(0.23) (0.25) (0.23) —

Table 10: U.S. GDP growth : posterior means and standard deviations given the most ob-

served number of regimes (two for the mean and two for the variance).

Specifying dependence between state vectors, as documented in Equations (2) and (3) of

Section 3, does not change the results. The very same structural break for the variance is

detected and no additional change is observed. Table 11 reports the probabilities of staying

in a regime when a break has just occurred in the mean parameters (D = 4, see discussion

in Section 3) compared to the same probabilities when no switch has happened in the mean

parameter. These probabilities are extremely high and the differences are not statistically

different from zero.
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Regime 1 2

pii 0.9986 0.9994

0.001 0.0007

λi 0.9993 0.9994

0.001 0.0008

λi − pii 0.0006 -0.0004

0.0015 0.0011

Table 11: U.S. GDP growth : posterior means and standard deviations given the most ob-

served number of regimes of the probabilities of staying in the same regime as well as their

differences.
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7.2 DJIA realized volatility

Volatility models are usually required to estimate the time-varying variance of financial time

series. Since it is a well-known stylized fact that the volatility of financial returns is highly

persistent, the GARCH and the stochastic volatility models use lags of the (unobserved)

conditional variance to predict the current one. On the contrary, if the volatility is directly

observable (examples are the realized volatility or the daily log price range), estimating an

ARMA model is a natural way to fit the data.3

A good ARMA model for realized volatility must take into account two features. First, since

many papers document the presence of structural breaks in the volatility (Diebold (1986),

Lamoureux and Lastrapes (1990), Hilebrand (2005)), the model should allow for the pres-

ence of breaks in the mean dynamic. Second, it has been empirically demonstrated that the

variance of the realized volatility is not constant over time.4 The model should therefore also

allow for variance changes in the volatility. These features make the sticky IHMM-ARMA

model an interesting candidate to fit the realized volatility.

We here apply the sticky IHMM-ARMA model on log daily Dow Jones realized volatility

data, as provided by the Univariate HEAVY paper of Shephard and Sheppard (2010), over

the period from 02 January 2004 to 27 February 2009 (1295 observations). Table 12 docu-

ments the summary statistics of the series. As expected, the financial series exhibits a strong

and significant persistence. The first auto-correlation is equal to 0.8182. The skewness highly

deviates from zero and the kurtosis is above 3 indicating that the marginal distribution is

asymmetric and exhibits fatter tails than the normal one. The Jarque-Bera test confirms

that the observations are far from realizations of a normal distribution but it seems to be

due to the second half of the sample. Finally, the tests on variances suggest investigating the

presence of structural breaks in the second moment.

3 Furthermore, in the context of GARCH model, a direct equivalence between the GARCH model and the

ARMA model on the squared returns can easily be put forward.
4Corsi, Mittnik, Pigorsch, and Pigorsch (2008) show that the residuals of the commonly used ARMA models

for realized volatility exhibit volatility clustering. They therefore use a specification which allows the variance

of the realized volatility to vary over time.
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Table 12: Summary statistics of daily DJIA realized volatility.

Average -0.94122
Std error 1.0826
Skewness 1.1805
Excess kurtosis 1.8496
First auto correlation 0.81824
P-val. ACF test (LBQ) with 50 lags 0
P-val. normality test (JB) 0.001
P-val. normality test (1st half sample) 0.46932
P-val. normality test (2nd half sample) 0.001
F-test : same variances (half-sample) 1.4339e-072
Bartlett’s test : same variances (5 batches of equal size) 1.2598e-050
Nb. Obs 1295

The posterior probability of having a specific number of regimes is given in Table 13. The

highest likely number of regimes are 3 for the mean and 2 for the variance.

# Regimes (ARMA,Variance) [3,2] [3,3] [4,2] [4,3] [3,4] [2,2]

0.21 0.19 0.09 0.09 0.08 0.07

Table 13: DJIA realized volatility : posterior means of the probability of having a specific

number of regimes.

The breaks in the mean and the variance are reported in Table 14 and illustrated in Figure

2. Regarding the mean, the regime 1, spanning from 26 February 2007 to 01 March 2007, is a

one-week transition period, corresponding to a period of stress on the markets5, between the

2004-2007 regime 2 and 2007-2009 regime 3. The end of February 2007 break confirms the

results found by Dufays (2012) with a sticky IHMM-GARCH approach applied on the S&P500

daily returns. The six breaks (corresponding to two regimes) captured in the variance argue

in favor of the relevance of considering ”the volatility of the realized volatility”, as is titled

the paper of Corsi, Mittnik, Pigorsch, and Pigorsch (2008). Assigning the regime changes

in the variance to specific events is quite difficult. We first note that most breaks occur in

the second half of the sample (no break before April 2006), showing that the kurtosis of the

5The 27th February is the day that the Federal Home Loan Mortgage Corporation (Freddie Mac) announces

that it will no longer buy the most risky subprime mortgages and mortgage-related securities. This is a major

landmark in the emergence of the 2007-2008 financial crisis.
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returns increased during the financial crisis.6 We then observe that a break captures the

mid-September impact of the Lehman Brother collapse.

INSERT FIGURE 2

6See Jondeau and Rockinger (2003) for a study of the conditional kurtosis of the S&P500 over the period

1971-1999.
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Table 14: DJIA realized volatility : break dates obtained by the K-means algorithm (see
Section 5).

Mean dynamic Variance dynamic

Date Regime Date Regime

26/02/2007 2 into 1 25/04/2006 1 into 2
1/03/2007 1 into 2 11/07/2006 2 into 1
18/07/2007 2 into 3 20/11/2006 1 into 2

7/02/2008 2 into 1
10/09/2008 1 into 2
5/01/2009 2 into 1

The impulse response functions are displayed in Figure 3. The third regime (starting in July

2007) is clearly more persistent than the second one and reflects the larger market instability.

This higher persistence is also apparent in the larger auto-regressive parameter estimate (β)

of regime 3, compared to regime 2, as given in Table 15.

INSERT FIGURE 3
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Regime µ β φ σ2

1 -0.06 0.35 -0.19 0.18

(0.40) (0.65) (0.44) (0.01)

2 -0.16 0.88 -0.48 0.37

(0.15) (0.10) (0.10) (0.03)

3 -0.05 0.94 -0.41 —

(0.13) (0.08) (0.13) —

Table 15: DJIA realized volatility: posterior means and standard deviations related to the

most observed number of regimes (three for the mean and two for the variance).

As discussed in Section 3, we also specify dependence between state vectors. More precisely,

we assume that when a break in the mean has just occurred (D = 25), a change in the variance

is subject to another probability than the à priori independent transition matrix (see equations

(1),(2),(3)). Assuming this dependence does not change the results (not reported for saving

space).

8 Conclusion

CP and MS frameworks offer a lot of flexibility by allowing abrupt switches in the parameters.

Although efficient algorithms have been developed to handle these models during the last two

decades, there are still cases where the solutions are not fully satisfactory, namely for CP-

and MS-ARMA models due to their path dependence nature. We propose a new approach to

estimate these CP- and MS-ARMA models by combining the model of Klaassen (2002) with

a Metropolis-Hastings step. Our approach relies on a sticky infinite hidden Markov frame-

work, which encompasses the CP and MS setting by covering a potentially infinite number of

regimes. This structure has two clear advantages (and can be applied to models without path

dependence). First it allows for a self-determination of the specification (CP and/or MS) and

of the number of regimes. Second, it provides a way of relaxing the implicit assumption that

all parameters change together when a structural break occurs. In other words, our model

can have a different number of breaks for the mean and variance parameters. In addition,
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since some correlation between the breaks in the mean and in the variance is quite likely, we

also discuss how to specify the dependence between these two dynamics.

Results on simulated series document the ability of the sticky IHMM-ARMA model to detect

the right specifications and the true number of regimes. Empirical examples on the quarterly

U.S. GDP growth and the log daily DJIA realized volatility highlight the relevance of allowing

for different structural breaks in the mean and in the variance. In particular, for the US GDP

growth we find a structural break in the variance at the beginning of the great moderation

era with no simultaneous break in the mean parameters. Our model also captures quite

precisely the breaks reported by the NBER’s Business Cycle Dating Committee. Regarding

the DJIA volatility, we show that the sticky IHMM-ARMA model, combined with realized

volatility data, is a relevant alternative to MS/CP GARCH models applied on return series

by capturing similar breaks on the mean equation. Our results also confirm those of Corsi,

Mittnik, Pigorsch, and Pigorsch (2008) where the volatility of the realized volatility was shown

to change over time.
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A sticky IHMM-ARMA Gibbs sampler : Implementation

Before developing the implementation of the sampler, we summarize some useful notations.

The sum are denoted by dots. For instance
∑

a xa,b = x.,b and
∑

a

∑
b xa,b = x.,.. The vector

{x1, x2, ..., xr} is briefly denoted by x1:r. Vectors are in row and the transpose operator

is designated by ′. The number L stands for the number of regimes. Some confusion can

rise about the density function of the Gamma distribution. In the paper we always use the

following one :

X ∼ G(k, θ) if f(x|k, θ) =
1

θkΓ(k)
xk−1e

−x
θ .

Remind that the set Θ = {µ1, . . . , µL, β1, . . . , βL, φ1, . . . , φL, σ1, . . . , σL}′ contain all the con-

tinuous parameters of the model, the set Θj = {µj , βj , φj , σj}′ denotes the continuous pa-

rameters of regime j, the set θ = {µ1, ..., µL, β1, ..., βL, φ1, ..., φL}′ gathers all the ARMA

parameters and θj = {µj , βj , φj}′ denotes the ARMA parameters of the regime j.

The MCMC simulation iterates between the following steps.

1. Sampling SaT from f(Sa1:T |Θ, P a, Sb1:T , Y1:T ) : see Section 4.

2. Sampling P a from f(P a|HDir, π
a, Sa1:T , Y1:T ) : for j=1,...,L, sample paj,1:L ∼ Dir(αaπa1 +

naj,1, ..., α
aπaj + κa + naj,j , ..., α

aπaL + naj,L) where naj,k denotes the number of transition

from state j to k observed in the state vector Sa1:T .

3. Sampling SbT from f(Sb1:T |Θ, P b, Sa1:T , Y1:T ) by forward-backward algorithm (see Rabiner

(1989)).

4. Sampling P b from f(P b|HDir, π
b, Sb1:T , Y1:T ) : for j=1,...,L, sample pbj,1:L ∼ Dir(αbπb1 +

nbj,1, ..., α
bπbj + κb + nbj,j , ..., α

bπbL + nbj,L) where nbj,k denotes the number of transition

from state j to k observed in the state vector Sb1:T .

5. Sampling {αa, κa, ηa} from f(αa, κa, ηa|P a, πa, Sa1:T , Y1:T ) :

(a) Introduce auxiliary variables :

• Sampling m : For j=1,...,L, and k=1,...,L. Set mj,k = 0. For i=1,...,nj,k sample

xi ∼ Bernoulli(
αaπak+κa1{j=k}

i−1+αaπak+κa1{j=k}
) and increment mj,k = 0 if xi = 1.

• Sampling r : For j=1,...,L. rj ∼ Binomial(mj,j ,
ρ

(1−ρ)πaj+ρ) where ρ = αa

αa+κa
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• set m̄j,k = mj,k if j 6= k and m̄j,k = mj,k − rj if j = k

• set K̄ = 0, for k=1,...,L, if m̄.,k > 0 then increment K̄

(b) Sampling αa and κa

• Sample auxiliary variables : for i=1,...,L, qi ∼ Beta(αa + κa + 1, ni,.) and

si ∼ Bernoulli(
ni,.

ni,.+αa+κa )

• Sample ρ = κa

αa+κa ∼ Beta(ρhyp1 + r., ρhyp2 + m.,. − r.) where ρhyp1 and ρhyp2

denotes the hyper-parameters of ρ (see Table 3)

• Sample αa + κa ∼ G(ahyp + m.,. − s., ( 1
bhyp
− log q.)

−1) where ahyp and bhyp

denotes the hyper-parameters of αa + κa (see Table 3)

• set αa = (1− ρ)(αa + κa) and κa = ρ(αa + κa)

(c) Sampling ηa

• Sample auxiliary variables : q̃ ∼ Beta(ηa + 1, m̄.,.) and s̃ ∼ Bernoulli(
m̄.,.

m̄.,.+ηa
)

• Sample ηa ∼ G(ηahyp1 + K̄− s̃, { 1
ηahyp2

− log q̃}−1) where ηahyp1 and ηahyp2 denotes

the hyper-parameters of ηa (see Table 3)

6. Sampling {αb, κb, ηb} from f(αb, κb, ηb|P b, πb, Sb1:T , Y1:T ) : similar to previous item.

7. Sampling πa from f(πa|P a, HDir, S
a
1:T , Y1:T ) ∼ Dir(η

a

L + m̄.,1, ...,
ηa

L + m̄.,L).

8. Sampling πb from f(πb|P b, HDir, S
b
1:T , Y1:T ) : similar to previous item.

9. For j = 1, ..., L, sampling µj , βj , φj from f(µj , βj , φj |µ̄, Σ̄, Sa1:T , S
b
1:T , {σ2

1, ..., σ
2
L}, Y1:T )

by M-H exactly as in Henneke, Rachev, Fabozzi, and Nikolov (2011).

10. For j = 1, ..., L, sampling σ−2
j from f(σ−2

j |ē, f̄ , Sa1:T , S
b
1:T , Y1:T ) ∼ G(0.5nb.,j+ē, (0.5

∑T
t=1 ε

2
t δ{sbt=j}

+

1
f̄

)−1) where δ{sbt=j}
is the Dirac function equal to one if sbt = j and zero otherwise.

11. Sampling µ̄, Σ̄ from f(µ̄, Σ̄|Θ) :

• Drawing µ̄ from f(µ̄|Σ̄,Θ) ∼ N(µpost,Σpost) where Σpost = (Σ−1 + LΣ̄−1)−1 and

µpost = Σpost(Σ
−1µ+

∑L
j=1 Σ̄−1θj).

• Drawing Σ̄−1 from f(Σ̄−1|µ̄,Θ) ∼Wishart(v+L, (V −1 +
∑L

j=1(θj−µ̄)(θj−µ̄)′)−1).

12. Sampling ē, f̄−1 from f(ē, f̄−1|{σ2
1, ...σ

2
L}, Y1:T ) :
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• Drawing ē from f(ē|f̄ , {σ2
1, ...σ

2
L}, Y1:T ) by Metropolis. The proposal distribution

is Normal with variance equal to 0.5.

• Drawing f̄−1 from f(f̄−1|ē, {σ2
1, ...σ

2
L}, Y1:T ) ∼ G(Lē+ fa, (

1
fb

+
∑L

j=1 σ
−2
j )−1).

B Adapted MS-ARMA model

In this section, we detail the computation of ε̃t−1,sat
= E[εt−1|Y1:t−1, s

a
t ,Θ, P

a, Sb1:t−1] that is

relevant for estimating the model of Klaassen (2002). By the definition of the expectation,

we have that :

E[εt−1|Y1:t−1, s
a
t ,Θ, P

a, Sb1:t−1] =
L∑
i=1

ε{t−1,sat−1=i}f(sat−1 = i|Y1:t−1, s
a
t ,Θ, P

a, Sb1:t−1)

where ε{t−1,sat−1=i} = yt−1 − µ{sat−1=i} − β{sat−1=i}yt−2 − φ{sat−1=i}ε̃{t−2,sat−1=i} We now detail

how to compute the conditional distribution f(sat−1|Y1:t−1, s
a
t ,Θ, P

a, Sb1:t−1).

f(sat−1|Y1:t−1, s
a
t ,Θ, P

a, Sb1:t−1) =
f(sat , s

a
t−1|Y1:t−1,Θ, P

a, Sb1:t−1)

f(sat |Y1:t−1,Θ, P a, Sb1:t−1)

=
f(sat−1|Y1:t−1,Θ, P

a, Sb1:t−1)f(sat |sat−1, P
a)

f(sat |Y1:t−1,Θ, P a, Sb1:t−1)

=
f(sat−1|Y1:t−1,Θ, P

a, Sb1:t−1)f(sat |sat−1, P
a)∑L

i=1 f(sat−1 = i|Y1:t−1,Θ, P a, Sb1:t−1)f(sat |sat−1 = i, P a)

In the light of the previous calculation, the forward step of the forward-backward algorithm

provides all the quantities to compute at each time the conditional distribution f(sat−1|Y1:t−1, s
a
t ,Θ, P

a, Sb1:t−1).
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Breaks in the mean Breaks in the variance

NBER breaks

Figure 1: U.S. GDP growth: breaks in the mean and the variance obtained by the K-means
algorithm (see Section 5).
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Breaks in the mean Breaks in the variance

Figure 2: DJIA realized volatility: breaks in the mean and the variance.

Regime 1 Regime 2 Regime 3

Figure 3: DJIA realized volatility: impulse response functions of the three observed regimes.
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