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Desingularization of vortex rings and shallow
water vortices by a semilinear elliptic problem

SÉBASTIEN DE VALERIOLA, JEAN VAN SCHAFTINGEN

Abstract

Steady vortices for the three-dimensional Euler equation for inviscid incom-
pressible flows and for the shallow water equation are constructed and showed to
tend asymptotically to singular vortex filaments. The construction is based on a
study of solutions to the semilinear elliptic problem−div

(
∇uε

b

)
=

1
ε2 b f (uε − log 1

ε
q) in Ω ,

uε = 0 on ∂Ω ,

for small values of ε > 0.
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1. Introduction and main results

1.1. Statement of the problem

In an inviscid incompressible flow, the velocity field v and static pressure field
p are governed by the Euler equations{

divv = 0,
∂tv+(v ·∇)v =−∇p.

The conservation of momentum equation can be rewritten in terms of the vorticity
ω = curlv as

∂tv+ω×v =−∇

(
p+
|v|2

2

)
.

The quantities |v|
2

2 and p+ |v|
2

2 are called dynamic pressure and total pressure. In
regions where the vorticity vanishes ω = 0, the flow is called irrotational and the
equations reduce to the Bernoulli equation. In other cases, one can study flows
which are irrotational outside of a vortex core.

In 1858, Helmoltz has studied the motion of vortex rings, which are toroidal
regions in which the vorticity is concentrated [29]. The circulation κ of a vortex
is the circulation integral

∫
Γ

v · t for any oriented curve Γ with tangent vector field
t that encircles the vorticity region once. Kelvin and Hick have showed that if the
vortex ring has radius r∗, if its cross-section ε is small and if its circulation is κ ,
then the vortex ring moves at the velocity [31, art. 163 (7), p. 241; 45, 67]

κ

4πr∗

(
log

8r∗
ε
− 1

4

)
. (1)

In this initial study of vortex motion, the flows were not steady flows; as the veloc-
ity is merely asymptotically constant in the vortex, one does not expect the vortex
ring to preserve its shape. After the works of Helmholtz, Kelvin [45] interested
himself in this problem and stated a variational principle for steady vortex flows.
In 1894, Hill has given an explicit translating flow of the Euler equation whose
vorticity is concentrated inside a ball [30].

These works bring the question whether it is possible to construct flows whose
vorticity is supported in an arbitrarily small toroidal region. Fraenkel has given a
first positive answer by constructing for small ε > 0 a family of steady flows whose
vortex cross section is of the order of ε and whose velocity satisfy asymptotically
(1) [21,22]. His approach consists in first noting that since the flow is incompress-
ible in the whole space, it is possible to write v = curlψ where ψ is a velocity
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vector potential. Moreover, since the flow should be axisymmetric, the vector po-
tential ψ can be written in terms of the Stokes stream function ψ in cylindrical
coordinates (r,θ ,z),

ψ(r,θ ,z) = ψ(r,z)
eθ

r
;

the associated velocity field is

v(r,θ ,z) =
1
r

(
−∂ψ

∂ z
er +

∂ψ

∂ r
ez

)
and the associated vorticity is

ω(r,θ ,z) =−
(

∂

∂ r

(1
r

∂ψ

∂ r

)
+

∂

∂ z

(1
r

∂ψ

∂ z

))
eθ .

The key point is to note that if ω = r f (ψ)eθ for some function f : R→ R and
F ′ = f , then

ω×v =−∇
(
F(ψ)

)
,

that is, v is a stationary solution of the incompressible Euler equation with p =

F(ψ)− |v|
2

2 . The problem is thus reduced to a study of the semilinear elliptic prob-
lem

−
(

∂

∂ r

(1
r

∂ψ

∂ r

)
+

∂

∂ z

(1
r

∂ψ

∂ z

))
= r f (ψ). (2)

Given r∗, W > 0 and κ > 0, Fraenkel has constructed for ε > 0 small enougha
steady vortex ring such that the area of the vortex cross-section is π(r∗ε)2(1+
O((ε log 8

ε
)2), its circulation is πWr∗ and the velocity at infinity is 1

8

(
log 8

ε
− 1

2 +

4
π

E∗
)

, with E∗ denoting the kinetic energy inside the vortex of the limiting planar
vortex profile. His proof is based on a variant of the implicit function theorems and
relies on a study of the asymptotics of the relevant Green function.

We call this construction the stream-function method in contrast with the vor-
ticity method developed by Friedman and Turkington in which the vorticity ω

instead of the stream function is a solution of a variational problem [25] (see
also [6,8,12–15,24]). The stream function method together with an implicit func-
tion argument was used to construct vortex rings close to Hill’s spherical vortex
[11, 37, 38].

Afterwards, vortex rings were constructed with the stream function method by
constructing solutions to (2) by minimization under constraint; their asymptotics
could not be studied precisely because of the presence of a Lagrange multiplier in
the nonlinearity f [9, 10]. The asymptotics could be studied precisely by letting
the flux diverge [44]. By using the mountain pass theorem of Ambrosetti and Ra-
binowitz [2], Ambrosetti and Mancini, Ni, and Ambrosetti and Struwe have con-
structed solutions for a given f [1,3,36]. The asymptotics of a family (ψε) of these
solutions have been studied by Ambrosetti and Yang for a family fε(s) = 1

ε2 (s)
p
+

[49]. However, their result did not prevent the circulation of the vortex to go to 0
and, according to our present work, it does go to 0 so that the limiting object are
degenerate vortex rings with vanishing radius and vanishing circulation. Finally,
we would like to mention that it is possible to study the asymptotics of the motion
of vortices in the nonsteady case [7].



4 SÉBASTIEN DE VALERIOLA, JEAN VAN SCHAFTINGEN

1.2. Vortex rings for the Euler equation

Our first result is a desingularization of vortices in the whole space.

Theorem 1. For every W > 0 and κ > 0, there exists a family of steady flows
(vε , pε) ∈C1(R3) for the Euler equations in R3 that are axisymmetric around ez
and such that the vortex core suppcurlvε is a topological torus, the circulation of
the vortex ring is κε and for every ε ∈ (0,1),

vε →−W log 1
ε

ez at ∞.

Moreover, one has

lim
ε→0

κε = κ,

lim
ε→0

distCr∗ (suppcurlvε) = 0,

cε 6 σ(suppcurlvε)6Cε,

for some constants 0 < c <C and

r∗ =
κ

4πW
.

Here, the cross-section of a set A⊂ R3 axisymmetric around ez is

σ(A) = sup
{

δz(x,y) : x,y ∈ A
}
,

where the axisymmetric distance is defined by

δz(x,y) = inf
{
|x−R(y)| : R is a rotation around ez

}
,

Cr is a circle of radius r in a plane perpendicular to ez and the asymmetric distance
is

distCr(A) = sup
x∈A

inf
y∈Cr
|x− y|.

Compared to the work of Fraenkel [21], we construct a flow for every ε > 0,
and then we study the asymptotics of those flows. Our result provides thus a con-
tinuum transition between a Hill-like spread out vortex (ε = 1) and a concentrated
vortex ring. It will also appear that our method is quite flexible.

Our solutions are constructed by solving the semilinear elliptic problem
−
(

∂

∂ r

(1
r

∂ψ

∂ r

)
+

∂

∂ z

(1
r

∂ψ

∂ z

))
=

r
ε2 (ψε)

p
+ in R2

+,

ψε

ψ0
→ log 1

ε
at ∞,

(3)

where ψ0 :R2
+→R is a Stokes stream function of an irrotational flow and studying

the asymptotic behaviour of its solutions.
The idea of solving 3 with this form of ε dependence comes from the corre-

sponding problem in vortex pairs for the two-dimensional Euler equation. Indeed,
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all the desingularization results that we have mentioned above have counterparts in
the study of vortex pairs for the two-dimensional Euler equation [4,10,32,39,48].
In particular, Smets and Van Schaftingen have showed that in order to obtain non-
vanishing asymptotic circulation one could, instead of imposing fixed boundary
conditions ψε = ψ0 + o(1) at infinity, impose boundary conditions depending on
ε: ψε = ψ0− κ

2π
log 1

ε
+ o(1) at infinity [43]. Physically, this takes into account

that the total flow between the two vortices should blow up as the logarithm of
the diameter of the vortex core. They have obtained a desingularization result for
solutions constructed by variational methods; solutions to the same problem where
also obtained by Lyapunov–Schmidt reduction argument [18, 19].

Even if the semilinear elliptic problem (3) is similar to its counterpart for the
two-dimensional desingularization problem, the asymptotics of the solutions are
quite different. For instance, whereas in [43] the localization of concentration
points is governed by a renormalized enery which appears as a second term in
the asymptotics, in the present work the solution concentrates at minimizers of the
leading term.

As we do not expand the Green function, we have more flexibility in the con-
struction of flows and the study of their asymptotics. For example, we can study
vortex rings in a cylinder.

Theorem 2. For every W > 0 and κ > 0, there exists a family of steady flows
(vε , pε) ∈ C1(B1×R) for the Euler equations in B1×R that are axisymmetric
around ez and such that

vε ·n = 0, on ∂B1×R2,

vε →−W log 1
ε

ez at ∞,

the vortex core suppcurlvε is a topological torus, the circulation of the vortex is
κε . Moreover, one has

lim
ε→0

κε = κ,

lim
ε→0

distCr(suppcurlvε) = 0,

lim
ε→0

logσ(suppcurlvε)

logε
= 1,

and

r∗ =


κ

4πW
if κ < 4πW ,

1 if κ > 4πW .

Burton has constructed similar vortex rings in a cylinder, but he did not study
their asymptotics [12].

If κ > 4πW , the velocity W log 1
ε

of the vortex ring is less than predicted by
the Kelvin–Hick formula (1). We do not study in detail this phenomenon in the
present work, but we think that it might be explained by an interaction with the
boundary that reduces the velocity by

κ

4π dist(suppcurlvε ,∂B(0,1)×R)
,
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similar to the contribution of the boundary for the two-dimensional Euler equation
[43]. This could also explain why the asymptotics of σ(suppcurlvε) are less sharp
than those of theorem 1.

Similarly we can study vortex rings outside a ball.

Theorem 3. For every W > 0 and κ > 0, there exists a family of steady flows
(vε , pε) ∈C1(R3 \B1) for the Euler equations in R3 that are axisymmetric around
ez and such that the vortex core suppcurlvε is a topological torus, the circulation
of the vortex ring is κε and

vε ·n = 0 on ∂B1,

vε →−W log 1
ε

ez at ∞.

Moreover, one has

lim
ε→0

κε = κ,

lim
ε→0

distCr∗ (suppcurlvε) = 0,

logσ(suppcurlvε)

logε
= 1,

for r∗ such that

v(r∗,0) =−
κ

4πW
ez,

where v0 : R3 \B1 is the irrotational flow outside B1 with velocity W at infinity:
divv0 = 0 in R3 \B1,

curlv0 = 0 in R3 \B1,

v0 ·n = 0 on ∂B1,

v0→−Wez at ∞.

The main difference in the proof of theorem 3 is that the existence relies on a
concentration-compactness argument [34, 41].

It is moreover possible to extend these results in some sense to a general out-
side domain.

Theorem 4. Let K ⊂ R3 be compact, connected and symmetric under rotations
around ez. For every W > 0 and for every ψ : R2

+ → (−∞,0) such that v0 =
curl(ψeθ/r) solves 

divv0 = 0 in R3 \K,

curlv0 = 0 in R3 \K,

v0 ·n = 0 on ∂K,

v0→−Wez at ∞,
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there exists a family of steady flows (vε , pε) ∈C1(R3 \B1) for the Euler equations
in R3 that are axisymmetric around ez and such that the vortex core suppcurlvε is
a topological torus, the circulation of the vortex ring is κε and

vε →−Wez at ∞,

vε ·n = 0 on ∂B1,

Moreover, if (aε)ε>0 = ((rε ,zε))ε>0 is a family such that curlvε(aε) 6= 0,

lim
ε→0

rε

ψ(rε ,zε)
κε =−2π,

lim
ε→0

ψ(rε ,zε)
2

rε

= inf
(r,θ ,z)R3\K

ψ(r,z)2

r
,

lim
ε→0

logσ(suppcurlvε)

logε
= 1.

Note that given W > 0, there are infinitely many ψ that satisfy the equation and
the sign assumption (see lemma 14), so that there are several families concentrating
at different points with different asymptotic circulations.

In the case where (r,z) 7→ ψ(r,z)2

r achieves its maximum at a unique interior
point (r∗,z∗), one has (rε ,zε)→ (r∗,z∗), and

log 1
ε

v0(r∗,z∗) =
1
r∗

∇ψ(r∗,z∗)×ez =
1
2

ψ(r∗,z∗)
r2
∗

er×eθ =− log 1
ε

1
4πr∗

lim
ε→0

κε ez,

(4)
in accordance with (1).

1.3. Vortices for the shallow water equation

The same technique allows us to desingularize vortices for the shallow water
equation with vanishing Froude number Fr in the so-called lake model. The hor-
izontal velocity v, the height h and the depth b depend on the two-dimensional
position variable and satisfy the system [16, 17]:{

div(bv) = 0
∂tv+v ·∇v =−∇h

(5)

in a two-dimensional domain. Richardson has computed by the method of matched
asymptotics the velocity of a vortex of circulation κ at x∗ to be formally [42, (5.1)]
1

(∇ logb(x∗))×
κez

4π
log 1

ε
+O(1); (6)

in particular, a vortex follows an isobath (level set of the depth).

1 Richardson writes the asymptotics in terms of Γ = κ

2π
[42, (2.19)]
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We want to exhibit this in the asymptotics of families of steady flows. As pre-
viously, setting ω = curlv, the second equation becomes

∂tv+ω×v =−∇

( |v|2
2

+h
)
.

Taking a stream function ψ , one can write v = (curlψ)/b and observe that if ω =

f (ψ), then v is a stationary solution with h = F(ψ)− |v|
2

2 . We are thus interested
in studying the asymptotics of solutions of−div

1
b

∇ψε =
b
ε2 (ψε)

p
+ in Ω ,

ψε = log 1
ε

ψ0 on ∂Ω .
(7)

Theorem 5. Let Ω ⊂ R2 be bounded and open and let b ∈ C(Ω̄)∩C1,α(Ω) for
some α ∈ (0,1). If infΩ b> 0, then there exists a family of solutions vε ∈C1(Ω ;R2)
and hε ∈C1(Ω) of 

div(bvε) = 0 in Ω ,

vε ·∇vε =−∇hε in Ω ,

vε ·n = 0 on ∂Ω .

Moreover if κε =
∫

Ω
curlvε and curlvε(xε) 6= 0, then

lim
ε→0

κε = κ,

lim
ε→0

b(xε) = sup
Ω

b,

lim
ε→0

logdiamsuppcurlvε

logε
= 0.

In particular, if limn→∞ xεn = x∗ ∈ Ω̄ for some sequence (εn)n∈N, then x∗ is a
maximum point of b on Ω̄ . If x∗ ∈Ω , then ∇(logb)(x∗) = 0 and the velocity given
by (6) vanishes. If x∗ ∈ ∂Ω , then ∇(logb) is normal to the boundary so that the
velocity given by (6) is tangential to the boundary and would lead the vortex to
circulate around ∂Ω in the orientation opposite to the vortex’s orientation; there
should however be, as for the two-dimensional Euler equation [43], an interaction
of the vortex with the boundary that should give a compensating term

κ

4π
log

1
dist(suppcurlvε ,∂Ω)

.

If b is constant, theorem 5 does not locate the vortex; the refined asymptotics for
the Euler equation locate them at maxima of the Robin function of Ω [43].

theorem 5 constructs vortices at stationary points. We can also desingularize
vortices at other points by prescribing the boundary condition. First we note that
if ψ0 satisfies

−div
(

∇ψ0

b

)
= 0,

then v0 = curlψ0 is an irrotational stationary solution of (5).
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Theorem 6. Let Ω ⊂ R2 be bounded and open, let b ∈C(Ω̄)∩C1,α(Ω) for some
α ∈ (0,1), let ψ0 ∈C2(Ω)∩C1(Ω̄) be such that

−div
(

∇ψ0

b

)
= 0

and let v0 = curlψ0. If supΩ ψ0 < 0 and infΩ b > 0, then there exists a family of
solutions vε ∈C1(Ω ;R2) and hε ∈C1(Ω) of

div(bvε) = 0 in Ω ,

vε ·∇vε =−∇hε in Ω ,

vε ·n = v0 ·n log 1
ε

on ∂Ω ,

such that if κε =
∫

Ω
curlvε and curlv(xε) 6= 0,

lim
ε→0

b(xε)

ψ0(xε)
κε =−2π,

lim
ε→0

b(xε)

ψ0(xε)2 = sup
Ω

b
ψ02 ,

lim
ε→0

logdiamsuppcurlvε

logε
= 0,

In particular, if xεn → x∗ ∈Ω , then x∗ is a maximum point of b/ψ2
0 on Ω and

∇ψ0(x∗)
b(x∗)

=
1
2

∇b(x∗)
b(x∗)2 ψ0(x0)

so that, similarly to (4),

log 1
ε

v0(x∗) =− log 1
ε

(
∇(logb)(x∗)

)
4π

×
(

lim
ε→0

κε ez
)
,

which is consistent with Richardson’s formula (6).
The sequel of the paper is organized as follows. In section 2 we give sufficient

conditions for the existence of solutions to (7) that include (3) as particular cases.
Next we study in section 3 the asymptotics of families of least energy solutions
to those equations. Finally, we show in section 2 how the sufficient conditions
for existence and the asymptotics can be combined to prove the theorems of the
present section.

2. Construction of solutions

2.1. Preliminaries

In order to have homogeneous boundary conditions, we rewrite problem (3)
and (7) by defining q = −ψ0, qε = (log 1

ε
)q and uε = ψε +qε . We are thus inter-

ested in solving −div
(

∇uε

b

)
=

b
ε2 (uε −qε)

p
+ in Ω ,

uε = 0 on ∂Ω ,
(P)



10 SÉBASTIEN DE VALERIOLA, JEAN VAN SCHAFTINGEN

for Ω ⊂ R2 open, b : Ω → R and q : Ω → R measurable functions and for some
fixed p > 1.

Solutions to (P) are critical points of the functional

Eε(u) =
1
2

∫
Ω

1
b
|∇u|2− 1

(p+1)ε2

∫
Ω

b (u−qε)
p+1
+ ,

defined for u ∈C∞
c (Ω) = {u ∈C∞(Ω) : suppu is compact in Ω}. A natural space

for this functional is the completion H1
0 (Ω ,b) of C∞

c (Ω) with respect to the norm
defined for u ∈C∞

c (Ω) by

‖u‖2
H1

0 (Ω ,b) =
∫

Ω

|∇u|2

b
.

In general H1
0 (Ω ,b) needs not to be a space of distributions; but whenever the

functional Eε has a well-defined extension to H1
0 (Ω ,b), this space will be a well-

defined space of locally integrable functions.
If Eε is continuously Fréchet–differentiable on H1

0 (Ω ,b), we have the useful
computation:

Lemma 1. Let ε ∈ (0,1). If Eε ∈ C1(H1
0 (Ω ,b);R) and q > 0, then for every u ∈

H1
0 (Ω ,b), (1

2
− 1

p+1

)∫
Ω

|∇u|2

b
6 Eε(u)−

1
p+1

〈E ′ε(u),u〉.

Proof. For u ∈ H1
0 (Ω ,b), we compute

Eε(u)−
1

p+1
〈E ′ε(u),u〉=

(1
2
− 1

p+1

)∫
Ω

|∇u|2

b

+
1

(p+1)ε2

∫
Ω

b
(
(u−qε)

p+1
+ − (u−qε)

p
+u
)
.

The bound follows as qε > 0 and thus (u−qε)+ 6 u.

The Nehari manifold associated to the problem (P) is defined as

Nε =
{

u ∈ H1
0 (Ω ,b)\{0} : 〈E ′ε(u),u〉= 0

}
and the infimum of the energy on this manifold is

cε = inf
u∈Nε

Eε(u).

It can be characterized as follows:

Lemma 2. Let ε ∈ (0,1). If Eε ∈C1(H1
0 (Ω ,b);R), q > 0 and

lim
u→0

∫
Ω

(u−q)p+1
+∫

Ω

|∇u|2

b

= 0,
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then

cε = inf
u∈Nε

Eε(u) = inf
u∈H1

0 (Ω ,b)\{0}
sup
t>0

Eε(tu) = inf
γ∈Γε

max
t∈[0,1]

Eε

(
γ(t)

)
,

where

Γε =
{

γ ∈C
(
[0,1];H1

0 (Ω ,b)
)

: γ(0) = 0 and Eε

(
γ(1)

)
< 0
}
.

Moreover there exists a sequence (un)n∈N such that Eε(un)→ cε and E ′ε(u
n)→ 0

in (H1
0 (Ω ,b))′ as n→ ∞.

A sequence (un)n∈N such that Eε(un)→ cε and E ′ε(u
n)→ 0 in (H1

0 (Ω ,b))′ as
n→ ∞ is called a Palais-Smale sequence at the level cε .

The equivalence between the different critical levels goes back to Rabinowitz
[41, proposition 3.11; 47, theorem 4.2]. The assumptions of lemma 2 do not fit
into the existing results, but existing arguments still work.

Proof of lemma 2. For u ∈Nε , and t ∈ [0,∞), observe that

Eε(u) = Eε(tu)+
1− t2

2

∫
Ω

|∇u|2

b
+

1
(p+1)ε2

∫
Ω

b
(
(tu−qε)

p+1
+ − (u−qε)

p+1
+

)
= Eε(tu)+

1
ε2

∫
Ω

b
( (1− t2)(u−qε)

p
+u

2
+

(tu−qε)
p+1
+ − (u−qε)

p+1
+

p+1

)
,

from which one deduces since p > 1 that Eε(tu)> Eε(u). This proves that

inf
u∈H1

0 (Ω ,b)\{0}
sup
t>0

Eε(tu)6 inf
u∈Nε

Eε(u).

It is clear that

inf
γ∈Γε

max
t∈[0,1]

Eε

(
γ(t)

)
6 inf

u∈H1
0 (Ω ,b)\{0}

sup
t>0

Eε(tu).

Let us now prove that

inf
u∈Nε

Eε(u)6 inf
γ∈Γε

max
t∈[0,1]

Eε

(
γ(t)

)
. (8)

Let γ ∈Γε and define h ∈C([0,1];R) for t ∈ [0,1] by h(t) = 〈E ′ε(γ(t)),γ(t)〉. Since
p > 1, for every u ∈ H1

0 (Ω ,b),∫
Ω

b(u−qε)
p
+u 6

∫
Ω

b(u−qε)
p−1
+

(
u− qε

2

)2
6
∫

Ω

b
(
u− qε

2

)p+1
+

,

we have

lim
t→0

h(t)∫
Ω

|∇γ(t)|2

b

= 1,
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and thus h(t)> 0 for t > 0 close to 0. On the other hand, by lemma 1, since p > 1,

Eε(u)>
1

p+1
〈E ′ε(u),u〉.

Hence, one has h(1) 6 (p+ 1)Eε

(
γ(1)

)
< 0. By the intermediate value theorem,

there exists t∗ ∈ [0,1] such that h(t∗) = 0 and thus γ(t∗) ∈Nε . Therefore,

inf
u∈Nε

Eε(u)6 Eε

(
γ(t∗)

)
6 max

t∈[0,1]
Eε

(
γ(t)

)
,

and (8) follows.
The existence of the Palais-Smale sequence comes from a consequence of the

quantitative deformation lemma [47, theorem 2.9].

2.2. Existence in bounded domains

In the case where Ω and b are bounded, the existence of solutions to (P) is
quite standard.

Proposition 1. If Ω ⊂ R2 is bounded and b and b−1 are bounded, then for every
ε ∈ (0,1), there exists a weak solution uε ∈ H1

0 (R2
+,b) of problem (P) such that

Eε(uε) = cε .

Proof. Define for x ∈Ω and s ∈ R

f (x,s) =
b(x)
ε2

(
s−qε(x)

)p
+
,

and

F(x,s) =
∫ s

0
f (x, t)dt =

b(x)
(
s−qε(x)

)p+1
+

(p+1)ε2 .

The function f is a Carathédory function and for every s ∈ R and x ∈ Ω , since
q > 0,

| f (x,s)|6 supΩ b
ε2 |s|p,

0 6 (p+1)F(x,s)6 s f (x,s).

Hence, the problem has a weak solution by the mountain pass theorem [40, theo-
rem 2.15].

2.3. Existence in unbounded domains

In unbounded domains, we prove the existence following the ideas of the
concentration-compactness method of P.-L. Lions [34, 41]. The existence will de-
pend on the geometry of Ω , b and q.
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2.3.1. Sobolev inequalities for truncated functions in unbounded domains In
order to show that the functional Eε is well-defined on H1

0 (Rn,b) and admits crit-
ical points, we first study its nonlinear term. We begin by proving a weighted
Sobolev inequality.

Lemma 3. Let q > 2, α >−1 and β ∈ R. If

β −2
q

=
α

2
,

then there exists C > 0 such that for every u ∈ H1
0 (R2

+,x
−α

1 ),

∫
R2
+

|u(x)|q

xβ

1

dx 6C
(∫

R2
+

|∇u(x)|2

xα
1

dx
) q

2
.

This inequality should be known but we could not find it in the litterature. It is
a limiting case of a known family of weighted Sobolev inequalities [35, §2.1.7].

Proof of lemma 3. By the classical Sobolev inequality, there exists C > 0 such
that for every u ∈ H1

0 (R2
+,x
−α

1 ),

∫
(1,2)×R

|u(x)|q

xβ

1

dx 6C
(∫

(1,2)×R

|∇u(x)|2

xα
1

+
|u(x)|2

xα+2
1

dx
) q

2
.

Since β−2
q = α

2 , the inequality is homogeneous, so that we have for every k ∈ Z,

∫
(2k,2k+1)×R

|u(x)|q

xβ

1

dx 6C
(∫

(2k,2k+1)×R

|∇u(x)|2

xα
1

+
|u(x)|2

xα+2
1

dx
) q

2
.

Summing over k, we obtain since q > 2,

∫
R2
+

|u(x)|q

xβ

1

dx 6C ∑
k∈Z

(∫
(2k−1,2k+2)×R

|∇u(x)|2

xα
1

+
|u(x)|2

xα+2
1

dx
) q

2

6C
(∫

R2
+

|∇u(x)|2

xα
1

+
|u(x)|2

xα+2
1

dx
) q

2
.

We conclude using the Hardy inequality that states that for α 6=−1,

∫
R2
+

|u(x)|2

xα+2
1

dx 6
( 2

α +1

)2 ∫
R2
+

|∇u(x)|2

xα
1

dx.

The crucial tool to show that the functional Eε is well-defined is a weighted
Sobolev inequality for truncations.
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Lemma 4. Let r > 0, α >−1 and β ∈ R. If

β 6 (r−1)(α +1)+1 and β 6
rα

2
+2,

then there exists C > 0 such that for all u ∈ H1
0 (R2

+,x
−α

1 ),∫
R2
+

(
u(x)−Wxα+1

1

)r
+

xβ

1

dx 6
C

W
rα−2(β−2)

α+2

(∫
R2
+

|∇u(x)|2

xα
1

dx
) r(α+1)−(β−2)

α+2
.

Moreover, the map

H1
0 (R2

+,x
−α

1 )→ R : u 7→
∫
R2
+

(
u(x)−Wxα+1

1

)r
+

xβ

1

dx

is continuous.

Similar inequalities were proved by a variational argument and scaling for
α = 1,β = −1 and r > 1 [9, lemma IIIA; 49, lemma I.1 (1)]. Similar inequalities
were proved when α = 1 and β = 3 and r = 0 with an isometry with H1(R5) [5,
lemma 2.1] and when α = β = 0 with an isometry with H1(R4) [48, lemma 2.5].
(See [46] for a general explanation of those isometries.) In the latter case Smets
and Van Schaftingen have given a proof of the inequality based directly on the
classical Hardy and Sobolev inequalities [43, proposition 4.2].

Proof of lemma 4. For every q > r and for every x = (x1,x2) ∈ R2
+,(

u(x)−Wxα+1
1

)r
+

xβ

1

6
|u(x)|q

W q−rx(q−r)(α+1)+β

1

.

Set now

q = 2
r(α +1)− (β −2)

α +2
.

After having observed that by our assumptions q > max(2,r), we conclude by
applying lemma 3. The continuity follows from the same bound and Lebesgue’s
dominated convergence theorem.

We also want to have an inequality that relates the local behaviour of a function
with its global behaviour. Such results originate in the work of P.-L. Lions [34, II,
lemma I.1] (see also [47, lemma 1.21]).

Lemma 5. If α > −1 and r > 0, then there exists C > 0 such that for all u ∈
H1

0 (R2
+,x
−α

1 ) and W > 0,

∫
R2
+

(
u(x)−Wxα+1

1

)r
+

xβ

1

dx

6
C

W
rα−2(β−2)

α+2

(∫
R2
+

|∇u(x)|2

xα
1

dx+
1

W
4

α+2

(∫
R2
+

|∇u(x)|2

xα
1

dx
)1+ 2

α+2
)

×
(

sup
a∈R

∫
R+×(a−1,a+1)

(
u(x)−Wxα+1

1

)r
+

xβ

1

dx
)1− α+2

r(α+1)−(β−2)
.
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Proof. Chosse η ∈ C∞(R) such that η = 1 on [−1,1] and suppη ⊂ [−2,2]. For
every a ∈ R and x = (x1,x2) ∈ R2

+, define θa(x) = η(x2−a). If v ∈ H1
0 (R2

+,x
−α

1 ),
we have by lemma 4,

∫
R+×(a−1,a+1)

(
v(x)− W

2 xα+1
1

)r
+

xβ

1

dx

6
∫
R2
+

(
θa(x)v(x)− W

2 xα+1
1

)r
+

xβ

1

dx

6
C

W
rα−2(β−2)

α+2

(∫
R+×(a−2,a+2)

|∇v(x)|2

xα
1

+
|v(x)|2

xα
1

dx
) r(α+1)−(β−2)

α+2
.

This implies that

∫
R+×(a−1,a+1)

(
v(x)− W

2 xα+1
1

)r
+

xβ

1

dx

6C
C

W 2− α+2
r(α+1)−(β−2)

(∫
R+×(a−2,a+2)

|∇v(x)|2

xα
1

+
|v(x)|2

xα
1

dx
)

×
(∫

R+×(a−1,a+1)

(
v(x)− W

2 xα+1
1

)r
+

xβ

1

dx
)1− α+2

r(α+1)−(β−2)
.

For u ∈ H1
0 (R2

+,x
−α

1 ), set now

v(x) =
(
u(x)− W

2 xα+1
1
)
+
.

We apply the previous inequality, noting that by lemma 4

∫
R2
+

|∇v(x)|2

xα
1

dx 6 2
∫
R2
+

|∇u(x)|2

xα
1

dx

+2
∫
R2
+

xα
1 (u(x)−Wxα+1

1 )p+1 dx 6C
∫
R2
+

|∇u(x)|2

xα
1

dx

and ∫
R2
+

|v(x)|2

xα
1

dx 6
C

W
4

α+2

(∫
R2
+

|∇u(x)|2

xα
1

dx
)1+ 2

α+2
.

As a consequence of the previous lemmas, we have

Lemma 6. Let Ω ⊂ R2
+, α > 0, b(x) = 1

xα
1

and q : R2→ [0,∞) be measurable. If

inf
x∈Ω

q(x)
xα+1

1
> 0,
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then for every ε ∈ (0,1), the functional Eε is well-defined and continuously Fré-
chet-differentiable. Moreover

lim
u→0

Eε(u)∫
Ω

|∇u|2

b

> 0.

and there exists a constant c > 0 depending only on p, α , infx∈Ω
q(x)
xα+1

1
and ε such

that for every u ∈ H1
0 (R2

+,b),

max
t>0

Eε(tu)> c.

Proof. The well-definitess, the smoothness and the asymptotic behaviour around
0 follow from lemma 4. By the same lemma, we have

Eε(tv)>
t2

2

∫
R2
+

|∇v|2

b
− 1

(p+1)ε2

∫
R2
+

b(tv−qε)
p+1
+

>
t2

2

∫
R2
+

|∇v|2

b
−C
(∫

R2
+

t2 |∇v|2

b

)1+(p+1) α+1
α+2

;

by maximizing the right-hand side over t > 0, we reach the conclusion.

A more precise analysis shows that the conclusion of lemma 6 still holds for
α ∈ (0,1) under some additional restriction on p.

2.3.2. The translation-invariant case We now show that problem (P) has at
least a nontrivial solution when for a translation invariant problem. We say that
a set Ω ⊂ R2 is translation-invariant, if for every (x1,x2) ∈ Ω , (x1,x2 + s) ∈ Ω

and that a function g : Ω → R is translation-invariant if for every (x1,x2) ∈Ω and
s ∈ R,

g(x1,x2) = g(x1,x2 + s).

Proposition 2. Let α > 0 and let ε ∈ (0,1). If Ω ⊂ R2
+ is open and translation-

invariant, if for every x∈Ω , b(x)= xα
1 , if q : Ω→R is measurable and translation-

invariant and if

inf
x∈Ω

q(x)
xα+1

1
> 0,

then there exists a solution uε ∈ H1
0 (Ω ,b) of problem (P) such that Eε(uε) = cε .

When Ω =R2
+, the result is due to Ambrosetti and Yang for α = 1 [4, theorem

1; 48, theorem 1] and to Yang for α = 0 [49, theorem 1].
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Lemma 7. Let α > 0 and ε ∈ (0,1). If Ω ⊂R2
+ is open and translation-invariant,

if for every x ∈ Ω , b(x) = xα
1 , if q : Ω → R and qn : Ω → R are measurable and

translation-invariant and if

for every x ∈Ω lim
n→∞

qn(x) = q(x), (a)

inf
n∈N

inf
x∈Ω

qn(x)
xα+1

1
> 0, (b)

liminf
n→∞

E n
ε (u

n)> 0, (c)

limsup
n→∞

E n
ε (u

n)< ∞, (d)

E n
ε
′(un)→ 0 in

(
H1

0 (Ω ,b)
)′ as n→ ∞, (e)

where E n
ε denotes the functional associated to qn, then there exists u ∈ H1

0 (R2,b)
such that E ′ε(u) = 0 and

Eε(u)6 liminf
n→∞

E n
ε (u

n).

In the proof of lemma 7, we follow the strategy of Rabinowitz [41, theorem
3.21].

Proof. By our assumption (e) and by lemma 1, we have as n→ ∞,(1
2
− 1

p+1

)∫
Ω

|∇un|2

b
6 E n

ε (u
n)− 1

p+1
〈E n

ε
′(un),un〉

= E n
ε (u

n)+o(1)
(∫

Ω

|∇un|2

b

) 1
2
.

By the assumption (d), the sequence (un)n∈N is thus bounded in H1
0 (Ω ,b). Apply-

ing again (e), we have, as n→ ∞,∫
Ω

|∇un|2

b
=

1
ε2

∫
Ω

b(un−qε)
p
+un +o(1).

By (b), we have W = infn∈N infx∈Ω
qn(x)
xα+1

1
> 0. Setting for x ∈Ω ,

q
ε
(x) = (log 1

ε
)
W
2

xα+1
1 ,

we have since p > 1,

1
ε2

∫
Ω

b(un−qn
ε)

p
+un 6

1
ε2

∫
Ω

b(un−2q
ε
)p
+un

=
1
ε2

∫
Ω

b
(
un−2q

ε

)p−1
+

(
(un−q

ε
)2−q2

ε

)
6

1
ε2

∫
Ω

b
(
un−q

ε

)p+1
+

.
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On the other hand, by lemma 4, there exists C > 0 such that∫
Ω

b
(
un−q

ε

)p+1
+

6C
(∫

Ω

|∇un|2

b

)1+(p+1) α+1
α+2

.

Hence, since 1+(p+1)α+1
α+2 > 1 and (c) holds, we deduce by lemma 6 that

liminf
n→∞

∫
Ω

b
(
un−q

ε

)p+1
+

> 0.

Since the sequence (un)n∈N is bounded in H1
0 (Ω ,b), this implies by lemma 5 that

liminf
n→∞

sup
a∈R

∫
Ω∩(R×(a−1,a+1))

b
(
un−q

ε

)p+1
+

> 0;

hence there exists a sequence (an)n∈N in R such that

liminf
n→∞

∫
Ω∩(R×(an−1,an+1))

b
(
un−q

ε

)p+1
+

> 0.

Define now for n ∈ N and x = (x1,x2) ∈Ω , vn(x) = un(x1,an + x2). It is clear that
vn ∈ H1

0 (Ω ,b),

E n
ε (v

n)→ c∞
ε and E n

ε
′(vn)→ 0 in

(
H1

0 (Ω ,b)
)′ as n→ ∞.

Since the sequence (vn)n∈N is bounded in H1
0 (Ω ,b), up to a subsequence, one

can thus assume that vn ⇀ u weakly in H1
0 (Ω ,b). By Rellich’s compactness theo-

rem, since α > 0,∫
Ω∩(R×(−1,1))

b
(
u−q

ε

)p+1
+

= liminf
n→∞

∫
Ω∩(R×(−1,1))

b
(
vn−q

ε

)p+1
+

> 0,

so that u 6= 0. By the weak convergence in H1
0 (Ω ,b), the Rellich compactness

theorem and by (a) and (b), for every ϕ ∈C∞
c (Ω),

0 = lim
n→∞

1
2

∫
Ω

∇vn ·∇ϕ

b
− 1

ε2

∫
Ω

b(vn−qn
ε)

p
+ϕ

=
1
2

∫
Ω

∇u ·∇ϕ

b
− 1

ε2

∫
Ω

b(u−qε)
p
+ϕ.

So, u is a weak solution of (P) and u ∈Nε .
As u satisfies the Nehari constraint, by (a) and by Fatou’s lemma, we can write

lim
n→∞

E n
ε (u

n) = lim
n→∞

1
ε2

∫
Ω

b(vn−qn
ε)

p
+un− 1

ε2

∫
Ω

b
(vn−qn

ε)
p+1
+

p+1

>
1
ε2

∫
Ω

b(u−qε)
p
+u− 1

ε2

∫
Ω

b
(u−qε)

p+1
+

p+1
= Eε(u).

As a first application of lemma 7, we prove proposition 2.
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Proof of proposition 2. By lemma 2, there exists a sequence Palais-Smale se-
quence (un)n∈N associated to the critical level cε , that is

Eε(un)→ cε and E ′ε(u
n)→ 0 in

(
H1

0 (Ω ,b)
)′ as n→ ∞.

By lemma 7 with E n
ε = Eε , there exists u ∈ H1

0 (R2
+,b) \ {0} such that E ′ε(u) = 0

and Eε(u)6 cε . Since u 6= 0 and E ′ε(u) = 0, we have u ∈Nε and thus Eε(u)> cε .

We shall also need to know that cε depends continuously on qε .

Lemma 8. Let α > 0 and ε ∈ (0,1). If Ω ⊂R2
+ is open and translation-invariant,

if for every x ∈ Ω , b(x) = xα
1 , if q : Ω → R and qn : Ω → R are measurable and

translation-invariant and if

for every x ∈Ω lim
n→∞

qn(x) = q(x),

and

inf
n∈N

inf
x∈Ω

qn(x)
xα+1

1
> 0,

then
lim
n→∞

cn
ε = cε .

where cn
ε denotes the critical level of the functional associated to qn.

Proof. By proposition 2, there exists u ∈ H1
0 (Ω ,b) such that Eε(u) = cε and

E ′ε(u) = 0. Choose tn > 0 such that

max
t>0

E n
ε (tu) = E n

ε (tnu).

One has limn→∞ tn = 1 and thus

limsup
n→∞

cn
ε 6 lim

n→∞
E n

ε (tnu) = Eε(tu) = cε .

On the other hand, by lemma 2 and a diagonal argument, there exists a se-
quence (un)n∈N in H1

0 (Ω ,b) such that

E n
ε (u

n)− cn
ε → 0 and E n

ε
′(un)→ 0 in

(
H1

0 (Ω ,b)
)′ as n→ ∞.

By lemma 7, there exists u ∈ H1
0 (Ω ,b)\{0} such that and E ′ε(u) = 0,

liminf
n→∞

cn
ε = liminf

n→∞
E n

ε (u
n)> Eε(u).

Since E ′ε(u) = 0 we have
Eε(u)> cε .
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2.3.3. Existence by strict inequalities We turn now to the study of the problem
in an unbounded subset of R2

+ that needs not to be invariant under translations.

Proposition 3. Let Ω ⊂ R2
+ be open and translation-invariant, α > 0 and ε ∈

(0,1). Assume that for every x ∈Ω , b(x) = xα
1 and if q ∈Ω → and ε > 0,

inf
x∈Ω

q(x)
xα+1

1
> 0,

and that

liminf
|x|→∞

q(x)
q∞(x)

> 1,

where q∞ : Ω → R is measurable and translation-invariant and infx∈Ω
q∞

xα
1
> 0. If

cε < c∞
ε ,

where c∞
ε is the critical level defined by the functional associated to q∞, then there

exists a solution uε ∈ H1
0 (Ω ,b) of (P) such that Eε(uε) = cε .

This kind of results goes back to the concentration-compactness method of P.-
L. Lions [34]. The presentation and the proof that we are giving are inspired by
Rabinowitz [41] (see also [43]).

Proof of proposition 3. In view of lemma 2, there exists a Palais-Smale sequence
(un)n∈N at level cε . As in the proof of proposition 2, by lemma 1, the sequence
is bounded in H1

0 (Ω ,b) and we can thus assume without loss of generality that
un ⇀ u in H1

0 (Ω ,b) as n→∞. One has by Rellich’s theorem for every ϕ ∈C∞
c (Ω)

1
2

∫
Ω

∇u ·∇ϕ

b
− 1

ε2

∫
Ω

b(u−qε)
p
+ϕ = lim

n→∞

1
2

∫
Ω

∇un ·∇ϕ

b
− 1

ε2

∫
Ω

b(un−qε)
p
+ϕ

= 0,

so that u solves (P).
If u 6= 0, then u ∈Nε and Eε(u)> cε . Moreover, by Fatou’s lemma,

Eε(u) =
1
ε2

∫
Ω

1
2
(u−qε)

p
+u− 1

p+1
(u−qε)

p+1
+

6 liminf
n→∞

1
ε2

∫
Ω

1
2
(un−qε)

p
+un− 1

p+1
(un−qε)

p+1
+

= cε .

Hence we have Eε(u) = cε and the result follows.
If u = 0 on Ω , for every δ > 0, define the energy functional E δ

ε on H1
0 (R2

+,b)
by

E δ
ε (v) =

1
2

∫
Ω

|∇v|2

b
− 1

(p+1)ε2

∫
Ω

b(v− (1−δ )q∞
ε )

p+1
+ ,
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where q∞
ε = log 1

ε
q∞ and the corresponding critical level

cδ
ε = inf

v∈H1
0 (R

2
+,b)\{0}

sup
t>0

E δ
ε (tv).

Choose now τn such that maxτ>0 E δ
ε (τun) = E δ

ε (τnun). We claim that the sequence
(τn)n∈N is bounded. One has

(τn)
2
∫
R2
+

|∇un|2

b
=

1
ε2

∫
R2
+

b(τnun− (1−δ )q∞
ε )

p
+τnun

> max(τn,1)p+1 1
ε2

∫
R2
+

b(un− (1−δ )q∞
ε )

p
+un.

Choosing R > 0 such that q > (1− δ )q∞ in Ω \B(0,R), note that by Rellich’s
compactness theorem, since α > 0,

liminf
n→∞

1
ε2

∫
Ω

b(un− (1−δ )q∞
ε )

p
+un > liminf

n→∞

1
ε2

∫
Ω\B(0,R)

b(un−qε)
p
+un

> liminf
n→∞

1
ε2

∫
Ω

b(un−qε)
p
+un,

and that
1
ε2

∫
Ω

b(un−qε)
p
+un > 2Eε(un)−〈E ′ε(un),un〉,

therefore,

liminf
n→∞

1
ε2

∫
R2
+

b(un− (1−δ )q∞
ε )

p
+un > 2cε > 0,

so that the sequence (τn)n∈N is bounded.
We compute

Eε(τnun) = E δ
ε (τnun)+

1
(p+1)ε2

∫
Ω

b(τnun− (1−δ )q∞
ε )

p+1
+ −b(τnun−qε)

p+1
+ .

Choosing R as previously,∫
Ω\B(0,R)

b(τnun− (1−δ )q∞
ε )

p+1
+ −b(τnun−qε)

p+1
+ > 0

and by Rellich’s theorem, since α > 0 and the sequence (τn)n∈N is bounded

lim
n→∞

∫
Ω∩B(0,R)

b(τnun− (1−δ )q∞
ε )

p+1
+ −b(τnun−qε)

p+1
+ = 0.

We have thus
lim
n→∞

Eε(τnun)> limsup
n→∞

E δ
ε (τnun)

and because (un)n∈N is a Palais-Smale sequence we conclude that

cε > cδ
ε .

Since by lemma 8, limδ→0 cδ
ε = c∞

ε , we conclude that

cε > c∞
ε ,

a contradiction with the assumed strict inequality.
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3. Asymptotics of solutions

In this section we study the asymptotics of solutions to (P). We make the
following assumptions on Ω , b and q:

(A1) for every η > 0, there exists δ > 0 such for each x,y ∈Ω such that |x−y|6
δ dist(x,∂Ω),

∣∣∣log
b(x)
b(y)

∣∣∣6 η , and
∣∣∣log

q(x)
q(y)

∣∣∣6 η ,

(A2) there exists C ∈ R such that for every x ∈Ω ,

log
(

1+
2dist(x,∂Ω)b(x)(p+1)/2

q(x)(p−1)/2

)
6C

q(x)2

b(x)
,

(A3) q ∈ H1
loc(Ω), infΩ q > 0 and

−div
∇q
b

= 0

weakly in Ω ,
(A4) the set R2 \Ω is unbounded and connected,
(A5) the functional Eε is well-defined and differentiable on H1

0 (Ω ,b).

The assumption (A1) is equivalent with the uniform continuity with respect to
the distance-ratio metric on Ω of logb and logq. When Ω is a uniform domain,
this is equivalent with the uniform continuity with respect to the quasi-hyperbolic
metric on Ω . Those metrics are equivalent to the Poincaré metric on the ball and
on the half-plane [26, 27, 33]. Assumption (A5) is satisfied under the assumptions
of proposition 1 or of lemma 6.

An important consequence of (Az) is the following identity:

Lemma 9. For every u ∈ H1
0 (Ω ,b),

∫
Ω

|∇u|2

b
=
∫

Ω

q2

b

∣∣∣∇(u
q

)∣∣∣2.
Proof. Take u2

q as a test function in (P) and observe that

2∇q ·∇
(u2

q

)
= |∇u|2−q2

∣∣∣∇(u
q

)∣∣∣2.
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3.1. Upper bound on the energy

As a first step, we prove an upper bound on cε .

Proposition 4. One has

limsup
ε→0

cε

log 1
ε

6 π inf
Ω

q2

b
.

Proof. Choose U ∈ C∞(R2) such that U(x) = log 1
|x| if |x| > 1 and U(x) > 0 if

|x| < 1, choose ρ > 0 such that B(x̂,2ρ) ⊂ Ω and choose a cut-off function ϕ ∈
C∞

c (B(0,2ρ)) such that ϕ = 1 in B(x̂,ρ). Consider, for τ ∈ R, the function vτ
ε ∈

C∞
c (Ω) defined for x ∈Ω by

vτ
ε(x) = q(x)

(
U
( x−x̂

ε

)
+ log τ

ε

)
ϕ
( x−x̂

ρ

)
and define the function gε : R→ R for t ∈ R by

gε(τ) =
1

log 1
ε

〈E ′ε(vτ
ε),v

τ
ε〉=

1
log 1

ε

(∫
Ω

|∇vτ
ε |2

b
− 1

ε2

∫
Ω

b(vτ
ε −qε)

p
+vτ

ε

)
.

We are going to show that for every ε small enough, there exists τε such that
gε(τε) = 0.

By lemma 9, we have∫
Ω

|∇vτ
ε |2

b
=
∫

Ω

q2

b

∣∣∣∇((vτ
ε

q

))∣∣∣2. (9)

First one observes that there exists C > 0 such that for every τ > 0∫
B(x̂,2ρ)\B(x̂,ρ)

q2

b

∣∣∣∇(vτ
ε

q

)∣∣∣2 6C
(
1+
∣∣log τ

ρ

∣∣) (10)

and that if ε 6 ρ ,∫
B(x̂,ε)

q2

b

∣∣∣∇(vτ
ε

q

)∣∣∣2 = ∫
B(0,1)

q(x̂+ εy)2

b(x̂+ εy)
|∇U(y)|2 dy,

and thus

lim
ε→0

∫
B(x̂,ε)

q2

b

∣∣∣∇(vτ
ε

q

)∣∣∣2 = q(x̂)2

b(x̂)

∫
B(0,1)

|∇U |2, (11)

uniformly in τ > 0.
Finally, since U(x) = log 1

|x| if |x|> 1, we have if ε 6 δ 6 ρ ,∣∣∣∣q(x̂)2

b(x̂)
2π log

ρ

ε
−
∫

B(x̂,ρ)\B(x̂,ε)

q2

b

∣∣∣∇(vτ
ε

q

)∣∣∣2∣∣∣∣6 ∫B(x̂,ρ)

∣∣∣q(x̂)2

b(x̂)
− q(x)2

b(x)

∣∣∣ 1
|x− x̂|2

dx

6 2π

(
ω(ρ) log

ρ

δ
+ω(δ ) log

ε

δ

)
,
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where

ω(δ ) = sup
x∈B(x̂,δ )

∣∣∣q(x̂)2

b(x̂)
− q(x)2

b(x)

∣∣∣.
We have thus for every δ > 0,

limsup
ε→0

∣∣∣2π
q(x̂)2

b(x̂)
− 1

log 1
ε

∫
B(x̂,ρ)\B(x̂,ε)

q2

b

∣∣∣∇(vτ
ε

q

)∣∣∣2∣∣∣6 2πω(δ ).

By continuity of q and b, limδ→0 ω(δ ) = 0 and thus we have proved

lim
ε→0

1
log 1

ε

∫
B(x̂,ρ)\B(x̂,ε)

|∇vτ
ε |2

b
= 2π

q(x̂)2

b(x̂)
, (12)

uniformly in τ > 0. Gathering (9), (10), (11) and (12), we have proved that

lim
ε→0

1
log 1

ε

∫
Ω

|∇vτ
ε |2

b
= 2π

q(x̂)2

b(x̂)
, (13)

uniformly in τ > 0 in compact subsets.
Now note that

1
ε2

∫
Ω

b(vτ
ε −qε)

p
+vτ

ε =
1
ε2

∫
Ω

b(vτ
ε −qε)

p
+qτ

ε +
1
ε2

∫
Ω

b(vτ
ε −qε)

p+1
+ . (14)

If ετ 6 ρ , one has for every x ∈Ω ,

(vτ
ε(x)−qε(x))+ =

(
U
( x−x̂

ε

)
+ logτ

)
+
.

Hence we have since b and q are continuous

lim
ε→0

1
ε2

∫
Ω

b(vτ
ε −qε)

p+1
+ = lim

ε→0

∫
B(0,τ)

b(x̂+ y)p+1q(x̂+ y)
(
U(y)+ logτ

)p+1
+

dy

= b(x̂)q(x̂)p+1
∫

B(0,τ)

(
U + logτ

)p+1
+

(15)

and similarly

lim
ε→0

1
log 1

ε
ε2

∫
Ω

b(vτ
ε −qε)

p
+qε = b(x̂)q(x̂)p+1

∫
B(0,τ)

(
U + logτ

)p
+

; (16)

the convergences are uniform on compact subsets.
In view of (14), (15) and (16), we have thus proved that for every τ > 0,

limε→0 gε(τ) = g(τ), where

g(τ) =
2πq(x̂)2

b(x̂)
−b(x̂)q(x̂)p+1

∫
R2

(
U + logτ

)p
+
.

Choose now τ > 0 and τ̄ > 0 such that g(τ) > 0 and g(τ̄) > 0. Then, for ε >
0 sufficiently small, gε(τ) < 0 < gε(τ̄) and there exists a τε ∈ (τ, τ̄) such that
gε(τε) = 0.



Desingularization of vortex rings and shallow water vortices 25

One has then vtε
ε ∈Nε We can now compute the energy of vτε

ε with the help of
(13) and (15), keeping in mind that the limits are uniform on compact subsets and
that the family (|logτε |)ε>0 is bounded:

lim
ε→0

1
log 1

ε

Eε(vτε
ε ) = lim

ε→0

1
log 1

ε

1
2

∫
Ω

|∇vτε
ε |2

b
− lim

ε→0

1
log 1

ε

1
ε2

∫
Ω

b
(vτε

ε −qε)
p+1
+

p+1

= π
q(x̂)2

b(x̂)
.

The result follows by taking the infimum over x̂ ∈Ω .

Proposition 5. Under the assumption of the previous proposition, if there exists
x̂ ∈Ω such that

q(x̂)2

b(x̂)
= inf

Ω

q2

b

and q2

b is Dini-continuous in a neighbourhood of x̂, then

cε(Ω)6 π log
1
ε

inf
Ω

q2

b
+O(1)

as ε → 0.

Recall that f : Ω→R is Dini-continuous in a neighbourhood of x̂ if there exists
δ > 0 and a nondecreasing function ω : [0,δ )→ R such that∫

δ

0

ω(t)
t

dt < ∞

and for every x,y ∈ B(x̂,δ ),

| f (x)− f (y)|6 ω(|x− y|).

Remark that in order to have the improved bound the infimum should be
achieved in the interior of Ω and q2

b should satisfy some improved continuity as-

sumption at the minimum point. This is the case if q2

b is coercive and continuously
differentiable. Also note that by the classical regularity theory of De Giorgi [20;
28, Chapter 8], since b is locally bounded and bounded away from 0, q is locally
Dini-continuous. The condition is thus that b should be locally Dini-continuous.

Proof of proposition 5. The proof goes as the proof of proposition 4, except that
when studying Eε(v

τε
ε ), we note that our assumption allows us, by estimating (12),

to obtain

lim
ε→0

1
log 1

ε

∫
Ω

|∇vτ
ε |2

b
= 2π log 1

ε

q(x̂)2

b(x̂)
+O(1),

as ε → 0, uniformly in τ > 0 over compact sets instead of (13).
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3.2. Asymptotic behaviour and lower bound on the energy

We are now going to study the asymptotics of a family of groundstates. Thus,
we assume that for every ε > 0, problem (P) possesses a nontrivial solution uε ∈
H1

0 (Ω ,b) such that Eε(uε) = cε .
We define the vortex core to be the set

Aε =
{

x ∈Ω : uε(x)> qε(x)
}
.

Note that as uε is continuous inside Ω by classical regularity theory [28, theorem
8.22], Aε is an open subset of Ω .

We first give some integral identities involving the vortex core:

Lemma 10. If uε is a solution of (P) then

1
ε2

∫
Ω

(uε −qε)
p
+qε =

∫
Ω

|∇uε |2

b
−
∫

Aε

|∇(uε −qε)|2

b
(a)

1
ε2

∫
Aε

(uε −qε)
p+1
+ =

∫
Aε

|∇(uε −qε)|2. (b)

Such integral identities go back to Berger and Fraenkel [9, lemma 5.A].

Proof of lemma 10. The proof goes by taking (uε −qε)+ and min(uε ,qε) as test
functions in the equation.

We now study the properties of the vortex core.

Lemma 11. For every ε > 0, the set Aε is connected and simply connected and

lim
ε→0

diam(Aε)

dist(Aε ,∂Ω)
= 0.

The proof of the connectedness will require the next techical lemma:

Lemma 12. Let u ∈ H1
0 (Ω ,b). If u ∈C(Ω), if U ⊂Ω is open,

{x ∈Ω : u(x)> 0}\U

is open and Ū ⊂Ω is compact, then u+χU ∈ H1
0 (Ω ,b).

Note that we are not assuming that u is continuous on ∂Ω ; this makes the proof
and the assumptions delicate but will relieve us later of studying the regularity of
u near ∂Ω .

Proof of lemma 12. Let δ > 0 and define

Kδ = {x ∈U : u(x)> δ}.

By our assumptions on the function u and on the sets U , the set Kδ is compact.
Hence there exists ϕδ ∈ C∞(Ω ; [0,1]) such that ϕδ = 1 on Fδ

1 and ϕδ = 0 on
suppu\U . One has (u−δ )+χU = (ϕδ u−δ )+ ∈H1

0 (Ω ,b). Since for every δ > 0,∫
U

|∇(u−δ )+|2

b
6
∫

U

|∇u|2

b
,

we conclude by letting δ → 0 that u+χU ∈ H1
0 (Ω ,b).
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For the connectedness, we rely on an argument that goes back to Berger and
Fraenkel [10, theorem 4.3] (see also [8, appendix; 32]).

Proof of lemma 11. Since uε > qε on Aε , we have by definition of capacity, by
lemma 9 and by lemma 1

inf
Ω

q2
ε

b
cap(Aε ,Ω)6

∫
Ω\Aε

q2
ε

b

∣∣∣∇(uε

qε

)∣∣∣2 6 ∫
Ω

|∇uε |2

b
6

2(p+1)
p−1

Eε(uε).

Let A∗ε be a connected component of Aε . Since R2\Ω is connected and unbounded,
by estimates on the capacity [43, proposition A.3] (see also [23]),

cap(A∗ε ,Ω)>
2π

log16(1+ 2dist(Aε ,∂Ω)
diamA∗ε

)
.

In particular Ā∗ε is a compact subset of Ω and by proposition 4,

lim
ε→0

diam(A∗ε)
dist(A∗ε ,∂Ω)

= 0.

It is thus sufficient to prove that A∗ε = Aε .
By lemma 12, since uε is continuous and Ā∗ε is a compact subset of Ω ,

vε = (uε −qε)+χA∗ε ∈ H1
0 (Ω ,b).

Also define wε = min(uε ,qε). By testing the equation against (uε − qε)+ and vε

we have∫
Aε

|∇(uε −qε)|2 =
∫

Aε

(uε −qε)
p+1 and

∫
A∗ε
|∇(uε −qε)|2 =

∫
A∗ε
(uε −qε)

p+1.

(17)
Also note that ∫

Ω

|∇uε |2 =
∫

Ω

|∇wε |2 +
∫

Aε

|∇(uε −qε)|2,

and for every t ∈ R,∫
Ω

|∇(wε + tvε)|2 =
∫

Ω

|∇wε |2 + t2
∫

A∗ε
|∇(uε −qε)|2.

We first claim that there exists t∗ > 1 such that wε + t∗uε ∈Nε . Indeed, one
has for every t ∈ R,

〈E ′ε(wε + tvε),wε + tvε〉=〈E ′ε(wε + tvε),wε + tvε〉−〈E ′ε(uε),uε〉

=t2
∫

A∗ε
|∇(uε −qε)|2−

∫
Aε

|∇(uε −qε)|2

−
∫

A∗ε
t p(uε −qε)

p(qε + t(uε −qε))+
∫

Aε

(uε −qε)
puε .
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By (17), we have

〈E ′ε(wε + tu1
ε),wε + tu1

ε〉=
∫

Aε\A∗ε
(uε −qε)

pqε − (t p+1− t2)
∫

A∗ε
(uε −qε)

p+1

− (t p−1)
∫

A∗ε
(uε −qε)

pqε .

By the intermediate value theorem, there exists t∗ > 1 such that wε + t∗uε ∈Nε .
Now we compute the energy and we obtain

Eε(wε + t∗uε) =
1
2

∫
Ω

|∇wε |2 +
( t2
∗
2
− t p+1

∗
p+1

)∫
A∗ε
(uε −qε)

p+1

6 Eε(uε)−
(1

2
− 1

p+1

)∫
Aε\A∗ε

(uε −qε)
p+1.

Since uε is a minimal energy solution and uε > qε in Aε , we conclude that Aε = A∗ε
and the set Aε is thus connected.

We now show that Aε is simply connected. Let E be the connected component
of Ω \Aε such that ∂Ω ⊂ Ē. The set Ω \E is open and one has −div( uε−qε

b )> 0
in Ω \ E and uε − qε > 0 in Ω \ E, so that by the strong maximum principle,
uε −qε > 0 in Ω \E. Hence Aε = Ω \E and Aε is simply connected.

The next lemma shows that the kinetic energy remains bounded inside the
vortex core.

Proposition 6. There exists a constant C > 0 independent of ε such that if aε ∈ Aε ,

1
ε2

∫
Aε

b(uε −qε)
p+1
+ =

∫
Aε

|∇(uε −qε)|2

b
6C

b(aε)

q(aε)2 .

Proof. Let aε ∈ Aε . By lemma 10 (b), lemma 11 and (A1), one has∫
Aε

|∇(uε −qε)|2

b
=

1
ε2

∫
Aε

b(uε −qε)
p+1
+

6Cb(aε)
1
ε2

∫
Aε

(uε −qε)
p+1
+

6C′b(aε)
1
ε2

∫
Aε

(uε −qε)
p
+

(∫
Aε

|∇(uε −qε)|2
)1/2

6C′′b(aε)
1/2 1

ε2

∫
Aε

b(uε −qε)
p
+

(∫
Aε

|∇(uε −qε)|2

b

) 1
2
,

using the the classical Gagliardo-Nirenberg inequality. One obtains thus∫
Aε

|∇(uε −qε)|2

b
6 (C′′)2b(aε)

(
1
ε2

∫
Aε

b(uε −qε)
p
+

)2

.

Now by lemma 11 and by lemma 10 (a),

q(aε)
1
ε2

∫
Aε

b(uε −qε)
p
+ 6C′′′

1
ε2

∫
Aε

b(uε −qε)
p
+q 6C′′′

1
log 1

ε

∫
Ω

|∇uε |2

b
,

and we conclude by lemma 1 and proposition 4.
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Finally, we have a lower bound on the diameter of the vortex core:

Lemma 13. There exists a constant C > 0 such that if aε ∈ Aε ,

diam(Aε)>
Cεq(aε)

p−1
2

b(aε)
p+1

2

.

Proof. One has, by lemma 11 and and (A1),

1
ε2

∫
Aε

b(uε −qε)
p+1
+ 6Cb(aε)

1
ε2

∫
Aε

(uε −qε)
p+1
+ .

By the Hlder and Sobolev inequalities

∫
Aε

(uε −qε)
p+1
+ 6C′|Aε |

(∫
Aε

|∇(uε −qε)|2
)(p+1)/2

.

Hence we obtain, by lemma 1 and lemma 11 together with (A1) again,

∫
Aε

|∇(uε −qε)|2

b
6C′′b(aε)

(p+3)/2 |Aε |
ε2

(∫
Aε

|∇(uε −qε)|2

b

)(p+1)/2
.

Therefore,

liminf
ε→0

b(aε)
p+3

2
|Aε |
ε2

(∫
Aε

|∇(uε −qε)|2

b

) p−1
2

> 0.

By proposition 6, this implies that

liminf
ε→0

|Aε |
ε2

b(aε)
p+1

q(aε)p−1 > 0.

and the result follows from the isodiametric inequality |Aε |6 π(diamAε)
2/4.

The main result of this section is:

Proposition 7. One has, if aε ∈ Aε ,

lim
ε→0

Eε(uε)

π log 1
ε

= lim
ε→0

1
2π log 1

ε

∫
Ω

|∇uε |2

b
= lim

ε→0

q(aε)
2

b(aε)
= inf

Ω

q2

b
, (a)

lim
ε→0

κε

b(aε)

q(aε)
= 2π, (b)

lim
ε→0

log
dist(Aε ,∂Ω)

diam(Aε)

log
1
ε

= lim
ε→0

log
b(aε)

(p+1)/2

diam(Aε)q(aε)(p−1)/2

log
1
ε

= 1. (c)
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Proof. By definition of Eε and by proposition 10, we have

1
ε2

∫
Ω

b(uε −qε)
p
+qε =

∫
Ω

|∇uε |2

b
−
∫

Aε

|∇(uε −qε)|2

b

= 2Eε(uε)−
p−1
p+1

1
ε2

∫
Aε

b(uε −qε)
p+1
+ .

Hence, by proposition 6,∫
Ω

b(uε −qε)
p
+q 6

2Eε(uε)

log 1
ε

+O
( 1

log 1
ε

)
, (18)

as ε → 0. Define for σ ,τ ∈ (0,1) with τ < σ ,

wσ ,τ
ε = min

( (uε −qσ )+
qτ −qσ

,1
)
.

By testing the equation against wσ ,τ
ε q, in view of lemma 9

log
σ

τ

∫
Ω

q2

b
|∇wσ ,τ

ε |2 =
1
ε2

∫
Ω

(uε −qε)
p
+q.

In particular, setting
Aτ

ε =
{

x ∈Ω : uε(x)> qτ(x)
}
,

we have

cap(Aτ
ε ,Ω)6

∫
Ω

q2

b
|∇w1,τ

ε |2

inf
Ω

q2

b

and thus by capacity estimates [43, proposition A.3] (see also [23]), since R2 \Ω

is unbounded and connected,

2π

log16
(

1+
2dist(Aτ

ε ,∂Ω)

diamAτ
ε

) 6

1
ε2

∫
Ω

b(uε −qε)
p
+q

log 1
τ

inf
Ω

q2

b

.

By (18) and by proposition 4, we have

liminf
ε→0

log16
(

1+
2dist(Aτ

ε ,∂Ω)

diamAτ
ε

)
> log

1
τ
, (19)

and thus, by (A1), for every δ > 0, there exists ρ > 0 and ε0 > 0 such that for
every x,y ∈ Aρ

ε with ε ∈ (0,ε0),

q(x)2

b(x)
6

q(y)2

b(y)
(1+δ ).
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We have thus

q(aε)
2

b(aε)(1+δ )

∫
Ω

|∇wτ,ε
ε |2 6

∫
Ω

q2

b
|∇wτ,ε

ε |2 6
1

log τ

ε

1
ε2

∫
Ω

(uε −qε)
p
+q. (20)

By capacity estimates, we have thus that for every ε ∈ (0,ε0),∫
Ω

|∇wτ,ε
ε |2 > cap(Aε ,Ω)>

2π

log16(1+ 2dist(Aε ,∂Ω)
diam(Aε )

)

and hence

q(aε)
2

b(aε)

2π

log16(1+ 2dist(Aε ,∂Ω)
diam(Aε )

)
6

1+δ

ε2

∫
Ω

(uε −qε)
p
+q.

In view of lemma 13, we have

limsup
ε→0

q(aε)
2

b(aε)

log τ

ε

log16
(

1+
C dist(aε ,∂Ω)b(aε)

(p+1)/2

εq(aε)(p−1)/2

) 6 (1+δ ) inf
Ω

q2

b
.

Now, note that

log16
(

1+
C dist(aε ,∂Ω)b(aε)

(p+1)/2

εq(aε)(p−1)/2

)
6 log16

(
1+

C
ε

)
+ log

(
1+

dist(aε ,∂Ω)b(aε)
(p+1)/2

q(aε)(p−1)/2

)
.

By assumption (A2), we have thus

limsup
ε→0

q(aε)
2

b(aε)

log τ

ε

log16
(

1+
2dist(aε ,∂Ω)b(aε)

(p+1)/2

εq(aε)(p−1)/2

)

> limsup
ε→0

log τ

ε

log16(1+ C
ε
)

b(aε)

q(aε)2 +
C′

log16(1+ C
ε
)

> limsup
ε→0

q(aε)
2

b(aε)
.

Hence, we conclude that

limsup
ε→0

q(aε)
2

b(aε)
6 (1+δ ) inf

Ω

q2

b
.

Since δ > 0 is arbitrary, we have (a).
To obtain (c), we note that

limsup
ε→0

log
dist(Aε ,∂Ω)

diam(Aε)

log
1
ε

6 1
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and that by lemma 13,

liminf
ε→0

log
b(aε)

p+1
2

diam(Aε)q(aε)
p−1

2

log
1
ε

6 1.

We conclude since by (A2)

limsup
ε→0

log
dist(Aε ,∂Ω)

diam(Aε)

log
1
ε

−
log

b(aε)
p+1

2

diam(Aε)q(aε)
p−1

2

log
1
ε

= limsup
ε→0

log
dist(aε ,∂Ω)b(aε)

p+1
2

diam(Aε)q(aε)
p−1

2

log
1
ε

6 limsup
ε→0

C′
q(aε)

2

b(aε)

log 1
ε

= 0.

To obtain (b), note that by (3.2) and by lemma 6, we have

lim
ε→0

1
ε2

∫
Aε

b(uε −qε)
p
+q = 2π inf

Ω

q2

b

and by lemma 11, we have

lim
ε→0

∫
Aε

b(uε −qε)
p
+q−q(aε)

∫
Aε

(uε −qε)
p
+ = 0.

If q2

b is Dini-continuous and if the solutions concentrate around an interior
point, we have the following improvement.

Proposition 8. If limε→0 aε = â ∈ Ω and q2

b is Dini-continuous in a neighbour-
hood of â, then

Eε(uε)

π
=

1
2π

∫
Ω

|∇uε |2

b
+O(1) =

q(aε)
2

b(aε)
log 1

ε
+O(1) = inf

Ω

q2

b
log 1

ε
+O(1),

0 < liminf
ε→0

diamAε

ε
6 limsup

ε→0

diamAε

ε
< ∞.

Proof of proposition 8. Beginning as in the proof of proposition 7, we have, as
proposition 5 is applicable in place of (19), that there exists c > 0 such that(

1+
2dist(Aτ

ε ,∂Ω)

diamAτ
ε

)
>

c
τ
.

Since limε→0 aε = â ∈Ω , there exists ρ > 0 such that for every σ > ρ and x ∈ Aσ
ε ,

|x−aε |6Cσ . This implies that(
log

σ

τ

)2 ∫
Ω

(uε −qε)
p
+q 6

(
log

σ

τ

)q(â)2

b(â)

(
1+ω(Cτ)

) 1
ε2

∫
Ω

(uε −qε)
p
+q.
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Taking now ε = τ1 < σ1 = τ2 < σ2 < .. . < σk = ρ and summing the previous
inequality over j ∈ {1, . . . ,k}, we obtain

q(â)2

b(â)

(
log

ρ

ε

)2 ∫
Ω

|∇wρ,ε
ε |2 6

(
log

ρ

ε
+

k

∑
j=1

ω(Cσi) log
σi

τi

) 1
ε2

∫
Ω

(uε −qε)
p
+q.

By taking the limit of Riemann sums, we conclude that

q(â)2

b(â)

∫
Ω

|∇wρ,ε
ε |2 6

( 1
log ρ

ε

+
1

(log ρ

ε
)2

∫
ρ

ε

ω(Cτ)

τ
dτ

) 1
ε2

∫
Ω

(uε −qε)
p
+q,

which improves (20) and allows to continue the proof.

4. Construction and asymptotics of vortices

In this section we go back to the axisymmetric Euler equation and the shallow
water equation and prove our main results.

4.1. Vortex rings for the Euler equation

For the Euler equation, the solutions of the previous sections gives us a suitable
Stokes stream functions.

4.1.1. Vortex ring in the whole space The first case is the construction of a
vortex ring in the whole space.

Proof of theorem 1. Define for every r ∈ (0,∞) and z ∈ R, b(r,z) = r and

q(r,z) =W
r2

2
+

3
8W

(
κ

2π

)2
.

One computes directly that q2

b achieves its minimum at ( κ

4πW ,0) and that

2π
q(r∗,0)
b(r∗,0)

= κ.

By proposition 2, the problem has a solution for every ε ∈ (0,1). Define

vε(r,z) = curl
(
(uε +qε)

eθ

r

)
and

pε(r,z) =
(uε −qε)

p+1

p+1
− |vε |2

2
.

One computes that
lim
|x|→∞

v =
κ

4πr∗
log 1

ε

and that
curlvε(r,z) = (uε(r,z)−qε(r,z))

p
+eθ .

The conclusion follows by the asymptotics of propositions 7 and 8.
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4.1.2. Vortex ring in a cylinder The proof of theorem 2 is very similar.

Proof of theorem 2. If κ < 4πW , one defines b and q as in the proof of theorem 1.
Otherwise one sets

q(r,z) =
W
2

r2 +
(

κ

2π
−W

2

)
.

One checks that q2

b achieves its minimum at (1,0). Since κ

2π
− W

2 > 0, we can then
use proposition 7 in the asymptotics.

4.1.3. Vortex ring outside a ball For the construction of a vortex ring outside a
ball, we use the strict inequality of proposition 3.

Proof of theorem 3. If κ > 6πW , let r∗ be the unique number such that

2r∗+
1
r2
∗
=

κ

2πW
.

Define now
q(r,z) =

W
2

(
r2− r

r2 + z2

)
+

3W
2

(
r2
∗+

1
r∗

)
.

Observe that if z 6= 0,
q(r,z)> q(r,0).

If the function r ∈ [1,∞) 7→ q(r,z) achieves its maximum at r̃ ∈ (1,∞), by Fermat’s
theorem,

3
2

W
2

(
r̃2− 1

r̃

)
+ 3W

2

(
r2
∗+

1
r∗

)
r2

(
r̃2 +

1
r̃
− r2
∗−

1
r∗

)
= 0,

from which we deduce that r̃ = r∗. Define

q∞(x) =
W
2

r2 +
3W
2

(
r2
∗+

1
r∗

)
,

and observe that

lim
|x|→∞

q(x)
q∞(x)

= 1,

and that

inf
Ω

(q∞)2

b
=

q∞(r∞
∗ ,0)

2

b(r∞
∗ ,0)

>
q(r∞
∗ ,0)

2

b(r∞
∗ ,0)

with
(r∞
∗ )

2 = r2
∗+

1
r∗
.

In particular, since r∗ > 1, (r∞
∗ ,0) ∈ R2

+ \B1. By proposition 4, we have

limsup
ε→∞

cε

log 1
ε

6 inf
R2\B1

q2

b
< π

q∞(r∞
∗ ,0)

2

b(r∞
∗ ,0)

and by proposition 7,

lim
ε→∞

c∞
ε

log 1
ε

= π
q∞(r∞

∗ ,0)
2

b(r∞
∗ ,0)

.
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By proposition 3, the problem (P) has a solution. One constructs the flow and
studies its asymptotics by proposition 7 as in the proof of theorem 1.

If κ 6 6πW , define

q(r,z) =
W
2

(
r2− r

r2 + z2

)
+

κ

2π
,

and

q∞(r,z) =
W
2

r2 +
κ

2π

and observe that q2

b achieves its maximum at (1,0) and that

inf
R2
+\B1

q2

b
=
(

κ

2π

)2

and

inf
(r,z)∈R2

+\B1

q∞(r,z)
r

=
16

9
√

2

√
6πW

κ

(
κ

2π

)2
>
(

κ

2π

)2

since κ 6 6πW . The rest of the proof is similar to the case κ > 6πW .

4.1.4. Vortex ring outside a compact set In order to construct solutions outside
an arbitrary compact set, we first construct and study the irrotational flow.

Lemma 14. Let α >−1, k > 0 and K ⊂R2. Define b : R2
+→R and q∞ : R2

+→R
be defined for x = (x1,x2) ∈ R2

+ by

b(x) = xα
1 and q∞(x) = W

α+1 xα+1
1 + k.

If K is compact and satisfies an interior cone condition at every point of ∂K∩R2
+,

then there exists a unique solution q ∈ H1
loc(R2

+ \K)∩C(R2
+ \K) such that

−div
∇q
b

= 0 in R2
+ \K,

q = k on ∂ (R2
+ \K),

lim
|x|→∞

q(x)
q∞(x)

= 1.

Moreover q ∈C∞(R2
+),

lim
|x|→∞

∇q(x)
xα

1
= (W,0),

and, if K∩R2
+ 6= /0, for every x ∈ R2

+ \K,

q(x)< q∞(x).
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Proof. Since K is compact there exists R > 0 such that K ⊂ B(0,R). Choose ϕ ∈
C∞(R2) so that ϕ = 1 on B(0,R) and ϕ = 0 in R2 \B(0,2R) and define g : R2

+→R
for x ∈ R2

+ by

g(x) =
W

α +1
ϕ(x)xα+1

1 .

Observe that since α >−1,∫
R2
+

|∇g|2

b
6 2
( W

α +1

)2 ∫
R2
+

|∇ϕ(x)|2xα+2
1 +(α +1)2|ϕ(x)|2xα

1 dx < ∞.

Construct the function v ∈ H1
0 (R2

+ \K) by minimizing the Dirichlet energy

1
2

∫
Ω

|∇v|2

b
−
∫

Ω

∇g ·∇v
b

over H1
0 (Ω ,b) and set

q = q∞−g+ v.

One has clearly v ∈ H1
loc(R2

+ \K) and

div
∇q
b

= 0

weakly in R2
+ \K. By the classical interior regularity theory, v ∈ C∞(R2

+ \K).
Since K ∩R2

+ satisfies an interior cone condition at every point of ∂K ∩R2
+, v is

continous on R2
+ \ intK [28, Corollary 8.28].

Now we claim that v 6 g. Indeed, by taking (v− g)+ ∈ H1
0 (Ω ,b) as a test

function in the equation, we have∫
R2
+\K
|∇(v−g)+|2 =

∫
R2
+\K

(∇v−∇g) ·∇(v−g)+ = 0,

so that v 6 g. In particular, we have q 6 q∞. Similarly, one has that v > k+g−q∞,
so that we have proved that

k+g−q∞ 6 v 6 g; (21)

in particular, v is continuous on ∂R2
+ \ intK. By the strong maximum principle, we

have v > k+g−q∞ in R2
+ \K.

Moreover, we have by (21) for every x ∈ R2
+ \B(0,2R),

v(x)>− W
α +1

xα+1
1 .

Define

w(x) =−Wxα+1
1

(2R)α+2

|x|α+2 . (22)

One checks that div ∇w
b = 0 and w 6 v on ∂B(0,2R). By a comparison argument,

we have thus that w 6 v in R2
+ \B(0,2R). In particular,

lim
|x|→∞

v(x)
q∞(x)

= 0.
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Finally, note that if x∈R2
+\B(0,2R), by combining a classical estimate [28, Corol-

lary 6.3] with (22):

|∇v(x)|
xα

1
6

C
xα+1

1
sup

y∈B(x,x1/2)
|v(y)|6C′

Rα+2

|x|α+2 ,

and thus

lim
|x|→∞

|∇v(x)|
xα

1
= 0.

Proof of theorem 4. Since K is simply connected ∂ (R2
+ \K) is connected and

ψ(r,z) = k on ∂ (R2
+ \K) for some k < 0. Defining q =−ψ and q∞(x) = W

2 x2
1 + k,

we observe that q is also the solution given by lemma 14. We are going to apply
proposition 3. We observe that by proposition 2 and proposition 4, we have

lim
ε→0

c∞
ε

log 1
ε

= inf
(r,z)∈R2

+

q∞(r,z)2

r
.

By a direct computation,

inf
R2

(q∞)2

b
=

q∞(r∗,z)2

r∗
.

Since K is compact, there exists z∗ ∈ R such that (r∗,z∗) 6∈ K. By proposition 4,
lemma 14 and proposition 7

limsup
ε→∞

cε

log 1
ε

6 π
q(r∞
∗ ,z)

2

r∞
∗

< limsup
ε→∞

c∞
ε

log 1
ε

.

By proposition 3, a solution uε exists if ε is small enough. One defines the associ-
ated flow and studies its asymptotics as in the proof of theorem 1.

The question of where the vortex concentrates gives rise to a result depending
on the geometry of the compact set D:

Proposition 9. If k is sufficiently large and α > 0, then

inf
x∈∂ (R2

+\K)

q(x)2

xα
1

< inf
x∈R2

+\K

q(x)2

xα
1

.

Proof. First one has

inf
x∈∂ (R2

+\K)

q(x)2

xα
1

= k2 inf
x∈∂ (R2

+\K)

1
xα

1
.

Since K is compact, there exists R > 0 such that K ⊂ B(0,R). Take a ∈R such that
|a|> R. One has

inf
x∈R2

+\K

q(x,z)
xα

1
6 inf

x∈R+

q(x)2

xα
1

6 inf
x∈R+

q∞(x)2

xα
1

= 4
(

k
α +1

2α +1

) α+2
α+1

W
α

α+1 .
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4.2. Vortices for the shallow water equation

We finish by sketching the proofs for the shallow water equation:

Proof of theorem 5. Set for x ∈Ω , q(x) = κ

2π
supΩ b. By proposition 1, (P) has

a solution uε . Define for x ∈Ω

vε(x) = curluε(x)

and

h(x) =
1
ε2

(
uε(x)−qε(x)

)p+1
+

p+1
− |vε(x)|2

2
.

One checks directly that this is a steady flow of the shallow water equation (5) and
that

curlvε(x) =
1
ε2

(
uε(x)−qε(x)

)p
+
,

and that

inf
Ω

q2

b
=
(

κ

2π

)2
sup
Ω

b,

so that curlvε has the required asymptotic properties by proposition 7.

Proof of theorem 6. Set for x ∈ Ω , q(x) =−ψ0(x). By proposition 1, (P) has a
solution uε . Define for x ∈Ω

vε(x) = curl(uε −qε)

and

h(x) =
1
ε2

(
uε(x)−qε(x)

)p+1
+

p+1
− |vε(x)|2

2
.

One checks directly that this is a steady flow of the shallow water equation (5) and
that curlvε has the required asymptotic properties.
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