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Abstract—Iterative power difference balancing (IPDB) has re-
cently been proposed as a first real-time dynamic spectrum man-
agement (RT-DSM) algorithm. It consists of a primal coordinate
ascent approach where each coordinate step is performed using an
exhaustive discrete grid line search. In this paper we present an it-
erative convex approximation based approach to perform the coor-
dinate ascent search so as to reduce its computational complexity.
By exploiting the problem structure, a closed-form solution is de-
rived for the convex approximations. The resulting RT-DSM algo-
rithm is referred to as fast IPDB (F-IPDB). Compared to IPDB,
F-IPDB exhibits similar data rate performance with significantly
reduced computational complexity, while also providing smoother
final transmit spectra.

Index Terms—Dynamic spectrum management, multi-user,
power loading, real-time.

I. INTRODUCTION

D YNAMIC SPECTRUM MANAGEMENT (DSM) is
a powerful technique for interference management in

multi-user multi-carrier communication systems. Transmit
spectra of multiple users, each employing a multi-carrier
transmission scheme such as orthogonal frequency division
multiplexing (OFDM) or discrete multitone (DMT), are jointly

Manuscript received December 04, 2013; revised February 07, 2014;
accepted February 24, 2014. Date of publication February 27, 2014; date of
current version March 06, 2014. The work of P. Tsiaflakis was supported
by the Research Foundation-Flanders (FWO). This work was carried out in
the frame of KU Leuven Research CouncilCoE PFV/10/002, IUAP P7/23
BESTCOM 2012-2017 and Phase VII/19 DYSCO 2012-2017, GOA-MaNet,
Research Project FWO G.091213, and IWT project CONGA. The scientific
responsibility is assumed by its authors. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Shahram
Shahbazpanahi.
P. Tsiaflakis is with the STADIUS Center for Dynamical Systems, Signal

Processing and Data Analytics, KU Leuven, B-3001 Leuven, Belgium, and also
with Bell Labs, Alcatel-Lucent, B-2018 Antwerp, Belgium (e-mail: paschalis.
tsiaflakis@alcatel-lucent.com).
M. Moonen is with the STADIUS Center for Dynamical Systems, Signal

Processing and Data Analytics, KU Leuven, B-3001 Leuven, Belgium (e-mail:
marc.moonen@esat.kuleuven.be).
F. Glineur is affiliated with the Center for Operations Research and

Econometrics, Université Catholique de Louvain, B-1348 Louvain-la-Neuve,
Belgium, and also with the Institute of Information and Communication
Technologies, Electronics and Applied Mathematics, Université catholique de
Louvain, B-1348 Louvain-la-Neuve, Belgium (e-mail: francois.glineur@uclou-
vain.be).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2014.2308978

coordinated so as to improve the multi-user system or network
performance [1]–[9]. DSM is used in several systems, for in-
stance digital subscriber line (DSL) systems and for downlink
inter-cell interference coordination in cellular communica-
tions [10].
Real-time DSM (RT-DSM) is a recently proposed DSM

paradigm in which real-time operation is considered [11]. More
specifically, RT-DSM algorithms are iterative algorithms that
can be stopped at any point in time to provide a feasible and
improved solution. As a result, these algorithms can work under
tight real-time constraints, i.e., under limited computing time
and power budgets. This guarantees a fast response, which is
important in practice, for instance when the channel and noise
conditions change, when users enter or leave the network, and
for cross-layer adaptive control. Most existing DSM algorithms
are not real-time, due to their use of a dual decomposition
approach that focuses on the dual DSM problem formulation
[1]–[4], [7]–[9].
The iterative power difference balancing (IPDB) algorithm

has been proposed as a first RT-DSM algorithm in [11]. IPDB
starts from a primal DSM problem reformulation using a
so-called Difference-of-Variables (DoV) transformation [11] in
which alternative primal variables are considered. The problem
is then solved using a primal coordinate ascent approach, where
each coordinate step is performed using an exhaustive discrete
grid line search. For a granularity of 1 dBm/Hz this corresponds
to a search among more than 200 values, which constitutes the
most computationally intensive part of IPDB.
The development of fast algorithms to reduce the computa-

tional complexity of exhaustive discrete grid line search based
methods (e.g., [8], [9]) is recognized as an important and rele-
vant research activity in DSM literature. In this paper we aim to
reduce the computational complexity of IPDB by avoiding the
exhaustive discrete grid line search. More specifically, we de-
velop an iterative convex approximation approach to solve each
coordinate ascent problem. Such iterative approximation ap-
proaches have already been recognized as a powerful technique
to reduce the computational complexity of non RT-DSM algo-
rithms [3]–[7]. Our approach differs from existing approaches
in several important aspects: it focuses on the primal problem
instead of the dual problem, it is tailored for real-time execu-
tion as each transmit power update satisfies the constraints and
the cost function improves after each update, and it exploits
the problem structure to derive closed-form solutions for the
convex approximations used at every iteration. The resulting
algorithm is referred to as fast IPDB (F-IPDB). Compared to
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IPDB, F-IPDB exhibits similar data rate performance with a
significantly reduced computational complexity, while also pro-
viding smoother final transmit spectra:

II. SYSTEM MODEL AND DYNAMIC SPECTRUM MANAGEMENT

We consider a multi-user multi-carrier communication
system with a set of users communicating
over a common set of independent subcar-
riers or tones. We follow the multi-carrier interference channel
system model where the multi-user interference is treated as ad-
ditive white Gaussian noise. Perfect channel state information
is assumed at all transmitters and receivers, which is a common
assumption in DSL dynamic spectrum management literature
[1]. The achievable bit rate of user on tone is then given by

(2)

where , is the transmit power of user on
tone , is the normalized channel gain from user to user
on tone , and is the normalized received noise power for

user on tone . We note that normalization corresponds to di-
viding by the respective direct channel gain of user and tone ,
and that is the signal-to-noise ratio (SNR) gap that character-
izes imperfect coding and signal modulation, and a noise margin
[12]. We consider continuous bit loadings without a maximum
or minimum bit loading restriction.
The DSM problem can then be formulated as follows

maximize

subject to

with

(3)

where is the achievable data rate of user and
its corresponding weighting , denoting the
total allocated (transmit) power of user , constant is
the total power budget of user , and constant is the
maximum transmit power (spectral mask) of user on tone .
This corresponds to a maximization of the sum of the weighted
achievable data rates (with multiple tones), under per-user total
power constraints and per-tone spectral mask constraints. The
transmit spectrum of a user refers to the user’s transmit powers
over all tones. Note that although we focus on per-user total
power equality constraints, extension to inequality constraints
is possible (see [11]).

III. REAL-TIME DYNAMIC SPECTRUM MANAGEMENT

In [11] a RT-DSM algorithm has been defined as a DSM
algorithm in which transmit powers are updated sequentially
such that all constraints are satisfied after each single update. To
achieve this, a so-called Difference-of-Variable (DoV) transfor-
mation has been proposed. We focus here on a particular DoV
transformation, instead of keeping the full generality of the ap-
proach, so as to keep notation simple. We consider the following
‘two-tone rand DoV’ transformation,

(4)

where new variables , , , are referred to as
difference variables, is a permutation of vector ,
and represents its -th element. We also define the inverse
permutation operation for later use, where
. Permutation must be chosen as a cycle of length (there
are such possibilities), and can be (randomly) updated
at each iteration. Initializing all variables to zero leads to
an initial equal power allocation over the tones in (4); more
sophisticated initializations schemes can also be used.
Applying the two-tone rand DoV transformation (4) to (3)

results in the DoV primal DSM problem reformulation (1). Its
main advantage is that it no longer features coupling per-user
total power constraints.
The IPDB algorithm is a RT-DSM algorithm that solves (1)

using a coordinate ascent approach with an exhaustive discrete
grid line search. More specifically the following primal sub-
problem in a single coordinate is solved iteratively over each
tone and user:

maximize (5)

where corresponds to the objective function of the
RT-DSM problem reformulation (1) restricted to the single
variable . One can check that the spectral mask con-
straints on transform into simple bound constraints, i.e.,

(see [11] for more details). As this
corresponds to a one-dimensional problem on a finite interval,
the proposed solution approach in [11] consists of an exhaus-
tive line search over a discrete grid of points selected between

and . For a proposed granularity of 1 dBm/Hz,
this comes down to more than 200 function evaluations,
which then constitutes the most computationally expensive part
of IPDB:

IV. FAST ITERATIVE POWER DIFFERENCE BALANCING

To reduce the computational complexity of the exhaustive
discrete grid line search and to mitigate its discrete character, we

maximize

subject to
(1)
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propose an alternative approach to solve (5) based on a succes-
sive upper-bound minimization (SUM) or iterative convex ap-
proximation approach as treated in [13]. Our specific approach
consists of iteratively performing the following two steps until
convergence: (i) approximating the nonconcave function
by a concave function matching to first-order
around an approximation point , and (ii) solving ex-
actly the corresponding convex problem (concave maximiza-
tion), whose solution is used as the next approximation point.
SUM1 is guaranteed to converge to a stationary point under cer-
tain conditions on the concave function approximation [13]. For
our specific case, these conditions correspond to the following:

(7)

(8)

(9)

is continuous in (10)

where and corre-
sponds to the derivative with respect to . At this point, it is
helpful to express the (single-variable) function as a sum
of four terms, as is done in (6). Note that we isolate bit rates of
user (terms and ) from those of the periodical
users (terms and ), and that, for a given user ,
variable only actually appears in exactly two bit rate terms,
namely (terms and ) and (terms
and ). By taking the second derivative of the terms in
(6) it can be seen that functions and are con-
cave in , and that functions and are convex
in , i.e., , , and

.
We propose to approximate the convex terms and

with a linearization in , while leaving the
concave terms and untouched. The resulting
approximation of is given by

which satisfies conditions (7), (8), (9) and (10). As such, the pro-
posed iterative approximation approach is guaranteed to con-
verge to a stationary point of (5).
The remaining issue is to efficiently and exactly solve the

corresponding convex approximated problem, given as:

maximize (11)

As (11) corresponds to a one-dimensional convex problem,
the optimal solution either satisfies the following (uncon-
strained) optimality condition (12) or lies on the boundary of
the feasible interval .

(12)

1Successive upper-bound approximation pertains to minimization problems.
As we consider a maximization problem, the upper-bound objective function
approximation is replaced by a lower-bound objective function approximation.

We observe that this condition can be rewritten as a simple
quadratic equation in the following standard form

(13)

where can be computed in closed form. This is a key
observation as this problem structure allows for a simple closed-
form solution. We denote the (at most) two real roots of (13)
as and . The optimal solution to the convex approximated
problem (11) can then be computed as

maximize (14)

which requires at most four function evaluations,
including the boundary function values.
The whole procedure to perform the coordinate ascent step

(5) is summarized in Algorithm 1 below. The F-IPDB algorithm
corresponds to the IPDB algorithm [11] where the coordinate
search step (line 7 in Algorithm 1 of [11]) is replaced by Algo-
rithm 1. We note that all alternative configurations proposed for
the IPDB algorithm in [11] are also applicable to F-IPDB.

Algorithm 1 Fast IPDB coordinate ascent search for (5)

1: Initialize approximation point
2: repeat
3: Construct around approximation point
4: Compute constants in (13)
5: Compute roots of quadratic equation (13)
6: solution of (14);
7: until convergence to a stationary point of (5)

The main properties of the F-IPDB algorithm can be sum-
marized as follows. First, F-IPDB is a RT-DSM algorithm: all
constraints are satisfied after any is updated, so that the al-
gorithm can be stopped at any point in time. Secondly, F-IPDB
uses continuous variables, in contrast to the discrete character
of IPDB that relied on a finite grid search: it can thus poten-
tially produce smoother transmit spectra, which will be demon-
strated in Section V. Thirdly, the computational complexity of
F-IPDB is much lower than that of IPDB, essentially because
the solution of the convex approximation can be obtained in
closed form. In addition, one can observe in practice that only
a few, i.e., 2 or 3 approximations are needed for convergence
of Algorithm 1 to an accuracy much smaller than 1 dBm/Hz.
Concrete complexity improvements in simulation time will be
reported in Section V. Fourthly, in contrast to typical DSM al-
gorithms [1]–[9] that follow a dual decomposition approach,
IPDB and F-IPDB focus on the primal solution, avoiding issues
with a non-zero duality gap [2], [9]. Finally, we note that both
IPDB and F-IPDB focus on finding stationary points, and do not
guarantee convergence to the global optimum of (3). Theoret-
ically, only convergence to stationary points of the subsequent
coordinate searches is guaranteed. Theoretical convergence to
stationary points of the whole problem (3) requires an unique

(6)
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Fig. 1. Multi-user ADSL downstream scenario.

optimum for each coordinate search, which cannot be guaran-
teed as the problem we consider is nonconvex [14]. Neverthe-
less, fast convergence is observed in all simulations, which is
reported in Section V for several ADSL scenarios.

V. SIMULATION RESULTS

We focus on the realistic multi-user ADSL setting shown in
Fig. 1, which is used to simulate a system ranging from two to
seven users. For instance, the six-user (resp. four-user) scenario
consists of only the upper six (resp. four) lines being active. Due
to space limitation, we only present these scenarios but note that
F-IPDB is applicable to large-scale communication systems (i.e.
with more than 100 users and 1000 tones) without any serious
computational difficulties, and with a different interference se-
lectivity over subsets of users.
The DSL lines are modelled as 24 AWG twisted copper pairs

following the direct and (1% worst-case) crosstalk channel
and noise models from DSL standards [15], which results in
specific values for and in (2) that depend on the line
lengths and overlaps of the considered scenarios. The SNR gap
is chosen to be 12.9 dB, corresponding to a coding gain of 3 dB,
a noise margin of 6 dB and a target symbol error probability of

[15].
For a fair comparison between F-IPDB and IPDB, we choose

similar configurations for both methods as follows: two-tone
rand DoV transformation, equalization active with a frequency
of 5 outer iterations, and random initial powers. These config-
urations have been shown in [11] to be very effective. We also
consider two similar Matlab implementations, only differing in
the coordinate ascent step, and relate simulation time to compu-
tational complexity.
Comparing IPDB with a granularity of 1 dBm/Hz with

F-IPDB for the four-user ADSL case of Fig. 1, we observe in
our simulations that F-IPDB is 14 times faster than IPDB. Fig. 2
displays the optimized transmit spectrum of user 1, zoomed out
for tones 7 to 32, for both F-IPDB and IPDB. It can be seen that
F-IPDB indeed results in a much smoother transmit spectrum,
which is due to the continuous formulation of F-IPDB versus
the discrete line search used in IPDB.
Table I reports weighted data rate performance as in (3)

(column perf.) and computational complexity in terms of
simulation time (column compl.) for F-IPDB and IPDB with
1 dBm/Hz, 10 dBm/Hz and 20 dBm/Hz granularity. Data rate

Fig. 2. Zoom of user 1 transmit spectra of four-user scenario in Fig. 1.

TABLE I
COMPLEXITY AND PERFORMANCE COMPARISON OF F-IPDB AND IPDB (WITH

DIFFERENT GRANULARITIES) FORSCENARIOS OF FIG. 1

performance is reported as a percentage of the optimal perfor-
mance (computed using slower methods guaranteeing optimal
performance for the considered scenarios, see [3]). Complexity
is expressed as a percentage of the simulation time of IPDBwith
1 dBm/Hz granularity. All results are averaged over 30 runs. It
can be seen that all methods display similar performance. IPDB
performance decreases slightly with coarser granularities. Note
that the granularities refer to differences between powers, and
as such large granularities still result in high accuracy [11].
Fast IPDB has a better performance for the five-user scenario
but worse performance for the six- and seven-user case. This
is explained by convergence to a different local optimum on
average. Suboptimal (but still good performance) is due to the
nonconvex (and NP-hard) nature of the DSM problem (3), and
to the fact that F-IPDB and IPDB both target stationary points
instead of globally optimal solutions. In terms of computational
complexity, F-IPDB is seen to be faster by a factor of 10
(respectively 2) compared to IPDB with granularity 1 dBm/Hz
(respectively 10 dBm/Hz). It is interesting to note that IPDB
with 20 dBm/Hz is slower than IPDB with 10 dBm/Hz, because
the coarser granularity results in slower convergence. A last
advantage of F-IPDB is that it does not require tuning such a
granularity parameter.

VI. CONCLUSION

A reduced-complexity primal RT-DSM algorithm has been
proposed, referred to as F-IPDB, that enables operation under
tight real-time constraints. Compared to the existing IPDB al-
gorithm, it succeeds in significantly reducing the computational
complexity (by a factor ranging from two to ten for realistic
multi-user DSL scenarios), while providing smoother transmit
spectra and maintaining good overall performance. This is
achieved by a coordinate ascent search based on an iterative
convex approximation approach in which the optimal solutions
of the convex approximations are computed efficiently in
closed-form.
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