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Pr. Charles Pecheur (Chair) UCL/ICTEAM, Belgium
Pr. Costin Raiciu Universitatea Politehnica

din Bucuresti, Romania



Evaluating and Improving the Deployability of Multipath TCP
by Gregory Detal

© Gregory Detal 2014
ICTEAM
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Preamble

The concept of Internet started in the early 1970s with the deployment
of the first research network ARPANet [Abb99]. At that time, various pro-
tocols have been developed to interconnect different networks [Cla88]. The
concept of a worldwide interconnection of networks, called the Internet,
started with the standardization of the Internet protocol suite (TCP/IP).
In the late 1980s, commercial Internet Service Providers (ISPs) emerged,
leading to the commercial Internet that we know today. This public In-
ternet has revolutionized our society by impacting our culture and com-
merce, providing an easy access to information and near-instant communi-
cation [Cas01].

The Internet never stopped evolving. Recently, smartphones and tablets
have emerged. Compared to classical hosts that use a single network inter-
face, a major innovation brought by these devices is that they have several
network interfaces. Since these are wireless interfaces, mobility becomes
possible. However, even if the Internet evolved, the design principles of the
TCP/IP protocol suite still apply. The suite was designed to provide a mean
to transfer data from one end host to the other. At that time, the networks
were single paths. There is thus a mismatch between the network that is
multipath and the protocols that are still single path.

This mismatch often causes some frustration for Internet users. Indeed,
a user that has a smartphone with both WiFi and 3G connectivity could
expect to be able to maintain its connections (e.g., to listen to a web radio)
while moving. It is however not the case today, even if a WiFi and/or a
3G connectivity is always available. Once the smartphone loses its WiFi
connectivity all ongoing TCP connections stall.

With the emergence of smartphones and tablets, mobile data usage also
increases. This growth of data traffic and smart devices forces telco com-
panies to find a better solution to deal with mobile multihomed hosts. One
of the solutions is to offload data traffic on WiFi networks [abi09]. Indeed,
WiFi hotspots can be built economically and expanded incrementally. For
example, AT&T deployed free Hotspots in Time Square NYC because its 3G
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data network was overloaded [Vos10]. WiFi networks are very fragmented
and mainly present in airports, hotels and city centers [abi09]. The number
of open WiFi networks is growing thanks to Fon. Fon [fon13] is an initiative
to allow end users to share their WiFi access point with other members of
the initiative. Fon claims to have the largest WiFi network in the world,
with over 12 million hotspots as of July 2013. Offloading 3G connections
to WiFi impacts user experience similarly to moving, i.e., losing WiFi con-
nectivity. All connections established through 3G will stall when moving to
WiFi.

Several proposals have been proposed during the last decade to provide
resilience while in presence of multiple paths [NB09, MN06, Ste07]. Unfor-
tunately, none of these have been widely deployed. One of these solutions is
the Stream Control Transmission Protocol (SCTP) [Ste07]. SCTP defines
a new transport protocol that supports multihoming to provide transpar-
ent failover. However, designed in 2000, SCTP is not yet widely deployed
even if it brings the desired features to improve the end-user experience.
The reason is quite simple. The End-to-End principle, which states that
application-specific functions ought to reside in the end hosts rather than
in intermediate nodes, does not apply anymore on today’s Internet. Other
devices than routers and switches are used to provide connectivity between
a client and a server [SHS+12]. There exist middleboxes which modify/drop
packets and inspect the network layer or above. A well known middlebox
is the Network Address Translator (NAT) that is present in almost every
set-top box. SCTP failed to be deployed due to the lack of support by
most middleboxes. Indeed, most middleboxes only support TCP, UDP and
sometimes ICMP.

Multipath TCP (MPTCP) [FRHB13] is a more recent proposal that
is standardized at the IETF. The designers of MPTCP solved the deploya-
bility issue of SCTP by taking middleboxes into account [RPB+12]. They
designed the protocol as an extension to TCP as to appear transparent to
the network and so to middleboxes. MPTCP main objective is to use all
the network resources available [WHB08]. On top of providing resiliency,
MPTCP increases the throughput of a single connection by using multiple
paths simultaneously.

In this thesis we focus on MPTCP. MPTCP is rather new and there
does not exist validation that it works in today’s network. More specifically,
the main goal of this thesis is to evaluate the deployability of MPTCP in
various networks from mobile to data center networks as well as to improve
the protocol. The main contributions of this thesis are:

• We implement the support of mobility inside the reference Linux im-
plementation of MPTCP and show that end hosts can benefit from it
over today’s networks.
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• We evaluate and improve the deployability of MPTCP. More precisely,
we provide a tool to detect middleboxes on the Internet without re-
quiring server cooperation. This allows us to evaluate the deployability
of MPTCP on the current Internet.

• We propose to deploy MPTCP-TCP converters on the Internet to
allow smartphones to use MPTCP when contacting legacy servers.
This could encourage smartphones manufacturers to deploy MPTCP
as it allows end hosts to benefit from it. We have implemented an
efficient prototype and provide a in-depth evaluation of the latter.

• We evaluate the usage of MPTCP inside data center networks and
provide a new way of performing load balancing as to enable multipath
protocols to more easily use all available paths.

Roadmap

This thesis is decomposed in five chapters. Chapter 1 provides the
background. It presents the motivation for MPTCP as well as an in-depth
overview of the protocol.

In Chapter 2, we evaluate the benefits of using MPTCP in a real envi-
ronment. More precisely, we evaluate the impact of performing a WiFi/3G
handover on the performances of various applications. We show that MP-
TCP could indeed provide an important benefit for smartphone users by
increasing the overall end user experience.

Chapter 3 presents tracebox a software tool that allows to detect
middlebox interference on the Internet. This chapter provides an assessment
of tracebox as well as an evaluation of middleboxes interference on TCP
extensions.

MPTCP as every new protocol/extension suffers from the chicken-and-
egg problem. There is a no incentive for one host to support the protocol
if the other one does not support it. We tackle this issue in Chapter 4
by deploying MiMBox, a MPTCP-TCP converter, that enables end users to
benefit from MPTCP with servers that does not yet support it.

InChapter 5, we propose and evaluate a new load-balancing algorithm
for data center networks while allowing MPTCP to easily benefit from this
network diversity in order to increase its performance.

Finally, we conclude this thesis and provide perspective for further work
in Chapter 6.
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Chapter 1

Background

The Internet is part of everyone’s life. The services provided by the
Internet are numerous. It enables an easy access to information, social con-
tacts, gaming, shopping, etc. Today, more than 35% of the world population
has an Internet access at home while in developed countries this number
reaches up to 80% [int13]. The services are provided thanks to the various
components of the Internet architecture that are decoupled from each other
and that together provide a way to move IP packets from point A to B. One
of these components is the data plane. It is the actual mechanism used to
transmit a packet over the transit paths.

The data plane of the Internet was designed more than 30 years ago.
At that time the Internet was composed of 3 types of devices: end hosts,
switches and routers. Figure 1.1 shows the Internet protocol suite (TCP/IP)
model that characterizes and standardizes the internal functions of a com-
munication system by partitioning it into abstraction layers. The model
groups similar communication functions into one of five logical layers. A
layer serves the layer above it and is served by the layer below it. Layers 1
and 2 are related to access mediums (WiFi, LTE, 3G, Ethernet, etc.), i.e., to
the communication between directly connected nodes. Layer 3 is called the
network layer and provides an unreliable delivery of data packets between
end hosts. The transport layer provides end-to-end communication services.
Among others, it provides convenient services such as connection-oriented
data stream support, reliability and flow control. It relies heavily on the
network layer to provide reliable data transfer for the upper layers. The last
layer corresponds to the application layer and provides a mean for the users’
applications to interact with the network stack. The Internet is dominated
by the Internet Protocol (IP) at the network layer, the Transport Control
Protocol (TCP) at the transport layer [San13] and the HyperText Transfer
Protocol (HTTP) [San13] at the application layer.

1
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Figure 1.1: The Internet data plane as it was when the TCP/IP stack was
designed.

1.1 The Internet evolution

The Internet has reshaped itself over the past decade. This began with
the need for failover and load spreading across networks. As demands on
the Internet grew, load balancing techniques have been developed to pro-
vide a more reliable network and improve performances. Load balancing is
used in different types of networks from ISP networks to data center net-
works. Load balancing allows network operators to maximize the through-
put, reduce congestion as well as to achieve redundant connectivity in their
network. Load balancing can be applied at different layers of the Internet
protocol suite from the data link layer to the transport layer. The most fre-
quently used technique in the network layer is called Equal Cost Multi-Path
(ECMP) [Hop00]. A common implementation uses a hash function over the
5-tuple (IP source and destination, protocol and, port source and destina-
tion) to select a next hop amongst the equally-good next hops available.
ECMP provides that multiple connections between the same end hosts do
not follow a single path but are distributed within the network.

More recently, the edge of the network undergoes a high evolution to-
ward multihomed end hosts. Indeed, the last couple of years have seen a huge
boom in mobile devices usage. The number of smartphones and tablets has
exploded [CS13a, Rus12]. As of 2011, there were 1 billion smartphones users
which represented 1/5 of the mobile phone users. This number is continuing
to grow and the number of smart devices is expected to reach 10 billion in
2016, larger that the number of people living on the planet at that time.
The global mobile data traffic grew 70% in 2012 and is expected to grow
more in the coming years due to the deployment of new technologies such
as 4G And LTE [CS13a]. Smartphone users desire to be ’always connected’,
the smart devices therefore often contains multiple Internet interfaces such
as WiFi and 3G/LTE/4G.
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Different resources are available at both the network and the end-host
level. Unfortunately, the protocols still in-use today were designed with
single-path networks in mind. TCP connections are intrinsically linked to
IP. When a TCP connection is established, it is bound to the IP addresses
of the two communicating hosts. If one of these addresses changes, for
whatever reason, the connection fails.

This mismatch between today’s multipath networks and TCP’s single-
path design creates tangible problems. For instance, if a smartphone loses
its WiFi signal, the TCP connections associated with it stall. There is no
way to migrate them to other working interfaces, such as 3G. This makes
mobility a frustrating experience for users. Modern data centers are another
example: many paths are available between two endpoints, and multipath
routing randomly picks one path for a particular TCP connection [Hop00].
This can cause collisions where multiple flows get placed on the same link,
hurting throughput.

1.2 Providing multipath support

Several proposals have tried to use this network diversity as to use the
multiple paths available. These solutions mainly operate at the network
layer or above. We discuss in the rest of this section various solutions at the
different layers.

1.2.1 At the network layer

Shim6 [NB09, BRB11], as its name suggests, is a shim layer between
the network and the transport layer. Shim6 works over IPv6 and hides
the changes of IP addresses to the transport layer. Shim6 defines failure
detection and locator pair exploration functions which allows hosts to detect
and recover from failures. To achieve these features, specific Shim6 probes
or hints from the above layer are used. As Shim6 consists of a modification
of the network stack, existing applications automatically benefit from its
functionality.

While bringing the desired multipath failover feature, Shim6 and other
similar solutions such as Mobile IP [Per10] and MIPv6 [PJA11] are not used
or widely deployed. Experiences have shown that performing mobility, i.e.,
handover between two network, at the network layer impacts the perfor-
mances of the above layers. Changing the path used can introduce rapid
changes in available capacity and delay. Hiding the changes of IP addresses
to TCP can cause it to collapse. For example, moving from a non congested
path to a highly congested paths will cause lot of losses that TCP will have
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to deal with. Most likely, TCP will have to go into the slow start phase
taking time to recover from the path change.

1.2.2 At the application layer

The application layer could provide a mobility mechanism. For exam-
ple, after a new address is obtained, the session layer may simply initiate
new transport connections to replace the existing ones. However, there
are two main disadvantages to provide mobility at this layer. First, as
the connections are restarted state must be maintained somewhere. For
real-time streaming like connections this does not poses problem, the con-
nection will restart at the expected time. For other cases it is not as easy,
e.g., for a file download, if the connection is restarted the download will
have to restart from the beginning increasing the overhead in the network.
HTTP/1.1 [FGM+99] provides a way to define a recovery mechanism by
indicating the amount of data already received in the header (the HTTP
range field). While this could improve the mobility this feature only applies
for static content and to this specific protocol.

1.2.3 At the transport layer

Researchers have shown that the best place to deal with mobility is at
the transport layer [Edd04, WHB08]. Indeed, this layer has a better view
of the paths congestion and thus can more efficiently decide which path to
use and how to react to paths changes.

The Stream Control Transmission Protocol (SCTP) [Ste07] was de-
signed to support multihoming and failover. The Concurrent Multipath
Transfer (SCTP-CMT) extension of SCTP [IAS06] allows end hosts to use
multiple paths at the same time improving therefore the overall performance.
Another extension, mSCTP [SXT+07, KCL04], has been proposed to dy-
namically update a peer’s address-list and thus allow handover from one
interface to the other. Unfortunately SCTP has seen very little deployment
due to the presence of middleboxes. Moreover, SCTP defines a different
socket API than TCP. Applications must therefore be updated in order to
benefit from SCTP.

At design time, the Internet was supposed to interconnect end hosts
through routers and switches (see Figure 1.1) that only operate at the net-
work layer or below. The TCP connection at the transport layer was sup-
posed to be handed only by the end hosts. This is often referred to as the
End-to-End principle [SRC84]. Unfortunately, the End-to-End principle
does not apply anymore. Indeed, there exist devices on top of routers and
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Figure 1.2: The Internet data plane as it is today.

switches within the network that provide services other than simple packet
delivery. These devices interfere with the TCP connections by modifying
fields of the header or the byte stream. The Network Address Translator
(NAT), that is present in almost every home’s set-top box, is one example.
The NAT translates local IP addresses to public ones, as well as port num-
bers. By modifying the transport layer (and sometimes above), the NAT
breaks the End-to-End principle.

This type of devices is often called middleboxes. A middlebox, defined
as “any intermediary box performing functions apart from normal, stan-
dard functions of an IP router on the data path between a source host and
destination host” in [CB02], manipulates packets for purposes other than
simple forwarding. Figure 1.2 shows an up to date version of Figure 1.1
where these devices are present. Middleboxes are present everywhere. In
addition to home networks, enterprise networks also contain a vast diversity
of middleboxes from firewalls to proxies [SHS+12]. Although these middle-
boxes are supposed to be transparent to the end user, experience shows
that they have a negative impact on the evolvability of the TCP/IP proto-
col suite [HNR+11]. After more than ten years of existence, SCTP is still
not widely deployed, partially because many firewalls and NAT still con-
sider SCTP as an unknown protocol and block the corresponding packets.
SCTP is however used in specific application in controlled networks such as
signaling in VoIP data networks [3GP12].

A more recent solution, Multipath TCP (MPTCP) [FRHB13] has been
developed with the same idea in mind. However, compared to SCTP, its
designers considered middleboxes while designing the protocol. To ensure
deployability, they have defined the protocol as an extension to TCP. This
is probably the most ambitious recent extension to TCP. It raised a lot of
interest from researchers as well as from industry [Bon13]. The next section
provides an in-depth overview of the protocol.
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1.3 Multipath TCP

Multipath TCP is a new extension to TCP standardized by the Internet
Engineering Task Force (IETF) [FRHB13]. MPTCP was designed to use
all the available network resources [WHB08]. In order to be deployable,
the authors took the following objectives into account while designing the
protocol:

Do not require application changes
MPTCP does not require to rewrite all applications. For this, MPTCP
is implemented in the TCP/IP stack of the operating system kernel
and provides the same socket API as TCP.

Transparent to the network
The protocol must operate on today’s Internet, it should deal with
middleboxes. For this MPTCP uses regular TCP connections, called
subflows. It uses TCP options to carry signaling and multiplexes the
data stream over the subflows belonging to the same MPTCP connec-
tion. MPTCP maps each data to its own specific sequence number
called Data Sequence Number (DSN). The DSN is present in all seg-
ments allowing the peer to reorder the data received over different
subflows.

Backward compatible
To ensure that connectivity can be established with end hosts that do
not support MPTCP, a fallback mechanism ensures that in this case
regular TCP is used.

Moreover, the fallback mechanism is also used to deal with middleboxes.
As MPTCP distributes data over multiple paths, the different paths might
contain a middlebox that performs some modification to the segments. In
this case, MPTCP fallbacks to regular TCP meaning that MPTCP signaling
stops being used.

The operation of MPTCP can be decomposed in four different parts:
(i) connection establishment, (ii) subflow establishment, (iii) data exchange
and (iv) connection termination or subflow removal.

1.3.1 Connection establishment

The connection establishment is similar to TCP. A TCP connection
starts with a three-way handshake. The client sends a SYN segment to
the destination address of the server and to the destination port on which
the server’s service is listening to. The server replies with a SYN+ACK
segment acknowledging the client’s SYN. The client then acknowledges the
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Figure 1.3: Multipath TCP initial and additional subflows establishment.

SYN+ACK and the connection is established for both peers. The nego-
tiation of TCP extensions is carried out during this handshake. For the
selective acknowledgement (SACK) [MMFR96], the client sends the SACK
Permitted TCP option in the SYN. If the server supports this extension and
wants to use it for the new connection, it replies with the same option in
the SYN+ACK.

In MPTCP, the peers negotiate the usage of the extension with the
Mp Capable option. Figure 1.3(a) shows the exchange in detail. The
Mp Capable options also contains keying material that are used to au-
thenticate additional subflows. On top of being used for authentication
purposes, the keys are also used to derive a unique identifier for this MP-
TCP connection. This unique identifier (32 bits) is called the token and
is generated for both the client and the server. When sending its key the
peer must ensure that the 32-bit token is unique on its side. The 64-bit
Initial Data Sequence Number (IDSN) is also extracted from the keys. The
algorithm used to derive the token and IDSN from the keys is exchanged
in the option. As of today, a single mechanism based on HMAC-SHA1 is
available. More information can be found in [FRHB13]. The keys and the
token are further used during the additional subflow establishment in order
to identify and authenticate the connection.

The security of MPTCP has been designed to be no worse than TCP. In
TCP, an attacker that resides on the path between the client and the server
can perform a Man-in-the-Middle attack where she can hijack or inject data
in the connection [HH99]. As MPTCP uses regular TCP connections as
subflows it is also impacted by the same problem. MPTCP cannot therefore
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stop this Man-in-the-Middle attack. MPTCP designers chose therefore to
exchange the keying material during the initial three-way handshake.

Compared to other extension, MPTCP also sends the Mp Capable

option in the third ACK where both keys are present. There are two reasons
for this. First, it allows the server to answer a connection attempt without
creating state in a similar fashion as SYN COOKIES [Ber96]. This prevents
Denial-of-Service attacks with SYN flooding. Second, it allows to detect
whether a middlebox has removed the option on the server-to-client path.
In that case, both peers fallback silently to TCP because the path is not
transparent to MPTCP.

1.3.2 Subflow establishment

Similarly to the initial subflow establishment, additional subflows are
created through a three-way handshake. This is to overcome existing middle-
boxes such as firewalls that require a three-way handshake before any data
transfer using a given 5-tuple. Figure 1.3(b) shows the control messages
exchanged during the subflow establishment. MPTCP uses the Mp Join

option to notify that the connection establishment corresponds to a new
subflow. The mechanisms used in the establishment is twofold: identify
the connection and authenticate both peers. To identify the connection the
client sends the server’s token in the SYN as well as a random number that
will be used by the authentication mechanism. The authentication mech-
anism’s goal is to prove that both hosts know a shared secret: the keys
exchanged during the handshake of the initial subflow. To authenticate
themselves, each peer sends a HMAC-SHA1 of each other’s nonce using the
concatenation of both keys.

Compared to regular TCP, the client cannot send data inside the third
ACK. The subflow is considered in a PRE-ESTABLISHED state until a fourth
ACK has been received by the client. This ensures that the third ACK is sent
reliably and that the path can be used. This ACK has to be retransmitted.
The connection state is changed to ESTABLISHED once an ACK has been
received by the client, allowing to resume normal operation.

To establish subflows the peers have to be aware of each other’s ad-
dresses. MPTCP associates one ID to each address. By default each peer
knows the addresses used during the initial subflow establishment. From
this they can establish new subflows to the peer address using their addi-
tional addresses. They identify their new address by setting the ID field in
the Mp Join option.

Another way of notifying addresses to the other peer is to use the
Add Address option. This option carries the address ID and an IPv4 or
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Figure 1.4: Multipath TCP data transfer.

IPv6 address that can be used by the peer to establish additional subflows.
This notably allows MPTCP to establish IPv4 and IPv6 subflows within
the same MPTCP connection. This option is sent in ACKs and is thus sent
unreliably.

MPTCP allows both hosts to establish subflows. However, it is ex-
pected that only the active opener, i.e., the client, will initiate additional
subflows. Indeed, nowadays, NAT devices are ubiquitous. It is therefore
highly probable that a client is behind a NAT. NAT maintains state and
is likely to drop incoming SYN. MPTCP also deals with Add Address

containing locally routable addresses. When receiving the Mp Join for the
same ID with a different address as announced in the Add Address, the
peer has to update its ID to address mapping in order to ensure the correct
usage of the address for the rest of the connection.

1.3.3 Data transfer

A naive implementation of MPTCP could distribute data amongst the
available subflows and use regular TCP sequence numbers to allow the end
hosts to reorder and recover the data stream. This however would cause
holes in the TCP sequence number space of each subflow. Unfortunately
middleboxes might maintain TCP state (e.g., a stateful firewall) for each
subflow and check the validity of each TCP segment without knowing MP-
TCP. This might force the middlebox to close the connection. To ensure
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a reliable transfer of data, MPTCP uses the Data Sequence Numbers as a
second sequence number space. Each subflow maintains its own sequence
space for each segment and writes this TCP sequence number as for a regular
TCP connection. On top of this, each segment contains the Data Sequence
Signal (DSS) MPTCP option that carries the DSN. The DSS option also
contains the Data ACK (DACK). The DSS acts as a mapping on a piece
of the data stream. For this it also contains information about the data
mapped by carrying the subflow sequence number (relative to the initial
sequence number) and the number of bytes covered by the mapping. The
DSS option also contains a checksum computed on the data covered. This
allows the MPTCP peers to detect middleboxes that modify the data stream
in order to fallback to regular TCP. More information on fallback can be
found in [FRHB13, HDP+13].

Figure 1.4 shows a simple data exchange between a client and a server
using two subflows. In this simple example, the client sends one byte on
each subflow. The first subflow has a higher delay than the other one which
causes the server to receive the first byte of data after the second one. In
the figure, Seq and Ack represent respectively the subflow sequence and
acknowledgement numbers. The DSeq and DAck represent respectively the
data sequence and acknowledgment numbers at the MPTCP-level. When
receiving the second byte on the second subflow, the server acts as TCP at
the subflow level, i.e., it acknowledges the data received since the data is in
order regarding to the subflow sequence number. The byte is stored in an
Out-of-Order queue at the MTPCP-level, waiting for data to fill the holes,
before sending the data to the application. The server therefore replies with
a DACK of 1 indicating that it is waiting for DSN 1. When the first byte
arrives, it fills the hole and can thus be delivered to the application. The
server replies a regular ACK on the first subflow containing the DACK 2.
This confirms that it has correctly received the two first bytes.

Figure 1.4 is used as an illustration. The reality is more complex. There
are retransmissions at the subflow level but also at the MPTCP level. The
latter are called reinjections. Reinjection happens when a loss is detected.
In this case, it can be more efficient to retransmit the data on another
subflow especially if the loss happened on a high delay path. MPTCP can
easily reinject data by remapping the data sequence numbers to new subflow
sequence numbers. Each subflow must however still retransmit the original
segments in order to deal with middleboxes.

Scheduler

One important feature of MPTCP is its scheduler. It distributes data
amongst the active subflows. Various scheduling algorithms can be used.
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The reference implementation of MPTCP [BPB11] in the Linux kernel tries
to first send data on the subflow that has the lowest Round-Trip Time
(RTT). It estimates the subflows’ RTT thanks to the use of the Timestamp
extension of TCP [JBB92]. The scheduler will order the subflows based
on this delay measurement from the lowest to the highest one. The best
subflow is preferred to send data. Data will only be sent over the second
best subflow if the congestion window of the best subflow is full. The same
applies for the other subflows. Using the RTT allows MPTCP to better
react to network changes such as a smartphone moving away from a WiFi
access point.

The scheduler depends on the OS on both hosts, one OS might imple-
ment a different scheduler than the other. MPTCP can notify the peer of
its preferences in terms of subflow usage. The protocol can give a binary
information, either the subflow should be used as backup. The notification
is carried inside Mp Join that contains a backup bit or within the Mp Prio

option to change the priority during the lifetime of a subflow. Once a peer
receives such priority modification it should not send data on backup subflow
if there still exist non-backup ones.

Congestion control

The congestion control algorithm is an important feature of TCP [Jac88].
It dynamically adapts the throughput in response to changing network con-
ditions. Each peer maintains a congestion window which limits the rate at
which the packets are sent. The congestion control has two phases. First,
the slow start phase happens at the beginning of the connection. At this
moment the congestion level of the network is unknown and the sender tries
to identify it. During this phase, the sender increases its congestion window
exponentially until the first loss. The sender then enters the second phase:
the congestion avoidance phase. In this phase, the congestion window grows
linearly and is halved when a loss occurs. The congestion control algorithm
allows to ensure fairness amongst independent connections that shares the
same bottleneck. Each of these connections should converge to the same
average value of the congestion window and thus the same rate.

Using MPTCP and a regular congestion control algorithm, would cause
the different subflows to use an unfair share of the available capacity. If
multiple subflows belonging to the same MPTCP connection have the same
bottleneck links they will gain more throughput. The congestion control
of MPTCP should ensure that if multiple subflows share the same bottle-
neck, an MPTCP connection would not get more throughput than regular
TCP. Several congestion control algorithms have been presented in [RHW11,
KGP+12]. The algorithm used by default in the Linux implementation is
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the Linked-Increases Algorithm (LIA) [RHW11]. In this algorithm each
subflow maintain its own congestion window which is halved when loss oc-
cur like in regular TCP. The increase phase is different, MPTCP increases
the congestion window on the less congested subflow so that they increase
proportionally more than congested ones. The global increase is dynam-
ically chosen so that MPTCP remains fair. More details can be found
in [RHW11, KGP+12].

1.3.4 Connection termination

There are two mechanisms to consider: (i) a subflow termination due
to the loss of reachability via an IP address or (ii) the MPTCP connection
termination after the call to close() by an application.

Loss of IP address

When a smartphone is mobile, it often moves from one WiFi access
point to another and therefore looses IP Addresses during the handovers. If
we consider a smartphone that has two IP addresses: a WiFi one and a 3G
one. The smartphone has established two subflows using both addresses.
When the smartphone looses the WiFi connectivity, it loses the associated
address and so the subflow on its side. In TCP, the server has to wait for sev-
eral minutes before considering the connection as over. MPTCP contains a
mechanism to avoid keeping unused subflows. For this, the Remove Addr

option is used to signal to the peer the loss of an IP address. The option car-
ries the ID associated with the address. In the above scenario, once the loss
is discovered, the smartphone sends a Remove Addr option over the 3G
subflow to notify that the WiFi address has been lost. The server then reacts
by sending a TCP RST on all subflows that use the address and reinject all
data that were sent on the subflows and not yet acknowledged.

It should be noted that an MPTCP connection can survive without
established subflows. Consider a smartphone that has a single WiFi connec-
tivity and moves from one access point to the other. Its established MPTCP
connection will stall between the access point but thanks to the Mp Join

option it will be able to further resume by establishing new subflows.

Termination due to close()

TCP uses the FIN flag to notify the peer that no more data will be
further sent. As for the SYN, the FIN flag must be acknowledged by the
peer. A double exchange of FIN guarantees a complete termination of the
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connection. In MPTCP, relying on the successful exchange of FIN on all
subflows does not guarantee a successful termination. Indeed, all subflows
might not be operational when a peer wants to close the connection. To
guarantee the successful termination, MPTCP uses the Data FIN signal
that is carried inside the DSS option.

The Data FIN works similarly to the TCP FIN. It is sent to signal the
last sequence number of the data. The Data FIN occupies one byte in the
data sequence number space and is acknowledged by a Data ACK. It can
be sent on any subflow.

When the application closes the connection, the Data FIN is sent on
one or several subflows in addition to sending TCP FIN for each subflow. If
the Data FIN is lost the reinjection mechanism of MPTCP will ensure that
it is retransmitted on another subflow and that it is correctly received by
the peer before removing the connection state.

1.4 Conclusion

In this chapter, we have presented Multipath TCP that is the basis
for the thesis. We have explained the motivation for this protocol which
is considered the next new major TCP extension. MPTCP brings many
advantages to the end user such as resource pooling and mobility. The later
advantage is of the highest importance for smartphone users that represent
a large portion of the today’s end users. Smartphones have often different
interfaces but lack today of mobility. Smartphone users are often highly
mobile as they always carry their phone and move from WiFi connected
environment (e.g., home, office) to 3G connected ones. During handover,
all their connections are broken and most of the time have to be restarted
manually which is a major burden. With MPTCP, these users can always
maintain their connections.





Chapter 2

Exploring the WiFi to 3G

vertical handover

2.1 Introduction

A key concern on smartphones is the usage of the mobile data inter-
face. Indeed, 3G often costs more money and is more energy-hungry than
WiFi. 3G and the more recent LTE both suffer from what is called the tail
energy. This causes the devices to continue consuming energy during a few
seconds after sending data [AVRG+13]. 3G networks have also difficulties
in supporting the growing bandwidth consumed by recent smartphones and
tablets. Industry experts expect that these bandwidth requirements will
continue to grow in the future and the deployment of new cellular technolo-
gies such as LTE may not be sufficient to sustain the demand [CS13a]. For
these three reasons, smartphone users as well as network operators prefer to
use private or public WiFi over 3G. As we have seen in Chapter 1, switching
from one network to the other will make all ongoing TCP connections stall.
Users will often have to manually restart their applications when moving out
of the range of a wireless network which therefore impacts user experience.
MPTCP can play an important role in solving this issue as it allows the
connections to survive the loss of IP addresses.

Section 1.3 described in detail how MPTCP handles mobility, i.e., by
dynamically add and remove IP addresses during the lifetime of a connection.
In this chapter, we explore a little bit further this feature by looking at
how MPTCP performances can be impacted when performing a WiFi to
3G handover. This chapter’s goal is not to assess that MPTCP indeed
brings advantages and improves the end-user experience. Previous work
by Raiciu et al. have described why MPTCP is a promising solution for
mobility [RNBH11] and used simulations to assess the possible benefits.

15
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The aim of this chapter is to study experimentally how MPTCP reacts in
a vertical handover scenario to give hints on how MPTCP could behave in
other environments. A vertical handover usually refers to device changing
the type of connectivity. In this chapter we look at how MPTCP behaves
in the case of WiFi to 3G vertical handover.

This chapter is organized as follows. Section 2.2 describes how one can
configure the MPTCP stack to perform handover. Section 2.3 evaluates the
impact of the handover performance perceived by the end user. Section 2.4
presents a modification to the MPTCP stack to improve handovers efficiency.
Finally, Sections 2.5 and 2.6 respectively compares MPTCP with the state-
of-the-art mobility techniques and concludes the chapter.

2.2 Supporting vertical handovers

WiFi generally provide higher speeds and consumes less energy, while
cellular technologies generally provide more ubiquitous coverage. In a smart-
phone environment, a user might want to use a WiFi connection whenever
one is available, and to fall over to a cellular connection when the WiFi is
unavailable. This is defined as a vertical handover. A horizontal handover
differs from the fact that the same technology is used and the handover
involves changes at the datalink layer instead of the network layer.

A mobile node should be able to adapt its protocol stack to its user’s
requirements when dealing with a potential vertical handover. From the
user’s viewpoint, there are three important factors to be considered. The
first is the performance of the data transfer. Some users will probably prefer
the fastest possible data transfer. The second factor is the battery lifetime.
Some users will probably trade performance for longer battery lifetime. The
third factor is traffic pricing. Some 3G networks bill in function of the num-
ber of transmitted bits or packets. Some users will favor cheaper networks
such as WiFi hotspots, possibly for some applications.

The first and third factors are easily understandable. In this section,
we first explore why data connections can drastically reduce the battery
lifetime and then we present three potential modes of configuration of MP-
TCP.

2.2.1 The 3G state machine

Figure 2.1 depicts the Radio Resource Control (RRC) state machine
for 3G as defined by 3GPP [3GP]. The state machine determines when a
device can send or receive data. The main purpose is to control how many
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Figure 2.1: The 3G state machine.

devices can access the radio network at a give time as to limit network
interferences.

We start describing the figure starting from the bottom left and con-
tinue proceeding clockwise. The first state the 3G device is when it starts
is the IDLE state. In this state the radio is off and so the device does
not consumes any energy. When data is to be sent, the device has to be
promoted to the Dedicated Channel (CELL DCH) state. Due to radio sig-
naling, there is a 2 second delay before actually reaching the state. In this
state the device is allocated a dedicated downlink and uplink channel and
consumes around 800mW depending on the device [QWG+11]. When the
device stops sending or receiving data and is idle for around 5 seconds, it is
demoted to the Forward Access Channel (CELL FACH) state. This demo-
tion delay, called the tail energy, causes the device to continue consuming
high power while the device is idle. In the CELL FACH state, the device is
not allocated a dedicated channel anymore but can still transmit data but
at a lower rate. A device typically consumes around 400mW in this state.
The device is further demoted to the IDLE state if there is still no data
exchange or promoted back to the CELL DCH state otherwise. Note that
the transition timers and energy consumption numbers vary depending on
the device and the carrier used.

Compared to 3G, WiFi consumes less energy thanks to its Power Saving
Mode (PSM) feature [ACGP08]. PSM allows a device to switch its WiFi
radio on and off several times a second to save battery. WiFi therefore does
not suffers from the tail energy problem.
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2.2.2 Mobility modes

An MPTCP implementation should take these factors into account.
In our current implementation, we have identified and implemented three
modes of operation for MPTCP that correspond to most user needs.

Full-MPTCP mode
The Full-MPTCP mode refers to the regular MPTCP operations where
all subflows are used, i.e., where a full mesh of TCP subflows among
the clients and the servers addresses is created. This mode is mostly
intended for users who want to obtain the best data transfer rates.

Backup mode
MPTCP opens TCP subflows over all interfaces as the Full-MPTCP
mode, but uses only a subset of these to transport data segments. The
MPTCP protocol allows an endpoint to signal to its peer that it should
avoid sending data on a specific subflow by sending the Mp Prio

option on this subflow (see Section 1.3.3 for more details). This enables
MPTCP to optimize for cost or battery lifetime by preferably sending
data over the cheaper interfaces. It makes sense for MPTCP to prefer
the WiFi interface when available and only use the 3G interface when
there is no WiFi connectivity.

Single-Path mode
The Single-Path mode allows a similar behavior as the Backup mode,
except that at any moment only a single subflow is established and
used for each MPTCP connection. When the interface goes down,
the Single-Path mode establishes a new TCP subflow over another
interface. This is possible thanks to the break-before-make design of
MPTCP. It allows a short period of time during which no subflow is
active. MPTCP is able to recover from this interruption by establish-
ing a new TCP subflow and continue the data transmission without
disturbing the application. Compared to the Backup mode, this mode
spends two more round-trip times after a handover before the new
MPTCP subflow is established and data can be sent.

Figures 2.2(a) and 2.2(b) depict respectively how the Backup and Single-
Path modes react to a WiFi loss. At first sight there is not a lot of differences
except that the Backup mode requires to perform a three-way handshake on
the 3G interface at connection establishment time. This causes the interface
to go to the CELL DCH state and thus requires it to consume a lot of en-
ergy. This is a major drawback. however the advantage is that it can more
quickly react to WiFi failures. Indeed, depending on the handover delay,
i.e., delay between the establishment of the connection and the time when
the WiFi is lost, the 3G interface can still be in CELL DCH and thus does
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Figure 2.2: The differences between the Backup and Single-Path modes.

not suffer from the 2 seconds delay before actually being able to send new
data which the Single-Path mode always suffers from.

It is therefore not easy to decide between the two modes. An element
that could be used to decide is the overall consumption of the device. Indeed,
if the phone is currently used by the user, the screen is on, CPU cycles are
used, etc. This already consumes energy and thus the Backup mode could be
used in this case. Otherwise, for background traffic, i.e., when the screen is
off, the Single-Path mode could be used. In this case the 2 seconds delay will
not impact the user experience as it will not be aware of the handover.

2.3 Evaluation

In this section we provide a first evaluation of the performance trade-
offs when using the three handover modes presented in the previous section.
Rather than providing an actual and detailed analysis of how MPTCP be-
haves in various of mobile environments, we show empirically the benefit of
using MPTCP in a real and specific environment. The results do not ensure
the benefit of MPTCP but rather give hints on how MPTCP could improve
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Client
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Internet

Figure 2.3: The setup used throughout the experiments.

the user experience while being mobile.

Our handover experiments start with a client connected to both WiFi
and 3G networks. After five seconds we disable the WiFi interface on the
ADSL router. This emulates a mobile user moving out of WiFi coverage:
the client discovers the failure of the WiFi network and switches to only
using its 3G connection. This vertical handover from WiFi to 3G introduces
an abrupt change in path qualities.

We performed our measurements in real networks. Using such networks
is more difficult than performing lab measurements, but much more realistic
since it shows the ability of MPTCP to function in existing networks. Our
measurement setup (see Figure 2.3) consists of a client (i3 @2.5GHz 4GB
RAM) connected to both a commercial 3G network and through a WiFi
interface to an ADSL broadband access provider. The 3G network offers a
bandwidth between 1 and 2 Mbps and suffers from huge bufferbloat. We ob-
served up to 2 seconds RTT when sending bursts of data. The ADSL band-
width is around 8 Mbps downstream and 450 Kbps upstream with a mini-
mum RTT of about 30ms. The client connects to a server (Xeon @2.67GHz
4GB RAM) located in a public-hosting server farm. Both the client and the
server run our MPTCP kernel implementation (version 2.6.38). To simulate
the WiFi failure we automatically shutdown the WiFi access point. A more
realistic scenario would have involved actual mobile nodes. This however
limits the automatization of the measures or requires equipment that we
did not have.

In the rest of this section, we explore the impact of a handover on
MPTCP connections using the different modes on both bulk data transfers
and a VoIP application.
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performing handover with MPTCP.

2.3.1 Download goodput

We evaluate the evolution of the goodput for a simple HTTP applica-
tion during vertical handover. Figure 2.4 shows this goodput averaged over
200ms intervals over 20 measurements for the different handover modes. The
x-axis shows the offset compared to the time when the client looses its WiFi
connection (the point 0).

For comparison purposes, Figure 2.4 also shows the goodput of an
Application-level Handover which is a modified HTTP client (running over
regular TCP) that monitors the changes in the routing table to detect the
failure of the WiFi interface. Upon detection of the failure, this applica-
tion restarts the HTTP download by using the HTTP Range header. As
described in Section 1.2.2, such handover requires significant changes to the
application, and is specific to the HTTP/1.1 protocol [FGM+99]. In con-
trast, MPTCP does not require any application-level modification. Further,
even if all client applications use HTTP Range, a brief study we performed
shows that only 39% of the top ten thousand Alexa websites support this fea-
ture. Although feasible in theory, application-level handover cannot always
be used in practice.

We can see in Figure 2.4 that when the WiFi network becomes unavail-
able, the Backup mode behaves similarly to Full-MPTCP which is normal.
The TCP subflow on the 3G interface is already established in both cases.
The difference between the two modes comes from the fact that in Backup
mode only the three segments belonging to the three-way handshake have
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been sent on the 3G interface while with the Full-MPTCP mode data seg-
ments have also been transmitted on this interface. As defined in Section 1.3,
each subflow maintains its own congestion window. As we use an applica-
tion that tries to push as much data as possible on the network, i.e., the
application is network limited, data has been received/sent over both sub-
flows for the Full-MPTCP mode such that both subflows have an accurate
view their path. Full-MPTCP recovers therefore more quickly because, at
the time of the failure the congestion window on the 3G subflow is larger
than in the Backup mode, where the congestion window still has the initial
value (10 MSS).

The Single-Path mode and Application-level Handover are impacted
by the time the 3G interface takes to go from IDLE to the CELL DCH
state. Note that the Backup mode can also suffer from this delay, however
in our scenario the 3G interface is already in the CELL DCH state when
the handover is performed. Without this impact the Single-Path mode and
Application-level Handover behave like the Backup mode. The Single-Path
mode and Application-level Handover both need to perform a three-way
handshake and then respectively reinject and send data into this new sub-
flow/connection, starting with an initial congestion window. After three sec-
onds, all modes reach the average download speed on our 3G network.

We also performed measurements where we forced the 3G interface to
remain in the CELL DCH state by using a background traffic with regular
ping probes. We found that there were not much differences between the
Backup and Single-Path modes. In this case, the performance impact of the
three-way handshake is negligible on average.

2.3.2 Application delay

Variation in application delay is an important metric for streaming or
VoIP applications. We measure the application delay by sending blocks of
data, tagged with a timestamp. Upon reception of each block, we store
the transmission timestamp together with the timestamp at the receiver-
side. The evolution of the difference between these timestamps gives us the
variation in application delay.

We performed measurements during which the server was transmitting
at 500Kbps to the client. The application used is therefore application
limited (rate is lower than the available rate on both WiFi and 3G) rather
than network limited as for the previous experiment. Initially WiFi and 3G
are enabled and data segments are sent according to the specified handover
mode. After around 5 seconds, the WiFi access-point is disabled and traffic
has to switch over to the 3G interface.
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Figure 2.5: Evolution of the application delay.

Figures 2.5(a) and 2.5(b) show the impact on the application delay
when handing the traffic over from WiFi to 3G. The measures are averaged
over 100ms intervals over 20 runs of the same experiments. We can observe
on the figure that the results contain an offset depending on the mode used
(especially in Figure 2.5(b)). This is due to the fact that the access point
shutdown and the detection on the client side is not deterministic and can
take more time for some experiments than for others.
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In this experiment, we are application limited and due to the MPTCP
scheduler (see Section 1.3.3), the Backup and Full-MPTCP modes behaves
similarly. Indeed, in the case of Full-MPTCP almost no data will be sent on
the 3G subflow. A sending rate of 500Kbps does not fill the pipe over the
WiFi interface. Since MPTCP prefers the WiFi path as it has the lowest
RTT, no traffic is sent over the 3G network. The Backup mode is therefore
not shown since it is similar to Full-MPTCP .

As in Single-Path mode no subflow is established over 3G prior to the
vertical handover event. The 3G interface is idle and thus first needs to be-
comes active before establishing the new subflow. This takes up to 2 seconds
and the impact on the application delay can be observed in Figure 2.5(a).
When the 3G interface is forced to remain active, the impact of establish-
ing the new subflow over Single-Path is less important as can be seen in
Figure 2.5(b). Full-MPTCP has a slight peak during handover due to two
reasons: First, the client needs to announce the lost WiFi-interface by using
the Remove Addr option. Second, because only a small number of data
segments were sent through the 3G interface, its congestion window is not
yet large enough to sustain a sending rate of 500 Kbps. The application de-
lay is higher during the slow-start phase until the congestion window allows
a steady rate of 500Kbps.

2.3.3 Impact on existing applications

Since MPTCP does not change the socket API, it can be used trans-
parently by any TCP application. Skype is a commercial Voice over IP
application that is able to operate over both TCP and UDP. We experi-
ment with Skype – that has very tight constraints on packet-level delays –
to showcase a worst-case for the MPTCP handover. We do not imply that
Skype should be run over TCP or MPTCP – it is much better to run Skype
over unreliable transports such as RTP or UDP if possible.

For our experiment, we force Skype to pass through an MPTCP-enabled
HTTP-proxy by blocking UDP and other TCP ports on the client’s firewall.
Otherwise Skype will by default try to use UDP or do regular TCP over
the public Skype-servers. We use the Skype API to play a recorded file
and record the received signal. Around the 7th second we turn down the
WiFi access point and MPTCP seamlessly performs the handover to the 3G
interface without any impact on the application.

We compare the impact on the voice signal during handover from WiFi
to 3G with the different handover modes. Figure 2.6 shows the amplitudes
of the original signal and the signals impacted by the handover. When using
MPTCP in either handover modes, the Skype-session does not break and
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Figure 2.6: During the failover to 3G a short moment of silence happens
during the Skype-call.

the call continues. A short moment of silence follows the loss of the WiFi
interface. This is because MPTCP needs to detect the failure and then
reinject the lost data segments in another subflow (Full-MPTCP) or in a
newly established subflow (Single-Path). Hence, Skype plays the received
voice signal with some additional delay but resynchronizes the call after
some time.

2.3.4 Summary of experiments

We have seen that MPTCP allows unmodified applications such as
Skype to continue during a handover from WiFi to 3G. To our best knowl-
edge, this is the first time such handover has been tested on real networks
and with real applications.

Using the 3G interface is costly in terms of battery-lifetime, so using
Full-MPTCP mode is not the best option for users willing to save battery
life. Of course, other mobile devices might have different energy consump-
tions, and the results might be different. On the other hand, Full-MPTCP
mode offers the smoothest handover. Using the Backup mode brings mod-
est performance improvements over Single-Path mode during handover when
the connection is long enough to allow the 3G interface to go to sleep. In
such cases the Single-Path mode uses less energy and is thus preferable.
If connections are shorter than 10 seconds and a handover happens, the
Backup mode is preferable as it gives good performance at modest energy
cost.
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Given this initial exploration, an interesting question is, how mobile
operating systems can optimize user experience and battery-lifetime simul-
taneously. One option is to always use Full-MPTCP mode when the user
is actively using the phone (i.e., the mobile is in active mode). When the
mobile is sleeping, it makes sense to use less energy hungry modes such as
Single-Path mode.

2.4 Improving Multipath TCP

During our measurements we stumbled sometimes upon unexpected
results. In the Backup mode the second subflow ended up unused after the
first one was lost, and large application delays were observed in Single-Path
mode. Both issues originated from the loss of the Remove Addr option
which is sent unreliably. Indeed, the Remove Addr and Add Address

options are typically sent on separate TCP ACKs. MPTCP does not treat
duplicate ACKs containing such options as a signal of congestion [FRHB13]
and thus these options may get lost in the network. In this section we discuss
these results and show how we can address them by changing MPTCP to
send these options reliably.

Observations Losing the Remove Addr option has an impact on MP-
TCP’s performance. When receiving the Remove Addr option, the peer
closes the affected subflow and reinjects all unacknowledged data on the
second subflow. However, if the Remove Addr option is lost, the peer
continues to send data on all existing subflows, i.e., in this case the first and
second subflow. Reinjection of data from the affected subflow will only occur
after a Retransmission Timeout (RTO). On congested wireless networks the
RTO can easily shoot up to a few seconds, which significantly affects the
handover process. Furthermore, the initial subflow will remain active until
the expiration of the maximum retransmission-timeout (between 13 and 30
minutes), using precious server resources.

We observed the impact on application delay when losing the Re-

move Addr option. We found as expected that in the Backup mode, if
the Remove Addr option is lost, the server is not aware that it has to
start using the backup-subflow and thus no data is ever received after losing
the WiFi interface. Figure 2.7 shows the impact on the performances when
the Remove Addr is lost when the Backup mode is used. The figure shows
similarly to Figure 2.4 the application goodput averaged over 500ms periods
over 10 measurements. We can see that when the Remove Addr is lost
the goodput drops to 0. Technically the connection could only recover after
the maximum retransmission-timeout when the WiFi subflow is destroyed
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Figure 2.7: The loss of a Remove Addr during a handover significantly
impacts the performances.

on the server. In this case, the latter is able to further send data on 3G
since it is the remaining subflow. If the Remove Addr option is lost in
Full-MPTCP mode, the server has to wait until the expiration of the RTO
on the subflow passing by the WiFi-interface. And only after this RTO the
data will be reinjected over the second subflow. This increases the handover
delay.

The current MPTCP specification does not include any mechanism to
ensure a reliable delivery of the Remove Addr and Add Address options.
In our current implementation, we use one spare bit in these options that
serves as an echo bit. We use it as follows. When a host loses an address it
sends the Remove Addr option in a duplicate ACK as described in Sec-
tion 1.3.4 and starts its retransmission timer. The Remove Addr option is
also automatically added to each outgoing segment. When a host receives a
segment containing the Remove Addr option it then immediately replies
with a duplicate ACK that contains the same option with the echo bit set.
Upon reception of this ACK, the initiator of the Remove Addr is now
certain that it was received. We implemented this design in our implemen-
tation which consisted of around hundred lines of code; all the experiments
we have run in Section 2.3 use this optimization.
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2.5 Related work

Over the last decade, several research efforts have been conducted to
enable end hosts to support mobility for applications in a transparent man-
ner. At the different layers of the OSI model, protocols such as the Stream
Control Protocol (SCTP) [SXM+00], Mobile IP [Per10] and MIPv6 [PJA11]
have been trying to allow a mobile node to seamlessly perform vertical han-
dover.

Snoeren et al. proposed Migrate TCP [SB00] that uses TCP options
and DNS updates to migrate the endpoint of a TCP session to a different
address. This could be readily used for 3G/WiFi offloading. Raiciu et
al. have argued in [RNBH11] that MPTCP is a better solution because it
can use all the interfaces at once which provides increased performance and
throughput.

Offloading 3G to WiFi is not a novel idea. Wiffler [BMV10] presents
a study of 3G and WiFi coverage while driving and shows how offload can
be implemented by changing the applications. Our solution is more general
since it enables unmodified applications to benefit from offloading.

2.6 Conclusion

In this chapter, we have carried out an experimental investigation of
Multipath TCP in the presence of WiFi and 3G. We have proposed and
evaluated three handover modes: Full-MPTCP , Backup and Single-Path.
Our experiments in commercial wireless networks demonstrate that MPTCP
can play a role for mobile users and also WiFi/3G convergence today. Our
measurements show that MPTCP can quickly recover from a WiFi loss
in presence of a 3G interface with only a small impact on the application
delay and goodput. Our experiments with Skype demonstrate that existing
unmodified applications already benefit from MPTCP.



Chapter 3

Detecting middleboxes

interference

3.1 Introduction

In Chapter 1, we have seen that the architecture of the Internet does
not follow the end-to-end principle anymore. The network is composed of
middleboxes that interfere with the end-hosts’ TCP connections. Although
these middleboxes are supposed to be transparent to the end user, expe-
rience shows that they have a negative impact on the evolvability of the
TCP/IP protocol suite [HNR+11]. For example, after more that ten years
of existence, SCTP [SXM+00] is still not widely deployed, partially because
many firewalls and NAT may consider SCTP as an unknown protocol and
block the corresponding packets. We have also seen in Chapter 1 that mid-
dleboxes have heavily influenced the design of MPTCP.

Recent papers have shed the light on the deployment of those middle-
boxes. For instance, Sherry et al. [SHS+12] obtained configurations from
57 entreprise networks and revealed that they can contain as many mid-
dleboxes as routers. Wang et al. [WQX+11] surveyed 107 cellular networks
and found that 82 of them used NATs. D’Acunto et al. [DCVS13] analyzed
Peer-to-Peer (P2P) applications and found that 88% of the participants in
the studied P2P network were behind NATs.

Despite of their growing importance in handling operational traffic,
middleboxes are notoriously difficult and complex to manage [SHS+12]. One
of the causes of this complexity is the lack of debugging tools that enable
operators to understand where and how middleboxes interfere with packets.
Many operators rely on ping, traceroute, and various types of show com-
mands to monitor their networks. These tools use packets that can be dealt
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with differently from actual application packets [PCVB13].

In this chapter, we propose, validate, and evaluate tracebox. tracebox
is a traceroute [V. 89] successor that enables network operators to detect
which middleboxes modify packets on almost any path. tracebox allows
one to identify various types of packet modifications and can be used to
pinpoint where a given modification takes place. We present several use
cases based on a deployment of tracebox on the PlanetLab testbed.

The remainder of this chapter is organized as follows: Section 3.2 de-
scribes the operations of tracebox and how it is able to identify middleboxes
along a path. Section 3.3 describes the implementation of tracebox as well
as the API it provides to the user. Section 3.4 analyses three use cases
from the deployment of tracebox on PlanetLab. Section 3.5 shows how
tracebox can be used to debug networking problems. Section 3.6 compares
tracebox regarding the state of the art. Finally, Section 3.7 concludes the
chapter and discusses potential further work.

3.2 Tracebox

To detect middleboxes, tracebox uses the same incremental approach
as traceroute, i.e., sending probes with increasing TTL values and waiting
for ICMP time-exceeded replies. While traceroute uses this information
to detect intermediate routers, tracebox uses it to infer the modification
applied on a probe by an intermediate middlebox.

The TCPExposure software developed by Honda et al. [HNR+11] is
probably the closest to tracebox. The study realized with this software
revealed various types of packet modifications with specially crafted packets
to test for middlebox interference. However, this tool is limited to specific
paths as both ends of the path must be under control. This is a limitation
since some middleboxes are configured to only process the packets sent to
specific destination or ports. On the contrary, tracebox does not require
any cooperation with the servers. It allows one to detect middleboxes on
any path, i.e., between a source and any destination.

tracebox therefore brings two important features:

Middlebox detection
tracebox allows one to easily and precisely control all probes sent (IP
header, TCP or UDP header, TCP options, payload, etc.). Further,
tracebox keeps track of each transmitted packet. This permits to
compare the quoted packet sent back in an ICMP time-exceeded by
an intermediate router with the original one. By correlating the dif-
ferent modifications, tracebox can infer the presence of middleboxes.
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Middlebox location
Using an iterative technique (in the fashion of traceroute), tracebox
can approximately locate, on the path, where packet modifications
occurred and so the approximate middleboxes position.

3.2.1 Packets Modification Detection

When an IPv4 router receives an IPv4 packet whose TTL is going to
expire, it returns an ICMPv4 time-exceeded message that contains the
modified packet. According to RFC792, the returned ICMP packet should
quote the IP header of the original packet and the first 64 bits of the pay-
load of this packet [Pos81]. When the packet contains a TCP segment,
these first 64 bits correspond to the source and destination ports and the
sequence number. In 1995, the situation changed as routers were required
to quote the entire IP packet encapsulated in the ICMP message [Bak95].1

RFC1812 [Bak95] recommended to quote the entire IP packet in the returned
ICMP, but this recommendation has only been recently implemented on sev-
eral major vendors’ routers at the same time as the deployment of the MPLS
extensions for ICMP [BGTP07]. Discussions with network operators showed
that recent routers from Cisco (running IOX), Alcatel Lucent, HP, Linux,
and Palo-Alto firewalls return the full IP packet. In the remainder of this
chapter, we use the term Full ICMP to indicate an ICMP message quoting
the entire IP packet. We also use the term RFC1812-compliant router to
indicate a router that returns a Full ICMP .

tracebox exploits these returned IP packet to detect some modifi-
cations performed on a path. By analyzing the returned quoted packets,
tracebox is able to detect various modifications performed by middleboxes
and routers. This includes changes in the Differentiated Service field and/or
the Explicit Congestion Notification bits in the IP header, changes in the
IP identification field, packet fragmentation, and changes in the TCP se-
quence numbers. Further, when tracebox receives a Full ICMP , it is able
to detect more modifications such as changes to the TCP acknowledgement
number, the TCP window, the removal/addition of TCP options, payload
modifications, etc.

tracebox also allows for more complex probing techniques requiring
to establish a connection and so multiple probes to be sent, e.g., to detect
segment coalescing/splitting, Application-level Gateways, etc. In this case
tracebox works in two phases: the detection and the probing phases. Dur-
ing the detection phase, tracebox sends probes by iteratively increasing
the TTL until it reaches the destination. This phase allows tracebox to

1It is worth to notice that ICMPv6 has the same recommendation [CDG06].
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Client Destination

1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5

MB
1

R
1

R
2

(a) topology

# tracebox -p ’IP / TCP / mss(9000)’ -n 5.5.5.5

tracebox to 5.5.5.5 (5.5.5.5): 30 hops max

1: 3.3.3.3 TCP::SequenceNumber

2: 4.4.4.4 IP::TTL IP::CheckSum TCP::CheckSum TCP::SequenceNumber

TCPOptionMaxSegSize::MaxSegSize

3: 5.5.5.5

(b) output

Figure 3.1: tracebox example.

identify RFC1812-compliant routers. During the probing phase, tracebox
sends additional probes with TTL values corresponding to the previously
discovered RFC1812-compliant routers. This strategy allows tracebox to
reduce its overhead by limiting the number of probes sent.

3.2.2 Example

Figure 3.1(a) shows a simple network, where MB1 is a middlebox that
changes the TCP sequence number and the MSS size in the TCP MSS option
but does not decrement in this case the TTL. R1 is an old router while R2 is
a RFC1812-compliant router. The server always replies with a TCP reset.
The output of running tracebox between “Source” and “Destination” is
shown in Figure 3.1(b). It shows that tracebox is able to effectively detect
the middlebox interference but not its exact location. Indeed, as R1 does
not reply with a Full ICMP , tracebox can only detect the TCP sequence
number change when analyzing the reply sent by R1. Nevertheless, when
receiving the Full ICMP message from R2 which contains the complete IP
and TCP headers, tracebox is able to detect that a TCP option has been
changed upstream of R2. At the second hop, tracebox shows additional
modifications on top of the expected ones. The TTL and IP checksum are
modified by each router and the TCP checksum modification results from
the modifications of the header.
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3.2.3 Limitations

The detection of middleboxes depends on the reception of ICMP mes-
sages. tracebox suffers therefore from some limitations linked to ICMP:

Filtering
Networks can filter ICMP messages therefore preventing tracebox to
be used. If the router downstream of a middlebox does not reply with
an ICMP message, tracebox will only be able to detect the change at
a downstream hop similarly as in the example of Figure 3.1.

Rate limit
ICMP generation is often done in software which can be costly for
routers. Routers therefore sometimes limit the rate at which they
generate ICMP messages. tracebox solves this issue by generating
several probes for each TTL value if no reply has been received.

Servers
Servers do not always reply with an ICMP message2 (as in Figure 3.1).
In this case it is impossible to detect middleboxes upstream of them.

Revert modification
Some middleboxes, e.g., NATs, revert the modification they apply on
the outgoing packets in the incoming ICMP messages. This implies
that, when inspecting the received ICMP message, tracebox would
not be able to detect the modification. We explore this issue in more
detail in Section 3.5.3 and propose a solution to detect NATs.

3.3 Implementation

tracebox [Det13] is implemented in C++ in about 2,000 lines of code
and embeds LUA [IdFF96] bindings to allow a flexible description of the
probes as well to ease the development of more complex middlebox detec-
tion scripts. LUA is a lightweight multi-paradigm programming language
designed as a scripting language. LUA is widely used by game programmers
as it is easily embedded in other programs.

tracebox aims at providing the user with a simple and flexible way
of defining probes without writing many lines of code. tracebox indeed
allows to use a single line to define a probe like Scapy [Bio]. tracebox uses
the libcrafter library [Pel13] as backend to represent probes. Each probe is
defined by using the following LUA syntax:

2Linux does not by default generate an ICMP for incoming packets with TTL=1.
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<Packet> ::= <Protocol> <Concat> <Protocol>

<Packet> ::= <Packet> <Concat> <Protocol>

<Concat> ::= ’/’ | ’+’ | ’.’

Protocol represents an OSI layer such as IP or TCP but also extensions
to these layers such as TCP options. The combination of two Protocols cre-
ates a Protocol which can be further combined with additional Protocols.
A probe is a Protocol. Several operations can combine Protocols and
Packets: /, + and .. In this chapter the notation / is used.

tracebox provides a complete API to easily define IPv4/IPv6 as well
as TCP, UDP, ICMP headers and options on top of a raw payload. The
API is based on functions that return a Protocol object. The following
functions are available3:

● ip{} corresponds to IPv4. Optional arguments are:

● dst specifies the destination as either a DNS name or an IP address
in the string format. If not set the destination used as argument
of tracebox is used.

● id specifies the IP identification. By default it is set to 0 on Linux
and to a random value on Mac OS X. The latter’s IP stack gener-
ates a random value if not set. Generating it in tracebox allows
to avoid false positives, i.e., detecting a middlebox that random-
izes the IP ID when there is actually none.

● ecn and dscp are used to specify the Explicit Congestion Notifica-
tion [RFB01] and Differentiated Services fields of the IP header.

● proto specifies the protocol number. If not set, the protocol num-
ber of the upper Protocol is automatically used.

● ipv6{} corresponds to IPv6. Optional arguments are:

● dst behaves similarly to dst of ip{}.

● tc and flowlabel specify the Traffic Class and the Flow Label of
the IPv6 header.

● tcp{} corresponds to TCP. Optional arguments are:

● src and dst respectively specify the source and destination ports.
By default a random value is used for the former and 80 is used
for the latter.

3LUA uses the notation <name>{<args>} to describe a variable length argument pro-
cedure while <name>(<args>) for mandatory arguments. This is in fact a syntactic sugar
where the notation <name>{<args>} corresponds to <name>({<args>}), i.e., a procedure
with a dictionary as mandatory argument.
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● seq and ack respectively specify the sequence and acknowledgment
numbers. By default a random value is used for the former and
0 for the latter.

● win specifies the window size. By default 5840 is used.

● flags specifies the TCP flags using an integer representation. By
default 0x02 is used which corresponds to the SYN flag.

● raw(’<string>’) corresponds to the payload. There are no optional
arguments.

Note that the IPv4/IPv6 source address is automatically set using the
address of the default interface or of the specified interface.

On top of these functions, the API provides macros that allow to sim-
plify the description of probes. For example, the macro TS, which cor-
responds to NOP / NOP / timestamp{}, is the combination of two NOP
options (NOP / NOP) followed by the TCP Timestamp option. This macro
ensures that the TCP option is aligned on 4 bytes (the TCP Timestamp
option is 10 bytes long).

We list in the following three examples of probes to show the potential
probe spaces of tracebox.

● IP / TCP / WSCALE / MPCAPABLE corresponds to a SYN probe to port
80 over IPv4. The probe also contains the Window Scale TCP op-
tion as well as the Mp Capable option used by MPTCP. The probe
ip{} / tcp{} / wscale{} / NOP / mpcapable{} has the same ef-
fect.

● IPv6 / udp{dst=56987} / raw(’payload test’) corresponds to a UDP
probe with destination port 56987 over IPv6 containing the string
’payload test’ as payload.

● IP / tcp{src=2345,flags=0x12,ack=345678} corresponds to a SYN+
ACK probe where the source port is set to 2345 and the acknowledge-
ment number is set to 345678.

tracebox provides an API for LUA scripting. The API allows one to
write scripts in order to generate complex middlebox detection techniques.
As of this writing, the API does not include an IP/TCP stack. However,
the idea behind the scripting feature is to allow scripts to act as a regular
application. Currently, the scripts handle the generation of SYN and call
tracebox() which takes a Packet as argument and optionally a callback
function. The latter is called for each ICMP messages received and has the
detected modification as parameter. tracebox() also returns the reply from
the server. The scripts therefore receives the SYN+ACK and have to further
continue emulating a simple IP/TCP stack. An example of a such script is
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# tracebox -v -n -p ’IP/TCP/mss(1460)/MPCAPABLE/WSCALE’ bahn.de

tracebox to 81.200.198.6 (bahn.de): 64 hops max

1: 130.104.228.126

2: 130.104.254.229 IP::TTL IP::CheckSum

3: 193.191.3.85 IP::TTL IP::CheckSum

4: 193.191.16.21 IP::TTL IP::CheckSum

5: 195.66.224.124 IP::TTL IP::CheckSum

6: 145.254.5.226 IP::TTL IP::CheckSum

7: 88.79.13.62 IP::TTL IP::CheckSum

8: 81.200.194.234 IP::TTL IP::CheckSum

9: 81.200.197.9 IP::TTL IP::CheckSum

10: 81.200.198.6 TCP::CheckSum IP::TTL IP::CheckSum

TCPOptionMaxSegSize::MaxSegSize -TCPOptionMPTCPCapable

-TCPOptionWindowScale

Figure 3.2: tracebox output on today’s Internet.

provided in Section 3.5. The scripts are part of the tracebox distribution.
They are open-source and publicly available [Det13].

To verify the ability of tracebox to detect various types of middlebox
interference, we developed several Click elements [KMC+00] modeling mid-
dleboxes. We wrote Click elements that modify various fields of the IP or
TCP header, elements that add/remove/modify TCP options and elements
that coalesce or split TCP segments. These elements have been included in
a python library [Hes13] that allows to easily describe a set of middleboxes
and generates the corresponding Click configuration. This library is used as
unit tests to validate each new version of tracebox.

Figure 3.2 shows the output of tracebox on today’s Internet. The
source is located in a University network and the destination is the website
of the public transportation service of Germany. The probe sent is a TCP
SYN probe that contains the MSS, MPTCP and Window Scale TCP op-
tions. We can see that at each router hop the TTL and the IP checksum
are modified, this is a normal router behavior and must be ignored. The
interesting element is located at the last hop. We can see that the server
(or load balancer) replied with a Full ICMP . This indicates that there is a
middlebox in front of the server that modifies the value of the MSS option
and removes the MPTCP and Window Scale options. Running tracebox

with the -v (verbose) option revealed that the MSS value was reduced from
1460 to 1380 bytes.
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Figure 3.3: The geolocation of the VPs used during the experiments.

3.4 Validation & use cases

In this section, we validate and demonstrate the usefulness of tracebox
based on three use cases. We first explain how we deploy tracebox on the
PlanetLab testbed (Section 3.4.1), next we assess the coverage of tracebox
(Section 3.4.2) and finally discuss our use cases (Sections 3.4.3, 3.4.4, and
3.4.5).

3.4.1 PlanetLab deployment

We deployed tracebox on PlanetLab, using 72 machines as Vantage
Points (VPs). Figure 3.3 shows the approximate geolocation of each VP.
Each VP had a target list of 5,000 DNS names build with the top 5,000
Alexa web sites, i.e., the top visited websites on the Internet. Each VP
used a shuffled version of the target list. DNS resolution was not done
before running tracebox. This means that, if each VP uses the same list of
destination names, each VP potentially contacted a different IP address for a
given web site due to the presence of load balancing or Content Distribution
Networks. Our dataset was collected during one week starting on April 17th,
2013.

In this chapter, we focus on analyzing interferences between middle-
boxes and (MP)TCP. In theory, PlanetLab is not the best place to study
middleboxes because PlanetLab nodes are mainly installed in research labs
with unrestricted Internet access. Surprisingly, we noticed that seven VPs,
from the 72 considered for the use cases, automatically removed or changed
TCP options at the very first hop. They replaced the Multipath TCP,
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Figure 3.4: Proportion of RFC1812-compliant routers on a path.

MD5 [Hef98], and Window Scale [JBB92] options with NOP options and
changed the value of the MSS option. We also found that two VPs always
change the TCP Sequence number.

3.4.2 RFC1812-compliant routers

tracebox keeps track of each original packet sent and makes a compar-
ison with the quoted IP packet when the ICMP time-exceeded message is
received. Further, tracebox can potentially detect more middleboxes when
routers return a Full ICMP packet. tracebox’s utility clearly increases with
the number of RFC1812-compliant routers. Figure 3.4 and Figure 3.5 pro-
vide an insight of the proportion of RFC1812-compliant routers and their
locations.

In particular, Figure 3.4 gives the proportion of RFC1812-compliant
routers (the horizontal axis) as a CDF. A value of 0, on the horizontal axis,
corresponds to paths that contained no RFC1812-compliant router. On the
other hand, a value of 1 corresponds to paths composed of only RFC1812-
compliant routers. Looking at Figure 3.4, we observe that, in 80% of the
cases, a path contains at least one router that replies with a Full ICMP . In
other words, tracebox has the potential to reveal more middleboxes in 80%
of the cases.

Figure 3.5 estimates the position of the RFC1812-compliant routers
in the probed paths. It provides the distance between the VP and the
RFC1812-compliant routers on a given path. Note that, on Figure 3.5, the
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Figure 3.5: Normalized distance from VP to RFC1812-compliant router.

X-Axis (i.e., the distance from the VPs) has been normalized between 1 and
10. Distances between 1 and 3 refer to routers close to the VP, 4 and 6
refer to the Internet core while, finally, distances between 7 and 10 refer
to routers closer to the tracebox targets. The widespread deployment of
RFC1812-compliant routers in the Internet core is of the highest importance
since tracebox will be able to use these routers as “mirrors” to observe the
middlebox interferences occurring in the access network [WQX+11].

Figure 3.5 shows that for 22% of the paths, the RFC1812-compliant
routers are close to the VP. This is approximatively the same proportion
for routers close to tracebox targets. However, the majority of routers
(roughly 50%) returning a Full ICMP are located in the network core. In-
deed, MPLS is likely to be used in the core network and the MPLS extension
to traceroute requires routers to reply with a Full ICMP .

3.4.3 TCP sequence number interference

The TCP sequence number is not supposed to be modified by inter-
mediate routers. Still, previous measurements [HNR+11] showed that some
middleboxes change sequence and acknowledgement numbers in the pro-
cessed TCP segments. As the sequence number is within the first 64 bits
of the TCP header, tracebox can detect its interference even though there
are no RFC1812-compliant routers.

We analyze the output of tracebox from the 72 VPs. Our measure-
ments reveal that two VPs always modify the TCP sequence numbers. The
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Figure 3.6: Time evolution of the TCP sequence number offset introduced
by middleboxes.

position of the responsible middlebox is close to the VP, respectively the
first and third hop. We suspect that the middlebox randomizes the TCP se-
quence number to fix a bug in old TCP/IP stacks where the Initial Sequence
Number (ISN) was predictable [Mic99]. To prevent attackers from hijacking
and injecting data – affecting host flows – firewall manufacturers preferred
to solve the bug as a service, inside the firewall, provided by the network
instead of waiting for a patch to the TCP/IP stack of the incriminated
OS.

When used on a path that includes such a middlebox, tracebox can
provide additional information about the sequence number randomization.
Depending on the type of middlebox and the state it maintains, the random-
ization function can differ. To analyze it, we performed two experiments.
First, we generated SYN probes with the same destination (IP address and
port), the same sequence number, and different source ports. tracebox re-
vealed that the middlebox modified all TCP sequence numbers as expected.
A closer look at the modified sequence numbers revealed that the difference
between the ISN of the probe and the randomized sequence number can be
as small as 14510 and as large as 4294858380 (which corresponds to a neg-
ative difference of 108916 when the 32 bits sequence number space wrap).
Our measurements show that these differences appear to be uniformly dis-
tributed for different source ports.

For our second experiment, we used tracebox to verify how the ran-
domization evolves over time. For this, we sent SYN probes using the same
5-tuple and different ISN during five minutes and evaluated the evolution



3.4. Validation & use cases 41

MiddleboxClient Server

Seq 42 "A"

Seq 1042 "A"
Seq 43 "B"

Seq 44 "C"

Seq 1044 "C"

Ack 1043
SACK 1044-1044Ack 43

SACK 1044-1044

Figure 3.7: Example of invalid SACK blocks generated due to a middlebox.

of the TCP sequence number modifications. Figure 3.6 shows the offset
between the sent ISN and the randomized one for two different 5-tuples.
tracebox reveals that the two middleboxes seem to change their random-
ization approximatively every 20 seconds. This suggests stateful middle-
boxes.

As explained by Honda et al. [HNR+11], changing the TCP sequence
numbers has an impact on the evolvability of the TCP protocol. Un-
fortunately, it has also an impact on the utilization of widely deployed
TCP extensions. Consider the TCP Selective Acknowledgement (SACK)
option [MMFR96]. This TCP option improves the ability of TCP to recover
from losses. One would expect that a middlebox changing the TCP sequence
number would also update the sequence numbers reported inside TCP op-
tions. This is unfortunately not true, almost 18 years after the publication
of the RFC [MMFR96]. We used tracebox to open a TCP connection with
the SACK extension and immediately send SACK blocks. tracebox reveals
that the middlebox changes the sequence number but does not modify the
sequence numbers contained in the SACK block.

Figure 3.7 shows the behavior of such a middlebox on the TCP sequence
number and SACK blocks. The client sends three segments containing a sin-
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Figure 3.8: Impact on Linux performance in the presence of a middlebox
that changes the sequence number.

gle byte of payload. The second byte is lost between the middlebox and the
server causing the server to add a SACK block into the acknowledgement
it sends back to the client in order to announce that it has already received
the third byte but it is still waiting for the second one. In this scenario, the
middlebox increases the TCP sequence number by 1,000 bytes causing the
client to receive a SACK block that corresponds to a sequence number that
it has not yet transmitted. This SACK block is invalid, but the acknowl-
edgement is valid and correct. For the receiver, it may not be easy to always
detect that the SACK information is invalid. The receiver may detect that
the SACK blocks are out of the window, but the initial change may be small
enough to carry SACK blocks that are inside the window.

Figure 3.8 and Figure 3.9 show the impact of such a middlebox on
the performance of, respectively, the Linux and the Mac OS X TCP stacks.
The figures show the application goodput averaged over 10 experiments. We
model the middlebox behavior using our Click elements (that we developed
to validate tracebox, see Section 3.3) and used the offset added to the TCP
sequence number as parameter. We then plugged in a Linux and Mac OS X
host and performed a performance evaluation using iperf [ipe13] by varying
the offset. We limit the bandwidth to 10 Mbps and added 1% loss between
the client and the server to cause the server to generate SACK blocks.

We can see, on Figures 3.8 and 3.9, that when SACK is enabled and
the offset is null, the performance is better than when SACK is disabled
(the dashed line). However when the offset decreases, the performance is
worse than if SACK was disabled. On Linux, this is due to the fact that
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Figure 3.9: Impact on Mac OS X performance in the presence of a middlebox
that changes the sequence number.

duplicate acknowledgements containing an invalid SACK block are not con-
sidered. The client waits for a complete RTO to retransmit the segments
instead of doing a fast retransmit (as when SACK is disabled). This there-
fore dramatically decreases the performance (by more than 50%). When
the offset increases, there is a higher chance that the blocks are in-window.
However, once the offset is large enough, the performances are as bad as for
a negative offset. On Mac OS X, the impact on performance is even worse
than on Linux. As we do not have access to the implementation of SACK in
Mac OS X’s kernel we cannot analyze the root cause. We solved the issue
on Linux by modifying the stack to consider duplicate acknowledgements
when receiving out-of-window SACK blocks. This however shows the im-
pact on performance of the end host’s TCP stack when it does not handle
unexpected modifications to the protocol.

3.4.4 TCP MSS option interference

Our second use case for tracebox concerns middleboxes that modify
the TCP MSS option. This TCP option is used in the SYN and SYN+ACK
segments to specify the largest TCP segment that a host sending the op-
tion can process. In an Internet that respects the end-to-end principle, this
option should never be modified. In the current Internet, this is unfortu-
nately not the case. The main motivation for changing the TCP MSS option
on middleboxes is probably to fix some issues caused by other middleboxes
with Path MTU Discovery [MD90]. On top of changing the MSS option,
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Figure 3.10: VPs proportion modifying MSS.

we also discovered middleboxes, in several ISPs, that add the option if it is
missing.

Path MTU Discovery is a technique that allows a host to dynamically
discover the largest segment it can send without causing IP fragmentation
on each TCP connection. For that, each host sends large segments inside
packets with the Don’t Fragment bit set. If a router needs to fragment the
packet, it returns an ICMP destination-unreachable (with code “Packet
fragmentation is required but the ’don’t fragment’ flag is on”) back to the
source. The source updates its segment size. Unfortunately, some routers do
not return such ICMP messages [MAF04] or some middleboxes (e.g., NAT
boxes and firewalls) do not forward the received ICMP message back to the
source. MSS clamping [Sav06] mitigates this problem by configuring mid-
dleboxes to decrease the size reported in the MSS option to a smaller MSS
that should not cause fragmentation. With that technique or rather this
hack, the packets’ MSS is reduced by the router so that the TCP connection
automatically restricts itself to the maximum available packet size.

We use our dataset to identify middleboxes that modify the MSS option
in SYN segments. Figure 3.10 provides, for each VP (the horizontal axis),
the proportion of paths (the vertical axis, in log-scale) where the MSS option
has been modified. We see that a few VPs encountered at least one MSS
modification on nearly all paths while, for the vast majority of VPs, the
modification is observed in only a couple of paths. We decided to remove
those VPs from our data set for further analyses, meaning that only 65 VPs
were finally considered.
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Figure 3.11: Targets proportion observing an MSS modification.
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Figure 3.12: Location of middleboxes modifying the MSS.

Similarly to Figure 3.10, Figure 3.11 provides, for each target, the pro-
portion of paths affected by an MSS modification. We see about ten tar-
gets that have a middlebox, probably their firewall or load balancer, always
changing the MSS option. In the same fashion as the VPs that changed
the MSS option, they also removed the Multipath TCP, MD5 and Window
Scale options.

Figure 3.12 indicates where, in the network, the MSS option is modified.
In the fashion of Figure 3.5, the distance from the VP has been normalized
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Figure 3.13: Location error of middleboxes modifying the MSS.

between 1 and 10, leading to three network regions (i.e., close to VP, core,
and close to targets). As shown by Figure 3.12, tracebox can detect the
MSS modification very close to the source (2.7% of the cases) while this
detection mostly occurs in the network core (52% of the cases) due to MSS
clamping and close to the destination (as a result of Figure 3.11).

Remember that this distance does not indicate precisely the location
of the middlebox that modifies the MSS. Rather, it gives the position of
the router that has returned a Full ICMP and, in this ICMP packet, the
quoted TCP segment revealed a modification of the MSS field. Actually,
the middlebox should be somewhere between this position and the previous
router (on that path) that has also returned a Full ICMP (or the VP if it
was the very first Full ICMP on that path).

Figure 3.13 refines our location of MSS modification by taking this
aspect (i.e., the middlebox is somewhere on the path between the modifi-
cation detection and the previous RFC1812-compliant router) into account.
It gives thus an estimation of the middlebox location error. This error is
simply obtained by subtracting the distance at which tracebox reveals the
modification and the distance at which the previous RFC1812-compliant
router was detected by tracebox on that path. Obviously, the lower the
error, the more accurate the location given in Figure 3.12. On Figure 3.13,
we see that in 61% of the cases, the location estimation error is below (or
equal to) four hops. All errors above 13 hops, that represents the length of
around 60% of the paths, are uncommon (less than 1% each).
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Figure 3.14: Location of middleboxes removing the MPTCP option.

3.4.5 Multipath TCP interference

Our last use case for tracebox concerns middleboxes that modify Mul-
tipath TCP options. We focused on the Mp Capable option of MPTCP
and generated SYN probes containing a valid option. Similarly to the MSS
option, we do not at first sight expect this option to be modified or removed.
However, the option is recent. The IANA assigned TCP option number 30
in march 2012. It is therefore possible that middleboxes configured to re-
move unknown options will consider this option as unknown and thus remove
it.

Figure 3.14 indicates where the MPTCP option is modified. The hor-
izontal axis corresponds to the distance, that has been normalized between
1 and 10, from the VP to the detection of the modification. The vertical
axis shows the cumulative distribution of the modification. We can see that
most of the middleboxes that remove the option are close to the source.
Indeed, 70% of the modifications are detected upstream of the normalized
fourth hop. This is due to the middleboxes that always modify several TCP
options (see Section 3.4.1). These middleboxes correspond probably to a
firewall configured to remove unknown TCP options. They remove the op-
tion by replacing it with TCP NOP options. Replacing by NOPs instead of
a ”clean” removal allows them to avoid any memory copy. Indeed, a ”clean”
removal of the option might require to move subsequent options while re-
placing by NOPs only requires to recompute the TCP checksum.

We analyzed the distribution of MPTCP option removal without the
incriminated sources and observed that the modifications take place close to
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the server. Compared to the MSS option, the modification never occurs in
the core network but only at the edge of the network where firewall are placed
(in front of clients and servers). Only a marginal fraction of the paths where
impacted by the removal of the Mp Capable option. Without the firewall
at the source less than 1‰ of the paths where incriminated. More complex
probing should be used to further evaluate the impact of middleboxes on
MPTCP but this is a first indication that MPTCP can be used on today’s
Internet corroborating the conclusion of Honda et al. in [HNR+11].

3.5 Discussion

In Section 3.4, we showed that tracebox can provide a useful insight
on known middleboxes interference. We believe that tracebox will also be
very useful for network operators who have to debug strange networking
problems involving middleboxes. While analyzing the data collected during
our measurement campaign (see Section 3.4.1), we identified several strange
middlebox behaviors that we briefly explain in this section. We also discuss
how tracebox can be used to reveal the presence of proxies and Network
Address Translators (NATs).

3.5.1 Unexpected interference

We performed some tests with tracebox to verify whether the recently
proposed Multipath TCP [FRHB13] option could be safely used over the
Internet. This is similar to the unknown option test performed by Honda et
al. [HNR+11]. However, on the contrary to Honda et al., tracebox allows
one to probe a large number of destinations. To our surprise, when running
the tests, tracebox identified about ten Multipath TCP servers based on the
TCP option they returned. One of those server, www.baidu.com, belongs
to the top 5 Alexa. All these servers where located in China. A closer look
at the returned options revealed that these servers (or their load balancers)
simply echo the received unknown TCP option in the SYN+ACK. This is
clearly an incorrect TCP implementation. Thanks to the fallback mechanism
included in MPTCP, the connection is able to continue even if the server
does not further reply with MPTCP options.

3.5.2 Proxy detection

tracebox can also be used to detect TCP proxies. To be able to detect
a TCP proxy, tracebox must be able to send TCP segments that are inter-
cepted by the proxy and other packets that are forwarded beyond it. HTTP

www.baidu.com
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Figure 3.15: HTTP proxy detection example.

proxies are frequently used in cellular and enterprise networks [WQX+11].
Some of them are configured to transparently proxy all TCP connections on
port 80. To test the ability of detecting proxies with tracebox, we used a
script that sends a SYN probe to port 80 and, then, to port 21. Figure 3.15
shows how tracebox is used to detect such HTTP proxy. If there is an
HTTP proxy on the path, it should intercept the SYN probe on port 80
while ignoring the SYN on port 21. We next analyze the ICMP messages
returned. In the example of Figure 3.15 the source can easily determine that
the paths are of different length (4 hops for port 21 and 2 hops for port 80)
while the same set of routers have replied an ICMP message as to deal with
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load balancing in the network where the two disjoint paths could have been
taken while joining the same destination.

From our simple PlanetLab deployment, we identified two oddities.
First, we found an HTTP proxy or more probably an IDS within a National
Research Network (SUNET) as it only operated for a few destinations where
the path for port 80 was shorter than for port 21. Second, and more dis-
turbing, tracebox identified that several destinations where behind a proxy
whose configuration, inferred from the returned ICMP messages, resulted in
a forwarding loop for non-HTTP probes. We observed that the SYN probe
on port 21, after reaching the supposed proxy, bounced from one router to
the other in an endless loop (until the TLL expires) as tracebox received
ICMP replies from one router to another alternatively.

3.5.3 NAT detection

NATs are probably the most widely deployed middleboxes. Detecting
them by using tracebox would likely be useful for network operators. How-
ever, in addition to changing addresses and port numbers of the packets that
they forward, NATs often also revert back the returned ICMP message and
the quoted packet. This implies that, when inspecting the received ICMP
message, tracebox would not be able to detect the modification.

This does not prevent tracebox from detecting many NATs. Indeed,
most NATs implement Application-level Gateways (ALGs) [SH99] for pro-
tocols such as FTP. Such an ALG modifies the payload of forwarded packets
that contain the PORT command on the ftp-control connection. tracebox
can detect these ALGs by noting that they do not translate the quoted
packet in the returned ICMP messages. This detection is written as a sim-
ple script (shown in Fig 3.16) that interacts with tracebox. It builds and
sends a SYN for the FTP port number and, then, waits for the SYN+ACK.
The script makes sure that the SYN+ACK is not handled by the TCP stack
of the host by configuring the local firewall (using the filter functionality,
shown at line 7, of tracebox that configures iptables on Linux and ipfw

on Mac OS X). It then sends a valid segment with the PORT command
and the encoded IP address and port number as payload. tracebox then
compares the transmitted packet with the quoted packet returned inside an
ICMP message by an RFC1812-compliant router and stores the modifica-
tion applied to the packet. In Figure 3.16, the callback cb checks whether
there has been a payload modification. If it is the case a message show-
ing the approximate position of the ALG on the path is printed (see line
29).
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1 -- NAT FTP detection

2 -- To run with: tracebox -s <script> <ftp_server>

3 -- Build the initial SYN (dest is passed to tracebox)

4 syn = IP / tcp{dst=21}

5 -- Avoid the host’s stack to reply with a reset

6 fp = filter(syn)

7 synack = tracebox(syn)

8 if not synack then

9 print("Server did not reply...")

10 fp:close()

11 return

12 end

13 -- Check if SYN+ACK flags are present

14 if synack:tcp():getflags() ~= 18 then

15 print("Server does not seems to be a FTP server")

16 fp:close()

17 return

18 end

19 -- Build the PORT probe

20 ip_port = syn:source():gsub("%.", ",")

21 data = IP / tcp{src=syn:tcp():getsource(), dst=21,

22 seq=syn:tcp():getseq()+1,

23 ack=synack:tcp():getseq()+1, flags=16} /

24 raw(’PORT ’.. ip_port .. ’,189,68\r\n’)

25 -- Send probe and allow cb to be called for each reply

26 function cb(ttl, rip, pkt, reply, mods)

27 if mods and mods:__tostring():find("Raw") then

28 print("There is a NAT before " .. rip)

29 return 1

30 end

31 end

32 tracebox(data, {callback = "cb"})

33 fp:close()

Figure 3.16: Sample script to detect a NAT FTP.

3.6 Related work

Since the end of the nineties, the Internet topology discovery has been
extensively studied [DF07, HRI+08]. In particular, traceroute [V. 89] has
been used for revealing IP interfaces along the path between a source and a
destination. Since then, traceroute has been extended in order to mitigate
its intrinsic limitations. From simple extensions (i.e., the types of probes
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sent [Tor01, LHH08]) to much more developed modifications. For instance,
traceroute has been improved to face load balancing [ACO+06] or the
reverse path [KBMA+10]. Its probing speed and efficiency has also been
investigated [DRFC05, BBX10, BF13].

To the best of our knowledge, none of the available trace-

route extensions allows one to reveal middlebox interference along real In-
ternet paths as tracebox does.

Medina et al. [MAF04] report one of the first detailed analysis of the
interactions between transport protocols and middleboxes. They rely on
active probing with tbit and contact various web servers to detect whether
Explicit Congestion Notification (ECN) [RFB01], IP options, and TCP op-
tions can be safely used.

3.7 Conclusion

Middleboxes are becoming more and more popular in various types of
networks (enterprise, cellular network, etc.). Those middleboxes are sup-
posed to be transparent to users. It has been shown that they frequently
modify packets traversing them, sometimes making protocols’ extension use-
less. Further, due to the lack of efficient and easy-to-use debugging tools,
middleboxes are difficult to manage.

This is exactly what we tackled in this chapter by proposing, discussing,
and evaluating tracebox. tracebox is a new extension to traceroute

that allows one to reveal the presence of middleboxes along a path. It de-
tects various types of packet modifications and can be used to locate where
those modifications occur. tracebox is open-source and publicly available
[Det13].

We deployed tracebox on the PlanetLab testbed and demonstrated its
capabilities by discussing several use cases. It revealed interesting results
such as the presence of firewalls that remove unknown TCP options, impact-
ing therefore the deployment of MPTCP on the global Internet. In the next
chapter, we try to tackle this deployment issue by deploying intermediate
nodes on the Internet that supports MPTCP.



Chapter 4

Accelerating the deployment

of MPTCP

4.1 Introduction

As we have seen in Chapters 1 and 2, smartphones have a motivation
for using MPTCP as this would allow them to efficiently exploit their 3G and
WiFi interfaces as well as support mobility. However, to reach the full benefit
of MPTCP it must be supported on both the smartphones and the servers.
This chicken-and-egg problem has been studied in [WLT+11]. Although the
designers of the protocol took great care of avoiding interference with the
various types of middleboxes [HNR+11, RPB+12], it is still expected that
the deployment of MPTCP will take several years. It is also expected that
clients will support MPTCP before servers. Indeed, Apple Inc. recently
enabled MPTCP for a specific application in which they control the server-
side [Bon13, app14]. They could enable it for other applications, if MPTCP
was needed by other services.

In this chapter, we propose the utilization of protocol converters that
we call Multipath in the Middle Box (MiMBox), to allow early adopters to
benefit from MPTCP during its early deployment phase. MiMBoxes convert
the MPTCP connections used by clients into regular TCP connections to
allow clients to benefit from MPTCP even if it has not yet been deployed on
servers. Economic studies show that such converters can play an important
role in the deployment of a new protocol [SJGH10]. Figure 4.1 shows an
example of how MiMBox can be used. The client has an interface to a WiFi
and a 3G network. Thanks to MPTCP being used up to a MiMBox, the
client benefits from MPTCP – even if the server does not support MPTCP.
MiMBoxes can be placed in operator networks or on commodity servers in
the cloud (e.g., as Network Virtualization Function [ETS12], etc.).

53
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MPTCP
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Protocol
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Figure 4.1: MiMBox translates MPTCP on the client-side to TCP on the
server-side.

We saw in Chapter 3 that there are middleboxes that remove unknown
TCP options on the Internet. Such middleboxes could prevent the use of
MPTCP if present between the client and the MiMBox and thus it would
void the interest of MiMBox. In this chapter, we make the hypothesis that
such middlebox does not exist. However, as we control both end hosts, ob-
fuscation techniques such as the TCP-over-UDP proposition [CGM13] that
transform the TCP header into a UDP header in order to prevent middle-
boxes interfering with TCP. Other encapsulation techniques over UDP could
also be used however TCP-over-UDP does not suffer from MTU issues as it
does not requires additional bytes to be added to the original packet.

Our contribution in this chapter is the design, implementation and
validation of a high-performance MiMBox, entirely implemented inside the
Linux kernel. In addition to performing a protocol conversion, MiMBox
provides the following features: (i) It can be on- or off-path to allow the
client to explicitly contact MiMBoxes placed inside the cloud; (ii) If the
server supports MPTCP, MiMBoxes can remove themselves from the con-
nection. This reduces the load on MiMBox once the transition to MPTCP
is progressing on the servers.

This chapter is organized as follows. Section 4.2 presents the design
of MiMBox. Section 4.3 explains how this design is implemented inside
the Linux kernel in order to achieve high performance. Section 4.4 discusses
how to increase performance by taking advantage of multicore architectures.
Section 4.5 presents a thorough evaluation of the solution and shows that
MiMBox outperforms existing converters. Section 4.6 discusses the impact
of the deployment of MPTCP on MiMBox. Finally, Sections 4.7 and 4.8
respectively discuss related work and conclude the chapter.
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4.2 Network architecture

Deploying a new transport protocol is difficult and is often referred
to as a chicken-and-egg problem. MPTCP, as every new protocol, suffers
from this problem. Even by being backward compatible with regular TCP,
neither servers nor clients have incentives to support it when the other end
does not support it. To solve this adoption problem, we propose to deploy,
across the Internet, MiMBoxes that transparently convert MPTCP from
MPTCP-enabled clients to regular TCP used on legacy servers.

This section presents first how traffic can be redirected through the pro-
tocol converter. The the MPTCP-TCP conversion is described. Finally, the
fallback mechanism when the server is MPTCP-capable is presented.

4.2.1 Transparent and Explicit

To allow the protocol conversion, TCP segments must be sent to a
MiMBox. This can be achieved in two different modes: Transparent or
Explicit.

Transparent mode

In the transparent mode, the converter is invisible from the end hosts.
The end host sends its traffic directly to the peer. It is the network that
makes sure that the traffic passes through the converter.

To be transparent, MiMBox needs to either be on the path between
the client and the server or a redirection mechanism must be in place in
the network. The first solution is straight forward. If a MiMBox is on the
path, it sees all traffic between the end hosts and can translate MPTCP to
TCP. The second involves to setup a redirection mechanism in the network.
This could be deployed at the border of an enterprise network or inside the
xDSL routers present in home networks. They can both naturally intercept
all traffic. The redirection can be based on a tunneling solution, where all
traffic is explicitly sent to a MiMBox by the border gateway of the enterprise
network (e.g., WCCP uses GRE tunnels [McL12], or a recent proposal by
Sherry et.al [SHS+12]).

Explicit mode

With an explicit redirection, the client sends its traffic directly to a
MiMBox in order to allow the latter to translate MPTCP to TCP. This is
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Figure 4.2: MiMBox requires less round-trip before the end-to-end connec-
tion is established.

similar to the operation of an explicit proxy (e.g., an HTTP proxy) except
that MiMBox is not limited to HTTP.

When using an explicit HTTP proxy, the client establishes a TCP con-
nection to the proxy and modifies its HTTP requests to include the desti-
nation address. That way the proxy knows the original destination. Other
solutions, like a SOCKS proxy require a specific application-level protocol
to allow the client to indicate its desired destination (see Figure 4.2(a)).
On top of requiring that the applications or Operating Systems support the
proxy mechanism it also delays the connection establishment. This can be
a burden for the use of this kind of redirection mechanisms.

MiMBox does not modify the application layer. Instead we propose
a new TCP option, that we call Dst Opt, to allow the client to spec-
ify/indicate the server address. The Dst Opt provides the server’s IP ad-
dress to the MiMBox. Figures 4.2(b) and 4.3 show how the establishment
of new connections is performed via a MiMBox. When establishing a new
connection the client places the Dst Opt inside the SYN segment and the
destination address for this connection is the address of the MiMBox. This
allows the latter to forward the connection establishment to the server by
rewriting the segment’s IP addresses. By using its own IP address, all re-
ply segments will be sent via the MiMBox. The Dst Opt is added by the
MPTCP/TCP stack and is thus transparent for the application.

Note that the use of explicit redirection allows to easily scale up MiM-
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Figure 4.3: Explicit redirection of connections establishment through the
protocol converter using the Dst Opt TCP option.

Box. We can configure the clients to perform DNS queries to retrieve the
address of a MiMBox and therefore perform DNS load balancing [Bri95].
This is a regular way of distributing the load across multiple devices.

To ensure that the converter sees the bidirectional flow in the explicit
mode, it must act as a NAT. By using its own IP address1 all the seg-
ments will be sent via the converter. In the rest of this chapter we focus on
the explicit mode, however all principles apply similarly to the transparent
mode.

4.2.2 Protocol conversion

The purpose of the protocol converter is to translate MPTCP connec-
tions to TCP connections. The conversion can be divided in two operations:
(i) detect MPTCP capabilities of the end hosts; (ii) translate MPTCP seg-
ments to TCP and vice versa.

To detect whether the server supports MPTCP, the converter parses
the SYN+ACK from the server as it sees the connection establishment. If
the server supports MPTCP, the SYN+ACK includes the Mp Capable op-
tion. If the SYN+ACK does not include this option, the protocol converter
starts converting the TCP segments from the server to MPTCP segments
for the client. If the server does not support MPTCP, MiMBox will include
a Mp Capable option in the SYN+ACK sent back to the client such that
it believes that it can use MPTCP for the rest of the connection.

1MiMBoxes can be configured to use a block of IP addresses.
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Figure 4.4: MiMBox allows the client to establish direct subflows to the
server if both support MPTCP.

The operations performed by the MiMBox to translate data segments
can be viewed as a pipe, channeling segments from TCP to MPTCP and
vice versa. Incoming segments on the MPTCP side contain MPTCP op-
tions inside the TCP header. MiMBox has to handle the options (e.g.,
new subflow establishment, etc.) and strip these options before forward-
ing them. MPTCP uses a different sequence number space than the TCP
sequence numbers [RPB+12]. When forwarding a segment, MiMBox trans-
lates the MPTCP-level sequence numbers to the TCP sequence numbers on
the server-side and vice versa. Further, as the TCP/IP header is modified,
MiMBox updates the TCP checksum.

The converter can also forward segments from a TCP client to an
MPTCP-enabled server, e.g., configured as a load balancer. In this case,
it needs to add the Mp Capable option when forwarding the SYN. We do
not further evaluate this mechanism in this chapter as all features apply
similarly.

4.2.3 Fallback

When both end hosts support MPTCP, the converter does not need
to aggregate the segments from the different subflows. In this case, after
the three-way handshake, the protocol converter acts as a simple forwarder
between end hosts. In explicit mode, it needs to change the IP addresses.
As the converter does not need to reorder the segments, the client and
the server can create additional subflows as shown on Figure 4.4, without
passing through the protocol converter. By creating direct subflows between
the client and the server the communication can be speed up, as the round-
trip time is reduced.
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To allow these direct subflows between client and server, the protocol
converter must announce this capability to the end hosts. This is achieved
thanks to the anchor flag in the Mp Capable option [HK12]. The anchor
flag is added by the proxy when it forwards the SYN+ACK to the client.
Upon reception of a SYN+ACK with the anchor flag set, the client knows
that it can establish a direct subflow to the original server’s address.

We further evaluate in Section 4.6 the impact of MPTCP-enabled
servers on protocol converters as well as further improvements to the fallback
solution.

4.3 In-kernel protocol converter

A MiMBox could be implemented as a user-space application. Existing
HTTP proxies, such as Squid [squ12] and HAProxy [hap12] are applications
running in user space. This simplifies the development but may affect perfor-
mance. First, these proxies are limited to specific applications and services.
Each of these services runs on a specific port. Additionally, the application
needs to include a redirection mechanism to allow the explicit mode of MiM-
Box. MiMBox is application agnostic and does not require any application
change.

To achieve high performance, the following goals are important:

Avoid Memory Allocation/Copy
The memory bus is a major limiting factor of the overall system per-
formance. The gap between the processor and memory performance
is important and still increasing [JNW10]. To overcome the mem-
ory access bottleneck it is preferred to avoid memory allocations and
copies.

Minimize Context Switching
Limiting the number of context switches is important to achieve high
performance. Context switching consumes CPU cycles that could have
been used for other resources and it has an effect on the space locality
of the data in the caches if processes are moved from one CPU to
another.

To achieve these two goals MiMBox is implemented as a kernel module.
This allows to avoid memory copy between user space and kernel space as
well as to react quickly when packets arrive in the TCP/IP stack. Moreover,
running in kernel space reduces the footprint. We can run MiMBox in a vir-
tual machine with KVM [KKL+07] using only a 10MB kernel and a 800KB
initramfs. The latter is used as the root filesystem and runs a dummy ap-
plication that sleeps indefinitely. The module receives all incoming packets
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and performs two operations: (i) handling connection establishments from
the clients and (ii) forwarding packets.

In this section we present our design that consists of around 3K lines of
kernel code. First, we describe our main design choices. Second, we present
how MiMBox handles connection establishments. Then, we present how
segments are forwarded from one side to the other. Finally, we present how
the checksum is updated.

4.3.1 Design choices

One major design choice of MiMBox is to use the already existing
MPTCP-stack of Linux. MiMBox could have been implemented using solu-
tions such as netmap [Riz12] that allows a user-space application to interact
directly with the NIC without going through the host’s stack. While this
brings high benefit for simple application such as switching, it still requires
to implement a complete TCP/IP stack in user space to support MiMBox.
As there does not exist such stack, it is unclear whether such implementa-
tion would achieve better performances. Furthermore, from our experience
of implementing MPTCP in the Linux kernel, we know that implementing
a new stack from scratch takes time and might be bug prone.

As we reuse the Linux implementation, we decided to terminate both
connections. Therefore, as MPTCP creates multiple subflows, segments can
arrive independently on each of these subflows. MiMBox therefore reorders
the segments so that they form an in-order sequence of packets. Finally,
MiMBox sends this sequence to the TCP side. For segments coming from
the TCP side, MiMBox distributes the segments among the subflows by
using MPTCP’s scheduling algorithm (see Section 1.3.3).

4.3.2 Connection establishment

MiMBox receives connection establishments from the client and for-
wards it to the server. There are two cases: either the server is MPTCP-
capable or not. We present here the operations done inside the kernel to
forward the segments during the three-way handshake.

When a MiMBox receives a SYN segment, it creates a lightweight state
containing the addresses and ports used as well as some TCP and MPTCP
informations. This consumes around 100 bytes which is small compared to
the ± 2K bytes memory footprint of a fully functional TCP socket.

In explicit mode the protocol converter uses the same IP address on the
server-side. When receiving a connection establishment, it must select the
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Figure 4.5: MiMBox maintains fully-functional sockets and forwards in-
order segments from one side to the other.

source port on the server-side so that it does not collide with pre-existing
states or established sockets.

The state is stored in two distinct hash tables so that a lookup is
possible for segments from both the client-side (SYN retransmission) and
the server-side. When receiving a SYN+ACK from the server, a lookup
is performed and the state is retrieved. Further operations depend on the
two cases presented in Section 4.2.3. If the server is MPTCP-enabled the
lightweight state is maintained so that data segments are forwarded by mod-
ifying their header. We focus in the rest of this section on the server is
TCP-only case.

When the server only supports TCP, the MiMBox converts the TCP
segments from the server-side to MPTCP segments on the client-side. The
converter terminates the three-way handshake of the TCP and MPTCP
connections. It creates two fully-functional sockets: the TCP socket and
the MPTCP socket. Figure 4.5 shows the behavior of the protocol converter
in this scenario. The following section explains how segments are forwarded
from one socket to the other.

4.3.3 Forwarding segments

To understand how MiMBox can achieve high performance, one must
understand how network packets are handled inside the kernel. The Linux
kernel uses special buffers, called sk buffs [Cox96], to handle network pack-
ets. When a segment arrives at the NIC a sk buff is allocated. The buffer
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1: procedure Forward(receive queue, write queue)
2: while !IsEmpty(receive queue) && CanWrite(write queue)

do
3: skbuff ← DeQueue(receive queue)
4: RecomputeChecksum(skbuff)
5: RewriteSequenceNumbers(skbuff)
6: EnQueue(write queue, skbuff)
7: end while
8: end procedure

9: procedure RecomputeChecksum(skbuff)
10: Recompute the payload’s checksum
11: skbuff→csum = TCP Checksum - Checksum(TCP Header) -

Checksum(Pseudo Header)
12: end procedure

Algoritm 4.1: The Forwarding Procedure.

then traverses the TCP/IP stack and, for a TCP connection, is finally stored
in the receive queue of its corresponding socket waiting for the application
to copy the payload into its own buffer. sk buffs are also allocated by the
kernel when the application wants to send data. In this case, the content of
the user-space buffer of the application is copied inside the sk buff’s data
part.

Figure 4.5 shows the operations performed to forward segments from
one socket to the other: the segments are moved from the receive queue
(sk receive queue) from one socket to the write queue (sk write queue)
of the other. A user space application that would move data from one
socket to another using the read() and write() system calls would cause
two buffer allocations and two memory copies. To achieve high performance,
MiMBox limits the number of allocations and avoids costly copy operations.
Indeed, the forwarding mechanism is only triggered when an event occurs
on the socket: either data can be read from the receive queue or space is
available in the write queue. The operations performed consist of moving
sk buffs from the receive queue of one socket to the send queue of the other
socket and vice versa. This is done by modifying pointer references as well
as updating sequence numbers and checksum. The cost of these operations
is therefore minimized.

Algorithm 4.1 shows the pseudocode of the forwarding procedure. When
an event occurs on the socket pair, we first iterate on the receive queue of
the socket to retrieve in-order segments. For each sk buff present in the re-
ceive queue, we move them to the other socket’s write queue after modifying
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the sequence numbers. If no space is available in the write queue, we en-
sure that our forwarding mechanism is called when space becomes available.
This ensures that no memory allocation and copying is performed during
the forwarding procedure, i.e., sk buffs are moved as is.

Sequence numbers

The sequencing of data in MPTCP differs from TCP: MPTCP uses its
own data sequence numbers. When forwarding segments from the MPTCP
to the TCP socket, the data sequence number must therefore be translated
to the TCP sequence number and vice versa.

A sequence number is translated using the formula: seqnew = seqrcv −
isnrcv + isnsnt. The sequence number of the segment being forwarded is
given by seqrcv. Each segment has a relative position inside the data stream,
given by the operation seqrcv − isnrcv (isnrcv is the initial sequence number
of the receiving socket). This relative position must be added to the ini-
tial sequence number of the socket where the segment is sent on (isnsnt).
This latter operation adapts the segment’s sequence number to the sequence
number of the sending socket, where the data is sent. Of course, as sequence
numbers are based on a 32-bit unsigned integer, the resulting seqnew must
be also limited to 32 bits.

Timestamps

TCP timestamps is a TCP extension defined in RFC1323 [JBB92].
Originally defined to be used in the Protection Against Wrapped Sequence
numbers (PAWS) algorithm to break the tie when detecting segments re-
transmission. It is now also used in the mechanism that allows to estimate
the Retransmission Timeout (RTO) accurately. The protocol converter must
therefore take care of sending valid timestamps on both sides. The con-
verter forwards the SYN as is, in order to be able to fallback if the server
is MPTCP-capable (see Section 4.2.3). The server therefore sees the times-
tamp from the source. End hosts typically compute the timestamp based
on the jiffies of the operating system. This value differs from one machine
to another. As the converter is forwarding from the MPTCP-side to the
TCP-side, the timestamps must comply with the one provided in the orig-
inal SYN. This is possible by storing the difference between the timestamp
in the SYN segment and the local timestamp inside the converter when for-
warding this SYN. The converter must make sure that the timestamps in
the segments evolve based on the original timestamp in the SYN segment,
by applying the aforementioned difference, as to emulate the timestamps
generated by the end hosts.
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4.3.4 Checksum

As explained in Section 1.3.3, MPTCP includes a checksum in the DSS
option to protect against payload modifying middleboxes. When forwarding
traffic from the TCP-side to the MPTCP connection, this checksum must
be calculated. The checksum is based on the payload and the data sequence
number. Calculating the TCP checksum is usually offloaded to the NIC.
Unfortunately, it is currently impossible to offload the computation of the
DSS option’s checksum as there does not exist a NIC that supports this type
of checksum.

A naive approach to compute the checksum would be to recompute
the complete payload’s checksum. However, this solution consumes a large
number of CPU cycles as the payload’s size can be important (9k bytes
with jumbo frames). We propose an iterative solution, where the checksum
is recomputed based on the TCP checksum present in the segments (see
procedure RecomputeChecksum of Algorithm 4.1). Indeed, as the seg-
ment is coming in from the TCP stack, it is known that the TCP checksum
inside the TCP header is correct. The TCP checksum is computed from
the payload’s checksum, the TCP header and the pseudo IP header. To
efficiently recompute the payload’s checksum, we substitute from the TCP
checksum, the checksum over the TCP header and the pseudo header. Using
this approach results in fewer CPU cycles consumed as the checksum is only
computed over at most 72 bytes with IPv4 and 100 bytes with IPv6, instead
of calculating the checksum over the whole payload.

4.4 Multicore architectures

Multicore systems are becoming ubiquitous. It is thereby desirable to
allow to spread the load over the available cores in order to improve the
overall performance. The protocol converter can also benefit from multicore
architectures, as it allows forwarding several streams at the same time.

Using a multicore architecture means that the converter has to handle
the parallel processing of packets and thus the synchronization between the
sockets. Furthermore, multicore processing is known to raise a challenge
in terms of lock contention and cache misses [VF07, PSZM12, WDC11].
The following sections present how the protocol converter solves these two
challenges.
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4.4.1 Locking

The protocol converter, in addition to forward segments, needs to han-
dle the locking. Indeed, two packets may arrive at the converter in the
TCP and the MPTCP sockets at the same time. To understand how our
implementation handles the locking we first give an overview of how the
Linux kernel handles the locking in a normal operational mode. The Linux
kernel locking architecture of the TCP stack involves two cases: (i) The
NIC receives a packet and (ii) the application sends/reads data to/from the
socket.

When the NIC receives a packet, it triggers an interruption that is
handled in soft interrupt context. This execution context does not allow
any other process or other soft interrupt to execute on the processor core
during the interruption. Upon the reception of a packet, the Linux kernel
takes a lock on the socket inside this soft interrupt context. Therefore, if an
application tries to read or write from the socket while another CPU core is
handling a packet reception on this socket, the application blocks until this
CPU core has released the lock.

The behavior is different if the application holds the socket lock to read
data from the socket while a packet arrives on the NIC. While handling the
reception, taking the lock is impossible as the application already holds it.
The soft interrupt would need to sleep until the application releases the lock.
However, sleeping is prohibited inside soft interrupts. The packet processing
is thus deferred to the application by appending the packet to the backlog
queue.

The protocol converter involves a different handling of locks, because
forwarding needs to be done from one socket to the other. Thus, both sockets
must be locked before entering the forwarding procedure. A simple solution
would be to define a shared lock among the MPTCP and the TCP sockets
and simply take this lock upon reception of a packet. This simple approach
however has two drawbacks. First, the shared lock would also be taken when
the socket is only receiving an ACK. An ACK will not be forwarded from the
MPTCP to the TCP socket as both sockets handle data acknowledgments
independently. Second, we want to minimize the modifications to the regular
TCP stack. We would need to change the locking architecture of the Linux
kernel to implement a shared lock.

Our approach to locking inside the MiMBox does not require changing
the Linux kernel locking architecture. We still define a shared lock, but this
shared lock is only used if we need to forward data from MPTCP to TCP.
Our locking architecture involves the following steps when a packet is re-
ceived on the TCP side, converted, and forwarded to the MPTCP side:
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1. Take the TCP socket lock upon receiving a packet from the NIC;

2. The packet is received through the regular TCP stack and will be
forwarded by the MiMBox;

3. The converter releases the lock of the TCP socket;

4. The shared lock is taken;

5. MiMBox takes the socket lock of both the TCP and the MPTCP
socket.

Steps 1 and 2 correspond to the default Linux behavior. At step 3, our
implementation redirects the packet handling to the protocol converter. The
first lock to take must be the shared lock. However, as the TCP stack has
already locked the TCP socket, we need to release this one before. Indeed,
we need to ensure that all locks are taken in the same order as to avoid
any deadlock. If the other socket has data to forward, it must release its
lock before taking the shared lock. This ensures that only one socket is in
the critical region, i.e., the forwarding procedure, at the same time. After
acquiring the shared lock, the lock from both sockets must be taken to
block new data that may arrive from the NIC on either socket. After the
forwarding procedure, the lock state is reverted to the one before, namely
the shared lock is released as well as the lock from the socket on which we
forwarded the data.

4.4.2 Flow-to-core affinity

It is known that flow-to-core affinity [SKT96] improves the performance
of network packet processing. Flow-to-core affinity has multiple advantages.
First, without flow-to-core affinity, if packets of a TCP connection are re-
ceived on different cores, they may get reordered inside the receive code of
the OS’s TCP/IP stack [VF07]. This reordering can reduce the TCP per-
formance as it causes reordering in the data which can lead to duplicate
acknowledgements that can be interpreted as a loss on the sender side. Sec-
ond, flow-to-core affinity reduces the number of cache misses and mitigates
the effect of lock contention. Several authors have shown the benefits of
optimizing packet handling by taking into consideration the core on which
the packet is being received [PSZM12, WDC11].

For the protocol converter the flow-to-core affinity must be taken one
step further. Indeed, we do not have a single TCP connection that should be
handled on a single core, but we have a TCP socket and an MPTCP socket
(together with all its TCP subflows) that should be handled on the same
CPU core. Usually, flow-to-core affinity is handled by the NIC. However,
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Figure 4.6: The setup used throughout the experiments.

adapting the NIC to support flow-to-core affinity for the protocol converter
would involve major changes in the NIC’s firmware.

In our implementation we take a different approach by using the Receive-
Flow-Steering (RFS) framework of the Linux kernel [Her10]. RFS allows the
operating system to specify on which CPU core packets from a certain flow
should be received. Originally, RFS was designed to steer all packets from
a TCP connection to the CPU core where the application using this TCP
connection is running. This reduces the number of cache misses as the data
does not need to be transferred from one CPU core to another. In MiMBox
we enforce all packets of the TCP socket, the MPTCP socket and its TCP
subflows to be received on the same CPU core. The performance improve-
ment of this approach is significant and is described in Section 4.5.

4.5 Evaluation

In this section we first describe the experimental setup and then eval-
uate the performance of MiMBox and compare it with user-space solu-
tions.

4.5.1 Hardware Setup

We run experiments on three hosts connected as described in Figure 4.6.
They are all Intel Xeon X3440 running @2.53GHz and have 8GB RAM.
Each of these machines has a quad-port NetXen/Qlogic NX3031 1Gbit and
a dual-port Intel 82599 10Gbit Ethernet networking cards. Though we have
numerous Ethernet interfaces, we only use 2 of them at the same time2, ei-
ther in a 1Gbit or in a 10Gbit setup. Both Ethernet cards support hardware
offloading.

Each host runs the v0.87 release of MPTCP3. On top of that, the
converter runs our MiMBox implementation based on this same MPTCP

2The bottleneck is the link between the converter and the server which consists of a
single link.

3Freely available at http://multipath-tcp.org
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implementation. Depending on the evaluation, the client and the server run
different pieces of software, they use either Weighttp [wei13] and Apache or
Netperf [Jon13]. The protocol converter is where the evaluation takes place.
It is running either MiMBox, Squid, HAProxy, a custom application-level
converter or acts as an IP router. Squid and HAProxy are two well known
HTTP proxies which are often used as caches or HTTP load balancers. They
both terminate the client connections and start a new connection towards
the server.

4.5.2 Goodput

Inserting protocol converters on the path of the data stream between
the client and the server may reduce the throughput, i.e., the rate at which
the end hosts can send/receive data over the network. To measure the
impact on the application-level throughput (called goodput) we use Netperf.
Netperf allows to send data from the client to the server at the highest
possible speed up to the network capacity. Netperf then reports the goodput
it experienced during the experiment.

Our baseline to compare the performance is the setup where the con-
verter is acting as a regular IP router. As the router does not perform any
protocol conversion, we enable MPTCP on the server-side for this scenario
and thus obtain the best possible performance.

We implemented two application-layer protocol converters to compare
our kernel-space implementation with a user-space one. These converters
open a socket using the Netperf port on the client-side and listen for incom-
ing connections. When a connection is established, the converter opens a
new connection towards the server using the same port. The first applica-
tion uses the read() and write() system calls to forward the data received
on one socket to the other. The second application uses splice() [MB00].
splice() is a Linux specific system call that allows to move data from one
file descriptor to another without having to copy the data from kernel to
user space. Using splice() from one TCP socket file descriptor to another
can be seen as forwarding at the TCP layer. Splicing is often employed in
web proxies [MB00] where, after inspecting some part of a connection in
the application, it can make the rest of the connection fall back to TCP
forwarding for optimal processing.

It must be noted that these application-level protocol converters are
difficult to realize in practice. They must listen explicitly on a port and
so are not application agnostic. Furthermore, current applications do not
allow to specify the real server’s destination IP address, they must modify
the application data stream.
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Figure 4.7: MiMBox always outperforms application-level solutions.

We evaluate the impact of the Maximum Segment Size (MSS) on the
goodput. Figure 4.7 show the average goodput over 10 measurements for
different MSS values. We can observe that MiMBox achieves better perfor-
mance, very close to simple IP forwarding. Overall, with a small MSS the
maximum goodput, i.e., 10 Gbps, is not achieved with any solution. The
lower the MSS, the higher the number of segments that must be transmit-
ted to achieve full goodput. The number of segments a device can gener-
ate/receive is function of the number of interruptions that it can handle.
The number of segments generated/received is therefore fixed. Increasing
the MSS size thus increases the goodput, as a larger amount of data is
transmitted per segment.

The performance difference between MiMBox and its user-space coun-
terparts can be explained by the fact that the latter ones are CPU limited
due to memory allocation and copy. splice()’s performance is mainly im-
pacted by the memory allocation. When performing splice(), pages are
moved, however splice() causes a new sk_buff allocation while this is
not required in MiMBox which moves sk_buffs as-is. We can observe two
spikes when using splice(), these are located around MSS values of 4KB
and 8KB. These are the same value as the pagesize used on the devices. We
can see that after 4KB, the kernel has to allocate two pages instead of one
to carry the data and thus it is more costly and impacts the goodput. The
same occurs at 8KB but in this case it allocates 3 pages.

The curves of Figure 4.7 can be decomposed in two parts, depending
on their slope. First, on the left side with a high slope, the end hosts are not
able to generate traffic at the maximum speed (e.g., with a MSS smaller than
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4KB for the router). Second, on the right side, when the slope decreases and
is close to null, the limitation is either due to the network capacity (Router
and MiMBox) or to the converter software that uses all CPU cycles available
to forward (TCP Splice and User App). For the router, the limitation is
the bandwidth available in the network while the others are limited by the
software except for MiMBox that achieves the maximum goodput for high
MSS values.

The difference of performance between routing and the other solu-
tions is due to the incoming segments/data stream that needs to pass twice
through the TCP stack. Once for the reception of the data, once for sending
the data back on the other side of the converter. The custom application-
layer protocol converter’s performance is almost exactly half of the router’s
performance as the data is recomposed at the application layer and thus a
complete transition from user space down to the NIC via the kernel space
is done twice. MiMBox still needs two complete TCP stacks, however with-
out the need to transition from user space to kernel space. Moreover, the
difference between the application and MiMBox is also due to the context
switches applications undergo and due to cache misses that are higher. We
measured that the application suffers from 200 % more cache misses than
MiMBox. These cache misses are mostly (65 %) due to the memory copy
operations from the kernel to the user space and vice versa.

We also evaluate the impact of having pre-established connections be-
tween the client and the server (passing by a MiMBox) and how these con-
nections affect the performance. We pre-charge the application converters
and MiMBox with up to 20000 connections that are not sending data in
order to evaluate the cost of filling up the hash tables of the kernel. We do
not observe any impact on the performance.

4.5.3 Forwarding delay

One important performance factor is the forwarding delay introduced
by MiMBox. To validate our design we measure the forwarding delay which
is the time spent by each packet inside the converter. We use a custom
application that sends blocks of 1300 bytes of data at 20 Kbps. We capture
all packets entering and leaving the converter with tcpdump into a ramdisk.
tcpdump stores, together with the packet, a timestamp of the moment the
packet enters/leaves the host. This timestamp allows us to measure the
time spent inside the host by each packet forwarded by the converter. We
also ensure that a route cache exists prior to measuring the delay to avoid
influencing the SYN and SYN+ACK delays.

As in the previous section, the baseline is the performance achieved us-
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SYN SYN+ACK Data

Router 5.2 ± 0.1 µs 5.2 ± 0.1 µs 5.3 ± 0.1 µs
read()/write() App. 143.4 ± 11.4 µs N/A 29 ± 0.3 µs
MPTCP-TCP 17.5 ± 1.2 µs 41.6 ± 2 µs 16 ± 0.1 µs
MPTCP-MPTCP 14.2 ± 1.2 µs 12.7 ± 0.9 µs 9 ± 0.1 µs

Table 4.1: MiMBox introduces a moderate per-packet delay – application-
level solutions are much worse.

ing the converter as a regular IP router. We profile MiMBox with a TCP and
MPTCP-enabled server as well as the previously described read()/write()
application. If the server is MPTCP-enabled, MiMBox will go into fallback
mode (see Section 4.2.3). MiMBox works in this mode similar to a NAT.
Table 4.1 shows the per segment forwarding delay introduced by each of the
solutions averaged over 100 measures as well as the 95% confidence inter-
val.

A first observation, is that the difference between the application and
MiMBox is large for SYN packets. The poor performance of the read()/
write() application is because the accept() call only returns when the
ACK is received on the client-side of the converter. Therefore, the connec-
tion on the server-side is only established after the three-way handshake
is completed on the client-side, resulting in a higher delay. Measuring the
SYN+ACK delay is impossible since the SYN+ACK on the client-side is
sent before the SYN+ACK from the server-side.

The difference in the SYN forwarding delay between MiMBox and the
router is due to the additional operations performed by MiMBox. While the
former needs to match to a route cache entry, the latter needs to create a
state (see Section 4.3.2), change the IP addresses, verify the port numbers
to avoid 5-tuple collisions and finally recompute the TCP checksum before
forwarding the SYN to its final destination.

When the server replies with the SYN+ACK, the forwarding through
MiMBox depends upon the presence of the Mp Capable option in the
SYN+ACK. An MPTCP-enabled server will add this option in the SYN+
ACK. In this case, MiMBox is in fallback mode and uses the lightweight state
to continue forwarding the data segments. If the server only supports TCP,
the MiMBox must allocate fully functional sockets as well as the MPTCP
structure for the client-side. It cannot forward the SYN+ACK before the
creation of these data structures. This additional delay causes MiMBox to
be slower in this case.

After the three-way handshake, the forwarding delay for segments con-
taining data is smaller than for SYNs and SYN+ACKs as there are fewer op-
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erations to perform. If the server supports MPTCP (MPTCP-MPTCP), the
main operation is to lookup for a lightweight socket and rewrite the addresses
and ports as well as recompute the TCP checksum. If the server only sup-
ports TCP (MPTCP-TCP), the segments pass through the TCP/MPTCP
stack to be forwarded. Traversing inside the two stacks introduces this ad-
ditional delay.

The read()/write() application gives worse results when forwarding
data as it consumes many CPU cycles transitioning from kernel space to
user space.

4.5.4 Workload

In the previous sections we evaluated the performance of a single con-
nection through MiMBox. We now evaluate the cost of supporting network-
heavy applications on the global performance. We use weighttp running 40
parallel clients sending HTTP requests for varying file sizes. We measure
the number of requests per second that the client is able to perform.

As a baseline we again use the kernel-based router. We also profile
existing HTTP proxies: HAProxy and Squid. These proxies terminate the
MPTCP connections on the client-side and start a new TCP connection
on the server-side. Their caching mechanisms are disabled as we want to
measure pure forwarding performance. These proxies are application specific
but still act similar to MiMBox at the data level. They forward the HTTP
requests and the response back to the client. We configured HAProxy to use
splice(). For this the proxy performs a read() of the client requests so
that it can lookup the destination server in the HTTP header and establish a
new connection. When the reply from the server comes back, HAProxy uses
splice() to forward the data to the client. Compared to Squid, HAProxy
can use multiple threads to handle incoming requests. As our test server has
8 cores, we configured HAProxy to use either 1 or 8 threads. Using multiple
threads allows to increase the CPU cycles available but also increases the
number of cache misses.

Figure 4.8 shows the average number of requests per second supported
(in log-scale) over 10 measurements for different request sizes. The figure
shows that MiMBox outperforms both HAProxy and Squid. For a request of
a 1KB file respectively MiMBox, multi-threaded HAProxy, mono-threaded
HAProxy and Squid are able to sustain around 22k, 18k, 9.5k and 2.5k
requests per second. The result can be explained by the fact that MiMBox
is quickly able to fully utilize the available bandwidth as well as optimize the
three-way handshake. Indeed, the HTTP proxies have to wait for a HTTP
GET request from the client to identify the server and establish the server-
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Figure 4.8: MiMBox supports a large number of HTTP clients – close to
the performance of an IP router.

side connection. The HTTP proxy also has to parse the server address in
the HTTP header. Figure 4.8 also shows that MiMBox sustains a similar
number of requests per second as plain IP forwarding. For large file sizes
the cost of establishing new connections is negligible. Nevertheless, in this
case MiMBox still outperforms the user-space proxies and the limit comes
from the end hosts. We also reduced the MSS to small sizes and have not
observed any difference in the results, MiMBox is always close to plain IP
forwarding.

To better understand the results of Figure 4.8, we measure the CPU
cycles consumed by each solution. The results are shown in Figure 4.9.
To have a fair comparison, we used the 1Gbps links to be limited by the
network. Even in this scenario, our solution outperforms the proxies. Fig-
ure 4.9 shows the average number of CPU cycles flagged as idle over 10
experiments. It is worth noting that the more cycles are spent in idle mode
the more resources are available for other services. The CPU spends more
time being idle when using MiMBox. The only exception where MiMBox
is never idle is for request sizes of 1KB. In this case, the large number of
new connection establishments consumes the CPU cycles as the TCP and
MPTCP sockets have to be created. When the request size increases, fewer
connection establishments are performed and so fewer CPU cycles are spent
for the creation of the sockets. This observation also applies to HAProxy
and Squid. However the latter never have any spare idle cycles where the
former allows the CPU to have some idle time.
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Figure 4.9: MiMBox always uses fewer CPU cycles hence its better perfor-
mances.

4.5.5 Flow-to-core affinity

We analyze the impact of our flow-to-core affinity extension described
in Section 4.4.2 on MiMBox and the application-level read()/write() con-
verter. We use multiple parallel Netperf sessions to profile the performance
with and without flow-to-core affinity. We increase the number of sessions
and evaluate the number of cache misses that occur during the transfer.
The more cache misses, the worse the performance is as it will cause delay
while the CPU stalls until the data is fetched from the main memory. We
used Perf [per12] to measure the cache misses, monitoring 20K samples per
second.

Figure 4.10 shows the average cache-misses reduction with flow-to-core
affinity over 10 measurements. The outcome is twofold. First, a reduction is
always introduced when using flow-to-core affinity and the maximum reduc-
tion achieved is 60%. Second, the gain of using flow-to-core affinity with the
application-level converter is smaller (up to 25 %). This is mainly because
most cache misses occur when copying memory from and to the user space.
As the application-level converter is running in user space it can be sched-
uled by the operating system. We measured that the number of context
switches is very significant compared to MiMBox. Therefore these context
switches can cause cache misses when the user-space application accesses
the data.
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Figure 4.10: The number of cache misses remains constant when activating
the flow-to-core affinity while it increases without.

4.5.6 Buffering

By terminating connections MiMBox buffers data. Buffering consumes
memory on MiMBox and thus might limit its ability to support a large
number of clients. To analyze the impact of the buffer usage we performed
two different evaluations where we limit the maximum memory allocated
for each socket. For this, we used the system configuration parameters
tcp_rmem and tcp_wmem that allow to configure the minimal, initial and
maximum sizes of respectively the send and receive buffers.

We used a real-life simulated environment as presented in Figure 4.6.
In this scenario, the client simulates a smartphone that has a WiFi (through
ADSL) and a 3G connectivity and the proxy is present in the cloud. The
links of the setup used in the previous evaluation where configured so that
the client has one link that simulates ADSL with 8Mbps downstream and
512Kbps upstream and 20 msec RTT to the proxy as well as a 3G link
with 2Mbps downstream and 256Kbps upstream and 80 msec to the proxy.
The link between the proxy and the server is configured with a symmetric
100Mbps and 10 msec RTT with the server. The client side is therefore the
bottleneck in this scenario.

We first evaluate the memory consumption of MiMBox when the client
transfers at the highest bandwidth available, i.e., 10 Mbps in download and
768 Kbps in upload. For this experiment we used Netperf to measure the
bandwidth and varied the tcp_rmem and tcp_wmem. We use as baseline the
mode where there is no proxy between the client and the server.
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Figure 4.11: Client memory consumption is quite small to achieve a high
bandwidth.

Figure 4.11 shows the average download performance over 10 measure-
ments when the memory allocated varies. The client can achieve the highest
performance with only 200KB of memory per socket (400 KB in total). This
result can be explained by the dimensioning of the receive buffer to 2×BDP

where BDP is the Bandwidth-Delay Product. This ensures application to
not stall as it allows the receiver to store out-of-order packets (one BDP) as
well as allow the sender to perform fast retransmit. In MPTCP the BDP
depends mainly on the slowest subflow:

BDP = ∑
i ∈ subflows

BWi ×RTTmax

In this setup, a receive buffer of 2× (8+ 2) Mbps× 80 ms = 200KB is there-
fore required to achieve the best performances. A MiMBox having 8GB of
memory could therefore scale up to 20,000 connections in this environment4.
The memory usage could be improved. Indeed, in the download scenario, the
socket facing the server does not require 200KB to achieve 10Mbps.

Our second evaluation analyzes the impact of the buffering on interac-
tive applications. For this we used the same environment and added a 1%
loss on the client-side to cause retransmissions. We used a custom applica-
tion [RPB+12] that sends at a fixed 100Kbps rate to simulate an interactive
application. We then measured the application delay. Figure 4.12 shows the
average delay difference over 10 measurements regarding the minimum delay

48GB is fairly small. Some Amazon EC2 instances have at most 244 GB of memory.
In this case MiMBox could support up to 600k connections.
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Figure 4.12: On average MiMBox reduces the end-to-end application delay.

(30 msec) observed for various buffer sizes. We can see that MiMBox glob-
ally reduces the delay. We observed for a 50KB buffer that there is a 2 msec
advantage for the MiMBox. More interestingly the maximum additional
delay observed is around 150ms with MiMBox while it is 250ms without.
Having a large delay can be problematic for interactive sessions. The rea-
son that MiMBox reduces the delay in this scenario is that by terminating
the connection it also allows end hosts to react quickly to losses therefore
causing fewer queuing inside the network. A similar tendency has also been
observed with other buffer size values as well as when the path between
the MiMBox and the server is lossy. We did not observe any significant
difference when there is no loss.

4.6 Evolution of MiMBox

As the deployment phase of MPTCP progresses, there will potentially
be more clients and servers supporting it. It is obvious that MiMBox does
not need to convert the traffic if both end points support MPTCP. In such
environments, it is desirable to be able to remove the protocol converter from
the data stream when using the explicit mode. Bypassing MiMBox allows to
reduce its load and enables a direct communication between the client and
the server. In the rest of this section we discuss a fallback mechanism that
allows MiMBox to remove itself from the communication. We then evaluate
the impact of such fallback.
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Figure 4.13: MiMBox can remove itself from the communication in order to
improve end-to-end delay.

4.6.1 Removing MiMBox from the communication

To remove itself from the communication without disrupting the data
stream, MiMBox uses additional mechanisms, presented in Section 1.3, to
remove and change the priority of subflows. To remove subflows, the Re-

move Addr option is used to signal to the peer that an address has become
unavailable. Upon the reception of this option the receiver closes all the TCP
subflows that are using this address. MPTCP allows to change the priority
of subflows in a binary fashion. By sending the Mp Prio option or by set-
ting a bit in the Mp Prio a host can inform the peer that it prefers to not
receive data on this subflow (or for this address) if higher priority subflows
are available (see Section 1.3.3).

Figure 4.13 shows the operations performed by MiMBox to remove
itself from an MPTCP connection. Prior to the removal, there must be at
least one established subflow directly between the client to the server.

To shutdown the initial subflow, MiMBox has two choices. Either it
completely removes the subflow using the Remove Addr option or it blocks
the peer from sending data on it using the Mp Prio option. The latter
requires to maintain some state to perform the forwarding but gives an
advantage if the hosts are mobile. Mobile nodes regularly change their IP
addresses. For the stability of the connection it would be useful to always
have one stable IP address that can be joined by a subflow. MiMBox can
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Figure 4.14: The setup used to evaluate the fallback mechanism.
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Figure 4.15: Removing MiMBox after a few exchanged bytes results impacts
less the performance.

be such a stable point. Both hosts could move at the same time, and still
be able to continue the data stream, by creating new subflows passing by
the MiMBox. This mobility scenario is however out of the scope of this
chapter.

4.6.2 Impact of a MiMBox’s removal

To evaluate the impact of the removal of MiMBox from the communi-
cation, we implemented the removal as an extension to our implementation
that triggers either a Mp Prio sent within the third ACK of the three-way
handshake or a Remove Addr option when we are sure that MPTCP is
working on the master subflow, i.e., when receiving the first data acknowl-
edgement at the MPTCP level. It is not possible to compare our solution
with existing ones as existing solutions do not allow such removal. We
therefore compare the different solutions to remove the MiMBox. We use a
different setup (see Figure 4.14) than in Section 4.5 even though we use the
same devices. We take as baseline the MiMBox without removal (and only
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Figure 4.16: The removal introduces a reduction in the number of instruc-
tions executed by MiMBox.

one subflow) and compare it with the Mp Prio and the Remove Addr so-
lutions. The results of the evaluation are shown in Figure 4.15. The figure
shows the average number of requests per second supported (in log-scale)
over 10 measurements for different request sizes.

For small file sizes, the removal impacts the performance. In this case,
The Remove Addr has the biggest impact as the server has to potentially
reinject already sent data on the initial subflow. For the Mp Prio solution
such reinjection is not needed as the initial subflow still exists and can still
acknowledge segments.

For larger file sizes, the impact of the Remove Addr is negligible. In
this case, the limit becomes the network and not the removal mechanism
anymore. The time taken to remove itself becomes negligible compared to
the time taken to receive the data. TheMp Prio has an interesting behavior
for larger file sizes: it achieves better performance than without removal.
This results from a higher congestion on the direct link between the client
and the server which delays the establishment of the second subflow. This
delay allows to send more data on the initial subflow before the establishment
of the second one.

For MiMBox, it is therefore worth to wait until a few kilo-bytes have
been exchanged before starting the removal procedure. It is even more
important for the Remove Addr mechanism. Removing the MiMBox from
a flow is thus more interesting for long-lived flows.

Another advantage of removing MiMBox from the communication is
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that it reduces its CPU utilization, therefore enabling it to handle more
connections. Figure 4.16 shows the average reduction in the number of
instructions over 10 measurements executed by the MiMBox using the two
different removal modes. For small file sizes, the reduction is small as the
second path is almost never used. For larger sizes, the reduction increases up
to a maximum, 18% for the Mp Prio and 40% for Remove Addr. This
maximum results from the fact that for large file sizes a MiMBox needs
to handle fewer connection establishments. The two modes have different
performance improvements: the Mp Prio still uses the initial subflow for
some time before switching to the second one, therefore causing more cycles
to be used.

4.7 Related work

The end-to-end principle assumes that TCP connections and all
application-specific functions ought to reside in the end hosts. This is less
and less true as the Internet is dominated by middleboxes [HNR+11]. Start-
ing in the 1980s, researchers have proposed protocol converters that termi-
nate one transport connection on one side and initiate another one on the
other side [Gro06]. This idea has been applied by various authors for various
reasons. A first use case are wireless networks where end-to-end performance
can be improved by splitting the TCP connection [BB95] and using improved
retransmission techniques on the wireless link [BPSK97, BKG+01]. Our pro-
tocol converter allows wireless hosts to use different wireless interfaces at the
same time even when the servers do not support MPTCP.

Another example are the HTTP proxies that also terminate TCP con-
nections. These proxies are either deployed close to the end user [hap12,
squ12] or in the cloud to improve access to data centers [PWH+10, Apa13].
Various techniques have been proposed to improve their performance [RR02,
SHHP00]. In a nutshell, these solutions forward data in the application at
the beginning of the connection and can instruct the kernel to autonomously
forward packets afterwards. HAProxy [hap12] is an example of such a mod-
ern high-performance proxy. Our protocol converter is different. First, its is
entirely implemented in kernel space, which improves performance for both
short and long flows as demonstrated by our experimental evaluation. Sec-
ond, it converts MPTCP to regular TCP and vice versa. This implies that
our protocol converter handles the specificities of MPTCP like segment re-
ordering, checksums, etc. This is more complex than passing regular TCP
segments in both directions. Finally, our converter is also agnostic of the
application used.

Recently, a few authors have proposed some kind of MPTCP proxies.
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Raiciu et al. [RNBH11] discuss the role that such proxies could play to sup-
port mobile hosts. Ayar et al. [ARBW12b] propose to use multiple paths
inside the core network to improve performance while still using regular TCP
between the end hosts with their proposed Splitter/Combiners. Hampel and
Klein [HK12] propose MPTCP proxies and anchors as well as some exten-
sions to the MPTCP protocol to support them. A prototype implementation
of such proxy exists with an incomplete support of MPTCP [AL13], i.e., only
one subflow at a time is supported for the client.

4.8 Conclusion

Deploying a new TCP extension like MPTCP can be difficult despite its
clear benefits for users. We propose MiMBox to allow clients to already ben-
efit from MPTCP during its deployment phase. MiMBox efficiently trans-
lates MPTCP to TCP. By implementing it entirely in the Linux kernel, we
achieve high performance on commodity x86 servers. Furthermore, we show
how MPTCP can be leveraged to allow MiMBox to remove itself from the
communication when both communicating hosts are MPTCP-capable.

We compare the performance of MiMBox with existing HTTP prox-
ies and simpler designs, e.g., using TCP Splice. Our evaluation shows that
MiMBox overcomes existing proxies both when handling long TCP flows
and when serving a large number of HTTP clients. From a performance
viewpoint, MiMBox is close to the performance of an IP router. Further-
more, MiMBox uses fewer CPU cycles than other solutions while providing
better performance. Moreover, it uses flow-to-core affinity to steer packets
from the TCP and MPTCP connections to the same core which leads to
fewer cache misses and thus increases the overall performance.



Chapter 5

Revisiting flow-based load

balancing

5.1 Introduction

Load balancing plays a key role in enterprise, data center and ISP
networks. It improves the performance and the scalability of the Internet by
distributing the load across network links, servers, or other resources. Load
balancing allows to maximize the throughput [Hop00], achieve redundant
connectivity [ICBD04] or reduce congestion [CWZ00]. Different forms of
load balancing are deployed at various layers of the protocol stack. At the
datalink layer, frames can be distributed over parallel links between two
devices [Ass08]. At the application layer, requests can be spread on a pool
of servers [KKSB07].

At the network layer, the most common technique, Equal Cost Multi-
Path (ECMP) [Hop00, CS13d], allows routers to forward packets over mul-
tiple equally-good paths. ECMP may both increase the network capacity
and improve the reaction of the control plane to failures [ICBD04]. Cur-
rent ECMP-enabled routers proportionally balance flows across a set of
equal-cost next hops on the path to their destinations. The most deployed
next-hop selection method is solely based on a hash computed over several
fields of the regular packet headers [Cis98, Hop00]. Using a hash function
ensures a somewhat fair distribution of the next-hop selection [CWZ00].
Most implementations include the transport-level port numbers to improve
the load spreading while preserving the packet sequence of transport-level
flows [CWZ00].

Using the transport header to influence the network-layer forwarding
breaks the layered architecture. Although some topology discovery appli-
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cations exploit this principle [ACO+06, AFT07], it remains difficult for end
hosts to accurately control forwarding decisions or even be aware of the
path diversity that is available in the network. In Section 1.3, we saw that
subflows from MPTCP can have different 5-tuples and so might follow dif-
ferent paths in the network. There is therefore a benefit for multipath-aware
transport protocols as Multipath TCP (and even for SCTP-CMT [IAS06])
to be able to select network parts that are as independent as possible to
avoid congestion [BAAZ10]. Unfortunately, this is not possible with exist-
ing hash-based load-balancing techniques.

Data center designs rely heavily on ECMP [AFLV08, GHJ+09, GLL+09,
MYAFM10] to spread the load among multiple paths and reduce congestion.
This form of load balancing is blind and naive. Congestion can still occur
inside the data center and lead to reduced performance. Data center traf-
fic is composed of mice and elephant flows [BAM10, KSG+09]. Mice flows
are short and numerous but they usually do not cause congestion. Most
of the data is carried by a low fraction elephant flows. Based on this ob-
servation, several authors have proposed of traffic engineering techniques
that allow to route elephant flows on non-congested paths (see [BAAZ10,
CKY11, AFRR+10] among others). Those techniques often rely on Open-
Flow switches [MAB+08] to control the server-server paths. Unfortunately,
the scalability of such approaches is limited, which may lead to an overload
of the flow tables on the OpenFlow switches [CKY11, CMT+11].

In this chapter, we show that another design is possible to exploit the
path diversity that exists in data center networks without maintaining any
state within the network. Current hash-based implementations rely on the
IP and TCP headers to select the load-balanced path over which each flow is
forwarded. It is therefore very difficult for a host to predict the path that a
flow will follow. We show in this chapter that hash functions are not the only
way to practically enable path diversity. We propose a new deterministic
scheme called Controllable per-Flow Load Balancing (CFLB) that allows
hosts to explicitly select the load-balanced path they want to use for a
specific flow. CFLB allows multipath aware end hosts to deterministically
select the path followed by their packets inside the network, without any
change to the IP and TCP headers.

CFLB is designed such that it meets the following requirements: (i)
all packets of the same flow follow the same path; (ii) no overhead; (iii)
transparent to non-CFLB aware sources; (iv) operate at line rate. Thereby,
CFLB enables sources to encode, using an invertible function, inside ex-
isting fields of the packet header the load-balanced path that each packet
should follow. Each router uses the same invertible function to decode the
forwarding decision it needs to apply to the packet. This simple mechanism
can be implemented efficiently as to enable line rate forwarding. CFLB is
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transparent for applications that do not want to steer packets and does not
require any change for non-CFLB-aware end hosts. CFLB does not require
any extension in packet headers and does not store any state in routers
which perform only simple calculations. Instead, the state is stored in end
hosts and conveyed using header fields in each steered packet.

To summarize, our key contributions are:

• A study of path diversity in data center and ISP networks;

• The design of a packet steering solution that is stateless for routers
and does not require a shim header;

• The evaluation of the benefits of combining such a solution with Mul-
tipath TCP.

The remainder of this chapter is organized as follows. We first recall in
Section 5.2 current hash-based load-balancing basics. Section 5.3 discusses
related work. We then provide a detailed description of the operation of
CFLB in Section 5.4. In Section 5.5, we analyze the performance of CFLB.
We first use trace-driven simulations to compare CFLB with existing hash-
based techniques and, then, we implement CFLB in the Linux kernel to
evaluate its packet forwarding performance. We also evaluate the benefits
of CFLB for Multipath TCP hosts. In Section 5.6, we discuss other possible
applications of CFLB.

5.2 Network-based load balancing in a nutshell

In this section, we first provide an in depth overview of the network-
layer load balancing using hash-based techniques as well as an evaluation
of path diversity in data centers and ISP networks. Finally, we discuss the
interactions between MPTCP and load balancing.

5.2.1 Path diversity at the network layer

There exist several proposals to enable path diversity at the network
layer [MFB+11]. In practice Equal Cost Multi-Path (ECMP) [Hop00] is cur-
rently the mostly deployed one. ECMP is both a path selection scheme and
a load distribution mechanism. To enable path diversity, it uses paths that
tie to ensure loop-free forwarding. According to the level of resulting path
diversity, routers then proportionally balance packets over their multiple
next hops. This proportional aspect is an arbitrary design choice which is
not in the scope of this chapter. We focus on the practical implementation
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of the mapping (packet → next-hop). Various next-hop mapping methods
exist to practically balance packets over load-balanced paths.

An ECMP load balancer should fairly share the load over the next hops.
Since flows vary widely in terms of number of packets and volume, this is not
that easy [Hop00, CWZ00]. Most load-balancing methods that meet these
requirements are based on a hash function [CWZ00, Cis98]. They compute a
hash over the fields that identify the flow in the packet headers. These fields
are usually the source and destination IP addresses, the protocol number
and the source and destination ports, i.e., the 5-tuple. The computed hash
can then be used in various ways to select a next hop. The simplest and
most deployed method is called Modulo-N .

If there are N available next hops, the remainder of dividing the hash
by N is used as an identifier of the next hop to use. The following equation
is performed to compute the remainder L (where H corresponds to the hash
function):

L = H(IPsrc, IPdst, P rot, Portsrc, Portdst)mod N

L is then used to select a particular outgoing path, generally the Lth path
among the N paths set is chosen.

Note that this naive hash-based technique is, however, subject to a
problem called polarization [CS05, MMH07]. This problem comes from the
fact that if each router applies the same hash function on the same input,
they will take the same decision. Polarization degrades therefore the effi-
ciency of the load balancing. A simple solution is to use a different hash
function in each router or to add a value in the input of the hash function,
usually a unique router id.

There is no standard defining the hash-based function that should be
used for this computation and different hash functions are implemented by
router vendors. CRC or Internet checksums [CWZ00] are typical ones as
they are already implemented in hardware on all routers. Cao et al. [CWZ00]
show that using the 16-bit CRC (CRC-16) algorithm on the 5-tuple gives
the best results in terms of load balancing distribution. Hopps [Hop00] show
that hash-based ECMP provides the best cost/performance tradeoff.

Due to the non-determinism property of hash functions, forcing a path
in a load-balanced network is hard. In general hosts can only vary the
transport header fields to try to influence the path selection [ACO+06]. We
give more detail in Section 5.2.3.
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Figure 5.1: Local next hop diversity in ISP networks.
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Figure 5.2: Global path diversity in ISP networks.

5.2.2 Path diversity in ISPs and data center networks

Experimental measurements by Augustin et al., reported in [AFT07],
show a wide deployment of multipath routing strategies in the Internet.
From measurements between 15 sources and over 68,000 destinations, they
found that 39% of these source-destination pairs have at least two load-
balanced paths. The utilization of load balancing in ISP networks has also
been studied in [MFB+11].



88 Chapter 5. Revisiting flow-based load balancing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Number of Next Hops

VL2 (Di=15,Da=8)
BCube (n=8,k=3)

Fat-Tree (k=8)

Figure 5.3: More than 80% of the server pairs in popular models of data
center topologies have two or more paths between them.
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Figure 5.4: On average, for 70% of destinations, routers and switches have
multiple next hops.

ECMP is widely used by IP and data center networks either for load
balancing or failure recovery purposes [ICBD04]. To demonstrate the po-
tential presence of ECMP load balancers, we analyze the topology and the
resulting routing of several ISP and data center networks. In particular, we
focus on the number of routers having equal-cost paths. For ISP networks,
we use two kinds of topologies: (i) Tiscali and AboveNet come from the



5.2. Network-based load balancing in a nutshell 89

Rocketfuel topologies database [SMWA04] on which IGP weights have been
inferred, (ii) ISP 1 and 2 are real Tier1 ISP topologies anonymized for confi-
dentiality purposes. Their sizes in terms of nodes and edges are given in the
figure captions. For data center networks, we use three generic models, Fat-
Tree [AFLV08], VL2 [GHJ+09] and BCube [GLL+09]. For each model, we
pick one representative topology giving the same amount of servers, approx-
imatively 600 servers per topology. The model parameters are given in the
caption (the parameters are the same as defined in [AFLV08], [GHJ+09] and
BCube [GLL+09]). In BCube’s design, servers do not only act as end hosts,
they also act as relay nodes for each other, we therefore consider servers to
evaluate the local next hop diversity. Since the simple spanning tree at the
link layer also tends to be replaced by multipath-capable routing [TP09],
we also consider switches as load balancers. Furthermore, for data center
networks in general, we only consider server as destinations.

Figures 5.1 and 5.3 show the local next hop diversity, i.e., the number
of next hops per router-destination pair, of ISP and data center networks.
Figures 5.2 and 5.4 provide a global path diversity analysis, i.e., the number
of end-to-end path between each source and destination pair, for the same
networks. The results obtained on these two families of networks differ
because of their architectural design. Data centers are really structured
networks favoring the presence of equal cost paths whereas ISP networks do
not present such regular characteristics. In Figure 5.1, we notice that fewer
than 20% for ISP1 and fewer than 10% for ISP2 of routers-destinations
pairs enable ECMP multipath local diversity, with an upper-bound of 6
forwarding next hops for a couple router-destination in AboveNet. However,
considering an end-to-end perspective, Figure 5.2 shows that between 25%
and 50%, respectively for Tiscali and ISP2, of the source-destination pairs
can benefit from at least one ECMP capable router (with a pair source-
destination having a maximum of 76 available paths for Tiscali, Figures 5.2
and 5.4 x-axis are truncated for clarity reasons). This difference results from
the fact that the probability of benefiting from at least one ECMP router
exponentially increases with the path length. In such ISP networks, the
distribution of path length follows a normal distribution with a mean of half
the diameter (with a maximum diameter of 16 hops in Tiscali).

For the data center networks, the presence of equal cost paths is much
more important (see Figures 5.3 and 5.4) than in ISP networks. On average,
switches are able to perform local load balancing among a set of two or
more next hops for 70% of destinations, while more than 80% of the pairs
of servers pass through at least one ECMP load balancer (with a maximum
of 64 available paths for the BCube topology). In practice, paths in DC are
really short among servers since this kind of topologies have small diameters
and are locally meshed.
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5.2.3 Interactions with Multipath TCP

In MPTCP, subflows can be established between the same IP ad-
dresses with different ports or between different addresses of the same end
hosts [FRHB13]. Since subflows have different 5-tuples, each can be load
balanced over a different path. Raiciu et al. evaluated Multipath TCP in-
side data centers in [RBP+11]. Simulations and measurements show that
performance improves when Multipath TCP is allowed to use multiple sub-
flows in such data centers. Measurements collected in data centers [BAM10]
show that the traffic load can change quickly and performance could be
improved by dynamically routing traffic around congested links [BAAZ10].
To achieve better performance, MPTCP would need to open subflows that
use less congested links. A possible solution to achieve this goal would be
to rely on a network information server similar to the ALTO solution be-
ing developed within the IETF [APY13]. This server could collect network
statistics and then inform MPTCP of the best load-balanced paths to be
used to reach a given destination. However, MPTCP establishes subflows on
random port numbers. With standard load balancing, there is no guarantee
that a different path will be chosen for each of these subflows.

As the 5-tuple of each TCP subflow is randomly generated, there is a
chance for sources that the subflows do not take the non-congested load-
balanced paths. Indeed, let us consider a source has m load-balanced paths
towards a destination and that l of those m paths are non-congested. If all
paths are equiprobable, then the probability that k subflows go through k

different paths amongst the l non-congested paths is defined by:

Pm
(k,l) = l!

(l − k)! ×mk
(∀ k, l,m ∈ N ∣ k ≤ l ≤m) (5.1)

If there are 16 load-balanced paths, which seems realistic with respect to
the observations we made in the previous section, the probability to cover 4
non-congested paths is low, e.g., if a source generates either 2 or 4 subflows
the probability is respectively P 16

(2,4) = 6.7% and P 16

(4,4) = 0.5%. In practice,
the equiprobability assumption between load-balanced paths may not hold
such that actual figures may be worse. The load-balanced paths may be
unbalanced such that non-congested paths may be more difficult to setup
using a random approach.

One could argue that sources could generate as many subflows as pos-
sible to try to increase the probability displayed in Equation 5.1. However,
establishing additional subflows comes with a cost, as each new subflow
requires a three-way handshake with crypto-authentication before being es-
tablished and each additional subflow increases the requirements in memory
at the receiver due to a larger receive-buffer [BPB11]. From a performance
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Figure 5.5: A brute force approach is only possible if we know the hash
function used by the routers. It might also require a large number of CPU
cycles if the network has a large number of load balancers.

viewpoint, Multipath TCP would obviously benefit from being able to estab-
lish the minimum number of subflows to efficiently utilize the less congested
load-balanced paths. This, however, requires the ability to map determin-
istically a subflow to a path in order to setup subflows on non-congested
paths.

A brute force approach could also be used to find the right port to use
to force a subflow to follow a path. This however requires to know the hash
function in routers, to the best of our knowledge, we did not find the hash
function used by major vendors. Nevertheless, if we know the function in
used in the routers, we looked at how many trials are required before finding
the right combination of ports with a random approach. Figure 5.5 shows
that if the network contains a large number of load balancers the number of
trials can quickly explode and consumes a large amount of CPU cycles for
each subflow.

5.3 Related work

Several researchers have evaluated the performance of dynamic load-
balancing techniques. Menth et al. consider in [MMH07] dynamic load
balancing at the network layer not solely based on static forwarding ra-
tio [CWZ00]. Kandula et al. propose another dynamic load-balancing tech-
nique in [KKSB07].
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Network-layer load balancing is not limited to the use of ECMP. Other
forms of multipath routing have also been proposed. BANANAS [KKW+03],
Routing Deflections [YW06], Path Splicing [MEFV08], and Pathlet Rout-
ing [GGSS09] are examples of scalable routing primitives that allow end sys-
tems to use non-shortest paths as an alternative to explicit source routes.
These solutions rely on the utilization of a shim header to allow end hosts
to exploit the path diversity. Otherwise, the packet is forwarded along the
normal route.

Xi et al. proposed in [XLC11] Probe and RerOute Based on ECMP
(PROBE). This technique combines path probing, similar to Paris-traceroute
[AFT07], to discover the ECMP paths and uses a NAT technique on the
hosts to reroute the flows.

Recent proposals have focused on ways to distribute the flows inside
data centers [CKY11, AFRR+10, MYAFM10]. SPAIN [MYAFM10] is a
proposal that configures multiple static VLANs in data centers to expose to
end hosts the underlying network paths. In the case of SPAIN either the
hosts or the switches must be modified to allow selecting a path for each
flow.

Other solutions have looked at how to dynamically allocate flows to
paths, Al-Fares et al., among others, show that it is possible to avoid gen-
erating such hot-spots by efficiently utilize aggregate network resources by
using Hedera, a dynamic flow scheduling system [AFRR+10]. The idea be-
hind this solution is to assign large flows to lightly loaded paths by querying a
scheduler that possesses informations about the current network load. Hed-
era stores state in the switches, i.e., flow entries in OpenFlow [MAB+08],
in order to ensure that flows follows the desired path. However, as pointed
out by Curtis et al. in [CKY11], there currently does not exist any Open-
Flow switch that can support the required number of flows at each rack
switch.

5.4 Controllable per-Flow Load Balancing

CFLB enables hosts to select a load-balanced path among the diver-
sity offered by the network layer. Compared to a source routing solution, it
allows CFLB-aware sources to steer their packets inside the network with-
out requiring any header extension. Figure 5.6 presents the overview of the
mechanisms ECMP and CFLB use to select a next hop when several are
possible. The mechanisms are quite similar: for IPv4 networks both apply
an operation on the 5-tuple to select a next hop. ECMP uses a hash-modulo
operation while CFLB uses a more complex operation that will be detailed
in the remainder of this section. CFLB uses an additional field of the packet
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header, the Time to Live (TTL), as a way to “identify routers”. CFLB is
not only limited to layer-3 routing, it can work in any environment where a
hop count is used (e.g., TRILL [TP09], MPLS, IPv6, etc.). CFLB decom-
poses those header fields in two categories: controllable and uncontrollable.
The controllable fields are the fields that can be selected by the source,
e.g., the source and destination TCP ports 1 while the remaining fields are
uncontrollable, i.e., the protocol number and the source and destination ad-
dresses. In short, the controllable fields are used to convey the path selector
while the uncontrollable fields are used to add randomness for non-CFLB
aware flows. The CFLB mechanism can be decomposed in four separate
operations:

1. The desired path is specified by the source as a sequence of next-hop
selections, that we call a path selector ;

2. This path selector is then encoded by the source inside the controllable
header fields;

3. Each router extracts from these controllable fields the encoded path
selector;

4. The path selector is then used to extract the next-hop selection the
routers need to apply to load-balance each packet.

This section is organized to help understand the design choices behind
CFLB. We first describe the path selector. We then describe operations (1)
and (4) and finally operations (2) and (3).

5.4.1 Path selector

In a network offering path diversity, there exist multiple paths having
the same cost between a source and a destination. We call these load-
balanced paths. Figure 5.7 shows all load-balanced paths between a source
S and a destination D in a simple network. As only load-balanced paths are
shown, Figure 5.7 does not show links that are not used to route packets to
the destination D. In this example there exist five different load-balanced
paths between nodes S and D. Table 5.1 lists the notations used in this
chapter and their definitions.

CFLB allows sources to control the next-hop selection in routers when
they have more than one possible next hop for a destination. For example,
router R4 has 3 potential next hops for destination D. By knowing the
number Nk of available next hops towards a destination for each router k in
the network, next-hop selections can be mapped to a number ni ∈ [0,Nk[,

1In MPTCP additional subflows can use a different destination port than the initial
subflow as they are identified by the token present in the Mp Join option.
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src IPdst Proto Portsrc Portdst
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(a) Regular ECMP.

IPsrc IPdst Proto Portsrc Portdst

CFLB next hop

Controllable fieldsUncontrollable fields

TTL

(b) CFLB.

Figure 5.6: Overview of load-balancing mechanisms.

Symbol Definition
B The radix of the path selector, i.e., the numeral base to encode the

path selector.
ni The next-hop selection of the ith positioned router.
L The length of the path selector, i.e., number of next-hop selections

that can be encoded in it.
Nk The number of load-balanced next hops available at a router k (for

the sake of clarity, we ignore the destination prefix).
F (x) The invertible function applied on x.
H(x) The Hash function applied on x.
cf The controllable fields used.
uf The uncontrollable fields used.
Ei(ni) The function applied on a next-hop selection, it adds “randomness”

using uf .
Di(x) The function that performs the inverse of Ei, i.e.,

Di(Ei(x)) = x, ∀x ∈ [0,B[.
A∣∣B The concatenation of A and B.

Table 5.1: General notations.

where n indicates the index of the next hop which should be selected. Using
such mapping, if source S wants to follow the highlighted path in Figure 5.7,
the next-hop selection for router R4 is 2. Note that only routers having
multiple load-balanced next hops to forward a packet must be controlled by
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Figure 5.7: The load-balanced paths between S and D.

the source if the latter wants to follow a specific path in the network.

To specify the next-hop selection a router needs to perform, it must
be identifiable by the source. As we only want to rely on existing fields of
the packet header, we use the TTL field to identify the position of a router
inside the path selector. The TTL is set by the source and decremented
by each router that forwards the packet. The field can thus be used by a
router to identify its relative position compared to the initial TTL value and
thus to represent its position inside the path selector. Therefore, we define
the position of each router within the path selector to be i = ttl mod L

where ttl is the TTL value of the packet received at the router and L is the
number of next-hop selections that can be encoded in the path selector. The
source can, by knowing the initial TTL of the packets2, encode the next-hop
selections of each CFLB router on the path at their corresponding position
inside the path selector.

Let us assume that source S uses an initial TTL of 64, that the length of
the path selector is L = 20 and that the source wants its packets to follow the
highlighted path in Figure 5.7. The positions of the next-hop selections of
routers R1 and R4 inside the path selector are respectively 4 (64 mod 20)
and 2 (62 mod 20). The complete load-balanced path can therefore be
expressed as the following sequence of next-hop selections: {(4 → 0), (2 →
2)} where the notation (x→ y) refers to a router at position x which should
select its yth next hop.

2Most operating systems use a system wide default TTL.
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5.4.2 Representation and extraction

CFLB stores a path selector as a positional base-B unsigned integer,
where B is known as the radix and shared by all the nodes in the network.
This maximizes the number of next-hop selections that can be encoded inside
the path selector, while minimizing the number of bits used. As the potential
value of ni is bounded by the radix B, one should choose a B value so that
it is the maximum of the number of available next hops Nk towards each
destination in every routers of the network. In practice, most routers have
a hardcoded upper bound on the number of next hops they can use for a
destination, most of them support up to of 16 next hops [AFT07].

Representation

A path selector p can be generalized as:

p = L−1

∑
i=0

ni ×B
i (5.2)

Where ni is an unsigned integer in base B that represents the next-hop
selection of the router having the ith position within the path selector. If
a source wants its packets to follow the same path for different services
then it might cause a path selector collision. To overcome this issue, CFLB
generates multiple path selectors to describe the same load-balanced path
using two solutions that can be combined. First, the unused positions inside
the path selector can be filled with random values (as for R2 and R7 in
Figure 5.7). Second, by changing the initial TTL, the position of each router
in the path selector changes and thus the path selector value.

Extraction

A router receiving a path selector p can extract the forwarding decision
ni by first extracting the ttl of the packet and then computing i = ttl mod L.
Finally, ni can be extracted by applying Eq. 5.3.

ni = ⌊ p
Bi
⌋ mod B (5.3)

The integer division by Bi removes all load-balanced next-hop selections
of upstream routers while the modulo operation removes all load-balanced
next-hop selections of downstream routers.
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Length

The fixed size of the packet header fields used to encode the path se-
lector limits the number of encodable next-hop selections to:

L = ⌊logB(2X)⌋ (5.4)

where X is the size in bits of the header fields used to encode the path
selector.

Example

Let us now illustrate how CFLB works in the simple network shown
in Figure 5.7. Assume that the source uses an initial TTL of 64 and wants
this packet to follow the bold path in Figure 5.7. Furthermore, B is 3 and
L is 20. The path selector computed by the source based on Eq. 5.2 can
therefore be expressed as:

p = {(4→ 0), (2→ 2)} = 0 × 34 + 2 × 32 = 18
Note that this implies encoding a next-hop selection of 0 for all other posi-
tions inside the path selector. This value is then encoded inside the packet
header (we discuss how the path selector is encoded and decoded in the
header fields in Section 5.4.3). R1 retrieves from the packet header the same
path selector and the TTL to compute its position inside the path selector,
i.e., 4. It then computes the next-hop selection it needs to apply on the
packet by using Eq. 5.3:

n4 = ⌊18
34
⌋ mod 3 = 0

R1 decrements the TTL of the packet and forwards it to the next hop labeled
0, i.e., R2. R2 does not have load-balanced next hops. It forwards the packet
to R4 and decrements the TTL. R4 applies the same operation as R1. R4

computes:

n2 = ⌊18
32
⌋ mod 3 = 2

The packet is therefore forwarded to R7 and then to D as R7 only has one
next hop to forward the packet.

5.4.3 Encoding and decoding the path selector

CFLB uses the controllable fields of the packet header in order to con-
vey the path selector from router to router. These fields must not change
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during the forwarding process. We use an invertible function F to encode
the path selector. Indeed, a simple bijective function might end up in a poor
distribution of the non-controlled traffic [CWZ00]. For instance, if only the
port numbers are used as controllable fields, we do not want all web traffic
to go through the same next hop. Therefore, we require that the invertible
function exhibits the avalanche effect [WT86], that is for a small variation of
the input (different source-ports) a large variation of the output is observed.
Based on this requirement, block ciphers such as Skip323 or RC5 [Riv95]
are good candidates to implement this invertible function when 32 bits are
controllable. When more bits are available, we recommend to use a block
cipher mode of operation as Format-Preserving Encryption (FPE) construc-
tion, such as the eXtended CodeBook (XCB) mode of operation [MF04] that
accepts arbitrarily-sized blocks, provided they are as large as the blocks of
the underlying block cipher. Depending on the number of bits that are
controllable in the packet header, different types of block ciphers can be
used with XCB, from 32-bit symmetric-key block cipher to most common
ones such as DES, 3DES or AES. Furthermore, efficient hardware-based
implementations of such block ciphers exist [CDK09, HV04]. Using such
functions to encode the path selector enables a router to apply the inverse
of this function on the controllable fields of the packet header to retrieve the
path selector.

Uncontrollable fields

CFLB is designed based on the properties of hash-based load balancers.
It must be transparent to sources that do not need to control the load-
balanced path taken by their packets. In this case, the controllable fields
are random and do not encode a path selector. CFLB must still distribute
such packets efficiently among the available load-balanced next hops. As
Cao et al. showed in [CWZ00], the most efficient packet distribution is
achieved when all the headers fields identifying a flow are used as input to
the load-balancing function. CFLB therefore uses also the uncontrollable
fields, source and destination addresses and the protocol number, as input.
For that, the way the path selector is encoded slightly changes from Eq. 5.2:

Ei(ni) = (ni +H(uf)) mod B (5.5)

p = L−1

∑
i=0

Ei(ni) ×Bi (5.6)

Where H is a hash function and uf contains the uncontrollable fields of the
packet header. This allows to efficiently distribute packets over available

3http://www.qualcomm.com.au/PublicationsDocs/skip32.c.

http://www.qualcomm.com.au/ PublicationsDocs/skip32.c.
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next hops of each router, while still allowing routers to recover the next-hop
selections encoded by the sources.

Eq. 5.6 can be inverted to find the next-hop selection ni to apply on
the router whose position is i by applying the following operation on the
path selector extracted from the packet header:

Di(x) = (x −H(uf)) mod B (5.7)

ni =Di(⌊ p
Bi
⌋) (5.8)

Next-hop selection

The next-hop selection ni is a value comprised between 0 and B−1. To
select a next hop, CFLB applies a mapping between ni and a value between
0 and Nk − 1. However, as Nk ≤ B, an issue arises when using a simple
modulus operation when B is not a multiple of Nk. In this case, the load
balancing distribution might be poor. For instance, if Nk = 2, B = 3, and the
input is uniformly distributed, then the router ends up forwarding 75% of
the incoming packets to the first next hop. To resolve this problem, CFLB
computes the next-hop selection ni for the packet as follows :

ni =
⎧⎪⎪⎨⎪⎪⎩
Di(⌊ p

Bi ⌋), if Di(⌊ p

Bi ⌋) < Nk

H(cf ∣∣uf) mod Nk, otherwise.
(5.9)

The intuition behind Eq. 5.9 is that CFLB must distinguish whether
the packet was controlled by a source or not. If the packet was indeed
controlled, the next-hop selected, ni, must be the one encoded in the path
selector. However, the non-controlled packets must be distributed randomly
among the Nk available next hops. In Eq. 5.9, if the packet to forward is a
controlled one, then the resulting next hop to select should be lower than Nk

(the number of next hops in the routing table for the packet’s destination),
the decision encoded at the source is correctly taken. Otherwise, it means
that the packet is not a controlled one, resulting in a random distribution
of the packet on one of the Nk available next hops.

Topological changes

In case of topological changes (transient or permanent), a CFLB-router
will renumber indexes, i.e., update the ni → Rj mapping and Nk, of its cur-
rent available next hops towards each destination. In such a case, while
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new flows are “aware” of the new state and are so correctly controlled, pre-
vious existing ones may be impacted. Indeed, when the desired next hop
does not exist anymore or if its index has changed, the resulting path will
change. In CFLB, the impacted controlled flows (i.e., the elephants ones)
will fall back to a random load balancing and so will be distributed simi-
larly to classic hash-based load balancing. We consider that such topological
changes should be quite marginal (at a time scale greater than flows dura-
tion) and new subflows may be created if impacted ones share a common
bottleneck.

5.4.4 Avoiding polarization

Some hash-based load-balancing techniques suffer from the polariza-
tion problem [MMH07]. This problem arises when there are several load-
balancing routers in sequence. If they all perform the same computation on
the received packets, they will select the same next hop resulting in an un-
even traffic distribution. With CFLB, the polarization problem only arises
when packets traverse more than L CFLB routers. Every router spaced by
L hops computes the same next-hop selection. CFLB solves this problem
by assuming that the every packet from the same flow received on a router
has the same TTL4. CFLB therefore includes the TTL of the packet in-
side the hash function ensuring that all routers will make different next-hop
selections along the path5. Respectively Eq. 5.5 and Eq. 5.7 become:

Ei(ni) = (ni +H(uf ∣∣ttli)) mod B (5.10)

Di(p) = (⌊ p
Bi
⌋ −H(uf ∣∣ttli)) mod B (5.11)

ttli is the TTL of the packet received at the ith router on the path.

5.4.5 Summary

In the previous section, we have explained all the design decisions be-
hind the CFLB algorithm. For clarity, we provide in this section the detailed
pseudocode of CFLB.

4This is a reasonable assumption since hosts use the same TTL for all packets and all
packets from a flow follow the same path.

5Another solution could have been to use a simple router id as in classical hash-based
load-balancing techniques [MMH07], however this requires each router to be configured
with a unique router id and requires the sources or the network information server to know
all router ids.
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Figure 5.8: The complete mode of operation of a CFLB router.

Figure 5.8 and Algorithm 5.1 show respectively the operations and the
pseudocode performed by a CFLB router to forward a packet among load-
balanced next hops. The first operation is to extract the controllable and the
uncontrollable fields and the TTL from the packet header. Operation F−1

is the inverse of the invertible function that extracts the path selector from
the controllable fields. In Algorithm 5.1, after having retrieved the next-hop
selection ni, the router performs the operation introduced in Section 5.4.3,
i.e., an if-then-else on the value ni, to determine whether the packet was
controlled by the source. The ai value, in Figure 5.8, corresponds to the
addition modulo B of the next-hop selection performed at position i and
the hash computed on the uncontrollable fields. This ai value was inserted
by the source at the ith position inside the path selector. The router can
thus retrieve it and compute the subtraction modulo B with the same hash
value, to finally retrieve the next-hop selection ni.

Algorithm 5.2 shows the pseudocode used by sources to construct a
path selector. The source needs to first compute the length of the path
selector. This is needed because the routers position themselves inside the
path selector by using the TTL and the length of the path selector. Thus,
this length has to be taken into consideration to find the path selector.
Then, the source iterates over all routers on the path (with a TTL ttli and
a next-hop selection ni) to compute the path selector.



102 Chapter 5. Revisiting flow-based load balancing

Network-wide constant: B = The radix in use in the network.
Network-wide constant: X = The number of bits that are controllable

in the packet header.
Require: pckt = The packet to forward.
Ensure: The next-hop selection to apply on pckt.
1: L← ⌊logB(2X)⌋
2: cf ← ExtractControllableFields(pckt)
3: uf ← ExtractUncontrollableFields(pckt)
4: ttl ← ExtractTTL(pckt)
5: p← F−1(cf)
6: ni ← (⌊ p

B(ttl mod L) ⌋ −H(uf ∣∣ttl)) mod B

7: if ni < Nk then
8: return ni

9: else
10: return H(uf ∣∣cf ∣∣RouterID) mod Nk

11: end if

Algoritm 5.1: Pseudocode showing operations performed by a CFLB router.

Network-wide constant: B = The radix in use in the network.
Network-wide constant: X = The number of bits that are controllable

in the packet header.
Require: path = A sequence (ttli, ni), where ttli is the TTL of the packet

when received by router i and ni the next-hop that should be selected
by router i.

Require: uf = The uncontrollable fields the source needs to use.
Ensure: The controllable fields (cf ) to use to force a packet to follow the

load balanced path path.
1: L← ⌊logB(2X)⌋
2: p← 0
3: for (ttli, ni) ∈ path do
4: p← p + ((ni +H(uf ∣∣ttli)) mod B) ×B(ttli mod L)

5: end for
6: return F(p)

Algoritm 5.2: Pseudocode showing the path selector construction.

5.5 Evaluation

In this section, we evaluate the performance of CFLB compared to tra-
ditional hash-based load-balancing. We use the source and destination port
numbers as controllable fields and the IP addresses are used as the uncontrol-
lable fields for CFLB. Our goal is twofold: first, evaluate its load-balancing
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and forwarding performances, and second, show through simulations and
experiments how Multipath TCP can benefit from CFLB to exploit the un-
derlying path diversity.

5.5.1 Performance evaluation

Load balancing for non-controlled flows

We first evaluate whether a router having multiple next hops for a given
destination uniformly distributes the load [CWZ00] for non-controlled flows.
If there exist N next hops for a given destination prefix, the load balancer
should distribute 1

N
of the total traffic to each next hop.

CFLB enables sources to steer controlled packets while also acting as
a classic load balancer for non-controlled packets (mice flows). To com-
pare the hash-based load balancing techniques and CFLB, we simulated
each method using realistic traces and evaluated the fraction of the pack-
ets forwarded to each next hop. We based our simulations on the CAIDA
passive traces collected in July 2008 at an Equinix data center in San Jose,
CA [SACA].

To analyze how CFLB balances the non-controlled traffic compared
to hash-based techniques, we first simulated 10 million packets (extracted
from the CAIDA traces) forwarded through one load balancer performing a
distribution among N = 2 next hops. Figure 5.9(a) shows the result of this
simulation (computed every second). There are three observations resulting
from Figure 5.9(a). First, using CRC16 as a hash-based load balancer gives
a rather poor distribution of packets. Second, as the maximum deviation
value never goes up to 4% of packets, the load distribution among the two
output links is close to an equal 50/50 % repartition of traffic for all evaluated
techniques except CRC16. Third, CFLB, whatever the block cipher used,
achieves an equivalent load distribution as a hash-based load balancer using
MD5. We did not observe a significant impact on the quality of the load
distribution according to the value of B used.

We also evaluated the load balancing performance considering a se-
quence of several load balancers. Figure 5.9(b) shows the cumulative dis-
tribution of the maximum deviation of the load distribution after crossing
four subsequent load balancers (computed every half second). The same
observation as for Figure 5.9(a) applies, CFLB performs at least as good as
a classical hash-based load balancing technique.

Another performance factor is how the load distribution varies over
time. Figure 5.10(a) and Figure 5.10(b) show, for respectively a hash-based
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Figure 5.9: Deviation from an optimal distribution amongst two possible
next-hops.

load balancer using MD5 and CFLB using RC5, the load balancing distribu-
tion of packets over time when N = 4. We analyze here the case of a router
having four outgoing links toward a given destination. A perfect load bal-
ancer would send 25% of the packets on each link. We can notice that there
are no significant differences between the two techniques, as they behave
in the same way over time. They both slightly fluctuate within the same
tight interval [22%,28%] and their median is close to 25%. Simulations with
other traces and different values of N provide similar results.
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Figure 5.10: Packet distribution computed every second amongst four pos-
sible next hops.

Forwarding performances

The second requirement is the forwarding performance. In order to
evaluate it, we implemented the forwarding path of CFLB as a module in
the Linux kernel 2.6.38 6. The basic behavior of the Linux kernel when deal-
ing with multiple next hops for a given destination is to apply a round robin

6More information can be found at: http://inl.info.ucl.ac.be/cflb.

http://inl.info.ucl.ac.be/cflb
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Figure 5.11: CFLB gives equivalent forwarding performance as hash-based
load balancers.

distribution of packets based on their IP addresses, therefore performing a
pure layer-3 load balancing. As this is not comparable to the hash-based
load-balancing behavior introduced in Section 5.2.1, we extended the Linux
kernel to take into consideration the 5-tuple of the packets and then apply
a hash function to select a next-hop (only CRC-like functions are available).
To implement CFLB in the kernel, we extend the previously mentioned hash
function to enable the deterministic selection of a next hop as described in
Section 5.4. We used two different 32-bit block ciphers to implement the
invertible function: RC5 and Skip32. The implementation of these two
block ciphers has not been optimized, the goal is solely to prove the fea-
sibility of our solution (various techniques could be used to improve its
performance [KKG+10, HJPM10]). Note that CFLB also computes a CRC
function over the uncontrollable fields to add randomness for non-controlled
flows.

We deploy a testbed of three computers to evaluate the performance
of the forwarding path of a Linux router. The computer acting as a load
balancer is an Intel Xeon X3440 @2.53GHz, and both sender and receiver are
AMD Opteron 6128 @2GHz. The sender is connected through a 1Gbps link
to the load balancer which balances traffic amongst two 1Gbps links to the
receiver. The traffic was generated using 8 parallel iperf [ipe13] generators,
creating UDP-packets with a payload of 64 Bytes, in order to overload the
load balancer. The result of this experiment is given in Figure 5.11.

The classic Linux Round-Robin on the IP-addresses obviously performs
the best (it only requires a lookup of the destination IP address in the
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routing cache to forward the packet). It forwards approximatively 600,000
packets per second. Not far below, both the classical hash-based technique
using CRC16 and CFLB using RC5 are able to forward respectively 570,000
and 560,000 packets per seconds. This performance decrease compared to
the standard Linux Round-Robin is mainly due to the more complex hash-
algorithm that selects the next hop. Finally, CFLB using Skip32 forwards
up to 500,000 packets per second. We can conclude that CFLB, even using
non-optimized block ciphers, comes with a marginal cost.

5.5.2 MPTCP improvements with CFLB

In the following section, we evaluate the advantages of using MPTCP
hosts conjointly with a CFLB-enabled network. With CFLB, Multipath
TCP is guaranteed to efficiently use the network resources as subflows can
be deterministically mapped to paths. We first simulate a data center envi-
ronment to show that when using CFLB, MPTCP requires fewer subflows
for elephant connections than with a probabilistic approach. Finally, we also
show in a small testbed that MPTCP can benefit from the usage of CFLB
to avoid crossing hot spots.

Data center simulations

We performed simulations of MPTCP-enabled data centers and evalu-
ate the performances achieved when a simple central flow scheduling algo-
rithm allocates elephant flows. The scheduler that we use for simulations
simply consists in minimizing the number of flows going through each link of
the data center. In practice, hosts can use a similar technique as in [CKY11]
to detect whether one connection corresponds to an elephant flow, and if so
query the scheduler to establish additional subflows. The scheduler then
specifies to the host the TCP ports to be used to setup a new subflow. The
required TCP ports are computed using the CFLB mode of operation al-
lowing to map a subflow to a specific path in the network. We refer to this
combination of Multipath TCP and CFLB in the remaining of this section
as MPTCP-CFLB.

To evaluate the benefits of CFLB with MPTCP in data centers, we
first enhanced the htsim packet-level simulator used in [RBP+11] to support
path selection with CFLB. We consider exactly the same Fat-Tree datacen-
ter topology as discussed in Figure 2 of [RBP+11]. This simulated datacenter
has 128 MPTCP servers, 80 eight-port switches and uses 100 Mbps links.
The traffic pattern is a permutation matrix, meaning that senders and des-
tinations are chosen at random with the constraint that destinations do not
sink more than one connection. The regular MPTCP bars of Figure 5.12
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Figure 5.12: MPTCP needs few subflows to get a good Fat Tree utilization
when using CFLB.

are the same as Figure 2 of [RBP+11]. It shows the throughput achieved
by MPTCP when MPTCP subflows are load-balanced using ECMP. The
MPTCP-CFLB bars show the throughput that MPTCP is able to obtain
when CFLB balances the MPTCP subflows over the less loaded paths. The
simulations show that with only 2 subflows, MPTCP-CFLB is much closer
to the optimum than MPTCP with hash-based load balancing. Even with
only one subflow (smartly allocated by the scheduler), improvements are
considerable and MPTCP-CFLB achieves a good utilization of the network.
This can be explained by the fact that relying on a random distribution of
subflows ends in a poor use of the available resources.

Similar results have been observed on other data center topologies such
as VL2 and BCube. We also performed simulations for an overloaded data
center and observed that using MPTCP-CFLB conjointly with a flow sched-
uler focusing on less congested paths offers more fairness amongst the dif-
ferent connections.

Testbed experiments

We modified the MPTCP Linux kernel 2.6.36 implementation [BPB11]
to add the deterministic selection feature offered by CFLB. We created a
netlink interface to the kernel so that a user-space module can interact with
MPTCP and announce to the kernel the subflows to create. The CFLB
functionality has been implemented in user-space. Our prototype allows
to control the source and destination TCP ports to follow a specific path
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Figure 5.13: Regular MPTCP is unlikely to use all paths. MPTCP-CFLB
on the other hand always manages to use all the paths.

inside an IPv4 network. The two block ciphers (RC5 and Skip32) were also
implemented inside the kernel crypto library.

A python library pycflb was developed to provide a simple API for
interacting with the user-space CFLB. We also developed an RPC server
to show the feasibility to centralize the computation of the paths. This
server has information about the network topology and is the only one that
interacts with the pycflb library. pycflb can be configured with the cipher
and key parameters in use in the network. Sources only query it to retrieve
the ports to use or to recover the path taken by a specific flow. These
three implementations (Linux MPTCP netlink-interface, user-space CFLB
and pycflb library) allow a source to deterministically map subflows to paths
and represent approximatively 4,000 lines of code.

When Multipath TCP runs on a single homed server, additional sub-
flows are created by modifying the port numbers in a random manner. Since
Multipath TCP relies on tokens to identify to which MPTCP connection a
new subflow belongs, both the source and destination TCP ports can be
used to add entropy. Combining CFLB and Multipath TCP in the Linux
MPTCP implementation provides a significant benefit because the subflow
5-tuple can be selected in such a way that the underlying path diversity of-
fered by the network can be easily exploited. We evaluate the benefits of this
technique in a small testbed with a client and a server (AMD Opteron 6128
@2GHz) and two CFLB-capable routers (Xeon X3440 @2.53GHz).

In the first experiment, each host is connected to one router via a 1Gbps
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link. The routers are directly connected via seven 100 Mbps links. These
7 links offer 7 different distinct paths between the client and the server. If
seven MPTCP-subflows are created, an optimal usage of the network should
result in about 700 Mbps of throughput. To evaluate this, we ran iperf be-
tween the hosts, creating traffic during one minute. The experiment has been
repeated 400 times to collect representative results. Figure 5.13 provides the
probability distribution function of the number of distinct paths used by the
classical MPTCP and our enhanced MPTCP-CFLB implementation.

Figure 5.13 raises the following observation: as expected, using seven
subflows, MPTCP-CFLB is able to take the full benefit of the seven paths
while the classical Multipath TCP cannot efficiently utilize them. Indeed,
the performance of MPTCP-CFLB is completely deterministic as the MP-
TCP connection balances exactly its seven subflows over the seven paths.
Among the 400 experiments, when paths are randomly selected, only two
experiments were able to use the seven paths. This can be confirmed by
the covering probability function defined in Equation 5.1. Therefore, cov-
ering the whole 7 load-balanced paths with 7 subflows the probability is
P 7

(7,7) = 0.6% ≈ 2

400
which explains the poor result of regular MPTCP. Most

of the experiments result in four or five paths being used. This implies
that two or three paths carry two competing TCP subflows from the same
MPTCP connection.

Our second evaluation (see Figure 5.14) still offers 7 distinct paths from
the source to the destination, but this time the destination has two 100 Mbps
links. One is a direct link from the load balancer to the destination and the
second is attached to the router. With only two subflows, MPTCP-CFLB is
able to saturate the two 100 Mbps interfaces of the destination. Figure 5.15
compares the performance of MPTCP and MPTCP-CFLB when the number
of subflows varies. Each measurement with MPTCP was repeated 100 times
and Figure 5.15 provides the average measured goodput. These measure-
ments clearly show that when using random TCP port numbers, MPTCP
is unable to efficiently use the two different 100 Mbps links. Increasing the
number of subflows slowly increases the performance, but adding a subflow
to an MPTCP connection comes with a significant cost. Thus, the less TCP
sublows are established, the best it is. MPTCP-CFLB is able to cover all
the available paths with the minimal cost.

5.6 Deployment and applications

In this chapter, we have mainly focused on the utilization of CFLB
in data centers networks carrying TCP/IPv4 packets. CFLB could be ap-
plied to other networking technologies. A first natural extension of CFLB
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Figure 5.14: Testbed – The maximum throughput available between S and
D is at 200 Mbps due to the bottleneck link between the router and the
destination.
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Figure 5.15: Regular MPTCP has a very small probability of using link A
of Figure 5.14 and is thus suboptimal compared to MPTCP-CFLB.

would be to deploy it for monitoring purposes. Monitoring load-balanced
paths depends on packet steering and is thus difficult. Being able to moni-
tor an ISP network or a data center network would certainly help network
operators.

In the rest of this section, we look at how the generic design of CFLB
can be adapted to real network environments. We first describe how CFLB
can be adapted to different networking technologies. Then, we describe
several applications that could exploit the path steering capability of CFLB.
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Finally, we provide some examples to setup CFLB based on the network
graph characteristics and discuss its limitations.

5.6.1 Deployment into current networking technologies

CFLB can be used with various network technologies. Depending on
the technologies, the controllable and uncontrollable fields of the packets
header may differ. We provide here a non-exhaustive list of examples where
CFLB can be easily deployed.

IP version 4

In traditional ECMP, the load balancing decision is taken on the basis
of the source and destination IP addresses, the protocol (UDP or TCP),
and the source and destination ports. They form what is called the 5-tuple.
In CFLB this 5-tuple is divided in controllable and uncontrollable fields.
Our recommendation to support CFLB in IPv4 is to use the source and
destination transport ports as controllable fields. This implies that the path
selector is encoded as a 32-bit field, we call this basic version CFLB-32.

Moreover, two extensions are possible. First, for ISP networks where
monitoring applications need to monitor very large paths, it is possible to
extend the number of bits in controllable fields. In MPLS networks, some
monitoring applications use 127.0.0.0/8 as the source address for moni-
toring packets [KS06]. Using the same approach, it would be possible to use
24 bits from the source address as part of the controllable fields, bringing a
total of 56 controllable bits (CFLB-56). Second, data centers often use ho-
mogeneous servers and specialized network stacks. Although IPv4 supports
fragmentation, almost all TCP/IP stacks use Path MTU discovery [MD90]
and avoid fragmentation. With such a recent stack, the 16 bits of the packet
identification are not required anymore and could be included in the con-
trollable fields. This would bring 48 controllable bits (CFLB-48).

IP version 6

The IPv6 header provides a larger number of bits that can be controlled
by CFLB. With IPv6, the basic solution is to use the source and destination
ports as controllable fields. The 20-bit flow label field of the IPv6 header
[RCCD04] could also be used as a controllable field. Although there have
been discussions on using the IPv6 flow label field for load balancing [CA11],
the status of this field is still unclear today. For monitoring applications,
since the 64 least significant bits of the destination address are not actually
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used for routing [dVPC+08], they could be part of the controllable fields.
For some applications, the low order 64 bits of the source address can also
be controlled. With the source and destination ports, this would make a
total of 160 controllable bits.

MultiProtocol Label Switching (MPLS)

MPLS is widely used in large ISP networks notably to provide Virtual
Private Network services. Label Switching Routers (LSRs) exchange labelled
packets over Label Switched Paths (LSPs) [RVC01]. Each packet contains a
stack of 32-bit headers and each header contains a 20-bit label and a Time-
To-Live. LSPs can be established by using different control plane protocols.
The Label Distribution Protocol (LDP) [AMT07] uses the same paths as the
IGP routing protocol while RSVP-TE [ABG+01] is able to establish an LSPs
that meets traffic engineering constraints. Two types of load balancing are
possible in MPLS networks. First, LSPs established by using LDP use the
same paths as those provided by the intradomain routing protocol. Load
balancing will occur when several paths have the same cost, which is frequent
as indicated by our analysis in Section 5.2.2. Second, RSVP-TE establishes
a single path between the ingress LSR and the egress LSR and there is thus
no load balancing along one LSP. However, a recent extension to RSVP-TE
proposes to automate the establishment of several parallel traffic engineered
LSPs [KH13] between a pair of LSRs. In this case, load balancing needs to
be performed by the ingress LSR.

CFLB can be implemented in several ways in MPLS networks. If the
network carries IPv4 or IPv6 packets, LSRs can use fields from the packet
header for load balancing. Some existing LSRs already support this form
of load balancing [BFD+11]. Note that the top label of the MPLS header
cannot be used to perform load balancing as the label changes on each
hop. However, as MPLS is becoming a generic packet transport technology,
MPLS packets often carry non-IP packets (e.g., ATM, frame-relay or Eth-
ernet frames). In this case, these packets can be encapsulated by using an
additional header such as those proposed in [BFD+11] and [KDA+12]. These
two techniques allow the ingress LSR to control per-flow bits in this addi-
tional header consecutive to the MPLS top one. This per-flow information
can be used as input by CFLB.

Transparent Interconnection of Lots of Links (TRILL)

TRILL is an IETF working group that finalizes a solution to enable
shortest-path frame routing in multi-hop Ethernet networks [TP09]. TRILL
is based on the RBridges [Per04] initially proposed by Radia Perlman. It
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replaces the IEEE 802.1d spanning tree protocol by a variant of the IS-IS
routing protocol and defines a new frame header that is used to forward
Ethernet frames. The header contains a hop-count field that could be used
by CFLB and existing TRILL switches which already support load balanc-
ing [CS13b]. For datacenter applications running IPv4 or IPv6 over Ether-
net, CFLB implementation on RBridges would use the hop-count from the
TRILL header and the fields of the IP header. For monitoring applications
that do not run above IP, one possibility would be to use a multicast MAC
address as source.

5.6.2 Applications enabled by CFLB

In this section, we describe several applications that can benefit from
the ability of CFLB to control the path forwarding on ECMP. We first an-
alyze monitoring applications that are typically used on routers, then tunnel-
ing applications and discuss how multihomed hosts could exploit CFLB.

CFLB-enabled traceroute

To diagnose routing problems, network operators often use traceroute
which is unable to correctly report paths in a network layer load balanc-
ing environment (see Section 5.2.3). Paris traceroute fixes the issues of
traceroute in that respect, and provides a probabilist algorithm to dis-
cover the set of equal cost multipath routes between a pair of routers. The
algorithm evaluates the number of probes to send in order to discover all
routes with a given bound on the failure probability. The probes use some-
how random source ports that are expected to be distributed over all possible
paths. Because of its statistical nature, Paris traceroute is likely to issue a
prohibitive number of probes to achieve a low failure probability in complex
ECMP cases. Moreover, transient failures may impact the behavior of the
algorithm, leading to uncertain results.

In networks using CFLB, traceroute can be extended to take as input
a path selector and the CFLB parameters (F , H, and B) in order to send
probes along a specific path. Moreover, traceroute can be be coupled
with an algorithm such as Algo. 5.3 to be able to discover all multipath
routes between a source and a destination without knowing the topology
(assuming that the next hops are incrementally sorted). The algorithm
defines the procedure Discover which for each hop incrementally probes the
available next hops, until the same next hop is found again. The procedure
Probe(p, ttl) computes an algorithm similar to Algorithm 5.2 that takes a
path selector p and computes the controllable fields cf to generate and send a
probe along the desired path. It eventually returns the address of the router
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Procedure: Discover(p, ttl, V )
Require: p, a path selector
Require: B, the max wide constant #nexthops

Require: ttl, the TTL to use in probes
Require: V , the set of routers already reached
1: R ← ∅

2: p′ ← p

3: while true do
4: p′ ← p′ +Bttl

5: n← Probe(p′, ttl)
6: if n ∈ R then
7: break
8: end if
9: if n ∉ V then

10: Discover(p′, ttl + 1, V ∪ {n})
11: end if
12: R ← R ∪ {n}
13: end while

Algoritm 5.3: Discovering an CFLB load balancing DAG.

that replied with an ICMP message. We make the assumption that routers
always send ICMP messages back with the same source address.

We compare the discovery capability of Paris traceroute to the us-
age of CFLB in a simple environment of successive ECMP-enabled routers.
Unfortunately, in the current Paris traceroute implementation, the failure
probability cannot be adjusted, so we use the default setting. The test bed
topology works as follows (see Figure 5.16), the routers on the primary path
between the source and the destination use ECMP with CRC-16 over the
5-tuple with a seed to avoid polarization. Each of them has another path to
the destination in the first experiment (as in Figure 5.16), or three others

R
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R
3

R
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R
5

R
6

R
7

Figure 5.16: Simple topology where 3 routers are CFLB-enabled (R1,R2 and
R4) and have 2 possible next hop to join destination D.
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in the second experiment. All paths from a given router to the destination
are of equal length. While the first hops are easy to discover using the
probabilistic approach of Paris traceroute, the last ones are more difficult
to detect since the set of flow identifiers decreases along each path. We
vary the length of the paths between three and eleven, and thus the number
of ECMP-enabled routers between one and eight. We observe that Paris
traceroute discovers all hops when there are up to 6 ECMP-enabled routers
with two choices, using 1492 probes, but only up to three routers when there
are four choices, using 296 probes. In comparison, our implementation of
CFLB coupled with the discovery algorithm requires only 34 and 29 probes,
respectively. Our improved CFLB-traceroute implementation allows to
quickly discover the topology for applications that need routing information
to select their paths. Thanks to its deterministic nature, CFLB does not
rely on any failure probability setup.

Congruent Failure Detection

Bidirectional Forwarding Detection (BFD) [KW10] is a failure detection
protocol that complements the detection components of various protocols.
BFD can be used as a companion to routing protocols like OSPF or BGP to
quickly detect link failures. BFD monitors the connectivity between a pair
of systems by using different techniques including the periodic transmission
of Echo packets. However, the utilization of ECMP paths raises some prob-
lems. Consider for example the utilization of BFD to detect the possible
failure of an iBGP session through a network that offers multiple paths. A
classical ECMP load-balancing technique would probably forward the BFD
and BGP packets over different paths and BFD would not be able to detect
the failures that affect the iBGP session.

Using CFLB, a different approach is possible. Routers know the net-
work topology from their link state database and can easily compute all
the equal cost paths towards a given destination. With this information,
the router can easily find the source and destination ports required to force
the BFD packets to follow the same path as the monitored iBGP session.
In practice, the two endpoints of the BGP session would need to agree on
the source and destination ports that each router uses for monitoring pur-
poses.

Monitorable tunnels

As another example of the benefits of CFLB, consider a network that
provides a VPN service and uses several tunnels for redundancy between
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each pair of Provider Edge (PE) routers. Such a configuration is for exam-
ple used by the AMS-IX Internet exchange7. In such network, the client
connected to the PE router could be interested in being able to monitor the
quality of each VPN tunnel. If the PE routers load balance the VPN pack-
ets by using a classical hash-based technique, then it is very difficult for the
client to discover the different paths and monitor them separately. The only
possible solution is to statistically try to explore some paths. With CFLB,
the VPN provider could either supply to its client the CFLB parameters
used on the PE router for load balancing or supply the 5-tuples it needs to
use for monitoring all paths.

SLA verification

The verification of Service Level Agreements (SLA) is an important
monitoring problem in many commercial ISPs. Commercial tools running
on routers exchange monitoring packets to measure these SLAs and report
violations [CS13c]. With ECMP the equal-cost multiple paths may not all
meet these SLAs [MC09]. With CFLB, the sending router can compute a
path selector that will allow to probe a particular path or a set of paths to
verify the SLAs.

5.6.3 Calibration and limitations

CFLB is easily parametrizable when knowing the network routing char-
acteristics. The values of B and the number of controllable bits might vary
according to the environments and applications. If the maximum number
of ECMP next hops in the network is small, CFLB can use a small B value
increasing therefore the length of the paths selector, i.e., the number of
controllable routers.

Figure 5.17 shows for different values of X, i.e., the number of control-
lable bits, the number of router’s decisions (see Equation 5.4) that can be
encoded in p regarding the value of the radix B. If we consider a worst case
scenario, where there exists a path whose length is equal to the diameter of
the network and where each node potentially offers maximal load-balancing
capabilities. We observed that there are at most 6 next hops on each router
for our set of ISP networks presented in Section 5.2.2 (see Figure 5.1). With
B = 6 and CFLB-32, based on Figure 5.17, one is able to encode 12 router
decisions inside the path selector.

We found that, for all the ISP networks evaluated in Section 5.2.2, the
maximum length of each path is lower than 16 hops. In the case of CFLB-

7See http://www.ams-ix.net/infrastructure-detail/.

http://www.ams-ix.net/infrastructure-detail/
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Figure 5.17: The large B value is the less routers decisions can be encoded
inside p.

32, there are not enough bits to encode a path of 16 hops. Only 12 hops
long path can be encoded. However, depending on the location of CFLB-
enabled routers on the paths, one can encode a path longer than 12 hops
in the path selector. Indeed, if one or more router within the 12 hops does
not offer local diversity towards the destination, then, one can encode in the
corresponding part of the path selector the decision for the router located
12 hops later. If one of the 6 first hops of longest paths does not provide
multi-next hops, we can re-use the forwarding decision of the ith to encode
the 12+ithone. To understand how efficient can be this technique in practice
within ISP topologies, we evaluate the number of path that contains 2 or
more ECMP-enabled routers separated by 12 hops, i.e., the number of non
entirely controllable paths. Results showed that only a very small number
of equal cost paths are impacted by the issue, only 0.5%, 0%, 0.05% and
0.03% respectively for Tiscali, AboveNet, Tier-1 ISP 1 and Tier-2 ISP 2.
This limitation is negligible for multipath transport applications on servers
but may impact monitoring applications. To fully explore all paths, one
needs to increase the path selector size or use additional monitoring sources.
From Equation 5.4 we can derive:

X = ⌈log2(BL)⌉ (5.12)

To cover networks that are 16 hops wide and with maximum 6 potential
next hops 42 bits are therefore required. In this extreme case, the use of
CFLB-48 ore CFLB-56 are mandatory (see Section 5.6.1).

In Section 5.2.2, we saw that the ECMP local diversity of data center
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is high. We found that at maximum there are 10 next hops for the BCube
topology. Therefore, a minimal value of B = 10 is required to represent the
routers forwarding decision. Compared to ISPs topologies, paths in data
center contain a small number of hops, the longest shortest path only has 6
hops. Thus, 20 bits are sufficient to encode the path selector, this is lower
than the number of controllable bits CFLB can use in a data center envi-
ronment (48 bits for IPv4). Furthermore, these environments are particu-
larly well suited for multipath transport layer applications on the server-side
which do not require a complete end-to-end path exploration.

5.7 Conclusion

Most data centers networks rely on hash-based load balancing to dis-
tribute the load over multiple paths. Hash-based techniques allow to effi-
ciently spread the load but it is difficult to predict and force the next-hop
selection that such load balancers will take. In this chapter, we have shown
that it is possible to achieve both efficient load balancing while enabling
hosts to explicitly select the paths of their flows without storing any state
in the network. This opens new ways for MPTCP-enabled hosts and load
balancers to interact in order to improve the network performance and uti-
lization.

Controllable per-Flow Load Balancing relies on invertible functions,
such as block ciphers, instead of solely using classical hash-based selection.
Thanks to an invertible operation, it is possible to preserve the properties
of currently used hash functions with the added benefit of enabling CFLB-
aware sources to steer elephant flows over selected load-balanced paths. We
envision a data center where mice flows are distributed using the classical
load balancing model while elephant flows are deterministically allocated
to less congested paths. Our simulations indicate that CFLB is as efficient
as classical hash-based techniques to achieve an optimal load distribution.
Performance measurements in our lab have shown that our prototype im-
plementation in the Linux kernel achieves almost the same performance as
the default load balancing. Furthermore, we have shown that by coupling
CFLB with MPTCP it is possible to greatly improve the utilization of data
center networks offering path diversity between pairs of servers.

We hope that CFLB will encourage other researchers and network man-
ufacturers to reconsider the utilization of blind hash functions in various
types of load balancers.





Chapter 6

Conclusion

The objective of this thesis was to evaluate the deployment and advan-
tages of Multipath TCP in various types of networks. We have shown that
Multipath TCP can bring advantages inside data centers but also and more
importantly for mobile devices. Indeed, the ubiquity of WiFi Access Points
and the cost of mobile data network connectivity encourages the smartphone
users and network operator to use WiFi instead of 3G. Moving from 3G to
WiFi is not currently supported by the Internet protocol suite burdening
the end user and decreasing its overall experience. We showed that MPTCP
provides an actual support for handovers for these users as their connections
can survive connectivity losses. We finally showed that end users can benefit
from MPTCP in today’s Internet with legacy servers thanks to the use of
protocol converters.

Thanks to its many advantages, MPTCP will soon play an important
role for mobile users and manufacturers as well as alternative to other – more
expensive – mobile data solutions offloading from 3G or LTE to WiFi. Apple
Inc. is the first smartphone manufacturer to believe in MPTCP [Bon13]. It
uses MPTCP in a specific application (Siri) to reduce the delay and improve
the reliability of the data stream sent by the smartphone [app14]. If Apple
believes in MPTCP, it is very likely that other big players will follow.

6.1 Detailed contribution

The contributions of this thesis are threefold. First, we implemented
the mobility support of MPTCP and evaluated its benefit in a mobile envi-
ronment. Second, we analyzed the deployability of MPTCP by developing
a tool to identify middleboxes that can interfere with the TCP connections.
We also have analyzed the deployment of MPTCP regarding the incentive
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problem and have proposed a solution to accelerate its deployment. Finally,
we showed that data center networks can be improved to better support
multipath protocols.

In Chapter 2, we presented different ways of performing mobility in
a WiFi/3G environment with MPTCP depending on the user requirement,
i.e., if he desires high bandwidth, reduce cost and battery lifetime. Our
experiments in commercial networks show that MPTCP could play a role
to improve mobile users’ experience as well as for WiFi/3G convergence.
Compared to custom applications that are difficult to realize in practice,
MPTCP reacts quickly to recover from WiFi losses in presence of 3G with
only a small impact on the application delay and goodput.

In Chapter 3, we present tracebox, a new extension to the well known
traceroute tool. tracebox can detect middleboxes interference by gen-
erating probes with increased TTL values and compare the ICMP replies
with the probes sent. tracebox gives a flexible interface to generate a large
space of different types of probes. We learned from this part that there
exists middleboxes that remove MPTCP options as it is often considered as
an unknown TCP option by middleboxes. Nevertheless, we found that these
middleboxes are not common which implies that MPTCP-enable devices can
most of the time benefit from MPTCP.

Chapter 2 motivated Chapter 4. Indeed, we showed that MPTCP
brings many benefits to the end user. However as every new protocol it suf-
fers from deployment incentive problem. Both hosts have to support it to
benefit from it and there is no incentive for one to support it if the other one
does not. We proposed to place on the Internet protocol converters that con-
vert MPTCP connections to regular TCP. Allowing the host that redirects
its connection through the converter to benefit from MPTCP. We showed
that it is possible to implement an efficient version of such a converter and
that it can reduce the end-to-end application delay in lossy networks.

In Chapter 5, we evaluated MPTCP in a different environment where
it can bring benefits. The literature already showed that the multiple paths
of data center networks can be used by MPTCP to improve performance.
In this chapter, we evaluated whether the current design of data centers is a
good fit for MPTCP. We learned that the current load balancing technique
brings a limitation for multipath protocols as it is difficult to ensure that
subflows follow disjoint paths in the network. We proposed a new way of
performing load balancing that allows a source to ensure that a flow will
follow a specific path without requiring a modification to the format of the
packets. MPTCP can benefit from it by establishing as many subflows as
there exist paths between a source and a destination in order to fully utilize
the network. We showed that this new load-balancing technique gives similar
load balancing performance for uncontrolled flows and improve the overall
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performances.

6.2 Perspectives and further work

In this thesis we focused on the deployability of MPTCP on the client
side. To be fully deployed on both the client and the server side middleboxes,
such as firewall, have also to be updated to support MPTCP. This may raise
many challenges. For example, some implementations of server load balanc-
ing use a hash function on the 5-tuple to redirect incoming connections to
servers. This allows to perform a stateless load balancing. With MPTCP
subflows will have different hash results and so might be redirected to dif-
ferent servers. The same problems occurs when enabling IPv6 with Happy
Eyeballs. This current stateless implementation of load balancer is therefore
not enough in a MPTCP-enabled world. Two possible solutions are either
to modify the protocol so that each packet contains a unique identifier that
can be used to load-balance subflows or load balancers must terminate the
MPTCP connections or maintain some state.

In this thesis we have proposed and evaluated different tools and mech-
anisms that bring benefit to MPTCP in specific situations. tracebox opens
new directions to allow researchers to better understand the deployment of
middleboxes in the global Internet. As of the writing of this thesis, tracebox
is still a work in progress. The tracebox API can be improved to simplify
the scripting capability as well as to provide better support for various lay-
ers such as SCTP, GRE, LISP, etc. The evaluation we have performed on
tracebox was mainly to assess that tracebox can help understanding and
detecting middleboxes. PlanetLab is not the right place to actually detect
middleboxes, even if we detected some of them. Many other measurement
platforms exist, such as RIPE Atlas [RIP13] or SamKnows [sam13]. These
measurement platforms are a better place to perform middlebox detection,
they are placed behind commercial providers and not university network
providers as PlanetLab nodes. They allow to perform large-scale measure-
ment campaigns to analyze in more details middlebox interferences in IPv4
and IPv6 networks. tracebox could also be extended to contain a database
of middleboxes footprints such that when it detects a packet modification it
could fingerprint the middlebox responsible of this modification similarly as
what Nmap [Lyo09] does to identify hosts on the Internet.

The protocol converter presented in Chapter 4 allows to transform
a MPTCP connection into a regular TCP one and vice versa. Other re-
searchers have proposed to use transparent proxies within the network [ARBW12a,
XGHZ12], i.e., to use MPTCP if both end hosts only supports TCP. Our
proposed protocol converter could be used in similar ”double proxies” sce-
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narios. It has to be evaluated to understand the behavior of the converter
in such scenarios and whether it brings the desired features.

Our evaluation of the mobility using MPTCP could be extended to
consider different environments and applications. Now more and more user
share their WiFi and some operators activate WiFi sharing solutions such as
FON on their set-top boxes. It could be interesting to evaluate the mobility
of a device that only has a single or multiple WiFi interfaces. Moving from
one access point to another with periods during which no connectivity is
available. Evaluating different types of applications in this scenario can
help understanding if smartphones can disable 3G/LTE in a crowded area
where there exist a large number of free Hotspots.



Acronyms

3DES Triple DES.

ACK Acknowledgement.

ADSL Asymmetric Digital Subscriber Line.

AES Advanced Encryption Standard.

ALG Application Level Gateway.

ALTO Application-Layer Traffic Optimization.

API Application Programming Interface.

ATM Asynchronous transfer mode.

BFD Bidirectional Forwarding Detection.

BGP Border Gateway Protocol.

CDF Cumulative Distribution Function.

CFLB Controllable per-Flow Load Balancing.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DACK Data Acknowledgement.

DAG Directed Acyclic Graph.

DES Data Encryption Standard.

DNS Domain Name System.

DSN Data Sequence Number.

DSS Data Sequence Signal.
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ECMP Equal Cost Multi-Path.

ECN Explicit Congestion Notification.

FIN Finish.

FPE Format-Preserving Encryption.

FTP File Transfer Protocol.

GRE Generic Routing Encapsulation.

HMAC keyed-Hash Message Authentication Code.

HTTP HyperText Transfer Protocol.

IANA Internet Assigned Numbers Authority.

iBGP internal Border Gateway Protocol.

ICMP Internet Control Message Protocol.

IDS Intrusion Detection System.

IDSN Initial Data Sequence Number.

IETF Internet Engineering Task Force.

IGP Interior Gateway Protocol.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

IS-IS Intermediate System to Intermediate System.

ISN Initial Sequence Number.

ISP Internet Service Provider.

LDP Label Distribution Protocol.

LISP Locator/Identifier Separation Protocol.

LSP Label Switched Path.

LSR Label Switched Router.

LTE Long Term Evolution.

MD5 Message Digest 5.
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MiMBox Multipath in the Middle(Box).

MIPv6 Mobile IPv6.

MPLS Multiprotocol Label Switching.

MPLS-TP MPLS Transport Profile.

MPTCP Multipath TCP.

MSS Maximum Segment Size.

MTU Maximum Transmission Unit.

NAT Network Address Translator.

NIC Network Interface Controller.

NOP No Operation.

OS Operating System.

OSI Open Systems Interconnection.

OSPF Open Shortest Path First.

PE Provider Edge.

RBridges Routing Bridges.

RFC Request For Comments.

RFS Receive Flow Steering.

RST Reset.

RSVP-TE Resource Reservation Protocol – Traffic Engineering.

RTO Retransmission Timeout.

RTP Real-time Transport Protocol.

RTT Round-Trip Time.

SACK Selective Acknowledgement.

SCTP Stream Control Transmission Protocol.

SCTP-CMT SCTP Concurrent Multipath Transfer.

SLA Service Level Agreement.

SOCKS Socket Secure.
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SYN Synchronize.

TCP Transmission Control Protocol.

TRILL Transparent Interconnection of Lots of Links.

TTL Time To Live.

UDP User Datagram Protocol.

VLAN Virtual LAN.

VoIP Voice over IP.

VP Vantage Point.

VPN Virtual Private Network.

WCCP Web Cache Communication Protocol.

WiFi Wireless Fidelity.

XCB eXtended CodeBook.
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