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Abstract

This paper extends a useful property of the increasing convex order to the multivariate or-
thant convex order. Specifically, it is shown that vectors of sums of comonotonic random
variables dominate in the orthant convex order vectors of sums of random variables that
are smaller in the increasing convex sense, whatever their dependence structure. This result
is then used to derive orthant convex order bounds on random vectors of sums of random
variables. Extensions to vectors of compound sums are also discussed.

Keywords: stochastic order relation, orthant convex order, stochastic bounds, comonotonic-
ity, convolution.
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1 Introduction and motivation

Stochastic orderings have been used successfully to solve various problems in applied prob-
ability and risk management. Once the validity of such a relation is established, it can be
exploited to derive a host of inequalities among various quantities. Multivariate stochastic
order relations allow to simultaneously compare the marginal behavior and the underlying
dependence structure. For more details about stochastic orders and their applications, we
refer the reader, e.g., to Shaked and Shanthikumar (2007).

Among possible stochastic order relations, the increasing convex order appears to be
particularly useful in applications. Recall that given two real-valued random variables X
and Y with finite means, X is smaller than Y in the increasing convex order if the inequality
E[(X − r)+] ≤ E[(Y − r)+] holds for any real r, where (ξ)+ denotes the positive part of
the real ξ. This is henceforth denoted as X �icx Y . See Shaked and Shanthikumar (2007)
for a presentation of �icx and Denuit et al. (2005) for an overview of the applications of
this stochastic dominance rule in actuarial science and risk management. In these fields,
the increasing convex order is known as the stop-loss order because E[(X − r)+] is the
expected reinsurance payment under a stop-loss reinsurance treaty with retention r, where
the reinsurer pays for the losses X incurred by the direct insurer above r. It is well known
that X �icx Y holds if, and only if, E[g(X)] ≤ E[g(Y )] for any non-decreasing and convex
function g such that the expectations exist. Intuitively speaking, X being smaller than Y
in the increasing convex order means that X is simultaneously “smaller” and “less variable”
than Y .

The increasing convex order is known to be closed under convolution. Specifically,
given two sets X1, X2, . . . , Xn and Y1, Y2, . . . , Yn of independent random variables such that
Xi �icx Yi holds for every i, the stochastic inequality

∑n
i=1Xi �icx

∑n
i=1 Yi holds true. See,

e.g., Theorem 4.A.8(d) in Shaked and Shanthikumar (2007). Another, maybe less standard
result involving sums of ordered random variables is as follows; see, e.g. Denuit et al. (2005,
Proposition 3.4.29) for a proof. Recall that the random variables Y1, . . . , Yn are comonotonic
if they are all non-decreasing functions of the same underlying random variable Z, i.e. the
identity Yi = gi(Z) holds for some non-decreasing transformation gi, i = 1, . . . , n. In par-
ticular, we may choose Z to be uniformly distributed over the unit interval [0, 1] and gi to
be the quantile function of Yi, i.e. the left-continuous inverse of the distribution function
of Yi. We refer the interested reader to the review paper by Dhaene et al. (2002) for a
detailed introduction to comonotonicity. Now, if X1, X2, ..., Xn and Y1, Y2, ..., Yn are two sets
of random variables such that the stochastic inequality Xi �icx Yi holds for i = 1, ..., n, with
Y1, Y2,..., Yn comonotonic, then the stochastic inequality

∑n
i=1Xi �icx

∑n
i=1 Yi holds true.

Note that we make no assumption concerning the dependency among the random variables
X1, . . . , Xn so that the result is valid whatever the dependence structure among X1, . . . , Xn

provided Y1, Y2,..., Yn are comonotonic.
Let us now switch to the multivariate case and consider random variablesX1j, X2j, . . . , Xnj

and Y1j, Y2j, . . . , Ynj, j = 1, . . . , d. If Y1j, Y2j, . . . , Ynj for j = 1, . . . , d form d sets of comono-
tonic random variables and if Xij �icx Yij for all i and j then we can invoke the result
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mentioned before and the stochastic inequalities
n∑
i=1

Xi1 �icx

n∑
i=1

Yi1, . . . ,

n∑
i=1

Xid �icx

n∑
i=1

Yid

all hold true. But what can we say about the ordering of the random vectors(
n∑
i=1

Xi1, . . . ,

n∑
i=1

Xid

)
and

(
n∑
i=1

Yi1, . . . ,

n∑
i=1

Yid

)
.

This is the problem investigated in the present paper. To answer this question, the or-
thant convex order will be used. This multivariate stochastic order relation extends the
increasing convex order to several dimensions. It will be shown that provided the ran-
dom vectors (Xi11, . . . , Xidd) and (Yi11, . . . , Yidd) are ordered in the orthant convex order
for every choice of indices i1, . . . , id in {1, . . . , n}, the same order relation holds between
(
∑n

i=1Xi1, . . . ,
∑n

i=1Xid) and (
∑n

i=1 Yi1, . . . ,
∑n

i=1 Yid).
Such multivariate stochastic inequalities appear to be particularly useful is many ap-

plied probability problems. For instance, considering d devices subjected to shocks and
denoting as X1j, X2j, X3j, . . . the inter-times between consecutive shocks, the random vector
(
∑n

i=1Xi1, . . . ,
∑n

i=1Xid) collects the random times elapsed until the occurrence of the nth
shock affecting these devices. In actuarial science,

∑n
i=1Xij typically represents the total

amount paid by an insurer for the n contracts comprised in the jth class of business in a
given time period. In queueing theory, this sum corresponds to the service time for n clients
lining up in the jth queue.

The remainder of our work is organized as follows. Section 2 contains the main result of
this paper. It starts by recalling some definitions and then provides the condition ensuring
that (

∑n
i=1Xi1, . . . ,

∑n
i=1Xid) and (

∑n
i=1 Yi1, . . . ,

∑n
i=1 Yid) are ordered in the orthant convex

order. Then, we extend this result to random vectors of compound sums. In Section 3,
the main result of Section 2 is used to derive bounds on random vectors made of sums of
correlated random variables, extending to the multivariate case previous results appeared in
the literature. All the random variables in this paper are assumed to be non-negative.

2 Main result

2.1 Preliminaries

If the random variables Y1, Y2, . . . , Yn are comonotonic then, for any real r, there exist
r1, r2, . . . , rn, satisfying

∑n
i=1 ri = r, such that

E

[(
n∑
i=1

Yi − r

)
+

]
=

n∑
i=1

E
[
(Yi − ri)+

]
. (2.1)

See Theorem 6 in Dhaene et al. (2002). It can even be seen from the proof of this theorem
that for any r, there exist r1, r2, . . . , rn such that the equality(

n∑
i=1

Yi − r

)
+

=
n∑
i=1

(Yi − ri)+ (2.2)
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holds with probability 1. If the Yi’s have increasing continuous distribution functions then
we can just take ri = F−1Yi

(
F∑n

i=1 Yi
(r)
)
. More care is needed in the general case for selecting

the appropriate ri.
Our main result uses the orthant convex order for comparing random vectors. Recall

that the random vector (X1, X2, . . . , Xn) is smaller than (Y1, Y2, . . . , Yn) in the upper orthant
convex order if the inequality

E
[ n∏
i=1

gi(Xi)
]
≤ E

[ n∏
i=1

gi(Yi)
]

holds for every univariate non-negative increasing convex functions g1, g2, . . . , gn. See, e.g.,
Theorem 7.A.40 in Shaked and Shanthikumar (2007). This is henceforth denoted as
(X1, X2, . . . , Xn) �uo-cx (Y1, Y2, . . . , Yn). Equivalently, the stochastic inequality
(X1, X2, . . . , Xn) �uo-cx (Y1, Y2, . . . , Yn) holds if, and only if,

E

[
n∏
i=1

(Xi − ri)+

]
≤ E

[
n∏
i=1

(Yi − ri)+

]
for all r1, r2, . . . , rn, (2.3)

and for any k = 1, . . . , n− 1 and {i1, . . . , ik} ⊂ {1, . . . , n}

E

[
k∏
j=1

(Xij − rij)+

]
≤ E

[
k∏
j=1

(Yij − rij)+

]
for all ri1 , ri2 , . . . , rik . (2.4)

In particular, (X1, X2, . . . , Xn) �uo-cx (Y1, Y2, . . . , Yn) ⇒ Xi �icx Yi for i = 1, . . . , n so that
�uo-cx can be seen as one of the possible extensions of �icx to higher dimensions. Let us
also mention that the �uo-cx order corresponds to the multivariate 2-increasing convex order.
We refer the reader to Denuit and Mesfioui (2010) for a general study of the multivariate
s-increasing convex order relations. The characterization (2.3)-(2.4) is a direct consequence
of Proposition 3.1 in that paper. Denuit and Mesfioui (2010) also establish various stochastic
inequalities for functions of the components of �uo-cx-ordered random vectors.

2.2 Orthant convex comparisons

We are now ready to state the main result of this section. Recall from Shaked and Shan-
thikumar (2007) that �uo-cx is stable under convolution, that is, componentwise sums of
independent random vectors ordered in the �uo-cx-sense remain ordered in the same way.
This property is extended here to sums of correlated random vectors by means of comono-
tonicity.

Proposition 2.1. Let Xij and Yij, j = 1, . . . , d, i = 1, . . . , n, be two finite arrays of random
variables with respective marginal distribution functions Fij and Gij. Assume that

A1 the random variables Y1j, . . . , Ynj are comonotonic for every j = 1, . . . , d, i.e. there
exist unit uniform random variables U1, . . . , Ud such that Yij = G−1ij (Uj).
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A2 the stochastic inequality

(Xi11, . . . , Xidd) �uo−cx (Yi11, . . . , Yidd)⇔ (Xi11, . . . , Xidd) �uo−cx (G−1i11(U1), . . . , G
−1
idd

(Ud))

is valid for all ij ∈ {1, . . . , n}, j = 1, . . . , d.

Denoting as Sj =
∑n

i=1Xij and Tj =
∑n

i=1 Yij, j = 1, . . . , d, we then have

(S1, . . . , Sd) �uo−cx (T1, . . . , Td).

Proof. We know from (2.2) that for any real rj, there exist r1j, . . . , rnj such that

rj =
n∑
i=1

rij and (Tj − rj)+ =
n∑
i=1

(Yij − rij)+ almost surely.

Moreover, one has

(Sj − rj)+ ≤
n∑
i=1

(Xij − rij)+ with probability 1.

Therefore, assumption A2 ensures that

E

[
d∏
j=1

(Sj − rj)+

]
≤

n∑
i1=1

· · ·
n∑

id=1

E [(Xi11 − ri11)+ · · · (Xidd − ridd)+]

≤
n∑

i1=1

· · ·
n∑

id=1

E [(Yi11 − ri11)+ · · · (Yidd − ridd)+]

= E

[
n∑

i1=1

(Yi11 − ri11)+ · · ·
n∑

id=1

(Yidd − ridd)+

]

= E

[
d∏
j=1

(Tj − rj)+

]
.

Similarly, one obtains for any {i1, . . . , ik} ⊂ {1, . . . , n},

E

[
k∏
j=1

(Sij − rij)+

]
≤ E

[
k∏
j=1

(Tij − rij)+

]
for all ri1 , ri2 , . . . , rik ,

whence the announced result follows.

Let us mention that assumption A2 in Proposition 2.1 may appear to be quite re-
strictive at first sight, as the stochastic inequality has to hold between any pair of ran-
dom vectors constructed by picking one element inside each (X11, . . . , Xn1), (X12, . . . , Xn2),
. . ., (X1d, . . . , Xnd) to form (Xi11, . . . , Xidd), and the corresponding elements inside each
(Y11, . . . , Yn1), (Y12, . . . , Yn2), . . ., (Y1d, . . . , Ynd) to form (Yi11, . . . , Yidd). Such a condition is
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nevertheless needed, as explained next. Let us associate to any i = (i1, . . . , id) ∈ {1, . . . , n}d
the random vector Xi = (Xi11, . . . , Xidd). Now, it is easily seen that(

n∑
i=1

Xi1, . . . ,

n∑
i=1

Xid

)
=

1

nd−1

∑
i∈{1,...,n}d

Xi.

Hence, Proposition 2.1 establishes that

Xi �uo-cx Y i for all i ∈ {1, . . . , n}d ⇒
∑

i∈{1,...,n}d
Xi �uo-cx

∑
i∈{1,...,n}d

Y i

⇔

(
n∑
i=1

Xi1, . . . ,

n∑
i=1

Xid

)
�uo-cx

(
n∑
i=1

Yi1, . . . ,

n∑
i=1

Yid

)
.

Notice that condition A2 greatly simplifies when the random vectors (X11, . . . , Xn1),
(X12, . . . , Xn2), . . ., (X1d, . . . , Xnd) are independent, as well as (Y11, . . . , Yn1), (Y12, . . . , Yn2),
. . ., (Y1d, . . . , Ynd) as it is generally assumed in the literature. The stability of �uo-cx with
respect to marginalization and concatenation (see, e.g. Properties 5.3 and 5.4 with s = 2 in
Denuit and Mesfioui, 2010) then ensures that

(X1j, . . . , Xnj) �uo-cx (Y1j, . . . , Ynj) for j = 1, . . . , d

⇔ Xi �uo-cx Y i for all i ∈ {1, . . . , n}d

⇒

(
n∑
i=1

Xi1, . . . ,
n∑
i=1

Xid

)
�uo-cx

(
n∑
i=1

Yi1, . . . ,
n∑
i=1

Yid

)
as �uo-cx is closed under convolution for independent random vectors (see, e.g. Property
5.2(iii) with s = 2 in Denuit and Mesfioui, 2010).

Let us now discuss a particular case where the �uo-cx-inequality assumed under A2 in
Proposition 2.1 can be replaced with easier stochastic inequalities provided the random
variables exhibit some strong positive dependence structure. Recall that the random vec-
tor (X1, . . . , Xd) is said to be conditionally increasing in sequence (CIS) if E[g(Xi)|X1 =
x1, . . . , Xi−1 = xi−1] is non-decreasing in x1, . . . , xi−1 for every non-decreasing function g
for which the expectation is defined, i = 2, 3, . . . , d. Furthermore, the random vector
(X1, . . . , Xd) is said to be conditionally increasing (CI) if (Xπ(1), . . . , Xπ(d)) is CIS for ev-
ery permutation π of {1, . . . , d}, that is, if E[g(Xi)|Xj = xj, j ∈ J ] is non-decreasing in
xj, j ∈ J for every J ⊂ {1, . . . , d}, i 6∈ J , and non-decreasing function g for which the
expectation is defined, i = 2, 3, . . . , d. The assumption A2 can be replaced with the simpler
Xij �icx Yij for all i, j when (Xi11, . . . , Xidd) and (Yi11, . . . , Yidd) have a common CI cop-
ula. This is because (Xi11, . . . , Xidd) and (Yi11, . . . , Yidd) are then ordered in the increasing
directionally convex sense by Theorem 2.4 in Balakrishnan et al. (2012), and thus also in
�uo-cx.

In the next result, we derive useful stochastic inequalities when the copula Ci1,...,id of the
random vector (Xi11, . . . , Xidd) can be bounded above by some copula CU . Notice that this
condition is stronger than Ci1,...,id �uo-cx CU but cannot be weakened, as it will be seen from
the proof of Corollary 2.2.
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Corollary 2.2. Let Xij be continuous random variables with distribution functions Fij,
j = 1, . . . , d, i = 1, . . . , n. Let Ci1,...,id be the copula associated to the random vectors
(Xi11, . . . , Xidd), ij = 1, . . . , n, j = 1, . . . , d. Assume that there exists a copula CU such
that the inequality

Ci1,...,id(u1, . . . , ud) ≤ CU(u1, . . . , ud)

holds for all u1, . . . , ud ∈ [0, 1]. Let (U1, . . . , Ud) be a random vector distributed as CU and
set Sj =

∑n
i=1Xij. Then

(S1, . . . , Sd) �uo-cx

(
n∑
i=1

F−1i1 (U1), . . . ,
n∑
i=1

F−1id (Ud)

)
.

Proof. Since Ci1,...,id(u1, . . . , ud) ≤ CU(u1, . . . , ud) for all u1, . . . , ud ∈ [0, 1], then

(Xi11, . . . , Xidd) �uo-cx (F−1i11
(U1), . . . , F

−1
idd

(Ud)) (2.5)

which leads to the announced result by Proposition 2.1, because the random variables
F−1ij (Uj), i = 1, . . . , n, are comonotonic for every j = 1, . . . , d.

As mentioned previously, requiring Ci1,...,id �uo-cx CU is not enough as it does not guar-
antee that (2.5) holds, unless the quantile functions are convex. This is because an ordering
in the �uo-cx-sense is maintained only by non-decreasing and convex transformations of the
components of the random vectors (see, e.g., Theorem 7.A.41 in Shaked and Shanthikumar,
2007).

Many parametric families of copulas are ordered when their parameters vary so that there
are natural candidates for CU in many situations, as shown in the next example.

Example 2.3. If the random vector (X11, . . . , Xnd) has an Archimedean copula with gener-
ator φ then every sub-vector possesses the same copula. For instance, if this random vector
has a dependence structure governed by the Clayton copula with parameter α > 0, i.e. by

C(u1, . . . , und) =

(
nd∑
i=1

u−αi − nd+ 1

)−1/α
,

then we can take for CU a Clayton copula with parameter θ ≥ α in Corollary 2.2.

Remark 2.4. Of course, we can always take the Fréchet-Höffding upper bound copula

CU(u1, . . . , ud) = min{u1, . . . , ud}

in Corollary 2.2. In this case, U1 = · · · = Ud and

(S1, . . . , Sd) �uo-cx

(
n∑
i=1

F−1i1 (U), . . . ,
n∑
i=1

F−1id (U)

)
(2.6)

where U is a random variable uniformly distributed over [0, 1]. However, the stochastic
inequality (2.6) appears to be weaker than the well-known supermodular comparison of
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(S1, . . . , Sd) with its comonotonic version (F−1S1
(U), . . . , F−1Sd

(U)). Defining Scj =
∑n

i=1 F
−1
ij (U),

we know that Sj �icx S
c
j holds for j = 1, . . . , d. Therefore, as the random vectors (Sc1, . . . , S

c
d)

and (F−1S1
(U), . . . , F−1Sd

(U)) are both comonotonic, (F−1S1
(U), . . . , F−1Sd

(U)) is smaller than
(Sc1, . . . , S

c
d) in the directional convex order sense and (2.6) directly follows as a consequence.

Therefore, taking for CU the Fréchet-Höffding upper bound copula does not provide an
accurate upper bound.

Let us now reinforce Corollary 2.2 when the dominating copula CU is CI. In this case,
we are allowed to replace the marginal distribution of the summands with �icx-larger ones.

Corollary 2.5. Let Xij and Yij be continuous random variables with distribution functions
Fij and Gij, j = 1, . . . , d, i = 1, . . . , n. Let Ci1,...,id be the copula associated to the random
vectors (Xi11, . . . , Xidd), ij = 1, . . . , n, j = 1, . . . , d. Assume that there exists a copula CU
such that Ci1,...,id(u1, . . . , ud) ≤ CU(u1, . . . , ud) for all u1, . . . , ud ∈ [0, 1]. Assume that the
random vector (U1, . . . , Ud) distributed as CU is CI and set Sj =

∑n
i=1Xij. Then

Xij �icx Yij for all i, j ⇒ (S1, . . . , Sd) �uo-cx

(
n∑
i=1

G−1i1 (U1), . . . ,
n∑
i=1

G−1id (Ud)

)
.

Proof. Since the random vectors (F−1i11
(U1), . . . , F

−1
idd

(Ud)) and (G−1i11(U1), . . . , G
−1
idd

(Ud)) have
a common CI copula and Xij �icx Yij for all i = 1, . . . , n and j = 1, . . . , d, then by Theorem
2.4 in Balakrishnan et al. (2012) the random vector (G−1i11(U1), . . . , G

−1
idd

(Ud)) dominates

(F−1i11
(U1), . . . , F

−1
idd

(Ud)) in the increasing directional convex order so that the stochastic
inequality

(F−1i11
(U1), . . . , F

−1
idd

(Ud)) �uo-cx (G−1i11(U1), . . . , G
−1
idd

(Ud))

is valid. The result then follows from Proposition 2.1.

2.3 Compound sums

In this section, we now consider vectors of compound sums obtained by letting the numbers
of terms appearing in the sums become themselves random variables. Following Pellerey
(1999), let us give an example of application where this construction is meaningful. Consider
d devices subjected to shocks and let N1, N2, . . . , Nd be the random numbers of shocks
until failure of these devices. The inter-times between consecutive shocks for device j are
denoted as Xij, i = 1, 2, . . . and are assumed to be independent of the shock numbers

N1, N2, . . . , Nd. Then, Sj =
∑Nj

i=1Xij represents the random lifetime for this device. Now,
assume that we replace the inter-times Xij with Yij. We aim to derive conditions under which
the resulting random vector of lifetimes (S1, . . . , Sd) increases or decreases in the �uo-cx-
sense. Pellerey (1999) considered multicomponent systems in which the d components of
each system have non-independent tolerances to shocks. In other words, this author allowed
for possible dependence in the sequence N1, . . . , Nd of the random numbers of shocks until
failure of the components of the d systems. Notice that no particular assumption is made
about the counting processes producing the shocks. In the special case where all inter-times
are independent and obey the Negative Exponential distribution with the same mean, shocks
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occur according to an homogeneous Poisson process. Here, we also allow for correlated inter-
times between consecutive shocks.

Of course, random vectors of compound sums also naturally arise in other fields of appli-
cations. In actuarial science, for example, Sj typically represents the total amount paid by
an insurer for the Nj claims filed by policyholder j, or generated by the jth class of business
in a given time period. See, e.g., Denuit et al. (2002). In queueing theory, the same random
sums may stand for the total service time for random numbers N1, . . . , Nd clients lining up
in d parallel queues. See, e.g., Jean-Marie and Liu (1992).

In the next result, we keep the same random numbers of shocks until failure but allow
for changes in the inter-times between consecutive shocks. To this end, we have to provide
an appropriate condition on the two sets of inter-times, as shown next.

Proposition 2.6. Let Xij and Yij, j = 1, . . . , d, i = 1, 2, . . ., be two arrays of non-negative
random variables satisfying assumptions A1-A2 in Proposition 2.1 for every n. Let N =
(N1, . . . , Nd) be a random vector of counting random variables, independent of the Xij’s and
of the Yij’s. Defining Sj,nj

=
∑nj

i=1Xij and Tj,nj
=
∑nj

i=1 Yij, with the convention that the
empty sums are zero, we have

(S1,N1 , . . . , Sd,Nd
) �uo−cx (T1,N1 , . . . , Td,Nd

).

Proof. Allowing for different number of terms n1, n2, . . . , nd in the proof of Proposition 2.1
shows that the stochastic inequality (S1,n1 , . . . , Sd,nd

) �uo-cx (T1,n1 , . . . , Td,nd
) holds for all

n1, . . . , nd, which in turn implies that, for all non-negative increasing convex g1, . . . , gd,

E [g1(S1,N1) · · · gd(Sd,Nd
)] =

∑
n1,...,nd

E [g1(S1,n1) · · · gd(Sd,nd
)]P [N1 = n1, . . . , Nd = nd]

≤
∑

n1,...,nd

E [g1(T1,n1) · · · gd(Td,nd
)]P [N1 = n1, . . . , Nd = nd]

= E [g1(T1,N1) · · · gd(Td,Nd
)] .

This completes the proof.

The next result provides a situation where the conditions of Proposition 2.6 are fulfilled.
It generalizes Corollary 2.2 to context of compound sums.

Corollary 2.7. Let Xij and Yij, j = 1, . . . , d, i = 1, . . . , nj be two arrays of non-negative ran-
dom variables with distribution functions Fij and Gij, j = 1, . . . , d, i = 1, . . . , nj, respectively.
Let Ci1,...,id be the copula associated to the random vectors (Xi11, . . . , Xidd), ij = 1, . . . , nj, j =
1, . . . , d. Assume that there exists a copula CU such that Ci1,...,id(u1, . . . , ud) ≤ CU(u1, . . . , ud)
for all u1, . . . , ud ∈ [0, 1]. Let (U1, . . . , Ud) be a random vector distributed as CU and set
Snj

=
∑nj

i=1Xij. Assume that the copula CU is CI and Let N = (N1, . . . , Nd) be a random
vector of counting random variables, independent of (U1, . . . , Ud) and of the Xij’s and Yij’s.
Then

Xij �icx Yij for all i, j ⇒ (SN1 , . . . , SNd
) �uo-cx

(
N1∑
i=1

G−1i1 (U1), . . . ,

Nd∑
i=1

G−1id (Ud)

)
.
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3 Improved �uo-cx-bounds

In this section, we aim to improve the upper bound on the random vector (S1, . . . , Sd) derived
in the preceding section and to provide a lower bound as well, in the �uo-cx-sense. This is
done by means of the bounds derived in Kaas et al. (2000) for each component Sj that we
extend to the multivariate case.

3.1 Improved comonotonic upper bound

For any random variable Z, introduce after Kaas et al. (2000) the notation F−1Xij |Z(Uj) for

the random variable fij(U,Z) where the function fij is defined as fij(u, z) = F−1Xij |Z=z(u).

Define

Suj =
n∑
i=1

F−1Xij |Z(Uj) and Suj (z) =
n∑
i=1

F−1Xij |Z=z(Uj) for j = 1, . . . , d.

The next result generalizes Proposition 2 in Kaas et al. (2000) who established that
Sj �icx S

u
j holds for j = 1, . . . , d. Here, we extend this comparison to the random vectors

(S1, . . . , Sd) and (Su1 , . . . , S
u
d ) by means of the �uo-cx order.

Proposition 3.1. In the notation of Corollary 2.2, let (U1, . . . , Ud) be a random vector
distributed as CU such that Ci1,...,id(u1, . . . , ud) ≤ CU(u1, . . . , ud) for all u1, . . . , ud ∈ [0, 1].
Let Z) be a random variable with distribution function FZ. Assume that Z and (U1, . . . , Ud)
are independent. Then, we have

(S1, . . . , Sd) �uo−cx (Su1 , . . . , S
u
d ).

Proof. For any j = 1, . . . , d, the random variables F−1Xij |Z=z(Uj), i = 1, . . . , n are comonotonic.

Corollary 2.2 then ensures that for any non-negative increasing convex functions g1, . . . , gd

E [g1(S1) . . . gd(Sd)|Z = z] ≤ E [g1(S
u
1 (z)) . . . gd(S

u
d (z)]

Thus,

E [g1(S1) . . . gd(Sd)] =

∫
E [g1(S1) . . . gd(Sd)|Z = z] dFZ(z)

≤
∫
E [g1(S

u
1 (z)) . . . gd(S

u
d (z))|Z = z] dFZ(z)

= E [g1(S
u
1 ) . . . gd(S

u
d )]

which ends the proof.

Now, we are in position to show that this bound is better than that given in Corollary
2.2.

Corollary 3.2. The random vector (Su1 , . . . , S
u
d ) in Proposition 3.1 is such that

(Su1 , . . . , S
u
d ) �uo−cx

(
n∑
i=1

F−1i1 (U1), . . . ,
n∑
i=1

F−1id (Ud)

)
.
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Proof. It suffices to show that for every {i1, . . . , id} ⊂ {1, . . . , n}, the random vectors

(F−1Xi11
|Z(U1), . . . , F

−1
Xidd

|Z(Ud)) and (F−1Xi11
(U1), . . . , F

−1
Xidd

(Ud))

are identically distributed. This is the case, because

P
[
F−1Xi11

|Z(U1) ≤ x1, . . . , F
−1
Xidd

|Z(Ud) ≤ xd

]
=

∫
P
[
F−1Xi11

|Z=z(U1) ≤ x1, . . . , F
−1
Xidd

|Z=z(Ud) ≤ xd|Z = z
]
dFZ(z)

=

∫
P
[
U1 ≤ FXi11

|Z=z(x1), . . . , Ud ≤ FXidd
|Z=z(xd)

]
dFZ(z)

=

∫
CU

(
FXi11

|Z=z(x1), . . . , FXidd
|Z=z(xd)

)
dFZ(z)

= CU

(
FXi11

(x1), . . . , FXidd
(xd)

)
= P

[
F−1Xi11

(U1) ≤ x1, . . . , F
−1
Xidd

(Ud) ≤ xd

]
.

The result then follows from Corollary 2.2.

3.2 Lower bounds

Denote Xj = (X1j, . . . , Xnj), j = 1, . . . , d and let Z = (Z1, . . . , Zd) be a random vector with
distribution function FZ . In order to derive a lower bound (Sl1, . . . , S

l
d) on (S1, . . . , Sd) with

respect �uo-cx, let us consider the following random variables

Slj =
n∑
i=1

E [Xij|Z] = E [Sj|Z] , j = 1, . . . , d.

Kaas et al. (2000, Proposition 3) have shown that Slj �icx Sj holds. The next result extends
these marginal stochastic inequalities to the corresponding random vectors.

Proposition 3.3. For any random vectors Z and Xj, j = 1, . . . , d, we have

(Sl1, . . . , S
l
d) �uo−cx (S1, . . . , Sd).

Proof. For any non-negative increasing convex functions g1, . . . , gd, the function g(x1, . . . , xd) =∏d
i=1 gi(xi) is convex. The multivariate Jensen’s inequality allows us to write

E [g1(S1) . . . gd(Sd)|Z = z] ≥ g1 (E [S1|Z = z]) . . . gd (E [Sd|Z = z])

Therefore,

E [g1(S1) . . . gd(Sd)] =

∫
E [g1(S1) . . . gd(Sd)|Z = z] dFZ(z)

≥
∫
g1 (E [S1|Z = z]) . . . gd (E [Sd|Z = z]) dFZ(z)

= E
[
g1(S

l
1) · · · gd(Sld)

]
witch leads to result announced.
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Notice that when the random vector Z = (Z1, . . . , Zd) is chosen such that Zj and Xk

are independent for all j 6= k, then Slj reduces to

Slj =
n∑
i=1

E [Xij|Zj] = E [Sj|Zj] .
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française de Belgique”, granted by the “Académie universitaire Louvain”.

References

Balakrishnan, N., Belzunce, F., Sordo, M.A., Suarez-Llorens, A. (2012). Increasing direc-
tionally convex orderings of random vectors having the same copula, and their use in
comparing ordered data. Journal of Multivariate Analysis 105, 45-54.

Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R. (2005). Actuarial Theory for Dependent
Risks: Measures, Orders and Models. Wiley, New York.

Denuit, M., Genest, Ch., Marceau, E. (2002). Criteria for the stochastic ordering of random
sums, with actuarial applications. Scandinavian Actuarial Journal 2002, 3-16.

Denuit, M., Mesfioui, M. (2010). Generalized increasing convex and directionally convex
orders. Journal of Applied Probability 47, 264-276.

Denuit, M., Mesfioui, M. (2012). A sufficient condition of crossing-type for the bivariate
orthant convex order. Statistics and Probability Letters 83, 157-162

Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D. (2002). The concept of
comonotonicity in actuarial science and finance: Theory. Insurance: Mathematics and
Economics 31, 3-33.

Jean-Marie, A., Liu, Z. (1992). Stochastic comparisons for queueing models via random
sums and intervals. Advances in Applied Probability 24, 960-985.

Kaas, R., Dhaene, J., Goovaerts, M.J. (2000). Upper and lower bounds for sums of random
variables. Insurance: Mathematics and Economics 27, 151-168.

Pellerey, F. (1999). Stochastic comparisons for multivariate shock models. Journal of Mul-
tivariate Analysis 71, 42-55.

Shaked, M., Shanthikumar, J.G. (2007). Stochastic Orders. Springer, New York.

11


