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sian sequence space models

Jan Johannes, Rudolf Schenk and Anna Simoni

Abstract We consider the inverse problem of recovering a signal θ in a Gaus-
sian sequence space model (GSSM). We adopt a Bayes procedure and study its
frequentist properties. We first derive lower and upper bounds for the posterior
concentration rate over a family of Gaussian prior distributions indexed by a
tuning parameter m. Under a suitable choice of m we derive a concentration rate
uniformly over a class of parameters θ and show that this rate coincides with
the minimax rate. Then, we construct a hierarchical fully data-driven Bayes
procedure and show that it is minimax adaptive.

Introduction
Over the last decade, there has been growing interest in statistical inverse prob-
lems (see, e.g., [11], [6], [5] and references therein) due to the fact that they are
widely used in many fields of science. Mathematical statistics has paid special
attention to minimax estimation and adaptation. Inference for inverse problems
in general requires to choose a tuning parameter which is challenging in prac-
tice. Minimax estimation is achieved if the tuning parameter is set to an optimal
value which relies on knowledge of the smoothness of the unknown parameter of
interest. Since this smoothness is unknown, it is necessary to design a feasible
procedure to select the tuning parameter which adapts to the unknown regular-
ity of the underlying function and achieves the minimax rate. To obtain such an
adaptive procedure it seems natural to adopt a Bayesian point of view where this
tuning parameter can be endowed with a prior. As the theory for a general in-
verse problem – with a possibly unknown or noisy operator – is technically highly
involved, we consider as a starting point an indirect Gaussian regression which
is well known to be equivalent to an indirect GSSM (in a LeCam sense). Let `2
be the Hilbert space of square summable real valued sequences endowed with
the usual inner product 〈·, ·〉`2 and associated norm ‖·‖`2 . In a GSSM we con-
sider the inverse problem of recovering a signal θ = (θj)j>1 ∈ `2 from a version
that is blurred by Gaussian white noise. We adopt a Bayesian approach, where
the conditional distribution of the observations given the parameter is Gaussian,
i.e., Y j |ϑj = θj ∼ N

(
λjθj , ε

)
, independent, for j ∈ N, with noise level ε > 0.

The sequence (λj)j>1, λ for short, represents the operator which transforms the
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CNRS and Thema, Université de Cergy-Pontoise, France, e-mail: simoni.anna@gmail.com

1



2 Adaptive Bayesian estimation in GSSM

signal. We consider a Gaussian prior on ϑ = (ϑj)j>1 and focus on asymptotic
frequentist properties of its posterior distribution, that is, we are interested in
the rate at which the posterior distribution concentrates towards a point mass
on the value of θ that generates the data. For a more detailed discussion see
[1, 2, 7] and [8]. Our first contribution is to obtain a lower and upper bound
of the concentration rate of the posterior distribution uniformly over a class of
parameters. It is interesting to note that [4] derives a similar result in a direct
GSSM, where the obtained rate may be up to a logarithmic factor slower than
the minimax rate given in, e.g., [9]. However, the rate derived in this paper is
shown to coincide with the minimax rate when the hyperparameter of the prior
is suitably chosen. Our second contribution consists in introducing a hierarchical
structure similar to the compound prior considered by [12] and [13] and show-
ing that the corresponding fully data-driven Bayes procedure achieves minimax
adaptive inference for the GSSM. The proofs are given in [10].

1.1 Basic model assumptions
Let us consider a Gaussian prior distribution for the parameter ϑ, that is {ϑj}j>1

are independent, normally distributed with prior means (θ×j )j>1 and prior vari-
ances (ςj)j>1, i.e., ϑj ∼ N (θ×j , ςj), independent, for j ∈ N. Standard calculus
shows that the posterior distribution of ϑ given Y = (Y j)j>1 is Gaussian, that
is, given Y , {ϑj}j>1 are conditionally independent, normally distributed random
variables with posterior variance σ2

j := Var(ϑj |Y ) = (λ2
jε
−1 + ς−1

j )−1 and poste-
rior mean θYj := E[ϑj |Y ] = σ2

j (ς−1
j θ×j + λjε

−1 Y j), for all j ∈ N. Taking this as a
starting point, we construct a sequence of hierarchical prior distributions. To be
more precise, let us denote by δx the Dirac measure in the point x. Given m ∈ N,
we consider the independent random variables {ϑmj }j>1 with marginal distribu-
tions ϑmj ∼ N (θ×j , ςj), 1 6 j 6 m and ϑmj ∼ δθ×j

, m < j, independent, j ∈ N,
resulting in the degenerate prior distribution Pϑm . Here, we use the notation
ϑm = (ϑmj )j>1. Consequently, {ϑmj }j>1 are conditionally independent given Y

and their posterior distribution Pϑm |Y is Gaussian with mean θYj and variance
σ2
j for 1 6 j 6 m while being degenerate on θ×j for j > m. Let 1A denote the

indicator function which takes the value one if the condition A holds true, and
the value zero otherwise. Hence, the common Bayes estimate θ̂m := E[ϑm |Y ] is
given for j > 1 by θ̂mj := θYj 1{j 6 m}+θ×j 1{j > m}.
From a Bayesian point of view, the thresholding parameter m plays the role of
a hyperparameter and hence, we may complete the prior specification by in-
troducing a prior distribution on it. Consider a random thresholding parame-
ter M taking its values in {1, . . . , Gε} for some Gε ∈ N with prior distribution
PM . Both Gε and PM will be specified in section 1.3. Conditionally on M , the
distributions of the random variables {Y j}j>1 and {ϑM

j }j>1
are determined by

Y j = λj ϑ
M +
√
εζj and ϑM

j = θ×j +
√
ςjηj 1{1 6 j 6 M} where {ζj , ηj}j>1 are iid.

standard normal random variables independent of M . Furthermore the poste-
rior mean θ̂ := E[ϑM |Y ] is the Bayes estimate which satisfies θ̂j = θ×j for j > Gε

and for all 1 6 j 6 Gε θ̂j = θ×j P (1 6 M 6 j − 1|Y ) + θYj P (j 6 M 6 Gε|Y ).
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1.2 Optimal concentration rate
Conditional on Y , the random variables {ϑmj −θoj}mj=1 are independent and nor-
mally distributed with conditional mean θYj − θoj and conditional variance σ2

j .
The next assertion presents a version of tail bounds for sums of independent
squared Gaussian random variables which is due to [3].

Lemma 1.1. Let {Xj}j>1 be independent and normally distributed r.v. with mean
αj ∈ R and standard deviation βj > 0, j ∈ N. For m ∈ N set Sm :=

∑m
j=1X

2
j and

consider vm >
∑m
j=1 β

2
j , tm > max16j6m β

2
j and rm >

∑m
j=1 α

2
j . Then for all c > 0

we have

supm>1 exp
(

1
4c(c ∧ 1)(vm + 2rm)t−1

m

)
P
(
Sm − ESm 6 −c(vm + 2rm)

)
6 1;

supm>1 exp
(

1
4c(c ∧ 1)(vm + 2rm)t−1

m

)
P
(
Sm − ESm > 3c

2 (vm + 2rm)
)
6 1.

A major step towards establishing a concentration rate of the posterior distribu-
tion consists in finding a finite sample bound for a fixed m ∈ N. We express these
bounds in terms of

bm :=
∑
j>m(θoj − θ×j )2, vm :=

∑m
j=1 σ

2
j with σ2

j = (λ2
jε
−1 + ς−1

j )−1;

tm := max16j6m σ
2
j and rm :=

∑m
j=1(Eθo [θYj ]− θoj)2 =

∑m
j=1 σ

4
j (ς−2

j (θ×j − θoj)2).

The desired convergence to zero of all the aforementioned sequences necessitates
to consider appropriate subsequences in dependence of the noise level ε, notably
(vmε

)mε>1, (tmε
)mε>1 and (rmε

)mε>1.

Assumption 1.2. There exist constants 0 < εo := εo(θo, λ, θ
×, ς) < 1 and 0 <

K := K(θo, λ, θ
×, ς) < ∞ such that the prior distribution satisfies the condition

sup0<ε<εo(rmε
∨mεtmε

)/(bmε
∨ vmε

) 6 K.

Proposition 1.3. Under Assumption 1.2, for all 0 < ε < εo and 0 < c < 1/(8K):

EθoPϑmε |Y (‖ϑmε −θo‖2`2 > (4 + (11/2)K)[bmε
∨ vmε

]) 6 2 exp(−mε

36 );

EθoPϑmε |Y (‖ϑmε −θo‖2`2 < (1− 8 cK)[bmε
∨ vmε

]) 6 2 exp(−c2mε).

Thereby, if we assume in addition that vmε
= o(1) and mε → ∞ as ε → 0 then

we obtain by the dominated convergence theorem that also bmε = o(1). Hence,
(bmε ∨ vmε)mε>1 converges to zero and is indeed a posterior concentration rate.

Theorem 1.4 (Posterior consistency). Under Assumption 1.2 if mε → ∞ and
vmε

= o(1) as ε→ 0, then

lim
ε→0

EθoPϑmε |Y ((1− 8cK)[bmε
∨ vmε

] 6 ‖ϑmε −θo‖2`2 6 (4 + 11K/2)[bmε
∨ vmε

]) = 1.

The last assertion shows that (bmε
∨ vmε

)mε>1 is up to a constant a lower and
upper bound of the concentration rate.

Proposition 1.5 (Bayes estimate consistency). Let the assumptions of Theorem
1.4 be satisfied and θ̂mε := E[ϑmε |Y ] then Eθo‖θ̂mε − θo‖2`2 6 (3 + K)[bmε

∨ vmε
]

and consequently Eθo‖θ̂mε − θo‖2`2 = o(1) as ε→ 0.
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4 Adaptive Bayesian estimation in GSSM

The previous results are obtained under Assumption 1.2. However, it may be dif-
ficult to verify whether a prior specification satisfies such an assumption. There-
fore, we now introduce an assumption which states a more precise requirement
on the prior variance and that can be more easily verified.

Assumption 1.6. Define Λj := λ−2
j , j > 1, Λ(m) := max16j6m Λj and Λm :=

m−1
∑m
j=1 Λj , m > 1. There exist constants εo ∈ (0, 1) and d > 0 such that ςj >

d[ε1/2Λ
1/2
j ∨ εΛj ] for all 1 6 j 6 mε and for all 0 < ε < εo.

If there exists in addition to Assumption 1.6 a strictly positive constant L :=
L(θo, λ, θ

×) <∞ such that

sup
0<ε<εo

εmε Λ(mε){bmε ∨ εmε Λmε}
−1

6 L (1.1)

holds true, then Assumption 1.2 is satisfies with K := (1 ∨ d−2‖θo − θ×‖2`2)L.

Corollary 1.7. Let Assumption 1.6 and (1.1) be satisfied, then for all 0 < ε < εo
and 0 < c < 1/(8K) we have

EθoPϑmε |Y (‖ϑmε −θo‖2`2 > (4 + (11/2)K)[bmε
∨ εmεΛmε

]) 6 2 exp(−mε

36 );

EθoPϑmε |Y (‖ϑmε −θo‖2`2 < (1− 8 cK)(1 + d−1)−1[bmε
∨ εmεΛmε

]) 6 2 exp(−c2mε).

Under the conditions of the last assertion, the sequence (bmε
∨ εmεΛmε

)mε>1

provides up to constants a lower and upper bound for the concentration rate. The
result implies consistency if (bmε

∨ εmεΛmε
)mε>1 as ε→ 0 but it does not answer

the question of optimality in a satisfactory way. Observe that the rate depends on
the parameter of interest θo and we could optimize the rate for each θo separately,
but we are rather interested in a uniform rate over a class of parameters. Given
a strictly positive non-decreasing sequence a =

(
aj
)
j>1

with a1 = 1 tending to
infinity consider for θ ∈ `2 its weighted norm ‖θ‖2a :=

∑
j>1 ajθ

2
j . We define `a2 as

the completion of `2 with respect to ‖·‖a. In order to formulate the optimality of
the posterior concentration rate let us define

m?
ε := m?

ε(a, λ) := arg min
m>1

[a−1
m ∨ εmΛm] and

R?ε := R?ε
(
a, λ
)

:= [a−1
m?

ε
∨ εm?

ε Λm?
ε
] for all ε > 0.

We introduce a further assumption in order to get the next theorem.

Assumption 1.8. Let a and λ be sequences such that

0 < κ := κ(a, λ) := inf
0<ε<εo

{(R?ε)−1[a−1
m?

ε
∧ εm?

ε Λm?
ε
]} 6 1.

We illustrate the last assumption for typical choices of the sequences a and λ. For
two strictly positive sequences (aj)j>1 and (bj)j>1 we write aj ∼ bj , if (aj/bj)j>1

is bounded away from 0 and infinity.

4
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[P-P] Consider aj ∼ j2p and λ2
j ∼ j−2a with p > 0 and a > 0 thenm?

ε ∼ ε−1/(2p+2a+1)

and R?ε ∼ ε2p/(2a+2p+1).

[E-P] Consider aj ∼ exp(j2p − 1) and λ2
j ∼ j−2a with p > 0 and a > 0 then m?

ε ∼
| log ε− 2a+1

2p (log | log ε|)|1/(2p) and R?ε ∼ ε| log ε|(2a+1+2s)/(2p).

[P-E] Consider aj ∼ j2p and λ2
j ∼ exp(−j2a + 1), with p > 0 and a > 0 then

m?
ε ∼ | log ε− 2p+(2a−1)+

2a (log | log ε|)|1/(2a) and R?ε ∼ | log ε|−(p−s)/a.

In all three cases Assumption 1.8 holds true. We assume in the following that the
parameter θo belongs to the ellipsoid Θr

a := {θ ∈ `a2 : ‖θ − θ×‖2a 6 r} and therefore,
bm 6 a−1

m r. In addition we suppose that

L̃ := L̃(a, λ) := sup
0<ε<εo

εm?
ε Λ(m?

ε)(R?ε)−1 <∞. (1.2)

We note that under Assumption 1.8 and (1.2) the condition (1.1) is satisfied uni-
formly for all θo ∈ Θr

a with L = L̃/κ.

Theorem 1.9 (Optimal posterior concentration rate). Suppose that the sequence
of prior distributions (Pϑm?

ε )m?
ε

satisfies Assumption 1.6 and let Assumption 1.8
and (1.2) be satisfied. Then there exists a constant K := K(Θr

a, λ, d, κ) such that

lim
ε→0

inf
θo∈Θr

a

EθoPϑm?
ε |Y (‖ϑm

?
ε −θo‖2`2 6 KR?ε) = 1, moreover,

if Ψε/R?ε = o(1) as ε→ 0 then limε→0 supθo∈Θr
a
EθoPϑm?

ε |Y (‖ϑm
?
ε −θo‖2`2 6 Ψε) = 0.

Remark 1.10. The rate R?ε = R?ε
(
Θr

a, λ
)

is optimal in a minimax sense. To be
more precise, given an estimator θ̂ of θ let supθ∈Θr

a
Eθ‖θ̂ − θ‖2 denote the maximal

mean integrated squared error (MISE) over the class Θr
a. It has been shown in [9]

that R?ε provides up to a constant a lower bound for the maximal MISE over the
class Θr

a and that there exists an estimator attaining this rate.

Proposition 1.11 (Minimax-optimal Bayes estimate). Let the assumptions of The-
orem 1.12 be satisfied and θ̂m

?
ε := E[ϑm

?
ε |Y ] then there exists a constant K :=

K(Θr
a, λ, d, κ) such that supθo∈Θr

a
Eθo‖θ̂m

?
ε − θo‖2`2 6 KR?ε.

1.3 Adaptive Bayesian estimation
We will derive a concentration rate given the aforementioned hierarchical prior
distribution. For this purpose set Gε := max{m ∈ N : εΛ(m) 6 1} and

pM (m) =
exp(−3m

2ε )
∏m
j=1(1 + λ2

j ςjε
−1)1/2∑Gε

m′=1 exp(−3m′

2ε )
∏m′

j=1(1 + λ2
j ςjε

−1)1/2
for 1 6 m 6 Gε .

5



6 Adaptive Bayesian estimation in GSSM

Theorem 1.12 (Optimal posterior concentration rate). Suppose that the sequence
of prior distributions (PϑGε )Gε

satisfies Assumption 1.6 and in addition that m?
ε

satisfies Assumption 1.8 and (1.2). Then there exists a constantK := K(Θr
a, λ, d, κ)

such that

lim
ε→0

inf
θo∈Θr

a

EθoPϑM |Y (‖ϑM −θo‖2`2 6 KR?ε) = 1, moreover,

if Ψε/R?ε = o(1) as ε→ 0 then limε→0 supθo∈Θr
a
EθoPϑM |Y (‖ϑM −θo‖2`2 6 Ψε) = 0.

We shall emphasize that the concentration rate derived from the hierarchical
prior coincides with the minimax optimal rate R?ε = R?ε

(
Θr

a, λ
)

of the maximal
MISE over the class Θr

a. In particular this prior does not involve any knowledge
of the class Θr

a, therefore, the corresponding Bayes estimate is fully-data driven.
The next assertion establishes its minimax-optimality.

Proposition 1.13 (Minimax-optimal Bayes estimate). Under the assumptions
of Theorem 1.12. Consider the Bayes estimate θ̂ := E[ϑM |Y ] then there exists a
constant K := K(Θr

a, λ) such that supθo∈Θr
a
Eθo‖θ̂ − θo‖2`2 6 KR?ε for all ε > 0.

Our procedure extends and completes the procedure proposed by [13] in two per-
spectives. First, it allows a prior variance more general than the polynomially
decreasing one. Second, in addition to prove minimax-optimality of the Bayes es-
timator, we prove concentration at the optimal rate of the posterior distribution.

Conclusions and perspectives. We have presented a hierarchical prior lead-
ing to a fully data-driven Bayes estimate that is minimax-optimal in an indirect
GSSM. Obviously, the concentration rate based on a hierarchical prior in an indi-
rect GSSM possibly with additional noise in the eigenvalues is only one amongst
the many interesting questions for further research and we are currently explor-
ing this topic.
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uniformly over a class of parameters θ and show that this rate coincides with
the minimax rate. Then, we construct a hierarchical fully data-driven Bayes
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lems (see, e.g., [11], [6], [5] and references therein) due to the fact that they are
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attention to minimax estimation and adaptation. Inference for inverse problems
in general requires to choose a tuning parameter which is challenging in prac-
tice. Minimax estimation is achieved if the tuning parameter is set to an optimal
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involved, we consider as a starting point an indirect Gaussian regression which
is well known to be equivalent to an indirect GSSM (in a LeCam sense). Let `2
be the Hilbert space of square summable real valued sequences endowed with
the usual inner product 〈·, ·〉`2 and associated norm ‖·‖`2 . In a GSSM we con-
sider the inverse problem of recovering a signal θ = (θj)j>1 ∈ `2 from a version
that is blurred by Gaussian white noise. We adopt a Bayesian approach, where
the conditional distribution of the observations given the parameter is Gaussian,
i.e., Y j |ϑj = θj ∼ N

(
λjθj , ε

)
, independent, for j ∈ N, with noise level ε > 0.
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2 Adaptive Bayesian estimation in GSSM

signal. We consider a Gaussian prior on ϑ = (ϑj)j>1 and focus on asymptotic
frequentist properties of its posterior distribution, that is, we are interested in
the rate at which the posterior distribution concentrates towards a point mass
on the value of θ that generates the data. For a more detailed discussion see
[1, 2, 7] and [8]. Our first contribution is to obtain a lower and upper bound
of the concentration rate of the posterior distribution uniformly over a class of
parameters. It is interesting to note that [4] derives a similar result in a direct
GSSM, where the obtained rate may be up to a logarithmic factor slower than
the minimax rate given in, e.g., [9]. However, the rate derived in this paper is
shown to coincide with the minimax rate when the hyperparameter of the prior
is suitably chosen. Our second contribution consists in introducing a hierarchical
structure similar to the compound prior considered by [12] and [13] and show-
ing that the corresponding fully data-driven Bayes procedure achieves minimax
adaptive inference for the GSSM. The proofs are given in [10].

1.1 Basic model assumptions
Let us consider a Gaussian prior distribution for the parameter ϑ, that is {ϑj}j>1

are independent, normally distributed with prior means (θ×j )j>1 and prior vari-
ances (ςj)j>1, i.e., ϑj ∼ N (θ×j , ςj), independent, for j ∈ N. Standard calculus
shows that the posterior distribution of ϑ given Y = (Y j)j>1 is Gaussian, that
is, given Y , {ϑj}j>1 are conditionally independent, normally distributed random
variables with posterior variance σ2

j := Var(ϑj |Y ) = (λ2
jε
−1 + ς−1

j )−1 and poste-
rior mean θYj := E[ϑj |Y ] = σ2

j (ς−1
j θ×j + λjε

−1 Y j), for all j ∈ N. Taking this as a
starting point, we construct a sequence of hierarchical prior distributions. To be
more precise, let us denote by δx the Dirac measure in the point x. Given m ∈ N,
we consider the independent random variables {ϑmj }j>1 with marginal distribu-
tions ϑmj ∼ N (θ×j , ςj), 1 6 j 6 m and ϑmj ∼ δθ×j

, m < j, independent, j ∈ N,
resulting in the degenerate prior distribution Pϑm . Here, we use the notation
ϑm = (ϑmj )j>1. Consequently, {ϑmj }j>1 are conditionally independent given Y

and their posterior distribution Pϑm |Y is Gaussian with mean θYj and variance
σ2
j for 1 6 j 6 m while being degenerate on θ×j for j > m. Let 1A denote the

indicator function which takes the value one if the condition A holds true, and
the value zero otherwise. Hence, the common Bayes estimate θ̂m := E[ϑm |Y ] is
given for j > 1 by θ̂mj := θYj 1{j 6 m}+θ×j 1{j > m}.
From a Bayesian point of view, the thresholding parameter m plays the role of
a hyperparameter and hence, we may complete the prior specification by in-
troducing a prior distribution on it. Consider a random thresholding parame-
ter M taking its values in {1, . . . , Gε} for some Gε ∈ N with prior distribution
PM . Both Gε and PM will be specified in section 1.3. Conditionally on M , the
distributions of the random variables {Y j}j>1 and {ϑM

j }j>1
are determined by

Y j = λj ϑ
M +
√
εζj and ϑM

j = θ×j +
√
ςjηj 1{1 6 j 6 M} where {ζj , ηj}j>1 are iid.

standard normal random variables independent of M . Furthermore the poste-
rior mean θ̂ := E[ϑM |Y ] is the Bayes estimate which satisfies θ̂j = θ×j for j > Gε

and for all 1 6 j 6 Gε θ̂j = θ×j P (1 6 M 6 j − 1|Y ) + θYj P (j 6 M 6 Gε|Y ).

2
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1.2 Optimal concentration rate
Conditional on Y , the random variables {ϑmj −θoj}mj=1 are independent and nor-
mally distributed with conditional mean θYj − θoj and conditional variance σ2

j .
The next assertion presents a version of tail bounds for sums of independent
squared Gaussian random variables which is due to [3].

Lemma 1.1. Let {Xj}j>1 be independent and normally distributed r.v. with mean
αj ∈ R and standard deviation βj > 0, j ∈ N. For m ∈ N set Sm :=

∑m
j=1X

2
j and

consider vm >
∑m
j=1 β

2
j , tm > max16j6m β

2
j and rm >

∑m
j=1 α

2
j . Then for all c > 0

we have

supm>1 exp
(

1
4c(c ∧ 1)(vm + 2rm)t−1

m

)
P
(
Sm − ESm 6 −c(vm + 2rm)

)
6 1;

supm>1 exp
(

1
4c(c ∧ 1)(vm + 2rm)t−1

m

)
P
(
Sm − ESm > 3c

2 (vm + 2rm)
)
6 1.

A major step towards establishing a concentration rate of the posterior distribu-
tion consists in finding a finite sample bound for a fixed m ∈ N. We express these
bounds in terms of

bm :=
∑
j>m(θoj − θ×j )2, vm :=

∑m
j=1 σ

2
j with σ2

j = (λ2
jε
−1 + ς−1

j )−1;

tm := max16j6m σ
2
j and rm :=

∑m
j=1(Eθo [θYj ]− θoj)2 =

∑m
j=1 σ

4
j (ς−2

j (θ×j − θoj)2).

The desired convergence to zero of all the aforementioned sequences necessitates
to consider appropriate subsequences in dependence of the noise level ε, notably
(vmε

)mε>1, (tmε
)mε>1 and (rmε

)mε>1.

Assumption 1.2. There exist constants 0 < εo := εo(θo, λ, θ
×, ς) < 1 and 0 <

K := K(θo, λ, θ
×, ς) < ∞ such that the prior distribution satisfies the condition

sup0<ε<εo(rmε
∨mεtmε

)/(bmε
∨ vmε

) 6 K.

Proposition 1.3. Under Assumption 1.2, for all 0 < ε < εo and 0 < c < 1/(8K):

EθoPϑmε |Y (‖ϑmε −θo‖2`2 > (4 + (11/2)K)[bmε
∨ vmε

]) 6 2 exp(−mε

36 );

EθoPϑmε |Y (‖ϑmε −θo‖2`2 < (1− 8 cK)[bmε
∨ vmε

]) 6 2 exp(−c2mε).

Thereby, if we assume in addition that vmε
= o(1) and mε → ∞ as ε → 0 then

we obtain by the dominated convergence theorem that also bmε = o(1). Hence,
(bmε ∨ vmε)mε>1 converges to zero and is indeed a posterior concentration rate.

Theorem 1.4 (Posterior consistency). Under Assumption 1.2 if mε → ∞ and
vmε

= o(1) as ε→ 0, then

lim
ε→0

EθoPϑmε |Y ((1− 8cK)[bmε
∨ vmε

] 6 ‖ϑmε −θo‖2`2 6 (4 + 11K/2)[bmε
∨ vmε

]) = 1.

The last assertion shows that (bmε
∨ vmε

)mε>1 is up to a constant a lower and
upper bound of the concentration rate.

Proposition 1.5 (Bayes estimate consistency). Let the assumptions of Theorem
1.4 be satisfied and θ̂mε := E[ϑmε |Y ] then Eθo‖θ̂mε − θo‖2`2 6 (3 + K)[bmε

∨ vmε
]

and consequently Eθo‖θ̂mε − θo‖2`2 = o(1) as ε→ 0.

3



4 Adaptive Bayesian estimation in GSSM

The previous results are obtained under Assumption 1.2. However, it may be dif-
ficult to verify whether a prior specification satisfies such an assumption. There-
fore, we now introduce an assumption which states a more precise requirement
on the prior variance and that can be more easily verified.

Assumption 1.6. Define Λj := λ−2
j , j > 1, Λ(m) := max16j6m Λj and Λm :=

m−1
∑m
j=1 Λj , m > 1. There exist constants εo ∈ (0, 1) and d > 0 such that ςj >

d[ε1/2Λ
1/2
j ∨ εΛj ] for all 1 6 j 6 mε and for all 0 < ε < εo.

If there exists in addition to Assumption 1.6 a strictly positive constant L :=
L(θo, λ, θ

×) <∞ such that

sup
0<ε<εo

εmε Λ(mε){bmε ∨ εmε Λmε}
−1

6 L (1.1)

holds true, then Assumption 1.2 is satisfies with K := (1 ∨ d−2‖θo − θ×‖2`2)L.

Corollary 1.7. Let Assumption 1.6 and (1.1) be satisfied, then for all 0 < ε < εo
and 0 < c < 1/(8K) we have

EθoPϑmε |Y (‖ϑmε −θo‖2`2 > (4 + (11/2)K)[bmε
∨ εmεΛmε

]) 6 2 exp(−mε

36 );

EθoPϑmε |Y (‖ϑmε −θo‖2`2 < (1− 8 cK)(1 + d−1)−1[bmε
∨ εmεΛmε

]) 6 2 exp(−c2mε).

Under the conditions of the last assertion, the sequence (bmε
∨ εmεΛmε

)mε>1

provides up to constants a lower and upper bound for the concentration rate. The
result implies consistency if (bmε

∨ εmεΛmε
)mε>1 as ε→ 0 but it does not answer

the question of optimality in a satisfactory way. Observe that the rate depends on
the parameter of interest θo and we could optimize the rate for each θo separately,
but we are rather interested in a uniform rate over a class of parameters. Given
a strictly positive non-decreasing sequence a =

(
aj
)
j>1

with a1 = 1 tending to
infinity consider for θ ∈ `2 its weighted norm ‖θ‖2a :=

∑
j>1 ajθ

2
j . We define `a2 as

the completion of `2 with respect to ‖·‖a. In order to formulate the optimality of
the posterior concentration rate let us define

m?
ε := m?

ε(a, λ) := arg min
m>1

[a−1
m ∨ εmΛm] and

R?ε := R?ε
(
a, λ
)

:= [a−1
m?

ε
∨ εm?

ε Λm?
ε
] for all ε > 0.

We introduce a further assumption in order to get the next theorem.

Assumption 1.8. Let a and λ be sequences such that

0 < κ := κ(a, λ) := inf
0<ε<εo

{(R?ε)−1[a−1
m?

ε
∧ εm?

ε Λm?
ε
]} 6 1.

We illustrate the last assumption for typical choices of the sequences a and λ. For
two strictly positive sequences (aj)j>1 and (bj)j>1 we write aj ∼ bj , if (aj/bj)j>1

is bounded away from 0 and infinity.

4



J. JOHANNES, R. SCHENK AND A. SIMONI 5

[P-P] Consider aj ∼ j2p and λ2
j ∼ j−2a with p > 0 and a > 0 thenm?

ε ∼ ε−1/(2p+2a+1)

and R?ε ∼ ε2p/(2a+2p+1).

[E-P] Consider aj ∼ exp(j2p − 1) and λ2
j ∼ j−2a with p > 0 and a > 0 then m?

ε ∼
| log ε− 2a+1

2p (log | log ε|)|1/(2p) and R?ε ∼ ε| log ε|(2a+1+2s)/(2p).

[P-E] Consider aj ∼ j2p and λ2
j ∼ exp(−j2a + 1), with p > 0 and a > 0 then

m?
ε ∼ | log ε− 2p+(2a−1)+

2a (log | log ε|)|1/(2a) and R?ε ∼ | log ε|−(p−s)/a.

In all three cases Assumption 1.8 holds true. We assume in the following that the
parameter θo belongs to the ellipsoid Θr

a := {θ ∈ `a2 : ‖θ − θ×‖2a 6 r} and therefore,
bm 6 a−1

m r. In addition we suppose that

L̃ := L̃(a, λ) := sup
0<ε<εo

εm?
ε Λ(m?

ε)(R?ε)−1 <∞. (1.2)

We note that under Assumption 1.8 and (1.2) the condition (1.1) is satisfied uni-
formly for all θo ∈ Θr

a with L = L̃/κ.

Theorem 1.9 (Optimal posterior concentration rate). Suppose that the sequence
of prior distributions (Pϑm?

ε )m?
ε

satisfies Assumption 1.6 and let Assumption 1.8
and (1.2) be satisfied. Then there exists a constant K := K(Θr

a, λ, d, κ) such that

lim
ε→0

inf
θo∈Θr

a

EθoPϑm?
ε |Y (‖ϑm

?
ε −θo‖2`2 6 KR?ε) = 1, moreover,

if Ψε/R?ε = o(1) as ε→ 0 then limε→0 supθo∈Θr
a
EθoPϑm?

ε |Y (‖ϑm
?
ε −θo‖2`2 6 Ψε) = 0.

Remark 1.10. The rate R?ε = R?ε
(
Θr

a, λ
)

is optimal in a minimax sense. To be
more precise, given an estimator θ̂ of θ let supθ∈Θr

a
Eθ‖θ̂ − θ‖2 denote the maximal

mean integrated squared error (MISE) over the class Θr
a. It has been shown in [9]

that R?ε provides up to a constant a lower bound for the maximal MISE over the
class Θr

a and that there exists an estimator attaining this rate.

Proposition 1.11 (Minimax-optimal Bayes estimate). Let the assumptions of The-
orem 1.12 be satisfied and θ̂m

?
ε := E[ϑm

?
ε |Y ] then there exists a constant K :=

K(Θr
a, λ, d, κ) such that supθo∈Θr

a
Eθo‖θ̂m

?
ε − θo‖2`2 6 KR?ε.

1.3 Adaptive Bayesian estimation
We will derive a concentration rate given the aforementioned hierarchical prior
distribution. For this purpose set Gε := max{m ∈ N : εΛ(m) 6 1} and

pM (m) =
exp(−3m

2ε )
∏m
j=1(1 + λ2

j ςjε
−1)1/2∑Gε

m′=1 exp(−3m′

2ε )
∏m′

j=1(1 + λ2
j ςjε

−1)1/2
for 1 6 m 6 Gε .

5



6 Adaptive Bayesian estimation in GSSM

Theorem 1.12 (Optimal posterior concentration rate). Suppose that the sequence
of prior distributions (PϑGε )Gε

satisfies Assumption 1.6 and in addition that m?
ε

satisfies Assumption 1.8 and (1.2). Then there exists a constantK := K(Θr
a, λ, d, κ)

such that

lim
ε→0

inf
θo∈Θr

a

EθoPϑM |Y (‖ϑM −θo‖2`2 6 KR?ε) = 1, moreover,

if Ψε/R?ε = o(1) as ε→ 0 then limε→0 supθo∈Θr
a
EθoPϑM |Y (‖ϑM −θo‖2`2 6 Ψε) = 0.

We shall emphasize that the concentration rate derived from the hierarchical
prior coincides with the minimax optimal rate R?ε = R?ε

(
Θr

a, λ
)

of the maximal
MISE over the class Θr

a. In particular this prior does not involve any knowledge
of the class Θr

a, therefore, the corresponding Bayes estimate is fully-data driven.
The next assertion establishes its minimax-optimality.

Proposition 1.13 (Minimax-optimal Bayes estimate). Under the assumptions
of Theorem 1.12. Consider the Bayes estimate θ̂ := E[ϑM |Y ] then there exists a
constant K := K(Θr

a, λ) such that supθo∈Θr
a
Eθo‖θ̂ − θo‖2`2 6 KR?ε for all ε > 0.

Our procedure extends and completes the procedure proposed by [13] in two per-
spectives. First, it allows a prior variance more general than the polynomially
decreasing one. Second, in addition to prove minimax-optimality of the Bayes es-
timator, we prove concentration at the optimal rate of the posterior distribution.

Conclusions and perspectives. We have presented a hierarchical prior lead-
ing to a fully data-driven Bayes estimate that is minimax-optimal in an indirect
GSSM. Obviously, the concentration rate based on a hierarchical prior in an indi-
rect GSSM possibly with additional noise in the eigenvalues is only one amongst
the many interesting questions for further research and we are currently explor-
ing this topic.
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