
A Formal Framework for the Analysis of
Human-Machine Interactions

Sébastien Combéfis

Thesis submitted in partial fulfillment of the requirements
for the Degree of Doctor in Engineering Sciences

November 20, 2013

Institute of Information and Communication Technologies,
Electronics and Applied Mathematics (ICTEAM)

Louvain School of Engineering (EPL)

Université catholique de Louvain (UCL)

Louvain-la-Neuve
Belgium

Examining board
Prof. Charles Pecheur, Supervisor UCL/ICTM, Belgium
Prof. Jean Vanderdonckt, Secretary UCL/ILSM, Belgium
Prof. Thierry Massart ULB, Belgium
Dr Dimitra Giannakopoulou NASA/ARC, USA
Prof. Philippe Palanque UPS/IRIT, France
Prof. Peter Van Roy, Chair UCL/ICTM, Belgium

Abstract

There are more and more automated systems and people are led to
interact with them everyday. They are also increasingly complex and
exhibit more and more “smart” behaviour. One direct consequence is that
it becomes harder for the human operators to drive those systems safely
for both the system and the user. Due to that increasing complexity,
interactions between users and automated systems are more likely to be
error-prone. In particular, inadequately designed interactions may result
in the user being surprised while interacting with the system. Several
accidents are due to such surprising situations, as it can be testified by
real accidents, including the Three Mile Island nuclear meltdown, the
lethal radiation doses administered by the Therac 25 medical device or
the shutdown of the aircraft of the KAL007 flight.

Human-Computer Interaction (HCI) has been studied for many years
by researchers from various fields including psychology, human factors
and ergonomics. This thesis follows a recent research direction that
considers the use of formal methods to analyse the behavioural aspects
of HMI. The focus is put on the actions or events exchanged between an
operator and the system being used during an interaction. The work of
this thesis builds on its initial inspiration from the recent work of Degani
and Heymann that addressed the problem of automatically generating
an adequate user interfaces for a given system model. In their work,
an adequate user interface refers to one ensuring that potential mode
confusion is avoided for the operator.

The main contribution of this thesis is an analysis framework sup-
ported by formal methods that can be used to assess whether a system
model is prone to potential automation surprises when being used by

i

ii

a human operator. The thesis develops a formalisation of automation
surprises. It proposes and precisely characterises the full-control property
that captures the fact that interactions between a system and its operator
are free of potential automation surprises. It also defines a property, the
full-control determinism, that guarantees the existence of a full-control
conceptual model for a given system model.

The thesis also defines precisely the minimal full-control conceptual
model generation problem. The problem consists in finding a minimal
conceptual model of the system model that allows full-control of it, which
is only possible for fc-deterministic system models. Such full-control
conceptual models can be used to generate artefacts to help the user
to better understand them, such as user and training manuals. Three
algorithms are proposed to solve the generation problem. The first one
is based on Three-Valued Deterministic Finite Automata (3DFA) that
are used to characterise the full-control property in terms of traces. The
second one is based on a reduction approach inspired by the Paige-Tarjan
algorithm that solves coarsest partition problems. Finally, the third one
is based on an active learning approach based on the L∗ algorithm.

The three proposed algorithms have been analysed for correctness
and time complexity considerations. Moreover, the proposed framework,
and therefore the proposed algorithms, have also been tested on various
examples among which a large case study of an autopilot. That latter
case study comes from ADEPT, a toolset to support designers in the
early phases of the design of automation interfaces. That case study also
shows how the proposed methodology could be integrated with ADEPT.

Acknowledgments

All my research activities, and in particular this thesis, have been carried
out in the Computer Science and Engineering Department (INGI) of
the Université catholique de Louvain (UCL). More precisely, I got the
opportunity to do my research in the Louvain Verification Lab (LVL)
whose head is my advisor Prof. Charles Pecheur. I am most grateful to
Prof. Charles Pecheur for his help and guidance provided for those six
years. All that support was necessary to bring me to scientific research
and lead this work whose subject was a discovery for him and even
more for me. He also provided me with the freedom I needed, installed
a confidence relation, and presented me many profitable persons who
allowed me to be become part of an outstanding international community.

In particular, I got the opportunity to meet and work with Dr Dimitra
Giannakopoulou during two internships that I have done at the NASA
Ames research center. I also thank very much Dr Dimitra Giannakopoulou
that gave me a big punch, opening new fruitful directions of investigation
that contributed to a large part of my thesis.

I also wish to thank the other members of my examination board,
Professors Jean Vanderdonckt, Thierry Massart, Philippe Palanque and
Peter Van Roy, who accepted to review my thesis and whose comments
played a crucial role in the final quality of this thesis.

Moreover, I am also thankful to all the people I got the chance to work
with, or talk to, about my research. I would also like to thank all my past
and present colleagues from the UCL with whom I worked on various
projects related to my research or to the university life. In particular, I
thank my two office mates José Vander Meulen and Simon Busard for
all the great times we spent together; Matthew Bolton, Michael Feary,

iii

iv

Peter Mehlitz, Vishwanath Raman, Kristin Rozier, Misty Davies, Rohit
Deshmukh and Jessica Lee from NASA Ames; Denis Javaux for having
brought me the view of a Human Factors researcher on the work of this
thesis; Fabien Duchêne, Virginie Van den Schrieck, Vianney le Clément de
Saint-Marcq, Antoine Cailliau, Xavier Carpent, Damien Saucez, Julien
Dupuis, Samuel Branders, Jérôme Paul, Jean-Baptiste Mairy, Tania
Martin, Benjamin Martin, Sebastián González Montesinos, Boris Mejías,
Sergio Castro, Gustavo Gutierrez-Sabogal, Sébastien Doeraene, Florence
Massen, Damien Leroy, Chantal Poncin, Corinne Marchal, Sophie Renard,
Prof. Baudouin Le Charlier and Prof. Olivier Bonaventure from INGI and
finally Prof. Jim Plumat, Delphine Ducarme, Cédric Verleysen, François
Henry, Benoît Frénay, Jérémie Melchior, Thomas François, Adeline
Decuyper, Sylvie Van Emelen, Marie Van Eeckenrode, Marie Dauvrin,
Elisabeth Castadot, Stéphane Grade, Nicolas Tajeddine, Arnaud Evrard,
Nicolas Feltz, Elvira Cervero, Romain Hollanders de Ouderaen, Nicolas
Boumal, Françoise Docq, Sophie Labrique, Prof. Mariane Frenay, Prof.
Françoise Paron, Prof. Jean-Didier Legat, Prof. Francis Delannay and
Prof. Vincent Blondel, colleagues at UCL.

During my PhD, I was also working as a teaching assistant. It gave me
the opportunity to meet a large number of students, and teaching them
was like an air bubble to me, helping me to change my mind and stimu-
late my creativity. I am very thankful to all my students for the times
spent together in classrooms. In particular, I thank Léonard Julémont,
Pierre-Yves Legros, Loïc Fortemps de Loneux, Nicolas Tonon, Simon
Nyssen, Rodolphe Mahoux, Quentin Laurent, Gregory Bishop, Martin
Schreinemachers, Martin Lefort, Pierre Rottenberg, Catherine Stroobants,
Céline Parascan, Philippe Bourez, Jonathan Delvaux, Corentin Vande
Kerckhove, Urbain Vaes, Justin Loroy, Nicolas Van der Noot, Quentin
Verleysen, Gauthier Limpens, Quentin De Boeck, Alexandre Bernier, Loïc
Vanden Bemden, Dylan Maas, Denis Duchêne, Manuel Vanderlinden,
Abdelkarim Moulai, Denis Tihon, Piotr Wasilewski, Richard Mathot,
Sébastien Scoumanne, Nicolas Laurent, Thomas Jeegers, Thibaut Spi-
taels, Jean Léger, Florent Hannard, Patricia Daloze, David Jeusette,
Matthieu Ghilain, Henri Sottiaux, Youri Tolstoy, Hugues Lambert, Ab-
dullah Yogurtcu, Kevin Jadin, Tanguy Goretti, Caroline Mathieu, Florent
Timmermans, Stéphane Dessy, Xavier de Ryckel, Claire Delcourt, Math-
ieu Xhonneux, Simon Tihon, Axelle Finné, Martin Hardy, Aymeric De

v

Cocq, Charles De Groote, Valentin Vansteenberghe; and also Louis de
Viron, Florence Turine, Cédric Libert, Thibault Bughin, Arnaud Kirsch,
Marie Latteur and Laurence Martin, students in linguistics.

I also got the opportunity, during my PhD, to work on several
projects whose goal is to promote computer science, in particular towards
secondary schools pupils, but in general to the public at large. Those
projects made me meet a lot of people that also provided me with some
moral support that helped me driving this thesis to its end. In particular,
I thank Joachim Ganseman, Prof. Kris Coolsaet, Prof. Valentina Dagienė,
Prof. Seiichi Tani, Virginia Grande, Nathalie Aquino, Mathias Hiron,
Françoise Tort, Jill-Jênn Vie, Maciej Sysło, Eljakim Schrijvers, Prof.
Troy Vasiga and Cindy Ryan.

Last but not least, I have a very special thought to my family and
also to friends who encouraged me regularly and supported me during
all the writing of this thesis. Above all, I thank very warmly Jérémy
Wautelet, Stéphane Deconinck, Pierre Bouilliez, Tatum Caesens, Cédric
Cornez, Dylan Aubry and François Dederichs; and I also thank David
Monjoie, Adrien Bibal, Thibaut Knop, François Farinelle, Georges-Henri
Leclercq, Thierry Dullier, Paul-Henri Callewaert, Marc-Antoine Calle-
waert, Laurent Lamouline, Vincent Nuttin, Sébastien d’Oreye de Lantre-
mange, Eric Lebeau, Benoît Legat, Alexis Leroy, Florian Meulemans,
François Zoetardt, Noémie Van Geem, David Lemaire, Pierre-Louis
Peeters, Thierry Lemmens, Melody Goldman, Marie Kerkhofs, Jean
Miller, Valérie Renier, Sara Lemaire and Yannick Maes.

vi

Foreword

The work of this thesis lies mainly between two fields, namely human-
computer interaction and formal methods. More specifically, this thesis
is about using techniques based on formal methods to analyse human-
machine interactions. In such situations, it is not always easy or possible
to use a vocabulary common to both fields, each community having their
specific words to designate similar objects or concepts. An effort has
been made to use terms that refer unambiguously to the same object or
concept. However, to help the reader and avoid any confusion, a glossary
that gathers the key terms used in this work is provided on page 253.

In this work, the two main concerned entities are the system and the
user who is operating the system. To use formal methods to analyse the
interaction, models of those two entities are used. Whereas the model
of the first entity is always referred to as the system model, the second
entity is called mental model or conceptual model in this thesis. Both
terms refer to a model of the knowledge of the user about the system that
is operated. However, mental model is used to refer to the model that
actually lies in the mind of the user, and can evolve over time. The term
mental model is mainly used up to Chapter 4 since the proposed analyses
could be applied to a mental model at a given time. From Chapter 5
the term conceptual model is used to distinguish the mental models that
are generated by the algorithms proposed in this thesis, from the actual
mental model of the users. Conceptual models can be seen as “perfect
mental model” that the users should have in their mind.

Finally, another specificity of the human-computer interaction field is
that it includes the study of the human, as a user of interactive systems.
In this thesis, the pronouns “he”, “his” and “him” are used in their
epicene sense, to refer to the human user.

vii

viii

Contents

Abstract . i
Acknowledgments . iii
Foreword . vii

1 Introduction 1
1.1 Research Goals . 3
1.2 Overview of the Contributions 5
1.3 Publications . 7
1.4 Organisation of the Thesis 8

2 Context and State of the Art 11
2.1 Human-Computer Interaction 11

2.1.1 Human-Machine Systems 12
2.1.2 General Overview of Involved Elements 14

2.2 Analysing Human-Machine Interactions 19
2.3 Formal Methods . 20

2.3.1 Model Checking 21
2.3.2 Theorem Proving 22
2.3.3 Limits to Adoption 22

2.4 Analysing HMI with Formal Methods 24
2.4.1 Analysing Mode Confusion with Model Checking . 25
2.4.2 User Interfaces Analyses Based on Metrics 32
2.4.3 Using Model Checking to Verify Usability Properties 34
2.4.4 Cognitive considerations for the human behaviour 39
2.4.5 Integrating User’s Tasks into the Interaction Analysis 43
2.4.6 Human Factors Considerations 47
2.4.7 Automatic Generation of User Interfaces 50

ix

x CONTENTS

2.5 Context and Discussion 53
2.5.1 Human-Machine System 53
2.5.2 Interaction Analysis 55
2.5.3 Safe Minimal Mental Model 55

3 Modelling Human-Machine Interactions 57
3.1 Background and Basic Notation 57

3.1.1 Transitions, Executions, Traces and Reachable States 59
3.1.2 Enabled and Possible Actions 60
3.1.3 Exploration . 61
3.1.4 Internal Actions 63
3.1.5 Determinism . 63
3.1.6 Synchronous Parallel Composition 67

3.2 Human-Machine Interaction LTS 68
3.2.1 Interaction Model 71

3.3 Enriched Models . 74
3.3.1 Enriched System Model 75
3.3.2 Enriched Mental Model 79
3.3.3 Modelling the Interaction 81

3.4 Alternate Models for HMI 82
3.4.1 LTS with Inputs and Outputs 84
3.4.2 I/O and Interface Automata 85
3.4.3 Statecharts . 87
3.4.4 Modal Specifications 88
3.4.5 Mode Automata 89

4 Full-Control Property 91
4.1 Characterisation of Good Interaction 91

4.1.1 Potential Automation Surprises 93
4.2 Full-control Property for HMI-LTSs 95

4.2.1 Full-control Property 95
4.2.2 Enabled or Possible Sets of Commands and Obser-

vations . 98
4.2.3 Full-control Compatibility and Determinism 99
4.2.4 Existence of Full-control Mental Model 105

4.3 Full-control Property for Enriched Models 106
4.3.1 Enriched Traces 108
4.3.2 Full-control Compatibility for Enriched Models . . 109

CONTENTS xi

4.3.3 Expansion of Enriched Models 110
4.4 Comparisons with Other Relations 115

4.4.1 Trace Preorder . 116
4.4.2 Testing Preorder 118
4.4.3 Conformance . 120

5 Generating Full-control Conceptual Models 123
5.1 Minimal Full-control Conceptual Model Generation 123

5.1.1 Unicity . 125
5.1.2 Generation Algorithms 127

5.2 Three-Valued Deterministic Finite Automata 127
5.2.1 Consistent DFA . 130
5.2.2 DFA-minimisation 131
5.2.3 Trace Characterisation of Full-control Property . . 134

5.3 3DFA-based Approach . 136
5.4 Reduction-based Approach 139

5.4.1 Eliminating τ -transitions 140
5.4.2 Partition Refinement 141
5.4.3 The Reduction-based Algorithm 143

5.5 Learning-based approach 148
5.5.1 The L∗ learning algorithm 148
5.5.2 Learning a 3DFA 152
5.5.3 Learning a Minimal Full-control Conceptual Model 155

5.6 Comparison of the Generation Algorithms 161
5.6.1 Time Complexities and Execution Time 161
5.6.2 Non-fc-deterministic System Models 163

6 HMI Analysis 169
6.1 The jpf-hmi Tool . 169

6.1.1 Structure of the Tool 170
6.2 Analysis of Training Material 171

6.2.1 The Microwave Oven Example 173
6.3 System Analysis . 177

6.3.1 Non-fc-deterministic System Model 178
6.3.2 Minimal Full-control Conceptual Model 180

6.4 Mode Confusion Analysis 182
6.4.1 Generating Minimal Mode-preserving Conceptual

Model . 183

xii CONTENTS

6.4.2 Discovering Fc-modes 187
6.5 User Task Model . 187

6.5.1 Task-supporting property 189
6.5.2 Symmetric Full-control Property 191
6.5.3 Task Model Completion 194

7 The Autopilot Case Study 197
7.1 The ADEPT Toolset and Model 197

7.1.1 General Presentation 197
7.1.2 A Simple Model Example 200

7.2 A Formal Semantics of ADEPT 202
7.2.1 ADEPT Logic Tables 203
7.2.2 ADEPT Programs 206
7.2.3 Execution Semantics 209

7.3 ADEPT to HMI-LTS Translation 213
7.3.1 ASF structure . 214
7.3.2 ASF ADEPT Model Translation 218
7.3.3 The Video Cassette Recorder example 220

7.4 The Autopilot Model . 222
7.4.1 Autopilot Model Characteristics 222
7.4.2 Independent Subsystems 225
7.4.3 Reducing the Model 226

7.5 Analysis . 228
7.5.1 Inhibited Command 228
7.5.2 A First Conceptual Model 230
7.5.3 Analysing Mode Confusion 234

8 Conclusion 239
8.1 Contributions of this Thesis 239
8.2 Perspectives . 241
8.3 Final Word . 242

A Abbreviations and Acronyms 245

B List of System Examples 247

CONTENTS xiii

C Algorithms 249
C.1 Full-control Property Check 249
C.2 Identification of Pairs of Compatible State 250
C.3 Identification of Compatibles 251
C.4 3NFA-completion Completion 251
C.5 3NFA Determinisation . 252

Glossary 253

Bibliography 257

Index 278

xiv CONTENTS

Chapter 1
Introduction

The number of automated interactive systems has been growing rapidly
those years. Such systems include consumer electronics, cars, vending
machines, medical devices and aircrafts. Moreover, those systems are
also increasingly complex and exhibit more and more “intelligent/smart”
behaviours. A direct consequence is that it is hard to ensure that
the human operators will be able to operate those systems safely and
without confusion. The increasing complexity of automated systems
has important consequences on the interactions, making them more
error-prone. Several accidents are due to wrong interactions between the
operator and the system being used, as testified by real accidents [Deg04,
Per99].

Critical accidents include the Three Mile Island accident which was a
partial meltdown of one nuclear reactor that took place in Pennsylvania
in the United States on March 28, 1979. This accident included human
errors where the operators were confused by wrong indications provided
by the user interface on the control panels of the reactor. A valve that
was stuck open appeared as closed to the operators that were not trained
to handle the particular ambiguous nature of that indicator. With the
information shown on the interface, the operator thought the system was
in another configuration than the actual one and he drove the system
according to his wrong understanding. That confusion lead them to
performing inadequate operations with the system.

Another system which is involved in several incidents between 1985
and 1987 and which lead to human death is the Therac 25, a radiation
therapy medical device. This device can administer two kinds of beams
to patients, one of which requires a spreader to be in place. Because
of some internal events, invisible to the operator, some patients were
administered lethal doses of radiations. This accident is an example of a
well-known class of problems called automation surprises [SWB97, Pal95].

1

2 CHAPTER 1. INTRODUCTION

In such situations, the system reacts in a way that the operator did not
expect, causing surprise and confusion. More precisely, such a situation
is a mode confusion [LPS+97], a particular case of automation surprise
where the actual operating mode of the system is not the one expected
by the operator, which can induce bad interactions with the system.

A lot of accidents also occurred in the aviation domain. One very
impressive example is the Korean Air Lines Flight 007 whose aircraft
was shot down by a Soviet interceptor Sukhoi Su-15 on September 1,
1983. The airplane deviated more than 200 miles from its route inside
the prohibited Soviet airspace, but due to a confusion the pilots did not
notice the deviation and continued to fly just as if they were on the
correct route.

These accident examples, and the many other existing ones, are not
only due to a bad system design, but also to the human operator. Neither
the system nor the human is at fault on their own, but the problem
is located in a faulty interaction. As automated systems continue to
become more and more complex, human-machine interaction errors
like automation surprises are more likely to appear. That increasing
complexity can in turn lead to more and more incidents if no particular
attention is paid to those potential errors during the design phases of
the systems.

Human-Machine Interaction (HMI) has been extensively studied for
several years by researchers from various fields, mainly from psychology,
human factors and ergonomics. Initially, the research focused on incidents
or accidents that had occurred, in order to understand what went wrong.
From those analyses, researchers moved to the development of models
of the interaction and of the human cognition. Since the mid-1980s,
researchers have been investigating the use of formal methods to analyse
behavioural aspects of HMI. Formal methods bring rigorous, systematic
and automatic techniques that can be used to help designers for the
analysis and design of complex systems involving human interactions.

The first results were obtained by using and applying formal methods
techniques to analyse existing accidents. The analysed systems were
modelled with a mathematical formalism from which properties were
verified by using automatic formal analysis tools. The work then moved
to more generic results using theories like graph theory, model checking
or theorem proving. The researchers now develop techniques that can

1.1. RESEARCH GOALS 3

be applied on system models in order to identify whether potential
automation surprises can arise when the system is to be used by an
operator. Such automatic identification of potential interaction errors
can be integrated into the design process of a system

1.1 Research Goals

The objective of this thesis is to demonstrate how techniques based
on formal methods can be used to analyse aspects of human-machine
interactions (HMI). More precisely, one of the aspect of interest is the
detection of potential automation surprise situations. The goal of the
work is to define a general formal framework to support the analysis of
HMI. The framework has to be based on formal models and on properties
to capture precisely the elements that play a role for the desired analyses.
The framework must be supported by algorithms. It must also be applied
on case studies in order to demonstrate the validity and applicability of
the proposed approach. A real-size example must also be analysed in
order to assess how the algorithms scale.

The techniques that are developed in this thesis are meant to be used
by system designers during the design of a system or by system analysts
during any later phase requiring to analyse an existing system. Many
accidents that happened were due to a wrong interaction between the
user and the system being operated. Those wrong interactions can be the
result of an automation surprise. On possible way to analyse formally
potential automation surprises is to focus on the behavioural aspect of
the interaction. This is precisely the focus of this work which focuses
on system whose behaviour can be described such as the VTS example
presented hereafter.

This work does not analyse the interaction means or devices, nor the
ergonomics and user interface design aspects, such as the modality of the
interface or the arrangement of the components of the UI for a software.
This work is only concerned by the “event communication” that takes
place between the user and the system being used. Correspondingly, it
is the software component of the system that is the focus of analysis in
the frame of this work.

4 CHAPTER 1. INTRODUCTION

The following example illustrates the motivation of this work. Degani
et al. use a small model of a semi-automatic transmission system of a
large vehicle to illustrate the concepts they developed. Figure 1.1 shows a
graphical representation of the system model of the vehicle transmission
system (VTS) example. The system is composed of three operating levels:
LOW, MEDIUM and HIGH. The system is composed of eight internal states
represented by the rectangular boxes. There are two kinds of actions
that are possible with that system, represented as lines linking together
two states.

• The user can drive the transmission lever to increase or decrease
the operating level of the gearbox (push-up and pull-down). Those
actions are under the control of the user who decides when they
are performed.
• The gearbox can automatically shift gears as the speed of the
engine changes (up and down). Those actions are not controlled
by the driver but he can detect their occurrence as he hears the
engine speed going up or down.

GEAR LEVER

push-up

pull-down

(a) The lever of the VTS
(physical device).

high-1 high-2 high-3

medium-1 medium-2

low-1 low-2 low-3
up

down

up

down

up

down

up

down

up

down

push-up push-up pull-down
pull-down

push-up

push-up push-up
pull-downpull-down pull-down

(b) A graphical representation of the be-
haviour of the VTS (model).

Figure 1.1. The Vehicle Transmission System (VTS) (Example taken from [HD07]).

The peculiarity of the VTS example is that pushing up the lever
when the system is in the LOW level can lead to two different situations.
The gear either moves to the MEDIUM level (when the system is in the
low-1 or low-2 state) or to the HIGH level (when the system is in the low-3

1.2. OVERVIEW OF THE CONTRIBUTIONS 5

state). A direct consequence of that difference is that if the user wants
to be able to predict in which level the gearbox will transition in reaction
of a push-up on the lever, the user must be able to track in which state of
the LOW level the system is.

Such subtleties that may be part of the system model must be taken
into consideration whenever designing a system and analysing it. For
the VTS example, attention has to be paid to the LOW level. Either
the automatic transitions have to be hearable for sure by the driver or
user interface elements such as visual indicators or audible alert must be
provided to indicate the actual state in the LOW level.

The designer of the system may have thought that the system could be
viewed by the user as a three-mode system, one for each level. Applying
the methodology proposed in this thesis can identify that the three-
mode system view is not adequate and may cause potential automation
surprises. Moreover, the developed algorithms can identify that the
operator has to be aware of at least five states about the system in order
to be able to control it while avoiding potential surprises. The states
of the HIGH and MEDIUM levels can be merged together while the three
states of the LOW level are kept separated.

1.2 Overview of the Contributions

The contributions of this thesis are multiple and revolving around the
full-control property, which is the central contribution of this work.

To capture the features that are necessary to model the human-
machine interactions, a generalised version of the automata-based formal-
ism proposed by Degani et al. based on an enriched version of labelled
transition systems (LTS) have been defined. The proposed formalism
includes the distinction between commands performed by the operator
on the system, observations triggered autonomously by the system and
observed by the operator and internal actions not perceivable by the
operator. A formalism mixing event-based and state-based observations
has also been developed to be closer to how system models are designed
by system designers and analysts.

A criterion to characterise one aspect of adequate interactions between
an operator and a system has been formalised and put in the form of

6 CHAPTER 1. INTRODUCTION

a property called full-control. The full-control property captures the
fact that for an interaction to be adequate, that is, to avoid potential
automation surprises, the operator must always know what commands he
can perform on the system and he must expect at least all the observations
that may arise. In addition to the characterisation of the full-control
property, it has been compared and positioned regarding other existing
relations such as trace equivalence and input-output conformance, for
example. That comparison highlighted a trace characterisation of the
full-control property. Moreover, existence of full-control mental models
for a given system is guaranteed by the fc-determinism criterion that is
also defined and characterised in this work.

To support the formal framework, three algorithms that can be used
to automatically generate a minimal full-control mental model for a given
system have been proposed and analysed. The first proposed algorithm
is based on the trace characterisation of the full-control property and
encodes the full-control mental model candidates into a Three-Valued
Deterministic Finite Automaton (3DFA) that is then reduced to get one
minimal full-control mental model. The second proposed algorithm is
based on a reduction-based approach similar to the one used to compute
the bisimulation reduction. It has been developed based on the procedure
proposed by Degani et al. [HD07]. Finally, the third proposed algorithm
is based on an active learning-based approach where the minimal full-
control mental model is built incrementally state by state.

Based on the full-control property and the proposed algorithms, a
proposed methodology to analyse a given system model during the design
stages is developed and illustrated on existing small but realistic case
studies. Those analyses highlight some limitations of the full-control
property and some possible variants of the full-control property are
proposed, analysed and illustrated with small examples. Those analyses
also revealed the necessity to integrate user tasks into the formal analysis.
That latter point is sketched in this thesis and precise and further analyses
are left for future work.

The proposed methodology and algorithms have also been applied
on a larger realistic case study which is a model of an autopilot of a
Boeing 777 aircraft. The autopilot model that has been used is initially
modelled in ADEPT, a tool dedicated to system designers to help them
to prototype user interfaces. To be able to analyse that model, this

1.3. PUBLICATIONS 7

thesis proposes a formal semantics for ADEPT models and proposes a
systematic way to translate ADEPT models to the models used in this
work.

In summary, the contributions of this thesis are as follows:

• Definitions and characterisation of HMI-LTS, HVS and HVM mod-
els, along with translation algorithms from HVS and HVM to
HMI-LTS;
• Definition and characterisation of the full-control and fc-determinism
properties, along with algorithms to check them;
• Three minimal mental model generation algorithms, based on:
3DFAs, a reduction-based approach and a learning-based approach;
• An analysis framework with a proposed method, illustrated by

concrete examples and a variant of the full-control property along
with intuitive ideas about the integration of user task models;
• A semantic for ADEPT models, with a translation algorithm to

HVS and the analysis of an autopilot case study.

1.3 Publications

The work presented in this thesis has already given rise to five publica-
tions:

• The definitions of HMI-LTS and of the full-control property have
been initially published in the first ACM SIGCHI Symposium on
Engineering Interactive Computing Systems in July 2009 [CP09].
The paper also describes the reduction-based algorithm for the
generation of minimal full-control abstractions. The version pre-
sented in the paper is restricted to system models satisfying specific
requirements, but the algorithm has been generalised in this thesis
to handle any system model.
• The application of the proposed analysis techniques to the human-
machine interaction field, and in particular how they can be used
in the design process of systems, has been published in a special
session of the IEEE International Conference on Systems, Man,
and Cybernetics in October 2011 [CGPF11a].

8 CHAPTER 1. INTRODUCTION

• The learning-based algorithm for generating a minimal full-control
conceptual model has originally been published in the International
Workshop on Machine Learning Technologies in Software Engineer-
ing in November 2011 [CGPF11b]. This paper also provides the
trace characterisation of the full-control property.

• The prototype tool jpf-hmi is described in a paper published in the
Java Pathfinder Workshop in November 2011 [CGPM11].

• Finally, exploratory work on how user task models can be integrated
into the analyses has been presented at the Third International
Workshop on Formal Methods for Interactive Systems in November
2009 [Com09].

1.4 Organisation of the Thesis

This thesis is organised in eight chapters. The remainder of this thesis is
organised as follows:

• Chapter 2 presents fields of the human-machine interaction and
formal methods. After reviewing background information about
those two fields, it draws up the state of the art of applying formal
methods to the analysis of human-machine interactions. Finally,
the precise context in which the work presented in this thesis lies
is summarised.

• Chapter 3 presents HMI-LTSs which are the enriched labelled tran-
sition systems that are used to represent system and mental models.
It also presents HVS and HVM, generalised versions of HMI-LTSs
that mixes event-based and state-based approaches for observations.
Finally, other kinds of formalisms used to model reactive systems
are briefly presented and compared to the formalism proposed in
this work.

• Chapter 4 presents the full-control property and characterises it.
An algorithm to check whether the full-control property is satisfied
between a mental model and a given system model is proposed.
The fc-determinism property that guarantees the existence of a full-
control mental model is presented and characterised. Finally the

1.4. ORGANISATION OF THE THESIS 9

last section reviews how properties developed by other researchers
can be used to relate mental and system models, and how they
compare to the full-control property.
• Chapter 5 formulates formally the problem of generating a min-
imal full-control mental model for a given system. Based on a
trace characterisation of the full-control property, it presents three
approaches: the 3DFA-based, the reduction-based and the learning-
based approaches. Concrete algorithms are described and the three
approaches are compared.
• Chapter 6 follows by presenting how the proposed full-control prop-

erty and mental model generation algorithms can be used concretely
to analyse human-machine interactions that can potentially lead to
interaction failures. The proposed methodology is illustrated with
small realistic examples. Limitation of the full-control property is
also presented, along with a discussion about how user task models
can be integrated into the analysis.
• Chapter 7 applies the proposed technique to a real-size concrete

example which is a partial model of an autopilot of the Boeing 777
aircraft written in the ADEPT toolset. ADEPT models are first
described and a formal semantics for them is proposed. Then, the
autopilot model is described and analysed with the methodology
proposed in this thesis.

The last chapter concludes the work presented in this thesis and
draws up some possible future work.

10 CHAPTER 1. INTRODUCTION

Chapter 2
Context and State of the Art

The goal of this first chapter is to lay down background information,
about both the human-machine interaction and the formal methods
fields, that is relevant for the work presented in this thesis. Section 2.1
defines human-computer interaction and provides definitions for general
concepts and elements used throughout this thesis. Section 2.2 reviews
main kinds of analyses that can be performed for human-machine in-
teractions, and which are close to the analyses performed in this thesis.
Then, Section 2.3 defines formal methods and presents briefly two main
verification techniques: model checking and theorem proving. Section 2.4
follows directly with a state of the art that reviews how formal methods
has been used for the analysis of human-machine interaction. Finally,
Section 2.5 draws up the main underlying hypotheses of this work.

2.1 Human-Computer Interaction

Human-computer interaction (HCI) is a field that studies the interactions
between people and computers, and their designs [CMN83, Car97]. This
field is sometimes referred to as human-machine interaction [Boy11],
human-automation interaction or man-machine interaction in the lit-
erature. HCI is an interdisciplinary field which involves and connects
together computer science, psychology, system engineering, ergonomics,
human factors, cognitive science and interface design [HLP97]. The
origins of HCI date back to 1960 in the seminal paper by Joseph Lick-
lider [Lic60] which states the need to have easier interactions between
humans and computers.

The main goal of HCI is to work on the design of interactive systems,
along with their interfaces, to make them usable by their users. The
cognitive capabilities of the users, such as what they can observe about

11

12 CHAPTER 2. CONTEXT AND STATE OF THE ART

the system or their memory capacity, are one important aspect considered
by HCI people. They have to be well understood to be able to allow
building systems that are usable by their operators. Whereas it is a
crucial point of interest for the field in general, it is not really the focus
in this thesis.

There is no one unique definition of human-computer interaction.
ACM SIGCHI defines it as “a discipline concerned with the design,
evaluation and implementation of interactive computing systems for
human use and with the study of major phenomena surrounding them” in
a technical report describing a curricula for HCI [HBC+92]. This latter
definition only considers computing systems, but more generally, the
work presented in this thesis is also applicable to any machine whose
behaviour can be described as an automaton. However, the proposed
techniques can only be applied on finite automata even though many
interactive systems do have an infinite set of states. They will therefore
not be considered for analysis, except under suitable abstraction or
simplification. Also, looking back to the definition just mentioned, this
work is more focused on the evaluation part, and to a lesser extent on the
design part of interactive systems, but not much on the implementation
part.

To highlight the fact that the work of this thesis is not only concerned
with interactive computing systems, the term human-machine interaction
(HMI) is used in the sequel.

2.1.1 Human-Machine Systems

Human-machine interactions are happening between machines and their
operators. But, there are also many other elements involved and of
interest for the approach developed in this thesis. Among the involved
components, some of them correspond to concrete elements while others
are abstractions used for the formal analysis. Those elements, presented
in the next section, are inspired from the ones defined by Degani et
al. [DH02]. The difference is that they are put in a broader and more
general context, such as proposed in [Cac04]. A human-machine system
(HMS) can be defined as in [DoD84]:

“A composite, at any level of complexity, of personnel, procedures,
materials, tools, equipment, facilities, and software. The elements of

2.1. HUMAN-COMPUTER INTERACTION 13

this composite entity are used together in the intended operational
or support environment to perform a given task or achieve a specific
production, support, or mission requirement.”

There can be more than one system in an HMS, in general. The
system can also be decomposed in several subsystems running in parallel.
Many architectures are possible in such a setting: either the operator in-
teracts with each system independently or there can be machine-machine
interactions. In that latter case, those interactions can be visible or invis-
ible to the operator. One example is a bread production line composed of
the succession of several machines. The user has to control and operate
the different machines while the breads are progressing through the
production line. The different machines may be communicating together
and exchanging information in order to adjust their own settings, given
a communication protocol.

It is also possible to have more than one user operating the system.
In such a situation, the different operators may just act independently
on the system, they can cooperate to reach a global goal, or they can be
competing against each other. For the two latter cases, there is the need
to consider the possible human-human interactions as well. One example
of such a situation is an aircraft that is flown by a pilot and his copilot.

The work presented in this thesis only considers HMS with a single
machine used by a single operator. The extension of the developed
techniques to more general HMSs is left for future work.

Reactive Systems

By definition, a system in an HMS is a reactive system [HP85]. A reactive
system is viewed at a high level of abstraction as a black box which is
provided with inputs and produces outputs. Such systems usually never
terminate and are always interacting with their environment. Harel and
Pnueli precisely stressed the difference between transformational systems
which take inputs and produce outputs in a functional way, and reactive
systems which “are repeatedly prompted by the outside world and their
role is to continuously respond to external inputs” [HP85]. Reactive
systems are offering a set of input actions to their environment and, in
reaction to these inputs, produce outputs.

14 CHAPTER 2. CONTEXT AND STATE OF THE ART

It is exactly this dynamic aspect and distinction between inputs
and outputs that are of interest for the work of this thesis, that is, the
behavioural control aspects of HMI (versus ergonomic and timing aspects,
for example). That is the reason why considered systems are all reactive
systems. The operator is interacting with the system, by providing inputs
and observing outputs, and without any knowledge about the purely
internal behaviour of the system, considered as a blackbox by the user.
The system is in an ongoing relationship with the environment and the
operator. To be more precise, the operator may know precisely how
the system works, but during the interaction, it is not possible for him
to know what is happening inside the system, except by observing the
produced outputs and remembering the provided inputs.

2.1.2 General Overview of Involved Elements

Figure 2.1 shows elements that are involved in a human-machine sys-
tem [Nor88] and that are of interest in the frame of the work presented
in this thesis. The user interacts with the system through an interface.
That interaction takes place in a given environment. The user gets
his knowledge about the system through user manual or training, for
example, and has to perform some tasks. The behaviour of the system
is captured by a system model and the knowledge of the user about
the system is represented by a mental model. The conceptual model
abstracts the system model and is used to generate training material.

System, User and Interface

Three real concrete elements are involved in human-machine interactions.
The system is the machine that is used, such as a vending machine, an
ATM, an autopilot, a car or a software running on a computer. The
system may either be a physical device or a computer program that can
be used to control a physical device.

The user is the operator who is using the system. Different kinds of
interactions are possible between the user and the system. For example,
the user may be monitoring the system, executing a procedure or trying
to achieve a specific task with the system. The user can also just be
exploring and discovering the functionalities of a system that he has
never used before.

2.1. HUMAN-COMPUTER INTERACTION 15

environment

system
model

system

interface user

mental model

user manual,
training . . .

user’s tasks

conceptual model

interacts

interacts
interacts

Figure 2.1. General overview of elements involved in human-machine interactions.

The third element is the interface which is located between the user
and the system and serves as a communication channel. The interface
allows the user to send commands to the system. It is also through the
interface that the user will be able to observe information provided by the
system. Any interaction between the user and the system is done through
the interface. The interface can either be a physical or a virtual interface.
The interaction with physical interfaces is done through physical devices
such as buttons, knobs or levers to execute commands and lights, LCD
displays, gauges or alarms to get information about the system. For
virtual interfaces, the interaction is done through a command line or
through the widgets of the graphical user interface (GUI). The interface
is tightly coupled to the system and is most of the time considered as
being part of it.

Environment

The interaction between the user and the system does take place inside
some environment. The environment is everything that has an influence
on the interaction, but which is external to the system and the user.
It is also referred to as the socio-technical working conditions or the
context. Usually neither the system nor the user have any control on

16 CHAPTER 2. CONTEXT AND STATE OF THE ART

the environment, but it must be taken into account by both the system
and the user to ensure a good interaction. The environment is made of
three elements: the actual environment, other operators and the social
context [Cac04].

For example, elements belonging to the environment may be physical
values such as temperature, pressure or wind speed for physical systems.
For a computer running a software system, it could be the operating
system or the internet service provider (ISP).

System and Mental Models

In order to be able to analyse human-machine interaction using formal
methods, both the system and the user are modelled with a well-defined
modelling formalism. The interaction analysis is based on a system model
and a mental model which respectively models the system and the user.
The system model, also referred to as the implementation model [CRC07a]
when referring to software systems, represents the behaviour of the system.
It contains all the executions that the system can go through. The
mental model contains the knowledge that the user has about the system,
that is, all the executions that he knows or thinks that are possible
on the system [SN93]. The mental model can also be characterised as
the representation of how the system works that emerges from its use.
Norman [Nor02] defines it as follows:

“Mental models are models people have of themselves, others, the
environment, and the things with which they interact. People form
mental models through experience, training, and instruction.”

By definition, the mental model is therefore a highly probabilistic
model. Moreover, it evolves over time as the user is learning new func-
tionalities or is forgetting others as they are not used frequently enough,
for example. Social interactions with other users of the same or similar
systems may also alter the mental model.

There are plenty of different formalisms that can be used to model
system and mental models. The choice of a formalism depends, among
other things, on the kind of analysis to be performed. Moreover, the
system model may not represent the exact behaviour of the system, it is
often an abstraction of it. This is for example the case when a continuous

2.1. HUMAN-COMPUTER INTERACTION 17

system is modelled using a discrete formalism. The abstraction level that
is chosen may also have an influence on the kinds of analyses that are
possible.

User’s Tasks

A user is operating a system because he has a goal to achieve, that is,
some tasks to be executed on the system. The user’s tasks can be of
different types. One possible mission for an operator is to monitor a
system, and to ensure that it will never reach some forbidden hazardous
states. For example, the operator’s goal may be to watch the temperature
of the cooling system of a nuclear power plant. Another kind of user’s
tasks is the execution of a procedure on a system, that is, performing
a sequence of commands that will depend on the observations that are
made during the interaction. For example, a user may want to go to
an ATM to withdraw money with his credit card. The interaction will
be different if there is no more money left in the ATM, or if the credit
card has been blocked by the bank, for example. The user will follow
a procedure which starts with the insertion of the card followed by the
composition of his PIN code. Of course, user’s tasks can be more complex
and are usually presented as a hierarchy with a main task decomposed
into subtasks. For example, “driving a car” could be the main task, with
“monitoring the speed” as one of the subtasks.

User’s tasks may also be modelled formally in order to be able to
apply formal methods techniques to perform analysis related to user’s
tasks. Possible analyses include the feasibility of a given set of tasks on
a system, or the evaluation of the cognitive complexity for an operator
to perform a task on a system. Different elements have be considered in
order to have a task model.

Training Material

In the frame of this work, the systems, and consequently the system
models, are supposed to be immutable. System models are thus frozen
and do not evolve over time. Contrarily, mental models may evolve over
time, as previously mentioned. The user has initially no knowledge about
a specific machine. The user will learn and grow an initial mental model
using information coming from many sources, referred to as training

18 CHAPTER 2. CONTEXT AND STATE OF THE ART

material. Those sources of information include common knowledge
coming from the use of similar machines and knowledge learned through
the reading of training manuals or obtained during practical training
sessions.

Training material are not considered directly in this thesis. They may
play a role in two main situations: the approach used in this work can be
used for the generation of user manuals and existing user manuals can be
checked with the developed technique. Small examples illustrating those
two roles are provided in Chapter 6 and a more thorough development is
left for future work.

Conceptual Model

Norman also defined the notion of conceptual model that corresponds
to the mental representation of the design. The conceptual model is
developed by the designer and communicated to the user through the
system design and its interface. Norman [Nor86] distinguishes three
conceptual models: the design model is the representation of the system
in the mind of the designer, the user’s model is the model developed
by the user and finally the system image is the perceivable part of the
device. The designer cannot communicate directly with the final user
and transmits his design model through the system image, which can
thus be seen as a materialisation of the design model.

In the remainder of this thesis, the generic term conceptual model is
used to refer to an abstraction that is directly generated from the system
model. In contrast, the term mental model refers to the model that is
actually in the user’s mind. The conceptual model can be viewed as a
kind of “perfect/ideal” mental model, with enforced properties.

The work presented in this thesis focuses on the analysis of the
interactions that take place between a user and an operated system. The
first focus is on the relation that should be defined between a system
and a mental model so as to detect potential wrong interactions. The
second focus is on the generation of a conceptual model from the system
model, so that the generated conceptual model is a good abstraction of
the system model, that if used by an operator, avoids potential wrong
interactions. The system and conceptual models are thus at the core
of the analysis approach proposed in this thesis. The other elements,

2.2. ANALYSING HUMAN-MACHINE INTERACTIONS 19

and their integration, are also discussed in this thesis, but to a lesser
extent. Moreover, the system with its interface and the environment are
considered as a whole, and the interaction is taking place between the
user and that “large system”.

2.2 Analysing Human-Machine Interactions

The HCI field tackles many different problems related to the analysis
of human-machine interactions. This section reviews briefly the main
kinds of analysis and positions this work relative to them. Initially, HCI
was called “software psychology” and had as a goal to consider human
related aspects to better understand software design, programming and
interactive systems [Shn80]. Assessing the usability of systems and
software is a key analysis to get a better understanding of human-machine
interaction.

For the particular case of software development, two categories of
properties are of interest for people from HCI [GC96]. External proper-
ties are related to the perspective of the user while internal properties
are related to the perspective of the software developer. A first kind
of questions dealt with by HCI is related to goals and tasks. The task
completeness property addresses several questions including the possibil-
ity for a user to achieve his goals and to do his tasks on a system and
the ability of the system to provide a feedback to the user about the
successful realisation of a task. Such questions are not covered in this
thesis.

Another kind of analysis that is central in HCI is about interaction
robustness. A robust interactive system is one that supports the user
during the execution of a task so that he does not perform any irreversible
mistakes, and allows him to know where in the task progress he is. That is
precisely the goal of this thesis, defining a property that minimises the risk
of failure during the interaction, namely avoiding automation surprises.
As summarised in [GC96], seven properties are related to the interaction
robustness. Observability, insistence, honesty and predictability are user-
dependent properties whereas access control, pace tolerance and deviation
tolerance are less user-dependent. The first four ones have to be validated
by user testing and the three last ones can be validated by analysing the
system.

20 CHAPTER 2. CONTEXT AND STATE OF THE ART

A system is observable if it is possible for its user to observe all the
information necessary for him to perform his tasks. A system is predictable
if it helps the user, with its past and present provided information, to
predict the outcome of future interactions. The full-control property,
defined and developed in this thesis, addresses both properties. It checks
whether the user knows enough about the observable behaviour of a
system in order to avoid automation surprises when interacting with it.

HCI covers many other kinds of analysis including the development
of design processes for interactive systems such as what is done in the
software engineering field. This thesis is not related to design processes
although future works discusses how the developed techniques could
be integrated in the design loop of systems. Other subjects of interest
of HCI include the development of cognitive models for the users, the
study of affective aspects of the interaction, the analysis of interface
and interaction means (physical or virtual), multimodal interactions,
support for design, prototyping and construction of interactive systems,
evaluation of interactive devices (manual through surveys or automated)
and usability testing [DFAB03, SRP07, CRC07b].

2.3 Formal Methods

Formal methods is a field of computer science in which mathematical
techniques are used for the specification, development and verification
of software and hardware systems [CW96]. Formal methods have been
applied to different fields ranging from software and hardware systems
design, such as verification of the design of chips or network protocols.

When talking about formal methods, in particular for automated
verification of properties, two main approaches are distinguished: model
checking and theorem proving. Those two methods are used to perform
verification of formal specifications on systems. Even if only the explo-
ration capabilities of model checking is used in this work, the next two
sections present model checking and theorem proving and discuss the
difference between those two approaches, so as to present the state of
the art in the domain of formal methods applied on HMI.

2.3. FORMAL METHODS 21

2.3.1 Model Checking

Model checking [CGP99] is the problem of exhaustively checking whether
a model of a system meets a given specification, both the model and the
specification being formulated in some precise mathematical formalism.
The model checker exhaustively explores all the states of the model
and checks whether the specification is satisfied for the whole system.
Should the specification be unsatisfied, the model checker provides a
counterexample which is an execution trace within the model which
violates the specification. Figure 2.2 illustrates the working of model
checking.

AG (¬closed
=⇒

EF alarm)Model
Checker

model specification

YES NO
+counterexample

Figure 2.2. Model checking algorithms exhaustively search through all the states of
a model and check whether a given specification is satisfied in all those states. If
the answer is no, the model checker provides a counterexample which is typically an
execution path in the model leading to a state not satisfying the specification.

A specification is a set of desired properties each of which representing
an element of the specification. Satisfying the specification means satis-
fying all of its properties. If M denotes a model and S a specification,
the notation M |= S means that the model satisfies the specification.

Different kinds of specifications can be checked with a model checker.
Firstly, a model checker can verify properties expressed in a given logic,
for example linear temporal logic (LTL) defined by Pnueli [Pnu77] or
computation tree logic (CTL) defined in parallel by Clarke and Emer-
son [CE81] and in a slightly different form by Queille and Sifakis [QS82].
The specification used in Figure 2.2 consists of a single CTL property,
stating that whenever the door is not closed, an alarm can eventually be
raised.

22 CHAPTER 2. CONTEXT AND STATE OF THE ART

Besides being able to check whether a given property holds on a
model, model checkers can also check whether two given systems are
equivalent, according to a chosen equivalence relation. One example of
such an equivalence relation is the trace equivalence. Two models are
trace equivalent if they can perform exactly the same set of observable
executions. Model checkers with this possibility include CADP [GLMS13]
and FDR2 [For10].

Both those possibilities offered by model checkers have been used in
the techniques presented in this thesis. In particular in the algorithm
presented in Section 5.5, model checking is intensively used to check
whether some forbidden states cannot be reached and to test whether
two models are equivalent according to full-control, a property developed
in this work.

2.3.2 Theorem Proving

Theorem proving [HV91, Wie06] works differently from model checking
by applying inference rules to a specification in order to automatically
derive new properties of interest. Given a model of a system and a
property to verify, a theorem prover outputs a proof stating whether
the property is verified or not for the system. The theorem prover
must receive as input an appropriate formulation of the problem as
axioms, hypotheses and a conjecture. The formulation is provided using
a formal logic. During the proof, some theorem provers may require
human assistance in order to provide some guidance to the prover. Those
systems are therefore referred to as proof assistants instead of theorem
provers. Theorem provers can output a yes/no answer or they can also
output counterexamples or detailed proofs, for more elaborated ones.
Many theorem provers have been developed; well-known and successfully
systems include Otter [McC03], Coq [The13] and HOL [GM93, For12].

2.3.3 Limits to Adoption

When formal verification techniques started to be developed, people were
rather sceptical about what they could bring to computer science and
software engineering.

2.3. FORMAL METHODS 23

In 1979, De Millo et al. argued that software verification was doomed
as summarised in the abstract of their paper [MLP79]:

“It is argued that formal verifications of programs, no matter how
obtained, will not play the same key role in the development of
computer science and software engineering as proofs do in mathe-
matics. Furthermore the absence of continuity, the inevitability of
change, and the complexity of specification of significantly many
real programs make the formal verification process difficult to jus-
tify and manage. It is felt that ease of formal verification should
not dominate program language design.”

De Millo et al. were mainly targeting theorem proving at that time.
However, as time passed and as verification techniques became more
advanced, people changed their mind. Although many scholars agree
that formal methods are a good way to bring safety and reliability in
system design, the attitude of practitioners is not as enthusiastic [Hol97].
Except people from the hardware design community, practitioners from
other fields are more reticent, not about the general idea of using formal
methods, but about the lack of adequate tools, the necessity to understand
too much of mathematics or high computational costs. People willing to
use verification techniques are often required to be specialised in the field
since formal verification is not always as easy as pressing on a button
and getting a result. Verification indeed suffers from high computational
complexity. It can only be applied with abstraction and scaling up to
real-size is challenging. Those arguments have to be taken into account
when developing new analyses approaches based on formal methods:
new methodologies proposed must be supported by usable tools targeted
to their final users who are not necessarily people with high technical
backgrounds.

Moreover, as pointed out by Henzinger [Hen96], formal methods do
not have to be taken as a holy grail. Formal methods cannot prove that
a given system is error-free and that any interaction with it will never
cause trouble:

“The only sensible goal of formal methods is to detect the presence
of errors and to do so early in the design process. Indeed, ’falsifi-
cation’ would be a more appropriate name for the endeavor called
’verification.’”

24 CHAPTER 2. CONTEXT AND STATE OF THE ART

Formal methods should be used as a complementary tool inside
the design process loop, where they can bring useful feedback about
the design of systems to the system designers. Those considerations
have been taken into account in the work of this thesis. The modelling
approach has been chosen in order to be as close as possible as the way
designers think about systems. Even if the work presented in this thesis
is focused on the formal method developments and does not go until
the production of a usable tool, the case study presented in Chapter 7
shows that the proposed techniques could be integrated with ADEPT,
an existing toolset specialised for human-machine interaction analysis.
Also, the integration of the proposed techniques in the system design
loop has also been thought about, and are presented in Chapter 6.

2.4 Analysing HMI with Formal Methods

The work presented in this thesis aims at analysing human-machine
interactions and more precisely verifying that interactions between oper-
ators and the machines are safe. Formal methods have proven useful for
predicting system failures in computer hardware or software, but have
not been used extensively to detect potential human errors yet.

Since the mid-1980s, researchers started to investigate the use of
formal methods techniques for HMI. Initial work focused on small case
studies but the field has been growing now for many years towards
more general and generic techniques. According to Dix [Dix13], the
first uses of formal methods in the HCI field date back to the work by
Reisner who used BNF to specify user interfaces [Rei81] and the work
by Dix et al. who considered the use of abstract models for interactive
systems [DR85]. Today, many other researchers have investigated the use
of formal methods to analyse HMI, such as described in [HT90, Pal97].

Formal methods can be used for several purposes in the analysis of
human-machine interactions. The different approaches can be classified
according to the three following categories:

• Systems can be modelled formally so that rigorous and systematic
analysis can be performed on them. Given a formal model, systems
can be characterised and compared. For example, measures for the
level of usability or complexity can be computed.

2.4. ANALYSING HMI WITH FORMAL METHODS 25

• Properties can be expressed formally and verified against systems.
Such verifications can be mainly done with either model checkers
or theorem provers. For example, a system can be proved to have
no deadlocks or it can be checked that some actions are always
undoable by the operator.
• Finally, by using formal methods to model HMI, it is also possible
to use algorithms that are able to generate artefacts, such as
user manuals, other models, alternative system models and user
procedures, satisfying some precise and well-defined properties. For
example, a user manual covering all the behaviour of a system can
be automatically generated.

This section presents a state of the art of approaches that have been
developed to apply formal method techniques to analyse some aspects
of human-machine interaction. For each piece of work, a representative
example is concisely presented. Those case studies are a good illustration
of real concrete interactive systems that are subjects of formal analysis
of human-machine interactions. Some reviews about applying formal
method techniques to the analysis of human-machine interactions have
been previously realised by several authors [CH97, BBS13, Dix13].

2.4.1 Analysing Mode Confusion with Model Checking

Rushby was among the first researchers to use formal methods in order
to provide a more systematic way to analyse human-machine interac-
tion [Rus00, Rus02]. His work first focused on the specific case of mode
confusion issues, that is, situations where an operator of a system is
confused because he thinks the system is in one operating mode while
it is actually in another one. Such confusion could possibly lead to
accidents. Rushby started with the analysis of a well-known case study,
and then extended his work to open perspectives to the more general
case of automation surprises analysis.

Systematic Analysis of a Well-know Case Study

In [RCP99], Rushby et al. started from the description of an existing
and well understood incident that occurred due to a bad operation
between a pilot and an airplane autopilot. From that description, the

26 CHAPTER 2. CONTEXT AND STATE OF THE ART

authors identified the different operating modes that played a role in
the incident. They also proposed two state-machine models: one for
the actual system and one mental model for the pilot. They clearly
identified a discrepancy that could occur between the two models, in one
execution scenario which was actually the one that occurred during the
analysed incident. The formalisation of the situation allowed the authors
to perform a systematic analysis, to reason about the situation and to
identify potential bad interactions.

The case study that was analysed is a kill-the-capture bust, a well-
known kind of automation surprise described by Palmer [Pal95]. That
analysis was done in a NASA study in which several crews flew realistic
missions in DC-9 and MD-88 airplanes simulators. In summary, the
analysed incident was due to an altitude deviation of the airplane.

The autopilot of an airplane can be instructed to maintain a given
altitude (hold mode, HLD) or to climb to reach a given altitude, by setting
its pitch mode. There are two ways of climbing: at a given rate of climb
(vertical speed mode, VSP) or at whatever rate consistent with a given air
speed (indicated airspeed mode, IAS). In addition to the pitch mode, the
pilot can set a capture mode to define a “goal to reach”. The pilot can
ask the autopilot to drive the plane to a given altitude (altitude mode,
ALT). An additional capture mode that is not activated by the pilot,
but autonomously by the autopilot, levels off the airplane to the desired
altitude with a smooth levelling off (altitude capture mode, ALT CAP).
There are two more things to know to understand the case study: firstly,
if no capture mode is set and pitch mode is set to VSP or IAS, the airplane
climbs indefinitely, and secondly, if the ALT mode has been set, then
the ALT CAP mode is entered automatically when the airplane arrives
near the target altitude. In the latter case, the pitch mode automatically
transitions to HLD mode when the target altitude is reached. Figure 2.3
shows the controls of the autopilot that are of interest for this case.

The mode confusion the pilot has been confronted to, initially de-
scribed by Palmer in [Pal95], first formally analysed by Leveson et
al. [LP97] and rephrased from [RCP99], took place as follows:

“The airplane was at 2,100 feet when the pilot received the clearance
to climb and maintain 5,000 feet. The pilot changed the target
altitude to 5,000 feet, which automatically armed the ALT capture
mode. The pilot also set the pitch mode to VSP with a vertical

2.4. ANALYSING HMI WITH FORMAL METHODS 27

Pitch mode

HLD IAS

VSP

Capture mode

ALT

Target altitude (feet)
5,000

Vertical speed (feet/min)
2,000

Airspeed (knots)

256

Figure 2.3. Control of pitch and capture modes. The pitch mode is chosen with a
knob and the altitude capture can be set or not with a button (on the left). Target
altitude, vertical speed rate and airspeed can be chosen with knobs (on the right).

speed of 2,000 feet/min. When the altitude of the airplane reached
4,000 feet, the pilot changed the pitch mode to IAS, while the
airspeed was previously set to 256 knots. The ALT capture mode
was still armed. When the airplane approached the target altitude,
the autopilot automatically switched to ALT CAP capture mode.
A few seconds later, the captain changed the vertical speed to
4,000 feet/min. The autopilot automatically changed the pitch
mode to VSP and the airplane continued to climb, not levelling off
at the specified target altitude...”

Figure 2.4(a) shows the state-machine that represents the logic of the
behaviour of the autopilot for the considered pitch and capture modes,
as proposed by Rushby. This state-machine summarises the description
presented here above. What caused the automation surprise is that the
pilot does not have the same representation of the autopilot in mind. A
good mental model may suppress behaviour details and this is necessary
since a human operator cannot memorise every detail accurately in his
mind. In that specific situation, the pilot was not aware of a difference in
the behaviour of the autopilot between ALT and ALT CAP: VSP/IAS resets
ALT modes (bold transition on Figure 2.4(a)). For the pilot, whenever
the capture mode is active, it remains active even when changing the
pitch mode to VSP. Rushby proposed the mental model on Figure 2.4(b).
This is precisely what caused the incident: after the pilot changed the
vertical speed to 4,000 feet/min, in the last manoeuvre, the actual system
transitioned to the initial state where capture is not armed, but in the
mind of the pilot, capture was still armed.

28 CHAPTER 2. CONTEXT AND STATE OF THE ART

Capture
not armed

Altitude
hold

ALT CAP
pitch mode

Capture
armed

VSP/IAS

HLD

ALT

ALT

near

VSP/IAS

VSP/IAS HLD/arrive

HLD/arrive

(a) State-machine for the actual system.

Capture
not active

Altitude
hold

Fake
node

Capture
active

VSP/IAS

HLD

ALT

ALT

HLD/arrive

VSP/IAS

(b) State-machine for the mental model.

Figure 2.4. State-machines representing the actual behaviour of the autopilot, and
the one for the pilot. The transition to the ALT CAP mode is automatically triggered
by the autopilot when the airplane is approaching the target altitude (near). The
arrive transition is triggered when the airplane reaches the target altitude [RCP99].

The lesson learned from that incident is that the pilot has to know
about the difference between ALT and ALT CAP capture modes. The
reason is that the behaviour resulting from triggering the same action
(entering VSP or IAS) is different depending on the actual capture mode.
More precisely, the pilot has to be made aware of the silent event near.
An explicit indicator on the user interface may be a solution; another
possible solution is a redesign of the system.

Using a Model Checker to Automate Mode Confusion Analysis

The mode confusion analysis performed by manual inspection in [RCP99]
has been extended in [Rus02], so as to automate the analysis using the
Murφ model checker [Dil96]. The general idea is to write one Murφ
model that embodied two set of variables, representing the state of the
system and the one of the pilot. The model checker is then used to
explore that model which represents the parallel execution of both the
system and mental models. The property that is checked by the model
checker guarantees coherence between the states of both models.

2.4. ANALYSING HMI WITH FORMAL METHODS 29

Figure 2.5 illustrates the performed analysis. Each node represents a
state of the exploration, which is composed of the values of the variables
in the system (s) and in the mental (m) models. If all the explored states
are agreeing on the values of their variables (states of “type” j), the
system is guaranteed to be safe according to mode confusion. Whenever
one bad state (states of “type” i) is reached, the path from the initial
state to this bad state is a scenario which may lead to a mode confusion.

s0
m0

si
mi

sj
mj

“Type” i state

“Type” j state

Figure 2.5. Automatic detection of mode confusion using a model checker. A possible
mode confusion is detected whenever there is a discrepancy between variables in the
system (s) and mental (m) models, during the exploration done by the model checker.

A Murφ model consists in a set of state variables and a set of rules
describing when and how the state variables are updated. The model
checker can check invariants (conditions that must always be satisfied)
and assertions (conditions that must only be satisfied in some situations).
The kill-the-capture case study has been modelled with three state
variables:

• two of them model the system: pitch_mode is an enumerated value
for the pitch mode of the autopilot (VSP, IAS, ALT CAP or HLD) and
capture_armed is a boolean value representing whether the capture
is armed or not.

• and the third one models the mental model: ideal_capture represents
whether the capture is armed or not in the operator’s mental model.

Given the modelling, a potential mode confusion can be detected by
stating an invariant exhibiting the fact that the mental model diverges

30 CHAPTER 2. CONTEXT AND STATE OF THE ART

from the actual system model. Should the mental model be correct,
ideal_capture should be true whenever the capture is armed on the actual
system, that is, when the pitch_mode is ALT CAP or the capture mode is
ALT. That condition is expressed with the following invariant:

Invariant ideal_capture = (pitch_mode = alt_cap | capture_armed)

The Murφ model checker exhaustively explores all the states of the
system and finds a scenario where the invariant is false. That scenario
precisely corresponds to the one that the pilot faced in the story presented
at the beginning of this section.

The general goal of Rushby et al.’s work is to develop an automated
methodology whose aim is to detect whether a given system design
is prone to mode confusions. The proposed methodology consists in
comparing the design of the system with a generic mental model. One
issue with the proposed automated technique is that the two models
have to be written together in a single Murφ model, comprising variables
for the system and for the mental models. Such a way to proceed is
not very convenient. That criticism must be tempered in the sense that
what is not convenient in this approach is that both models, with their
sets of variables, have to be written in a single model. This has to be
opposed to event-based modelling approach where the focus is not on
the variables defining the states, but on the actions responsible of state
changes. Such models can be defined separately and naturally composed
together; and this is precisely the approach taken in this thesis.

Another shortcoming is that in order to detect the potential mode
confusion, the potential divergence must be somewhat a priori identified
to be stated as an invariant formula. Finally, a difficulty with that
approach is to determine a good generic mental model, so as to be able
to detect potential mode confusion. The quality of the mental model
determines the quality of the potential mode confusion situations found
by the approach.

Explicitly Separating the Actual System Model and the Mental Model

The work of Rushby et al. has been extended by Buth [But04] in order
to explicitly compare the actual system model with the operator mental
model. The analysis is done with the FDR2 model checker [For10] which
permits to directly compare two models, as opposed to Murφ which does

2.4. ANALYSING HMI WITH FORMAL METHODS 31

not allow that. The FDR2 model checker uses a machine-readable version
of CSP [Hoa85] as a specification language. The comparison between
models is done with the refinement properties of CSP models. The idea
of this work is to define two CSP processes, one for the actual system
and one for the operator. The FDR2 model checker is then used to check
whether the two processes are equivalent. FDR2 can check for traces
and failures equivalences, that are both considered by Buth in her work.
Trace equivalence is first used to check whether both models are able to
perform the same sequences of events. Even if both compared models
can execute the same sequence of events, it may be the case that one of
the models could refuse an event which cannot be refused by the other
model. Failure equivalence can precisely detect such situations and is
thus also used in the approach proposed by Buth.

One of the contributions of Buth’s work is the ability to describe
separately the actual system model and the operator mental model. It is
however still necessary to have identified a priori where potential mode
confusion can occur in order to focus on the right part of both models.
Another difficulty resides in the analysis of error traces produced by the
FDR2 model checker. It is not easy to express the error in terms that are
meaningful at the human-machine interaction level. One of the reasons
for that difficulty is that error traces provided by the model checker has
to be executed on the models to understand if they are due to wrong
modelling choices or to a real situation that may occur. Some noise may
also have been introduced by spurious actions introduced only to make
the analysis possible by the model checker.

Both works from Rushby et al. and Buth confirmed that model check-
ing provides a convenient approach to investigate models for mode confu-
sion situations. The proposed methodologies are not fully automated but
provide a well-defined framework for analysing possible mode confusion
in human-machine interactions. As summarised by Buth [But04], two
main issues remain: how can the specifications for the system model and
the mental model be derived in a systematic way and how errors found
during the analyses can be related to situations in the system. The work
presented in this thesis addresses the first question; the second one being
discussed as perspective for future work.

32 CHAPTER 2. CONTEXT AND STATE OF THE ART

2.4.2 User Interfaces Analyses Based on Metrics

Thimbleby is also investigating the use of formal methods to analyse
human-machine interactions [Thi10, TG07], but with a quite different
approach from Rushby’s. The focus of the analysis performed by Thim-
bleby is put on the description of the interactive system itself, without
trying to model the user in any way, at least explicitly. The model of
the system must be as precise as possible, a rough abstraction is not
enough to have a good analysis, especially for safety-critical devices.
Furthermore, the focus is put on modelling and analysing the behaviour
of the user interfaces, more than the actual underlying system.

Graph-based Analysis

The choice in Thimbleby’s work is to use graph theory [Wes00] as the
formal framework to analyse human-machine interaction. Graphs are
very suitable since they naturally provide an interpretation of systems at
the level of human interaction. For example, a path in a graph represents
a sequence of actions by the user, and the shortest path between any
two states represents the most efficient way for an operator to achieve
a given goal. That example also shows how properties on graphs could
be related to usability properties of interactive systems. In the work
presented in [TG07], Thimbleby et al. propose to use labelled directed
multigraphs to model systems. Based on that modelling, the authors
derive usability properties based on properties and metrics on graphs.
Some of them are summarised hereafter.

• The first concern is about navigability, that is, the ability for the
user to navigate through the state space of the device. The strong
connectivity ensures that every state of the graph is reachable from
any other state if the graph has exactly one strongly connected
component. The diameter of the graph measures the difficulty
for the user to perform the worst task (the one with the greatest
number of actions); where a task is defined as a path between two
states of the graph.
• Another concern is evaluating the cost of various error scenarios.

If the user engages in an action mistakenly, one interesting measure
is the evaluation of the undo cost if the user wants to cancel the

2.4. ANALYSING HMI WITH FORMAL METHODS 33

last executed action, or the overrun cost if the user triggered an
action once too often. Those costs can be measured by computing
an average on some set of shortest paths.

• A third concern is about knowledge about the system. Those metrics
aim at measuring whether an interactive system is easy to learn
for a human. The minimum cut in a graph is the smallest set of
transitions that, when removed, make the graph disconnected. The
interpretation is that if the user does not know those transitions,
there will be some functionalities that will never be used. Actions
corresponding to such transitions must be focused in well-designed
training materials.

• A last concern is about what the user can observe about the system.
The chromatic number χ is the minimum number of colours to be
used to colour the states of the graph so that no two states linked
by a transition have the same colour. If the user must always know
that the system has changed state, it must be provided with a
number of indicators that is at least equal to the chromatic number
(or to be more precise, with a set of indicators that can take χ
different states altogether). Such a system is said to be trackable,
meaning that the user can keep track of which state the system is
in. Finally, a user that claims to know completely a system should
know a Chinese postman tour of the graph, that is, a shortest tour
that visits every transition of the graph.

Advantages of graphs is that they are simple to build and understand
and they are very visual, in comparison to other formalisms such as BNF
grammars, for example. Moreover, their properties can be easily related
to the human-machine interaction language, to provide relevant analyses.
One difference with the work of Rushby is that there is no need to think
about what could be a good mental model since the performed analysis
are targeting general interaction concerns. The drawback is that it is
not possible to capture more dynamic aspects of the interaction, such
as to analyse mode confusion potentials for example. Another weakness,
stated in [TG07], is that graph models may be non-deterministic, but
such situations have not been considered in this work since it may
complicate many of the used metrics. The work presented in this thesis
also relies on a simple formalism that is essentially a graph enriched with

34 CHAPTER 2. CONTEXT AND STATE OF THE ART

elements on the states and transitions so as to be able to capture more
dynamic aspects. Moreover, the user is explicitly taken into account and
non-determinism in the system is directly taken into account.

2.4.3 Using Model Checking to Verify Usability Properties

Campos et al. are in some way in-between the two previous presented
works. The authors use model checking techniques, as Rushby does, to
check that a given system satisfies some properties such as usability, as
used by Thimbleby. Campos et al. are using interactors and the MAL
modelling notation to model systems [CH11, CHL04, CH08].

Model Checking Interactors

In [CH11], Campos and Harrison present interactor-based specifica-
tions [FP90, DH93] and the role they can play as a partial model of
interactive systems in automation surprises analysis, especially to detect
them early in the design process of interactive systems. Interactors are
objects with a state and operations, but for which perceivable states and
actions are explicitly identified. The authors emphasise that interactors
bring nuances in the verification of interactive systems that differentiate
from the more general problem of software verification.

An interactor, as illustrated on Figure 2.6, is an object which interacts
with its environment through events. It is also capable of rendering (part
of) its state. That is, an interactor is composed of three main components:
a state, a behaviour and a rendering. There is no one prescribed notation
to specify interactors and several have been used such as Z, modal action
logic (MAL) and VDM.

In the work of Campos et al., the states of interactors consist of a
set of typed attributes. The behaviour of the interactors is defined with
axioms and a logic based on structured MAL [RFM91, DBMD95]. MAL
contains the usual propositional operators and it adds a modal predicate
[a]Q meaning that Q is required to hold in any state that results after
performing the action a and two deontic operators per(a) and obl(a)
respectively meaning that the action a is permitted or obliged. Rendering
aspects are defined by offering the possibility to annotate actions and
attributes, to define that they are perceivable by the user. Interactors
can be included within others in order to build more complex systems.

2.4. ANALYSING HMI WITH FORMAL METHODS 35

State
rho

Presentation

Events

Figure 2.6. A York interactor is an object which interacts with its environment
through events and which is capable of rendering (part of) its state in some presentation
medium [DH93].

Figure 2.7 shows an interactor example for a very simple system which
is a lamp that can be turned on and off by pressing on a button.

interactor lamp
attributes

vis light: boolean
action

vis press
axioms

(1) [press] light’ = !light

Figure 2.7. Example of a simple interactor representing the model of a lamp that can
be turned on and off with a single button.

In addition to this modelling approach of interactive systems, Campos
et al. developed algorithms to translate them into a SMV specification, the
language used by the SMV model checker [McM00]. An SMV specification
is a collection of SMV modules, each of them defining a finite state-
machine. An SMV module is basically composed of state variables with
a set of rules specifying how the module progresses from one state to the
next one. The analogy between the state variables and the interactor
attributes and between the set of rules and the interactor axioms is
immediate, as shown by Figure 2.8 showing the SMV specification that
is obtained after translation of the lamp interactor example.

Invariants can be stated in interactors and will be checked on the
obtained SMV specification by a model checker. The methodology has
been applied on the kill-the-capture case study of Palmer and it was
also able to detect the potential mode confusion, just as it is the case
with Rushby’s approach. The advantage of the approach developed by

36 CHAPTER 2. CONTEXT AND STATE OF THE ART

MODULE lamp
VAR

light: boolean;
action: {press};

INIT
light = 0

TRANS
next(action) = press -> next(light) = !light

Figure 2.8. SMV specification obtained after translation of the lamp interactor
example of Figure 2.7.

Campos et al. is the modelling language that makes it possible to describe
the model of a system in a modular way, with state variables and with the
focus on actions and the dynamic behaviour it implies. This is exactly
the same kind of expression that is captured by the modelling approach
chosen in this thesis.

Checking Generic Usability Properties

In [CH08], Campos et al. use a model checking approach to automatically
verify generic usability properties on a given system. The authors express
usability properties as generic CTL formulæ that are instantiated for
a particular model. The CTL properties are then checked against the
system with the NuSMV model checker [CCJ+10]. This is precisely where
the approach of Thimbleby and the work by Campos et al. just presented
here above are merged together. The HMI analyses that are performed
only concern the system, without explicitly including the operator.

One example of a generic property is the following:

AG(pred(s) ∧ c =∗ x =⇒ AXa(c 6=∗ x))

That property represents the feedback usability property which states
that whenever the user performs an action on a system, there is always
a perceivable change in some of the visible attributes of the system.
The pred(s) predicate can be used to add a condition to the property,
c is a set of attributes, the =∗ operator is equality distributed over the
attributes and AXa p is a shortcut for AX(a =⇒ p), that is, in all next
states arrived at by action a, p holds.

2.4. ANALYSING HMI WITH FORMAL METHODS 37

The case study that has been used by Campos et al. is the air
conditioning panel of the Toyota Corolla (2001 European version). As
illustrated by Figure 2.9, the user interface consists of ten buttons and a
display showing three elements. Perceivable attributes of the system are
the three values shown on the display (flow mode, fan speed and target
temperature) and the four boolean attributes corresponding to some of
the buttons at the bottom (air conditioning mode selection, windscreen
front flow mode selection, air intake mode selection and automatic mode).
In addition to those visible attributes of the system, there are also some
hidden attributes such as some values that are memorised when the
system is switched off.

n

Fan
o

A/C

↓ 20

Front MODE Recirc OFF

n

Temp

o

AUTO

Figure 2.9. Control panel of the air-conditioning system of the Toyota Corolla (2001
European version). The four buttons A/C, Front, Recirc and Auto at the bottom are
used to activate or deactivate some options. The MODE button is used to switch
the operating mode. The OFF button is used to switch the air conditioner off. The
button with arrows on the left (resp. on the right) is used to increase or decrease the
speed of the fan (resp. the target temperature). The front display shows the flow
mode, the fan speed and the target temperature [CH08].

The tricky part of this system is the flow mode which is not simply
controlled by one unique button, as opposed to the fan speed and target
temperature (which are in fact controlled by two well identified buttons).
There is a total of five different flow modes which may change after a
press on the A/C, front or MODE.

The generic feedback usability property can be instantiated to the
visible attributes of the system. The generic property can for example
be instantiated for the mode key, knowing that the feedback will be
provided by the flow mode indicator on the display:

AG(airflow = x =⇒ AXmodekey(airflow 6= x))

38 CHAPTER 2. CONTEXT AND STATE OF THE ART

The property will be instantiated for all the five possible values of
the airflow and checked on the system. For that case study, it is indeed
satisfied. However, if the fanspeed attribute is checked regarding the
feedback usability property, the check fails. Nothing visible changes when
the maximum speed is already reached and when the user is trying to
augment the speed indeed. Such a situation may or may not induce a
bad interaction; further analysis is left to the designer of the system, as
stated in [CH11]:

“A property of concern may not represent a failure for the inter-
active system rather it may highlight scenarios where special care
should be taken to understand how the user will interact with the
system at this point.”

Other generic usability properties are defined in [CH08] and the
authors provide a collection of them, well documented, that can be used
by the system designers without much knowledge about model checking
and CTL temporal logic.

The work presented in this thesis is not concerned directly with
usability properties. It defines a more general property that can be used
to identify potential mode confusion, but more generally the property
captures situations of potential automation surprises for the operator.
Nevertheless, integrating usability properties as those defined by Cam-
pos et al. may bring additional constraints to analyse whether a given
mental model is suitable to operate a system; and the idea of proposing
a library of properties helps to make the formal methods usable by sys-
tem designers, overthrowing the limits to adopt formal methods based
techniques.

The IVY Tool

The IVY workbench1 [CH08, CH09] is a model based tool that is used
to perform formal analyses on interactive systems design. The purpose
of that tool is to detect usability problems early in the design and
development process. Models to be analysed are specified with the MAL
interactor language and then compiled into the SMV language. The
verifications that are performed by the tool are done with the NuSMV
model checker.

1Available online at: http://ivy.di.uminho.pt/.

2.4. ANALYSING HMI WITH FORMAL METHODS 39

IVY is composed of several tools:

• The model editor is used to express the model of the system to
be analysed, using the MAL notation. A model is composed of
a set interactors, each composed of attributes defining the states,
actions and axioms describing the state transitions. Two possible
edition modes are available in the editor: a textual one and one
based on a graphical notation inspired from UML class diagrams.

• The property editor is used to define the properties to be checked
on the model. Those properties are expressed in CTL. The editor
proposes a set of predefined generic usability properties which are
specialised by the user in order to make them relevant for the
analysed model.

• The AniMAL plugin is used to build user interface prototypes from
MAL models. The prototypes take the form of a simple GUI with
one panel for each interactor, showing the different attributes and
actions. AniMAL can animate a sequence of events which helps
the designer to get a more textured indication of what went wrong
the case of failure, for example.

• Finally, the verifier is used to check the properties on the model.
It uses i2smv to compile MAL interactor models into SMV models.
Properties expressed thanks to the property editor are then checked
by the NuSMV model checker. If the model does not satisfy the
properties, the counterexample provided by NuSMV is analysed so
as to provide a relevant representation for the designer.

2.4.4 Cognitive considerations for the human behaviour

The research presented in the previous sections either view the human as
an automaton, state-based, or they do not consider explicitly the human
operator. There is also lot of research more focused on the formalisation
of more precise user behaviour models. Capturing the human behaviour
with a formal model is not easy due to high variance in population and
its dependence on context and situation [Suc87].

40 CHAPTER 2. CONTEXT AND STATE OF THE ART

But a realistic simplification focusing on achievement of goals can be
stated as follows [CseB07]:

“It is a reasonable, and useful, approximation to say that humans
behave rationally in the following sense. They enter an interaction
with goals they try to achieve and have some knowledge that seems
likely to help them achieve those goals.”

One of the main reasons to be interested in cognitive considerations
for the human behaviour is that it helps to better understand user errors
and consequently to get a better analysis of human-machine interaction.
According to Reason [Rea90], whole classes of systematic errors may
occur due to cognitive causes, for certain types of interactive system
designs.

Detecting Systematic Human Errors

Curzon et al. [CseB07] focus on the definition of a cognitively plausible
human behaviour that is used, once combined with the design of a
device, to detect potential erroneous actions and thus potential bad
design choices. Unlike the other approaches that consider the human as
perfectly following a given behaviour, Curzon et al. consider human errors
that are essentially cognitive slips. The detection of systematic human
errors due to cognitive causes is precisely the core of their approach. The
user and the system are explicitly modelled separately with a higher-
order logic formalisation. The verifications are performed with the HOL
interactive proof system [GM93, For12].

Analysing Different User Behaviours

Basuki et al. [BCGS09] developed an approach that is used to analyse
different user behaviours against a given system. They model human-
machine interaction with interacting components (human and machine
actors) that act like peers communicating together through a particular
interface component. The interacting components are represented with
labelled transition systems (LTS) which are essentially graphs whose
transitions are labelled with actions. Those LTSs are modelled with
the Maude rewrite system [CDE+03]. The advantage of using a rewrite

2.4. ANALYSING HMI WITH FORMAL METHODS 41

system is that it makes it possible to define one user model that can be
refined to get new user models just by adding new rewrite rules.

In Basuki et al.’s approach, users are modelled either as goal-based
users or reactive users. The first category represents users that have
a predefined goal they want to perform with the system and that will
drive their interactions. The second category corresponds to users that
will interact with the system in response to the signals it sends. Those
different user behaviours are then combined with the system model and
properties such as goal completion or flexibility are specified as LTL
properties and verified by the model checking capabilities of Maude.

The assumption made by the author to model users is that they
are acting like rational users, that is, users who want to achieve a goal
and, for that, will perform actions. Random user behaviours are thus
excluded from their models. Basuki et al. characterise the user behaviours
according to several aspects. First of all, the user has a goal to achieve
by interacting with the system, after which he will leave the interaction.
To do so, the user has to perform operations to achieve the goal and
must be able to react to stimuli produced by the system. Three other
aspects are taken into consideration:

• The user may get used after having interacted several times with
the same machine or similar ones. The user may just ignore stimuli
from the machine and directly perform the sequence of actions to
achieve his goal.
• The user has also a certain time tolerance, that is, he does not
want to wait to the machine being processing information for a
time longer than his tolerance time. After a too long wait, the user
may suspect that something is going wrong and thus he may redo
the last performed action.
• Finally, the user is acting carefully. It means that the user is not
willing to loose any of his possessions if it is not required to loose
any of them to achieve his goals. That third aspect influences the
user when he is tempted to redo an action.

All those considerations are taken into account in the design of the
rewriting rules used to specify the user behaviour model. In their paper,
Basuki et al. illustrate their approach with a vending machine example.
Figure 2.10 shows the interface of the chocolate vending machine. There

42 CHAPTER 2. CONTEXT AND STATE OF THE ART

are two lamps that can light up to indicate the user that the machine
expects some action. There is also one button that allows the user to
select chocolate. Finally, there are three slots that are respectively used
for the user to insert one-euro coins, to get back the change and to take
the chocolate bar.

CHOCOLATE MACHINE
(0,50 e)

Take change Take chocolate

Insert 1e Select item
Chocolate

Figure 2.10. Interface of a chocolate vending machine [BCGS09]. One bar of chocolate
costs fifty eurocents and the user can only pay using one-euro coins. After having
inserted one euro, the user has to make a selection (only chocolate is possible) and
then can take back his chocolate bar and the change. The user is guided thanks to
two lamps that indicate him what the machine is waiting for.

Three models are necessary to model the interaction with the vending
machine: the machine model, the user behaviour model and the interface
model which is the communication medium between the user and the
machine. One basic property that can be checked is that the user is
always able to reach his goal, which can be expressed with the following
LTL property:

G(Approaching =⇒ FGoalAchieved)

The property states that whenever the user approaches the machine
with the intention to interact, he eventually manages to achieve his goal.
That property is very general since it does not state whether the user
has to achieve his goal directly or whether he can leave and come back
later. Another stronger version of the property can be defined:

G((Approaching ∧ Enabled) =⇒ (¬UserLeft UGoalAchieved))

2.4. ANALYSING HMI WITH FORMAL METHODS 43

The property states that whenever the user is approaching the ma-
chine and that the machine is working properly (that is, still has chocolate
bars to sell and fifty eurocents coins left) the user does not leave the
machine unless his goal is achieved.

These properties, and all the others described in [BCGS09] are generic
properties that can be used to check whether a user is able to achieve
his goal during an interaction with a machine.

2.4.5 Integrating User’s Tasks into the Interaction Analysis

Up to now, the presented works do not take user’s tasks into account in
the interaction analyses performed. Such a consideration is useful for the
human-machine interaction analysis since human factors engineers use
task-analytic methods to describe the normative human behaviours that
are required to control the system to be operated [DS03]. Those task
models can be viewed as a kind of mental model, containing the mental
and physical activities that are carried out by the operators. Formal
task-analytic models have been developed and include ConcurTaskTrees
(CTT) [PMM97], operator function models (OFM) [MM86] and user
action notation (UAN) [HSH90]. Those modelling approaches represent
the task models as graphs representing hierarchies of activities that are
decomposed into sub-activities and so on until those sub-activities are
reduced to atomic actions. The execution of the different sub-activities
are controlled by conditions.

Bringing Together Tasks and System Models

Palanque et al. [PB97, NPB01, BNP03, NPLB09] defined and developed
interactive cooperating objects (ICO), an object-oriented formal dedicated
to the modelling of interactive systems. The ICO formalism is built upon
the object-oriented Petri nets paradigm. An object consists in four parts:
a cooperative object, a presentation part, an activating function and
a rendering function. ICO is a genuine combination of concepts from
the object-oriented approach for the description of the structure of the
interactive systems and high-level Petri nets to describe the dynamic
behaviour. Petri Nets (PN) [Pet62, Mur89] is a formalism that has both
an algebraic and a graphical representation, which makes it possible to

44 CHAPTER 2. CONTEXT AND STATE OF THE ART

perform mathematical analyses on them and which is intuitive and easy
to model thanks to the graphical representation.

The ICO formalism aims at providing a rapid prototyping way of
designing user interface. All the parts of an ICO model are thus related
to some part of the application. Cooperative objects are expressed with
object petri nets (OPN), a variant of Petri net where tokens are complex
objects defined in some object-oriented language. They encode how
the objects react to external stimuli, according to their current state.
Based on that, the presentation part defines the external appearance
of the object, which can be a window or a single widget. Then the
activation function part associates inputs from the user on the interface
to the corresponding cooperative object. Finally, the rendering function
associates a change of state of the cooperative object to an output to the
user. This decomposition approach is very similar to the one captured
by York interactors, presented above.

One advantage of the ICO formalism is that, in addition to the ability
to describe the dynamic behaviour, it also makes it possible to define the
structure of the system with the object-oriented concepts such as dynamic
instantiation, encapsulation and inheritance. Another advantage is that
user’s tasks can be directly described with ICO. The analyses that are
available come directly from the mathematical tools provided by the
Petri net theory [PB95], and supported by a tool.

The CASE tool Petshop2 [NPLB09] is a Java-based tool which is used
to support the modelling of systems with the ICO formalism. Petshop
offers tools to perform classical manipulations on Petri nets, in order
to build the model. A great advantage of Petshop is that it is possi-
ble to execute simultaneously the interactive application and its ICO
underlying model. Furthermore, the ICO model can be modified while
the application is running and the changes are directly passed on the
interactive application.

Formal analyses of interactive systems can be done with the analyses
module. It works by first translating the ICO models into their underlying
Petri nets. Standard analyses such as deadlock or invariant analyses can
then be performed on the models. It is also possible to perform richer
analyses by checking the system against properties expressed in ACTL.
For those analyses, Petshop relies on the CPN Tools.

2Available online at: http://www.irit.fr/recherches/ICS/softwares/petshop/.

2.4. ANALYSING HMI WITH FORMAL METHODS 45

Modelling Human Errors with Tasks Models

Bolton et al. [BBS08, BSB11] are going one step further in the analysis
of human-machine interaction. In their work, they are also modelling
explicitly users’ tasks with enhanced operator function models (EOFM)
which is a generic task-analytic modelling language. Based on those task
models, and on models of erroneous human behaviour, they developed a
methodology to identify potential interaction issues.

The general framework was initially described in [BBS08] and illus-
trated with a model of the Therac-25 , a medical device that is used to
treat tumours by patient and that has been involved in accidents that
led to death, due to human errors [LT93]. The authors extended the
classical model checking process (Figure 2.2 on page 21) by adding a
model of human error that is combined with the model of the system to
get a single model that can be fed into a model checker for analysis.

Figure 2.11 shows a statechart representing the formal system model
of the Therac-25 that has been used by Bolton et al. The system is
composed of four concurrent finite state-machines (FSM). The left FSM
represents the interface which allows the operator to select the kind of
beam that will be administered: electron beam is used for shallow tissue
treatment and X-ray is for deeper treatments. For the X-ray mode of
operation, a spreader has to be put between the beam and the patient.
The bottom middle FSM models the spreader which is mandatory for
the X-ray mode, or the patient may get a lethal dose of radiation. The
top right FSM represents the beam that is effectively selected. One
peculiarity is the two 8s transitions which do not correspond to an action
of the user, but that occur after a time lapse of eight seconds. Finally,
the bottom right FSM represents the firing of the beam. Again, there
is an automatic reset transition that takes place whenever the beam has
been fired.

Many problems have been found with the Therac-25. The most
notorious occurred when a benign human error caused the machine to
administer X-rays to patients, without the spreader in place, giving rise
to important consequences. The interaction took place as follows [LT93,
BBS08]:

“The operator wanted to apply an electron beam treatment to a
patient. He first erroneously pressed the selectX key. The operator

46 CHAPTER 2. CONTEXT AND STATE OF THE ART

Edit

XData
Entry

XBeam
Ready

EData
Entry

EBeam
Ready

Treatment
Administered

selectX
up

selectE
up

enterup enter up

fire fire

enter

Neither

XSet XtoE EtoX ESet
selectE 8s selectX

8s

selectX selectEreset reset

OutPlace InPlace
selectX

selectE
Waiting Fired

fire

reset

Interface BeamLevel

Spreader BeamFire

X E

Figure 2.11. A statechart representing the formal system model of the Therac-25
machine that has been used by Bolton et al. [BBS08]. The model is made of four
concurrent finite state-machines. The 8s transitions of the BeamLevel FSM is in
dashed-style since they represent automatic transitions that take place after eight
seconds. Similarly, the reset transition of the BeamFire FSM takes place after the
beam has been fired.

directly reacted by pressing the ↑ key, so as to take the interface
back into the initial state. He then successively pressed on selectE,�
and then fire. The Therac-25 applied an X-ray treatment, but

without the spreader in place which caused a lethal dose of radiation
for the patient...”

The issue that caused the accident is related to the beam level. The
mode was initially set to X-ray erroneously, which makes the BeamLevel
FSM to be in the XSet state. If the operator performs the procedure to
recover from his error to set the machine in the electron beam mode and
fires, in less than 8 seconds, then the actual mode of the machine will
not have time to change from X-ray to electron beam and the patient
will get X-rays without the spreader in place.

Bolton et al. explain how that potential bad interaction may have
been predicted with the approach they propose in [BBS08]. The first
step of the analysis if to provide a normative human behaviour model,
describing the task to be executed. For the Therac-25 case study, this
task corresponds to the administration of an electron beam treatment.
The human behaviour model is described with the OFM formalism and

2.4. ANALYSING HMI WITH FORMAL METHODS 47

basically corresponds to the sequential execution of the following four
actions: selectE, �, fire, �. The second step of the analysis is to define the
specification that has to be satisfied. The following CTL formula states
that there will never be a state where X-rays are administered without
the spreader in place:

AG¬(BeamLevel = X ∧ Spreader = OutP lace ∧BeamFire = Fired)

The third step is to derive an erroneous human behaviour model,
from the normative one and the formal specification of the system. The
common type of error that is of interest here is the execution of a
familiar action (selectX) at the inappropriate time, known as Reason’s
slip [Rea90] or Hollnagel’s erroneous act [Hol93]. Finally, the last step is
the combination of the erroneous human behaviour model with the system
model so as to get a single model that is analysed by the SAL model
checker (Symbolic Analysis Laboratory) [BGL+00]. The specification
failed to be satisfied and the provided counterexample corresponded
exactly to the described accident.

Bolton et al. continued to work on using task analytic models to
analyse human-machine interaction [BSB11]. The authors proposed a
systematic approach for the analyses, based on EOFM, an extension of
the OFM notation which can be automatically translated to be analysed
by the SAL model checker.

2.4.6 Human Factors Considerations

In addition to human-computer interaction and formal methods commu-
nities, there is another field that is heavily involved in the study and
analysis of HMI, namely human factors. Human factors is an area of
psychology interested in different topics including ergonomics, human
error and human capability.

The International Ergonomics Association (IEA) defines human fac-
tors as follows 3:

“Ergonomics (or human factors) is the scientific discipline concerned
with the understanding of the interactions among humans and other

3http://www.iea.cc/01_what/What%20is%20Ergonomics.html.

48 CHAPTER 2. CONTEXT AND STATE OF THE ART

elements of a system, and the profession that applies theoretical
principles, data and methods to design in order to optimise human
well being and overall system performance.”

Researchers from the human factors community also started to in-
vestigate the use of formal methods to analyse HMI. That opened new
directions for collaborative work for the prediction and analysis of the be-
haviour of interactive systems, for example in the aeronautical or medical
domains [CJR00]. Human factors researchers started to develop models
of automation behaviour, for example the OFM formalism, operational
procedures table (OPT), control block diagrams with mode transition
matrices or diagrams of mode transition conditions. Those descriptions,
relying on the idea that system behaviour can be modelled as finite state-
machines, were a springboard toward the formal methods community. In
order for formal methods techniques to bring relevant additional support
for the design of interactive systems, the human factors needs must be
understood and integrated.

Two examples illustrating how and where formal methods should
intervene in the system design process are described in [CJR00]. The
first example concerns the already introduced detection and avoidance
of automation surprises. Human factors considerations suggest that
those automation surprises can be related to incomplete or approximate
mental models of the system behaviour [LPS+97]. Model checking can
help finding bad potential scenarios as studied by Rushby [Rus02] for
example. An additional point to be raised is that experts from human
factors are necessary when developing the system and mental models to
be analysed, and especially to get the right abstraction containing the
behaviour which is relevant for the analysis.

The second example is about situations where an incomplete mental
model may have an impact on safety issues. The presented study is
about determining a so-called minimal mental model which is required
to operate the A340-200/300 autopilot safely and proficiently. For that
case study, formal methods are used to validate whether a mental model,
obtained by questioning instructors and pilots, is both minimal and safe
relative to an autopilot design.

The work by Javaux [Jav02] put the stress on some specific aspects
of the formal modelling of systems, that are illustrated on an autopilot.
The first key aspect is the notion of transition scenarios which capture

2.4. ANALYSING HMI WITH FORMAL METHODS 49

the different possible independent circumstances under which a transition
can occur between two states of the model. Those transition scenarios
are more meaningful from a psychological and operational point of view.
Figure 2.12 shows an example of a transition scenario for the transition
between the autopilot disengaged state to the engaged one.

AP engagement in flight

AP1 or AP2 is engaged in flight by pushing the respective
pushbutton on the FCU

(A/C airborne for 5s) and (IAS within VLS and VMAX)
and (pitch within −10◦ and 22◦) and (bank less than 40◦)
and (AP pushbutton pushed)

Figure 2.12. One of the transition scenarios for the autopilot of the A340-200/300,
for the transition between the autopilot disengaged state to the engaged one. The
transition scenarios consists in a name, a textual description and the conditions for
the transition [Jav02].

The second key aspect is the difference between commanded and
uncommanded state transitions. This notion is related to the fact that
the transition is triggered by the operator or occurs autonomously without
any intention or action from the user. This is a key point to distinguish
both kinds of state transitions since the attentional resource the operator
has to allocate is not the same for a commanded or uncommanded
transition. Moreover, automation surprises are more likely to happen
when uncommanded transitions are taking place, since the user may not
be paying attention to them or the user interface may not be complete
enough to inform the user.

The main lesson learned from the human factors community is that
formal methods can bring automated and replicable methods and tools
to analyse human-machine interaction and search for bad interactions
potentials, early in the design process. Formal methods bring a comple-
mentary view to human factor issues to the view of the HCI community.
In the reverse direction, human factors considerations help the formal
methods community to develop psychologically interesting models and
drive the analysing methods to use and develop.

50 CHAPTER 2. CONTEXT AND STATE OF THE ART

2.4.7 Automatic Generation of User Interfaces

As highlighted by Degani et al., accidents that happened when machines
are used by an operator can be attributed to a bad interaction that can
be caused by a lack of mode awareness, mode confusion or automation
surprise. Two factors are repeatedly cited in literature: either the issue
is due to the interface which shows inadequate information about the
machine status, or the operator has an inadequate mental model of the
machine being used. All the research presented so far is focusing on the
first factor, while the approach by Degani et al. rather focus on what
information is shown to the operator, and not on how the information is
presented.

Degani et al. pioneered the analysis of human-machine interaction
focusing on the second accident factor, that is, the properties of the model
the operator has about the machine being used. Their work consists in
automatically generating an adequate mental model for a given system
so that an operator using this mental model is guaranteed to always
interact adequately with the machine. Their proposed formal procedure
is used to assess the reliability of the interaction between the operator
and the machine so as for the operator to be able to achieve specified
operational goals.

The approach focuses on the mode confusion issue. They observed
that in most accident cases, the operator had difficulties to anticipate
the next configuration of the machine, or its mode. A mode is a set of
states of the machine which exhibits a specific behaviour. Four elements
are taken into consideration in their work:

• the machine model represents all the behaviour of the machine,
that is, all the possible executions of the machine;
• the task specification, or operational goals, represents what task
the operator will perform on the system;
• the user interface provides information to the operator about the
state of the machine and its responses;
• and the user model represents the view that the operator has about
the machine.

The behaviour of the machine is supposed to be deterministic by
hypothesis, that is, its response to every action by the user or to external

2.4. ANALYSING HMI WITH FORMAL METHODS 51

signals is unique and unambiguous. The task specification can be for
example the execution of a sequence of actions (procedure), the monitor-
ing of the mode changes of the machine or the prevention from reaching
illegal states. The user interface is an abstraction of the system and it
only shows monitored events to the operator. The user model is also an
abstraction of the machine but its events are those coming from the user
interface. There are three kinds of events that can occur on the machine:

• the observed events can be seen by the operator and are either
under the control of the machine (caused by internal dynamics or
external environment) or by the operator;

• the masked events are events that the operator cannot distinguish
and sees as a single other event;

• and the unobserved events are events that the operator cannot
observe and is not aware of.

Figure 2.13 illustrates the three models involved in Degani et al.’s
approach. The different kinds of events are also shown. Events α and β
are undistinguishable for the operator and are rendered as the unique
µ event by the user interface (masked events). Event ν is observed by
the operator (observed event) and event τ is unobserved and completely
internal to the machine (unobserved event).

α

β

ν

τ

Machine
Model

User
Interface

µ

ν

User
Model

Figure 2.13. The three models involved in Degani et al.’s approach.

Degani et al. also use finite state-machines to model the machine and
the user model. They propose an approach for analysing the interaction
by considering that the task specification is that the operator is always
able to determine unambiguously the current and the next mode of the
machine. The states of the machine are partitioned into specification
classes which represent the different operational modes of the machine.

52 CHAPTER 2. CONTEXT AND STATE OF THE ART

The interaction between the machine and an operator is represented
by the parallel execution of the machine model and the user model. That
parallel execution can be represented as a finite state-machine whose
states are composite states representing the state the machine is into
and the current state of the user model. From that interaction model,
two kinds of inadequate interaction can be identified:

• An error state corresponds to a situation where the machine can
move into an illegal state while the user thinks that the transition is
legal. The reverse can also occur, that is, the operator thinks a move
is illegal while it is in fact legal on the machine. Both situations
leads to a situation where the state from the machine and the one
in the user model do not belong to the same specification class (or
mode).
• A blocking state corresponds to a situation where the operator is

unaware of certain events that can in fact take place on the system.
If those events are automatic events triggered by the machine, it
can surprise the operator when occurring.

The methodology developed by Degani et al. is used to perform a
systematic abstraction of the machine model. The abstraction is then
used to build an interface for the machine, by capturing exactly what are
the operational modes the operator must be aware of. The built interface
must be correct and succinct. The correctness criterion ensures that
the operator will be able to perform the specified task correctly. The
succinctness criterion ensures that the abstraction is small enough so
that it can fit into the operator’s memory. The machine model reduction
problem consists in finding all the best possible user models, best in the
sense that those models cannot be further reduced, an guarantees no
mode confusion potentials.

The work presented in this thesis directly follows the one of Degani
et al. [DH00, HD02, DH02, HD07] The goal of the work is to start from
a given system model and to automatically generate a user model from it.
The focus in this work has been moved from the precise mode confusion
problem to the more general problem of automation surprises. For that
purpose, this work defines the full-control property, that must hold for
all the possible interactions between a user model and a model of the

2.5. CONTEXT AND DISCUSSION 53

system being operated. In opposition to Degani et al. who are moving
towards the use of higher level formalism, namely statecharts, this work
focuses on a lower level mathematical formalism, but towards which
models described in other formalisms may be translated. Adachi et
al. [AUU06] formalise the approach described by Degani et al. focusing
on the generation of an adequate user interface from a given system
model. The work of this thesis focuses on the conceptual model and
extends the adequacy notion used by Degani et al.

2.5 Context and Discussion

Different approaches where formal method techniques are used to analyse
human-machine interactions are described in Section 2.4. Table 2.1
on page 54 summarises the main formal methods based techniques to
analyse human-machine interaction presented in the previous section.
In this section, reference to the different research will be done only by
mentioning the first author. The section lays up the context and the
direction followed in the work presented in this thesis and also discusses
the choices that has been done and the frame in which this work is in, in
relation to the state of the art.

2.5.1 Human-Machine System

In the work presented in this thesis, a human-machine system is only
composed of one machine being used by a single operator. The only direct
interactions that are considered are between the user and the machine.
The environment is not explicitly considered but implicit interactions
with the system may be taken into account, for example if a temperature
sensor would provide events in the system. Unlike Palanque, user’s tasks
are not taken into account directly. Chapter 6 presents an experiment
taking tasks into account and gives future direction about how it could
be included as a separate component in the analyses proposed in this
thesis.

The behaviour of the system is described as a discrete reactive system.
Even if objects in the world are by nature continuous, automation is
getting digital and thus discrete by nature. Moreover, only finite-state

54 CHAPTER 2. CONTEXT AND STATE OF THE ART

A
uthor(s)

R
eferences

Inputs
A
nalysis

R
ushby

et
al.

[R
us02]

O
neM

urφ
m
odel(forthesystem

and
the

user)and
assertionsorinvariants

M
ode

confusion

B
uth

[B
ut04]

Tw
o
FD

R
2
m
odels

(one
for

the
sys-

tem
and

one
for

the
user)

A
utom

ation
surprises

T
him

bleby
et

al.
[T

G
07]

A
graph

m
odelfor

the
system

U
sability

properties

C
am

pos
et

al.
[C

H
11]

A
interactors-based

m
odelofthe

sys-
tem

and
invariants

M
ode

confusion

[C
H
L04,C

H
08]

and
C
T
L
properties

U
sability

properties

C
urzon

et
al.

[C
seB

07]
H
O
L
m
odels

B
asukiet

al.
[B
C
G
S09]

M
aude

m
odel

U
ser

behaviours
com

parison
Palanque

et
al.

[PB
97,N

PB
01,B

N
P03,N

PLB
09]

IC
O

m
odel(Petri-net

based
m
odel)

Task
analysis

B
olton

et
al.

[B
B
S08,B

SB
11]

EO
FM

Task
analysis

D
eganiet

al.
[D

H
00,H

D
02,D

H
02,H

D
07]

Statecharts
U
ser

interface
generation

C
om

béfis
T
his

thesis
and

[C
P09,

C
om

09,
C
G
PF11a,C

G
PF11b,C

G
PM

11]
H
M
I-LT

S
or

H
V
M

Full-C
ontrollability

(and
autom

ation
surprises)

T
able

2.1.
C
om

parison
ofform

alm
ethods

based
techniques

to
dealw

ith
and

to
analyse

hum
an-m

achine
interactions

issues.

2.5. CONTEXT AND DISCUSSION 55

systems are considered in the work presented in this thesis. Time is not
taken into account, in the sense that events are instantaneous and time
between events is unspecified.

The modelling approach that has been chosen is similar to the one
of Rushby or Javaux, that is, a kind of finite state-machines, but that
are described explicitly and completely in the way Thimbleby does it
with graphs. The difference is that the models do include the distinc-
tion between commanded and uncommanded transitions, proposed for
example by Javaux. Finally, as it is the case for Campos, information
about attributes of the system is present in the states of the system.
This modelling approach is the subject of Chapter 3.

2.5.2 Interaction Analysis

As shown in the review of Section 2.4, different possible analyses can be
done on human-machine interactions. The focus of this work is on a safe
interaction for the operator with the machine being used, as highlighted
by Javaux in [Jav02]. In particular, this thesis deals with the detection
and avoidance of automation surprises during the design of the system.
Similarly to Rushby, both the system model and a mental model are
considered, but modelled separately just as in the extended work of
Buth. Usability properties as developed by Thimbleby or Campos are
not studied in the frame of this work, but they can be integrated easily
since a similar modelling approach as that of Thimbleby is used for
the modelling part and since a model checking approach is used as a
verification method. The definition of safe interaction, and the algorithm
used to check it is the subject of Chapter 4. Finally, user’s tasks profusely
used by Palanque and Bolton are not taken into account yet, even if
Chapter 6 proposes a first direction of integration.

2.5.3 Safe Minimal Mental Model

The human factors community is interested in the notion of a minimal
safe mental model, for a given system [CJR00]. This is precisely the
focus of Chapter 5. As presented in the next section, the work of Rushby
has been extended by Degani et al. in order not only to be able to check a
mental model against a system model, but also to automatically generate
a mental model with some prescribed properties.

56 CHAPTER 2. CONTEXT AND STATE OF THE ART

Chapter 3
Modelling

Human-Machine Interactions

This chapter describes the modelling choice that has been made in this
work to represent the system and the user. The choice has been made so
as to be simple and rich enough to at least represent the aspects necessary
to formally check whether all the possible interactions between a user
and the machine being operated can take place without potential errors.
The modelling choice used in this work has been mainly influenced by
the work of Degani et al. [DH02, HD07]. But whereas they are using
statecharts [Har87] as the mathematical formalism, the work presented
in this thesis is based on enriched labelled transitions systems (LTSs).
Section 3.1 provides background information and notations that are used
throughout this thesis. Section 3.2 presents the HMI-LTS formalism
that is used to model the system and the human, and presents how
the interaction between them is computed. Then, Section 3.3 presents
the enriched HMI-LTSs which are mainly HMI-LTS with the addition
of observable information on the states. It also shows how enriched
HMI-LTS can be reduced to HMI-LTS. Finally, Section 3.4 presents work
related to the modelling of human-machine interactions, and compares
them to the proposed modelling approach.

3.1 Background and Basic Notation

Models that are used to model human-machine interaction in this thesis
are based on labelled transition systems (LTS) [Mil80, Kat05]. This
section gathers definitions, notations and main results related to LTSs,
that are used throughout this thesis.

57

58 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

An LTS is essentially a directed graph [Wes00] whose vertices are
called states, one of those being the initial state, and edges are called
transitions. In this thesis, only finite sets of states are considered. Tran-
sitions of an LTS are labelled with a visible action or with a τ that
represents the internal (invisible) action. The set of visible actions (that
is, excluding τ) is called the alphabet of the LTS.

Definition 3.1 (Labelled Transition System). A labelled transition
system (LTS) is a tuple 〈S,L, s0,→〉 where S is a finite set of states, L
is a finite set of labels representing visible actions, s0 ∈ S is the initial
state and →⊆ S × (L ∪ {τ})× S is the transition relation, where τ /∈ L
is the label for the internal action.

Figure 3.1 shows a graphical representation of an LTS example. The
LTS example has five states (depicted with boxes and named A, B, C, D
and E), three labels (a, b and c) and eight transitions (depicted with the
arrows linking two states). Transitions labelled with the internal action
τ are depicted with dotted lines. The initial state is the state A and is
identified with an arrow pointing on it.

A

B C

D E

a

b

c

τ

τ
b a

a

Figure 3.1. Graphical representation of an LTS example with five states depicted as
boxes and eight transitions which are the arrows linking states. The initial state is
the state A identified with an ingoing arrow pointing it. The alphabet of the LTS is
L = {a, b, c}.

The LTS example of Figure 3.1 is formally defined as the tuple
〈S,L, s0,→〉 where:

• S = {A,B,C,D,E};
• L = {a, b, c};
• s0 = A;
• and → = {(A, a,B), (A, b,D), (B, τ,B), (B, c, C), (D, τ,B),

(D, b, C), (E, a, C), (E, a,D)}.

3.1. BACKGROUND AND BASIC NOTATION 59

LTS are similar to finite state machines (FSM), deterministic finite
automata (DFA) or nondeterministic finite automata (NFA) [RS59a].
LTSs allow a state to have multiple outgoing transitions with the same
label, which is forbidden by FSMs and DFAs. Moreover, the transition
relation of DFAs are complete functions, meaning that there is one
transition labelled with every value of the alphabet for all the states of
the DFA. Also, the notion of accepting states is not present in LTSs that
are mainly used to represent the behaviour of reactive systems, whereas
the other formalisms are used to represent languages, that is, a set of
words on a given alphabet. Finally, nondeterministic finite automata
with ε-moves (NFA-ε), which are NFAs with the addition of the empty
string ε, are even closer to LTSs.

3.1.1 Transitions, Executions, Traces and Reachable States

Given an LTS M = 〈S,L, s0,→〉, the notation s
α−−→ s′ is used as a

shortcut for the (strong) transition (s, α, s′) ∈→. The state s is called
the source (state) of the transition and the state s′ the destination (state).
A transition whose source and destination are the same is called a loop.

An execution is a sequence of transitions s0
α1−−→ s1 · · · sn−1

αn−−−→ sn
with αi ∈ (L ∪ {τ}). The length of the execution is n which corresponds
to the number of transitions in the execution. An execution corresponds
to a path in the graph of the LTS, and the two words execution and path
are used interchangeably in this work. The execution can be written
as s0

σ−−→ sn with σ = α1 · · ·αn. The notation s
α==⇒ t is used as a

shortcut for the weak transition s τ∗ατ∗−−−−−→ s′ where τ∗ is a possibly empty
sequence of τ . The notation s α−−→ (resp. s α==⇒) is a shortcut for the
existence of a state s′ ∈ S such that s α−−→ s′ (resp. s α==⇒ s′).

A trace of M is a sequence σ = 〈α1 . . . αn〉 with αi ∈ L, such that
there exists an execution s0

α1==⇒ s1 · · · sn−1
αn===⇒ sn inM. The set of

traces ofM represents all the sequences of labels for which there exists
an execution in the LTS. The empty trace is denoted ε.

Definition 3.2 (Trace). Given an LTS M = 〈S,L, s0,→〉, a sequence
σ = 〈α1 · · ·αn〉 ∈ L∗ is a trace of M if and only if there exists an
execution s0

α1==⇒ s1 · · · sn−1
αn===⇒ sn. The set of traces ofM is defined

as Tr(M) = {σ ∈ L∗ | s0
σ==⇒}. The empty trace is denoted ε.

60 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

A state s′ is reachable from another state s if there exists an execution
between the two states. The reachable states ofM is the set of states
that are reachable from the initial state. It is denoted reach(M) and
defined as the union of the sets of states that are reachable from the
initial state, for any traces ofM.
Definition 3.3 (Reachable states). Given an LTS M = 〈S,L, s0,→〉,
the set of states that are reachable from a given state s ∈ S with a trace
σ ∈ L∗ is denoted and defined as safterσ = {s′ ∈ S | s σ==⇒ s′}. The
reachable states ofM is denoted and defined as:

reach(M) =
⋃

σ∈Tr(M)
s0 afterσ

An execution of the LTS example of Figure 3.1 is A b−−→ D τ−−→ B. The
trace corresponding to this execution is σ = 〈b〉. The set of states that can
be reached after executing this trace from the initial state is Aafter b =
{B,D}. Those two states correspond to the weak transitions A b==⇒ D
and A b==⇒ B. The set of traces of M is Tr(M) = {ε, a, b, ac, bb, bc}.
The reachable states are reach(M) = {A,B,C,D} and there is one
unreachable state which is E.

The set of traces may not be finite, which is for example the case
when there are loops with visible actions, or cycles in the LTS. Figure 3.2
shows an example of an LTS with one visible loop and one cycle between
three states. There is an infinity of traces among which all the sequences
of a least one “a” label: a, aa, aaa, aaaa, . . . but also any sequence made
of repetitions of the “abc” sequence: abc, abcabc, abcabcabc, The set
of traces of the example is formed of the trace satisfying the (aa∗bc)∗
regular expression.

3.1.2 Enabled and Possible Actions

Since LTSs are used to model reactive systems, labels on the transitions
are usually referred to as actions. A useful information for an operator
using a reactive system is to know what actions he can execute given the
current state of the system.

Given an LTS M, the set Γ(s) of enabled actions of a state s is
the set of actions that are directly executable from s, that is, actions
corresponding to (strong) visible transitions outgoing from s.

3.1. BACKGROUND AND BASIC NOTATION 61

A

B

C

a

c

a

b

Figure 3.2. Example of an LTS with a visible loop on state B and with a cycle between
states A, B and C. The set of traces of this LTS is infinite.

Definition 3.4 (Enabled action). Given an LTS M = 〈S,L, s0,→〉,
the set of enabled actions of a state s ∈ S is denoted and defined as
Γ(s) = {α ∈ L | s α−−→}.

Due to τ -transitions, there may be situations where some actions
are not directly executable, but will become available only after some
internal transitions. The execution of those internal actions may take
some time that the operator has to wait for. Such an execution has an
associated empty trace.

The set A(s) of possible actions of a state s of an LTS contains the
actions that are directly executable from any state that is reachable
from s with the empty trace, including s itself. A direct consequence of
this definition is that the set of enabled actions is a subset of the set of
possible actions Γ(s) ⊆ A(s).

Definition 3.5 (Possible action). Given an LTS M = 〈S,L, s0,→〉,
the set of possible actions of a state s ∈ S is denoted and defined as
A(s) = {α ∈ L | s α==⇒}.

Looking back to the LTS example of Figure 3.1 on page 58, the initial
state A has two enabled actions Γ(A) = {a, b}, but three possible actions
A(A) = {a, b, c}.

3.1.3 Exploration

LTSs are typically used to represent all the possible behaviours of a
given system. In order to enumerate those behaviours, it is useful to
explore LTSs. Algorithm 1 presents a generic exploration algorithm
for LTSs. There are many ways to explore an LTS, that is, to visit

62 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

each of its reachable states exactly once. The removeElem and addElem
functions that are used in the generic algorithm, as well as the kind of
structure that is used for L, define the exploration strategy. The two
most common exploration algorithms are breadth-first search (BFS) and
depth-first search (DFS) [CLRS09]. The BFS exploration is obtained
by using a (FIFO) queue for L and the DFS exploration uses a (LIFO)
stack.

Algorithm 1: Generic LTS exploration algorithm.
Input: M = 〈S,L, s0,→〉, an LTS
Output: –
Side Effect: The function doSomething has been applied to all the reachable

states ofM, exactly once.
foreach s ∈ S do

mark s as not visited

L← [s0]
while not isEmpty (L) do

s← removeElem (L)
doSomething (s)
mark s as visited
foreach (s, α, s′) ∈→ do

if not s′ is visited then
addElem (L, s′)

In addition to visiting exactly once each reachable state of the LTS,
a function doSomething is applied to each visited state. That function
can for example be used to check a property on all the states of a LTS.
The algorithm can also be modified to return a value, for example a
boolean indicating whether the property is satisfied for all the states of
the LTS or not. If the property is not satisfied for a given state s, an
execution starting at the initial state and reaching the state s can be
provided. That execution is called an error trace or a counterexample.
Such a verification of a property, with a counterexample if the property
is not satisfied, is precisely the essence of model-checking [CGP99] as
already presented in more detail in Section 2.3.1.

Both BFS and DFS exploration algorithms have the same time
complexity which is O(n + m) where n is the number of reachable
states and m the number of transitions between those states. The space

3.1. BACKGROUND AND BASIC NOTATION 63

complexity is also the same and is O(n + m). One advantage of BFS
is that it gives a minimal-length counterexample when used for model-
checking and one advantage of DFS is that it requires less additional
memory in practice than BFS does, since only the states of the current
explored path are memorised in L during the exploration.

3.1.4 Internal Actions

The internal actions correspond to actions that are invisible and uncon-
trollable from an operator’s point of view. Those actions occur inside
the system without any trigger from the operator who cannot see them
anyway. When LTSs are used to model systems, internal actions indeed
correspond to concrete actions inside the system, but since they are not
distinguishable by the operator, they are all represented with the same
label τ .

Internal actions in an LTS can produce some particular behaviours of
the system, when seen by the operator. Since internal actions correspond
to concrete actions taking place in the system, the system may appear
as unresponsive to the user for some time. Also, the behaviour of the
system may completely change without any visible feedback to the user.

Such issues caused by the presence of internal actions is a major
concern for the analysis of human-machine interactions and occupies a
non-negligible part of this thesis. Those issues are introduced further in
this chapter and are the focus of the next chapter.

3.1.5 Determinism

For a given trace of an LTS, it may be the case that several different
executions exist in the LTS for the trace. Such a situation can occur if
multiple transitions with the same visible action are going from the same
state to different states. The situation can also occur when there are
internal actions in the LTS. Figure 3.3 shows two LTS examples where
the trace 〈a〉 corresponds to multiple executions.

In general, an LTS is said to be deterministic if and only if for any
state of the LTS, and for every action of the alphabet, there is at most
one state that can be weakly reached. In other words, executing any
trace of the LTS from the initial state always lead to the same state, no

64 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

A

B

C

a

a

(a)

A

B C

D

τ

a

a

(b)

Figure 3.3. Examples of LTS for which there exists multiple execution for the trace
σ = a: (a) the two executions A a−−→ B and A a−−→ C and (b) the two executions
A τ−−→ B a−−→ C and A a−−→ B.

matter what is the underlying execution. In particular, this definition
implies that a deterministic LTS does not contain any τ -transition, except
possibly τ -loops. Deterministic LTSs are also characterised by the fact
that their states have the same set of enabled and possible actions, that
is, Γ(s) = A(s).

Definition 3.6 (Determinism). An LTSM = 〈S,L, s0,→〉 is determin-
istic if and only if ∀s ∈ S : ∀α ∈ L : |safterα| ≤ 1.

The LTS example from Figure 3.1 on page 58 is definitely not deter-
ministic as it contains a τ -transition which is not a loop. More precisely,
the set of reachable states from the initial state A does contain more
than one element for the action b, since Aafter b = {B,D}.

Divergence

Divergence is another side effect that is introduced with τ -transitions,
when infinite executions are considered. A divergent execution is an
execution that consists of τ -transitions only. An LTS is divergent if there
exists one execution that contains a divergent execution.

Divergence can be an issue for reactive systems. A divergent execu-
tion can represent the fact that the system is busy executing internal
invisible actions which may make it non-responsive to external solicita-
tion. A divergent LTS represents a reactive system which may appear as
deadlocked from the external point of view of the operator. Divergences
are not treated in a special way in this work.

3.1. BACKGROUND AND BASIC NOTATION 65

Definition 3.7 (Divergence). Given an LTSM = 〈S,L, s0,→〉, a state
s ∈ S is said to be divergent if and only if s τω−−→. The LTSM is said
to be divergent is there exists a divergent state s ∈ reach(M).

The LTS example of Figure 3.1 on page 58 is definitely divergent
since there are some divergent executions in it, for example D τ−−→ B τ−−→
B τ−−→ B τ−−→

Determinisation

An non-deterministic LTS can always be determinised, so as to preserve
the traces, with the subset construction that goes back to Rabin and
Scott [RS59b]. That construction builds a new LTS that keeps the
same traces, but with the non-determinism removed. The idea of the
algorithm is to solve the non-determinism by grouping states that can
be reached with the same trace, those groups forming the state of the
determinised LTS. There is a transition S α−−→ S′ between two states of
the determinised LTS if and only if there exists a transition with the α
action between a state belonging to the set S to a state from the set S′.
Formally, it means that S′ = {s′ | ∃s ∈ S : s α−−→ s′}.

Algorithm 2 shows the Rabin-Scott subset construction algorithm
adapted to LTS [Sch04]. In the worst case, the algorithm will run in
exponential time, that is, with a O(2n) time complexity where n is the
number of states of the LTS. In the worst case, the set of states of the
determinised LTS is indeed the power set of the set of states of the
LTS. The determinised LTS is denoted det(M) and is also an LTS. The
proposed algorithm also gets rid of any τ -transitions, even τ -loops which
may have been kept.

Figure 3.4 shows the determinisation by the subset construction
algorithm of the LTS example of Figure 3.1 from page 58. The non-
determinism that was originally present due to the τ -transition between
states D and B is solved with the transition {A} b−−→ {B,D} in the
determinised LTS.

As previously stated, one interesting property is that determinisation
preserves the traces, that is, Tr(M) = Tr(det(M)). Moreover Algo-
rithm 2 builds deterministic LTSs free of any τ -transitions (and thus also
not divergent).

66 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

Algorithm 2: LTS determinisation.
Input: M = 〈S,L, s0,→〉, an LTS
Output: det(M) = 〈SD,L, s0D ,→D〉, the determinisation ofM
s0D ← s0 after ε
L← {s0D}
while not isEmpty (L) do

sD ← removeElem (L)
SD ← SD ∪ {sD}
foreach α ∈ A(sD) do

s′D ←
⋃
s∈sD

safterα
→D ← {(sD, α, s′D)}∪ →D

if not s′D ∈ SD then
addElem (L, s′D)

return 〈SD,L, s0D ,→D〉

{A}

{B}

{C}

{B,D}

a

b

c

b, c

Figure 3.4. Determinisation of the LTS example of Figure 3.1 that has been computed
by the subset construction algorithm.

Operational Determinism

The notion of determinism defined just above is also referred to as
structural determinism, that is, any given sequence of visible actions
belonging to the set of traces leads to a unique state, starting from the
initial state. Such a definition is quite strong and could be too restrictive.
The notion of operational determinism [HV06] is more flexible. It allows
some non-determinism provided that different executions with the same
trace lead to states with equivalent behaviours. Intuitively, if several
states can be reached with the same trace, they have to have the same
sets of possible actions.

Definition 3.8 (Operational Determinism). An LTSM = 〈S,L, s0,→〉
is operationally deterministic if and only if ∀s1, s2 ∈ S : s1

σ==⇒ s′1 and
s2

σ==⇒ s′2 : A(s′1) = A(s′2) and s′1
τω−−→ implies s′2

τω−−→.

3.1. BACKGROUND AND BASIC NOTATION 67

Figure 3.5 illustrates the notion of operational determinism. None
of the three LTSs are (structurally) deterministic. Only the first one of
Figure 3.5(a) is operationally deterministic. The LTS of Figure 3.5(b)
is not operationally deterministic since the states B and C reached with
the same trace have different sets of possible actions. Finally, the third
example of Figure 3.5(c) illustrates a case where two states reached with
the same traces do not have the same behaviour according to divergence.

A

B

C

a

a

(a)

A

B

C

a

a

b

(b) A(B) 6= A(C).

A

B

C

a

a

τ

(c) There are divergent
executions starting from
B and not from C.

Figure 3.5. Examples of LTS to illustrate operational determinism. The three
examples are characterised by the fact that s0 after a = {B,C}. The first one is
operationally deterministic and the last two ones are not.

As previously stated, determinism issues play a crucial role for the
analysis of human-machine interactions. All those issues are discussed
thoroughly in the two next chapters (which present the main contributions
of this thesis).

3.1.6 Synchronous Parallel Composition

Two LTSs can be composed together with synchronisation on the actions
that are common between their respective alphabets. The synchronous
parallel composition between two LTSs M and M′ is an LTS whose
states are pairs of states from both LTSs. The composition represents
the parallel execution of both LTSs. For an action α that is common
to both alphabets, the composition can proceed if and only if there
is a transition with α in both LTSs. For the other actions and for τ -
transitions, each LTS can move independently. Synchronous parallel
composition represents parallelism with interleaving.

68 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

Definition 3.9 (LTS synchronous parallel composition). Given two LTS
M = 〈S,L, s0,→〉 and M′ = 〈S′,L′, s′0,→′〉, the synchronous parallel
composition between both LTSs, denoted M ‖ M′, is an LTS C =
〈SC ,LC , s0C ,→C〉 where SC ⊆ (S×S′), LC = L∪L′, s0C = (s0, s

′
0) and

→C ⊆ SC × (LC ∪ {τ})× SC is defined as the smallest set such that:

• if α ∈ L ∩ L′ : (s, t) α−−→ (s′, t′) if s α−−→ s′ and t α−−→ t′;
• otherwise, α ∈ (LC ∪ {τ}) \ (L ∩ L′) and:

– (s, t) α−−→ (s′, t) if s α−−→ s′;
– and (s, t) α−−→ (s, t′) if t α−−→ t′.

Figure 3.6 shows an example of the parallel synchronous composition
between two LTSs. The common alphabet between the two LTSs is {b, c}
which means that those actions must be enabled in the two LTSs for the
composition to proceed.

3.2 Human-Machine Interaction LTS

This work focuses on the dynamic aspects of interaction, at the low level
of actions executed on a system by an operator. Those actions correspond
to events that can be classified according to different criteria. Actions
can be visible, meaning that the operator is able to see them, or invisible.
Visible actions can further be classified as controllable if they are initiated
by the operator, or uncontrollable if they are triggered by the system.
This section defines an enriched LTS to take those considerations about
actions into account.

Figure 3.7 shows the three possibilities for the actions, according
to the visibility and controllability criteria. The set of actions is thus
partitioned into three sets:

• The commands correspond to visible and controllable actions that
the operator performs on the system;
• The observations represent visible but uncontrollable actions that
cannot be controlled without any initiative from the operator;
• and finally the internal actions occur inside the system and are
completely invisible to the operator.

3.2. HUMAN-MACHINE INTERACTION LTS 69

A

B C

D E

a

b

c

τ

τ
b a

a

(a) An LTS M, with an alphabet
L = {a, b, c}.

0

1

2

b
c

d

τ

b

(b) An LTS M′, with an
alphabet L = {b, c, d}.

(A,0)

(B,0)

(D,0)

(A,2)

(C,1)

(C,0)

(D,2)

(B,2)

(C,2)d

a

b
τ

τ
c

d

b

d
b

a

τ

τ

τ

d

b

(c) The synchronous parallel compositionM ‖M′.

Figure 3.6. Example of the synchronous parallel composition between two LTSs.

The distinction between commands and observations, which are also
respectively referred to as inputs and outputs with respect to the system,
plays a crucial role when studying human-machine interaction [Jav02,
HD07] as argued in Section 2.4.6. In order to take that distinction into
account, human-machine interaction labelled transition systems (HMI-
LTS) are an enriched variant of usual LTSs where the set of labels is
partitioned into two sets Lc and Lo respectively representing commands
and observations. Internal actions are represented with τ . Visible actions
are the labels of the underlying LTS.

70 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

All actions

Internal actions

Commands

Observations

visibility

controllability

yes

no

yes

no

Figure 3.7. Classification of actions for human-machine interaction LTS into three
sets according to the visibility and the controllability criteria.

Definition 3.10 (Human-Machine Interaction Labelled Transition Sys-
tem). A human-machine interaction labelled transition system (HMI-
LTS) is a tuple 〈S,Lc,Lo, s0,→〉 where 〈S,Lc ∪ Lo, s0,→〉 is a labelled
transition system, Lc is a finite set of command labels and Lo is a finite
set of observation labels. The two sets Lc and Lo are disjoint and the set
of visible actions is Lc ∪ Lo = L.

Since an HMI-LTS is just an extension of an LTS, all the definitions
from the previous section still apply for HMI-LTS. Figure 3.8 shows the
graphical representation of an HMI-LTS example. Transitions labelled
with commands are represented with plain lines and transitions labelled
with observations with dashed lines. As for LTSs, internal transitions
are represented with dotted lines.

A

B C

D E

a

b

a

τ
b

τ

c

Figure 3.8. Graphical representation of an HMI-LTS example with five states and
seven transitions. The initial state is the state A. The alphabet is Lco = {a, b, c} and
is partitioned into commands a and b (plain lines) and observation c (dashed line).

The HMI-LTS example of Figure 3.8 is formally defined as the tuple
〈S,Lc,Lo, s0,→〉 where:

• S = {A,B,C,D,E};

3.2. HUMAN-MACHINE INTERACTION LTS 71

• Lc = {a, b};
• Lo = {c};
• s0 = A;
• and → = {(A, a,B), (A, b,D), (B, a,C), (D, τ,B),

(D, b, C), (D, τ,E), (E, c, C)}.

In addition to the sets of enabled and possible actions defined in the
previous section (Definitions 3.4 and 3.5 on page 61), it is sometimes
interesting to consider the sets of enabled or possible commands or
observations. The definitions of those sets are similar to those for
LTS. They are denoted Γc and Ac for commands and Γo and Ao for
observations. On the HMI-LTS example of Figure 3.8, Γc(D) = {b},
Γo(D) = ∅, Ac(D) = {a, b} and Ao(D) = {c}.

Definition 3.11 (Enabled and possible sets of commands and observa-
tions). Given an HMI-LTS M = 〈S,Lc,Lo, s0,→〉, the set of enabled
commands (resp. observations) of a state s ∈ S is Γc(s) = Γ(s)∩Lc (resp.
Γo(s) = Γ(s)∩Lo) and the set of possible commands (resp. observations)
of a state s ∈ S is Ac(s) = A(s) ∩ Lc (resp. Ao(s) = A(s) ∩ Lo).

Figure 3.9 shows an HMI-LTS example used to model a simple vending
machine that repeatedly serves customers. To use the machine whose
model is on the left, the customer has first to introduce a coin into the
machine. Then, the machine will check whether there is coffee remaining,
in which case it serves a cup to the customer. After a cleanup, the
machine is ready for the next customer. It the machine has no more
coffee, it does not accept coins any more and is closed. The HMI-LTS
on the right represents the mental model of one customer who believes
that the machine is only able to serve one coffee.

3.2.1 Interaction Model

The focus of this work is the analysis of the interactions between an
operator and a machine. In order to perform such an analysis, all the
possible interactions have to be considered. The synchronous parallel
composition presented in Definition 3.9 on page 67 exactly contains all
the possible interactions between two LTSs.

72 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

A

B

C D

E

coin

τ (empty) τ (nonempty)

coffee

τ (cleanup)

(a) System model.

0

1

2

coin

coffee

(b) Mental model.

Figure 3.9. Example of a vending machine system modelled with an HMI-LTS. The
system is on the left and a mental model representing a user that thinks that the
machine only delivers one coffee is on the right. The coin command corresponds to the
customer inserting money in the machine and the coffee observation corresponds to the
machine delivering coffee. The τ ’s internal actions empty and nonempty correspond
to the check of the stock level of coffee and the τ internal action cleanup corresponds
to the machine reseting to the initial state after a clean-up.

When considering HMI analyses, both the system and the operator
are modelled with HMI-LTSs. The letters S and H are used from now
on to represent respectively the system and the human. In the frame
of the work presented in this thesis, some hypotheses have been made
about the system and mental models. First of all, the system and the
mental models are sharing exactly the same alphabet. Secondly, whereas
the system model may contain internal actions, the mental model does
not contain any internal actions and is also supposed to be deterministic.

Generally speaking, a mental model may be non-deterministic. It
would mean that whenever the operator is performing an action, several
possible resulting states may be reached as a response to the action. In
this work, it is a choice to only consider deterministic mental models.
That is of course a modelling choice of how humans are thinking about
systems whenever they use them, meaning that they always know for
sure the effect of any performed action.

At any time during the interaction, the system is in a state sS of
the system model and the operator is in a state sH of his mental model.

3.2. HUMAN-MACHINE INTERACTION LTS 73

From a composite state (sS , sH), either a command can be performed by
the user if it is possible on the system or an observation can be made
by the user if he expects it according to his mental model. Internal
actions may also occur in the system at any time. Figure 3.10 shows the
interaction model for the vending machine example. The synchronous
parallel composition S ‖ H is referred to as the interaction model.

(A,0)

(B,1)

(C,1) (D,1)

(E,2) (A,2)

coin

τ τ

coffee

τ

Figure 3.10. Interaction model for the vending machine example, between the system
from Figure 3.9(a) and the mental model of Figure 3.9(b).

The set of traces of the synchronous parallel composition between two
LTSs contains all the traces that are common to both composed LTSs.
In terms of HMI, it means that the synchronous parallel composition
operator computes the behaviour that is common to two LTSs.

Property 3.12. Given an HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉 and
a deterministic non-divergent HMI-LTS H = 〈SH ,Lc,Lo, s0H ,→H〉,
Tr(S ‖ H) = Tr(H) ∩Tr(S).

Proof. Let σ = 〈α1 · · ·αn〉 ∈ Tr(S ‖ H), a trace of the synchronous
parallel composition. By definition of trace, it means the existence of an
execution (s0S , s0H) α1==⇒ (s1S , s1H) · · · (sn−1S , sn−1H) αn===⇒ (snS , snH) in
S ‖ H.

Let us consider the weak transition (sS , sH) α==⇒ (s′S , s′H) that ex-
ists if and only if there exists a sequence of transitions (sS , sH) τ∗−−→
(tS , sH) α−−→ (t′S , s′H) τ∗−−→ (s′S , s′H), by definition of weak transition.

74 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

Moreover, by definition of the synchronous parallel composition, such a
sequence exists if and only if the sequence sS

τ∗−−→ tS
α−−→ t′S

τ∗−−→ s′S ex-
ists in the system model, that is, sS

α==⇒ s′S , and the sequence sH
α−−→ s′H

exists in the mental model.
To conclude, the trace σ = 〈α1 · · ·αn〉 is in Tr(S ‖I H) if and only if

(siS , siH) αi+1====⇒ (si+1S , si+1H) for all i ∈ 0, · · · , n−1, which is satisfied if
and only if siS

αi+1====⇒ si+1S and siH
αi+1−−−−→ si+1H for all i ∈ 0, . . . , n− 1,

that is, σ ∈ Tr(S) and σ ∈ Tr(H), by definition of traces of an HMI-
LTS.

3.3 Enriched Models

Using an HMI-LTS to represent a system model may sometimes be
not adequate with respect to how the designers think about a system.
Just having blackbox states with all the information encoded as actions
on transitions may not be convenient enough for the designers. The
modelling approach used must be rich enough to be able to perform the
desired analysis but it should also be kept as simple as possible to ease
the analysis methods. HMI-LTS may be too simple and this section
introduces an enriched version of HMI-LTS, adding information on the
states in the style of Kripke structures [CGP99]. As it was observed in
the related work presented in the previous chapter, most of the time,
system designers think about systems as composed of a set of variables,
each state of the system corresponding to an assignment of values to all
those variables. Accordingly, the knowledge of the human must also be
modelled so as to take into account the information that is added on
states.

To illustrate the modelling approach used in this work, Figure 3.11
shows an example of a timer such as used when cooking. For that
example, the counter of the timer takes its value over a range from 0
to N (here fixed to N = 2) and is initially set to 0. The user can press
on a button (inc) to increase the value while setting up the machine.
The counter cycles between 0 and 2. Whenever the counter is different
from zero, the user can set it back to its initial value (reset) or can start
the countdown (start). When the countdown is running, the user can
observe the value of the counter which is decreasing through the screen.

3.3. ENRICHED MODELS 75

When the value of the counter reaches zero, the machine goes back to the
initial state while emitting a sound (ring). The user can cancel (cancel)
the countdown while it is running and has not reached zero.

inc

reset

start

cancel

Figure 3.11. An example of a countdown machine that is entered an integer value
between 0 and 2 (inclusive) and that will countdown until it reaches zero.

3.3.1 Enriched System Model

For the countdown example, it is clear that there is one variable which is
a counter c that can take three different values : 0, 1 and 2. Figure 3.12
shows a graphical representation of a system model for the countdown
machine. It is essentially an HMI-LTS whose states have been labelled
as c0, c1 or c2 depending on the value of the counter. The model has
six states: the states A, B and C correspond to the configuration of
the countdown machine and the states D, E and F correspond to the
machine which is running.

A
c0

B
c1

C
c2

D
c2

E
c1

F
c0

inc

reset

inc

inc, reset

start τ τ

start

ring

cancel

Figure 3.12. An example of a system model representing a countdown machine.

In order to represent observable information on states, HMI state-
valued system model (HVS) are enriched HMI-LTSs with the addition of

76 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

a set of state-values and with a mapping function associating each state
to one state-value, just like the valuation used for Kripke structures.

Definition 3.13 (HMI state-Valued System model). A human-machine
interaction state-valued system model (HVS) is a tuple 〈S,Lc,Lo, s0,→,
Lv,O〉 where 〈S,Lc,Lo, s0,→〉 is an HMI-LTS, Lv is a finite set of state-
values and O : S 7→ Lv is a state-value mapping function. The three sets
Lc, Lo and Lv are disjoint.

The information that is observable on the states of the system is
modelled with a set of state-values Lv and a function O which gives for
each state the observation that the operator can make when the system is
in that state. This approach is more general than just setting information
on states as a set of variables with their values, as detailed at the end of
this section. When interacting with the system, the operator can, at any
time, look at the state-value corresponding to the current state of the
system.

The countdown example HVS shown on Figure 3.12 is formally defined
as the tuple 〈S,Lc,Lo, s0,→,Lv,O〉 with:

• S = {A,B,C,D,E, F}
• Lc = {cancel, inc, reset, start}
• Lo = {ring}
• s0 = A

• →= {(A, inc,B), (B, inc, C), (B, reset, A), (B, start, E),
(C, inc,A), (C, reset, A), (C, start,D), (D, τ,E),

(E, cancel, A), (E, τ, F), (F, ring,A)}
• Lv = {c0, c1, c2}

• O(s) =


c0 , if s ∈ {A,F}
c1 , if s ∈ {B,E}
c2 , if s ∈ {C,D}

HMI-LTS is in fact a particular case of HVS where the set of state-
values has only one element that labels all the states of the model. The
consequence is that all the definitions that applied to LTS and HMI-LTS
can also be applied to the underlying LTS and HMI-LTS of the HVS.

3.3. ENRICHED MODELS 77

State-values

The enriched model has now two kinds of observation that can be done
by the operator. The operator can both observe state-values on the states
and make observations on visible transitions. A legitimate question that
can be asked is whether the two kinds of observations are necessary and
why they can be in fact complementary.

The difference between the two kinds of observation is in the in-
terpretation according to a human-machine interaction point of view.
The observations that can be made on the state may be ignored by the
operator while interacting with the system. In contrary, observations
occurring on a transition are output by the system and seen by the
operator. If the operators do not take into account those observations in
their models, the interaction will not proceed according to the chosen
definition. Of course, such a modelling choice does not consider the
case where the operator may get distracted and miss the observation.
This latter point is discussed in Chapter 6. Moreover, observations on
a transition also bring another message to the operator, they indicate
clearly a change of state in the system. This choice of having two kinds
of observation has consequences for the definition of good interaction and
for the analyses that are performed, as explained in the next chapter.

State-variables

As introduced above, a typical way to represent information about the
state of a system is by means of state-variables. A system is characterized
by a set of variables and, in any state of the system, it is possible to
observe the values of some subset of the state-variables, exactly those
which are visible. For example, ADEPT models [Fea10] and models
based on interactors [CH11] are using variables to model the state-values.

This can be modelled within the HVS structure by considering that
the set of state-values is composed of all the valuations for the visi-
ble state-variables. If the states of the system are characterised by n
state-variables x1, · · · , xn whose values are respectively ranging over
the domain D1, · · · , Dn, if the visible state-variables are x1, · · · , xk
(k ≤ n), and if S = D1 × · · · × Dn, then the set of state-values is
defined as Lv = D1 × · · · ×Dk and the observation function is defined as
O(〈v1, · · · , vn〉) = 〈v1, · · · , vk〉.

78 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

To illustrate that, Figure 3.13 shows an alternative model for the
countdown example where state-values are modelled with state-variables.
The system is characterised by three state-variables: the integer state-
variable c represents the value of the countdown machine (c ∈ {0, 1, 2}),
the boolean state-variable a is used to represent whether the alarm is
ringing or not (a ∈ {T, F}), and the boolean state-variable r is used to
represent whether the countdown machine is running or not (r ∈ {T, F}).
Only the two first state-variables are visible and thus, the set of state-
values is Lv = {〈0, F 〉, 〈1, F 〉, 〈2, F 〉, 〈0, T 〉, 〈1, T 〉, 〈2, T 〉}.

A
c = 0
a = F
r = F

B
c = 1
a = F
r = F

C
c = 2
a = F
r = F

D
c = 2
a = F
r = T

E
c = 1
a = F
r = T

F
c = 0
a = T
r = T

inc

reset

inc

inc, reset

start τ τ

start
τ

cancel

Figure 3.13. An alternative (enriched) system model for the countdown machine
example where the ring observation has been replaced by the r state-variable.

The modelling choice has consequences on the behaviour that is
captured, according to a human-machine interaction point of view. In the
original model of Figure 3.12, if the operator misses the ring observation
for any reason, it is not possible for him to know whether the system
is still in the F state or if it has already transitioned into the A state.
With the alternative model, the operator can use the state-value to
distinguish among the two states F and A. State-values is in a way a
more stable information than observation on transitions, since they are
always available as long as the system is not changing state. The user
cannot miss the state-values, except if he has to track their change in
which case τ -transitions may make him loose some state-values. Given a
weak transition s a==⇒ s′, all the states just before and after the strong
transition labelled with a are considered as unstable with respect to state-
values since inattention from the operator can make the tracking of the
state-values changes impossible. Figure 3.14 illustrates those unstable
states. Greyed states and all the states following them before white
states are unstable states, assuming that the s′ state has no outgoing
τ -transition.

3.3. ENRICHED MODELS 79

s t t’ s’
τ∗ a τ∗

Figure 3.14. Unstable states with respect to state-values are introduced with τ -
transitions which makes it impossible for the operator to track state-values changes.

3.3.2 Enriched Mental Model

The mental model describing the behaviour of the system from the point
of view of the operator may also take into account state information. The
operator can interact with the system in two ways: he can perform com-
mands or perceive information, that is, observe the system. Observations
that can be done are either event-based (observations on transitions) or
state-based (state-values on states).

State-values are taken into account in the human model by action
guards, that is, conditions on the state-value that must be verified in
the current state of the system. In order to represent mental models,
HMI state-valued mental model (HVM) are enriched HMI-LTSs with the
addition of state-values on the transitions. Moreover, as already stated,
mental models are considered deterministic and free of τ -transitions in
the frame of this work.

Definition 3.14 (HMI state-Valued Mental model). A human-machine
interaction state-valued mental model (HVM) is a tuple 〈S,Lc,Lo, s0,→,
Lv〉 where Lv is a finite set of state-values,→⊆ S×Lv×L×S and 〈S,Lv×
Lc,Lv×Lo, s0,→〉 is a deterministic HMI-LTS without τ -transition. The
three sets Lc, Lo and Lv are disjoint.

Figure 3.15 shows a graphical representation of an HVM for the
countdown machine. The model has two states respectively corresponding
to the configuration of the countdown machine and to the machine which
is running. State-values are indicated between brackets, that is, the
notation s

[v]α−−−→ t denotes (s, v, α, t) ∈→. That HVM is formally
defined as the tuple 〈S,Lc,Lo, s0,→,Lv〉 with:

• S = {S0, S1}
• Lc = {cancel, inc, reset, start}

80 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

• Lo = {ring}
• s0 = S0

• →= {(S0, c0, inc, S0), (S0, c1, inc, S0), (S0, c2, inc, S0),
(S0, c1, start, S1), (S0, c2, start, S1), (S0, c1, reset, S0),

(S0, c2, reset, S0), (S1, c1, cancel, S0), (S1, c0, ring, S0),
(S1, c1, ring, S0), (S1, c2, ring, S0)}

• Lv = {c0, c1, c2}

S0 S1
[c1] start

[c2] start

[c0] ring, [c1] ring, [c2] ring

[c1] cancel

[c0] inc, [c1] inc, [c2] inc

[c1] reset, [c2] reset

Figure 3.15. An example of an (enriched) mental model for the countdown machine.

As it is the case for HVS, HMI-LTS is also a particular case of
HVM, where there is only one possible state-value. In such a situation,
the (unique) state-value is satisfied in all system states. Again, all the
properties that apply to LTS and HMI-LTS are also applicable to the
underlying LTS and HMI-LTS of the HVM.

Action Guards

For HVM, only single state-values are used as guards on transitions.
It is possible to define conditions on transitions with the more general
notion of action guards. During an interaction, the visible action on the
transition will only be taken into account by the operator if the state-value
of the current state of the system satisfies the action guard. A transition
s

[g]α−−−→ s′ is a shortcut for the set of transitions {s [v]α−−−→ s′ | v |= g}.
If the operator does not need to care about the state-value of the

current state, any transition can be chosen so that the action guard is

3.3. ENRICHED MODELS 81

simply defined as true. Figure 3.16 shows the correspondence for the
transition shortcut, in that case.

s s′
[true] α

≡ s s′

[v0] α

. . .

[vn] α

Figure 3.16. Correspondence for the transition shortcut used in HVM when the user
action is not conditionned by an action guard.

Transitions of enriched mental models are considered to take place
as an single atomic step. The operator checks that the action guard is
satisfied and then immediately performs the action at the same time.
Action guards are acting like preconditions on the execution of transitions.

For HVM, enabled and possible commands and observations sets are
the same since HVM are free of τ -transitions. It is also possible to focus
on the set of actions that are enabled and possible given a state-value,
or by extension, an action guard. That information makes sense to
the operator, as it is, for example, possible to read in a user manual
an instruction like: “If the LED is green, you can activate the pouring
function.”.

Definition 3.15 (Enabled sets of commands and observations condi-
tioned by a state-value). Given an HVM H = 〈S,Lc,Lo, s0,→,Lv〉, the
set of enabled commands (resp. observations) conditioned by the state-
value v ∈ Lv of a state s ∈ S is Γcv(s) = {α ∈ Lc | s [v]α−−−→ s′} (resp.
Γov(s) = {α ∈ Lo | s [v]α−−−→ s′}).

The definition can be easily extended to action guards by defining
Γcg(s) =

⋃
v|=g Γcv(s) (and similarly for the observations).

3.3.3 Modelling the Interaction

The interaction between an operator and a system modelled with the
enriched HMI-LTSs can be defined in the same way as it is defined

82 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

with HMI-LTSs. From a composite state denoted (sS , sH), there are
different possible interactions. Either the operator can perform a possible
command or the operator can see a possible observation. Of course, those
two visible actions can only happen if the state-value of the current state
of the system agrees with the action guard that is present on the mental
model. As it was the case for HMI-LTS, internal actions may also occur
inside the system. The mental model is still considered deterministic and
free of τ -transitions, that is, non-divergent, and the two models share
the same alphabet of actions and of states-observations.

Definition 3.16 (Interaction between a system and a mental model).
Given an HVS S = 〈SS ,Lc,Lo, s0S ,→S ,Lv,O〉 and an HVM H =
〈SH ,Lc,Lo, s0H ,→H ,Lv〉, the interaction between S and H, denoted
S ‖I H , is an LTS I = 〈SI ,Lc ∪ Lo, s0I ,→I〉 where SI ⊆ (SS × SH),
s0I = (s0S , s0H) and →I⊆ SI × (Lc ∪ Lo ∪ {τ})× SI is defined so that:

• (sS1 , sH1) α−−→ (sS2 , sH2) if and only if sS1
α−−→ sS2 and sH1

[v]α−−−→
sH2 with v = O(sS1)
• and (sS1 , sH1) τ−−→ (sS2 , sH1) if and only if sS1

τ−−→ sS2.

Figure 3.17 shows the interaction model for the countdown machine
example. The states from that model are composite states indicating the
state of the system and the state for the user. In this case, the interaction
model has exactly the same number of states and the same behaviour as
the system model. That comes from the fact that the mental model has
a nice property which allows an operator following that mental model
to be able to control properly the system. That is developed in the
next chapter. Also note that, even if it is not directly included in the
interaction model, information about the state-values is indeed available
thanks to the O function that can be applied to the state of the system
model which is part of the composite states of the interaction model.
That information can be useful, for example to know what state-values
were conditioning the transitions.

3.4 Alternate Models for HMI

Choosing a formalism to model HMI can be done according to several
criteria. One concern is how the notation allows the system designers and

3.4. ALTERNATE MODELS FOR HMI 83

(A,S0) (B,S0) (C,S0) (D,S1) (E,S1) (F,S1)

inc

reset

inc

inc, reset

start τ τ

start

ring

cancel

Figure 3.17. The interaction model for the countdown machine example.

analysts to express their design model. Another element that can vary
among the formalisms is how they can be used to perform formal analyses
on the models, in order to get interesting analyses within reasonable
computation time.

Moreover, it is important to distinguish the formal model from the
design language. The formal model is the mathematical formalism used
in order to reason about the models and to propose algorithms capable
to analyse them. Contrarily, the design language is the one that will be
used by the system designers. Once designed, systems described within
a design language are translated into the formal models in order to get
analysed. The results of the analyses are then transmitted back to the
system designer, after another translation in the other way.

This section is not concerned with design languages but focuses
on formal models. It does not provide a detailed review of all the
existing formalisms, but rather presents different kinds of formalisms
and compares them to the LTS-based approach chosen in this work. A
survey of various existing formal notations to model human-machine
interactions is available in [Jac83]. This section focuses on the following
formalisms: labelled transition systems with input and output and input-
output transition systems [Tre08] which are the closest formalisms to the
one chosen in this thesis, interface automata [dAH11], statecharts [HP85,
Har87] or tabular notations [HKB08] which provide a high-level visual
notation, modal specifications [Lar90] and finally mode automata [HJS01]
that highlight the notion of mode.

Original notations have been preserved most of the time, except when
similar notations are defined in this thesis, in which case the notations

84 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

of this thesis are used in order to ease comprehension. The focus in this
section is only on the modelling aspects, while the analysis capabilities
are discussed in the next chapter.

3.4.1 LTS with Inputs and Outputs

The importance of inputs and outputs has been highlighted in [Tre08]. In
the setting of the work by Tretmans on model-based testing, systems are
interacting with the environment. The communication between systems
and their environment is made through inputs and outputs. Outputs are
actions initiated by the system while inputs are triggered by the environ-
ment. That distinction corresponds exactly to the command/observation
distinction that is made in the work of this thesis.

Tretmans defines two kinds of models: labelled transition system with
input and output (LTS/IO) and input-output transition system (IOTS).
While LTS/IO are exactly the same as HMI-LTS, IOTS do differ from
HMI-LTS. The difference is in the fact that for an IOTS, the environment
can never refuse an output produced by the system and the system can
never refuse and input that is sent to it by the environment. The direct
consequence is that all inputs are possible in all states.

Definition 3.17 (Input-Output Transition System). An input-output
transition system (IOTS) is a tupleM = 〈S,Lc,Lo, s0,→〉, which is an
HMI-LTS such that ∀s ∈ reach(M) : Ac(s) = Lc.

Making a system input-enabled, meaning that inputs are accepted in
any state, can be done in various ways. The definition of IOTS do not
require anything special about the ways system is made input-enabled.
Among all the possibilities, two are more common. One possible way is
to complete the system by adding input self-loops for any input that is
not possible. That way to proceed is referred to as angelic completion.
Whenever an unforeseen input occurs, the system just ignores it, that is,
stays in the same state. The other common completion possibility is the
demonic completion where transitions are added for all the states, for
all the inputs that are not possible, to a special error state, which is a
special state from where all actions are possible, as self-loops.

3.4. ALTERNATE MODELS FOR HMI 85

Definition 3.18 (Error state). Given an LTS M = 〈S,L, s0,→〉, the
error state for that LTS which is denoted Π is a state having all the
transitions {Π α−−→ Π | α ∈ L}.

LTS/IO and IOTS do not bring anything more than what is possible
with HMI-LTS, except the notions of input-enablement that can also
be defined for HMI-LTS. Figure 3.18 shows an example of an HMI-LTS
with its angelic and demonic completion. In any state of the system, all
the commands of the alphabet are possible.

A

B

C D

α

τ β

(a) An HMI-LTS with Lc =
{α, β}.

A

B

C D

α

τ β

α, β

α α, β

(b) Angelic completion of an HMI-
LTS.

A

B Π

C D

α

τ

β

α, β

α
α, β

α, β

(c) Demonic completion of an HMI-
LTS.

Figure 3.18. HMI-LTS can be completed in several ways to get an input-enabled
system, that is, Ac(s) = Lc for any state s of the HMI-LTS. (b) In angelic completion,
input self-loops are added to all the states and (c) in demonic completion, all the
states are completed with transitions going to a special error state Π.

3.4.2 I/O and Interface Automata

I/O automata [LT87] and interface automata [dAH11] have been intro-
duced to add inputs and outputs to automata. They are typically used in
component-based design, a software engineering approach which focuses

86 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

on the “separation of concerns” principle, and they serve as an interface
description language. The difference between I/O automata and interface
automata is that the latter are not required to be input enabled. Except
that, the two formalisms are syntactically similar, thus only interface
automata are considered in this section. An interface automaton consists
of a set of states and a set of actions that are partitioned into input,
output and internal actions.

Definition 3.19 (Interface Automaton). An interface automaton is a
tuple P = 〈V,V init,AI ,AO,AH , T 〉, where V is a set of states, V init ⊆ V
is the set of initial states which is required to be non-empty, AI ,AO and
AH are mutually disjoint sets of input, output and internal actions and
finally T ⊆ V ×A× V is the set of steps, where A = AI ∪ AO ∪ AH .

Those two formalisms are similar to LTS/IO and IOTS in what they
model. The only difference is that with automata, internal actions are
explicit and not gathered into one single τ action. From a modelling
point of view, they do not bring anything more than HMI-LTS.

A specialised version of interface automata defined in [dAH11], namely
single-threaded interface automata, is used to model systems that are
made of a single thread of execution. The idea is to divide states into
two categories: the states where only internal and output actions are
enabled, and those where only input actions are enabled. The states
from the first category are called running states since the system is in
execution mode. The states from the second category are called waiting
states since the system is waiting for inputs from the user.

Definition 3.20 (Single-Threaded Interface Automaton). A single-
threaded interface automaton is an interface automaton P = 〈V,V init,
AI ,AO,AH , T 〉 satisfying the two following conditions:

1. The set of states is partitioned into two sets V = V O ∪ V I of
running and waiting states. For all states from V O, only internal
and output actions are enabled. For all states from V I , only input
actions are enabled.

2. All transitions with output actions must lead to a waiting state and
all transitions going to a waiting state have an output action.

Single-threaded interface automata model interactions where there is
an alternation between locally controlled actions (internal and output

3.4. ALTERNATE MODELS FOR HMI 87

actions) and input actions. That partition adds a constraint that is not
present in HMI-LTSs, but single-threaded interface automata are indeed
somewhat similar to HVS. It is indeed the case if it is considered that
the operator alternates between checking a state-value and performing
a command or making an observation. The difference resides in the
kind of partitioning that is done between the two types of states. Those
considerations are developed in the next chapter, where the translation
between HVS and HVM towards HMI-LTS is described. However, single-
threaded interface automata models are close to ADEPT models. In
particular, as described in Chapter 7, HVS obtained from the translation
of ADEPT models with the proposed semantics are indeed single-threaded
interface automata models.

3.4.3 Statecharts

LTSs and automata with inputs and outputs are low-level models where
there is no organisation among the states, except a partition between
running and waiting states for single-threaded interface automata.

Statecharts [Har87] are an extension of state machines developed by
Harel in order to get a suitable formalism to specify and design discrete-
event systems. The additions to state machines brought possibilities
to model hierarchy, concurrency and communications. Statecharts are
also used by Degani et al. [DH02] as the modelling formalism used in
their work. Another advantage of statecharts is that they are visually
intuitive and provide a compact way to present a formal definition of the
behaviour of a system.

Moreover, they have been defined with as main purpose to model
reactive systems, which makes them quite suitable to describe models for
human-machine interaction analyses. The Therac-25 example presented
in the previous chapter (Figure 2.11 on page 46) is an example of a
statechart. Another example presented on Figure 3.19 shows the state-
chart of the mode part of a simple microwave. But statecharts remain
a visual formalism and should be rather classified as a design language.
Nevertheless, formal semantics have been defined for statecharts, and
especially in terms of LTSs [US94, LvdBC99].

88 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

Disabled Set-Time Idle Program Cook
close

open

stop

clock

digit

stop

start

stop

doneok

minute
Mode Operational H

Figure 3.19. Example of a statechart representing the mode part of the behaviour of
a microwave oven (taken from [Luc93]).

3.4.4 Modal Specifications

Modal specifications defined by Larsen [Lar90] allows for loose speci-
fications of systems. The idea behind modal specifications is that it
is possible to define what behaviour is necessary and what behaviour
is admissible for a valid implementation of the specification. A modal
transition system (MTS) is essentially an LTS whose transitions are
partitioned into necessary and admissible transitions.

Definition 3.21 (Modal Transition System). An modal transition sys-
tem (MTS) is a tuple P = 〈S,A,→�,→♦〉, where S is a set of specifica-
tions, A is a set of actions and →�,→♦⊆ S×A×S, satisfying →�⊆→♦,
are respectively the sets of necessary and admissible transitions.

Contrarily to other formalisms presented so far, an MTS does not
only model one system, but rather a set of systems satisfying some
constraints. MTS adds the possibility to define a set of admissible
transitions. This kind of model is much used in the model-based testing
field, where the main goal is to test whether an implementation respects
a given specification. Therefore, necessary transitions must be present
in valid implementations whereas admissible transitions may be part of
it. The formalisms presented previously also have a sort of constraints
on the transitions. They implicitly include the notion of a “forbidden
transition”, a transition that is not present in the model.

From a human-machine perspective, such distinction among the
transitions can be used to analyse the interaction. Given a system model,
it could be interesting to distinguish which are the execution scenarios
that must be known and those which may be known in order to operate

3.4. ALTERNATE MODELS FOR HMI 89

correctly the system. It is not possible with HMI-LTS to directly model
admissible transitions but, as developed in Chapter 5, the executions
of system models can be indeed classified into three sets: necessary,
admissible and forbidden executions.

3.4.5 Mode Automata

As stated above in this chapter, there are systems which clearly exhibit
independent running modes. For analysis purposes, it is worth to have
a modelling formalism that is able to encode explicitly those modes.
Maraninchi et al. [MR98] define mode automata which are used to express
a mode structure in a reactive system. They are focused on integrating
modes into dataflow languages used to model reactive systems, whose
family is known as synchronous languages. Mode automata have been
designed with two objectives. The first one is that the mode structure,
and in particular how the modes are organised into the global behaviour
of the system, must be described. The second goal is to offer the ability to
get a projection of the system on one mode so as to obtain the behaviour
of the system restricted to a single mode.

A mode automaton is composed of an automaton part enriched with
dataflow equations coming from the Lustre dataflow language [CPHP87].
The states of mode automata correspond to the running modes of the
system and the dataflow equations represent the control laws of the
system. Figure 3.20 shows an example of a mode automaton that has
two modes (incrementation and a decrementation) represented by the
two states A and B.

X : 0

A

X = pre(X) + 1

B

X = pre(X)− 1

X = 10
X 6= 10

X = 0

X 6= 0

Figure 3.20. Graphical representation of a mode automaton example [MR98]. The
mode automaton has two modes corresponding to the incrementation or decrementation
of the X integer variable.

90 CHAPTER 3. MODELLING HUMAN-MACHINE INTERACTIONS

Definition 3.22 (Mode Automaton). An mode automaton is a tuple
P = 〈Q, q0,Vi,Vo, I, f, T 〉, where Q is a set of states, q0 ∈ Q is the initial
state, Vi and Vo are mutually disjoint sets of names for input and output
integer variables, T ⊆ Q×C(Vi∪Vo)×Q is the set of transitions, labelled
with conditions on the variables, I : Vo 7→ Z is a function defining the
initial values of the output variables and finally f : Q 7→ Vo 7→ EqR
defines the labelling of states with total functions from output variables
to right expressions.

Mode automata are required to be deterministic and reactive. The
first condition just means that the underlying automaton must be de-
terministic. The second requirement means that for any state of the
mode automaton, there must always be a transition whose condition is
satisfied.

In the vein of what operations are possible with statecharts, Maran-
inchi et al. defined a parallel composition operator that is useful whenever
the modes of a system can be split into several orthogonal sets. Also,
they provide ideas for hierarchic modes where the states belonging to
a given mode can be split into sub-modes. Maraninchi et al. provide a
semantic for mode automata, based on Mini-Lustre, a subset of Lustre
defined by the same authors.

Chapter 4
Full-Control Property

This chapter introduces automation surprises issues and defines the full-
control property which is a property between a system and a mental model.
The full-control property captures the notion of good interaction, that is,
interaction free of automation surprises. Section 4.1 gives the definition
and intuition of the full-control property and provides a characterisation
of the property. Then, Section 4.2 presents in detail the full-control
property for HMI-LTSs. In particular, the full-control determinism
property which guarantees the existence of a full-control mental model
is defined in the section. Finally, section 4.3 extends the results from the
previous section to enriched models. Section 4.4 relates the full-control
property to other common properties used in similar situations.

4.1 Characterisation of Good Interaction

As introduced in Chapter 2, the work of this thesis is focused on the
characterisation of good interaction between an operator and a system.
This section describes what is behind “good interaction” and how it is
related to the work by Degani et al., which is the starting point of this
work. As a reminder, the goal of Degani et al. is to generate a model for
the user so that using the model to operate the system makes him avoid
potential automation surprises, that is, situations where the operator is
faced with an unexpected behaviour of the system, according to his own
mental model of it. In their work, Degani et al. focus on mode confusion
issues, and they defined a correct user interface being one where the
three following kinds of error are absent from any possible interaction:

• an error state corresponds to a situation where the machine is in a
certain mode, while the user thinks it is in another one;

91

92 CHAPTER 4. FULL-CONTROL PROPERTY

• a restricting state represents a situation where the user could trigger
a mode change, but that change is not present in his mental model;
• and an augmenting state is a state where the user thinks that

some actions are possible according to his mental model, but those
actions are effectively not available on the machine.

Those three situations are to avoid since they may cause surprise.
They can be identified based on the interaction model. Intuitively, a
check on the composite states of the interaction model can be done, to
test whether there are situations where the machine and the user are not
agreeing anymore on what further behaviour is possible. Such situations
where the behaviours diverge are in fact spots of potential automation
surprises.

In this work, an interaction between an operator and a system is
qualified as “good” if no potential automation surprise ever occurs during
the interaction. For that to be possible, the operator must always be
able to predict the behaviour of the system, at any time during the
interaction. This point of view is more general than the one of Degani
et al. who only consider that the user must be able to predict the next
mode of the system. For the user to be able to predict the behaviour of
the system, two conditions have to be satisfied between the predicted
and the actual behaviours:

1. The operator must always know exactly the commands that are
available on the system. Whenever a command is performed on
the system, it is guaranteed that it will be accepted by it.

2. Whenever the system provides any feedback to the operator, it
must be foreseen by the operator. That condition does not prevent
the operator to expect or be prepared for more observations than
exactly those which can effectively occur in the current state of the
system.

This notion of good interaction is captured by the full-control property
which is the subject of this chapter. The property must hold between the
operator and the system being used, in order to guarantee the absence of
potential automation surprises. Of course not all automation surprises
are taken into account by the full-control property. The property rather
captures a notion of controllability without surprises.

4.1. CHARACTERISATION OF GOOD INTERACTION 93

The full-control property can be defined based on the interaction
model presented in the previous chapter. The idea is that at any reachable
state of the interaction model, the set of expected commands must
coincide exactly with the set of actual commands whereas the set of
expected observations can be a superset of the set of actual observations.
A mental model such that the two conditions actually hold for a given
system model is said to allow full-control of the system and it is referred to
as a full-control mental model for the system. A system model for which
there exists a full-control mental model is said to be full-controllable.

4.1.1 Potential Automation Surprises

The full-control property ensures that situations that may surprise the
operator of a system do not occur during the interaction. The bad situa-
tions described by Degani et al. [HD07] and summarised in Section 2.4.7
are taken into account by the full-control property as detailed below.
Figure 4.1 shows a composite state of the interaction model, with the
four potentially confusing situations that may occur.

sS || sH

o
o1

c3
c

o
o2

c4
c

Figure 4.1. The four potentially surprising situations that may occur during the
interaction between a human H and a system S being used, in every state of the
interaction model.

The four situations that may occur are:

1. There is an observation o1 that may be produced by the system, but
the operator is not aware of it according to the mental model. In
that situation, the operator may get surprised when the observation
occurs, and will not know how to react. That could be dangerous
if the observation is a hazard alert signal, for example.

94 CHAPTER 4. FULL-CONTROL PROPERTY

2. According to his mental model, the operator expects an observation
o2 to occur but it will indeed never occur in the system. Such a
situation is not so severe since the observations are under control
of the system. It can only disturb the operator if he is actively
waiting for the observation and does not get any information from
the system that it will in fact never occur.

3. There is a command c3 on the system that is available in the
current state but that the operator is not aware of according to his
mental model. That is not a surprising situation at all since the
commands are under control of the operator. The only issue that
such a situation raises is that it does not allow the user to use all
the functionalities of the system.

4. There is a command c4 that the operator can perform according to
his mental model but that is in fact not available on the system.
It can confuse the user since he will perform the command and
expect some behaviour from the system that will never occur.

Situations 1, 3 and 4 are all avoided by the full-control property, that
is, there cannot be an observation in the system model which is not
in the mental model and the commands must be the same in both the
system and mental model, at any time during the interaction. Situations
1 and 4 correspond to an automation surprise and may lead to incidents
or accidents, since in both situations the user can be surprised either by
an event that was not expected or by an action that does not perform
what is expected. The situation 1 corresponds to Degani et al.’s blocking
state and the situation 4 corresponds to an augmenting state. Situation 3
does not induce an automation surprise but is avoided by the full-control
property. A variant of the full-control property is more flexible and
allows the system to have available commands that the user is not aware
of according to his mental model. That variant is discussed in Chapter 6.

In summary, the full-control property guarantees that there will never
be any potential automation surprise situations during the interaction,
but also that the operator will be able to use all the functionalities of
the system.

The remainder of this chapter focuses first on the full-control property
for HMI-LTSs. Then, the presented results are extended for the general

4.2. FULL-CONTROL PROPERTY FOR HMI-LTSS 95

situation where HVS and HVM are used. The extension is based on a
transformation of HVS and HVM models into equivalent HMI-LTSs.

4.2 Full-control Property for HMI-LTSs

This section develops on the full-control property for HMI-LTSs. After
stating formally the definition of the full-control property, issues that
can be introduced by τ -transitions are discussed. Then, the end of the
section presents the condition that has to be satisfied on system models to
guarantee the existence of a full-control mental model for those systems.

4.2.1 Full-control Property

The full-control property, as stated above, can be defined based on the
interaction model. For any reachable state of the interaction model, two
conditions must hold, relating the sets of commands (resp. observations)
expected by the operator with the sets of commands (resp. observations)
actually available on the system.

Definition 4.1 (Full-Control Property for HMI-LTSs). Given two HMI-
LTSs S = 〈SS ,Lc,Lo, s0S ,→S〉 and H = 〈SH ,Lc,Lo, s0H ,→H〉, H is
said to allow full-control of S, which is denoted H fcS, if and only if
for all reachable composite states (sS , sH) ∈ S ‖ H, the two following
conditions hold:

1. Ac(sS) = Ac(sH)
2. Ao(sS) ⊆ Ao(sH)

Figure 4.2 shows an extended version of the vending machine example
used in Chapter 3. A new observation is added to inform the user if the
machine is empty and cannot therefore serve coffee. The mental model
has also been extended. Two additional behaviours have been added:

• The user is ready to accept directly a free coffee from the vending
machine;
• The user thinks that it is possible to order a coffee with a single
coin, but also with two coins.

96 CHAPTER 4. FULL-CONTROL PROPERTY

The proposed mental model for this vending machine does not allow
full-control of it. It can be easily noticed on the interaction model since
there are five states where the full-control conditions are not satisfied
(the greyed states).

The four different potentially bad situations captured by the full-
control property are illustrated with that example:

• In composite state (C, 1) the system may produce an alert observa-
tion that is not foreseen by the operator, which may surprise him
if it occurs. On that state, Ao(C) 6⊆ Ao(1).
• In composite state (A, 0) the user expects an coffee observation that
will not occur on the system. That is not an issue according to the
full-control property, since the user may expect more observations
than those that can actually occur.
• In composite state (A, 2) the operator is not aware that the com-
mand coin is available on the system. This may not lead to an
automation surprise. That is rather a lack of knowledge of the
user regarding an existing feature of the system. On that state,
Ac(A) 6⊇ Ac(2).
• In composite state (D, 1) the operator thinks that the command

coin is available on the system, but it is actually not the case. If
the operator does execute the command, he may get confused
since the system is not responding as he expects. On that state,
Ac(D) 6⊆ Ac(A).

As a direct consequence of Property 3.12 (defined on page 73) which
states that the set of traces of the interaction model is the intersection
of the sets of traces of the system and mental models, the full-control
property can also be expressed in term of traces that are common to the
two models.

Property 4.2 (Full-Control Property for HMI-LTS). Given two HMI-
LTSs S = 〈SS ,Lc,Lo, s0S ,→S〉 and H = 〈SH ,Lc,Lo, s0H ,→H〉, H is
said to allow full-control of S, which is denoted H fcS, if and only if for
all σ ∈ L∗ such that sS ∈ (s0S afterσ) and sH ∈ (s0H afterσ):

Ac(sS) = Ac(sH) and Ao(sS) ⊆ Ao(sH)

4.2. FULL-CONTROL PROPERTY FOR HMI-LTSS 97

A

B

C D

E F

coin

τ τ

alert coffee

τ

(a) System model S.

0

1 3

2 4

5

coin coffee

coffee coin

coffee

(b) Mental model H.

(A,0) (?,3) 4

(B,1)

(C,1)

(E,?)

8

(D,1)

(F,2) (A,2)

(B,?)

?

(?,4) 8

coin

τ τ

coffee

τ

coffee

alert

coin

coin

(c) Interaction model S ‖ H.

Figure 4.2. Example of a vending machine system modelled with an HMI-LTS S.
The proposed mental model H does not allow full-control of the system since there are
states of the interaction model S ‖ H where the full-control criterion is not satisfied
(highlighted with a grey background colour).

98 CHAPTER 4. FULL-CONTROL PROPERTY

Checking Full-control

Checking whether a mental model allows full-control of a system model
is a task that can be done easily with an exploration of the interaction
model. Once the interaction model is built, it suffices to explore it, with
a DFS for example, and to check the full-control conditions for each
composite state. Actually, it is in practice not necessary to first build
the interaction model since the conditions can be checked on-the-fly.
Algorithm 5 in Appendix 5 performs the full-control check. It builds the
interaction model on-the-fly in a BFS fashion so as to get the shortest
counterexample if the full-control property is not satisfied.

The full-control check algorithm can be seen as an execution of
a model checking on the interaction model. Consequently, the time
complexity of the algorithm is in O(n + m) where n is the number of
states and m the number of transitions of the interaction model. In the
worst case, the interaction model has nSnH states

4.2.2 Enabled or Possible Sets of Commands and Observations

The sets of actions that are used in the definition of full-control are the
possible sets (A) and not the enabled sets (Γ), meaning that actions that
can occur after τ -transitions are also taken into account. That choice
has an important consequence on the property that is captured and
on the assumed behaviour of the operator. The fact that possible sets
are used implies that the equality of the sets of commands at any time
during interaction must be verified in the weak sense. A command that
is possible for the operator means that the operator may perform it on
the system, but maybe not directly since he may have to wait for some
time, during which some internal transitions will occur in the system.

Figure 4.3 illustrates the difference between enabled and possible sets.
The difference between the two systems resides in the fact that in the
left system, the operator is sure that he can directly execute commands
c1 and c2, that is, Γc(A) = {c1, c2}. For the system on the right, the
operator is only sure that he may execute the commands, after having
potentially waited for a certain amount of time, that is, Ac(A) = {c1, c2}.
Only command c1 is immediately available since Γc(A) = {c1}.

According to the full-control definition, the model of Figure 4.3(a) is
a full-control mental model for both system models of Figure 4.3. For the

4.2. FULL-CONTROL PROPERTY FOR HMI-LTSS 99

system of Figure 4.3(a), it is obvious that it allows full-control of it, but
less so for the system of Figure 4.3(b). Figure 4.4 shows the interaction
model and it is easily verified that for each composite state of that
system, the full-control conditions on commands and observations sets
are satisfied. That interaction model clearly shows that the c2 command
is possible when the system is either in the A state or in the C state,
except that he will not be able to perform it directly if the system is still
in the A state.

4.2.3 Full-control Compatibility and Determinism

Given a model of a system, some of its states may exhibit similar
behaviour according to the point of view of the operator, in a full-
controllability perspective. Such states are said to be full-control com-
patible. It is important to be able to identify those states since, in order
to explain the behaviour of a system to an operator, they do not need to
be explained separately. Two states are full-control compatible if they
agree on possible commands for any common execution trace starting
from them.

Definition 4.3 (Full-Control Compatibility). Given an HMI-LTS S =
〈SS ,Lc,Lo, s0S ,→〉, the two states s1, s2 ∈ S are full-control compatible
(fc-compatible in short), which is denoted s1 ≈fc s2, if and only if for all
σ ∈ L∗ such that s′1 ∈ (s1 afterσ) and s′2 ∈ (s2 afterσ):

Ac(s′1) = Ac(s′2)

The full-control compatibility corresponds exactly to the definition
of operational determinism (Definition 3.8 on page 66), but restricted to
commands. The interpretation of the fc-compatible property between
two states s1 and s2 is that, no matter in what state the operator is, he
can execute any command from the set Ac(s1) = Ac(s2), and be sure to
be able to predict what will be the possible commands in the reached
states.

For the system example of Figure 4.3(b), the states A and C are
fc-compatible since they agree on commands for all common traces
(ε and a). In both states A and C, if the operator does nothing the
possible commands are {c1, c2} and after the operator performs an c1 or
c2 command, there is no possible further command.

100 CHAPTER 4. FULL-CONTROL PROPERTY

A

B

C

c1

c2

(a) A system model with
Γc(A) = Ac(A) = {c1, c2}.
That system model is also
a mental model for itself.

A

B

C

D

E

c1

τ

c1

c2

(b) A system model with Γc(A) =
{c1} 6= Ac(A) = {c1, c2}.

Figure 4.3. Two system models whose initial states do not have the same set of
enabled commands, but do have the same set of possible commands. For the system
model on the left, the operator knows that he can always perform directly commands
c1 and c2, that is, Γc(A) = {c1, c2}. For the system model on the right, the operator
cannot execute directly commands c1 and c2, but can possibly execute them, that is,
the operator knows that he should maybe wait some time before being able to execute
them. In that situation, Γc(A) = {c1} 6= Ac(A) = {c1, c2}.

(A, A)

(B, B)

(C, A)

(D, B)

(E, C)

c1

τ

c1

c2

Figure 4.4. The interaction model between the system and mental models of Fig-
ures 4.3(b) and 4.3(a). The full-control conditions are satisfied for every composite
state which means that the mental model allows full-control of the system model.

4.2. FULL-CONTROL PROPERTY FOR HMI-LTSS 101

The fc-compatibility property only requires the set of possible com-
mands to be equal after all the common traces. Figure 4.5 shows an
example where the two states A and D are fc-compatible even if after
executing the c command, the two states that are reached (respectively
B and E) do not have the same set of actions. Since the differences are
only caused by observations, it is not an issue. Since A and D are fc-
compatible, it means that they share the same behaviour from the user’s
point of view. The common behaviour is that the user is, in both cases,
able to execute a c command, and after having executed the command,
he can expect one observation from the set {o1, o2}. That ability to put
together several observations that may not always occur, in the same
set is a direct consequence of the non-symmetric characteristic of the
full-control property, which is more flexible for observations. That is the
key point which makes it possible to identify more compatible behaviours
in a given system, that consequently only have to be presented once to
the user in his mental model.

A B C

D E F

c o1

τ

c o2

Figure 4.5. States A and D are fc-compatible even if it is possible to reach two
different states with different sets of possible actions.

Characteristics of fc-compatibility

The fc-compatibility relation is symmetric, by construction. However,
it is not reflexive nor transitive. The fc-compatibility relation is not
reflexive as illustrated by the example of Figure 4.6. In this example,
the initial state A is not fc-compatible with itself since there exists
one trace violating the fc-compatibility condition, namely the empty
trace. The system can indeed reach both states A and C with the empty
trace, but those states do not have the same set of possible commands:
Ac(A) = {c1, c2} 6= Ac(C) = {c2}.

Intuitively, it means that without doing anything, the operator may
be refused some commands just because the system has changed its state

102 CHAPTER 4. FULL-CONTROL PROPERTY

A

B

C D

c1

τ c2

Figure 4.6. HMI-LTS example of a system illustrating that the ≈fc relation is not
reflexive. The state A is not fc-compatible with itself.

in-between and that the command that was available for the user is not
available anymore. Initially, the user was able to perform the commands
c1 and c2, but after the τ -transition occurred in the system, only the
c2 command remains possible. Such situations are bad in terms of full-
controllability since, without any interaction from the operator, the set
of commands that are possible change. That situation is in contradiction
with the full-control property and makes the system intrinsically not
full-controllable. A direct consequence is that it is impossible to build
any full-control mental model for such a system.

The issue of non-full-controllability is introduced by the τ -transition
that adds non-determinism in the system. Not all non-determinism is
bad, as illustrated by the three examples of Figure 4.7, which are non-
deterministic but for which there exist full-control mental models. What
makes those systems full-controllable is that the non-determinism they
contain is not harmful since it leads to states that are fc-compatible. The
third example S3 is operationally deterministic, in opposition to the two
first examples that are not, neither are they (structurally) deterministic.

The fc-compatibility relation is also not transitive as illustrated by the
example of Figure 4.8. The states B and C are fc-compatible since they
do not share any common traces except the empty trace, and following
it from any of both states leads to states with the same set of commands
(which is the empty set). The same reasoning can be done for states D
and C. However, states B and D are not fc-compatible. Indeed, following
the o1 common trace leads to states E and F which do have different
sets of possible commands: Ac(E) = {c4} 6= Ac(F) = {c5}. The intuition
is that the user can safely consider as similar either states B and C or
states C and D, but not both.

4.2. FULL-CONTROL PROPERTY FOR HMI-LTSS 103

A

B

C D

c1

c1 o1

(a) A system model S1.

A

B

C D

o1

τ o2

(b) A system model S2.

A

B

C

D

c1

c1

c2

c2

(c) A system model S3.

0 1
c1 o1

(d) A full-control mental
model for S1.

0 o1, o2

(e) A full-control mental
model for S2.

0 1 2
c1 c2

(f) A full-control mental
model for S3.

Figure 4.7. Three HMI-LTS examples of systems that are not deterministic but for
which it exists a full-control mental model.

A

B

C

D

E

F

c1

c2

c3

o1

o1

c4

c5

Figure 4.8. HMI-LTS example of a system illustrating that the ≈fc relation is not
transitive. States B and C and states D and C are pairwise fc-compatible, but states
B and D are not fc-compatible.

Full-control determinism

Full-control determinism, or fc-determinism in short, characterises system
models for which there exists a full-control mental model. The only
condition that has to be satisfied is that given a trace, the set of states
that are reachable from the initial state with that trace all have the same
set of possible commands. The fc-determinism property is in fact the
particular case of fc-compatibility of the initial state with itself.

104 CHAPTER 4. FULL-CONTROL PROPERTY

Definition 4.4 (Full-Control Determinism for HMI-LTS). An HMI-LTS
S = 〈SS ,Lc,Lo, s0S ,→〉 is full-control deterministic if and only if for
each σ ∈ L∗:

∀s, s′ ∈ (s0S afterσ) : Ac(s) = Ac(s′)

that is s0S ≈fc s0S .

Checking Full-control Determinism

Full-control determinism of a given system can be checked by computing
the synchronous parallel composition of the system with itself. A system
model S is fc-deterministic if and only if the fc-determinism condition is
satisfied for every composite state of the composition.

Property 4.5 (Full-control determinism check). Given an HMI-LTS
S = 〈SS ,Lc,Lo, s0S ,→〉 and the interaction model S ‖ S :

Sis fc-deterministic
⇐⇒ ∀σ ∈ L∗ : ∀(s, s′) ∈ ((s0S , s0S) afterσ) in S ‖ S : Ac(s) = Ac(s′)

Proof. If the system S is fc-deterministic, it implies by definition that
∀σ ∈ L∗ : ∀s, s′ ∈ (s0S afterσ) : Ac(s) = Ac(s′). The set (s0S afterσ)
is not empty only if σ ∈ Tr(S). Consequently, it means that the trace
σ also belong to Tr(S ‖ S) by definition of the synchronous parallel
composition. Moreover, by definition of after, s0S

σ==⇒ s and s0S
σ==⇒ s′,

that is, (s, s′) is a composite state of (S ‖ S) and Ac(s) = Ac(s′) by
hypothesis.

The state (s, s′) belongs to the synchronous parallel composition if
it is reachable from the state (s0S , s0S). It means by definition that
s0S

σ==⇒ s and s0S
σ==⇒ s′ for some σ ∈ L∗, that is, s, s′ ∈ (s0S afterσ).

Since Ac(s) = Ac(s′), it means that S is fc-deterministic.

Checking fc-determinism is thus an execution of model checking on
the (S ‖ S) model. Consequently, the time complexity of the algorithm
is O(n+m) where n is the number of states of the composed model and
m its number of transitions.

4.2. FULL-CONTROL PROPERTY FOR HMI-LTSS 105

4.2.4 Existence of Full-control Mental Model

As stated in the previous section, a full-control mental model only exists if
the system model is fc-deterministic. This section proves it and presents
a procedure that can be used to build a full-control mental model for any
fc-deterministic system model, based on the determinisation algorithm
presented in Section 3.1.5.

Theorem 4.6. Given an HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉:

S is fc-deterministic =⇒ det(S) fcS

Proof. Let H = det(S) = 〈SH ,Lc,Lo, s0H ,→H〉. By definition of the
determinisation, Tr(S) = Tr(H). For a given sequence σ ∈ Tr(S), there
is only one execution s0H

σ−−→ sH in the determinised model and by
construction (s0S afterσ) = {sH}.

Let us first consider the commands: Ac(sH) =
⋃
sS∈(s0S afterσ)A

c(sS)
by construction. Since S is fc-deterministic, Ac(sS) are exactly the same
for all sS ∈ (s0S afterσ). Consequently, s0H

σ−−→ sH and s0S
σ==⇒ sS

with Ac(sH) = Ac(sS).
Let now consider the observations: Ao(sH) =

⋃
sS∈(s0S afterσ)A

o(sS)
by construction. There are no constraints on observations and thus,
s0H

σ−−→ sH and s0S
σ==⇒ sS with AosH ⊇ Ao(sS).

To conclude, for any σ ∈ L∗ such that s0H
σ−−→ sH and s0S

σ==⇒ sS ,
it holds that Ac(sH) = Ac(sS) and Ao(sH) ⊇ Ao(sS), that is, H allows
full-control of S.

Minimal Full-control Mental Model

Generally, there is no single unique mental model for a given fc-determi-
nistic system model. The previous section shows one possible full-control
mental model which is the determinised version of the system model.
The purpose of the mental model is to help a human operator to use a
system by generating training material or to design training sessions, for
example. Mental models can also be used for analysis purposes. For all
those uses, it is preferable to have the smallest possible mental model,
in order to reduce the size of training materials, to be easier to explain
to a human, to be possible for the human to memorise it and finally to
decrease the time and space costs for the automated analyses.

106 CHAPTER 4. FULL-CONTROL PROPERTY

Figure 4.9 shows an fc-deterministic system model (Figure 4.9(a))
and two full-control mental models for it. The first one (Figure 4.9(b))
is obtained by computing the determinisation of the system model. The
second one (Figure 4.9(c)) is a minimal full-control mental model, that
is, the one with the smallest number of states.

A

B

C D

o1

τ o2

(a) A system model S.

{A,C}

{B}

{D}

o1

o2

(b) The determinised system
model det(S).

1 o1, o2

(c) The minimal
full-control mental
model H.

Figure 4.9. HMI-LTS example of system model S with the corresponding determinised
system model det(S) which is not a full-control mental model for S.

Determinisation does not achieve minimality and it only ensures that
the traces are preserved. Moreover, actions are all processed on an equal
footing, the determinisation procedure does not distinguish between
commands and observations. The set of traces of the system model
example of Figure 4.9(a) is Tr(S) = {ε, c1, c2}. The determinised system
has the same set of traces, by construction. The particularity about full-
control is that it allows the mental model to have more observations than
those which can effectively occur on the system. Using that flexibility,
it is possible to build much more compact mental models. This is
precisely what drives the next chapter. The minimal mental model for
the system of Figure 4.9(a) has only one state and its set of traces is
Tr(H) = (c1 + c2)∗, that is, any sequences composed with any number
of c1 and c2, including the empty trace.

4.3 Full-control Property for Enriched Models

Enriched models presented in Section 3.3 add information on the states
of the models. This additional information, state-values, may help the
operator to know whether an internal action has occurred in the system.

4.3. FULL-CONTROL PROPERTY FOR ENRICHED MODELS 107

The system model of Figure 4.10(a) is the same as the one of Figure 4.6,
but on which state-values have been added. The issue with the original
system is that it was not possible for the operator to distinguish between
states A and C. In the enriched model, those two states do have a
different state-value, respectively v1 and v2. In order to know whether
the command c1 is possible or not, that is, whether the internal action
has taken place, the operator has to check whether the observed state-
value is v1 or v2. For that reasoning to be valid, an assumption that is
made is that the lookup of the state-value and the performing of the
command occur at the same time as a single atomic event. Figure 4.10(b)
shows a full-control mental model for the system of Figure 4.10(a). The
command c1 will only be performed if the state-value corresponding to
the current system state is v1 and similarly for the c2 command with the
v2 state-value.

A
v1

B
v1

C
v2

D
v2

c1

τ c2

(a) System model.

S0

S1

S2

[v1] c1

[v2] c2

(b) Mental model.

Figure 4.10. The system model of Figure 4.6, which is not fc-deterministic, has been
enriched with state-values so that to make it fc-deterministic (on the left). The mental
model on the right is a corresponding full-control mental model.

The full-control property can also be defined for the enriched models,
based on the interaction model between the enriched system and mental
models. The difference with the definition based on HMI-LTS is that
the sets of possible commands and observations are now sets of pairs
consisting of a state-value associated with an action. It is indeed assumed,
according to the definition of the interaction model (Definition 3.16 on
page 82), that an operator will never perform a command or see an
observation whose action guard is not compatible with the state-value
corresponding to the current state of the system.

108 CHAPTER 4. FULL-CONTROL PROPERTY

Definition 4.7 (Full-Control Property). Given an HVS S = 〈SS ,
Lc,Lo, s0S ,→S ,Lv,O〉 and an HVM H = 〈SH ,Lc,Lo, s0H ,→H ,Lv〉, H
is said to allow full-control of S, which is denoted H fcS, if and only if
for all reachable (sS , sH) ∈ S ‖I H:

• Ace(sS) = Ace(sH);
• and Aoe(sS) ⊆ Aoe(sH)

where Ace(sS) = {(v, c) | ∃sS
τ∗−−→ s′S

c−−→ s′′S ∧ v = O(s′S) ∧ c ∈ Lc} and
Ace(sH) = {(v, c) | ∃s [g]c−−−→ s′ ∧ v |= g ∧ c ∈ Lc} for HVMs. The Aoe(sS)
and Aoe(sH) sets are defined similarly.

4.3.1 Enriched Traces

Traces on HMI-LTS only capture the sequence of actions performed by
the operator (commands and observations). For enriched models, the
operator has the possibility to check the state-value before any action.
Enriched traces capture the fact that the operator is always checking the
state-value before performing an action, in a single atomic step. Enriched
traces are sequences of pairs composed of a state-value and a label. They
can be defined for enriched system models by taking into account the
state-value of the state from which the executed action is enabled.

Definition 4.8 (Enriched trace for HVSs). Given an HVS S = 〈S,Lc,
Lo, s0,→,Lv,O〉, a sequence σ = (v1, α1) · · · (vn, αn) ∈ (Lv × L)∗ is an
enriched trace of S if and only if there exists an execution s0

τ∗−−→
s′0

α1−−→ s1 · · · sn−1
τ∗−−→ s′n−1

αn−−−→ sn such that O(s′i) = vi+1. The set
of enriched traces of the HVS is denoted with ETr(S).

For example, the set of enriched traces of the example of Figure 4.10(a)
is {ε, (v1, c1), (v2, c1)}. The sequence 〈(v1, c2)〉 does not belong to the
enriched traces of the system. Looking more closely at the execution
A τ−−→ C c2−−→ D corresponding to the trace 〈c2〉 indicates that, if the
user is tracking the changes of state-values, he will see that the system
transitions from v1 to v2. However, even if the user can see the state-value
v1 and after that execute the command c2, the sequence 〈(v1, c2)〉 is not
an enriched trace of the system since it is assumed in this work that the
user observes the state-value and directly executes an action, in a single

4.3. FULL-CONTROL PROPERTY FOR ENRICHED MODELS 109

atomic step, without leaving the time to the system to make an internal
transition. Again, τ -transitions can introduce some instability in the
system from a controllability perspective as it is detailed further in this
section.

Enriched traces can also be defined for enriched mental models, just
as they are defined for enriched system models. The difference is that
the state-values come from the action guard.

Definition 4.9 (Enriched trace for HVMs). Given an HVM H = 〈S,Lc,
Lo, s0,→,Lv〉, a sequence σ = (v1, α1) · · · (vn, αn) ∈ (Lv × L)∗ is an
enriched trace of H if and only if there exists an execution s0

[v1]α1−−−−−→
s1 · · · sn−1

[vn]αn−−−−−→ sn+1. The set of enriched traces of the HVM is
denoted with ETr(H).

4.3.2 Full-control Compatibility for Enriched Models

Full-control compatibility can be extended for enriched models. As
already illustrated by the example of Figure 4.10, the addition of state-
values may make a system model full-controllable, although it is not
full-controllable without the state-values. Full-control compatibility for
HMI-LTS ensures that the set of possible commands after a given trace
is always the same, no matter the underlying execution. For enriched
models, it may be possible that the set of possible commands are not
the same, after the execution of a given trace, provided that the state-
values of those states are different. In other words, if the operator
can unambiguously distinguish states corresponding to different sets of
possible commands, it is not an issue.

Definition 4.10 (Full-Control Compatibility). Given an HVS S =
〈S,Lc,Lo, s0,→,Lv,O〉, the two states s1, s2 ∈ S are full-control compat-
ible (fc-compatible in short), which is denoted s1 ≈fc s2, if and only if
for all σ ∈ L∗ such that s1

σ==⇒ s′1 and s2
σ==⇒ s′2:

O(s′1) = O(s′2) =⇒ Ac(s′1) = Ac(s′2)

Full-control determinism is defined in the same way as for HMI-LTS.
An HVS is full-control deterministic if and only if its initial state is
fc-compatible with itself.

110 CHAPTER 4. FULL-CONTROL PROPERTY

Figure 4.11 shows a system model that is not fc-deterministic. The
property is not verified since for the empty trace, three states can be
reached (s0S after ε = {A,C,E}) and among those states, two have
identical state-values (O(A) = O(E) = v1), but different sets of possible
commands (Ac(A) = {c1, c2, c3} 6= Ac(E) = {c3}). Suppose that the
operator starts the system and then after some time, decides to perform
a command on it. With the state-value v1, the operator cannot know for
sure whether the system is in the state A or E.

A
v1

B
v1

C
v2

D
v2

E
v1

F
v1

c1

τ

c2

τ

c3

Figure 4.11. The chain of internal transitions causes a non-fc-determinism situation
since the operator, who does not track the changes of state-values, cannot decide
whether he can perform c1 or c3 when he observes the v1 state-value.

It is important to remember that this is a choice of modelling that
has been done. If the operator was able to track the state-value changes,
it would indeed be possible for him to distinguish between states A and
E, just by noticing that the state-value has changed from v1 to v2 and
then again to v1.

To sum up, two hypotheses are made about enriched models. First
of all, the operator does not remember state-values corresponding to
spontaneous changes of state in the system. In the example, he cannot
track the changes A τ−−→ C τ−−→ E. Moreover, the operator only observes
the state-value at the moment of performing the action. In the example,
he can observe v2 and perform at the same time the c2 command when
the system is in state C, without falling into the state E in-between.

4.3.3 Expansion of Enriched Models

Enriched models can be expanded into HMI-LTSs so that the full-control
property is preserved. The motivation for such an expansion is to make

4.3. FULL-CONTROL PROPERTY FOR ENRICHED MODELS 111

it possible to perform the same reasoning and analyses that can be done
on HMI-LTSs. The expansion operation transforms state-values into
observation actions.

HVS Expansion

The expansion of an HVS is based on the mapping shown on Figure 4.12.
Every non-τ transition s

α−−→ t is expanded so that the state-value v
is checked before the occurrence of the action, that is, a new state
sv is added to the expanded model with the sequence of transitions
s

v−−→ sv
α−−→ t. For τ -transitions, no transformation occurs, they are

preserved in the expanded HMI-LTS.

s tα ⇒ s sv tv α

Figure 4.12. Transition mapping for HVS to HMI-LTS translation for non-τ transitions.
The transition from the original system model (on the left) induces two transitions in
the expanded system model (on the right), where v = O(s).

Definition 4.11 (HVS expansion). Given an HVS S = 〈SS ,Lc,Lo, s0S ,
→S ,Lv,O〉, its expansion, denoted exp(S), is an HMI-LTS E = 〈SE ,Lc,
LoE , s0S ,→E〉 where LoE = Lo ∪ Lv and:

• SE = SS ∪ {sv | s ∈ SS , v = O(s) and Γ(s) 6= ∅};

• →E= {(s, τ, t) | (s, τ, t) ∈ →S}
∪ {(s, v, sv), (sv, α, t) | (s, α, t) ∈ →S and v = O(s)}.

By construction, the states of the expanded HMI-LTS can be parti-
tioned into two sets:

• Observation states are those from the original HVS and intuitively
correspond to the fact that the operator must check the state-value
before the occurrence of a visible action on the system. Those
states can have outgoing τ -transitions and at most one outgoing
transition labelled with a state-value. An observation state s is
characterised by |Ao(s)| = 1, Ao(s) ⊆ Lv and Ac(s) = ∅.

112 CHAPTER 4. FULL-CONTROL PROPERTY

• Action states are the states added to the HVS. Those states have
outgoing transitions with commands and observations that cor-
respond to those from the original HVS. They do not have any
τ -transitions. An action state s is characterised by A(s) ⊆ L.

Transitions outgoing from an observation state lead to an action
state, except for τ -transitions that lead to another observation state.
And conversely, transitions outgoing from an action state always lead to
an observation state.

Figure 4.13 shows the expansion of an HVS example. The two τ -
transitions are still there, and all the other transitions have been replaced
by two transitions. The expanded model has five observation states and
three action states (greyed on the figure).

A
v1

B
v2

C
v3

D
v2

E
v3

τ

c1

c2

c2

c3

τ

(a) An HVS example S.

A

Av1

B Bv2

C Cv3

D

E

τ

v1 c1

v2 c2

v3

c2

c3

τ

(b) The expansion exp(S).

Figure 4.13. Expansion of an HVS example into an HMI-LTS. Greyed states of the
expanded mode are action states and white ones are observation states.

HVM Expansion

HVMs can also be expanded into HMI-LTSs, so as to make enriched
traces explicit. The expansion is based on the intuition that the operator
must always first check whether the action guard is satisfied before
doing any visible action. Figure 4.14 shows the mapping between the
transitions from the HVM and the corresponding expanded HMI-LTS.
Every transition s

[v]α−−−→ s′ is expanded so that the state-value v is
checked before performing the α action, that is, a new state sv is added
to the expanded model with the sequence of transitions s v−−→ sv

α−−→ s′.

4.3. FULL-CONTROL PROPERTY FOR ENRICHED MODELS 113

s t
[v] α

⇒ s sv tv α

Figure 4.14. Transition mapping for HVS expansion. The transition from the HVM
(on the left) induces two transitions in the expanded HMI-LTS (on the right).

Definition 4.12 (HVM expansion). Given an HVM H = 〈SH ,Lc,Lo,
s0H ,→H ,Lv〉, its expansion, denoted exp(H), is an HMI-LTS E =
〈SE ,Lc,LoE , s0H ,→E〉 where LoE = Lo ∪ Lv and:

• SE = SH ∪ {sv | s ∈ SH , (s, v, α, t) ∈ →H};

• →E= {(s, v, sv), (sv, α, t) | (s, v, α, t) ∈ →H}.

As it is the case with HVS, two kinds of states are identifiable by
construction: observation states and action states. The observation
states intuitively correspond to the check of the action guard by the
user. They are characterised by Γ(s) ⊆ Lv and their outgoing transitions
always lead to an action state. The action states correspond to those
from the HVM. They are characterised by Γ(s) ⊆ L. Their outgoing
transitions are labelled with commands and observations and always lead
to an observation state.

Figure 4.15 shows the expansion of an HVM example. Every transition
has been replaced by two transitions. The expanded model has four
observation states and five action states (greyed on the figure).

S0 S1 S2

[v1] c1

[v2] c2

[v3] c2

[v3] c3

(a) An HVM example H.

S0

Sv1
0

Sv2
0

S1 Sv3
1 S2

v1

v2

c1

c2

v3

c2

c3

(b) The expansion exp(H).

Figure 4.15. Expansion of an HVS example into an HMI-LTS. Greyed states of the
expanded mode are action states and white ones are observation states.

114 CHAPTER 4. FULL-CONTROL PROPERTY

Expanded Models and HMI-LTSs Equivalence

Using the expanded models, it is possible to check whether an HVS
allows full-control of an HVM, by expanding both models into HMI-LTSs
and by checking whether the expanded mental model allows full-control
of the expanded system model.

Theorem 4.13. Given an HVS S = 〈SS ,Lc,Lo, s0S ,→S ,Lv,O〉 and an
HVM H = 〈SH ,Lc,Lo, s0H ,→H ,Lv〉:

H fcS ⇐⇒ exp(H) fc exp(S)

Proof. Let us suppose that H fcS. It means that for any trace σ =
〈α1 · · ·αn〉 of the interaction model S ‖I H, which is such that:

(s0S , s0H) τ∗−−→ (s′0S , s0H) α1−−→ (s1S , s1H) · · ·
(sn−1S , sn−1H) τ∗−−→ (s′n−1S , sn−1H) αn−−−→ (snS , snH),

we have Acv(snS) = Acv(snH) and Aov(snS) ⊆ Aov(snH).
By definition of the interaction model, we have that, for 0 ≤ i < n:

• siS
τ∗−−→ s′iS

αi+1−−−−→ si+1S belongs to S;

• and siH
[v]αi+1−−−−−→ si+1H belong to H with v = O(s′iS)

which implies, by construction of the expanded models, that we have,
for 0 ≤ i < n:

• tiS
τ∗−−→ t′iS

v−−→ t′viS
αi+1−−−−→ ti+1S belongs to exp(S);

• and tiH
v−−→ tviH

αi+1−−−−→ ti+1H belong to exp(H)

with v = O(s′iS) and such that there is a one-to-one relation between
siS and tiS , between s′iS and t′iS and between siH and tiH .

Let H′ = exp(H), S ′ = exp(S) and σ′ ∈ (Lc ∪ Lo ∪ Lv)∗, be a trace
of the interaction model H′ ‖ S ′. Two cases have to be considered:

1. The trace is of the form σ′α = 〈v1α
′
1 · · · vnαn〉, which means that

there exists (t0S , t0H) σ′α==⇒ (tnS , tnH) in H′ ‖ S ′. By construction,
A(tnS) and A(tnH) are both subsets of Lv. Consequently, Ac(tnS) =
Ac(tnH) = {}. Moreover, Ao(tnS) = {v | (v, α) ∈ Aov(snS)} and
Ao(tnH) = {v | (v, α) ∈ Aov(snH)}, and since Aov(snS) ⊆ Aov(snH)
by hypothesis, it implies that Ao(tnS) ⊆ Ao(tnH).

4.4. COMPARISONS WITH OTHER RELATIONS 115

2. The trace is of the form σ′v = 〈v1α
′
1 · · · vn〉, which means that there

exists (t0S , t0H) σ′v==⇒ (t′vn−1S , t
v
n−1H) in H′ ‖ S ′. By construction,

Ac(t′vn−1S) = Γcv(s′n−1S) and Ac(tvn−1H) = {α | (v, α) ∈ Acv(sn−1H)},
which implies Ac(t′vn−1S) = Ac(tvn−1H). A similar reasoning with
observations allows us to prove that Ao(t′vn−1S) ⊆ Ao(tvn−1H).

To conclude, it means that H′ fcS ′. The proof of the other way is
similar.

4.4 Comparisons with Other Relations

There are plenty of relations that have been established in order to
compare models in several fields such as model-based engineering and
model-based testing. This section reviews the main relations that exist,
discusses their potential use for human-machine interaction analysis and
compares them to the full-control property. For the remaining of this
section, the comparison will be made between a system model S =
〈SS ,Lc,Lo, s0S ,→S〉 and a mental model H = 〈SH ,Lc,Lo, s0H ,→H〉,
both represented as HMI-LTSs. In order to simplify the presentation, S
and H can also refer to their underlying LTSs in this section.

Most of the presented relations are used in model-based engineer-
ing where a given implementation Impl must be validated regarding a
specification Spec. Regarding human-machine interaction, Spec can be
related to mental model and Impl to system model. In that case, a
system model is viewed as an implementation of the mental model. The
implementation, namely the system model, is valid regarding a given
specification, namely the mental model, if all the operations that are
possible on the system are authorised by the specification. The specifica-
tion acts like an envelope of valid behaviour inside which all the valid
implementations lie.

The analysed relations can be split into two categories. The first ones
have been defined on classical LTSs and are referred to as being part of
the linear time – branching time spectrum [vG01]. The relations from
the second category are considering models where inputs and outputs
play a role [Tre08], and they are therefore closer to the work presented
in this thesis.

116 CHAPTER 4. FULL-CONTROL PROPERTY

4.4.1 Trace Preorder

The trace preorder [Hoa85] is the simplest relation that can be established
between two models. According to that relation, an implementation is
said to be valid if any of its traces belongs to the specification. In other
words, the set of traces of any implementation must be a subset of the
set of traces of the specification.

Definition 4.14 (Trace preorder). Given two LTSs S = 〈SS ,L, s0S ,→S〉
and H = 〈SH ,L, s0H ,→H〉, the trace preorder, denoted ≤tr, is defined
as follows:

S ≤tr H ⇐⇒ Tr(S) ⊆ Tr(H)

The full-control property allows the mental model to contain more
behaviour than the one contained in the system model. This is precisely
due to the flexibility brought by observations in the definition of full-
control. Generally speaking, the set of traces of a full-control mental
model is always a superset of the set of traces of the system model for
which it allows full-control.

Property 4.15. Given two HMI-LTSs S = 〈SS ,Lc,Lo, s0S ,→S〉 and
H = 〈SH ,Lc,Lo, s0H ,→H〉:

H fcS =⇒ S ≤tr H

Proof. Let σ ∈ L∗ be a trace that is supposed to belong to both Tr(S)
and Tr(H). By definition of full-control, it means that there would exist
two executions s0S

σ==⇒ sS and s0H
σ−−→ sH such that Ac(sS) = Ac(sH)

and Ao(sS) ⊆ Ao(sH). Consequently, any extension σa, with a ∈ L,
that belongs to Tr(S) would also belongs to Tr(H). By induction,
since the empty trace belongs to both Tr(S) and Tr(H), it means that
Tr(S) ⊆ Tr(H) and therefore S ≤tr H.

A contrario, trace preorder does not imply full-control as illustrated
by the example of Figure 4.16. In this example, the set of traces of S
is contained in the set of traces of H (that is, S ≤tr H), but it is not
the case that H allows full-control of S. Indeed, the two models do not
have the same set of possible commands after the empty trace, H has an
additional c2 command.

4.4. COMPARISONS WITH OTHER RELATIONS 117

A B
c1

(a) S.

A

B

C

c1

c2

(b) H.

Figure 4.16. Trace preorder between a mental and a system model does not imply
full-control property between both models: S ≤tr H and ¬(H fcS).

The additional traces that are present in the mental model all follow
the same pattern: σoσ′. They have an observation in them such that σ is
also in the system model, but not σo. Such traces can be in a full-control
mental model since, as already detailed, the full-control mental model
can have observations that will never occur on the system.

Definition 4.16 (Observation-Closure). Given an HMI-LTS S = 〈SS ,
Lc,Lo, s0S ,→S〉 and a set of traces T ∈ L∗, the observation-closure of
T , denoted Clo(T), is defined as:

Clo(T) = T ∪ {σoσ′ | σo /∈ T, o ∈ Lo, σ′ ∈ L∗}

Property 4.17. Given an fc-deterministic HMI-LTS S = 〈SS ,Lc,Lo,
s0S ,→S〉 and a deterministic non-divergent HMI-LTS H = 〈SH ,Lc,Lo,
s0H ,→H〉:

H fcS ⇐⇒ Tr(S) ⊆ Tr(H) and Tr(H) ⊆ Clo(Tr(S))

Proof. Let first suppose that H fcS; thus, by Property 4.15, it means
that Tr(S) ⊆ Tr(H). Let σ ∈ L∗ be a trace that belongs to both Tr(S)
and Tr(H). By definition of full-control, it means that there would exist
two executions s0S

σ==⇒ sS and s0H
σ−−→ sH such that Ac(sS) = Ac(sH)

and Ao(sS) ⊆ Ao(sH). Consequently, any extension σc, with c ∈ Lc, that
belongs to Tr(H) also belongs to Tr(S). Extensions σo, with o ∈ Lo,
that belongs to Tr(H) do not necessarily belong to Tr(S), but if it is not
the case, it does belong to Clo(Tr(S)), by definition of the observation-
closure. Therefore, by induction, since the empty trace belongs to both
Tr(H) and Tr(S), Tr(H) ⊆ Clo(Tr(S)).

118 CHAPTER 4. FULL-CONTROL PROPERTY

Let this time suppose that Tr(S) ⊆ Tr(H) and Tr(H) ⊆ Clo(Tr(S)).
Let σ ∈ L∗ be a trace that belongs to both Tr(S) and Tr(H), which
means that there would exist two executions s0S

σ==⇒ sS and s0H
σ−−→ sH .

Let the extension σa, with a ∈ L, belong to Tr(S). By hypothesis, it
also belongs to Tr(H). Consequently, A(sS) ⊆ A(sH). Let now the
extension σa, with a ∈ L, belong to Tr(H). By hypothesis, it belongs to
Clo(Tr(S)), which means that either it belongs to Tr(S), or not, in which
case a is an observation. Consequently, Ac(sH) ⊆ Ac(sS). Therefore,
by induction, since the empty trace belongs to both Tr(H) and Tr(S),
Ac(sS) = Ac(sH) and Ao(sS) ⊆ Ao(sH), that is, H fcS.

4.4.2 Testing Preorder

The testing preorder [DH84] adds a constraint to the trace preorder. It
takes into account the possibility for the models to deadlock. A state of
an LTS is said to refuse an action if that action is not possible in that
state. By extension, a state of an LTS is said to refuse a set of actions if
it refuses every action of the set. The refusal sets of a state of an LTS
are all the sets of actions that are refused by the state.

Definition 4.18 (Refusal sets). Given an LTS 〈S,L, s0,→〉, a state
s ∈ S refuses an action α ∈ L if and only if α /∈ A(s). A state s ∈ S
refuses a set of actions X ⊆ L, which is denoted s refusesX, if and only
if s refuses all the actions of X. The refusal set of a state s ∈ S for a
given trace σ ∈ L∗, denoted Ref(s, σ), is the set of refused sets of the
states s′ ∈ S that can be reached after the trace σ:

Ref(s, σ) = {X ⊆ L | ∃s′ ∈ (safterσ) : s′ refusesX}

For an implementation to be valid according to testing preorder,
it cannot refuse an action that is allowed by the specification, for any
execution trace. In other words, the refusal sets in the implementation
must be subsets of the refusal sets on the specification, for any sequence
of actions.

4.4. COMPARISONS WITH OTHER RELATIONS 119

Definition 4.19 (Testing preorder). Given two LTSs S = 〈SS ,L, s0S ,
→S〉 and H = 〈SH ,L, s0H ,→H〉, the testing preorder, denoted ≤te, is
defined as follow:

S ≤te H ⇐⇒ ∀σ ∈ L∗ : Ref(s0S , σ) ⊆ Ref(s0H , σ)
⇐⇒ ∀σ ∈ L∗ : ∀X ⊆ L : s0S afterσ refusesX

=⇒ s0H afterσ refusesX

This relation could be useful to compare a mental model against
a system model. The testing preorder requires that the system model
cannot refuse an action that is possible according to the mental model.
In an HMI perspective, it would mean that at any time during the
interaction, there can be more actions in the system model than those
which are present in the mental model. If the action is a command,
it would mean that the operator does not need to know exactly all
the possible ones at any time during the interaction, which does not
correspond to what is captured by full-control, but is a sensible alternative.
The situation is different if the action is an observation since they are
controlled by the machine. It would mean that the user may observe
things that would just be meaningless to him and that will get him
surprised.

The full-control property and the testing preorder are not directly
related at all, as shown by the two following examples referring to
Figure 4.17:

• H1 fcS and ¬(S ≤te H1)
The mental model H1 does allow full-control of the system S, the
additional behaviour that is present in the mental model is related
to the o1 observation, which is not an issue with respect to the full-
control property. However it is not the case that S ≤te H1, since for
the empty trace: Ref(s0S , ε) = {∅, {o1}} 6⊆ Ref(s0H1

, ε) = {∅}.
• S ≤te H2 and ¬(H2 fcS)
In this second example, S ≤te H2. Indeed:

– Ref(s0S , ε) = {∅} ⊆ Ref(s0H2
, ε) = {∅};

– Ref(s0S , c1) = {∅} ⊆ Ref(s0H2
, c1) = {∅};

– and Ref(s0S , c
∗
1) = ∅ ⊆ Ref(s0H2

, c∗1) = {∅}.

120 CHAPTER 4. FULL-CONTROL PROPERTY

But H2 does not allow full-control of S, since after the sequence α,
the system and mental model reach two states with different sets
of possible commands: Ac(BS) = ∅ 6= Ac(AH2) = {c1}.

A B
c1

(a) S.

A B
c1

o1

(b) H1

A c1

(c) H2.

Figure 4.17. Full-control property and testing preorder are not equivalent:
¬(H1 fcS =⇒ S ≤te H1) and ¬(S ≤te H2 =⇒ H2 fcS).

4.4.3 Conformance

The testing preorder requires that the implementation agrees on deadlocks
with the specification for any trace. The conformance relation [Bri88]
is the same than the testing preorder, except that the condition on
deadlocks is only to be verified on the traces of the specification.

Definition 4.20 (Conformance relation). Given two LTSs S = 〈SS ,L,
s0S ,→S〉 and H = 〈SH ,L, s0H ,→H〉, the conformance relation, denoted
conf , is defined as follow:

S conf H ⇐⇒ ∀σ ∈ Tr(H) : Ref(s0S , σ) ⊆ Ref(s0H , σ)

The intuition is the same than the one of testing preorder, except
that only those traces belonging to the specification are considered. In
an HMI perspective, it would mean that only for the execution that
the human is likely to perform, the system cannot refuse an action that
is present in the mental model. Said in the other way, it would mean
that no matter what the operator executes, it is always accepted by the
system.

4.4. COMPARISONS WITH OTHER RELATIONS 121

Input-Output Conformance

The conformance relation has been extended in order to take into account
input and output actions. The input-output conformance relation has
been defined on IOTS (Definition 3.17 on page 84). One particularity
of the relation is that it takes into account quiescent states, which are
states from which there are no outputs.

Definition 4.21 (Quiescent state and traces). Given an IOTS M =
〈S,Lc,Lo, s0,→〉, a state s ∈ S is a quiescent state, which is denoted
δ(s), if there is no enabled output or outgoing τ -transition from that
state, that is, δ(s) ⇐⇒ ∀α ∈ Lo ∪ {τ} : s 6 α−−→.

The set of quiescent traces of M is the set of traces that lead to a
quiescent state. It is defined and denoted as QTr(M) = {σ ∈ L∗ | ∃s′ ∈
(s0 afterσ) : δ(s′)}.

The hypothesis is that making no observation is in some sense an
observation about the system. Since quiescence is a kind of observation,
it is denoted as the δ action (with δ /∈ L ∪ {τ}). Given that additional
observation, it is possible to explicitly identity quiescent states by defining
suspension traces.

Definition 4.22 (Suspension traces). Given an IOTSM = 〈S,Lc,Lo,
s0,→〉, it is extended to the IOTS Sδ = 〈S,Lc,Lo ∪ {δ}, s0,→ ∪ →δ〉
where →δ= {s

δ−−→ s | s ∈ S and δ(s)}.
The set of suspension traces of S is the set of traces of Sδ. It is

defined and denoted as STr(M) = {σ ∈ L∗δ | s0
σ==⇒}.

For an implementation to be input-output conforming to a specifica-
tion, it cannot produce an output that is not foreseen according to the
specification.

Definition 4.23 (Input-output conformance relation). Given two IOTSs
Impl = 〈SI ,Lc,Lo, s0I ,→I〉 and Spec = 〈SS ,Lc,Lo, s0S ,→S〉, the input-
output conformance relation, denoted ioco, is defined as follow:

Impl iocoSpec ⇐⇒ ∀σ ∈ STr(Spec) :
out(Impl afterσ) ⊆ out(Specafterσ)

where out(S) =
⋃
s∈S

(
Γo(s) ∪ {δ | δ(s)}

)
.

122 CHAPTER 4. FULL-CONTROL PROPERTY

The ioco relation does not impose anything on input actions, which
makes it different from the full-control property. Indeed, according to the
ioco relation, commands may be available in the implementation even if
not present in the specification. The same results that those obtained
with the testing preorder are still valid for ioco (Figure 4.17):

• Impl iocoSpec, but Impl does not allow full-control of Spec, since
they do not have the same set of possible commands for the empty
trace σ = ε: Ac(AI) = {α} 6= Ac(AS) = ∅.
• H allows full-control of Impl, but lts(H) io/co Impl since they do

not agree on outputs for the empty trace σ = ε: out(AH) = {β} 6⊆
out(AI) = {δ}.

Chapter 5
Generating Full-control

Conceptual Models

This chapter proposes three approaches to automatically generate min-
imal full-control conceptual models. Section 5.1 states precisely the
minimal full-control conceptual model generation problem and discusses
characteristics of its solution. Section 5.2 presents Three-Valued Deter-
ministic Automata (3DFAs) and a trace characterisation of the full-control
property based on 3DFAs. The three next sections each presents an
algorithm to solve the generation problem. Firstly, Section 5.3 presents a
direct approach based on the 3DFA characterisation. Then, Section 5.4
presents an algorithm based on a reduction approach inspired by the
work of Degani et al. [HD07] where states of the system model are merged
together to build the full-control conceptual model. Finally, Section 5.5
follows with a third algorithm based on an active learning approach
where the full-control conceptual model is built incrementally. Last but
not least, Section 5.6 compares the proposed approaches and identifies
the advantages and disadvantages of each approach.

5.1 The Minimal Full-control Conceptual Model Gen-
eration Problem

As introduced in the general overview in Chapter 2.1.2 on page 14, a
distinction is made between the notions of mental model and conceptual
model. Whereas the mental model corresponds to the model that the
operator has in his mind and that can evolve with time, conceptual
model is used in this thesis to refer to a model that has been generated
based on the system model. The conceptual model can be seen as a kind
of perfect mental model that if used by the operator, guarantees some

123

124 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

properties. In this work, the focus is on conceptual models that allow
full-control of the system model.

Generating a conceptual model from a system model can serve various
purposes, including the analysis of properties of the system such as its
complexity or usability, and the generation of training materials. Those
different uses of a conceptual model are presented in details in Chapter 6.
The minimal full-control conceptual model generation problem consists in
finding, given a system model, a conceptual model that allows full-control
of it and which is minimal, in terms of the number of states.

Definition 5.1 (The minimal full-control conceptual model generation
problem (MFCCG)). Given an HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉 rep-
resenting a system model, the minimal full-control conceptual model gener-
ation problem consists in finding an HMI-LTS A = 〈SA,Lc,Lo, s0A ,→A〉
representing a conceptual model such that:

1. A fcS
2. ∀A′ = 〈S′A,Lc,Lo, s′0A ,→

′
A〉 : A′ fcS =⇒ |SA| ≤ |S′A|

The intuitive idea to generate a full-control conceptual model is to
identify states of the system model whose behaviours are similar. Similar
behaviours can be seen as equivalent from the point of view of the user.
Differences in the behaviours can be ignored by the user without affecting
his controllability of the system. Those similar states can be merged
together to reduce the system model and to get a simplified one that can
serve as a conceptual model.

This idea is pretty much the same as the one lying behind the
operationally deterministic LTS determinisation algorithm presented
in [HV06] and illustrated by Figure 5.1. The system model of Figure 5.1(a)
is not (structurally) deterministic, but is operationally deterministic
according to Definition 3.8 on page 66. Indeed, states A and B both
only have one enabled action and triggering it leads to states with the
same behaviour. The model of Figure 5.1(b) is a reduced version of that
system model, where states A and B have been merged together. It is not
the most reduced model that can be obtained since states C and D also
exhibit the same behaviour; they and can thus also be merged together.

The approach of [HV06] cannot be directly applied for the MFCCG
problem. The fact that the mental model can have more observations than

5.1. MINIMAL FULL-CONTROL CONCEPTUAL MODEL GENERATION 125

A

B C

D

τ

c1

c1

c2

c2

(a) A system model S.

{A,B}

{C}

{D}

c1

c1

c2 c2

(b) A reduced version of S.

Figure 5.1. A system model that is operationally deterministic and a corresponding
reduced model where states A and B have been merged together. The reduced model
is not the minimal once and can thus be further reduced.

those that can actually occur on the system, according to the full-control
property, is not considered by their approach. Figure 5.2 illustrates
that issue. The system model of Figure 5.2(a) is not operationally
deterministic since the empty trace can lead to several states with different
behaviours. The system cannot be reduced with the approach of [HV06]
but, as shown on Figure 5.2(b), there does exist a reduced full-control
conceptual model for it.

A

B C

D

τ

o1

o2

(a) A system model S.

S0 o1, o2

(b) The minimal
full-control concep-
tual model for S.

Figure 5.2. A system model that is not operationally deterministic and cannot be
reduced with the approach of [HV06], but for which there exists a reduced full-control
conceptual model.

5.1.1 Unicity

Given a system model, there does not always exist only one single possible
minimal full-control conceptual model for it. Figure 5.3 shows an example
of a system model for which there exists two different minimal full-control

126 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

conceptual models. State C is fc-similar to both states B and D. However,
states B and D are not fc-similar, because they do not have the same
sets of possible commands after the execution of 〈o1〉 trace. This is a
consequence of the fact that the fc-similarity relation is not transitive.
The first possible full-control minimal conceptual model (on the left) is
obtained by merging together states B and C, whereas states C and D
have been put together for the second one (on the right).

A

B

C

D

E

F

c1

c2

c3

o1

o1

c4

c5

(a) A system model S.

S0

S1

S2

S3

S4

c1, c2

c3

o1

o1

c4

c5

(b) A possible minimal full-control con-
ceptual model for S.

S0

S1

S2

S3

S4

c1

c2, c3

o1

o1

c4

c5

(c) Another possible minimal full-
control conceptual model for S.

Figure 5.3. Example of a system model for which there exists two possible different
minimal full-control conceptual models.

It is possible to find all the minimal full-control conceptual models, by
enumerating them all. The time taken to generate all of them is of course
dramatically increased. The MFCCG problem does not require to find
all the possible solutions, algorithms proposed in this thesis only produce
one conceptual model as a result. It is however possible to represent all
the possible solutions of the MFCCG problem by a single model, using
three-valued deterministic finite automata (3DFA). It is only a single
representation of the solutions, but if a particular solution has to be
provided, it would requires time to compute one from the 3DFA. Those
considerations are discussed further in Section 5.2.

5.2. THREE-VALUED DETERMINISTIC FINITE AUTOMATA 127

5.1.2 Generation Algorithms

Three different algorithms to automatically generate a minimal full-
control conceptual model from a given system model are proposed in this
thesis. Figure 5.4 shows a global view of the three proposed algorithms,
that all start with a system model S and generate a minimal full-control
conceptual model H. The first one of the top is the 3DFA-based, the
middle one is the reduction-based and the bottom one is the learning-
based algorithm. Several operations are used by more than one algorithm,
including DFA-minimisation and τ∗aτ∗-completion.

S
(HMI-LTS)

C
(3NFA)

det(C)
(3DFA)

H
(HMI-LTS)

Sτ
(HMI-LTS)

det(S),Sτ

(HMI-LTS)
C

(3DFA)

3NFA-completion

determinisation

DFA-minimisation

τ∗aτ∗-completion fc-reduction

determinisation,
τ∗aτ∗-completion

fc-learning DFA-minimisation

Figure 5.4. Steps of the three generation algorithms proposed in this thesis.

None of the algorithms makes the hypothesis that the input system
model is fc-deterministic. They can all detect whether there is an
fc-determinism issue, while processing the system model. However, fc-
determinism can be checked before running the generation algorithms,
in which case some of three proposed algorithms can be simplified. This
chapter describes the general version of the algorithms, without assuming
fc-deterministic system models.

5.2 Three-Valued Deterministic Finite Automata

As introduced in Chapter 3 on page 59, labelled transition systems (LTS)
are very close to deterministic finite automata (DFA). The difference is
that DFAs are used to represent languages, that is, sets of finite words
over a given alphabet.

128 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

Definition 5.2 (Deterministic Finite Automaton (DFA)). A Determin-
istic Finite Automaton (DFA) A is a tuple 〈Σ, S, s0, δ, Acc〉 where Σ is
a finite set of labels (the alphabet), S is a finite set of states, s0 ∈ S is
the initial state, δ : S × Σ→ S is the transition function and Acc ⊆ S is
the set of accepting states.

Figure 5.5(a) shows a graphical representation of a DFA example.
That example represents the language consisting of words made of a
finite repetition of 〈ab〉 (including the empty word). The words of the
language are those satisfying the following regular expression: (ab)∗.

Not all the transitions are shown on the figure to keep is readable.
Indeed, every state of a DFA must have exactly one transition for every
label of the alphabet. The missing transitions are all leading to one
rejecting state from which everything is rejected. Figure 5.5(b) shows
the complete version of the DFA example.

A B C
a

b

a

(a) DFA example (simplified version).

A B C

D

a b

a
a

b b

a, b, c
(b) DFA example (complete version).

Figure 5.5. Graphical representation of a DFA example. States with double lines are
accepting states and those with simple lines are rejecting states.

For DFAs, the notion of words is similar to the notion of traces for
LTSs. A word is accepted by a DFA if executing it leads to an accepting
state, otherwise the word is rejected. The language recognised by a given
DFA is the set of words that are accepted by it.

Definition 5.3 (Language recognised by a DFA). Given a DFA A =
〈Σ, S, s0, δ, Acc〉, the language that it recognises, denoted L(A), is defined
as L(A) = {σ ∈ Σ∗ | s ∈ Acc,where s0

σ−−→ s}.

In the sequel, the set of words that are accepted by a DFA A is
denoted LAcc and corresponds to the recognised language L(A). The set
of words that are rejected is denoted LRej and corresponds to Σ∗ \L(A).

5.2. THREE-VALUED DETERMINISTIC FINITE AUTOMATA 129

DFAs can be extended so that their sets of states are partitioned into
three different disjoints sets. Three-valued deterministic finite automaton
(3DFA) [CFC+09] is a variant of classical DFA where each state is either
accepting, rejecting or can also be classified as a don’t care state. That
third category is used to identify states that can act either as accepting
or rejecting state. Intuitively, it means that the same don’t care state
can sometimes accept and sometimes reject words.

Definition 5.4 (Three-Valued Deterministic Finite Automaton (3DFA)).
A Three-Valued Deterministic Finite Automaton (3DFA) C is a tuple
〈Σ, S, s0, δ, Acc,Rej,DC〉 where Σ is a finite set of labels (the alphabet),
S is a finite set of states, s0 ∈ S is the initial state and δ : S × Σ→ S
is the transition function. The set of states S is partitioned into three
disjoint sets: Acc is the set of accepting states, Rej is the set of rejecting
states and finally DC is the set of don’t care states.

Figure 5.6 shows a graphical representation of a 3DFA example. The
example is an extension of the DFA example of Figure 5.5(a). With
that 3DFA example, it is possible to have a finite sequence of c, between
repetitions of the 〈ab〉 sequence, to be accepted or rejected. Again, not
all the transitions are shown on the figure to keep it readable. Just as
it is done with DFAs, missing transitions are leading to a state from
which everything is rejected. For example, the words 〈ab〉 and 〈abcccab〉
are accepted; the words 〈a〉 and 〈abccca〉 are rejected; and finally the
words 〈abc〉 and 〈abccc〉 are don’t care words; they can therefore either
be accepted or rejected.

A B C

D

a b

a

ca

c

Figure 5.6. Graphical representation of a 3DFA example. States depicted as squares
are don’t care states.

130 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

5.2.1 Consistent DFA

A 3DFA encodes a set of DFAs. A DFA is said to be consistent with
a 3DFA if the words that it accepts and rejects are also accepted and
rejected by the 3DFA, or are don’t care words. Said in the other way, it
means that all the words that are accepted (resp. rejected) by the 3DFA
must also be accepted (resp. rejected) by the DFA.

Definition 5.5 (Consistent DFA). Given a 3DFA C = 〈Σ, S, s0, δ, Acc,
Rej,DC〉, a DFA A = 〈Σ, SA, s0A , δA, AccA〉 is said to be consistent with
C if and only if for any σ ∈ Σ∗:

• σ ∈ LAcc =⇒ σ ∈ LAccA
• σ ∈ LRej =⇒ σ ∈ LRejA

Figure 5.7 shows a 3DFA example with a DFA example that is
consistent with it. This example illustrates a situation where a don’t
care state can act both as an accepting or a rejecting state, depending
on the word that ends on it. For example, the 〈a〉 don’t care word is
accepted by the DFA, but the 〈a, b, a〉 word don’t care is rejected by the
DFA.

A B
a

b

(a) A 3DFA example C.

A B C D
a b

a

b

(b) A DFA example that is consistent with C.

Figure 5.7. A 3DFA example with one possible consistent DFA for it.

A 3DFA C characterises a a set of languages, namely the languages
recognised by the DFAs consistent with C. Among all the consistent
DFAs, two are of particular interest as they are acting as lower and upper
bounds for the languages characterised by the 3DFA. The C+ DFA is
the one obtained by considering the don’t care states as accepting states.
Similarly, the C− DFA is obtained by considering the don’t care states as
rejecting states. The language of any DFA consistent with C lies between
the languages recognised by C− and C+.

5.2. THREE-VALUED DETERMINISTIC FINITE AUTOMATA 131

Property 5.6 (3DFA language characterisation). Given a 3DFA C = 〈Σ,
S, s0, δ, Acc,Rej,DC〉, and the two DFAs C+ = 〈Σ, S, s0, δ, Acc ∪ DC〉
and C− = 〈Σ, S, s0, δ, Acc〉, a DFA A is consistent with C if and only if:

L(C−) ⊆ L(A) ⊆ L(C+)

Figure 5.8 illustrates the language characterisation of 3DFAs. A
given 3DFA partitions the set of all possible words over its alphabet into
three disjoint subsets. Any DFA that is consistent with the 3DFA is a
subset of Σ∗ that must contain completely LAcc and any subset of LDC .
The dashed line on Figure 5.8 delimitates one possible consistent DFA.

Σ∗

LRej LDC LAcc

Figure 5.8. A 3DFA partitions the set of words over its alphabet into three disjoint
subsets. Any DFA that is consistent with the DFA accepts all the words of LAcc, and
can accept any subset of the words of LDC . The set marked out with a dashed line
represents one possible consistent DFA.

5.2.2 DFA-minimisation

The DFA-minimisation problem consists in finding a DFA that is con-
sistent with the 3DFA, and which is minimal in terms of the number
of states. One possible algorithm to solve that problem is the one used
by Degani et al. [HD07] and which originally comes from Paull and
Unger [PU59]. The idea of the algorithm is to compute sets of states
that are compatible, and then to merge compatible states together in
order to get a reduced DFA. The particularity is that states from the
DC set can be compatible with both Acc states or Rej states, although
states from Acc and Rej cannot be compatible.

Compatible Pairs

The first step of the algorithm is to find the pairs of states that are
compatible. A practical way to find those pairs of compatible states is to

132 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

build a so-called implication table as shown on Figure 5.9(b). The table
encodes pairwise state compatibilities for the 3DFA of Figure 5.9(a).
The cells of the table are either compatible (empty cell), incompatible
(crossed cell) or are marked with a set of pairs of states.

The implication table is initialised by marking all the cells (X,Y)
where one state is in Acc and the other one in Rej as incompatible.
Then, for all the other pairs of states (X,Y), the cell is marked with all
the pairs of states (X ′, Y ′) such that there exists a coupled transition
(X,Y) α−−→ (X ′, Y ′) that is not a loop and such that X ′ 6= Y ′.

A

B

C

D

E

F

G

a

b

b

a

a b

a

b

a b
a, b

a, b

(a) A 3DFA example C.

G

F

E

D

C

B

A B C D E F

BE
CD

BE
DG

BE
DF

BG
DG

CG

CF

EG
CG

FG

DE
GF

CG

EG EG
FG

DG
FG

DG
FG

(b) The initial implication table for C.

Figure 5.9. A 3DFA example with the initial implication table containing pairwise
compatibilities that are used to compute the sets of compatibles.

The implication table then goes through several iterations until it
reaches a fix point. At each step, each cell containing some pairs of
states is examined. If there is any pair leading to an incompatible pair,
the cell becomes incompatible. If all the pairs are leading to compatible
pairs, the cell becomes compatible. In any other case, the cell remains
to be examined for the next iteration. Figure 5.10 shows the second and
third iterations that lead to the fix point. Algorithm 6 in Appendix C
computes the set of pairs of compatible states.

Maximal Compatibles

Once the pairwise compatibilities have been computed, the next step of
the DFA-minimisation consists in finding the sets of compatible states,
simply called the compatibles. A compatible is a set of states that are

5.2. THREE-VALUED DETERMINISTIC FINITE AUTOMATA 133

G

F

E

D

C

B

A B C D E F

BG
DG

CG

CF

EG
CG

CG

EG EG
FG

DG
FG

DG
FG

(a) The second iteration for the impli-
cation table. Cells leading to (B,E) or
(D,E) are marked incompatible, the
cell leading to (F,G) becomes compat-
ible and the other not compatible cells
are still to be decided.

G

F

E

D

C

B

A B C D E F

(b) The third iteration does not
change anything to the implication ta-
ble, which make it stable. All the cells
that were still to be decided becomes
compatible.

Figure 5.10. The two iterations leading the implication table to a fix point, for the
example of Figure 5.9.

all compatible to each other. The idea of that step is to maintain a
list of sets that are supposed to be compatibles. Running through the
implication table from the left to the right, and examining it column by
column, provides information about how the list can be updated so as to
finally obtain the list of compatibles.

The idea is to start with a list that only contains one set with all the
states of the 3DFA. For each examined column j of the implication table,
all the sets of the list containing j are considered. Each of those sets
is replaced by two sets: the original set without j and the original set
from which the states that are incompatibles in the examined column
are removed. After each iteration, the sets of states that are subset of
another set from the list are eliminated. Algorithm 7 on Appendix C
computes the set of compatibles.

The last step of the DFA-minimisation consists in finding the minimal
closed set of compatibles. That set must cover entirely the states of
the 3DFA and must also be closed, which intuitively means that all the
transitions going from any state of one compatible must lead to one
another unique compatible for a given action. The solution may not
be unique, and in order to get the one with the minimal number of
compatibles, all the possible solutions have to be enumerated.

134 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

The successive iterations to find the compatibles for the example of
Figure 5.9 are:

1.
{
{BCDEFG}, {AG}

}
2.
{
{CDEFG}, {BCDG}, {AG}

}
3.
{
{DEFG}, {CDFG}, {BCDG}, {AG}

}
4.
{
{EFG}, {CFG}, {BCDG}, {AG}

}
5.
{
{EFG}, {CFG}, {BCDG}, {AG}

}
There is thus a total of four compatibles. One possible solution to

cover all the states of the 3DFA is to chose the three following compatibles:
{AG}, {BCDG} and {EFG}. That choice is not closed, since for example,
action b outgoing from {BCDG} can either lead to {EFG} or loop on
{BCDG}. Therefore, the minimal closed set of compatibles just contains
all the four compatibles. The corresponding minimal consistent DFA is
shown on Figure 5.11.

{AG} {BCDG}

{CFG}

{EFG}

a, b

b

a
a

b

a
b

Figure 5.11. Minimal consistent DFA for the 3DFA example of Figure 5.9(a).

5.2.3 Trace Characterisation of Full-control Property

The set of conceptual models that allow full-control of a given system
model can be represented as a single 3DFA. Property 4.17 proposed in
Chapter 4 on page 117 relates the full-control property to a relation
between the sets of traces of the system and the conceptual models.
Given an fc-deterministic system model, it is possible to build a 3DFA
encoding all the possible conceptual models that allow full-control of it.
All the traces of the system model must be accepted by the 3DFA. From

5.2. THREE-VALUED DETERMINISTIC FINITE AUTOMATA 135

those accepted traces, two scenarios are possible. Either those accepted
traces are extended with a command that is not possible for one of the
underlying execution in the system, and then, the extended traces must
be rejected by the 3DFA. Or those accepted traces are extended with an
observation that is not possible on all the underlying executions, in which
case the extended traces are don’t care traces. Figure 5.12(a) illustrates
that characterisation of the traces of an HMI-LTS system model as a
3DFA. It can be observed that whenever a trace is in Rej (resp. in DC),
any extension of it remains in Rej (resp. DC).

Acc

Rej

Dont

c

o

∗

∗

(a) Trace characterisation as 3DFA.

Tr(S)
Tr(H)

Clo(Tr(S))

(b) Relation between full-control
and trace preorder.

Figure 5.12. Traces characterisation of full-control conceptual models.

Definition 5.7 (3DFA characterisation of full-control conceptual mod-
els). Given an fc-deterministic HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉, all
the HMI-LTSs that allow full-control of the system can be represented
as a single 3DFA C(S) = 〈Σ, S, s0, δ, Acc,Rej,DC〉 such that, given a
sequence σ ∈ Σ∗ and an action α ∈ Σ, we have ε ∈ LAcc and:

• σα ∈ LRej if either σ ∈ LRej or σ ∈ LAcc, α ∈ Lc and ∃s ∈
(s0S afterσ) such that α /∈ Ac(s);
• σα ∈ LAcc if either σ ∈ LAcc, α ∈ Lc and ∀s ∈ (s0S afterσ) : α ∈
Ac(s) or σ ∈ LAcc, α ∈ Lo and ∃s ∈ (s0S afterσ) : α ∈ Ao(s);
• σα ∈ LDC if either σ ∈ LDC or σ ∈ LAcc, α ∈ Lo and ∀s ∈

(s0S afterσ) : α /∈ Ao(s).

As a reminder, an HMI-LTS H allows full-control of a system S if
and only if Tr(S) ⊆ Tr(H) and Tr(H) ⊆ Clo(Tr(S)), as illustrated
by Figure 5.12(b). That property means that all the traces of S must
be present in H and that all the traces of H must be contained in

136 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

the observation-closure of the traces of S. That is precisely the kind
of characterisation that is made possible with the 3DFA, with Tr(S)
corresponding to the accepted traces, Clo(Tr(S)) being the rejected
traces and finally Clo(Tr(S)) \Tr(S) being the don’t care traces.

Theorem 5.8. Given an fc-deterministic HMI-LTS S = 〈SS ,Lc,Lo, s0S ,
→S〉, a deterministic and non-divergent HMI-LTS H = 〈SH ,Lc,Lo, s0H ,
→H〉 and the 3DFA C(S) = 〈Σ, S, s0, δ, Acc,Rej,DC〉:

H fcS ⇐⇒ LAcc ⊆ Tr(H) ⊆ LRej

Proof. Let us first suppose that H fcS; thus, by Property 4.17, it
means that Tr(S) ⊆ Tr(H) and Tr(H) ⊆ Clo(Tr(S)). Moreover, it
implies that S is fc-deterministic, and so LAcc = Tr(S). Consequently,
LAcc ⊆ Tr(H). As a reminder, Clo(Tr(S)) = Tr(S) ∪ {σoσ′ | σo /∈
Tr(S), o ∈ Lo and σ′ ∈ L∗}, which corresponds to LRej = LAcc ∪ LDC
and consequently Tr(H) ⊆ LRej .

5.3 3DFA-based Approach

As presented in the previous chapter, Theorem 4.6 states that if a system
model is fc-deterministic, its determinisation is a full-control conceptual
model for it. However, the obtained conceptual model is not minimal
in the general case. This section presents an algorithm that is based on
the determinisation of a completed version of the system model, that
built a 3DFA from which a minimal consistent DFA can be computed.
That DFA corresponds to a minimal full-control conceptual model for
the system model. The 3DFA-based generation algorithm is composed of
the three steps summarised by Figure 5.13.

S
(HMI-LTS)

C
(3NFA)

det(C)
(3DFA)

H
(HMI-LTS)

3NFA-completion determinisation DFA-minimisation

Figure 5.13. Three steps of the 3DFA-based minimal full-control conceptual model
generation algorithm.

5.3. 3DFA-BASED APPROACH 137

The first step of the algorithm consists in completing the system
model so as to make explicit the 3DFA characterisation of its full-control
conceptual models. For that, two states are added to the system model:
one error state Π and one don’t care state ∆. Those two states have
loop transitions for every action of the alphabet. Transitions are added
for the states of the system model so that every action of the alphabet
is possible for all the states. Missing commands lead to the error state
and missing observations lead to the don’t care state. The model that is
obtained is not a 3DFA since it can exhibit some non-determinism, it is
in fact a three-valued non-deterministic finite automaton (3NFA).

Definition 5.9 (HMI-LTS 3NFA-completion). Given an fc-deterministic
HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉, its 3NFA-completion is the 3NFA
C = 〈Lc ∪ Lo, SS ∪ {Π,∆}, s0S , δ, SS , {Π}, {∆}〉 where:

δ = →S ∪{(Π, a,Π) | a ∈ L} ∪ {(∆, a,∆) | a ∈ L}

∪{(s, c,Π) | c ∈ Lc \Ac(s)} ∪ {(s, o,∆) | o ∈ Lo \Ao(s)}

Algorithm 8 in Appendix C shows the 3NFA-completion algorithm.
Figure 5.14 shows an HMI-LTS system model example, along with its
3NFA-completion. The 3NFA-completed system model clearly exhibits
the 3DFA characterisation of all the full-control conceptual models for
the system model, as illustrated above on Figure 5.12.

A

B C

D

τ

c1

o2

c1

o1

(a) A system modelM.

A

B C

D Π

∆

τ

c1

o2

c1

o1

o1
o1

o1, o2

o2 c1

c1

*

*

(b) The 3NFA-completion ofM.

Figure 5.14. An HMI-LTS system model example and its 3NFA-completion.

Once the system model has been 3NFA-completed, the second step
of the algorithm consists in determinising it. That operation can be
done with the classical subset construction presented in Section 3.1.5,

138 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

slightly adapted to handle 3NFA. The model that is produced after
this step is thus a 3DFA that contains exactly the same traces than
the 3NFA-completed system model, by definition of the determinisation.
Algorithm 9 in Appendix C shows the 3NFA determinisation algorithm.

Figure 5.15 shows the determinisation of the 3NFA-completed system
model example. During the determinisation, states containing the Π
state are considered as Rej states and states containing at least one
accepting state are considered as Acc states.

{A,B} {∆}

{D,C}

{D}

{Π}

{C,∆}

{Π,∆}

{C}

o1

c1

o2

o1

c1

o2
c1

o2

o1

c1

o1,
o2

c1

* * *

o1, o2

Figure 5.15. The determinisation of the 3NFA-completed system model example of
Figure 5.14(b).

The last step of the algorithm is the minimisation of the obtained
3DFA, in order to get a minimal consistent DFA. The minimal DFA
can be obtained with the algorithm presented in Section 5.2.2. Before
minimisation, all the error states of the determinised 3NFA are merged
together as a single error state Π, which results in a model with one
error state and one don’t care state. Once minimised, the error state is
simply removed to get a minimal full-control conceptual model which is
an HMI-LTS.

Figure 5.16(a) shows the final implication table for the example. The
DFA-minimisation algorithm then produces three compatibles that is
also the set of maximal compatibles from which the minimal consistent
DFA shown on Figure 5.16(b) is produced.

Correctness, Termination and Time Complexity

Given that the system model is fc-deterministic, the 3DFA-based algo-
rithm is guaranteed to find the minimal full-control conceptual model.

5.4. REDUCTION-BASED APPROACH 139

{Π}

{∆}

{C,∆}

{C}

{D,C}

{D}

{A
,B
}

{D
}

{D
,C
}

{C
}

{C
,∆
}

{∆
}

(a) Final implication table.

{
{A,B}

} {
{C,∆}, {C},
{D,C}, {D}

}

{
{Π}
}

c1

o2

o1

o1

c1

(b) Minimal consistent DFA.

Figure 5.16. Minimisation of the 3DFA obtained after determinisation of the 3NFA-
completed system model, for the example of Figure 5.14(a).

Property 5.7 provides the 3DFA characterisation of full-control concep-
tual models. The 3NFA-completion algorithm exactly builds a 3NFA
that satisfies this characterisation. Indeed, all the traces of the system
model are kept, while missing traces are either added to be rejecting or
don’t care traces, according to the characterisation. The second step of
the algorithm is a determinisation that keeps the traces. The resulting
3DFA has therefore all the traces characterising full-control conceptual
models. Finally, the DFA-minimisation step is guaranteed to explore all
the possible consistent DFA and to find the minimal one.

The time complexity of the algorithm is exponential in the number
of states of the system model. Indeed, the determinisation and DFA-
minimisation steps both correspond to an exponential time algorithm.

5.4 Reduction-based Approach

A full-control conceptual model can be automatically generated for fc-
deterministic system models using an algorithm based on a variant of the
Paige-Tarjan algorithm [PT87] that is used to solve the coarsest partition
refinement problem. This section presents the reduction-based generation
algorithm. In the general case, the proposed algorithm will not be able
to compute the minimal full-control conceptual model, but will get one
that is as small as possible. The algorithm is composed of two steps, as
illustrated by Figure 5.17.

140 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

S
(HMI-LTS)

H
(HMI-LTS)

Sτ
(HMI-LTS)

τ∗aτ∗-completion fc-reduction

Figure 5.17. Two steps of the reduction-based minimal full-control conceptual model
generation algorithm.

5.4.1 Eliminating τ -transitions

The first step of the reduction-based approach is to eliminate τ -transitions
from the system model, while keeping the same behaviour. A first
way to eliminate τ -transitions is to build a new LTS whose transition
relation makes explicit the weak transitions. This involves the standard
τ∗aτ∗-completion construction [KS83] which computes the reflexive and
transitive closure with respect to τ ’s. That construction is also referred
to as the normal-form with respect to observation equivalence in [FM91].

Definition 5.10 (τ∗aτ∗-completion). Given an LTSM = 〈S,L, s0,→〉,
its τ∗aτ∗-completion is an LTS defined as Mτ = 〈S,L, s0,→τ 〉, with
→τ= {(s, a, s′) | s τ∗aτ∗−−−−→ s′, a ∈ L ∪ {τ}}.

The τ∗aτ∗-completion makes directly available the sets of possible
actions for all the states of the LTS, that is, Γ(s) = A(s). Another
possible way to eliminate τ -transitions from an LTS is with the τ∗a-
completion. A difference between the two kinds of completion is that
the latter does not make directly available the set of post-states, that is,
states reachable with one single strong transition.

Definition 5.11 (τ∗-completion). Given an LTSM = 〈S,L, s0,→〉, its
τ∗a-completion is an LTS defined as Mτ∗ = 〈S,L, s0,→τ∗〉 and whose
transition relation is defined as →τ∗= {(s, a, s′) | s τ∗a−−−→ s′}.

Figure 5.18 shows the two kinds of completion on a simple LTS. In
general, the τ∗aτ∗-completion results in an addition of more transitions
than the τ∗a-completion. Another difference between the two completions
is that the τ -transitions can be removed from the first one while preserving
the set of reachable states, which is not the case with the τ∗a-completion.

5.4. REDUCTION-BASED APPROACH 141

A B C D
a τ b

a

b

(a) τ∗aτ∗-completion.

A B C D
a τ b

b

(b) τ∗a-completion.

Figure 5.18. Two examples illustrating the elimination of τ -transitions.

5.4.2 Partition Refinement

Given an HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉 representing a system
model, the reduction-based algorithm works by iteratively refining an
initial partition of the states SS until that partition becomes stable. The
elements of that stable partition are the states of the reduced model
which is a full-control conceptual model. The τ -transitions are first
removed from the system model, completed with the τ∗aτ∗-completion.
For the remainder of this section, system model will refer to the model
without τ -transitions.

Partition

A partition of the states of a system model S is a set P = {Bi ⊆ SS |⋃
iBi = SS and Bi∩Bj = ∅ when i 6= j}. The elements Bi of a partition

are called blocks of the partition. Each state s ∈ SS belongs to one block
of the partition P . The notation [s]P is used to represent the unique
block of the partition P containing s.

A partition P ′ refines a partition P if for every block of P ′, there exists
a block of P containing it. Intuitively, a partition P ′ is a refinement of a
partition P if it has the same blocks than those of P with the exception
that some of those blocks have been cut into smaller blocks.

Definition 5.12 (Refined partition). Let P and P ′ be two partitions of
a set of states S. The partition P ′ refines P , which is denoted P ′ v P ,
if and only if:

∀B′ ∈ P ′ : ∃B ∈ P : B′ ⊆ B

142 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

The partition P ′ is said to be finer than P and P is said to be coarser
than P ′. If the two partitions are different (P 6= P ′), P ′ is said to be
strictly finer than P and P is said to be strictly coarser than P ′.

Full-control Stability

The idea of the reduction-based algorithm is to start from an initial
partition and to refine it until it becomes stable. At that point, a reduced
model can be built from the resulting stable partition. A partition is
fc-stable (full-control stable) if all its blocks are fc-stable according to
the Definition 5.13. The notation B after a is used to refer to the set of
states that can be reach from any state in B with the action a, that is,
B after a = {s′ ∈ S | s a==⇒ s′ ∧ s ∈ B}.

Definition 5.13 (Fc-stable block). Let P be a partition of the set of
states SS of a system model S = 〈SS ,Lc,Lo, s0S ,→S〉. A block B ∈ P is
fc-stable according to an action a ∈ L if and only if:

a ∈ Lc =⇒ (B after a) = ∅
∨
(
∀s ∈ B : a ∈ Γ(s) ∧ ∃B′ ∈ P : (B after a) ⊆ B′

)
∧ a ∈ Lo =⇒ ∃B′ ∈ P : (B after a) ⊆ B′

The block B is fc-stable if it is fc-stable according to all the actions in L.

Intuitively, it means that all the states of an fc-stable block have
the same sets of enabled commands. There are no constraints for the
enabled observations. In both cases, for each action, triggering it from
any state of the fc-stable block B always leads into the same block B′.

Splitting Pair

The reduction-based algorithm works by successively refining the partition
until it gets fc-stable. In order to refine the partition, a splitting pair
is used to split one block of the partition that is not fc-stable into new
blocks.

Given two blocks B,B′ ∈ P and an action a ∈ L, B′ is a splitter of
B according to a if there exists states s ∈ B such that a /∈ Γ(s) or such
that s a−−→ s′ and [s′]P 6= B′.

5.4. REDUCTION-BASED APPROACH 143

As illustrated by Figure 5.19, the states of the block B can be
partitioned according to the action a, into three sets of states:

• B1 = {s ∈ B | ∃s a−−→ s′ : [s′]P = B′};
• B2 = {s ∈ B | ∃s a−−→ s′ : [s′]P 6= B′};
• B3 = {s ∈ B | a /∈ Γ(s)}.

B

B1

B2

B3

B′

other blocks 6= B′

α

α

Figure 5.19. A block splitter for the reduction-based algorithm.

The pair (B,B′) is a splitting pair according to the action a and is
used in the refinement step of the reduction-based algorithm to refine
the current partition. If the action is a command, the refinement step
consists in replacing the block B with the blocks B1, B2. If B3 is not
empty, the refinement step is not unique anymore. Such a situation can
occur when a is an observation and it is precisely due to the fact that
two states that do not have the same observations may be considered as
the same state by the operator in the conceptual model. It is precisely if
such a situation occurs that the algorithm is not guaranteed to find a
minimal full-control conceptual model. The refinement step consists in
replacing the block B with the blocks B1 and B2. The states from the
block B3 may in fact either go with the block B1 or with the block B2,
which can lead to different final fc-stable partitions, some of them not
leading to a minimal full-control conceptual model.

5.4.3 The Reduction-based Algorithm

Given the definition of fc-stable partition and splitting pair, Algorithm 3
shows the reduction-based algorithm in a high-level fashion. The first
step consists in removing the τ transitions, with the τ∗aτ∗-elimination
algorithm. The next step computes the initial partition P0. As all the

144 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

states from an fc-stable block must have exactly the same set of enabled
commands, the initial partition is built according to commands:

P0 = {[s]c | s ∈ S} with [s]c = {s′ ∈ S | Γc(s) = Γc(s′)}.

From the initial partition, the algorithm proceeds by steps. At
each step, an unstable block B along with a splitting pair is found and
refined. The algorithm continues until the partition becomes stable. The
refine (P,B,B′, α) procedure handles the block splitting strategy for the
case of a splitting pair according to an observation.

Algorithm 3: Reduction-based algorithm to compute full-control conceptual
model.
Input: S = 〈SS ,Lc,Lo, s0S ,→S〉 a system model
Output: H = 〈SH ,Lc,Lo, s0H ,→H〉 a full-control conceptual model
S ← eliminate_taus (S)
P ← initial_partition (SS)
while not P is fc-stable do

(B,B′, α)← find_splitting_pair (P)
P ← refine (P,B,B′, α)

return generate_model (S, P)

Correctness, Termination and Time complexity

The algorithm is guaranteed to terminate in at most |SS |−|P0| refinement
steps. At each iteration, the partition is not fc-stable, which means that
there exists at least one non fc-stable block in the partition. Moreover,
the refinement step always split a block into two new blocks giving a
strictly finer partition for the next iteration, with the total number of
blocks increased by one.

In order to prove the correctness of the algorithm, it suffices to
prove that any fc-stable refinement of the initial partition is also an
fc-stable refinement of the current partition, by induction on the number
of refinement steps. Let us suppose that the current partition is P and
that this latter will be refined to a partition Q, using the (B,B′) splitting
pair, in the next refinement step of the algorithm. Let R be any fc-stable
refinement of P0, which is also a refinement of P , by induction hypothesis.
Let C be any block of R, it suffices to show that C is included in a block

5.4. REDUCTION-BASED APPROACH 145

of Q. Since R is a refinement of P , it means that C is included in a
block D of P . If D 6= B, the D block still is in Q and thus C is included
in a block of Q, so let us suppose that D = B. In the next refinement
step, the B block is split into two blocks B1 and B2 and the block C
should be included in one of the two blocks. Let us suppose that it is
not the case, that is there exist two states s1, s2 ∈ C such that s1 ∈ B1
and s2 ∈ B2. That would mean that:

• Either there is a action a such that both s1 and s2 have that action
enabled, leading to different blocks in P , and thus also to different
blocks in R, which is impossible since R is fc-stable.
• Or there is an observation o that is enabled in s1 but not in s2. In

such a situation, it may be possible that s1 and s2 are not both in
B1 or B2 since the splitting operation is not unique anymore and s2
could go in either B1 or B2. But since the algorithm have to explore
all the possible splitting operations, there is indeed one splitting
operation that guarantees that s1 and s2 will not be separated.

Without considering the exploration of all the possible ways to split
the states from the third block B3 between the B1 and B2 blocks, the
time complexity of the algorithm is O(|SS | · | →S |), following an im-
plementation similar to the one proposed in [GV90]. Considering the
algorithm with the exploration of all possible splits, the time complexity
increases much. The worst situation is a system that only contains
observations, and for which all the states have different sets of enabled
observations. In that case, the additional time complexity is exponential.
Indeed, in each refinement step, there will be 2X different possible splits,
X depending on the step.

Non-transitivity Situations

As already introduced above, given a splitting pair, the splitting operation
is not always unique. Such a situation can occur when the action that
is used for the splitting pair is an observation. Figure 5.20 shows a
system model for which the splitting operation is not unique in the
current situation, if the chosen splitting pair is (B2, B3). There are in
fact two possible splits: the block B2 is either split in {B,C} and {D} or
in {B} and {C,D}. Indeed, states B and D cannot be in the same block

146 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

since they share a common observation leading to different blocks. But
the state C do not have this observation possible, which is allowed by
full-control, and can thus go with either B or D.

A

B

C

D

E

F

c1

c2

c3

o1

o1

c4

c5

B1

B2

B3

B4

Figure 5.20. Example of a system model for which the splitting operation is not
unique in the current iteration of the reduction-based algorithm.

In order for the reduction-based algorithm to find the minimal full-
control conceptual model, all the possible splitting operations must be
considered, which results in an exploration of all the possible choices. Of
course, doing so requires much more time since the number of different
splitting at each step can be large. If the final goal is not to reach
minimality, it is however possible to avoid exploring the possible splittings
by setting up some heuristic. Examples of heuristics include choosing
randomly where to put the states that do not have the observation of
the splitting pair, or to put those states in the largest block.

But, it can be worse than just not getting the minimal full-control
conceptual model. Indeed, in some situations, the algorithm can termi-
nate by incorrectly reporting some fc-determinism issue. Figure 5.21(a)
shows a system model where a wrong output can occur. The block B2
has to be split, and states B and D must be separated. The state C can
go either with B or D. If the choice is made to put it with B as shown on
Figure 5.21(b). The issue is that the block B1 is not fc-stable anymore,
according to command c2. In the next iteration of the algorithm, the B1
block has to be split but it cannot be since it would require to split the
state A. The reduction algorithm exits with an error and gives a false
diagnostic of a non-fc-deterministic system model.

In summary, for systems containing observations, the splitting op-
eration does not always result in one unique split. In order to find the

5.4. REDUCTION-BASED APPROACH 147

A

B

C

D

E

F

c1

c2

c2

o1

o1

c3

c4

B1

B2

B3

B4

(a) Initial partition. A splitting
pair is (B2, B3) with respect to the
o1 observation.

A

B

C

D

E

F

c1

c2

c2

o1

o1

c3

c4

B1

B3

B4B5

B6

(b) Intermediate partition of the
reduction algorithm which exhibits
an fc-determinism issue.

Figure 5.21. Example of a system model for which some heuristics for the non-
transitive situations may lead to a wrong non-full-control diagnostic.

minimal full-control conceptual model, all the possible splits must be
explored. Given the potential high cost in term of execution time, it is
possible not to explore all the possible splits and chose an heuristic. But
there are two possible drawbacks: there is no more guarantees that the
generated conceptual model is the minimal one and the algorithm can
exit by wrongly indicating an fc-determinism issue.

Minimality

The minimal full-control conceptual model cannot always be computed
with the reduction-based algorithm. Figure 5.22 shows an example of
a system model whose corresponding minimal full-control conceptual
model cannot be represented by partitioning the state of the system
model.

At first, it looks like the minimal full-control conceptual model is
obtained by merging together states B and D to get the state 1. But it is
not the case since if it was, there would be a loop transition 1 b−−→ 1, which
would mean that the trace 〈c1, b, a, c4〉 is wrongly accepted, meaning that
the conceptual model does not allow full-control of the system.

Such system models cannot be addressed by the reduction-based
algorithm. The reduction-based approach is therefore not guaranteed
to find the minimal full-control conceptual model. To do so, either

148 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

A

B

C

D

E

F

c1

c2

c3

c4

o1

c4

o1

c4

c5

c6

(a) System model.

0

1

2

3

4

c1, c3

c2

c4

o1

c4

o1

c5

c6

(b) A minimal full-control conceptual
model.

Figure 5.22. Example of a system model whose minimal full-control abstraction cannot
be computed directly with a reduction approach (inspired from Fig 2 from [PO99]).

the 3DFA-based algorithm presented previously or the learning-based
approach presented in the next section has to be used.

5.5 Learning-based approach

This section presents another technique based on a learning approach
where the full-control conceptual model is grown incrementally, starting
from a single-state conceptual model. The first part of the section
explains the L∗ algorithm which is the base of the proposed learning-
based generation algorithm. The original L∗ algorithm which is used to
learn DFAs has been extended to learn 3DFAs and is presented in the
second part of the section. A review of active learning can be found
in [SHM10].

5.5.1 The L∗ learning algorithm

The L∗ algorithm, designed by Angluin [Ang87], is used to automatically
learn an unknown regular language over a given alphabet, and to build a
deterministic finite automaton (DFA) that accepts the learned language.
This section summarises the important points of the approach. All the
details are in the original paper of Angluin [Ang87].

The L∗ algorithm is an active learning algorithm in the sense that it
consists of two components interacting together: the learner interacts
with the teacher in order to learn the unknown language U , that is a DFA.

5.5. LEARNING-BASED APPROACH 149

The learner can ask two types of questions to the teacher. Figure 5.23
shows the global view of the whole learning framework. The box on the
left if the learner and the dashed box on the right is the teacher. The
two types of questions that the learner can ask to the teacher are:

• A membership query MQ(σ) that asks whether the string σ belongs
to the unknown regular language U or not. The teacher has to
answer with either true (T) or false (F).
• A conjecture check Conj(C) that asks whether the candidate DFA
C accepts the unknown regular language U or not. If it is not the
case, the teacher has to provide as a counterexample a string cex
that is accepted by the candidate DFA C but does not belong to
U , or vice-versa.

A teacher capable of answering correctly these two types of questions
is referred to as a minimally adequate teacher. Provided such a teacher,
the L∗ algorithm is guaranteed to learn a correct DFA that accepts the
unknown regular language U .

L∗

Learner Teacher

membership

conjecture

MQ(σ)?

T or F

Conj(C)?

no

cex

yes
C

Figure 5.23. General overview of the learning framework used with the L∗ algorithm
to learn an unknown regular language U over a given alphabet. The L∗ algorithm (on
the left) interacts with a teacher (on the right).

Depending whether the teacher is automatic or requires the interven-
tion of a human, the L∗ learning algorithm is fully or semi-automatic.
The L∗ algorithm works in an iterative way consisting of two phases.

150 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

In the first phase, the learner questions the teacher with membership
queries. Results from those queries are stored in an observation table.
At some time, when the learner has enough new information, it produces
a candidate DFA which is sent to the conjecture check. If the check
succeeds, the algorithm finishes and output the candidate as its result. In
the other case, a new iteration with membership queries begins, guided
with the counterexample provided by the teacher.

Algorithm 4 presents the overall structure of the L∗ algorithm. The
first step is the initialisation of the observation table. After that, the
main loop of the algorithm runs until a candidate DFA that passes the
conjecture check is found. In the first phase, the observation table is
updated with membership queries, until it gets closed and consistent.
These two criteria are necessary to ensure that a candidate DFA covering
the observation table can be generated. This precisely leads to the next
step where a candidate DFA is built and passed through the conjecture
check. If the teacher answers yes, the algorithm terminates and the
candidate DFA is a valid automaton accepting U . If the teacher answers
no, the observation table is updated to take into account information
from the counterexample cex and then a new loop begins.

Algorithm 4: L∗ algorithm.
Input: Teacher is a minimally adequate teacher for U , an unknown regular

language on an alphabet A
Output: C, a DFA that accepts the language U
T ← createObservationTable()
repeat

while T is not closed or not consistent do
T ← updateObservationTable (Teacher, T)

C ← buildCandidate (T)
if Conj(C) = (no, cex) then

T ← updateObservationTable (Teacher, T, cex)

until Conj(C) = (yes, –)

Observation Table

The L∗ algorithm stores the results of the membership queries that it has
done in an observation table. The observation table is a triple (S,E, T)

5.5. LEARNING-BASED APPROACH 151

that is composed of two sets of strings S and E and of a function T which
maps strings from the set (S ∪ S ·A) ·E to boolean values {true, false},
where A is the alphabet of the DFA. The set S (resp. E) is a non-empty
prefix-closed (resp. suffix-closed) set of strings, meaning that any prefix
(resp. suffix) of an element of the set also belongs to the set.

The observation table is initialised with S = E = {λ}. It can be
viewed as a two dimensional table as the one shown on Figure 5.24(a).
The rows of the table correspond to elements from S and S · A while
columns correspond to elements from E. The values indicated in the
body of the table are the value of the T mapping function indicating
whether the corresponding string belongs or not to the unknown regular
language U .

E
λ b

S
λ true false
a true true
ab false true

S ·A

b true false
aa false true
aba true false
abb true true

(a) Observation table.

λ a ab
a

b

a, b

a

b

(b) Acceptor DFA.

Figure 5.24. Example of an observation table (S,E, T) that is closed and consistent
along with the corresponding DFA that accepts the language defined by the table.
The alphabet of the unknown language to be learned is A = {a, b}.

An observation table is closed if for every element t ∈ S · A, there
is an element s ∈ S such that both rows of T corresponding to t and s
are the same. An observation table is consistent if for any two elements
s1, s2 ∈ S such that their corresponding rows in T are the same, the
rows corresponding to the elements s1 · a and s2 · a must also be the
same. Given an observation table that is closed and consistent, it is
possible to build a DFA that accepts the language defined by the T
mapping function. That DFA is called an acceptor for the observation
table. Figure 5.24(b) shows an acceptor corresponding to the observation
table example.

Every row of the observation table, corresponding to an element
s ∈ S, corresponds to a state of the acceptor. A state of the acceptor

152 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

is an accepting state if T (s) = true. Rows for elements s ∈ (S ∪ S · A)
represent the transition relation.

Correctness, Termination and Time complexity

The L∗ algorithm is correct and always terminates provided that the
teacher is minimally adequate. Moreover the L∗ algorithm terminates
after making at most n conjectures, that is, executing its main loop
at most n − 1 times where n is the number of states in the minimum
acceptor for the unknown regular language U .

The time complexity of the L∗ algorithm also depends on m, the
length of the counterexamples provided by the teacher in response of
a conjecture query that fails. If such counterexamples are too long, it
takes indeed more time for them to be processed by the algorithm to
update the observation table.

In summary, given that the teacher is a minimally adequate teacher,
the L∗ algorithm eventually terminates and produces a DFA that is
isomorphic to the minimal DFA accepting the regular unknown language
U . The total running time of the algorithm is bounded by a polynomial
function in m and n.

5.5.2 Learning a 3DFA

The L∗ algorithm of Angluin has been extended by Chen et al. [CFC+09]
in order to learn a 3DFA. More precisely, the variant of L∗ proposed by
Chen et al. learns a minimal separating DFA for two disjoint regular
language. A separating DFA for two languages L1 and L2 is one that
accepts everything that L1 accepts and rejects everything that L2 rejects.
For those strings that are neither in L1 or in L2, they can belong to the
language of the separating DFA or not. In fact, those strings correspond
to don’t care strings.

The goal of Chen et al. is to find a minimal separating DFA that
separates two given languages L1 and L2. In other words, they want to
find a DFAA with the minimal number of states, so that L1 ⊆ L(A) ⊆ L2.
Their approach to solve the problem is to use a variant of the L∗ algorithm
that uses a 3DFA to collect the samples coming from the L1 and L2
languages. The set L1 is considered as Acc, and the set L2 as Rej.

5.5. LEARNING-BASED APPROACH 153

For a 3DFA to encode correctly separating DFAs for two given
languages L1 and L2, it must be sound and complete with respect to
both L1 and L2. Figure 5.25 illustrates those two conditions. The rows
of the table represent the languages L1 and L2 that have to be separated,
along with the set of don’t care traces. The columns of the table represent
the 3DFA candidate that is input to the conjecture check algorithm.

• The 3DFA C is sound with respect to L1 and L2 if any DFA that
is consistent with C separates L1 and L2. In other words, the two
following conditions must hold: L1 ⊆ L(C−) and L(C+) ⊆ L2.

A string σ fails to satisfy the first condition if σ ∈ L1 and σ /∈ L(C−)
(cells 2 and 3 of the table) and fails to satisfy the second condition
if σ ∈ L2 and σ ∈ L(C+) (cells 7 and 8 of the table).

• The 3DFA C is complete with respect to L1 and L2 if any DFA
separating L1 and L2 is consistent with C. In other words, the two
following conditions must hold: L(C−) ⊆ L1 and L2 ⊆ L(C+).

A string σ fails to satisfy the first condition if σ /∈ L1 and σ ∈ L(C−)
(cells 4 and 7 of the table) and fails to satisfy the second condition
if σ ∈ L2 and σ /∈ L(C+) (cells 3 and 6 of the table).

C− C+ \ C− C+

1 2 3

4 5 6

7 8 9

L1 = Acc

DC

L2 = Rej

C+

L2

soundness

completeness

Figure 5.25. Representation of the set of traces of the languages L1 and L2 to
be separated along with the 3DFA candidate that is input to the conjecture check
algorithm of the Lsep learning algorithm.

154 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

The Lsep learning algorithm

The Lsep algorithm proposed by Chen et al. is a variation of the L∗
algorithm from Angluin, except that it works with 3DFAs instead of
classical DFAs. The first difference is that the observation table is now
filled with three possible values corresponding to the three sets of a
3DFA: T for accepting traces, F for rejecting traces and DC for don’t
care traces. Figure 5.26 shows an example of such an observation table
with the corresponding 3DFA.

E
λ b

S

λ F DC
b DC DC
ba F T
bab T T

S ·A

a F DC
bb DC DC
baa F T
baba F DC
babb T T

(a) Observation table.

λ b

babab

b

a

a

b

b

a

a

b

(b) 3DFA corresponding to the
(S,E, T) observation table.

Figure 5.26. Example of an observation table (S,E, T) along with the corresponding
3DFA. The alphabet used is A = {a, b} (taken from Fig 4 from [CFC+09]).

The membership query simply replies T if the trace it is asked about
belongs to L1, F if it belongs to L2 and DC for all the other traces. The
conjecture check is a little more complicated since it has to check for the
soundness and completeness conditions just presented here above. The
conjecture check is composed of several checks performed in a specific
order depicted on Figure 5.27.

• The completeness check is performed first, that is, the two con-
tainments queries L1 ⊇ L(C−) and L2 ⊆ L(C+) are performed. If
either of the queries fails, a counterexample is produced and sent
back to the learning algorithm so that to extend the observation
table and refine the candidate.
• Once the candidate C is proved to be complete, that is, any DFA

separating L1 and L2 is consistent with C, it is minimised in order

5.5. LEARNING-BASED APPROACH 155

to get a minimal consistent DFA A, using the algorithm presented
in Section 5.2.2, for example.
• Finally, the minimal consistent DFA A is checked for soundness,
that is, the two containments queries L1 ⊆ L(A) and L(A) ⊆ L2
are performed. If either of the queries fails, a counterexample is
produced and the whole process starts again. Otherwise, A is a
minimal separating DFA for L1 and L2.

Conjecture Check

Completeness
Check Minimisation Soundness

Check
C

no
cex

yes C A

no

yes C

Figure 5.27. The conjecture check of the Lsep algorithm is composed of three successive
checks. The completeness check is followed by the minimisation of the 3DFA that is
then checked regarding soundness.

Correctness, Termination and Time Complexity

As it is the case with the L∗ algorithm, the Lsep algorithm is also correct
and always terminates outputting a minimal separating DFA for L1 and
L2. The Lsep algorithm is also guaranteed to find a minimal 3DFA using
at most n− 1 loops of the learning algorithm, where n is the number of
states of the minimal 3DFA representing the minimal separating DFA
for L1 and L2. The time complexity also depends on the length m
of the counterexamples provided by the teacher whenever a conjecture
check fails. In summary, the candidate generator takes O(n2 + n logm)
membership queries and calls n− 1 times the conjecture check.

5.5.3 Learning a Minimal Full-control Conceptual Model

This section presents the Lfc learning algorithm that is used to generate
a minimal full-control conceptual model for a given system model. The

156 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

proposed algorithm is inspired from the Lsep algorithm proposed by Chen
et al. and presented here above. The algorithm is heavily asked to solve
model checking problems, on the system model which is first completed
in some different ways. The system model can be completed with the
addition off an error state, just like the demonic completion presented in
Section 3.4.1.

Definition 5.14 (Completion on error). Given an HMI-LTS S = 〈SS ,
Lc,Lo, s0S ,→S〉, its completion on error with respect to commands (resp.
observation or both) is denoted S→cΠ and defined as the HMI-LTS 〈SS ∪
{Π},Lc,Lo, s0S ,→S ∪{(Π, a,Π) | a ∈ L} ∪ {(s, a,Π) | a ∈ Lc \Ac(s)}〉.

The completion on observation (S→oΠ) and on both commands and
observations (S→Π) are defined in a similar way.

Membership Query Algorithm

The membership query (MQ) determines whether a given sequence of
actions should be accepted, rejected or is a don’t care sequence, in the
3DFA to be learned. The membership queries are answered according to
the full-control criterion. The membership query algorithm operates on
the system model from which τ -transitions have been eliminated with
the τ∗aτ∗-completion algorithm, and then completed on error.

The sequence σ to be evaluated by the membership query algorithm
is simulated on the system model and there are three possible outcomes:

1. σ may lead to the error state: MQ(σ) = F;
2. σ can be simulated entirely and never leads to an error state:
MQ(σ) = T;

3. σ cannot be simulated entirely: MQ(σ) = DC.

Definition 5.15 (Membership Query). Given an HMI-LTS S = 〈SS ,Lc,
Lo, s0S ,→S〉, the membership query is defined for any σ ∈ L as:

MQ(σ) =


F ⇐⇒ Π ∈ (s0S afterσ)
T ⇐⇒ σ ∈ Tr(S) ∧Π /∈ (s0S afterσ)
DC ⇐⇒ σ /∈ Tr(S)

where the after operation is defined on Sτ→cΠ.

5.5. LEARNING-BASED APPROACH 157

Figure 5.28 shows a system model and illustrates how the membership
queries are answered thanks toMτ

→cΠ the model:

• MQ(c1o1c1) = F, since the 〈c1o1c1〉 sequence can lead to the error
state Π.

• MQ(c1o1) = T, since it can be entirely simulated (that is, it belongs
to the traces of the system) and the only state that can be reached
is C, which is not the error state.

• MQ(c1o2) = DC, since it is impossible to simulate it entirely.

A

B C

D

τ

c1

o2

c1

o1

(a) A system modelM.

A

B C

D Π

c1

o2

c1

o2

c1

o1

c1

c1

∗

(b) TheMτ
→cΠ model.

Figure 5.28. A system model example and its completion on commands that is used
by the membership query algorithm.

Because the system model is not fc-deterministic in general, some
trace may lead to different states. In particular, for the first case of the
membership query algorithm, a given sequence may non-deterministically
lead to the error state or not. In such situation, the membership query
must answer F because any behaviour that may be harmful, even if it is
not always the case, should not be present in the full-control conceptual
model. Figure 5.29 shows an example of such a situation. The 〈c1c2〉
sequence leads to the E state, but can also reach the Π state through the
A c1−−→ D c2−−→ Π execution. Thus, the MQ(c1c2) query replies F.

The proposed membership query algorithm replies exactly according
to the 3DFA characterisation of the full-control conceptual model. It
can thus be used to know how to classify the sequences that are asked
by the learning algorithm.

158 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

A

B C

D E

τ

c1

c2

c1

o1

Figure 5.29. A non fc-deterministic system model for which MQ(c1c2) = F.

Property 5.16. Given an fc-deterministic HMI-LTS S = 〈SS ,Lc,Lo,
s0S ,→S〉 and its 3DFA characterisation C(S) = 〈Σ, S, s0, δ, Acc,Rej,
DC〉, MQ is consistent with C(S), that is, for σ ∈ L∗:

• MQ(σ) = T ⇐⇒ σ ∈ Acc
• MQ(σ) = F ⇐⇒ σ ∈ Rej
• MQ(σ) = DC ⇐⇒ σ ∈ DC

Proof. The proof follows from the 3DFA characterisation of a system
model described by Definition 5.7 on page 135.

Conjecture Check Algorithm

The conjecture check (Conj) is used to test whether a given learned
3DFA candidate is acceptable or not. In the case that the candidate is
acceptable, the learning algorithm finishes and returns the candidate as
its result. If the candidate is not good, the conjecture check has to return
as a counterexample either a sequence that is in the candidate but should
not be part of it, or a sequence that is missing in the candidate. The
check that has to be performed is that all the DFAs that are consistent
with the 3DFA candidate allow full-control of the system model.

The conjecture check for Lfc follows the one used for the Lsep algo-
rithm presented in Section 5.5.2. The idea is to perform a model checking
on the synchronous parallel composition between some transformation
of the system model and the 3DFA candidate. If the error state can be
reached, the property fails to be satisfied and the trace leading to the
error state is output as a counterexample.

Let C(S) = 〈Σ, S, s0, δ, Acc,Rej,DC〉 be the 3DFA characterisation
of the system model, and C the 3DFA candidate to be analysed by

5.5. LEARNING-BASED APPROACH 159

the conjecture check algorithm. The soundness check must ensure that
Acc ⊆ L(C−) and L(C+) ⊆ Rej.

• A trace failing to satisfy the Acc ⊆ L(C−) condition is one that
belongs to Acc and do not belong to L(C−). Such a trace can be
found on the following model:

Sτ ‖ lts(C−)→Π

• A trace failing to satisfy the L(C+) ⊆ Rej condition is one that
belongs to Rej and to L(C+). Such a trace can be found on the
following model:

Sτ→cΠ ‖ lts(C
+)

Similarly as what is done for soundness, the completeness check
also consists in verifying two conditions that are L(C−) ⊆ Acc and
Rej ⊆ L(C+).

• A trace failing to satisfy the L(C−) ⊆ Acc condition is one that is
not in Acc but belongs to L(C−). Such a trace can be found on
the following model:

det(S)→Π ‖ lts(C−)

• A trace failing to satisfy the Rej ⊆ L(C+) condition is one belonging
to Rej but that is not in L(C+). Such a trace can be found on the
following model:

det(S)→oSink ‖ lts(C+)→coΠ

Table 5.1 summarises the four containment queries that have to be
performed in order to check that a 3DFA candidate is sound and complete
with respect to the Acc and Rej languages.

The Lfc algorithm

Given the membership query and the conjecture check algorithms just
presented, Figure 5.30 shows the global overview of the Lfc algorithm,

160 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

Condition Error trace Containment query

Acc ⊆ L(C−) σ ∈ Rej and σ ∈ L(C+) Sτ ‖ lts(C−)→coΠ

L(C+) ⊆ Rej σ ∈ Acc and σ /∈ L(C−) Sτ→cΠ ‖ lts(C
+)

L(C−) ⊆ Acc σ /∈ Acc and σ ∈ L(C−) det(S)→coΠ ‖ lts(C−)

Rej ⊆ L(C+) σ ∈ Rej and σ /∈ L(C+) det(S)→oSink ‖ lts(C+)→coΠ

Table 5.1. Summary of the containment queries that have to be performed in order
to check whether a 3DFA candidate is sound and complete with respect to the Acc
and Rej languages.

L∗

Learner Teacher

membership

oracle 1 oracle 2 minimisation

MQ(σ)?

T, F or DC

Conj(C)?

no

cex

yes C

no

cex

yes C

A

Figure 5.30. General overview of the learning framework used with the Lfc algorithm
to learn a minimal full-control conceptual model for a given system model.

which is inspired from the Lsep algorithm of Chen et al. The difference
with Chen et al. is that, for the Lfc algorithm, the completeness check is
omitted. The two oracles correspond to the two conditions that have to
be satisfied for the 3DFA candidate to be sound.

The first oracle corresponds to computing the Sτ→cΠ ‖ lts(C
+) model

and to search for a trace reaching an error state. The second oracle
checks the Sτ ‖ lts(C−)→coΠ model and also search for a trace reaching
an error state. In both cases, a composite state is considered as an error
state if at least one of its component is the error state Π.

5.6. COMPARISON OF THE GENERATION ALGORITHMS 161

The main reason why the completeness check has been omitted
is because of the high computational cost that may be necessary to
determinise the system model. If the system model is fc-deterministic,
the determinisation is not necessary anymore.

5.6 Comparison of the Generation Algorithms

This section compares the three generation algorithms proposed in this
thesis. The generation algorithms are first compared regarding their
performances. Their theoretical time complexities are compared as well
as the effective time used to deal with a set of concrete examples. The
second comparison presented is about how the three proposed algorithms
handle situations where the input system model is not fc-deterministic.

5.6.1 Time Complexities and Execution Time

The three proposed algorithms have been run on the following seven
different system models:

• VTS (Vehicle Transmission System) is a simple model of a semi-
automatic transmission system of a large vehicle, proposed by
Degani et al. [HD07]. That system model is described in Section 1.1
on page 4.
• Therac-25 is a model of the Therac-25 medical device, taken from
Bolton et al. [BBS08]. That system model is described in Sec-
tion 2.4.5 on page 45.
• FullAirConditionner is a model of an air conditioner appliance, pro-
posed in [CP09]. The model has been built from the description
given in its user manual [Dan07]. The system has four operational
modes: off, air cooling, humidity control and ventilation only. The
user can cycle between those modes through the control panel of
the appliance. For the air cooling mode (resp. humidity control
mode), the user can select the target temperature (resp. humidity
level) also through the control panel. The model has five different
possible values for the temperature and humidity levels that the
user can set.

162 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

• AirConditionner is a variant of FullAirConditionner with only two
different possible values for the temperature and humidity levels
that the user can set.
• VCR is a model of a Video-Cassette Recorder, that has been ob-
tained from an ADEPT model, as proposed in [CGPF11a]. The
model is described in Section 7.3.3 on page 7.3.3.
• Countdown-2 is a model of a timer, presented in Section 3.3 on
page 75, with a range of N = 2 values.
• Countdown-12 is also a timer like Countdown-2 except that it has

a range of N = 12 values.

Table 5.2 summarises the results of the experiments. All the experi-
ments have been run on the same machine, within the same conditions.
The available memory has been limited to 4Go and a time limit of 15min
has been set, for each test. The times that are reported in Table 5.2
are the total time needed to generate a minimal full-control conceptual
model. The first observation that can be made is that no algorithm is
uniformly better than the others in term of execution time. Depending on
the particular example that is used, one algorithm can be more efficient
than another one. For the seven tested examples, the learning-based
algorithm is always the slowest.

Both the 3DFA-based and learning-based approaches have to minimise
a 3DFA at some point. Since the minimisation algorithm has a high
time complexity, it is better to have a 3DFA that is as small as possible.
The VCR example shows that learning-based approach is better when
the size learned 3DFA is small compared to the 3DFA-based approach,
although the reduction-based approach still performs better. However,
having a learned 3DFA that is smaller than the built 3DFA used by
the 3DFA-based approach is not a guarantee that the learning-based
approach will be faster as shown by the Therac-25 example. For that
example, the learning-based algorithm had to go through too many
iterations which increases the total running time that is better for the
3DFA-based approach. The second observation that can be made is that
when the system model is large, which means that the built 3DFA will
also be large, and when a minimal full-control mental model is small,
which means that the learned 3DFA will also be small, the learning-based
approach tends to be faster than the 3DFA-based approach.

5.6. COMPARISON OF THE GENERATION ALGORITHMS 163

The reduction-based approach is most of the time faster than the
two other approaches. The first reason is that the algorithm has been
run without the full exploration of all possible minimal full-control
conceptual models. It was indeed able to find directly the minimal
full-control conceptual model. The only example where the reduction-
based approach is not the fastest is the Therac-25 example. The third
observation that can be made is that the reduction-based approach
scales better for large models, as shown with the FullAirConditionner and
AirConditionner examples where the two other approaches was not able
to provide a result within the fixed time and memory constraints.

5.6.2 Non-fc-deterministic System Models

The different algorithms do react differently whenever they are provided
with a system model that is not fc-deterministic. Of course, one possible
solution is to perform the fc-determinism check on the system model
before running the algorithms, but as discussed in this section, that
additional computation may be avoided in some situations.

Figure 5.31 shows a small example of a system model that is not
fc-deterministic and that is used in this section to illustrate the difference
between the three generation algorithms.

A

B C

D E

τ

c1

c2

c1

o1

Figure 5.31. A system model example that is not fc-deterministic due to the trace
〈c1〉 that can lead to both state C or D with Ac(C) = {c2} 6= Ac(D) = ∅.

3DFA-based Generation Algorithm

The 3DFA-based generation algorithm requires the system model to
be fc-deterministic in order to correctly compute a minimal full-control
conceptual model. If that constraint is not satisfied, the algorithm still
is able to generate a reduced model, but that latter does not necessarily
allows full-control of the system model. Figure 5.32 shows the models
obtained after each step of the 3DFA-based algorithm.

164 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

System
C
onceptual

3D
FA

R
eduction

L
earning

(States
/
Trans.)

(States
/
Trans.)

(3D
FA

states)
(Total)

(3D
FA

states)
(Total)

V
T
S

8
/
20

5
/
14

10
26m

s
25m

s
10

75m
s

T
herac-25

136
/
448

24
/
83

138
63m

s
375m

s
70

1,920m
s

FullA
irC

onditionner
194,400

/
650,880

1,080
/
4,500

194,402
–

49,155m
s

–
–

A
irC

onditionner
13,608

/
44,748

222
/
834

13,610
–

2,684m
s

–
–

V
C
R

3,352
/
15,082

2
/
9

3,354
22,595m

s
479m

s
6

988m
s

C
ountdow

n-2
11

/
27

8
/
18

10
33m

s
27m

s
10

155m
s

C
ountdow

n-12
55

/
137

30
/
73

32
113m

s
54m

s
32

3,576m
s

Table
5.2.

E
xperim

entalresults
ofthe

com
parison

ofthe
three

proposed
full-controlconceptualm

odelgeneration
algorithm

s.

5.6. COMPARISON OF THE GENERATION ALGORITHMS 165

A

B C

D E

Π

DC

τ

c1

c2

c1

o1

o1

c2

o1

c2

o1

c1

c1, c2
c1, c2

o1*

*

(a) 3NFA-completion.

{A,B} {C,D} {E, DC}

Π {E,Π} {DC,Π}

DCo1

c1

c2

o1

c1
c2 c1, c2

o1

o1

c1, c2

*

* *

(b) Determinisation.

{{A,B}} {{C,D}, {E, DC}}
c1

o1

(c) Minimisation.

Figure 5.32. The three intermediate models built by the 3DFA-based algorithm for
the example of Figure 5.31.

The non-fc-determinism in the system model example is due to the
〈c1, c2〉 sequence which is at the same time accepted and rejected, as
clearly identifiable on the 3NFA-completion by the two A τ−−→ B c1−−→
C c2−−→ E and A c1−−→ D c2−−→ Π executions. The situation can also be
identified on the determinisation since the 〈c1, c2〉 leads to the (E,Π)
state, E being an accepting state and Π the error state. By identifying
such composite states, containing the Π state, it is possible to detect
whether the system model is not fc-deterministic.

As stated earlier, the HMI-LTS corresponding to the obtained DFA
does not allow full-control of the system model, but the model that is
generated still brings some interesting information about the system
model. It represents, in some extent, the fc-controllable part of the
system model.

Reduction-based Generation Algorithm

The reduction-based generation algorithm starts with a τ∗aτ∗-completion
and then computes an initial partition, based on the possible commands.

166 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

The initial partition for the example of Figure 5.31 consists of three
blocks as shown on Figure 5.33.

The B1 block is not fc-stable according to the c1 action, since trig-
gering it from B1 can lead to the two different blocks B2 and B3. The
algorithm will thus try to split B1, but it will face a difficulty since the
state A must go in the two newly created blocks. When such a situation
occurs, the algorithm just stops and produces an error message indicating
that block B1 must be split due to action c1 for which the two following
transitions are problematic: A c1−−→ B2 and A c1−−→ B3.

A

B C

D E

c1

c1

c2

c1

o1

B1

B2

B3

Figure 5.33. The initial partition for the reduction-based generation algorithm for
the HMI-LTS system model example of Figure 5.31.

The reduction-based generation algorithm is thus capable of detecting
non-fc-determinism issues, which is detected when a command from the
same state s leads to different blocks. From that, useful diagnostic
information can be provided by the algorithm, by finding an execution
starting from the initial state and reaching the problematic state s.

Learning-based Generation Algorithm

The learning-based generation algorithm starts by a querying a set of
traces about their membership. The initial observation table (S,E, T)
is built by choosing S = E = {λ}. Figure 5.34 shows the system model
which has been τ -completed and for which an error state has been
added, to answer membership queries. From that, the learning algorithm
computes the first closed and consistent observation table and derives
from it the first 3DFA candidate.

The 3DFA candidate is then verified by the conjecture check algo-
rithm. The first oracle fails and outputs the cex = 〈c1, c1〉 sequence as a
counterexample. That trace is accepted by the 3DFA candidate, but is

5.6. COMPARISON OF THE GENERATION ALGORITHMS 167

A

B C

D E

Π

c1

c1

c2

c1

o1

c2

c2

c1

c1, c2
c1, c2

*

(a) Error completion.

E
λ

S
λ T
c2 F
o1 DC

S ·A

c1 T
c2c1 F
c2c2 F
c2o2 F
o1c1 DC
o1c2 DC
o1o2 DC

(b) Observa-
tion table.

λ

o1

c2

o1

c2

c1 ∗

∗

(c) 3DFA candidate.

Figure 5.34. First iteration of the learning-based generation algorithm for the system
model example of Figure 5.31.

rejected by the system model (that is, cex ∈ Rej and cex ∈ L(C+)). Fig-
ure 5.35 shows the two next 3DFA candidates produced by the algorithm.
The one of Figure 5.35(a) still does not satisfy the conjecture check as
the second oracle fails with the cex = 〈c1, o1, o1〉 counterexample, which
is accepted by the 3DFA candidate, but is in DC in the system model
(that is, cex /∈ Acc and cex ∈ L(C−)). Finally the last 3DFA candidate
produced does satisfy the conjecture check, which allows the learning
algorithm to produce a minimal consistent DFA as a result.

λ

o1

c2

c1

o1

c2

c1

∗

∗

o1

c1, c2

(a) Second 3DFA candidate.

λ

o1

c2

c1 c1

o1

c2

c1

∗

∗

o1

c1, c2
c1, c2

o1

(b) Last 3DFA candidate.

0 1
c1

o1

(c) Minimal con-
sistent DFA.

Figure 5.35. Successive 3DFA candidates produced by the Lfc algorithm for the
system model example of Figure 5.31.

The obtained DFA does not allow full-control of the system model,
and it corresponds in fact to the DFA generated by the 3DFA-based
algorithm (see Figure 5.32(c)).

168 CHAPTER 5. GENERATING FULL-CONTROL CONCEPTUAL MODELS

Chapter 6

HMI Analysis

This chapter presents how the concepts and techniques proposed in the
previous chapters can be used in practice to perform analyses of human-
machine interactions. Section 6.1 presents the jpf-hmi tool that has been
developed to support the experiments. Section 6.2 presents how training
materials for a given system can be analysed, for example to compare
different sources of training. Section 6.3 describes how the full-control
conceptual model generation algorithms can be used in order to analyse
a given system and assess its controllability. Section 6.4 presents mode
confusion potential and how detecting it can be directly handled with
the algorithms proposed in the previous chapters. Section 6.5 presents
a variant of the full-control property and how user task models can be
taken into account and integrated in the proposed framework.

In the remainder of this chapter, generation algorithm will be used
to refer to any of the minimal full-control conceptual model generation
algorithms presented in the previous chapter.

6.1 The jpf-hmi Tool

As already introduced and highlighted in [Hol97], one crucial point to
make formal methods based analyses used by people from other fields is
to have a usable tool. The tool should be designed so that performing
analyses do not require strong specific knowledge of formal methods,
and so that obtained results make sense at the domain level for the user
of the tool. Such a tool as not been developed in this work, although
a prototype tool has been developed to support experiments. That
prototype is the embryo of a tool that could be used by system designers
and analysts, to perform human-machine interactions analyses.

169

170 CHAPTER 6. HMI ANALYSIS

6.1.1 Structure of the Tool

Figure 6.1 shows the general overview of the jpf-hmi tool. The top left part
represents the input part, that is, how HMI-LTS models are imported in
the tool. The bottom part represents the different analysis that can be
performed. Finally, the right part shows the only way HMI-LTSs can be
exported out of the tool. This section provides a general overview of the
tool and focuses on the modelling part.

The jpf-hmi tool is an extension of the Java Pathfinder model checker
(JPF) [VHBP00], and provides support for the algorithms developed in
this thesis. For now, all the capabilities that are offered by the model
checker have not been used in the current version of the prototype tool.
Nevertheless, developing the proposed tool closed to a model checker from
the start is motivated by the fact that most of the proposed algorithms
are amenable to run a model checking algorithm.

.xmi XMIParser .java

JPF

SC2LTS

.txt LTSLoader

ADEPT2LTS

LTSSaver .txt

.xml

HMI-LTS

FCCheck FCDetCheck

true/false true/false

3DFA Bisim Learning

HMI-LTS HMI-LTS HMI-LTS

Figure 6.1. Overview of the jpf-hmi extension.

HMI-LTSs, representing system or mental models, can be imported
into the tool by three different means:

• First of all, models can be imported from statecharts. Those
can be described within the XMI standardised format, and then
imported and translated into a Java program representing the
statechart. The Java program is in fact described following the
conventions of the jpf-statechart extension [Meh08]. Then, JPF is

6.2. ANALYSIS OF TRAINING MATERIAL 171

used to explore entirely the behaviour of the statechart, so that to
build and generate an HMI-LTS corresponding to the statechart.

• Model can also be imported from a raw text file, where the models
are encoded with a non-standard simple format. This way to
proceed is useful for the tool to be able to import files that have
been exported from the tool.

• Finally, models can be obtained from ADEPT models. A pre-
cise semantics for those models and the translation algorithm are
described in Chapter 7.

Of course any design language for which there exists or for which it
is possible to define a semantics based on HMI-LTS can be used with the
proposed tool. It suffices to write a translator from the design language
towards HMI-LTS in order to get access to the proposed algorithms.
However, in order to get a full support of a design language, more work
has to be done in order to be able to explain the results provided by
the algorithms, such as counterexample traces, back into the design
languages.

As highlighted in the introduction about formal methods, it is impor-
tant to provide a good tool support in order to make formal methods
based techniques accepted by the users. This jpf-hmi extension is a first
step towards such a good support, but as it is described in the perspec-
tives in Chapter 8, work has still to be done for the tool support which
is not the main focus of this thesis.

6.2 Analysis of Training Material

When a system designer thinks about the design of a system, he has in his
mind a conceptual model of the system, referred to as the design model.
The system designer has to communicate his design model to the user to
allow them to properly use the system. One communication mean that
is used between the system designers and the users are the user training
manuals [BCC+11, Thi96]. More generally, the user has many other
sources to learn how to operate a system and he will typically combine
all those different sources to build his own mental model. Classical
sources of information are user training manuals or training sessions

172 CHAPTER 6. HMI ANALYSIS

with possible demonstrations. Other important sources includes self-
explanatory systems, such as ATMs, or knowledge transferred from
similar systems. For example, a pilot used to fly with Airbus airplanes
will transfer his knowledge about the autopilot when first flying a Boeing
airplane.

The purpose of training material is to capture the behaviour of a
system, or a part of it, and to communicate it to an operator so as
to contribute to his mental model. It is therefore important that that
training material satisfies some properties with respect to the system
it describes. The remainder of the section will focus on user training
manuals, simply referred to as training manual from now on. The analysis
done can of course easily be extended to other sources of training as far
as they can be described formally.

The full-control property can be used in order to assess whether
a given training manual is complete enough regarding a given system.
The idea is quite straightforward and consists in checking the training
manual for full-control against the system model, using the full-control
check algorithm 5 (presented on page 249). For such an analysis to
be possible, the training manual has to be modelled as an HMI-LTS.
Several techniques exist to (semi-)automatically get a formal model from
a training manual. For example, [DLDvL05] proposes an algorithm to
automatically generate an LTS from simple forms of message sequence
charts (MSC) representing scenarios described in the training manual.
The algorithm interactively presents MSCs to the end-user and asks
him to classify them as examples or counterexamples of the desired
behaviour. From those answers, the algorithm builds a corresponding
LTS, representing the training manual.

When the full-control property is not satisfied, the full-control check
algorithms provides a counterexample which is a trace whose execution
can lead to a pair of states failing to satisfy the full-control criterion.
When applied between a training manual and a system model, that
counterexample can be interpreted as follows:

• The training manual describes a command corresponding to a
functionality that is not available to the user on the system in a
state. That situation can surprise the user since after performing
the command, he will expect a reaction from the system that will
never occur since the command is not available. One possible reason

6.2. ANALYSIS OF TRAINING MATERIAL 173

for that possible confusion is that the training manual improperly
describes conditions under which a command is applicable.

• A functionality of the system is not covered by the training manual.
That situation is less problematic unless the goal of the training
manual is to provide to the user a description of all the functionali-
ties of the system. Section 6.5.2 presents a variant of the full-control
property that is more flexible and does not require the training
material to cover all the possible commands during the interaction.

• There are some observations that are possible on the system but
are not described in the training manual. If such an observation
occurs during the interaction, the user will be surprised since it
was not described in the training manual. Such a situation can
be very harmful when the signal sent by the system is an hazard
alarm, for example.

If the model obtained from the training manual does not allow full-
control of the system model, it means that potential automation surprises
may occur. Either the training material has to be revised by adding
necessary warnings for forbidden behaviours and completing it for missing
observations, or the system has to redesigned and the training manual
regenerated.

6.2.1 The Microwave Oven Example

Figure 6.2 shows a statechart of the mode part of the behaviour of a
microwave oven. At a high level, the system is composed of two modes:
disabled and operational. The system alternates between those two
modes when the door is opened or closed. In the operational mode, the
user can set the time of the system and can cook, in which case either
he programs a duration or he asks for a one-minute cook. At any time,
the user can press the stop button or open the door to stop the cooking.
Whenever the system exits the operational mode when the user opens
the door, whenever he closes the door, the system goes back in the same
substate of the operational mode it was in. It is due to the fact that the
operational state is an history state, as highlighted by the H© lying on
the top right corner of the state.

174 CHAPTER 6. HMI ANALYSIS

Disabled Set-Time Idle Program Cook
close

open

stop

clock

digit

stop

start

stop

doneok

minute
Mode Operational H

Figure 6.2. A statechart representing the mode part of the behaviour of a microwave
oven (taken from [Luc93]).

As described in Section 3.4.3, statecharts can be converted into HMI-
LTS. Figure 6.3 shows the translation of the microwave oven statechart
into an HMI-LTS. The two main modes (disabled and operational) are
easily identifiable on this HMI-LTS.

S0 S1 S2 S3

S4 S5 S6 S7

stop

clock

digit

stop

start

stop

doneok

minute

openclose openclose openclose openclose

Figure 6.3. Translation of the microwave oven statechart into an HMI-LTS representing
the same behaviour.

The description of the microwave oven example 1 contains a textual
description of the cooking and time setting modes. In particular, for the
cooking mode, it is stated that:

“1. To cook, enter the amount of time digit-by-digit then press
Start. As digits are entered, they are ‘shifted’ to the left; if more
than four digits are entered, the left-most digit is ‘shifted off’ when
a new digit is entered.

2. To set a power-level lower than 100%, press Power followed by
the first digit of the percentage before pressing Start.

1http://chsm.sourceforge.net/examples/microwave/.

6.2. ANALYSIS OF TRAINING MATERIAL 175

3. Alternatively, to cook for one minute at full power, or to add
one minute to the remaining time, press Minute.
4. To stop cooking, press Stop or open the door; to continue
cooking, close the door if it was opened, and press Start. To cancel
cooking once stopped with the door closed, press Stop again.”

The second rule is not relevant for the part of the model that has
been chosen here. From that training manual, thus ignoring the second
rule, it is possible to build an HMI-LTS representing the behaviour
that is described. The adequacy of the training manual can then be
assessed with the full-control check algorithm. Figure 6.4 shows a possible
HMI-LTS corresponding to the partial training manual presented above.

A B C D E
digit start stop

start close

stop

minute open

Figure 6.4. An HMI-LTS representing the behaviour described by the training manual
of the microwave oven example, for the part related to cooking operations.

Checking the HMI-LTS representing the training manual against the
system model, with the Set-Time state removed since that part is not
covered by the training material, fails. The error trace that is produced
as a counterexample is the empty trace, with the following condition
that fails to be satisfied: Ac(Idle) = {open, digit,minute} 6= Ac(A) =
{digit,minute}. Indeed, the fragment of training manual presented above
does not say anything about the possibility to open the door before doing
anything else with the microwave oven. In fact, the opening of the door
is described in another place of the training manual where it is possible
to read:

“If the door is opened at any time during either sequence, the oven
is disabled; closing the door resumes the sequence from where it
left off.”

The HMI-LTS corresponding to the training manual has to be adapted
consequently. A new state s′ is added for each state s along with the

176 CHAPTER 6. HMI ANALYSIS

two transitions s open−−−→ s′
close−−−→ s, except for E where the door is already

opened and C where the open command is already handled.
Checking that new model of the training manual still fails, this time

with the sequence 〈minute〉 as a counterexample and with the following
condition that fails to be satisfied: Ao(Cook) = {done} 6⊆ Ao(C) = {}.
The issue is that the training manual says nothing about the observation
done that can occur in the system, when the cooking is finished. To solve
that issue, the training manual must say that whenever the cooking is
finished, a Done signal is produced by the microwave oven, resetting it
to its initial state. That will induce a new transition C done−−−→ A in the
training manual.

The full-control property is still not satisfied with the last modifica-
tions. The provided counterexample is the sequence 〈digit〉 which leads
to the following situation: Ac(Program) = {open, start, stop} 6= Ac(B) =
{open, start}. The solution is to add the following transition to the training
manual: B stop−−−→ A. Figure 6.5 shows the latest version of the HMI-LTS
representing the training manual.

A B C D E

A’ B’ C’ D’ E’

digit

stop
start stop

start close

stop
done
minute

open

openclose openclose openclose openclose openclose

Figure 6.5. An HMI-LTS representing the behaviour of a training manual that allows
full-control of the system, for the microwave oven example.

Checking that new training manual again produces an error. This
time, the bad sequence 〈minute, open, close〉 can lead to the following
bad situation: Ac(Cook) = {open, stop} 6= Ac(C) = {open, start, stop}.
This time, the highlighted situation does not correspond to a missing
information in the training manual. In fact, it does correspond to a faulty
scenario described in the training manual. According to the training
manual, if the cooking is interrupted because the door was opened,
once closed, the cooking can be resumed by pressing Start. However, in
the actual system, the cooking will resume automatically, without the

6.3. SYSTEM ANALYSIS 177

need to press any button. This is why the start command is possible
according to the training manual but not in the system, in the presented
counterexample.

This simple microwave oven example demonstrates how the full-
control property with its check algorithm can be used to assess the
adequacy of training manual with respect to a given system. The
methodology illustrated here above shows how it is possible to use
the information contained in the counterexample to modify the training
manual, in order to make it adequate for the described system. Of course,
another possibility would have been to modify the design of the system.
Finally, as already stated before, using the full-control property for the
proposed analysis enforces the training manual to cover completely all
the behaviour of the system. Section 6.5.2 presents a variant of the
full-control property to overcome that limitation and to be able to deal
with training manuals that only cover part of the behaviour of a given
system.

6.3 System Analysis

The previous section describes how a training manual can be checked
against the system it describes. Generally, if issues are found, corrections
will be done in the training manual by correcting it and adding warnings
for potential dangerous situations. The reason is that the training
manual is only available late in the design process. The design process of
a new system in not a linear process. It involves successive iterations in
which a test and/or verification phase is performed to check whether the
designed system meets the specifications and some other properties such
as usability properties or performance issues, for example. That phase is
generally referred to as the validation phase.

The first stage is to model the desired system, either directly as HMI-
LTS or through higher level formalisms such as statecharts or ADEPT
models. From that, the candidate designed system is verified to satisfy
the fc-determinism property, by going through a generation algorithm.
Either the verification succeeds, in which case a minimal full-control
conceptual model is produced, which can be used to generate training
material, or a counterexample witnessing an issue with the system is

178 CHAPTER 6. HMI ANALYSIS

produced which drives the process into the analysis phase. After having
analysed the issue, solutions have to be found to overcome it. The
redesign step tries several modification such as adding observations or
eliminating non-determinism in the system. And those changes have to
be modelled so that a new iteration of the process can start.

The generation algorithms presented in the previous chapter can be
used during the validation phase to ensure that no potential automation
surprises can occur during an interaction between an operator and the
system. Running a generation algorithm on the system can either succeed,
in which case a minimal full-control conceptual model is produced, or it
can fail, which results in the production of a counterexample illustrating
why the generation failed and where there is a potential issue in the
design of the system.

6.3.1 Non-fc-deterministic System Model

If the generation algorithm fails, it is due to the fact that the system is
not fc-deterministic. As a reminder, it is impossible to build a full-control
conceptual model for a system if there exist situations where the operator
can not know what commands are possible on the system after a given
execution. More formally, there exists a trace σ such that s0

σ==⇒ s and
s0

σ==⇒ s′ with Ac(s) 6= Ac(s′).
In term of interactions, it means that after the execution of a given

trace, there is an uncertainty about the possibility to execute some
commands. The operator cannot firmly believe that a command is
possible, and if he tries to execute it, expecting some reaction from
the system, he can be surprised since it is possible that nothing will
happen. Of course, if the operator is well-trained and made aware of
that uncertainty, he can be driving the system safely, by avoiding to
use a command for which there is uncertainty. That possibility is not
considered in this work and left for future work.

The following example, presented on Figure 6.6, illustrates that
situation. The example represents part of the behaviour of a TV decoder.
The decoder is initially shut down (state A) and pressing the on button
turns the decoder on. If the decoder manages to get connected to the
internet (state C), the user is granted the possibility to select the first
channel by pressing the ch_1 button to play it (state D). If the internet
connection is not available, the user cannot do anything (state E).

6.3. SYSTEM ANALYSIS 179

A B

C D

E

on
τ

τ

ch_1

Figure 6.6. The system model of a small example representing a part of the behaviour
of a TV decoder.

Running a generation algorithm on the TV decoder example produces
the following trace as a counterexample: 〈on〉. This trace leads to several
states having different sets of possible commands, which is a violation
of the fc-determinism criterion. The issue is that after performing an
execution corresponding to the 〈on〉 trace, the operator must be able to
distinguish states B, C and D. A direct solution to redesign the system
is thus to provide a way for the operator to distinguish both states, with
an observation.

Figure 6.7 shows a possible redesign of the system. After pressing the
on button, if the decoder manages to access the internet, an online signal
is produced with a sound or with a led starting to blink, for example.
That observation can be used by the operator to know if he can launch
the first channel or not.

A B

C D E

F

on
τ

τ

online ch_1

Figure 6.7. A possible adaptation of the system model of the TV decoder of Figure 6.6
which solves the non-fc-determinism issue.

Solving a non-fc-determinism issue can always be done simply by
adding new observations to the model, that can be used by the operator
to distinguish the different states that can be reached with the same
trace, and having different sets of possible commands. But the additional
cost of doing so is an increase of the complexity of the system and the
number of observations that the operator must manage.

180 CHAPTER 6. HMI ANALYSIS

6.3.2 Minimal Full-control Conceptual Model

If the system model is indeed fc-deterministic, the generation algorithm
does produce a minimal full-control conceptual model. In terms of
interaction, it means that in theory, that is, if the operator follows
exactly the produced conceptual model while using the system, and
never misses any observation, it is possible for him to never get confused
during the interaction, in the sense of the full-control property.

In this case, it is still possible to get information from the produced
conceptual model, for the validation phase. The number of states of the
produced conceptual model gives a direct feedback about the complexity
of controlling the system. Indeed, the larger the conceptual model, the
harder it is for a human operator to memorise and use. The number
of states of the produced conceptual model can be used as a metric for
the system model. Such a metric can serve to choose between several
different designs for the same system.

Generating Training Manual

Moreover, the generated conceptual model can serve the production of
training material, following for example approaches such as [TL96, ML03].
In order to generate a training manual that is as concise as possible, it is
required to get the smallest possible conceptual model for the system.
To illustrate that, let us take again the microwave oven example from
Section 6.2.1. The system can be modelled as an HVS described with two
state-variables: mode whose value is either disabled or operational and
opstate whose value is one of settime, idle, program or cook. Without any
visible state-variable, the generation algorithms produce a conceptual
model with eight states. The four states corresponding to the operational
states are all duplicated, so as to have one corresponding to the disabled
mode and one to the operational mode, as shown on Figure 6.8. It indeed
corresponds to the system model since nothing can be reduced.

But, the mode state-variable is by nature visible, since it corresponds
to the door of the microwave oven being opened or not. Making only that
state-variable visible reduces the size of the produced minimal full-control
conceptual model, by dividing its number of states by two. The close
command is only possible if the door is open, and all the other commands
are only possible if the door is closed. Figure 6.9 shows the reduced
full-control conceptual model.

6.3. SYSTEM ANALYSIS 181

S0 S1 S2 S3

S4 S5 S6 S7

settime idle program cook

operational

disabled

mode

opstate

stop

clock

digit

stop

start

stop

doneok

minute

openclose openclose openclose openclose

Figure 6.8. Generated conceptual model for the microwave oven example, considering
that no state-variable are visible.

S0 S1 S2 S3

[operational] stop

[operational] clock

[operational] digit

[operational] stop

[operational] start

[operational] stop

[operational] done[operational] ok

[operational] minute

[operational] open,
[disabled] close

[operational] open,
[disabled] close

[operational] open,
[disabled] close

[operational] open,
[disabled] close

Figure 6.9. Generated full-control conceptual model for the microwave oven example,
considering the mode state-variable as visible.

By making the opstate state-variable visible, it is also possible to
reduce the system model to an even smaller full-control conceptual
model, shown on Figure 6.10. The system model is reduced to a two-
state model, one for each value of the mode state-variable. The state S0
corresponds to the door being opened, the only possible command being
to close it. The state S1 corresponds to the operational mode, and all
the commands are guarded by the values of the opstate state-variable
corresponding to the states of the system where they are possible.

By choosing carefully which state-variables are visible it is possible to
reduce the number of states of the generated conceptual model. However,
finding the subset of state-variables to make visible in order to minimise
the number of states of the generated conceptual model is not immediate.

182 CHAPTER 6. HMI ANALYSIS

S0

S1

close open

[idle] digit, minute, clock [settime, program, cook] stop

[program] start
[settime] ok

[cook] done

Figure 6.10. Generated full-control conceptual model for the microwave oven example,
considering the opstate state-variable as visible.

6.4 Mode Confusion Analysis

As previously stated, mode confusion potential during human-machine
interaction can be harmful, as testified by many accidents that occurred
due to a mode confusion. This work is focused on the more general
automation surprises potential and on controllability issues, but it is
straightforward to handle mode confusion. Information about modes can
be added to HMI-LTSs, as well as in the enriched models, by defining
a set of distinct modes and by partitioning the states of the system so
that each state is assigned a mode. A mode assignment function can be
associated to any of the proposed models.

Definition 6.1 (Mode assignment function). Given an HMI-LTS S =
〈SS ,Lc,Lo, s0S ,→S〉 and a finite set of modes Lm, the modes of the
states of the system are represented by the mode-assignment function
µS : SS 7→ Lm.

For an operator not to be confused with respect to modes, he must
be able to track them. At any time during the interaction, the user must
know the current mode of the system and he must be able to predict the
mode the system will transition into for any action that takes place on the
system. By having the mode information on the states of the system, and
by also labelling the states of the mental model with mode information,
it is possible to identify potential mode confusion with the interaction
model. Indeed, any composite state where the modes according to the
system model and the mental model do not coincide exhibits a potential
mode confusion.

6.4. MODE CONFUSION ANALYSIS 183

Information about modes may have been added as a state-variable
for the mode. Of course, such a state-variable should not be visible
to the operator, since if it was, the operator will be able to track the
mode and there will not be any potential mode confusion situations.
Mode confusion is only relevant if information about the modes is not
directly available to the operator. Moreover, with the enriched models,
state-variables can not be used on the mental models since there is no
state-value on HVM. That latter fact would make it impossible to check,
with the composite states of the interaction model, whether there are any
discrepancy between the modes of the system and the mental models. For
all those reasons, and to highlight the fact that information about modes
is distinct from visible state-values, they have been modelled separately.

6.4.1 Generating Minimal Mode-preserving Conceptual Model

Given a system model, with a mode assignment function, the techniques
presented in this work can be slightly adapted in order to automatically
generate conceptual models that guarantees that, if followed exactly
by an operator, avoid potential mode confusion situations. The mode-
preserving property captures that notion by requiring that for any state
of the interaction model, the mode the system is into is the same that
the mode expected by the operator.

Definition 6.2 (Mode-Preserving Property for HMI-LTS). Given an
HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉, a deterministic and non-divergent
HMI-LTS H = 〈SH ,Lc,Lo, s0H ,→H〉, a set of modes Lm and the two
mode assignment functions µS : SS 7→ Lm and µH : SH 7→ Lm, H is
said to be mode-preserving with respect to S, which is denoted HmpS,
if and only if for all σ ∈ L∗ such that sM ∈ (s0M afterσ) and sH ∈
(s0H afterσ):

µ(sM) = µ(sH)

Analysing mode confusion potential is quite straightforward. The
direct way to do that is to modify the system model by adding one new
command for each different mode, and by adding to each state of the
system a loop command labelled with its corresponding mode. By doing
so, since the modes are considered as commands, it will be ensured that

184 CHAPTER 6. HMI ANALYSIS

two behaviours that differ according to mode will be clearly separated in
the generated conceptual model.

Definition 6.3 (Mode completion). Given an HMI-LTS S = 〈SS ,Lc,Lo,
s0S ,→S〉, a finite set of modes Lm and a mode-assignment function
µS : SS 7→ Lm, the mode-completion of S, denoted S�m, is the HMI-
LTS 〈SS ,Lc ∪ Lm,Lo, s0S ,→S ∪{(s, µS(s), s) | s ∈ SS}〉.

Figure 6.11 recalls a system model in statechart for the Therac-25
medical device that has been introduced in Chapter 2 (page 45). The
accident that occurred with that device was precisely due to a mode
confusion. Patients were administered lethal doses of radiations because
operators thought that the machine was in the electron beam mode
whereas it was in the X-ray one.

Edit

XData
Entry

XBeam
Ready

EData
Entry

EBeam
Ready

Treatment
Administered

selectX
up

selectE
up

enterup enter up

fire fire

enter

Neither

XSet XtoE EtoX ESet
selectE 8s selectX

8s

selectX selectEreset reset

OutPlace InPlace
selectX

selectE
Waiting Fired

fire

reset

Interface BeamLevel

Spreader BeamFire

X E

Figure 6.11. A model for the Therac-25 medical device (taken from [BBS08]).

In order to analyse the potential mode confusions for the Therac-25,
the device can be viewed as a three-mode system defined by the level of
the beam. Three commands are thus added to the model: neither, X-ray
and E-beam, corresponding to the three substates of the BeamLevel state
as shown on Figure 6.11, and the system is mode-completed according
to those modes. The system has a total of 68 states and 244 transitions

6.4. MODE CONFUSION ANALYSIS 185

among which 180 are commands, 28 are observations and 36 are τ -
transitions.

Executing a generation algorithm on this mode-completed model fails
because the fc-determinism property is not satisfied. The following error
trace is produced:

〈selectX, enter, fire〉

Figure 6.12 shows the error trace, with the situation that causes the
fc-determinism issue. After executing the counterexample, both states
D and E can be reached, and since they do not have the same sets of
possible commands because of differing modes X-ray and neither, it is
a violation of the fc-determinism property. The difference of possible
commands is related to commands indicating the modes of the system,
which means that the issue is related to a potential mode confusion.

A B C D E
selectX enter fire τ

neither X-ray X-ray X-ray neither

Figure 6.12. The counterexample witnessing the fc-determinism issue ends by an
action indicating a mode which means that the counterexample highlights a potential
mode confusion.

The issue is caused by the τ -transition that corresponds to the
reset transition that occurs automatically once the beam has been fired.
The operator may get confused since he cannot know for sure whether
the beam level is set to X-ray or is unset. An easy and immediate
solution to solve the issue is to make reset visible by turning it into an
observation. Doing so, the system becomes fc-deterministic and the
generated conceptual model has 12 states and 47 transitions.

The proposed approach can also be used to discover the potential
mode confusion, in the same model, that caused several accidents and
described in [LT93, BBS08]. The issue was caused by the fact that the
eight seconds delay was not tracked by the operator for who it acts as an
internal transition. Turning the 8s observation into a τ -transition makes
the generation algorithm fail with the following counterexample:

〈selectX, up, selectE, up, selectX〉

186 CHAPTER 6. HMI ANALYSIS

This time, as illustrated by Figure 6.13, the issue is related to the
8s transition that will occur after the first correction and selection of
electron beam. If the operator asks too quickly for the X-ray after the
second correction, the beam level will go from state XtoE to ESet after he
pressed selectX. So, after executing the counterexample, the system can
both reach a state where the command X-ray is possible, and one where
the command E-beam is possible, which is a potential mode confusion
situation.

A B C D E
selectX enter fire τ

neither X-ray X-ray X-ray neither

Figure 6.13. The counterexample witnessing the the well-known mode confusion that
caused several accidents with the Therac-25.

The mode-completion is not necessary for the reduction-based gen-
eration algorithm. In fact, it suffices to take into account the modes
when computing the initial partition that is used in the initial step of the
algorithm. The algorithm is initialised with the coarsest partition such
that all the states belonging to one block belongs to the same mode.

Identifying potential mode confusion situations is straightforward
with the proposed algorithms. They do not need any adaptation, only
the system has to be modified to integrate information about modes.
The only element that has to be changed is the diagnostic information
provided if the generation algorithm fails, so as to let the designer know
if the issue is about potential mode confusion or a more general issue
related to full-controllability. But as illustrated by the example, it can
be easily systematised.

One limitation, that is not due to the methodology itself, is that
each state of the system has only one mode. It could be useful to allow
one state to have more than one mode, or to have a notion of “don’t
care”. Such a possibility could have been useful for the first potential
mode confusion highlighted for the Therac-25 device. If the state E of
Figure 6.12 would have been categorised as a “don’t care” or as in both
modes X-ray and E-beam, the situation would not have been a potential
mode confusion. That possible extension have not been considered in
this work and left for future work.

6.5. USER TASK MODEL 187

6.4.2 Discovering Fc-modes

Another byproduct which is only provided by the reduction-based gen-
eration algorithm is that there is a direct relation between the states
of the system model and those of the produced conceptual model. The
states that are put together are fc-similar states, which mean that they
share the same behaviour and that the operator need not to be able to
distinguish among them. This is precisely one definition of mode.

In this case, the produced conceptual model may bring even more
information for the validation phase. If the designer of the system thought
about a set of modes when designing the system, they must in some
way coincide with the sets of fc-similar states. Figure 6.14 illustrates
that principle with the previously presented vehicle transmission system
example. The system model has been designed with three modes in the
mind of the designers: LOW, MEDIUM and HIGH. For that example, the
reduction-based generation algorithm produces the conceptual model of
Figure 6.14(b). There are two observations that can be done:

• There are no mode conflict, that is, two states of the system model
with different modes have not been gathered in the same block of
the partition of the produced conceptual model.
• The mode partition induced by the states of the conceptual model
refines the mode partition defined by the system designer.

6.5 User Task Model

In the two previous sections, the elements of analysis are the system
model and training materials. In this section, yet another point of view
about the interaction is taken by introducing the user’s tasks into the
analysis. The idea behind the notion of user’s tasks is that a given
operator is not always interested to know all the behaviour of the system
to be used. A given operator may only be interested in performing some
tasks, which only covers a part of the behaviour of the system.

Given a model of the tasks that the user want to be able to accomplish
on a given system, an question that can be answered with the approach
developed in this work is whether the system model does support all

188 CHAPTER 6. HMI ANALYSIS

high-1 high-2 high-3

medium-1 medium-2

low-1 low-2 low-3
up

down

up

down

up

down

up

down

up

down

push-up push-up pull-down
pull-down

push-up

push-up push-up
pull-downpull-down pull-down

(a) The system model.

high

medium

low-a low-b low-c
up

down

up

down

push-up push-up pull-down

push-up pull-down

push-up

up, down

up, down

(b) The minimal full-control concep-
tual model.

Figure 6.14. The Vehicle Transmission System (VTS) designed with three modes (the
three levels of grey backgrounds for LOW, MEDIUM et HIGH modes) has indeed five
modes, according to the full-control property (Example from [HD07]).

the user’s tasks. The idea is that a system model must have all the
behaviour necessary to support the user’s tasks, but of course may have
more behaviour. That potential additional behaviour will just not be
used by the user, but it must not disturb or confuse the operator.

A user task can also be modelled using an HMI-LTS, representing
the behaviour related to the specific task. A user task model is simply a
set of user task.

Definition 6.4 (User task model). A user task model T is a determin-
istic HMI-LTS T = 〈ST ,Lc,Lo, s0T ,→T 〉.

Figure 6.15 illustrates the concept of user’s task. The main element
is the user’s tasks model of Figure 6.15(a). The user just need to be
able to perform the sequence of three actions σ = 〈c1o1c2〉. Looking at
the system on Figure 6.15(b) reveals that there are two possible states
that can be reached after the execution of the c1 command: B or E. If
the system does transition to state E, the user will be confused since it
will be impossible for him to complete the task. In such a situation, the
system model is said not to support the user’s tasks model.

6.5. USER TASK MODEL 189

A B C D
c1 o1 c2

(a) User’s tasks model.

A

B C D

E

c1

c1

o1 c2

(b) System model.

Figure 6.15. A user’s tasks model that is not supported by a given system model due
to an observation that may not occur in some interactions.

6.5.1 Task-supporting property

To capture the notion of a system model supporting a user’s tasks model,
it is possible to use a variant of the full-control property, where the roles
of the commands and observations are reversed.

Definition 6.5 (Task-supporting Property for HMI-LTSs). Given a
deterministic HMI-LTS T = 〈ST ,Lc,Lo, s0T ,→T 〉 and an HMI-LTS
S = 〈SS ,Lc,Lo, s0S ,→S〉, S is said to support the user’s task T , which
is denoted S ts T , if and only if for all σ ∈ L∗ such that s0T

σ−−→ sT and
s0S

σ==⇒ sS:

Ao(sT) = Ao(sS) and Ac(sT) ⊆ Ac(sS)

For a system model to support a user’s tasks model, the following
must hold at any point during the interaction:

• The observations that are possible must be exactly the same on
the system model and the user’s tasks model.
• All the commands that the user may perform according to the
user’s tasks model must be possible on the system model.

The task-supporting property is thus exactly the same as the full-
control property except that the requirements on commands and obser-
vations is just reversed. A direct consequence is that the full-control
property check algorithm (Algorithm 5 on page 249) can be used to test
whether a system model supports a user’s tasks model.

Figure 6.16 shows yet another example to illustrate the task-support-
ing property. The system model of Figure 6.16(a) represents a simple

190 CHAPTER 6. HMI ANALYSIS

lamp. When the lamp has been turned on the on command, it can be
turned off either directly with the off command or gradually with the
fadeOut command. In that latter situation, the intensity of the lamp is
gradually decreasing (fades state) until being completely turned off, which
is represented by the endFading observation. Finally, when the lamp is
turned on, it may burn out in which case the lamp becomes unusable
(dead state). Since the user has no control about that situation, it is
modelled as an internal transition leading to the dies state from which the
user can observe that the lamp has died with the burnOut observation.

onoff

dead

fades

dies

press
fadeOut

τpress

endFading

burnOut

(a) System model.

A B C D
press fadeOut endFading

(b) User’s tasks model T1.

onoff dead
press

press burnOut

(c) User’s tasks model T2.

Figure 6.16. An example of a system model for a simple lamp and two different user’s
tasks model that are to be performed on the system.

Figure 6.16 also shows two user’s task model. The first one (T1)
represents a linear task that consists in turning the lamp on, then
turning it off using the fading out option. The second user’s task (T2)
represents that the user must be able to switch between the lamp turned
on and off, and is aware that it can burn out, in which case the user
does not do anything. Regarding task-supporting property, the following
holds:

• ¬(S ts T1) since during the interaction, the state (dies,B) can be
reached and its two states do not have the same set of observations.
Indeed, if a burnOut observation occurs, it is not foreseen by the
user’s task which can surprise him.

6.5. USER TASK MODEL 191

• S ts T2 since the task-supporting property is satisfied in any state
of the interaction. Even if all the behaviour related to the fading
out option is not covered by the user’s task model. It is not an
issue since that behaviour is activated by a command, but the
task-supporting property allows the system model to have more
commands than those present in the user’s task model.

6.5.2 Symmetric Full-control Property

The full-control property requires that, at any time during the interaction,
the set of commands that are possible on the system is exactly the same
as the set of commands that the operator thinks that are possible on
the system according to his mental model. However, as described in
Chapter 4, one of the four potentially bad situations captured by the
full-control property, namely when a command available on the system is
not present in the mental model, is not a potential automation surprise.

The symmetric full-control property only requires that, at any point
during the interaction, the operator expects at least all the observations
that can arise on the system, and that the system supports at least all
the commands that the operator is likely to execute.

Definition 6.6 (Symmetric full-control property for HMI-LTS). Given
two HMI-LTSs S = 〈SS ,Lc,Lo, s0S ,→S〉 and H = 〈SH ,Lc,Lo, s0H ,→H〉,
H is a symmetric-full-control mental model for S, which is denoted
H sfcS, if and only if for all σ ∈ L∗ such that s0S

σ==⇒ sS and s0H
σ−−→

sH :

Ac(sS) ⊇ Ac(sH) and Ao(sS) ⊆ Ao(sH)

Figure 6.17 illustrates the symmetric full-control property with a
simple FM radio example. Once the radio has been turned on, the
operator can set it to search the next available channel by pressing scan.
Either a channel is found and gets playing; the user can then search for
the next available channel. Or the end of the searchable range is reached
in which case the operator can restart searching from the beginning of
the range by pressing reset. At any time, the operator can also turn the
radio off.

The proposed mental model is not a symmetric full-control mental
model for the FM radio system, since it contains some behaviour that will

192 CHAPTER 6. HMI ANALYSIS

A

B

CD E

onoff

scan

found

scan end

reset

off offoff

(a) System model S.

0

1

2

3

on

scan

endscan

offfound

(b) Mental model H.

(A,0)

(B,1)

(C,2) (E,3)

(?,2)4

(A,?)4

(C,?)

4

(?,2)

8

(D,?)8

on

scan

end

off
found

off

resetscan

found

(c) Interaction model S ‖ H.

Figure 6.17. Example of an FM radio system modelled with an HMI-LTS S. The
proposed mental model H is not a symmetric full-control mental model for the system
since there are states of the interaction model S ‖I H where the symmetric full-control
criterion is not satisfied (highlighted with a grey background color).

6.5. USER TASK MODEL 193

lead to states where the symmetric full-control property is not satisfied
(the greyed states).

• In composite state (C, 2) the system may produce a found observa-
tion that is not foreseen by the operator, which will surprise him if
it occurs. On that state Ao(C) 6⊆ Ao(2).

• In composite state (E, 3) the operator may execute a scan command
which is not supported by the system. If the operator executes it,
the system will not behave as he would have expected, which will
surprise him. On that state, Ac(E) 6⊇ Ac(3).

In addition to those two situations which are potentially harmful,
there are also other situations that are not problematic according to the
symmetric full-control property.

• In composite state (B, 1), the operator can react to a found observa-
tion that will in fact never occur on the system in that state. That
situation was already the same for full-control property, the user
can expect more observations.

• In composite state (E, 3), the system provides a reset command that
the user will in fact never use according to his mental model. That
situation is different from full-control property in the sense that
the symmetric variant allows the system to have more commands
than those used by the operator.

Checking Symmetric Full-control

Checking whether a given mental model is a symmetric full-control
mental model for a given system can be done exactly in the same way as
it is done for the full-control property (see Section 4.2.1), except that
the condition that is checked in every composite state is the one of the
symmetric full-control property. The interaction model is built and the
symmetric full-control property is checked in all its composite states.
The interaction model is explored with a BFS so that the counterexample
that may be produced if the property is not satisfied are the shortest
one.

194 CHAPTER 6. HMI ANALYSIS

Minimal Symmetric Full-control Mental Model

The symmetric full-control property does not require the operator to
perform all the commands offered by the system. That flexibility induces
that a minimal symmetric full-control mental model can ignore all the
commands. Only the observations provided by the system do require the
symmetric full-control mental model to support them.

A direct consequence is that the minimal symmetric full-control
mental model is an HMI-LTS that only has observations on its transitions.
Moreover, since the mental model can expect observations that will not
actually occur on the system, there is only one unique minimal symmetric
full-control mental model for all the possible system models: the one-state
HMI-LTS with one loop for each observation of the alphabet, shown on
Figure 6.18.

A Lo

Figure 6.18. The unique minimal symmetric full-control mental model.

Property 6.7. Given an HMI-LTS S = 〈SS ,Lc,Lo, s0S ,→S〉, the HMI-
LTS H = 〈{s0H},Lc,Lo, s0H ,→H〉 with →H= {(s0H , o, s0H) | o ∈ Lo} is
the minimal symmetric full-control mental model for S.

Proof. By construction, for the mental model H, Ac(s0H) = ∅ and
Ao(s0H) = Lo. Let the trace σ ∈ L∗ be a common trace of both
models. By construction, the trace will only be composed of observations
and, given that s0S

σ==⇒ sS , it is always the case that Ac(sS) ⊇ ∅ and
Ao(sS) ⊆ Lo. Consequently, H is a symmetric full-control mental model
for S. Moreover, since it has only one state, it is also minimal.

The notion of minimal symmetric full-control mental model is not
useful for an HMI perspective. Nevertheless, the proposed symmetric
variant of the full-control property has some interesting applications as
it is described in the next section.

6.5.3 Task Model Completion

The symmetric full-control property exactly captures the situations where
the operator may get surprised during an interaction. Combined with the

6.5. USER TASK MODEL 195

ideas coming from the task-supporting property presented in Section 6.5.1,
it can be used to analyse whether a given user’s task, when executed on
a given system, will never lead the operator to states where potential
automation surprises may occur.

Figure 6.19(a) shows a user task model for the task which consists
in turning the radio on and getting it play some music by scanning the
frequencies. That user task model is not a symmetric full-control mental
model for the system since it does not contain all the observations that
may occur during the interactions. However, it can be completed, that
is, enriched with additional behaviour, so that to satisfy the symmetric
full-control property as shown on Figure 6.19(b).

0

1

2

on

scan

(a) A user task model
T .

0

1

2

on

scanfound

end
(b) Completion of the
user task model that
allows symmetric full-
control of the system.

Figure 6.19. A user’s task model for the FM radio example (on the left) that has
been completed so that it is a symmetric full-control mental model for the system (on
the right).

Completing a user task model so that it allows symmetric full-control
of the system model, and so that it has the minimal number of states
is not a trivial problem. Having such a minimal completion can help
designers to test whether the design of a system makes it easy for the
operator to user. Indeed, it a lot of states has to be added to the user
task model, it would mean that the additional knowledge that the user
has to know about the system may be too large. This problem and
solutions for it has not been tackled in this thesis but are left for future
work directions.

196 CHAPTER 6. HMI ANALYSIS

Chapter 7
The Autopilot Case Study

The concepts presented so far in the previous chapters have only been
demonstrated on small-sized examples, even if some were realistic. This
chapter presents a larger case study which is the model of the autopilot
of a Boeing 777 aircraft, that has been modelled in the ADEPT toolset
developed by researchers from NASA Ames. Section 7.1 presents the
ADEPT toolset and Section 7.2 proposes a formal semantics for its models.
Section 7.3 then presents how ADEPT models can be translated into HMI-
LTSs provided the proposed formal semantics. Then, Section 7.4 presents
completely the autopilot model and its analysis with the techniques
presented in this thesis are presented in Section 7.5.

7.1 The ADEPT Toolset and Model

ADEPT, which stands for Automatic Design and Evaluation Prototyping
Toolset [Fea10], is a Java-based tool that supports designers in the early
prototyping phases of the design of automation interfaces. The tool also
offers a set of basic analyses that can be performed on the model under
development.

7.1.1 General Presentation

An ADEPT model is composed of two elements: a set of logic tables,
coupled with an interactive user interface (UI). The logic tables are used
to describe the dynamics of the system. They describe precisely how the
state of the system evolves in reaction to user actions or due to events
occurring in the environment. The logic tables also describe how the
user interface is updated and what information is shown to the operator.

197

198 CHAPTER 7. THE AUTOPILOT CASE STUDY

Figure 7.1 shows a screenshot of the autopilot model opened in
ADEPT. The left part of the window shows one of the logic tables and
the right part shows the user interface.

Figure 7.1. The autopilot model opened in ADEPT, with one logic table in the left
part of the window and the user interface on the right.

Behind the scene, an ADEPT model is compiled into a Java program
that can be executed in order to directly try the encoded behaviour with
the user interface. That tool is meant to be used as a rapid prototyping
tool. The models can then be tested and simulated by the designers, but
can also be analysed by systematic and rigorous techniques. Possible
analyses include validity checks on the structure of logic tables, for
example.

The UI is composed of a set of components that are encoded as
Java objects representing graphical widgets going from simple labels
and buttons to more complex elements such as those used in avionics
and present on the primary flight display (PFD), including the airspeed
tape, for example. In addition to those widgets, an ADEPT model
also comprises other kinds of elements such as timers, system variables
and functions, which are each related to a specific and defined Java
construction, namely java.util.Timer, instance variables and methods.

7.1. THE ADEPT TOOLSET AND MODEL 199

The logic tables can refer to the elements of the UI and to the other
components through their Java instance variables, and interact with
them through their methods, using Java syntax. The events that can
occur in the program come from the components. They can be seen as
boolean variables indicating whether they occurred and that can be used
in the logic tables.

Figure 7.2 shows one of the logic tables of the autopilot model. The
precise structure of those tables is detailed later in this section and
a first example is provided just hereafter in Section 7.1.2. That logic
table example illustrates the way it can interact with elements of the
UI. For example, the last two lines of the logic table mean that the
selectedSpeedTarget field of the pfdAirspeedTargetTape component of the UI
is updated with the value of the system variable selectedSpeedTarget.

0 1
L airspeedFeedbackTable
INPUTS

L airspeedSystemTable.outputState
Maintain Airspeed Target •
Capture Airspeed Target •
Hold Current Airspeed •
Protect Airspeed Target •

OUTPUTS
C pfdAirspeedTape.currentValue

V indicatedAirspeed • •
C cautionLabel.background
255, 204, 0 •

C autothrottleModeFailureBar.opaque
False •
True

C pitchModeFailureBar.opaque
False •
True

C pfdAirspeedTape.preSelectedTarget
V selectedSpeedTarget •

C pfdAirspeedTape.selectedTarget
V selectedSpeedTarget •

Figure 7.2. An example of a logic table: the airspeed feedback table of the autopilot
model contains the logic related to the update of the UI for the airspeed part.

200 CHAPTER 7. THE AUTOPILOT CASE STUDY

7.1.2 A Simple Model Example

Figure 7.3 shows the logic table corresponding to a simple counter system.
The value of the counter can be increased between 0 and 9 with a press
on a button, and it can be reset to 0 at any time. Logic tables are divided
into two parts: the input part is used to describe conditions and the
output part is used to describe how the state of the system is updated.

0 1
L simpleCounter
INPUTS

V value
< 9 •

ACTIONS
press •
reset •

OUTPUTS
V value
= value + 1 •
= 0 •

Figure 7.3. An ADEPT model of a simple counter system, whose value ranges between
0 and 9.

Basically, an ADEPT model describes a system as a set of system
variables. The rows of logic tables are divided into blocks of rows, each
being related to one variable of the system, with their possible values.
The global state of the model is defined by the values of those system
variables. A special variable named ACTIONS is used to represent actions
performed by the user on the system. Each numbered column corresponds
to one possible scenario of the system behaviour.

The input part of the first scenario (the column numbered 0) repre-
sents the following condition:

value < 9 ∧ ACTIONS = press

If this condition is met in the current state of the system, then the
next state is computed from the current state by executing the following
assignment instruction:

value← value + 1

7.1. THE ADEPT TOOLSET AND MODEL 201

ADEPT models have a similar expressivity than HVMs and they can
thus be translated so that the analyses proposed in this thesis can be
applied to them. Figure 7.4 shows how the behaviour encoded in the
ADEPT model can be translated into a graph. Each state of the graph
represents a state of the ADEPT model, that is, a valuation of the set
of system variables. Transitions between states correspond either to the
user having executed an action, or to the execution of a scenario of the
logic table.

A
value = 0

ACTIONS = –

B
value = 0

ACTIONS = press

C
value = 1

ACTIONS = –

D
value = 0

ACTIONS = reset

. . .

Figure 7.4. Partial translation of the simple counter ADEPT model into a graph and
representing the same behaviour.

This proposed translation from an ADEPT model to a simple graph
is not the only way to proceed. In particular, for this work, the important
aspect are the labels on transitions that indicates the action performed by
the user on the system. An HVS such as the one proposed on Figure 7.5
corresponds to a model that can be analysed with the techniques proposed
in this work. The value of the special ACTIONS variable has been used to
define command labels on the transitions. In order to be able to translate
systematically and automatically ADEPT models into HVSs, a formal
semantics is needed. The latter is the subject of the next section.

A
value = 0

B
value = 1

. . .press

reset

Figure 7.5. Partial translation of the simple counter ADEPT model into an HVS and
representing the same behaviour.

202 CHAPTER 7. THE AUTOPILOT CASE STUDY

7.2 A Formal Semantics of ADEPT

The meaning of an ADEPT model can be decomposed into two parts: the
logic part is defined by the logic tables and the program part is defined
by the UI components and the other elements. The behaviour of an
ADEPT model is as that of a Java program where the logic tables are
executed in reaction to events occurring in the program part. The logic
tables can be seen as listeners reacting to Java events produced by the
elements of the program part. Figure 7.6 illustrates the behaviour of an
ADEPT model. All the elements are first initialised or assigned their
initial values, which defines the initial state of the ADEPT model. The
behaviour then loops forever, alternating between the program and logic
parts. The execution leaves the program part whenever an event occurs,
and the execution is transferred to the logic part, just after having set
the boolean variable corresponding to the event that occurred. Once all
the logic tables have been executed, the flow goes back to the program
part.

Initialisation
of elements

Execution of
program part

Execution of
logic part

An event e occurred, and the cor-
responding boolean variable is set

The boolean variable cor-
responding to e is cleared

Figure 7.6. Behaviour of an ADEPT model. Once all the elements of the model have
been initialised, the behaviour loops forever alternating between the program and the
logic parts.

7.2. A FORMAL SEMANTICS OF ADEPT 203

7.2.1 ADEPT Logic Tables

Logic tables are two-dimensional tables split in two parts: INPUTS and
OUTPUTS. Each of those parts is then structured into a two-level hier-
archy of elements and values, so that the values are always associated
to an element. As previously mentioned, the element-value pairs are
representing conditions for the inputs whereas they represent statements
for the outputs. Figure 7.7 shows an example illustrating the structure
of logic tables.

INPUTS
element 1

condition 1.1 • •
condition 1.2 • •
condition 1.3 • •

element 2
condition 2.1 • •
condition 2.2 • •

OUTPUTS
element 3

statement 3.1 • •
statement 3.2 •

Figure 7.7. Structure of the logic tables of ADEPT models.

In addition to the separation between the input and the output parts,
a logic table is also structured horizontally. The left part of the table
describes the element-value pairs and the right part of the table consists
in a sequence of columns.

Row Headers

The row headers are representing the left part of the logic tables. A
row header is a sequence of switches. Each switch is the association
between an element and a sequence of values. A distinction has to be
made between input and output headers, but their structure is identical.
The table header is a pair made of an input header and an output header.

204 CHAPTER 7. THE AUTOPILOT CASE STUDY

The following sets define formally those concepts:

Header = IHeader ×OHeader
IHeader = ISwitch∗

ISwitch = IElem× IV al∗
OHeader = OSwitch∗

OSwitch = OElem×OV al∗

The sets IElem, IV al,OElem and OV al are detailed further in Sec-
tion 7.2.2, with the description of the program part of ADEPT models.

The input header of the example of Figure 7.7 contains two input
switches and the output header one output switch. Formally, the table
header of the example is defined as:

H = (HI , HO)
HI = (SI1 , SI2)
SI1 = (element 1, (condition 1.1, condition 1.2, condition 1.3))
SI2 = (element 2, (condition 2.1, condition 2.2))
HO = (SO1)
SO1 = (element 3, (statement 3.1, statement 3.2))

Columns

The columns of a logic table define elementary fragments of dynamic
behaviour, referred to as situation-automation behaviour pairs in [Fea07],
expressed as conditions on the current state (the input part) and changes
to be applied to the state to get the next state (output part).

A row index is a pair y = (i, j) ∈ N × N, denoted i.j and that
represents the jth value of the ith element.

Index = N× N

An index set is a set Y ⊂ N× N of row indices. An index set is an
index range if its first indices cover a continuous range 1, · · · , n and its
second indices cover a continuous range 1, · · · , ni for each first index i.
The subset Y |i = {i.j ∈ Y } contains row indices whose first index is i.
For example, the set Y = {1.1, 1.2, 2.1, 2.2, 2.3, 3.1} is an index range,
but {1.1, 3.1} and {1.1, 1.3} are not, and Y |2 = {2.1, 2.2, 2.3}.

7.2. A FORMAL SEMANTICS OF ADEPT 205

An (input or output) header H is seen as a mapping from row
indices to (E, V) pairs according to the following rule. Given that H =
(H1, · · · , Hn) with Hi = (Ei, (Vi,1, · · · , Vi,ni)), then H(i.j) = (Ei, Vi,j),
provided that 1 ≤ i ≤ n and 1 ≤ j ≤ ni. The domain of H is thus an
index range, by definition.

A column gives a binary value for every row of the logic table that
corresponds to a value (condition or statement). That assignment is
represented by the bullets in the graphical representations of the logic
tables. Formally, it can be represented as a mapping from row indices to
boolean values. Another equivalent way to describe a column is to define
two sets of row indices CI and CO, respectively included in the domains
of the input and output headers of the logic table, so that i.j ∈ CI if
and only if the row i.j is marked in that column of the logic table, and
similarly for CO.

Col = 2Index × 2Index

The three columns of the example of Figure 7.7 can be formally
defined as:

C1 = ({1.1, 1.3, 2.1, 3.1}, {3.1})
C2 = ({1.2, 2.2}, {3.1, 3.2})
C3 = ({1.2, 1.3, 2.1, 2.2}, ∅)

Tables and Models

Given the definitions of the row headers and of the columns, it is now
possible to define the logic tables. A logic table is a structure T =
(HI , HO, CC), where:

• HI ∈ IHeader is an input header;
• HO ∈ OHeader is an output header;
• and CC ∈ Col∗ is the table body consisting of a list of columns
C = (CI , CO) where CI ⊆ dom(HI) and CO ⊆ dom(HO).

All the structures that make a table are totally ordered, either explic-
itly because they are defined as sequences, or implicitly by the ordering
on indices, in the case of row index sets.

Table = IHeader ×OHeader × Col∗

206 CHAPTER 7. THE AUTOPILOT CASE STUDY

Finally, an ADEPT (logic part of) model M is a collection of named
logic tables (on a set of names Name), such that all the names are
different and with a distinguished logic table named top.

Model = 2Name×Table

A model M is seen as a mapping from names to tables, defined so
that M(N) = T if (N,T) ∈M .

7.2.2 ADEPT Programs

The program part of an ADEPT model captures the behaviour related to
the interaction of the user with the user interface. The elements of the
program part belong to a Java program, and all the elements, conditions
and statements that lie in the tables result, directly or indirectly, into the
generation or execution of Java code. In particular, all system variables
are implemented as Java variables.

Entities types

There is a total of five different types of entities, designated with capital
boxed letters, that can be used to compose an ADEPT model. Those
entities can appear in row headers as elements and as values. Of course,
the meaning of those entities varies if they are used in the input or output
part. The following types are supported in ADEPT:

V System variables correspond to Java variables and can appear both
as elements and as values, in input and output switches.

C UI components correspond to Java GUI widgets from the user
interface. Each widget can be used in several ways in the row
headers:

– GUI events can be used in input switches for the distinguished
element ACTIONS as input conditions. The event parame-
ters are not accessible. Examples include mouse pressed/re-
leased/clicked.

– GUI component attributes (foreground/background colour,
currentValue, opaque...) can be used in output switches as
elements whose value can be changed with output statements.

7.2. A FORMAL SEMANTICS OF ADEPT 207

– Arbitrary GUI component methods can be invoked in output
switches for the distinguished element PRIMITIVES as output
statements corresponding to their execution.

O Timers are used to schedule repetitively some events. They can be
used in two ways:

– Timer events can be used in input switches for the distin-
guished element ACTIONS as input conditions. It corresponds
to the actionPerformed Java method and the event parameter
is not accessible.

– Timer methods can be used in output switches for the distin-
guished element PRIMITIVES as output statements correspond-
ing to their execution. The Java methods that can be invoked
are start and stop.

F Functions correspond to Java methods which return a value. They
can be used in output switches as values.

L Logic tables can appear by themselves in output switches for the
distinguished element LOGIC as output values. Each logic table T
also has an associated variable T.outputState that can appear both
in input and output switches as element and whose values are of
enumerated type.

Conditions

Input switches of logic tables define conditions that correspond to Java
boolean expressions. Conditions are derived from input element-value
pairs, that is, B = cond(EI , V I) with EI ∈ IElem and V I ∈ IV al.

cond : IElem× IV al 7→ JavaExpr

The definition of cond depends on the type of the EI element. The
result of cond is a text string that has to be interpreted as Java code
representing a Java condition that can be evaluated.

• cond(V var, expr) = var == expr

expr is a single expression. For example, cond(V x, 8) = x == 8.

208 CHAPTER 7. THE AUTOPILOT CASE STUDY

• cond(V var, str) = var str

str is typically of the form op expr where op is a comparison operator,
but it can be any string that is used to form non-atomic boolean
expressions. For example, cond(V x,>= 0 && x < 5) = x >= 0 &&
x < 5.

• cond(ACTIONS, C component.event) = component.event
cond(ACTIONS, O timer.event) = timer.event

event is an event name of an UI component (component or timer), or
more precisely a boolean variable associated with the event.

• cond(L table.outputState, value) = table.outputState == value

value is a constant value in the range of table.outputState since
the outputState variable that can be associated to a table is an
enumerated type.

Statements

Output switches of logic tables define statements that correspond to Java
statements. Statements are derived from output element-value pairs,
that is, S = stmt(Eo, V o) with Eo ∈ OElem and V o ∈ OV al.

stmt : OElem×OV al 7→ String

The definition of stmt also depends on the type of the Eo element.
The result of stmt is also a text string that has to be interpreted as Java
code representing a Java statement that can be executed.

• stmt(LOGIC, table) = call (table)

table is the name of a logic table that has to be executed. The call
Java method is defined so that exec(call(table), q) = [[M(table)]](q).

• stmt(PRIMITIVES, O timer.method) = timer.method()
stmt(PRIMITIVES, statement) = statement

method is typically start or stop and statement is any Java statement,
typically a single method call or an assignment.

7.2. A FORMAL SEMANTICS OF ADEPT 209

• stmt(V var, expr) = var = expr
stmt(V var, V var’) = var = var’

expr is a single expression.

• stmt(V var, F fun) = var = fun()

fun is a function implemented as a Java method which returns a
value and that can possibly change the state of the model (that is,
modify the value of the system variables).

• stmt(V var, str) = var str

str is typically of the form = expr or op = expr. For example,
stmt(V x,+= 3) = x += 3.

• stmt(L table.outputState, value) = table.outputState = value

value is a constant value in the range of table.outputState. Moreover,
table must be the current logic table the outputState variable can
only be changed by the table it belongs to.

• stmt(C component.field, value) = component.field = value

component.field designates the field attribute of the component UI
component. It can for example be used to change the appearance
of a GUI widget.

7.2.3 Execution Semantics

The state of an ADEPT model is defined by the state of its program
part. The state is composed of the value of the system variables and of
the individual states of all the other elements of the program part, such
as the UI components and timers. The program part therefore defines
the set of possible states q ∈ Q of the ADEPT model. In particular,
all the elements do have an initial state, that is pre-defined (timers are
for example initially inactive) or user-defined (for example for system
variables), which defines the global initial state of the ADEPT model.

210 CHAPTER 7. THE AUTOPILOT CASE STUDY

Well-formed Logic Tables

Logic tables must satisfy two requirements so that the ADEPT model
composed by those tables is valid:

1. within a logic table, the input part of the columns should be
complete and non-overlapping;

2. and within an input switch, the conditions should be complete
and non-overlapping, except for the input switches having the
distinguished ACTIONS element.

Those two requirements together guarantee that exactly one column
(at most one for ACTIONS) will be applied for any invocation of a table.
The second requirement ensures that only one condition is true for any
input switch in any state, and the first requirement ensures that any
combination of such conditions is covered in any table.

The ACTIONS elements need a special treatment. The values of those
elements correspond to events produced either by interactions with UI
components or timer triggers. By construction, at most one event variable
is set on any invocation of the logic tables. However, ACTIONS input
switches need not to cover all the possible actions and thus, may be
incomplete.

The two requirements required for a logic table to be well-formed
can be formally defined. Given an index set Y , the choices over Y are
defined as the set:

choices(Y) = Y |1 × · · · × Y |n

where n = max{i | i.j ∈ Y }. One choice over Y picks one i.j index for
each first-level index i appearing in Y . The choices function applied
to an input header HI , that is, applied to Y = dom(HI), returns all
possible combinations of single values for each input switch of HI .

It may be the case that for some input switches, there are some
columns for which no conditions are marked. The expansion adds all
the conditions for input switches where no condition is marked. The
corresponding interpretation is that blank input switches correspond to
“don’t-cares” and must therefore be interpreted as always true. Given
an index set C (from an input column) and an index range Y (from the

7.2. A FORMAL SEMANTICS OF ADEPT 211

input header), the don’t care expansion of C with respect to Y is defined
as:

expand(C, Y) = C ∪
⋃
{Y |i | C ∩ Y |i = ∅}

Property 7.1 (Well-formed logic tables). Two requirements have to be
satisfied for a logic table (HI , HO, CC) to be well-formed.

• (Requirement 1) Let CC = (C1, · · · , Cm) and Ci = (CIi , COi).
For any choice C∗ ∈ choices(dom(HI)), there is a unique 1 ≤ i ≤
m such that C∗ ⊆ expand(CIi ,dom(HI)).
• (Requirement 2) For any input switch (EI , (V I

1 , · · · , V I
k)), where

EI 6= ACTIONS (resp. EI = ACTIONS), for any state q, there
is a unique (resp. at most one) i such that 1 ≤ i ≤ k and
eval(cond(EI , V I

i), q) = T .

Figure 7.8 shows several input part examples that illustrate the two
requirements necessary for a logic table to be well-formed.

• Example of Figure 7.8(a) fails to satisfy requirement 1. Indeed,
there is, for example, no 1 ≤ i ≤ 3 that supports the choice
C∗ = (1.3, 1.1). However, requirement 2 is satisfied.
• Example of Figure 7.8(b) fails to satisfy requirement 2. Indeed, for a

state q where the value of x is 4, the second and third conditions on
the element are both satisfied. However, requirement 1 is satisfied.
• Example of Figure 7.8(c) does satisfy both requirements and is

thus a well-formed logic table.

Whereas the first requirement can be automatically checked by the
ADEPT toolset, it is not possible for the second requirement. If the first
requirement fails to be satisfied, the ADEPT toolset generates a warning,
but the model is still executable. Jointly enabled columns are seen as
non-determinism. The column that will be executed is undetermined.
The second requirement involves arbitrary Java code, which makes it
undecidable in general.

Another constraint, enforced by the first requirement, is that if a
behaviour is provided for an event, it must be provided for any combina-
tion of conditions. If the event should be ignored under some conditions,

212 CHAPTER 7. THE AUTOPILOT CASE STUDY

INPUTS
x

<= 0 •
> 0 && x < 5 • •
>= 5

y

== 100 •
!= 100 • •

(a) Requirement 1 fails.

INPUTS
x

<= 0 •
> 0 && x < 5 •
=> 4 •

y

== 100 •
!= 100 •

(b) Requirement 2 fails.

INPUTS
x

<= 0 •
> 0 && x < 5 • •
>= 5 • •

y

== 100 •
!= 100 •

(c) Well-formed logic table.

Figure 7.8. Illustration of the two requirements necessary for a logic table to be
well-formed. The two system variables x and y are supposed to be int that can take
any value in the domain of Java int variables.

the corresponding column must have an empty output part. The event
is said to be inhibited. This makes it possible to distinguish intentionally
inhibited events from mistakenly unspecified behaviour in some set of
conditions.

Execution Semantics of ADEPT Tables

The elementary computations that are performed during the execution
of an ADEPT model are captured in the eval and exec functions:

• A condition B evaluated in a program state q results in a boolean
value defined by eval(B, q) ∈ {T, F}.
• A statement S executed in a program state q results in a new state
defined by exec(S, q) ∈ Q.

The execution semantics defines semantic mappings [[α]](q), denoting
the semantics of the syntactic constructs α in a state q of the model. For
input constructs, the result of the semantic mappings is a boolean value
and for output constructs, the results is a new state.

The tables are first converted by projection of headers on columns.
The idea is that a column C can be seen as a filter on the table column
headers HI and HO. That idea is formalised by the projection operation
(HI , HO)/C that produces a reduced table header containing only rows
selected by the column C. The projection operation also integrates the
expansion of don’t-cares.

7.3. ADEPT TO HMI-LTS TRANSLATION 213

An (input or output) header H = (H1, · · · , Hn) is projected on an
index set Y ⊆ dom(H) as follows:

(H1, · · · , Hn)/Y = (H1/Y, · · · , Hn/Y)

where, for each Hi = (Ei, (Vi,1, · · · , Vi,ni)),

(Ei, (Vi,1, · · · , Vi,ni))/Y = (Ei, (Vi,j | i.j ∈ Y, 1 ≤ j ≤ ni))

All the elements Ei are preserved, with an empty list of values
if Y contains no index i.j. The projection is extended to a column
C = (CI , CO) as:

(HI , HO)/(CI , CO) = (HI/expand(CI , HI), HO/CO)

and then to a list of columns CC = (C1, · · · , Cm) as:

(HI , HO)/(C1, · · · , Cm) = ((HI , HO)/C1, · · · , (HI , HO)/Cm)

Figure 7.9 shows the execution semantics of ADEPT models. The
semantics mapping is presented in a top-down denotational style and is
based on common functional programming constructs. The two require-
ments for well-formed logic tables ensure that there is at most one i such
that [[HI

i]](q) for any projected input column (HI
1 , · · · , HI

ni). Moreover,
the second requirement also guarantees that there is at most one i such
that [[EI]](V I

i), and exactly one except if EI = ACTIONS.

7.3 ADEPT to HMI-LTS Translation

Based on the formal semantics proposed in the previous section, it is
possible to translate an ADEPT model into any other formalism that
is able to represent the same kind of behaviour. More precisely, only
the logic part of ADEPT models is covered by the proposed semantics
since Java semantics is not captured at all. Indeed, in the proposed
semantics, elements coming from the Java language including conditions
and statements are directly evaluated according to the Java semantics.
Moreover, the translation proposed in this work does not cover all the
models, but only some of them following a precise structure, defined in
this section.

214 CHAPTER 7. THE AUTOPILOT CASE STUDY

[[M]] : Q 7→ Q
[[M]](q) = [[M(top)]](q)

[[T]] : Q 7→ Q
[[(HI , HO, CC)]](q) = [[(HI , HO)/CC]](q)

[[((HI
1 , H

O
1), · · · , (HI

n, H
O
n))]] : Q 7→ Q

[[((HI
1 , H

O
1), · · · , (HI

n, H
O
n))]](q) =

{
[[HO

i]](q) if ∃i · [[HI
i]](q)

q otherwise

[[HI]] : Q 7→ {T, F}
[[(SI1 , · · · , SIn)]](q) = [[SI1]](q) ∧ · · · ∧ [[SIn]](q)

[[SI]] : Q 7→ {T, F}
[[(EI , (V I

1 , · · · , V I
k))]](q) = [[(EI , V I

1)]](q) ∨ · · · ∨ [[(EI , V I
k)]](q)

[[(EI , V I)]] : Q 7→ {T, F}
[[EI , V I]](q) = eval(cond(EI , V I), q)

[[HO]] : Q 7→ Q
[[(SO1 , · · · , SOn)]](q) = ([[SOn]] ◦ · · · ◦ [[SO1]])(q)

[[SO]] : Q 7→ Q
[[(EO, (V O

1 , · · · , V O
k))]](q) = ([[(EO, V O

k)]] ◦ · · · ◦ [[(EO, V O
1)]])(q)

[[(EO, V O)]] : Q 7→ Q
[[EO, V O]](q) = exec(stmt(EO, V O), q)

Figure 7.9. Execution semantics of ADEPT models.

7.3.1 ASF structure

ADEPT models considered in this thesis, and in particular the autopilot
model, are structured in a particular way which allows a clear distinction
between:

• the actions performed by the operator on the user interface;
• the internal decision logic of the system;
• and the feedback provided by the system to the user through the

user interface.

That particular structure, referred to as the action-system-feedback
structure (ASF), is reflected in the way the logic tables of the model

7.3. ADEPT TO HMI-LTS TRANSLATION 215

are particularised and organised. The logic tables are partitioned into
three groups: the action tables, the system tables and the feedback
tables. The execution of the logic part of an ADEPT model is always
happening following the same order: action tables, then system tables
and finally feedback tables, as illustrated by Figure 7.10. Commands
executed by the user are dealt with by the actions tables and observations
produced by the system and sent back to the user interface are managed
by the feedback tables. The operator can then examine the outputs to
choose the next action to be performed on the system, which makes the
execution loop of the system.

Action tables

Action.outputState

System tables

System.outputState

Feedback tables

System variables
Java UI

event

User

Figure 7.10. Structure of the logic tables of ADEPT models used in this thesis, and
execution loop of the model.

1. The action tables manage the interaction between the operator
and the system through the action components on the interface.
Those tables essentially take as inputs actions by the operator
on the interface action components or automatic events triggered
by timers. The different possible results from those tables are
summarised with the outputState variable of the table.

2. The system tables contain the decision logic of the system. Those
tables use information from the operator’s actions that are in the

216 CHAPTER 7. THE AUTOPILOT CASE STUDY

outputState variables of the action tables and, combined with the
values of the variables, update the state of the system. The be-
haviour related to the different system tables is also summarised
with the outputState variable of each table. These different output-
State variables can be regarded as defining the operating mode of
the system.

3. Finally, the feedback table are used to characterise what information
is shown to the user. Information about what the system has done
and is doing is provided to the user through display components
on the interface. The outputState variables of the system tables
are used to display the operating mode and some system variables’
values to the user.

The partitioning imposed by the ASF structure also conditions where
the different elements will be used, both in the input and in the output
parts of the logic tables. For example, events will only occur in the inputs
of action tables and widgets properties will only occur in the outputs
of feedback tables. Moreover, given that the events are generated by
interaction with Java GUI widgets or by timer triggers, and that those
events are managed by a unique event-dispatching thread (EDT) in
Java, it can be assumed that each loop through the logic tables will be
associated with one single event. This important assumption plays a
crucial role in the translation from an ASF ADEPT model to an HVS.

The AP-FD-AT Example

Figures 7.11 to 7.13 illustrate how the ASF structure is implemented
for a particular part of the ADEPT model of the autopilot used in this
chapter. The three presented tables are used to manage three elements:
A/P (Autopilot), F/D (Flight Director) and A/T (Auto Throttle).

Figure 7.11 shows the action table. The input part only considers
the distinguished element ACTIONS and manages click actions on several
UI components. It also considers the actionPerformed action of a warning
timer. The output part summarises the command performed by the
operator using the outputState variable associated to the logic table. In
this particular situation, the number of different values for the outputState
variable is the same as the number of actions, but this is not always

7.3. ADEPT TO HMI-LTS TRANSLATION 217

the case. The three rows related to the functionWarningTimer are not
considered in this work and can be ignored.

0 1 2 3 4 5 6 7
L apFdAtInterfaceActionTable
INPUTS
ACTIONS

C mcpCaptainsFdSwitch.mouseClicked •
C mcpFoFdSwitch.mouseClicked •
C mcpLeftApButton.mouseClicked •
C mcpRightApButton.mouseClicked •
C mcpAtArmSwitches.mouseClicked •
C mcpLocButton.mouseClicked •
C mcpAppButton.mouseClicked •
O functionWarningTimer.actionPerformed •

OUTPUTS
L apFdAtInterfaceActionTable.outputState
user toggles captains fd switch •
user toggles first officers fd switch •
user presses left AP button •
user presses right AP button •
user toggles autothrottle arm switches •
user presses LOC button •
user presses APP button •
no action •

PRIMITIVES
O functionWarningTimer.stop • • • • • • • •
O functionWarningTimer.start • • • • • • •

Figure 7.11. The autopilot flight director attitude interface action table manages the
events related to the UI components concerning the management of the autopilot.

Figure 7.12 shows the system table which contains the decision logic.
The input part is looking at the outputState of the corresponding action
table and, based on that, sets the outputState of its own logic table.
Generally, the input part can also have conditions on the state variables
of the system, as well as conditions on its own outputState. The output part
can also update the state variables. The outputState variable of system
tables can be considered as describing modes, since they summarise part
of the behaviour of the global system. For the current example, the
captains FD can either be activated or not.

218 CHAPTER 7. THE AUTOPILOT CASE STUDY

0 1 2
L captainsFdSystemTable
INPUTS

L apFdAtInterfaceActionTable.outputState
no action •
user toggles captains fd switch • •

L captainsFdSystemTable.outputState
captains FD on •
captains FD off •

OUTPUTS
L captainsFdSystemTable.outputState
captains FD off •
captains FD on •

Figure 7.12. The captains flight director system table contains the logic related to
the management of the flight director by the captain.

Finally, Figure 7.13 shows the feedback table. The input part of
the logic table refers to the outputState of the corresponding system
table. In this particular example, it does refer to the outputState of two
other tables. The output parts is concerned with the update of GUI
components. Feedback tables encode in some way the observation that
are made available to the operator.

7.3.2 ASF ADEPT Model Translation

As a reminder, a system model S is defined with an HVS which is a
tuple S = 〈S,Lc,Lo, s0,→,Lv,O〉 (Definition 3.13 on page 76). When
translating an ADEPT model with the ASF structure, only the logic
tables belonging to the system tables category are considered. The reason
motivating that choice is that the decision logic of the system is precisely
described in that part of the model. The other tables indirectly play a
role in the translation. Actions tables are used to identify the alphabet
of the HVS and feedback tables are used to define the visible system
variable used to define the set of state-values.

• Each state s ∈ S of the HVS corresponds to a unique assignment of
values to all the system variables of the ADEPT model (including
outputState variables).

7.3. ADEPT TO HMI-LTS TRANSLATION 219

0 1 2 3
L apFdAtInterfaceFeedbackTable
INPUTS

L captainsFdSystemTable.outputState
captains FD on • •
captains FD off • •

L firstOfficersFdSystemTable.outputState
first officers FD on • •
first officers FD off • •

OUTPUTS
C mcpCaptainsFdSwitch.source
B777_fd_switch_on.jpg • •
B777_fd_switch_off.jpg • •

C mcpFoFdSwitch.source
B777_fd_switch_on.jpg • •
B777_fd_switch_off.jpg • •

Figure 7.13. The autopilot flight director attitude interface feedback table updates
the UI components concerning the management of the autopilot.

• The set of commands Lc corresponds to all the actions that the
operator can perform on the system. That set is composed of the
union of the domains of all the outputState variables of the action
tables, except the distinguished no action value that has a special
role explained below.
• The set of observations Lo is empty.
• The initial state s0 is based on the initial values of the system
variables and is the same as the initial state of the ADEPT model.
• The transition relation → is defined according to the execution

semantics defined in Section 7.2.
• The set of state-values Lv is defined by the visible system variables

and is defined with the state-value mapping function O exactly as
described in Section 3.3.1.

Hypotheses

An assumption that has to be satisfied is that the operator cannot
perform more than one action at a time. For that to be true, it means
that for each execution cycle of the ADEPT model, there is only one

220 CHAPTER 7. THE AUTOPILOT CASE STUDY

table at most which is executed and outputs a table outputState variable.
If the particular value “no action” is true in all the tables of the model, it
corresponds to an internal τ -translation in HVS.

7.3.3 The Video Cassette Recorder example

The video cassette recorder example (VCR) is a model coming from
ADEPT which consists of a single logic table shown on Figure 7.14. The
machine has a total of six main operating modes: play, stopped, fast
forward, rewind, pause and record. In addition to a command to activate
each of those modes, the machine has one button to turn the machine
on or off. Moreover, the fast forward and the rewind modes can operate
at different speeds. The speed is automatically adjusted according to
the remaining tape length, so that it slows down when the remaining
tape length is becoming smaller. Finally the machine automatically
switches to the rewind mode whenever the tape reaches its end, that is,
the remaining tape length is zero.

The VCR ADEPT model is an example that is not following the
ASF structure. However, it can be translated into an HVS, following
the proposed semantics. The translation of the VCR model into an HVS
results in a system with 1088 states and 3740 transitions. There are seven
commands (one to activate each mode and a power button) and two
observations (tape moving forward and backward). The two observations
correspond to timer events that are produced whenever the remaining
tape length is changing, because of some of the operating modes. The
states of the HVS are characterised by three variables: the status of the
VCR (ON or OFF), its mode among the six possible and finally the value
of the tapeRemaning variable.

The analysis of the system, trying to generate a full-control conceptual
model for it, raised some issues. More precisely, the system is not fc-
deterministic and it can for example be observed at the [ON, STOP, 0.01]
state. That state corresponds to the VCR being turned on, and with
the tape being stopped with a remaining tape length of 0.01. From that
state, if the user presses the play button, the system can transition into
one of the two following states: [ON, PLAY, 0.01] or [ON, REWIND_FULL,
0.00]. The sets of possible commands in those two states are not the same.
Indeed, the pause command is not possible in both states. In the first

7.3. ADEPT TO HMI-LTS TRANSLATION 221

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
L airspeedFeedbackTable
INPUTS

ACTIONS
C fastForwardButton.mouseClicked • • • •
C playButton.mouseClicked • • • •
C rewindButton.mouseClicked • • • •
C stopButton.mouseClicked • •
C pauseButton.mouseClicked • • • •
C recordButton.mouseClicked • • •
C tapePosition.actionPerformed • • • • • • • • •
C powerButton.mouseClicked • •

L topLogicTable.outputState
Stop Tape • • • • • • • •
Play Tape • • • • • • • • •
Fast Forward Tape • • • • • • • • •
Rewind Tape • • • • • • • • •
Pause Tape • • • • • • • •
Record Tape • • •

V tapeRemaining
>= 1 • • • • • • •
< 1 && tapeRemaining > 0 • • • • • • •
<= 0 • • • • • • •

V vcrPowerStatus
off • •
on •

OUTPUTS
L topLogicTable.outputState
Stop Tape • • • • • • • •
Play Tape •
Fast Forward Tape •
Rewind Tape •
Pause Tape • •
Record Tape •

V tapeRemaining
+= .00390625 • • •
+= .015625 • •
-= .015625 • •

C functionDisplay.text
Stop • • • • • •
Play •
F. Forward •
Rewind •
Pause • •
Record •

PRIMITIVES
0 tapePositionTimer.start • • • •
0 tapePositionTimer.stop

V vcrPowerStatus
off •
on •

C powerStatus.background
0,0,0 •
2551,0,0 •

Figure 7.14. The unique table of the ADEPT model of the VCR example.

222 CHAPTER 7. THE AUTOPILOT CASE STUDY

case, the system just switches in the play mode. In the second situation,
the system just transitioned into the play mode but then automatically
moved to the rewind mode. Such kind of silent transition is precisely one
cause of surprise by the operators of interactive systems. For that precise
example, it is maybe not so harmful but it clearly shows that something
can happen inside the system, without warning the user. One solution
to avoid that potential surprise is to add an observation whenever the
VCR is moving from the play mode to the rewind one.

7.4 The Autopilot Model

Experiments using the techniques proposed in this thesis have been
performed on a realistic model of a Boeing 777 autopilot. The autopilot
has been modelled using ADEPT and partially represents the behaviour
of a large subset of the real autopilot. The full autopilot ADEPT model
has a total of 38 logic tables shown on Figure 7.15. Two of the 38 logic
tables are used to represent user’s tasks, which is an experimental feature
of ADEPT; they are not considered in this work. The arrows linking
the logic tables represent the call relation. Three major parts can be
identified in the model, namely one for the lateral aspect, one for the
vertical aspect and finally one for the airspeed aspect. The logic tables
belonging to those three categories are identified with different grey-level
background colours.

Lateral aspects is related to the heading of the aircraft, that is, the
direction that the nose of the aircraft is pointing to. Vertical aspects
is related to the altitude of the aircraft, and to the vertical navigation
mode, which includes how the aircraft is instructed to climb or descend.
Finally, airspeed aspects is related to the speed of the aircraft, that can
be controlled either in knots or in machs.

7.4.1 Autopilot Model Characteristics

As presented in the previous section, only the system tables are consid-
ered when transforming an ADEPT model with the ASF structure to an
HVS. The ADEPT autopilot model has a total of 15 logic tables that
are classified as system tables. Among those logic tables, the deadAp-

7.4. THE AUTOPILOT MODEL 223
to
pL

og
icT

ab
le

to
pT

as
kT

ab
le

ac
tio

nT
ab
le

sy
st
em

Ta
bl
e

fe
ed
ba
ck
Ta

bl
e

ve
rt
ica

lT
as
kT

ab
le

sim
ul
at
io
nI
nt
er
fa
ce
Ac

tio
nT

ab
le

au
to
fli
gh

tP
an
elI
nt
er
fa
ce
Ac

tio
nT

ab
le

sim
ul
at
io
nT

ab
le

sy
st
em

Ta
bl
e

ds
In
iti
al
iza

tio
nT

ab
le

ds
La

be
lsA

ct
io
nT

ab
le

la
te
ra
lIn

te
rfa

ce
Ac

tio
nT

ab
le

ve
rt
ica

lIn
te
rfa

ce
Ac

tio
nT

ab
le

ai
rs
pe
ed
In
te
rfa

ce
Ac

tio
nT

ab
le

ap
Fd

At
In
te
rfa

ce
Ac

tio
nT

ab
le

ca
ut
io
nW

ar
ni
ng

Li
gh

tT
ab
le

ca
pt
ai
ns
Fd

Sy
st
em

Ta
bl
e

fir
st
O
ffi
ce
rs
Fd

Sy
st
em

Ta
bl
e

la
te
ra
l3
60
Co

rre
ct
io
nS

ys
te
m
Ta

bl
e

de
ad
Ap

Fu
nc
tio

ns
Sy

st
em

Ta
bl
e

ai
rs
pe
ed
Ta

rg
et
Sy

st
em

Ta
bl
e

la
te
ra
lH
dg

Tr
kU

ni
ts
Sy

st
em

Ta
bl
e

la
te
ra
lN
av
ig
at
io
nS

ys
te
m
Ta

bl
e

la
te
ra
lT
ar
ge
tS
ys
te
m
Ta

bl
e

vs
Fp

aT
og
gl
eU

ni
ts
Sy

st
em

Ta
bl
e

ve
rt
ica

lR
at
eT

ar
ge
tS
ys
te
m
Ta

bl
e

ve
rt
ica

lT
ar
ge
tS
ys
te
m
Ta

bl
e

ai
rs
pe
ed
Sy

st
em

Ta
bl
e

la
te
ra
lS
ys
te
m
Ta

bl
e

ve
rt
ica

lS
ys
te
m
Ta

bl
e

la
te
ra
lF
ee
db

ac
kT

ab
le

ai
rs
pe
ed
Fe
ed
ba
ck
Ta

bl
e

ve
rt
ica

lF
ee
db

ac
kT

ab
le

ds
La

be
lsF

ee
db

ac
kT

ab
le

pf
dA

tt
itu

de
In
di
ca
to
rT
ab
le

ap
Fd

At
In
te
rfa

ce
Fe
ed
ba
ck
Ta

bl
e

ai
rs
pe
ed
Ta

rg
et
Fe
ed
ba
ck
Ta

bl
e

la
te
ra
lT
ar
ge
tF
ee
db

ac
kT

ab
le

Fi
gu

re
7.
15

.
Lo

gi
c
ta
bl
es

of
th
e
A
D
E
P
T

au
to
pi
lo
t
m
od

el
.
A
rr
ow

s
in
di
ca
te

ca
ll
re
la
ti
on

be
tw

ee
n
lo
gi
c
ta
bl
es
,r
es
pe

ct
in
g
th
e

ca
lls

or
de

r.
T
he

gr
ey
-le

ve
lb

ac
kg

ro
un

d
co
lo
ur
s
hi
gh

lig
ht

th
e
th
re
e
m
ai
n
pa

rt
s:

la
te
ra
l,
ve
rt
ic
al

an
d
ai
rs
pe

ed
as
pe

ct
s.

224 CHAPTER 7. THE AUTOPILOT CASE STUDY

FunctionsSystemTable logic table has been ignored since it only contains
functions that have not been implemented in the actual ADEPT model.
Moreover, the lateral360CorrectionSystemTable logic table has also been
ignored since its only role is to compute a modulo to keep the value of
the lateralDirection variable between 1 and 360, which is already ensured by
the domain limitations that have been performed on the values of some
system variables. Given those two additional restrictions, in addition to
the main systemTable, only 12 system tables are taken into account for
building the HVS model:

1. captainsFdSystemTable
2. firstOfficersFdSystemTable
3. airSpeedTargetSystemTable
4. lateralHdgTrkUnitsSystemTable
5. lateralNavigationSystemTable
6. lateralTargetSystemTable
7. vsFpaToggleUnitsSystemTable
8. verticalRateTargetSystemTable
9. verticalTargetSystemTable
10. airspeedSystemTable
11. lateralSystemTable
12. verticalSystemTable

The commands of the system are defined according to the outputState
of the referred action table. The reduced autopilot model features 20
different possible commands, corresponding to the manipulation of knobs,
thumbwheels, buttons and switches. Knobs can be pressed and rotated
clockwise and counterclockwise. Thumbwheels can be rotated up and
down. Buttons can be pressed and finally switches can be toggled.

• airspeed selector knob (airspd, airspd�, airspd)
• lateral target selector knob (lattgt, lattgt�, lattgt)
• altitude selector knob (altsel�, altsel)
• vertical rate thumbwheel nose (vertrthb↗, vertrthb↘)
• Lateral HOLD button (latHOLD)
• LNAV button (LNAV)
• altitude HOLD button (altHOLD)

7.4. THE AUTOPILOT MODEL 225

• FLCH button (FLCH)
• VSFPA button (VSFPA)
• IAS Mach Units button (MACHun)
• HdgTrk Units button (TRKun)
• VSFPA units button (VSFPAun)
• captains fd switch (cptFD)
• first officers fd switch (foFD)

The reduced autopilot model has a total of 25 system variables among
which 12 variables correspond to the outputState variables attached to
the system logic tables. The other system variables are mainly integer
or floating point numbers.

7.4.2 Independent Subsystems

An independent subsystem is a set of tables that are the only tables
concerned with a subset of the system variables and that do not depend
on other system variables. Such independent subsystems can be analysed
separately since they do not interfere with the other logic tables. In
particular, these logic tables are independent of the rest.

Such an independent subsystem is the one composed of the two logic
tables captainsFdSystemTable and firstOfficersFdSystemTable, subsequently
referred to as the F/D subsystem. That limited subsystem corresponds
to an HVS with four states, two state-values (cpt and fo, one for each
outputState variable) and two commands (cptFD and foFD). Figure 7.16
shows the HVS of the F/D subsystem, with the corresponding minimal
full-control conceptual model.

The conceptual model is reduced to a single-state model, which
explains that no matter in which state the system is, both commands
are always possible and executing them lead to states with the same
behaviour. Moreover, the state-values are not necessary since they are
not used in the conceptual model, that is, cpt and fo have not to be
visible to the operator, for him to drive the system safely according to
the full-control property.

Since the F/D subsystem is not used by any of the other logic tables,
the only contribution that it can bring to the whole system model would
be a multiplication of the states of the system, those states being merged

226 CHAPTER 7. THE AUTOPILOT CASE STUDY

A
cpt = off
fo = off

B
cpt = on
fo = off

C
cpt = on
fo = on

D
cpt = off
fo = on

cptFD

cptFD

cptFD

cptFD

foFDfoFDfoFDfoFD

(a) System model of the subsys-
tem.

S0 cptFD, foFD

(b) Minimal full-
control conceptual
model.

Figure 7.16. Independent subsystem of the autopilot model which manages the F/D
(Flight Director) mode setting by the captain and first officer.

together anyway, in the conceptual model. For that reason, the F/D
subsystem is also ignored in the analysis of the autopilot case study,
reducing the number of considered logic tables to 11.

7.4.3 Reducing the Model

The full autopilot model, and also the version reduced to 11 logic tables,
are too large to be analysed by the techniques proposed in this thesis.
The main reason is related to the state explosion problem caused by
the large number of system variables with large domains. The explicit
approach used in this thesis, which requires the system to be completely
expanded, does not scale well. Either the ADEPT model is too large
for the HVS to be generated, or the obtained HVS is too large to be
processed.

To be able to analyse that ADEPT autopilot model with the tech-
niques proposed in this work, several solutions are possible. The ex-
periences presented in this section have been done by only considering
fragments of the whole system, as already introduced just here above.
Reduced models are obtained by only considering some logic tables, by
reducing the domains of some system variables and by omitting some
features that do not bring new behaviour but duplicate it for two different
units for the mach/knots switch, for example. The last choice will lead to
a suppression of input and output switches and columns of logic tables.

7.4. THE AUTOPILOT MODEL 227

In addition to reducing the size of the model, reducing the domain of a
variable can also eliminate some behaviour depending on the new domain
and the condition the variable is used in. For example, let suppose an
integer variable x that appears in one input switch and in one output
switch, as shown on Figure 7.17. Let also suppose that the initial value
of the variable is 0 and that its original domain is the range [−180; 180].
If the domain is, for example, reduced to the range [0; 25], any state
change that could have been triggered by the condition < 0 is removed
from the reduced model.

INPUTS
x

< 0

== 0

> 0

OUTPUTS
x

++

– –

Figure 7.17. Header of a logic table showing an integer variable x that appears in an
input and in an output switches.

Abstraction

Another common way that is used to reduce the size of a domain is to
eliminate non relevant behaviour as done in predicate abstraction [Gd97]
of the model. In such abstraction, the set of concrete values that a variable
can take is replaced by an approximate abstraction. For example, the
domain of the x variable presented in Figure 7.17 can be reduced to three
abstract values, following the following three predicates:

• neg(x) ⇐⇒ x < 0
• zero(x) ⇐⇒ x = 0
• pos(x) ⇐⇒ x > 0

When doing predicate abstraction, the states and transitions of the
original model are replaced by abstracted versions. Figure 7.18 shows
the abstract model corresponding to values of the x variable. Predicate
abstraction is an over-abstraction, meaning that additional behaviour

228 CHAPTER 7. THE AUTOPILOT CASE STUDY

is introduced, that is, all the traces that belong to the abstraction do
not correspond to a trace in the original model. Moreover, spurious
non-determinism can also be introduced by the abstract transitions,
such as visible on Figure 7.18. A direct consequence is that spurious fc-
determinism issues can be introduced in the model, making the analyses
more difficult, since it has to be checked whether the alerts for non-fc-
determinism are effectively present in the original model or not. That is
the major reason motivating the abstraction choice made in this work.

neg(x) zero(x) pos(x)

inc

dec

inc

dec

inc

dec

inc

dec

Figure 7.18. Abstract model contains spurious traces that introduce fc-determinism
issues.

7.5 Analysis

This section presents the analyses that have been performed on the au-
topilot case study. The first reduced model shows the role that inhibited
commands can play to reduce the size of the minimal full-control concep-
tual model. The second reduced model illustrates a situation where the
generation algorithms succeed to build a minimal full-control conceptual
model. This example also shows the role of visible system variables.
Finally, the last reduced model exhibits a potential mode confusion, and
thanks to the techniques proposed in this thesis, manages to identify
why it may happen.

7.5.1 Inhibited Command

The first considered fragment of the full model only covers a very small
fragment of behaviour. It consists in only one logic table, the airSpeedTar-
getSystemTable table, and is restricted to the knots mode, that is, only
three columns are taken into account. The logic table is used to manage

7.5. ANALYSIS 229

the selection of the airspeed by the pilot. Three variables are involved in
this model fragment:

• selectedSpeedTarget for the selected speed target (selSpdTgt)

• airspeedTarget for the airspeed target (airSpdTgt)

• airspeedTargetOutput for the outputState of the table (airSpdTgtOut)

The two first system variables are integer numbers and have 250 as
initial value, and are ranging in the interval]245, 246, · · · , 255[. They
have been limited between 248 and 252 knots in the reduced model, so
as to reduce the size of their domain to five different values, and to stay
around the initial value. Doing so does not reduce the behaviour covered
by the logic table since the two cases related to the selectedSpeedTarget
system variable are still covered with the reduced range. Moreover,
the alphabet of the system is composed of two commands (airspd� and
airspd). Figure 7.19(a) shows the reduced airSpeedTargetSystemTable logic
table that has been used in this first experiment.

The HVS generated from the ADEPT table has nine states and six-
teen transitions, all being commands (meaning that there is no internal
transitions). Figure 7.20(a) shows the obtained HVS. Only the selected-
SpeedTarget and airspeedTargetOutput system variables are shown to keep
the figure readable. Indeed, both selectedSpeedTarget and airspeedTarget
always have the same value since, the last output switch is the only
one concerned with the update of airspeedTarget and makes both system
variables equal.

Considering that there is no state-values, that is, the value of the
three system variables is invisible to the user, a minimal full-control
conceptual model can be generated. Figure 7.20(b) shows the obtained
conceptual model which has five states and eight transitions. The system
cannot be further reduced since the two extreme states (S2 and S4) can
both only perform one of the two commands of the system, and they
must therefore be distinguishable. By propagation, all the other states
must also be separated and thus cannot be merged.

Analysing more carefully the logic table of the system shows that it
is in fact not well-formed. The situation where the operator executes
the airspd� command, while the value of the selectedSpeedTarget variable
is greater than 255, is not covered by the logic table. One solution
to solve that problem in order to get a smaller conceptual model is to

230 CHAPTER 7. THE AUTOPILOT CASE STUDY

0 1 2
L airspeedTargetSystemTable
INPUTS

L airspeedInterfaceActionTable.outputState
user rotates Airspeed selector knob clockwise •
user rotates Airspeed selector knob counterclockwise •
no action •

V selectedSpeedTarget
< 255 •
> 245 •

OUTPUTS
L airspeedTargetSystemTable.outputState
increase IAS airspeed target •
decrease IAS airspeed target •

V selectedSpeedTarget
++ •
– – •

V airspeedTarget
V selectedSpeedTarget • •

(a) Logic table of the reduced version.

3

•
•

(b)

Figure 7.19. A reduced version of the airspeed target system table which manages
the selection of the airspeed by the pilot. Only the behaviour related to knots has
been kept.

add one column with the two commands airspd� and airspd	, with the
selectedSpeedTarget switch empty and with an empty output part, so as to
define an inhibited event such as defined in Section 7.2.3. That additional
column is shown on Figure 7.19(b) on page 230.

Another solution to get a simpler conceptual model without changing
the structure of the system model is to make visible the value of the select-
edSpeedTarget variable. By doing so, the minimal full-control conceptual
model obtained is a single-state model as shown on Figure 7.21.

7.5.2 A First Conceptual Model

The first consequent fragment of the model that has been considered
covers four logic tables. In addition to the one used for the experiment

7.5. ANALYSIS 231

A
out = knots
spd = 250

D
out = inc
spd = 251

H
out = dec
spd = 249

E
out = inc
spd = 252

G
out = dec
spd = 250

C
out = inc
spd = 250

I
out = dec
spd = 248

F
out = dec
spd = 251

B
out = inc
spd = 249

airspd�

airspd	

airspd�

airspd	 airspd	

airspd�

airspd	

airspd�

airspd� airspd	

airspd�

airspd	

airspd�

airspd	

airspd� airspd	

(a) HVS of the system (out corresponds to airspeedTargetOutput and spd to select-
edSpeedTarget).

S0 S1 S2S3S4

airspd� airspd�airspd� airspd�

airspd	airspd	 airspd	airspd	

(b) HVM of the minimal full-control conceptual model.

Figure 7.20. Reduced model of the autopilot only composed of the reduced air-
speedTargetSystemTable logic table of Figure 7.19, with the corresponding minimal
full-control conceptual model.

S0

[selSpdTgt < 252] airspd�

[selSpdTgt > 248] airspd	

Figure 7.21. Making the value of the selectedSpeedTarget visible to the operator
makes it possible to get a smaller full-control system abstraction.

232 CHAPTER 7. THE AUTOPILOT CASE STUDY

just described in the previous section, the three following logic tables
have been added, with some restrictions for the third one:

• lateralTargetSystemTable

• airspeedSystemTable

• lateralSystemTable (except scenarios where simulation is running)

Whereas the previous experiment is only concerned by behaviour
related to airspeed aspects, this experiment mixes behaviour related to
airspeed and lateral aspects.

Ten system variables are implicated in this fragment model, in addi-
tion to the three that were already present in the previous experiment.
Some of those variables have been additionally bounded, that is, their
values have been forced to stay in a fixed arbitrary interval.

• lateralDirection (latDir) and indicatedAirspeed (indAirspd) always have
the same value in that fragment of the model (respectively 180 and
250), since they are not updated by the selected logic tables
• lateralTarget (latTgt), selectedLateralTarget (selLatTgt) and preselected-

LateralTarget (preselLatTgt) are bounded between 178 and 182
• lateralTargetError (latTgtErr) is not bounded and selectedLateralTargetEr-

ror (selLatTgtErr) is bounded between −3 and 3
• The outputState variables for the three tables: lateralOutput (latOut),

lateralTargetOutput (latTgtOut) and airspeedOutput (airSpdOut)

The generated HVS has 7680 states and 66242 transitions and the
alphabet is composed of 9 commands. Among the transitions, 57545 are
labelled with commands and 8697 are internal τ -transitions. For the
first experiment, all the states of the HVS are labelled with the same
state-value, that is, none of the system variables are visible. The obtained
full-control conceptual model HVM has 25 states and 180 transitions.

The generation algorithm succeeded to generate a minimal full-control
conceptual model. It means that the system model is fc-deterministic,
and that the τ -transitions are not harmful for full-controllability. Looking
more carefully at the model reveals that there are in fact two kinds of
τ -transitions in this model: 3672 of them are τ -loops and the remaining
are all related to one particular value for the outputState variable of the

7.5. ANALYSIS 233

lateralTargetSystemTable. Either the value of the lateralTargetOutput variable
is automatically changing to Lateral Target is Static, while the other system
variables are unchanged, or the value of lateralTargetOutput is and remains
Lateral Target is Static while some other system variables have changed.
Figure 7.22 illustrates those two last situations.

s
xxx

out = · · · (6= static)

s′
xxx

out = static

τ

(a)

s
xxx

out = static

s′
yyy

out = static

τ

(b)

Figure 7.22. Two kinds of internal transitions in the first experiment.

Since the lateralTargetOutput variable does not appear in any input
switch of the considered logic tables, states s and s′ corresponding to
the situation from Figure 7.22(a) can both execute exactly the same
actions, with the same resulting state. The consequence is that s and s′

are fc-compatible. The same observation can be done for the second kind
of τ -transition, but the fc-compatibility is this time a consequence of
the reduced range for the system variables, that makes the same actions
possible in s and s′.

Varying the Visible System Variables

Table 7.1 summarises experiments where different sets of visible system
variables have been chosen for the HVS, and the number of states and
transitions of the obtained reduced HVM.

• The two first examples show that making visible the latDir or
indAirspd system variables does not change the size of the generated
HVM. It is just a consequence of the fact that they always have
the same value, in this fragment of the model.
• Examples 3 to 5 make visible the airSpdTgt, selSpdTgt or both
system variables. Making so does reduce the number of states of
the generated HVM, and the reason is exactly the same as for the
fragment model analysed in the previous section. The five different
state-values correspond to the five possible values of the domain of
the system variables (248, 249, · · · , 252).

234 CHAPTER 7. THE AUTOPILOT CASE STUDY

The size of Lv is also 5 for the example 5 because both system
variables airSpdTgt and selSpdTgt always have exactly the same value.
• Examples 6 to 8 make visible the system variables related to the
lateral target. For the three examples, the visible system variable
induces five different state-values corresponding to the five possible
values of their domain (178, 179, · · · , 182).
• The example 9 makes visible all the system variables. The generated

HVM has only one state and 10270 transitions. The fact that the
generated mental model has only one state means that if the
operator can observe all the system variables, he can always know
whether a command can be performed, only by checking the state-
value of the current state, that is, the assignment of the visible
system variables. The situation is exactly the same with example
10 where all the system variables, except latDir and indAirspd, are
made visible. This is also a direct consequence of the fact that the
latDir or indAirspd system variables always have the same value.

Visible system variables |Lv| |SH | | →H |

1 latDir 1 25 180
2 indAirspd 1 25 180

3 airSpdTgt 5 21 180
4 selSpdTgt 5 21 180
5 airSpdTgt, selSpdTgt 5 21 180

6 latTgt 5 46 360
7 selLatTgt 5 146 1080
8 preselLatTgt 5 146 1080

9 All, except outputState variable 1425 1 10270
10 All, except outputState, latDir and indAirspd variables 1425 1 10270

Table 7.1. Number of different state-values and number of states and transitions of
the reduced HVM, for several situations where the sets of visible system variables are
different.

7.5.3 Analysing Mode Confusion

ADEPT models do not contain explicit information about modes, but
the outputState variables associated with the system tables represent in

7.5. ANALYSIS 235

fact a mode information. It is therefore possible to check whether the
operator can always track the mode related to a system table, by using
the construction presented in Section 6.4. The mode associated with the
airspeedSystemTable and lateralTargetSystemTable both provoke a potential
mode confusion issue. Let us look more carefully at the potential mode
confusion related to the airspeedSystemTable. The outputState variable
corresponding to the system table can take four different values:

• Hold Current Airspeed (hold)
• Capture Airspeed Target (capture)
• Maintain Airspeed Target (maintain)
• Protect Airspeed Target (protect)

Executing a generation algorithm on the reduced model that has been
mode-completed fails with a situation that exhibits an fc-determinism
issue illustrated on Figure 7.23. The issue is that the state S’2480 can lead,
with the same action airspd, to two states that are not fc-compatible since
they do not belong to the same block in that step of the reduction-based
generation algorithm.

S’2480

S2112

S2616

S’2112

S’2616

airspd

airspd

o0

LNAV,
maintain

o0

hold

hold,
LNAV,
maintain

τ

τ

· · ·

· · ·

· · ·· · ·

· · ·· · ·

Figure 7.23. Situation exhibiting the fc-determinism issue indicating a potential mode
confusion situation. States S’2112 and S’2616 both also have the following commands,
leading to the same blocks: lattgt, lattgt�, lattgt	, latHOLD, airspd, airspd� and
airspd	.

Figure 7.24 shows the reduced airspeedSystemTable that has been used
in this experiment. Analysing the situation of Figure 7.23 shows that the
issue is that the S’2112 state is in the maintain mode whereas the S’2616

236 CHAPTER 7. THE AUTOPILOT CASE STUDY

state is in the hold mode. But, given the τ -transition going from S’2616
to S’2112, there is a potential mode confusion between maintain and hold
when the system is in the S’2616 state. That automatic mode change is
described by the column 1.

In order to solve the potential mode confusion, a solution is to make
some system variable visible so that the state-values of the two states
S’2112 and S’2616 are different which will imply that the 〈airspd, o1〉 trace
does not lead anymore from S’2480 to two states with different sets of
commands.

0 1 2 3 4
L airspeedSystemTable
INPUTS

V airspeedTarget
== airspeedTarget && (airspeedTarget - indicatedAirspeed) <= 5 && (airspeedTarget - indicatedAirspeed) >= -5) •
> indicatedAirspeed && (airspeedTarget - indicatedAirspeed) > 5 •
< indicatedAirspeed && (indicatedAirspeed - airSpeedTarget) > 5 •

V indicatedAirspeed
< Vmin •
<= Vmax && indicatedAirspeed >= Vmin • • •
> Vmax •

L airspeedInterfaceActionTable.outputState
user presses Airspeed selector knob •
no action • •

OUTPUTS
L airspeedSystemTable.outputState
Hold current Airspeed •
Capture Airspeed Target •
Maintain Airspeed Target •
Protect Airspeed Target • •

V selectedSpeedTarget
V indicatedAirspeed •
F minProtectSpeedTarget •
F maxProtectSpeedTarget •

V airspeedTarget
V indicatedAirspeed •
F minProtectSpeedTarget •
F maxProtectSpeedTarget •

Figure 7.24. A reduced version of the airspeed system table which manages the
selection of the airspeed by the pilot. Behaviour related to machs has been removed.

7.5. ANALYSIS 237

Analysing the autopilot case study illustrates several elements. First
of all, it shows that the technique proposed in this thesis can be applied
to ADEPT models and therefore could be integrated in a tool targeted
to system designers. Of course, the semantics and translation algorithm
proposed in this work is only a first step towards such an integration.
Whereas the top-down direction from ADEPT models to HVSs has been
worked on, nothing yet has been performed on the bottom-up direction
that would allow to directly related results obtained by the generation
algorithms to the logic tables of the ADEPT model. Future work in this
direction also includes a more thorough analysis of how to define modes
and perform mode confusion analysis.

238 CHAPTER 7. THE AUTOPILOT CASE STUDY

Chapter 8
Conclusion

The research goal of this thesis is to develop a formal framework that
can be used to check whether a given system can be controlled by an
operator while avoiding potential automation surprises. Section 8.1
summarises the contributions of this work and assesses how they meet
the research goal. Section 8.2 draws up perspectives that may be explored
and studied to extend this work and to open new research directions.
Finally, Section 8.3 states a final word summarising this whole work.

8.1 Contributions of this Thesis

The starting point which triggered this work is the one by Degani et
al. [Deg04, HD07] that proposes a systematic approach to detect potential
mode confusion for a given system. Degani et al. themselves based their
work on previous work by Rushby et al. [Rus00, Rus02] but brought a
more general methodology supported by an algorithm that can be applied
to any system for which a model exists. Even though the approach of
Degani et al. is systematic and automatic, the focus is on potential mode
confusions and the framework is only concerned by a user, the machine
being operated and its user interface.

To meet the research goal of this thesis, several aspects necessary to
provide a formal analysis framework have been considered. Firstly, the
modelling of the elements playing a role in the interaction are considered
in Chapter 3. The chosen mathematical formalism is based on an enriched
version of labelled transition systems (LTS). The motivation for that
choice is to keep the formalism simple enough to decrease the complexity
of the analysis algorithms; while keeping it rich enough to be able to model
all the aspects relevant allows the analysts to identify the potential wrong
interactions to be captured. Since the focus is put on the behavioural

239

240 CHAPTER 8. CONCLUSION

aspects of the interaction in this work, LTS or any equivalent formalism
is a good choice since it focuses on the executed actions. Finally, enriched
LTS also makes it possible to have observable information on states. This
possibility makes it possible to have models that are closer to what the
designers are usually working with. It also eases the integration with
other formalisms such as statecharts and interactors, or with design
languages such as ADEPT tables.

A key aspect of this thesis, and around which all the contributions
are revolving, is the full-control property which characterises interactions
that are free of potential automation surprises. The definition of the
property and its precise characterisation are covered by Chapter 4. The
full-control property guarantees that there is a way for the operator to
know enough about the system to use it safely, that is, without being
surprised ever when using it. Having defined formally a property serves
the research goal in the sense that the property can be analysed rigorously.
A comparison of the full-control property with other existing properties,
mainly coming from the model-based testing of reactive systems field
had as outcome a trace characterisation of the full-control property and
a proposition of a variant of the full-control property.

Based on the full-control property, three algorithms used to analyse
system models are proposed and presented in Chapter 5. Those algo-
rithms automatically generate, from a given system model, a conceptual
model that allows full-control of the system. They are the corner stones
of this thesis, in the sense that they concretise the research goal. Thanks
to those algorithms, a formal methodology has been proposed to check
whether potential automation surprises can occur when interacting with
a system. If it is the case, the algorithms output feedback information
that can be used to redesign the system and otherwise, the algorithms
generate a minimal full-control conceptual model that can be used to
better understand the system and to produce training material.

The proposed formal framework has been put in context and showed
to be practically usable by system designers, based on small realistic
examples. Chapter 6 presents how the proposed techniques could be
used in the design process. Other examples that have already been
studied in the literature have also been analysed to validate the approach.
Those experiences are used to illustrate the fact that the full-control
property captures a good intuition of “controllability without surprises”

8.2. PERSPECTIVES 241

of a system. Finally, Chapter 7 presents how the proposed techniques
can be used in relation with ADEPT, an existing tool dedicated to the
analysis of human-machine interactions. The goal was in fact double:
besides the integration of the proposed analysis techniques into ADEPT,
the ADEPT model of the autopilot is also used to assess how the proposed
techniques work with a realistic real-size problem.

8.2 Perspectives

There are many possible extensions to the work presented in this thesis.
A first is the integration of user task models into the analysis. A user is
interacting with a system with as main purpose to perform some tasks.
In addition to what is presented in Section 6.5, ideas for future work
around this thematic have also been proposed in [Com09]. The idea is to
have, in addition to the system and mental models, an operational model
that represents user tasks. Those user tasks may not be described with
the same abstraction level as the system and mental models. Therefore
a correct mapping between the actions must be performed, exploiting
action refinement used in model-based testing [vdBRT05], for example.

Another possible perspective is the study of the robustness of a con-
ceptual model to human errors. Analysing the impact on the interaction
when the operator deviates from a nominal behaviour helps to assess
whether a given system model is robust enough. For example, a relevant
analysis is to check whether the operator can recover from an error.
Research has already been done in the domain of analysing the effect of
a deviation from a task model [PS02, BB06]. A direction to be worth
investigation is to exploit mutation analysis [JH11, FDMM94, LDL09].
Given a system and a conceptual model allowing full-control of it, the
idea is to mutate the conceptual model and to examine what is the impact
on the controllability of the system. Existing mutation operators have
to be selected to be relevant to model human errors, and new operators
could also have to be defined.

There is also work to be done in the tool support for the techniques
proposed in this thesis. First of all, the translation from ADEPT models
to HVS is currently performed manually. However the translation is
systematic and could be automated. Such automation is necessary to

242 CHAPTER 8. CONCLUSION

consider the integration of the proposed framework with ADEPT. The
algorithms can also be improved for some of their parts. Indeed, the Paige-
Tarjan algorithms or the DFA-minimisation algorithms are examples
where the current implementation relies on naive versions which are not
necessarily the most efficient ones. The DFA-minimisation algorithm
could be improved with the approach described in [RHSJ94] or with the
L∗ algorithm as proposed in [PO99].

In order to make the proposed techniques scalable, another direction
of work could be to explore how conceptual models can be generated
compositionally. The idea would be to split the system model into
more or less independent parts, and then to find a way to recompose
the generated conceptual models to have one for the whole system.
One way to explore is to use measures such as the modularity [New06]
or other centrality indices [BE05] to identify independent parts of a
system. Another possible direction of investigation is compositional
model checking [CLM89].

Finally, another promising extension of this work is to consider the
integration of the proposed techniques in a real development process.
In a similar way as what has been proposed by Campos et al. [CHL04],
the generation algorithms could be used in the design process of a new
system. The generation algorithms can be run on the system candidate
of each design loop, to check whether there are potential automation
surprises that could occur. The output of the generation algorithm can
then be used in the next iteration of the design process. One another
way to use the generated minimal full-control conceptual model is to
compare different proposed system models for the same system. The
conceptual model can indeed be integrated in a metric, taking for example
the number of states, that aims at providing a score to the systems to
compare them.

8.3 Final Word

The work presented in this thesis is a new branch of a tree initiated in
the mid-1980s. At that time, researchers investigated the use of formal
methods to analyse behavioural aspects of human-machine interactions.
In the beginning, researchers were focused on the formal and rigorous

8.3. FINAL WORD 243

analysis of existing accidents. Then, with Rushby et al., a first step
towards automation of the analyses was made. Systems implied in
accidents were modelled formally and automatically analysed with model-
checking techniques. Whereas the approach of Rushby et al.[Rus02] was
specific to every analysed accident, but systematic, Degani et al.[DH02]
pioneered the domain by bringing a generic approach. They proposed an
analysis framework, based on statecharts, that is able to automatically
generate user interface for given systems. The work of this thesis started
a new branch based on the one of those two groups of researchers. The
new branch grew by getting even more general and by providing a solid
and rigorous formal base on top of which a formal methodology to analyse
potential automation surprises in human-machine interactions, and in
particular mode confusion, has been developed and is proposed in this
thesis.

244 CHAPTER 8. CONCLUSION

Appendix A
Abbreviations and Acronyms

ACM Association for Computing Machinery
ASF Action-State-Feedback structure
ADEPT Automation Design and Evaluation Prototyping Toolset
BFS Breadth-First Search
CCS Calculus of Communicating Systems
CSP Communicating Sequential Processes
CTL Computation Tree Logic
CTT ConcurTaskTress
DFS Depth-First Search
EDT Event-Dispatching Thread
EOFM Enhanced Operator Function Model
FSM Finite State Machine
GUI Graphical User Interface
HAI Human-Automation Interaction
HCI Human-Computer Interaction
HMI Human-Machine Interaction
HMI-LTS Human-Machine Interaction Labelled Transition System
HVM HMI state-Valued Mental model
HVS HMI state-Valued System model
ICO Interactive Cooperating Object
ISP Internet Service Provider
JPF Java Pathfinder

245

246 APPENDIX A. ABBREVIATIONS AND ACRONYMS

LTL Linear Temporal Logic
LTS Labelled Transition System
MAL Modal Action Logic
MMI Man-Machine Interaction
MSC Message Sequence Chart
MTS Modal Transition System
NASA National Aeronautics and Space Administration
OFM Operator Function Model
PN Petri Net
SMV Symbolic Model Verifier
UAN User Action Notation
UML Unified Modeling Language

Appendix B
List of System Examples

Boeing 777 Autopilot . 197
Chocolate Vending Machine . 42
Extended Vending Machine . 95
Microwave oven . 173
Simple FM radio . 191
Simple Lamp . 189
Simple Vending Machine . 71
TV Decoder (part of) . 178
Therac-25 . 45
Toyota Corolla Air Conditioning Panel . 37
Video Cassette Recorder . 220

247

248 APPENDIX B. LIST OF SYSTEM EXAMPLES

Appendix C
Algorithms

C.1 Full-control Property Check

In order to be able to compare the sets of possible actions efficiently, the
system model should be preprocessed with a τ∗-completion, as described
in Section 5.4.1. That preprocessing implies that the interaction model
may have more than one initial state and so the set S of the algorithm
must be initialized with {(s, s0H) | s ∈ (s0S after ε)}.

Algorithm 5: Full-control property check algorithm.
Input: S = 〈SS ,Lc,Lo, s0S ,→S ,Ls,O〉 a system model
Input: H = 〈SH ,Lc,Lo, s0H ,→H ,Ls〉 a mental model
Output: true if (H fcS) and false otherwise
S ← [(s0S , s0H)]
while not isEmpty (S) do

(s, h)← removeF irst (S)
if not Ac(s) = Ac(h) ∧Ao(s) ⊆ Ao(h) then

return false

mark (s, h) as visited
foreach (s, τ, s′) ∈→S do

if not (s′, h) is visited then
addLast (S, (s′, h))

foreach (s, α, s′) ∈→S s.t. (h,O(s), a, h′) ∈→H do
if not (s′, h′) is visited then

addLast (S, (s′, h′))

return true

249

250 APPENDIX C. ALGORITHMS

C.2 Identification of Pairs of Compatible State

The set of pairs of compatible states is necessary to be able to build a
consistent DFA for a given 3DFA. The algorithm starts by initialising
an implication table and then performs iterations until the table reaches
fixed point.

Algorithm 6: Identification of pairs of compatible state.
Input: C = 〈Σ, S, s0, δ, Acc,Rej,DC〉, a 3DFA
Output: Comp ⊆ S × S, the set of pairs of compatible states
I ← new_implication_table(S)
foreach X ∈ S do

foreach Y ∈ S do
if (X ∈ Acc and Y ∈ Rej) or (X ∈ Rej and Y ∈ Acc) then

mark I(X,Y) as incompatible
else

mark I(X,Y) with {(X ′, Y ′) ∈ S × S | (X,Y) α−−→ (X ′, Y ′)
∧ (X ′, Y ′) 6= (X,Y) ∧X ′ 6= Y ′}

while not I is stable do
foreach I(X,Y) do

if not (I(X,Y) is compatible or I(X,Y) is incompatible) then
if ∃(X ′, Y ′) ∈ I(X,Y) with I(X′,Y ′) is incompatible then

mark I(X,Y) as incompatible
else if ∀(X ′, Y ′) ∈ I(X,Y) : I(X′,Y ′) is compatible then

mark I(X,Y) as compatible

return {(X,Y) | I(X,Y) is compatible}

C.3. IDENTIFICATION OF COMPATIBLES 251

C.3 Identification of Compatibles

From a set of pairs of compatible states, that can be represented as an
implication table, a set of compatibles must be computed in order to
build a consistent DFA for a given 3DFA. The idea is to find the set
whose elements are the largest sets of states with all the pairs of states
being compatible.

Algorithm 7: Identification of compatibles.
Input: I, an implication table over S
Output: Comp ⊆ 2S , the set of compatibles
L← {S}
foreach X ∈ S do

foreach E ∈ L do
if X ∈ E then

L← L \ {E}
L← L ∪ {E \ {X}} ∪

{
E \ {Y ∈ S | I(Y,X) is incompatible}

}
eliminate_redundant_elements(L)

return L

C.4 3NFA-completion Completion

An HMI-LTS can be completed for missing transitions so that every
action of the alphabet is possible from any state. The result that is
computed by the completion is a 3NFA.

Algorithm 8: HMI-LTS 3NFA-completion.
Input: S = 〈SS ,Lc,Lo, s0S ,→S〉, an HMI-LTS
Output: N = 〈Σ, S, s0N , δ, Acc,Rej,DC〉, a 3NFA
foreach s ∈ SS do

foreach a ∈ L \A(s) do
if a ∈ Lc then
→S ← {(s, a,Π)}∪ →S

else
→S ← {(s, a,∆)}∪ →S

return 〈L, SS ∪ {Π,∆}, s0S ,→S , SS , {Π}, {∆}〉

252 APPENDIX C. ALGORITHMS

C.5 3NFA Determinisation

A 3NFA can be determinised in order to obtain a 3DFA. The algorithm
is very similar to the classical subset construction used for DFAs, except
that rules have to be defined for classifying the states of the determinised
model as Acc, Rej or DC states.

Algorithm 9: 3NFA determinisation.
Input: N = 〈Σ, SN , s0N , δN , AccN , RejN , DCN 〉, a 3NFA
Output: C = 〈Σ, SC , s0C , δC , AccC , RejC , DCC〉, a 3DFA
s0C ← s0N after ε
L← {s0C}
while not isEmpty (L) do

sC ← removeElem (L)
SC ← SC ∪ {sC}
if Π ∈ sC then Rej ← {sC}
else if ∃s′C ∈ sC : s′C ∈ Acc then Acc← {sC}
else DC ← {sC}
foreach α ∈ A(sD) do

s′C ←
⋃
s∈sC

safterα
δC ← {(sC , α, s′C)} ∪ δC
if not s′C ∈ SC then addElem (L, s′C)

return 〈Σ, SC , s0C , δC , Acc,Rej,DC〉

Glossary

action guards
An action guard is a condition that is on the transition of an HVM
to indicate that an operator will only perform the transition if the
state-value of the current state of the system satisfies the condition.

commands
A command is an action that is executed by the user on the system.
It corresponds to an input from the system point of view. They are
referred to as observed events by Degani et al. and as commanded
state transitions by Javaux.

conceptual model
The conceptual model refers to a formal model that represents a
model of the system that has to be communicated to the operator.
In particular, it refers to the user’s model as defined by Norman. In
this thesis, it refers to the “perfect mental model” that is generated
from the system model by the proposed generation algorithms.

enabled actions
Enabled actions are visible actions that are directly available, that
is with a strong transition.

environment
The environment refers to any element that is external to the
system, its interface and the operator and that can influence the
interaction between the operator and the system.

253

254 Glossary

HMI state-valued mental model
HVM are enriched version of HMI-LTS used to model mental
models in this work. They are characterised by action guard on
their transitions.

HMI state-valued system model
HVS are enriched version of HMI-LTS used to model system models
in this work. They are characterised by state-values attached to
their states.

human-machine interaction labelled transition systems
HMI-LTSs are enriched version of LTS used to model system and
mental models in this work. They are characterised by their actions
that can be commands, observations or internal actions. They are
equivalent to LTS/IO and similar to IOTS.

interface
The interface refers to the communication channel that lies between
the operator and the system. This thesis considers that it is part
of the system model.

internal actions
An internal action is one that takes place in the system without
being triggered not observed by the user. Since the user cannot
distinguish them, they are all denoted with the same symbol τ .
They are referred to as unobserved events by Degani et al.

mental model
The mental model refers to a formal model representing the be-
haviour of the system, as it lies in the mind of its operator. The
mental model can evolve over time as the operator is gaining addi-
tional experience and information about the system. Then mental
model is not to be confused with the conceptual model.

observations
An observation is an action that is executed autonomously by the
system without any intervention of the user, but he can observe

Glossary 255

it. It corresponds to an output from the system point of view.
They are referred to as observed events by Degani et al. and as
uncommanded state transitions by Javaux.

possible actions
Possible actions are visible actions that may be available, that
is, are either directly available or become so after a sequence of
internal transitions.

state-values
A state-value is an observation that can be done on the current
state of the system.

system model
The system model refers to a formal model of the behaviour of the
system. In this thesis, they are described with HMI-LTSs or HVSs.

training material
The training material refer to any artifact that is used by an
operator to learn how to use a given system. It is a kind of
abstraction of the behaviour of the system.

256 Glossary

Bibliography

[Ang87] Dana Angluin. Learning regular sets from queries and coun-
terexamples. Information and Computation, 75(2):87–106,
November 1987.

[AUU06] Masakazu Adachi, Toshimitsu Ushio, and Yoshitaka Ukawa.
Design of user-interface without automation surprises for
discrete event systems. Control Engineering Practice,
14(10):1249–1258, October 2006.

[BB06] Rémi Bastide and Sandra Basnyat. Error patterns: System-
atic investigation of deviations in task models. In Karin
Coninx, Kris Luyten, and Kevin A. Schneider, editors, Pro-
ceedings of the 5th International Conference on Task Models
and Diagrams for Users Interface Design (TAMODIA 2006),
volume 4385 of Lecture Notes in Computer Science, pages
109–121. Springer, October 2006.

[BBS08] Matthew Bolton, Ellen Bass, and Radu Siminiceanu. Using
formal methods to predict human error and system failures.
In Proceedings of the Second International Conference on
Applied Human Factors and Ergonomics (AHFE 2008), 2008.

[BBS13] Matthew Bolton, Ellen Bass, and Radu Siminiceanu. Using
formal verification to evaluate human-automation interac-
tion, a review. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 43(3):488–503,
May 2013.

257

258 BIBLIOGRAPHY

[BCC+11] Ann Blandford, Abigail Cauchi, Paul Curzon, Parisa Eslam-
bolchilar, Dominic Furniss, Andy Gimblett, Huayi Huang,
Paul Lee, Yunqiu Li, Paolo Masci, Patrick Oladimeji, Atish
Rajkomar, Rimvydas Rukšėnas, and Harold Thimbleby.
Comparing actual practice and user manuals: A case study
based on programmable infusion pumps. In Proceedings
of the 1st International Workshop on Engineering Inter-
active Computing Systems for Medecine and Health Care
(EICS4Med 2011), June 2011.

[BCGS09] Thomas Anung Basuki, Antonio Cerone, Andreas Gries-
mayer, and Rudolf Schlatte. Model-checking user behaviour
using interacting components. Formal Aspects of Computing,
21(6):571–588, November 2009.

[BE05] Ulrik Brandes and Thomas Erlebach, editors. Network Anal-
ysis: Methodological Foundations, volume 3418. Springer,
2005.

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech,
César Mu noz, Sam Owre, Harald Rueß, John Rushby, Vlad
Rusu, Hassen Saïdi, N. Shankar, Eli Singerman, and Ashish
Tiwari. An overview of SAL. In C. Michael Holloway, edi-
tor, Proceedings of the 5th NASA Langley Formal Methods
Workshop (LFM 2000), pages 187–196, June 2000.

[BNP03] Rémi Bastide, David Navarre, and Philippe Palanque. A tool-
supported design framework for safety critical interactive
systems. Interacting with Computers, 15(3):309–328, June
2003.

[Boy11] Guy A. Boy, editor. The Handbook of Human-Machine
Interaction: A Human-Centered Design Approach. Ashgate
Publishing Limited, 2011.

[Bri88] Ed Brinksma. A theory for the derivation of tests. In S. Ag-
garwal and K. Sabnani, editors, Proceedings of the IFIP
WG6.1 8th International Symposium on Protocol Specifica-
tion, Testing and Verification (PSTV 1988). North-Holland,
1988.

BIBLIOGRAPHY 259

[BSB11] Matthew Bolton, Radu Siminiceanu, and Ellen Bass. A
systematic approach to model checking human-automation
interaction using task analytic models. IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and
Humans, 41(5):961–976, September 2011.

[But04] Bettina Buth. Analysing mode confusion: An approach
using FDR2. In Maritta Heisel, Peter Liggesmeyer, and
Stefan Wittmann, editors, Proceedings of the 23rd Inter-
national Conference on Computer Safety, Reliability and
Security (SAFECOMP 2004), volume 3219 of Lecture Notes
in Computer Science, pages 101–114. Springer, September
2004.

[Cac04] Pietro C. Cacciabue. Elements of human-machine systems.
In Guide to Applying Human Factors Methods: Human
Error and Accident Management in Safety Critical Systems,
chapter 2, pages 9–47. Springer, 2004.

[Car97] John M. Carroll. Human-computer interaction: Psychology
as a science of design. International Journal of Human-
Computer Studies, 46(4):501–522, April 1997.

[CCJ+10] Roberto Cavada, Alessandro Cimatti, Charles Arthur
Jochim, Gavin Keighren, Emanuele Olivetti, Marco Pis-
tore, Marco Roveri, and Andrei Tchaltsev. NuSMV 2.5 User
Manual, 2010. Available under http://nusmv.fbk.eu/NuSMV/
userman/v25/nusmv.pdf.

[CDE+03] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lin-
coln, Narciso Martí-Oliet, José Meseguer, and Carolyn L.
Talcott. The maude 2.0 system. In Robert Nieuwenhuis,
editor, Proceedings of the 14th International Conference on
Rewriting Techniques and Applications (RTA 2003), volume
2706 of Lecture Notes in Computer Science, pages 76–87,
Berlin, DE, June 2003. Springer.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and
synthesis of synchronization skeletons using branching-time
temporal logic. In Dexter Kozen, editor, Proceedings of the

260 BIBLIOGRAPHY

Logics of Programs Workshop, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer, May 1981.

[CFC+09] Yu-Fang Cheng, Azadeh Farzan, Edmund M. Clarke, Yih-
Kuen Tsay, and Bow-Yaw Wang. Learning minimal separat-
ing dfa’s for compositional verification. In Stefan Kowalewski
and Anna Philippou, editors, Proceedings of the 15th Inter-
national Conference on Tools and Algorithm for the Con-
struction and Analysis of Systems, Held as Part of the Joint
European Conferences on Theory and Practice of Software
(TACAS/ETAPS 2009), volume 5505 of Lecture Notes in
Computer Science, pages 31–45, Berlin, Heidelberg, March
2009. Springer.

[CGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, January 1999.

[CGPF11a] Sébastien Combéfis, Dimitra Giannakopoulou, Charles
Pecheur, and Michael Feary. A formal framework for design
and analysis of human-machine interaction. In Proceed-
ings of the 2011 IEEE International Conference on Systems,
Man, and Cybernetics (SMC 2011), pages 1801–1808. IEEE,
October 2011.

[CGPF11b] Sébastien Combéfis, Dimitra Giannakopoulou, Charles
Pecheur, and Michael Feary. Learning system abstractions
for human operators. In Proceedings of the 2011 Inter-
national Workshop on Machine Learning Technologies in
Software Engineering (MALETS 2011), pages 3–10, New
York, NY, USA, November 2011. ACM.

[CGPM11] Sébastien Combéfis, Dimitra Giannakopoulou, Charles
Pecheur, and Peter Mehlitz. A JavaPathfinder extension to
analyse human-machine interactions. In Proceedings of the
Java Pathfinder Workshop 2011, November 2011.

[CH97] José Creissac Campos and Michael D. Harrison. Formally
verifying interactive systems: A review. In Michael D. Har-
rison and Juan Carlos Torres, editors, Proceedings of the 4th

BIBLIOGRAPHY 261

International Eurographics Workshop on Design, Specifica-
tion and Verification of Interactive Systems (DSV-IS 1997),
pages 109–124. Springer, June 1997.

[CH08] José Creissac Campos and Michael D. Harrison. Systematic
analysis of control panel interfaces using formal tools. In
T. C. Nicholas Graham and Philippe A. Palanque, editors,
Proceedings of the 15th International Workshop on Design,
Specification and Verification of Interactive Systems (DSV-
IS 2008), volume 5136 of Lecture Notes in Computer Science,
pages 72–85. Springer, July 2008.

[CH09] José Creissac Campos and Michael D. Harrison. Interac-
tion engineering using the IVY tool. In Gaëlle Calvary,
T.C. Nicholas Graham, and Philip Gray, editors, Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS 2009), pages 35–44, New York,
NY, USA, July 2009. ACM.

[CH11] José Creissac Campos and Michael D. Harrison. Model
checking interactor specifications. Automated Software En-
gineering, 8(3):275–310, August 2011.

[CHL04] José Creissac Campos, Michael D. Harrison, and Karsten
Loer. Verifying user interfaces behaviour with model check-
ing. In Juan Carlos Augusto and Ulrich Ultes-Nitsche, ed-
itors, Proceedings of the 2nd International Workshop on
Verification and Validation of Enterprise Information Sys-
tems (VVEIS 2004), pages 87–96. INSTICC Press, April
2004.

[CJR00] Judith Crow, Denis Javaux, and John Rushby. Models
and mechanized methods that integrate human factors into
automation design. In Kathy Abbott, Jean-Jacques Speyer,
and Guy Boy, editors, Proceedings of the 8th International
Conference on Human-Computer Interaction in Aeronautics
(HCI-Aero 2000), pages 163–168, September 2000.

[CLM89] Edmund M. Clarke, David E. Long, and Kenneth L. MacMil-
lan. Compositional model checking. In Proceedings of the

262 BIBLIOGRAPHY

Fourth Annual Symposium on Logic in Computer Science
(LICS 1989), pages 353–362. IEEE, June 1989.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. The MIT
Press, third edition, August 2009.

[CMN83] Stuart K. Card, Thomas P. Moran, and Allen Newell. The
Psychology of Human-Computer Interaction. Lawrence Erl-
baum Associates Inc., May 1983.

[Com09] Sébastien Combéfis. Operational model: Integrating user
tasks and environment information with system model. In
Proceedings of the 3rd International Workshop on Formal
Methods for Interactive Systems, pages 83–86, November
2009.

[CP09] Sébastien Combéfis and Charles Pecheur. A bisimulation-
based approach to the analysis of human-computer interac-
tion. In Gaëlle Calvary, T.C. Nicholas Graham, and Philip
Gray, editors, Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems (EICS 2009),
pages 101–110, New York, NY, USA, July 2009. ACM.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John
Plaice. Lustre: A declarative language for programming syn-
chronous systems. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL 1987), pages 178–188. ACM, January 1987.

[CRC07a] Alan Cooper, Robert Reimann, and David Cronin. About
Face 3: The Essentials of Interaction Design. John Wiley
& Sons, May 2007.

[CRC07b] Alan Cooper, Robert Reimann, and David Cronin. About
Face 3: The Essentials of Interaction Design. John Wiley
& Sons, May 2007.

[CseB07] Paul Curzon, Rimvydas Rukšėnas, and Ann Blandford. An
approach to formal verification of human-computer interac-

BIBLIOGRAPHY 263

tion. Formal Aspects of Computing, 19(4):513–550, October
2007.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods:
State of the art and future directions. ACM Computer
Survey, 28(4):626–643, December 1996.

[dAH11] Luca de Alfaro and Thomas A. Henzinger. Interface au-
tomata. In Proceedings of the 8th European Software En-
gineering Conference, Held Jointly with the 9th ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE 2011), pages 109–120, New York,
NY, USA, September 2011. ACM.

[Dan07] Danby Products Ltd. Danby Silhouette R©, DPAC120061
Model, User manual, Version 1.12.07.

[DBMD95] David J. Duke, Philip J. Barnard, Jon May, and David A.
Duce. Systematic development of the human interface. In
Proceedings of the 2nd Asia-Pacific Software Engineering
Conference (APSEC 1995), pages 313–, December 1995.

[Deg04] Asaf Degani. Taming HAL: Designing Interfaces Beyond
2001. Palgrave Macmillan, January 2004.

[DFAB03] Alan Dix, Janet E. Finlay, Gregory D. Abowd, and Rus-
sell Beale. Human-Computer Interaction. Prentice Hall,
September 2003.

[DH84] Rocco De Nicola and Matthew Hennessy. Testing equiva-
lences for processes. Theoretical Computer Science, 34(1–
2):83–133, 1984.

[DH93] David J. Duke and Michael D. Harrison. Abstract interaction
objects. Computer Graphics Forum, 12(3):25–36, August
1993.

[DH00] Asaf Degani and Michael Heymann. Pilot-autopilot interac-
tion: A formal perspective. In Kathy Abbott, Jean-Jacques
Speyer, and Guy Boy, editors, Proceedings of the 8th In-
ternational Conference on Human-Computer Interaction in

264 BIBLIOGRAPHY

Aeronautics (HCI-Aero 2000), pages 157–168, September
2000.

[DH02] Asaf Degani and Michael Heymann. Formal verification of
human-automation interaction. Human Factors: The Jour-
nal of the Human Factors and Ergonomics Society, 44(1):28–
43, Spring 2002.

[Dil96] David L. Dill. The Murφ verification system. In Rajeev Alur
and Thomas A. Henzinger, editors, Proceedings of the 8th
International Conference on Computer Aided Verification
(CAV 1996), volume 1102 of Lecture Notes in Computer
Science, pages 390–393. Springer, August 1996.

[Dix13] Alan J. Dix. Formal methods. In Mads Soegaard and
Rikke Friis Dam, editors, The Encyclopedia of Human-
Computer Interaction, chapter 29. The Interaction Design
Foundation, Aarhus, Denmark, 2nd edition, 2013.

[DLDvL05] Christophe Damas, Bernard Lambeau, Pierre Dupont, and
Axel van Lamsweerde. Generating annotated behavior mod-
els from end-user scenarios. IEEE Transactions on Software
Engineering, 31(12):1056–1073, December 2005.

[DoD84] DoD. System safety program requirements. Technical Report
MIL-STD-882B, Department of Defense, March 1984.

[DR85] Alan J. Dix and Colin Runciman. Abstract models of inter-
active systems. In Peter Johnson and Stephen Cook, editors,
Proceedings of the Conference of the British Computer Soci-
ety Human Computer Interaction Specialist Group – People
and Computers I, pages 13–22. Cambridge University Press,
August 1985.

[DS03] Dan Diaper and Neville Stanton, editors. The Handbook of
Task Analysis for Human-Computer Interaction. Lawrence
Erlbaum Associates, Inc., September 2003.

[FDMM94] Sandra Camargo Pinto Ferraz Fabbri, Márcio Eduardo De-
lamaro, José Carlos Maldonado, and Paulo Cesar Masiero.

BIBLIOGRAPHY 265

Mutation analysis testing for finite state machines. In Pro-
ceedings of the 5th International Symposium on Software
Reliability Engineering, pages 220–229. IEEE, November
1994.

[Fea07] Michael Feary. Automatic detection of interaction vulnera-
bilities in an executable specification. In Don Harris, editor,
Proceedings of the 7th International Conference on Engi-
neering Psychology and Cognitive Ergonomics (EPCE 2007),
volume 4562 of Lecture Notes in Computer Science, pages
487–496. Springer, July 2007.

[Fea10] Michael S. Feary. A toolset for supporting iterative
human–automation interaction in design. Technical Re-
port 20100012861, NASA Ames Research Center, March
2010.

[FM91] Jean-Claude Fernandez and Laurent Mounier. A tool set
for deciding behavioral equivalences. In Jos C. M. Baeten
and Jan Friso Groote, editors, Proceedings of the 2nd In-
ternational Conference on Concurrency Theory (CONCUR
1991), volume 527 of Lecture Notes in Computer Science,
pages 26–29. Springer, August 1991.

[For10] Formal Systems (Europe) Ltd. Failures-Divergence Refine-
ment: FDR2 User Manual, October 2010. Available under
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf.

[For12] For HOL Kananaskis-8. The HOL System Description,
October 2012. Available under http://hol.sourceforge.net/
documentation.html.

[FP90] Giorgio P. Faconti and Fabio Patern‘o. An approach to
the formal specification of the components of an interaction.
In C. E. Vandoni and D. A. Duce, editors, Proceedings of
the European Computer Graphics Conference and Exhibition
(EUROGRAPHICS 1990), pages 481–494. North-Holland,
September 1990.

266 BIBLIOGRAPHY

[GC96] Christian Gram and Gilbert Cockton, editors. Design Prin-
ciples for Interactive Software. Chapman & Hall, June 1996.

[Gd97] Susanne Graf and Hassen Saïdi. Construction of abstract
state graphs with PVS. In Orna Grumberg, editor, Proceed-
ings of the 8th International Conference on Computer Aided
Verification (CAV 1997), volume 1254 of Lecture Notes in
Computer Science, pages 72–83. Springer, June 1997.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wen-
delin Serwe. CADP 2011: A toolbox for the construction
and analysis of distributed processes. International Journal
on Software Tools for Technology Transfer, 15(2):89–107,
2013.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction
to HOL: A Theorem-Proving Environment for Higher-Order
Logic. Cambridge University Press, June 1993.

[GV90] Jan Friso Groote and Frits Vaandrager. An efficient algo-
rithm for branching bisimulation and stuttering equivalence.
In Michael S. Paterson, editor, Proceedings of the 17th Inter-
national Colloquium on Automata, Languages and Program-
ming, volume 443 of Lecture Notes in Computer Science,
pages 626–638. Springer, 1990.

[Har87] David Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3):231–274,
June 1987.

[HBC+92] Thomas T. Hewett, Ronald Baecker, Stuart Card, Tom
Carey, Jean Gasen, Marilyn Mantei, Gary Perlman, Gary
Strong, and William Verplank. ACM SIGCHI curricula
for human-computer interaction. Technical report, ACM
SIGCHI, 1992.

[HD02] Michael Heymann and Asaf Degani. On the construction of
human-automation interfaces by formal abstraction. In Sven
Koenig and Robert C. Holte, editors, Proceedings of the 5th
International Symposium on Abstraction, Reformulation and

BIBLIOGRAPHY 267

Approximation (SARA 2002), volume 2371 of Lecture Notes
in Computer Science, pages 99–115, London, UK, August
2002. Springer.

[HD07] Michael Heymann and Asaf Degani. Formal analysis and
automatic generation of user interfaces: Approach, method-
ology, and an algorithm. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 49(2):311–330,
April 2007.

[Hen96] Thomas A. Henzinger. Some myths about formal verification.
ACM Computer Surveys, 28(4es), December 1996.

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmid.
Modal transition systems: a foundation for three-valued
program analysis. In David Sands, editor, Proceedings of the
10th European Symposium on Programming (ESOP 2011),
volume 2028 of Lecture Notes in Computer Science, pages
155–169. Springer, April 2001.

[HKB08] Markus Herrmannsdōrfer, Sascha Konrad, and Brian Beren-
bach. Tabular notations for state machine-based specifica-
tions. CrossTalk: The Journal of Defense Software Engi-
neering, 21(3):18–23, 2008.

[HLP97] Martin G. Helander, Thomas K. Landauer, and Prasad V.
Prabhu, editors. Handbook of Human-Computer Interaction.
North-Holland, 1997.

[Hoa85] Charles Antony Richard Hoare. Communicating Sequential
Processes. Prentice Hall, April 1985.

[Hol93] Erik Hollnagel. The phenotype of erroneous actions. Inter-
national Journal of Man-Machine Studies, 39(1):1–32, July
1993.

[Hol97] C. Michael Holloway. Why engineers should consider formal
methods. In Proceedings of the 1997 AIAA/IEEE 16th Dig-
ital Avionics Systems Conference (DASC 1997), volume 1,
pages 16–22, October 1997.

268 BIBLIOGRAPHY

[HP85] David Harel and Amir Pnueli. On the development of con-
current systems. In Krzysztof R. Apt, editor, Logics and
Models of Concurrent Systems, NATO Advanced Science
Institute, pages 477–498. Springer, 1985.

[HSH90] H. Rex Hartson, Antonio C. Siochi, and Deborah Hix. The
UAN: A user-oriented representation for direct manipula-
tion interface designs. ACM Transactions on Information
Systems, 8(3):181–203, July 1990.

[HT90] Michael Harrison and Harold Thimbleby. Formal Methods in
Human-Computer Interaction. Cambridge University Press,
February 1990.

[HV91] Joseph Y. Halpern and Moshe Y. Vardi. Model checking
vs. theorem proving: a manifesto. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of
Computation, pages 151–176. Academic Press Professional,
Inc., 1991.

[HV06] Henri Hansen and Antti Valmari. Operational determinism
and fast algorithms. In Christel Baier and Holger Hermanns,
editors, Proceedings of the 17th International Conference
on Concurrency Theory (CONCUR 2006), volume 4137 of
Lecture Notes in Computer Science, pages 188–202. Springer,
August 2006.

[Jac83] Robert J.K. Jacobs. Using formal specifications in the design
of a human-computer interface. Communications of the
ACM, 26(4):259–264, April 1983.

[Jav02] Denis Javaux. A method for predicting errors when interact-
ing with finite state systems. How implicit learning shapes
the user’s knowledge of a system. Reliability Engineering
and System Safety, 75:147–165, February 2002.

[JH11] Yue Jia and Mark Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions on
Software Engineering, 37(5):649–678, 2011.

BIBLIOGRAPHY 269

[Kat05] Joost-Pieter Katoen. Labelled transition systems. In Man-
fred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner, editors, Model-Based
Testing of Reactive Systems, volume 3472 of Lecture Notes
in Computer Science, chapter 22, pages 615–616. Springer,
2005.

[KS83] Paris C. Kanellakis and Scott A. Smolka. Ccs expressions,
finite state processes, and three problems of equivalence. In
Robert L. Probert, Nancy A. Lynch, and Nicola Santoro,
editors, Proceedings of the 2nd Annual ACM Symposium on
Principles of Distributed Computing (PODC 1983), pages
228–240, New York, NY, USA, August 1983. ACM.

[Lar90] Kim G. Larsen. Modal specifications. In Joseph Sifakis,
editor, Proceedings of the International Workshop on Auto-
matic Verification Methods for Finite State Systems, volume
407 of Lecture Notes in Computer Science, pages 232–246.
Springer, 1990.

[LDL09] Jin-Hua Li, Geng-Xin Dai, and Huan-Huan Li. Mutation
analysis for testing finite state machines. In Ming Li, Fei
Yu, Jian Shu, and Zhigang Chen, editors, Proceedings of the
2nd International Symposium on Electronic Commerce and
Security (ISECS 2009), pages 620–624. IEEE, August 2009.

[Lic60] J. C.R. Licklider. Man-computer symbiosis. IRE Trans-
actions on Human Factors in Electronics, HFE-1(1):4–11,
March 1960.

[LP97] Nancy G. Leveson and Everett Palmer. Designing automa-
tion to reduce operator errors. In Proceedings of the 1997
IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC 1997), volume 2, pages 1144–1150. IEEE,
October 1997.

[LPS+97] Nancy G. Leveson, L. Denise Pinnel, Sean David Sandys,
Shuichi Koga, and Jon Damon Reese. Analyzing software

270 BIBLIOGRAPHY

specifications for mode confusion potential. In C. W. John-
son, editor, Proceedings of a Workshop on Human Error and
System Development, pages 132–146, March 1997.

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correct-
ness proofs for distributed algorithms. In Fred B. Schneider,
editor, Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC 1987), pages
228–240, New York, NY, USA, August 1987. ACM.

[LT93] Nancy G. Leveson and Clark S. Turner. An investigation of
the Therac-25 accidents. Computer, 26(7):18–41, July 1993.

[Luc93] Paul Jay Lucas. An object-oriented language system for
implementing concurrent, hierarchical, finite state machines.
Master’s thesis, University of Illinois, Urbana-Champaign,
Illinois, 1993.

[LvdBC99] Gerald Lüttgen, Michael von der Beeck, and Rance Cleave-
land. Statecharts via process algebra. In Jos C. M. Baeten
and Sjouke Mauw, editors, Proceedings of the 10th Interna-
tional Conference on Concurrency Theory (CONCUR 1999),
volume 1664 of Lecture Notes in Computer Science, pages
399–414. Springer, August 1999.

[McC03] William McCune. Otter 3.3 Reference Manual. Mathematics
and Computer Science Division, Argonne National labora-
tory, August 2003. Available under http://www.cs.unm.edu/
~mccune/otter/Otter33.pdf.

[McM00] Ken L. McMillan. The SMV system, 2000. Available under
http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.ps.

[Meh08] Peter C. Mehlitz. Trust your model – verifying aerospace
system models with Java Pathfinder. In Proceedings of the
IEEE Aerospace Conference, pages 1–11, March 2008.

[Mil80] Robin Milner. A Calculus of Communicating Systems.
Springer, 1980.

BIBLIOGRAPHY 271

[ML03] Mieke Massink and Diego Latella. Deriving manuals from
formal specifications – extended version. Technical Report
ISTI-2003-TR-01, C.N.R.-ISTI, March 2003.

[MLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis.
Social processes and proofs of theorems and programs. Com-
munications of the ACM, 22(5):271–280, May 1979.

[MM86] Christine M. Mitchell and Richard A. Miller. A discrete
control model of operator function: A methodology for
information display design. IEEE Transactions on Systems,
Man, and Cybernetics, 16(3):343–357, May 1986.

[MR98] Florence Maraninchi and Yann Rémond. Mode-automata:
About modes and states for reactive systems. In Chris Han-
kin, editor, Proceedings of the 7th European Symposium on
Programming, Held as Part of the European Joint Confer-
ences on the Theory and Practice of Software (ESOP/E-
TAPS 1998), volume 1381 of Lecture Notes in Computer
Science, pages 185–199. Springer, March 1998.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and ap-
plications. Proceedings of the IEEE, 77(4):541–580, April
1989.

[New06] Mark E. J. Newman. Modularity and community structure in
networks. Proceedings of the National Academy of Sciences,
103(23):8577–8582, April 2006.

[Nor86] Donald A. Norman. Cognitive engineering. In User Centered
System Design: New Perspectives on Human-Computer In-
teraction, chapter 3, pages 31–61. L. Erlbaum Associates
Inc., 1986.

[Nor88] Donald A. Norman. The Psychology of Everyday Things.
0465067093, June 1988.

[Nor02] Donald A. Norman. The Design of Everyday Things. Basic
Books, September 2002.

272 BIBLIOGRAPHY

[NPB01] David Navarre, Philippe Palanque, and Rémi Bastide. Engi-
neering interactive systems through formal methods for both
tasks and system models. In Proceedings of the RTO Human
Factors and Medicine Panel (HFM) Specialists’ Meeting,
pages 20.1–20.17, June 2001.

[NPLB09] David Navarre, Philippe Palanque, Jean-Francois Ladry, and
Eric Barboni. ICOs: A model-based user interface descrip-
tion technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM Transactions on
Computer-Human Interaction, 16(4):18:1–18:56, November
2009.

[Pal95] Everett Palmer. “oops, it didn’t arm.” – a case study of two
automation surprises. In Richard S. Jensen and Lori A. Rako-
van, editors, Proceedings of the 8th International Symposium
on Aviation Psychology (ISAP 1995), April 1995.

[Pal97] Philippe Palanque, editor. Formal Methods in Human-
Computer Interaction. Springer, 1997.

[PB95] Philippe Palanque and Rémi Bastide. Verification of an
interactive software by analysis of its formal specification.
In Knut Nordby, Per H. Helmersen, David J. Gilmore, and
Svein A. Arnesen, editors, Proceedings of the IFIP TC13
International Conference on Human-Computer Interaction
(INTERACT 1995), IFIP Conference Proceedings, pages
191–196. Chapman & Hall, June 1995.

[PB97] Philippe Palanque and Rémi Bastide. Synergistic modelling
of tasks, users and systems using formal specification tech-
niques. Interacting with Computers, 9(2):129–153, November
1997.

[Per99] Charles Perrow. Normal Accidents: Living with High-Risk
Technologies. Princeton University Press, September 1999.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD the-
sis, Rheinisch-Westfäliches Institut für Intrumentelle Mathe-
matik an der Universität Bonn, Schrift Nr 2, 1962. (Also,

BIBLIOGRAPHY 273

English translation, Communication with automata, Griffiss
Air Force Base, New York, Technical Report, RADC-TR-65-
377, Vol. 1, Suppl. 1, 1966).

[PMM97] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. Con-
curTaskTrees: A diagrammatic notation for specifying task
models. In Steve Howard, Judy Hammond, and Gitte
Lindgaard, editors, Proceedings of the IFIP TC13 Inter-
national Conference on Human-Computer Interaction (IN-
TERACT 1997), volume 96 of IFIP Conference Proceedings,
pages 362–369. Chapman & Hall, July 1997.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science (FOCS 1977), pages 46–57. IEEE Computer Society,
November 1977.

[PO99] Jorge M. Pena and Arlindo L. Oliveira. A new algorithm
for exact reduction of incompletely specified finite state ma-
chines. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(11):1619–1632, Novem-
ber 1999.

[PS02] Fabio Paternò and Carmen Santoro. Preventing user errors
by systematic analysis of deviations from the system task
model. International Journal of Human-Computer Studies,
56(2):225–245, February 2002.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refine-
ment algorithms. SIAM Journal on Computing, 16(6):973–
989, December 1987.

[PU59] M. C. Paull and S. H. Unger. Minimizing the number of
states in incompletely specified sequential switching func-
tions. IRE Transactions on Electronic Computers, EC-
8(3):356–367, September 1959.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in cesar. In Mariangiola
Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings

274 BIBLIOGRAPHY

of the 5th International Symposium on Programming, volume
137 of Lecture Notes in Computer Science, pages 337–351.
Springer, April 1982.

[RCP99] John Rushby, Judith Crow, and Everett Palmer. An au-
tomated method to detect potential mode confusions. In
Proceedings of the 1999 AIAA/IEEE 18th Digital Avionics
Systems Conference (DASC 1999). IEEE, October 1999.

[Rea90] James Reason. Human Error. Cambridge University Press,
October 1990.

[Rei81] Phyllis Reisner. Formal grammar and human factors design
of an interactive graphics system. IEEE Transactions on
Software Engineering, 7(2):229–240, March 1981.

[RFM91] Mark Ryan, José Luiz Fiadeiro, and Thomas Stephen Ed-
ward Maibaum. Sharing actions and attributes in modal
action logic. In Takayasu Ito and Albert R. Meyer, editors,
Proceedings of the International Conference on Theoretical
Aspects of Computer Software (TACS 1991), volume 526 of
Lecture Notes in Computer Science, pages 569–593. Springer,
September 1991.

[RHSJ94] June-Kyung Rho, Gary D. Hachtel, Fabio Somenzi, and
Reily M. Jacoby. Exact and heuristic algorithms for the
minimization of incompletely specified state machines. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 13(2):167–177, February 1994.

[RS59a] Michael O. Rabin and D. Scott. Finite automata and their
decision problems. IBM Journal of Research Development,
3(2):114–125, April 1959.

[RS59b] Michael Oser Rabin and Dana S. Scott. Finite automata
and their decision problems. IBM Journal of Research and
Development, 3(2):114–125, April 1959.

[Rus00] John Rushby. Analyzing cockpit interfaces using formal
methods. In Howard Bowman, editor, Proceedings of the

BIBLIOGRAPHY 275

Formal Methods Elsewhere Workshop, volume 43 of Elec-
tronic Notes in Theoretical Computer Science, pages 1–14.
Elsevier, October 2000.

[Rus02] John Rushby. Using model checking to help discover mode
confusions and other automation surprises. Reliability Engi-
neering & System Safety, 75(2):167–177, February 2002.

[Sch04] Klaus Schneider. Verification of Reactive Systems: Formal
Methods and Algorithms. Springer, 2004.

[SHM10] Bernhard Steffen, Falk Howar, and Maik Merten. Introduc-
tion to active automata learning from a practical perspective.
In Marco Bernardo and Valérie Issarny, editors, Proceedings
of the 11th International School on Formal Methods for the
Design of Computer, Communication and Software Systems:
Connectors for Eternal Networked Software Systems (SFM
2011), volume 6659 of Lecture Notes in Computer Science,
pages 256–296. Springer, June 2010.

[Shn80] Ben Shneiderman. Software Psychology: Human Factors in
Computer and Information Systems. Winthrop Publishers,
1980.

[SN93] Nancy Staggers and Anthony F. Norcio. Mental models:
Concepts for human-computer interaction research. Inter-
national Journal of Man-Machine Studies, 38(4):587–605,
1993.

[SRP07] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction
Design: Beyond Human-Computer Interaction. John Wiley
& Sons, January 2007.

[Suc87] Lucy A. Suchman. Plans and Situated Actions: The Problem
of Human-Machine Communication. Cambridge University
Press, November 1987.

[SWB97] Nadine B. Sarter, David D. Woods, and Charles E. Billings.
Automation surprises. In G. Salvendy, editor, Handbook of
Human Factors & Ergonomics, chapter 57, pages 1926–1943.
Wiley, 1997.

276 BIBLIOGRAPHY

[TG07] Harold Thimbleby and Jeremy Gow. Applying graph theory
to interaction design. In Jan Gulliksen, Morten Borup
Harning, Philippe Palanque, Gerrit van der Veer, and Janet
Wesson, editors, Proceedings of the Engineering Interactive
Systems Joint Working Conferences EHCI, DSV-IS, HCSE
(EIS 2007), volume 4940 of Lecture Notes in Computer
Science, pages 501–519. Springer, March 2007.

[The13] The Coq Development Team. The Coq Proof Assistant
Reference Manual, April 2013. Available under http://coq.
inria.fr/distrib/current/files/Reference-Manual.pdf.

[Thi96] Harold Thimbleby. Creating user manuals for using in col-
laborative design. In Conference Companion on Human
Factors in Computing Systems, pages 279–280. ACM, 1996.

[Thi10] Harold Thimbleby. Press On: Principles of Interaction
Programming. The MIT Press, January 2010.

[TL96] Harold Thimbleby and Peter B. Ladkin. From logic to man-
uals. Software Engineering Journal, 11(6):347–354, 1996.

[Tre08] Jan Tretmans. Model based testing with labelled transition
systems. In Robert Hierons, Jonathan Bowen, and Mark
Harman, editors, Formal Methods and Testing, volume 4949
of Lecture Notes in Computer Science, pages 1–38. Springer,
2008.

[US94] Andrew C. Uselton and Scott A. Smolka. A compositional
semantics for statecharts using labeled transition systems.
In Bengt Jonsson and Joachim Parrow, editors, Proceedings
of the 5th International Conference on Concurrency Theory
(CONCUR 1994), volume 836 of Lecture Notes in Computer
Science, pages 2–17. Springer, August 1994.

[vdBRT05] Machiel van der Bijl, Arend Rensink, and Jan Tretmans.
Action refinement in conformance testing. In Ferhat Khen-
dek and Rachida Dssouli, editors, Proceedings of the 17th
IFIP TC6/WG 6.1 International Conference on Testing of
Communicating Systems (TestComm 2005), volume 3502 of

BIBLIOGRAPHY 277

Lecture Notes in Computer Science, pages 81–96. Springer,
June 2005.

[vG01] Rob J. van Glabbeek. The linear time – branching time
spectrum i: The semantics of concrete, sequential processes.
In J. A. Bergstra, A. Ponse, and Scott A. Smolka, editors,
Handbook of Process Algebra, pages 3–99. Elsevier, March
2001.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Se-
ungjoon Park. Model checking programs. In Proceedings of
the 15th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2000), pages 3–12. IEEE, September
2000.

[Wes00] Douglas B. West. Introduction to Graph Theory. Pearson,
August 2000.

[Wie06] Freek Wiedijk. The Seventeen Provers of the World, Fore-
word by Dana S. Scott, volume 3600 of Lecture Notes in
Computer Science. Springer, 2006.

Index

3DFA, see Three-Valued Deterministic
Finite Automaton

Complete, 153
Completion on error, 156
Consistent DFA, 130
Language characterisation, 131
Sound, 153

3DFA-based generation algorithm, 136
3NFA, see Three-Valued Non-deterministic

Finite Automaton

Acceptor, 151
Action, 58

Controllable, 68
Enabled, 60, 98
Internal, 58, 63, 68
Invisible, 58, 68
Possible, 61, 98
Uncontrollable, 68
Visible, 58, 68

Action guard, 79, 80
Action refinement, 241
Action state, 112, 113
Action-System-Feedback structure, 214
Adachi, Masakazu, 53
ADEPT, 197

GUI component method, 207
Logic table, 203
logic table, 197
Model, 77

ADEPT model, 87, 206
eval function, 212
exex function, 212
Action table, 215
Feedback table, 216
Formal semantics, 202
Function, 207
GUI component attribute, 206
GUI event, 206
Independent subsystem, 225
Logic part, 202
Logic table, 207
Program part, 202, 206
System table, 215
System variable, 206
Timer, 207
UI component, 206

ADEPT table
Inhibited command, 228

Air conditioning, 37
AirConditionner, 162
Algorithm

L∗, 148
Lfc, 155
Lsep, 154
3DFA determinisation, 251
3NFA-completion, 137, 251
3NFA-determinisation, 138
Compatible state identification, 250

278

INDEX 279

Compatibles identification, 250
Conjecture check, 149, 158
Fc-determinism check, 104
Full-control check, 98, 249
LTS determinisation, 65
Membership query, 149, 156

Angelic completion, 84
Angluin, Dana, 148
ASF, see Action-System-Feedback struc-

ture
Augmenting state, 92
Automation surprise, 48, 93

Kill-the-capture, 26
Mode confusion, 25

Autopilot model, 222

Basuki, Thomas Anung, 40
BFS, see Breadth-First Search
Block, 141
Blocking state, 52
Boeing 777 autopilot, 222
Bolton, Matthew, 45
Breadth-First Search, see Exploration
Buth, Bettina, 30

CADP, 22
Campos, José Creissac, 34
Chen, Yu-Fang, 152
Clarke, Edmund Melson, 21
Column, 204
Command, 68
Compatible, 132
Completeness, 153
Completion

τ∗a-completion, 140
τ∗aτ∗-completion, 140
Angelic, 84
Demonic, 84
Mode, 184
Task model, 194

Composite state, 73, 82
Computation Tree Logic, 21
Conceptual model, 18, 123

Minimal full-control
Generation, 124

ConcurTaskTree, 43
Conformance relation, 120
Conjecture check, 149, 158
Coq, 22
Countdown, 162
Counterexample, 21, 22, 62, 172
CTL, see Computation Tree Logic, 36,

47
CTT, see ConcurTaskTree
Curzon, Paul, 40

De Millo, Richard Allan, 23
Degani, Asaf, 91
Demonic completion, 84
Depth-First Search, see Exploration
Design language, 83
Design model, 18, 171
Determinism, 63

Operational, 66
Structural, 66

Deterministic Finite Automaton, 59,
127

DFA, see Deterministic Finite Automa-
ton, 127

Accepted word, 128
Acceptor, 151
Recognised language, 128
Rejected word, 128

DFA-minimisation, 131
DFS, see Depth-First Search
Divergence, 64
Dix, Allan, 24
Don’t care state, 137

EDT, see Event-Dispatching Thread
Eliminating τ -transitions, 140
Emerson, Ernest Allen, 21
Enhanced Operator Function Models,

45
Enriched model

Expansion, 110

280 INDEX

Full-control, 106
Full-control compatibility, 109
Full-control determinism, 109
Trace, 108

Enriched trace, 108
Environment, 15
EOFM, see Enhanced Operator Func-

tion Model
Equivalence

Failure, 31
Trace, 22, 31

Error state, 52, 84, 91, 137
Event

Masked, 51
Observed, 51
Unobserved, 51

Event-Dispatching Thread, 216
Execution, 59

Divergent, 64
Exploration

Breadth-First Search, 62
Depth-First Search, 62

Fc-mode, 187
FDR2, 22, 30
FIFO, 62
Finite State-machine, 26
Formal methods, 20
Formal Model

MTS, 88
Formal model, 83

3DFA, 129
DFA, 128
FSM, 26, 28, 45
HMI-LTS, 69
I/O Automaton, 85
Interactor, 34
Interface Automaton, 85
IOTS, 84
LTS, 40
LTS/IO, 84
Mode Automaton, 89

OPT, 48
Petri net, 43
Single-Threaded Interface Automa-

ton, 86
Statechart, 87

FSM, see Finite State-Machine, 45, 51,
59

Full-control
Check algorithm, 98
Compatibility, 99
Determinism, 103
Mental model, 105

Existence, 105
Minimal mental model, 105
Trace characterisation, 134

Full-control property, 92, 95
Full-control stability, 142
Full-controllable, 93
FullAirConditionner, 161
Function, 207

Generation algorithm
3DFA-based, 136
Learning-based, 148
Reduction-based, 139

Graph theory, 32
GUI component attribute, 206
GUI component method, 207
GUI event, 206

Harel, David, 87
Harrison, Michael, 34
HCI, see Human-Computer Interaction,

12
Henzinger, Thomas, 23
HMI, see Human-Machine Interaction,

12
HMI State-Valued Mental Model, 79
HMI State-Valued System Model, 75
HMI-LTS, see Human-Machine Interac-

tion Labelled Transition Sys-
tem

HMS, see Human-Machine System, 14

INDEX 281

HOL, 22
Human factors, 47
Human-Computer Interaction, 11
Human-Machine Interaction, 11
Human-Machine Interaction Labelled

Transition System, 69
Human-Machine Interaction State-Valued

Mental Model, 79
Human-Machine System, 12
HVM, see HMI State-Valued Mental

Model
Expansion, 112

HVS, see HMI State-Valued System
Model

Expansion, 111

I/O automaton, 85
ICO, see Interactive Cooperating Ob-

ject
Implementation model, 16
Implication table, 132
Index range, 204
Index set, 204
Initial state, 58
Input-enabled, 84
Input-output conformance, 121
Interaction

Robustness, 19
Interaction model, 73, 82
Interactive Cooperating Objects, 43
Interactive system, 11
Interactor, 34, 77
Interface, 15
Interface Automaton, 85
Internal action, 63, 68
IOTS, see Input-output Transition Sys-

tem, 121
IVY, 38

Java Pathfinder, 170
Javaux, Denis, 48
JPF, see Java Pathfinder
jpf-hmi, 170

jpf-statechart, 170

Kripke structure, 74

Labelled Transition System, 40, 57
Deterministic, 63
Divergent, 64
Execution, 59
Exploration, 61
Synchronous parallel composition,

67
Trace, 59

Labelled Transition System with Input
and Output, 84

Language, 128
Larsen, Kim, 88
Learning algorithm

L∗, 148
Active, 148

Learning-based generation algorithm,
148

Leveson, Nancy, 26
Licklider, Joseph, 11
LIFO, 62
Linear Temporal Logic, 21
Logic

MAL, 34
Logic table, 203, 205, 207

Choice, 210
Column, 204
Condition, 207
Don’t care expansion, 211
Index range, 204
Index set, 204
Input part, 203
Output part, 203
Row header, 203
Row index, 204
Statement, 208
Visible system variable, 233
Well-formed, 210

LTL, see Linear Temporal Logic

282 INDEX

LTS, see Labelled Transition System,
see Labelled Transition Sys-
tem

LTS/IO, see Labelled Transition Sys-
tem with Input and Output

Lustre, 89

Machine model
Reduction, 52

MAL, see Modal Action Logic
Maraninchi, Florence, 89
Maude, 40
Membership, 149
Membership query, 156
Mental model, 16, 48
Message Sequence Chart, 172
Microwave oven, 173
Modal Action Logic, 34
Modal Specification, 88
Modal Transition System, 88
Mode, 50
Mode Automaton, 89
Mode confusion, 25, 50, 182

Automated detection, 29
Mode-preserving property, 183
Model

Conceptual, 18
Design, 18, 171
Implementation, 16
Interaction, 73, 82
Interface, 42
Machine, 42, 50
Mental, 16, 26
Operational, 241
System, 16
Task, 43
User, 18, 50
User behaviour, 39, 42, 46
User task, 188

Model checker
CADP, 22
FDR2, 22, 30

JPF, 170
Murφ, 28
NuSMV, 36
SAL, 47
SMV, 35

Model checking, 21
Counterexample, 21
Specification, 21

MSC, see Message Sequence Chart
MTS, see Modal Transition System
Murφ, 28

Model, 29
Mutation analysis, 241

Navigability, 32
NFA, see Nondeterministic Finite Au-

tomaton
Nondeterministic Finite Automaton, 59
NuSMV, 36

Object Petri Net, 44
Observability, 20
Observation, 68
Observation state, 111, 113
Observation table, 150

Acceptor DFA, 151
Closed, 151
Consistent, 151

Observation-closure, 117
OFM, see Operator Function Model
Operation model, 241
Operational Determinism, 66
Operational determinism, 124
Operational Procedure Table, 48
Operator Function Model, 43
OPN, see Object Petri Net
OPT, see Operational Procedure Table
Otter, 22

Palanque, Philippe, 43
Palmer, Everett, 26
Partition, 141

Block, 141

INDEX 283

Refinement, 141
Partition refinement, 141
Path, see Execution
Petri Nets, 43
Petshop, 44
PFD, see Primary Flight Display
PN, see Petri Nets
Pnueli, Amir, 21
Predicate abstraction, 227
Predictability, 20
Preorder

Conformance, 120
Testing, 118
Trace, 116

Primary Flight Display, 198
Problem

Checking Fc-determinism, 104
Checking full-control, 98
DFA-minimisation, 131
Generation of minimal full-control

conceptual model, 124
LTS Determinisation, 65
Machine model reduction, 52

Property
Correctness, 52
Full-control, 92
Mode preserving, 183
Succinctness, 52
Symmetric Full-control, 191
Task-supporting, 189
Usability, 32, 36

Queille, Jean-Pierre, 21
Quiescence, 121
Quiescent state, 121

Rabin-Scott subset construction, 65
Reachable state, 60
Reactive system, 13
Reason, James, 40
Reduction-based generation algorithm,

139
Refusal, see Refusal set

Refusal set, 118
Reisner, Phyllis, 24
Restricting state, 92
Robustness, 241
Row header, 203
Row index, 204
Rushby, John, 25

SAL, see Symbolic Analysis Labora-
tory

Separating DFA, 152
Sifakis, Joseph, 21
Single-Threaded Interface Automaton,

86
SMV, 35

Specification, 35
Soundness, 153
Specification, 21
Splitter, 142
Splitting pair, 142
State, 58

Action, 112, 113
Augmenting, 92
Blocking, 52
Compatible, 131
Composite, 73
Don’t care, 137
Error, 52, 84, 91, 137
Initial, 58
Observation, 111, 113
Reachable, 60
Restricting, 92
Unstable, 78

State transition, 49
State-value, 76, 77
State-variable, 77
Statechart, 87, 170
Subset construction, 65
Suspension trace, 121
Symbolic Analysis Laboratory, 47
Symmetric Full-control, 191
Synchronous parallel composition, 67

284 INDEX

System, 14
Completion, see Completion
Input-enabled, 84
Observable, 20
Predictable, 20

System image, 18
System model, 16
System variable, 206

Task-supporting property, 189
Teacher, 148
Temporal Logic

CTL, 21
Temporal logic

LTL, 21
Testing preorder, 118
Theorem prover

Coq, 22
HOL, 22, 40
Otter, 22

Theorem proving, 22
Therac-25, 45, 161
Thimbleby, Harold, 32
Three-Valued Deterministic Finite Au-

tomaton, 129
Three-Valued Non-deterministic Finite

Automaton, 137
Timer, 207
Tool

ADEPT, 197
CPN tool, 44
IVY, 38
Petshop, 44

Trace, 59
Accepting, 134, 154
Don’t care, 134, 154
Empty, 59
Quiescent, 121
Rejecting, 134, 154
Set of, 59
Suspension, 121

Trace equivalence, 22

Trace preorder, 116
Training manual, 172
Training material, 18, 171
Transition, 58

Commanded, 49
Destination, 59
Source, 59
Strong, 59
Uncommanded, 49
Weak, 59

Transition scenario, 48
Tretmans, Jan, 84
TV decoder, 178

UAN, see User Action Notation
UI component, 206
Usability, 19
Usability property, 32, 36

Feedback, 36
Navigability, 32

User, 14
User Action Notation, 43
User behaviour model, 39, 46
User interface, 50
User task model, 188
User’s model, 18
User’s task, 43, 187
User’s tasks, 17

VCR, see Video-Cassette Recorder, see
Video-Cassette Recorder

Vehicle Transmission System, 4, 161
Video-Cassette Recorder, 162, 220
VTS, see Vehicle Transmission Exam-

ple, see Vehicle Transmission
System

XMI, 170

