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1 Introduction

Let m and n be positive integers, M = {1, . . . ,m}, M0 = M ∪ {0} and
N = {1, . . . , n}. The parameters ai for i ∈ M , c1 ≤ . . . ≤ cn and b are
positive integers. The multi-item continuous ≥-knapsack set is

Y≥ = {(y, x) ∈ Z
n
+ × R

m+1
+ :

∑

j∈N

cjyj +
∑

i∈M0

xi ≥ b, xi ≤ ai, i ∈ M},

the multi-item continuous ≤-knapsack set is

Y≤ = {(y, x) ∈ Z
n
+ × R

m+1
+ :

∑

j∈N

cjyj ≤ b+
∑

i∈M0

xi, xi ≤ ai, i ∈ M}

and the unbounded single item continuous knapsack sets are

Q≥ = {(y, x) ∈ Z
n
+×R

1
+ :
∑

j∈N

cjyj+x ≥ b} and Q≤ = {(y, x) ∈ Z
n
+×R

1
+ :
∑

j∈N

cjyj ≤ b+x}.

These sets arise as relaxations of many mixed-integer programming prob-
lems and consequently strong valid inequalities for these sets can be used in
solving more complicated problems. Indeed, many strong inequalities used
in the literature can be obtained using such knapsack relaxations. For books
and inequalities on general knapsack sets, see among others [2, 6, 12, 14, 17].

Here we consider a case in which there is special structure, specifically
the coefficients of the integer variables are divisible 1|c1| · · · |cn. Generalizing
results of Pochet and Wolsey [16] for the ≥-knapsack set, we show that
Q≥ and Q≤ can be described by two closely related families of “partition”
inequalities. This in turn leads to complete polyhedral descriptions of Y≥

and Y≤. Specifically we show that

conv(Y≥) = ∩S⊆M conv(QS
≥) ∩ {(y, x) : xi ≤ ai, i ∈ M}

where

QS
≥ = {(y, x) ∈ Z

n
+×R

m+1 : x(S ∪{0})+ cy ≥ b−a(M \S), x(S ∪{0}) ≥ 0}

with a similar result for Y≤ (where v(A) =
∑

a∈A va for a vector v and a set
A).

For Y≥, this generalizes a result of Magnanti et al. [10] concerning the
“single arc flow set” in which they show (modulo complementation of the
continuous variables) that when n = 1, the convex hull of Y≥ ∩ {(y, x) :
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x0 = 0} is completely described by adding the “residual capacity” or mixed
integer rounding (MIR) inequalities one for each of the relaxations

c1y1 + x(S) ≥ b− a(M \ S), x(S) ≥ 0, y ∈ Z
1
+,

where S ⊆ M . Atamtürk and Rajan [3] give a polynomial time separation
algorithm for the residual capacity inequalities. Magnanti et al. [11] gener-
alize the residual capacity inequalities for the two facility splittable flow arc
set when n = 2, c1 = 1 and state without proof that addition of the two
MIR inequalities arising for each choice of S ⊆ M suffices to give the convex
hull.

Other work on divisible knapsack sets includes a convex hull descrip-
tion of the integer ≤-knapsack set {y ∈ Z

n
+ :

∑

j∈N cjyj ≤ b} consisting
of n Chvatal-Gomory rounding inequalities by Marcotte [13] and a study
of Pochet and Weismantel [15] of the case with bounded variables. Other
(continuous) knapsack sets with special structure whose polyhedral struc-
ture has been studied include the set Q≤ with n = 2 and c1, c2 arbitrary
positive integers (Agra and Constantino [1] and Dash et al. [4]), as well as 0-
1 knapsack sets with super-increasing coefficients (Laurent and Sassano [8])
and more recently a generalization with bounded integer variables (Gupta
[5]).

The rest of the paper is organized as follows. In Section 2, we review some
results on knapsack sets with divisible capacities. In Section 3 we study the
convex hull of the multi-item continuous ≥-knapsack set and prove that the
original constraints and the so-called “partition inequalities” are sufficient
to describe the convex hull when the capacities are divisible. A result on the
convex hull of the two-sided integer knapsack is an immediate corollary. In
Section 4 we show that a new, but related, family of partition inequalities
are valid for the continuous ≤-knapsack set with one unbounded continu-
ous variable Q≤. We also give a polynomial size extended formulation for
Q≤. In Section 5 we provide a convex hull description for the case of m
bounded continuous variables and one unbounded continuous variable Y≤.
We conclude in Section 6.

2 The ≥-knapsack set and partition inequalities

Throughout the paper, we assume that the capacities are divisible. We use
the notation cy =

∑

j∈N cjyj. Below we present results from Pochet and
Wolsey [16] that will be used in Section 3.
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Consider the integer ≥-knapsack set

C = {y ∈ Z
n
+ : cy ≥ b}

with c1 = 1. Let γ(b) be the index with cγ(b) ≤ b < cγ(b)+1 if such an index
exists and be n otherwise.

Let {i1 = 1, . . . , j1}, . . . , {ip, . . . , jp = n} be a partition of {1, . . . , n} such
that ip ≤ γ(b) and it = jt−1 + 1 for t = 2, . . . , p. Compute

βp = b, κt =

⌈

βt

cit

⌉

, µt = (κt − 1)cit and βt−1 = βt − µt for t = p, . . . , 1.

The partition inequality is

p
∑

t=1

t−1
∏

l=1

κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj ≥

p
∏

t=1

κt. (1)

Pochet and Wolsey [16] establish the following:

Theorem 2.1. i) The partition inequality (1) is valid for the integer ≥-
knapsack set C.

ii) If cγ(b) divides b, then the convex hull of C is {y ∈ R
n
+ :

∑γ(b)
j=1 cjyj +

∑n
j=γ(b)+1 byj ≥ b}. Otherwise, the convex hull is described by the

nonnegativity constraints and the partition inequalities (1).

iii) Let g ∈ R
n and {i1, . . . , j1}, {i2, . . . , j2}, . . . , {ip, . . . , jp} be a parti-

tion of {1, . . . , n} such that ip ≤ γ(b). If g > 0,
gj
cj

is constant

for j = it, . . . , jt and
git
cit

>
git+1

cit+1
for t = 1, . . . , p − 1,

gip
cip

=
gj
cj

for

j = ip, . . . , γ(b) and gγ(b)+1 = gj for j = γ(b) + 1, . . . , n, then

a. all optimal solutions of min{
∑n

j=1 gjyj : cy ≥ b, y ∈ Z
n
+} satisfy

(1) at equality,

b. all optimal solutions of min{
∑n

j=i2
gjyj :

∑n
j=i2

cjyj ≥
⌈

b
ci2

⌉

ci2 , y ∈

Z
n
+} satisfy

p
∑

t=2

t−1
∏

l=2

κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj ≥

p
∏

t=2

κt

at equality ([16], Theorem 8),
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c. all optimal solutions of min{
∑n

j=i2
gjyj :

∑n
j=i2

cjyj =
⌊

b
ci2

⌋

ci2 , y ∈

Z
n
+} satisfy

p
∑

t=2

t−1
∏

l=2

κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj ≥

p
∏

t=2

κt − 1

at equality ([16], proof of Theorem 16).

3 The multi-item continuous ≥-knapsack set

In this section, we study the convex hull of the multi-item continuous ≥-
knapsack set Y≥ when the capacities are divisible.

Our goal now is to show that

conv(Y≥) = ∩S⊆M conv(QS
≥) ∩ {(y, x) : xi ≤ ai, i ∈ M}

where

QS
≥ = {(y, x) ∈ Z

n
+ × R

m+1 : x(S0) + cy ≥ b− a(M \ S), x(S0) ≥ 0},

where S0 = S ∪ {0}.
We first use the results of Section 2 to obtain valid inequalities for set

Q≥. Then we prove that these valid inequalities and the original constraints
are sufficient to describe the convex hull of the continuous ≥-knapsack set
with divisible capacities.

Given S ⊆ M , consider the relaxation

{(y0, y, x) ∈ R
1
+ × Z

n
+ × R

m+1 : y0 + cy ≥ b− a(M \ S), y0 = x(S0)}.

As the data is integral, y0 takes an integer value in every extreme point of
the convex hull of the above set. Setting y0 integer, we obtain the divisible
capacity knapsack cover set

{(y0, y, x) ∈ Z
n+1
+ × R

m+1 :
∑

j∈N0

cjyj ≥ B(S), y0 = x(S0)}

where N0 = N ∪ {0}, c0 = 1 and B(S) = b− a(M \ S).

Proposition 3.1. Let {i1 = 0, . . . , j1}, . . . , {ip, . . . , jp = n} be a partition of
{0, 1, . . . , n} such that ip ≤ γ(B(S)) and it = jt−1 + 1 for t = 2, . . . , p. Let
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βp = B(S), κt =
⌈

βt

cit

⌉

, µt = (κt − 1)cit and βt−1 = βt − µt for t = p, . . . , 1.

Then the partition inequality

x(S0) +

j1
∑

j=1

min{cj , κ1}yj +

p
∑

t=2

t−1
∏

l=1

κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj ≥

p
∏

t=1

κt (2)

is valid for Y≥.

Note that in the extreme points of conv(Y≥), x0 takes integer values.
We give the convex hull proof for Y ′

≥ = Y≥ ∩ {(y, x) : x0 = 0} since x0 can
be considered an integer variable with coefficient 1.

Theorem 3.2. conv(Y ′
≥) is described by the initial constraints and the par-

tition inequalities (2).

Proof. We use the technique of Lovász [9]. Suppose that we minimize
∑

i∈M hixi +
∑

j∈N gjyj over Y ′
≥. We need g ≥ 0 for the problem to be

bounded. Suppose that g ≥ 0 and let Ω(h, g) be the set of optimal solutions.
If hi < 0 for some i ∈ M , then Ω(h, g) ⊆ {(y, x) : xi = ai}.
If gj = 0 and gj′ > 0 for some pair j, j′ ∈ N , Ω(h, g) ⊆ {(y, x) : yj′ = 0}.
Thus we are left with h ≥ 0 and g > 0. We will investigate this in two cases:

Case 1 h 6= 0: Let S = {i ∈ M : hi > 0} 6= ∅. If B(S) ≤ 0, then
Ω(h, g) ⊆ {(y, x) : xi = 0} for all i ∈ S.

Now suppose that B(S) > 0. If
cj2
cj1

gj1 < gj2 for j1 < j2 ≤ γ(B(S)), then

yj2 = 0 for all (y, x) ∈ Ω(h, g). If gj1 < gj2 for j1 and j2 in {γ(B(S)) +
1, . . . , n}, then yj2 = 0 for all (y, x) ∈ Ω(h, g).

Now we have S 6= ∅, hi > 0 for all i ∈ S, B(S) > 0, g1
c1

≥ . . . ≥
gγ(B(S))

cγ(B(S))
>

0 and gγ(B(S))+1 = . . . = gn > 0. One possibility is that Ω(h, g) ⊆ {(y, x) :
x(M) + cy = b}.

The last case to be considered is that in which there exists an optimal so-
lution (y, x) with x(M)+cy > b. Let q be the smallest index such that there
exists an optimal solution (x∗, y∗) at which the knapsack cover constraint is
not tight and y∗q > 0. Then we know the following:

• xi = 0 for all i ∈ S in any optimal solution (y, x) at which the knapsack
cover constraint is not tight.

•
gq−1

cq−1
>

gq
cq
.

For j ∈ N , define ej to be the j-th unit vector of size n. If
gq−1

cq−1
=

gq
cq
,

then (x∗, y∗−eq+
cq

cq−1
eq−1) is also optimal, contradicting the definition

of q.
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• cq does not divide B(S).

Suppose on the contrary that cq divides B(S). We have
∑n

j=q cjy
∗
j >

B(S). As
∑n

j=q cjy
∗
j is a multiple of cq, it follows that

∑n
j=q cjy

∗
j ≥

B(S) + cq. But now (x∗, y∗ − eq) is feasible and cheaper since gq > 0,
contradicting the optimality of (x∗, y∗).

• cy ≥
⌊

B(S)
cq

⌋

cq in any optimal solution.

Define φ(σ) = min{
∑

i∈S hixi : x(S) ≥ B(S) − σ, 0 ≤ xi ≤ ai i ∈ S}.
Optimality of (x∗, y∗) implies gq ≤ φ(c(y∗ − eq)) − φ(cy∗) and the
fact that the knapsack cover constraint is not tight implies that cy∗ ≥
⌊

B(S)
cq

⌋

cq + cq. Suppose that (x′, y′) is a feasible solution with cy′ <
⌊

B(S)
cq

⌋

cq. Now φ is a piecewise linear convex function with φ(σ) > 0

for σ < B(s) and φ(σ) = 0 for σ ≥ B(S). It is strictly decreasing on
the interval [0, B(S)]. Therefore, as cy′ < c(y∗−eq) < B(S) and cy∗ >

B(S), one has φ(cy′)−φ(c(y′+eq)) > φ(c(y∗−eq))−φ(cy∗). It follows
that φ(cy′) − φ(c(y′ + eq)) > gq and thus g(y′ + eq) + φ(c(y′ + eq)) <
gy′ + φ(cy′). So increasing y′q by 1 and picking the best x improves
the objective function value. Hence (x′, y′) cannot be optimal.

Now let y0 = x(S) and q be as defined above. Let {i1, . . . , j1}, {i2, . . . , j2}, . . . , {ip, . . . , jp}
be a partition of {0, . . . , n} such that i1 = 0, j1 = q− 1, ip ≤ γ(B(S)),

gj
cj

is

constant for j = it, . . . , jt and
git
cit

>
git+1

cit+1
for t = 2, . . . , p − 1,

gip
cip

=
gj
cj

for

j = ip, . . . , γ(B(S)) and gγ(B(S))+1 = gj for j = γ(B(S))+1, . . . , n. We claim
that all optimal solutions satisfy the corresponding partition inequality (2)
at equality.

Take an arbitrary point (y, x) ∈ Ω(h, g). If the knapsack cover constraint
is not tight at (y, x), then xi = 0 for all i ∈ S, yj = 0 for j = 1, . . . , q − 1
and the restriction of y to entries q, . . . , n is optimal for the problem of

minimizing
∑n

j=q gjyj subject to
∑n

j=q cjyj ≥
⌈

B(S)
cq

⌉

cq and y ∈ Z
n
+. Then

∑p
t=2

∏t−1
l=2 κl

∑jt
j=it

min
{

cj
cit

, κt

}

yj =
∏p

t=2 κt using (iii b) of Theorem 2.1.

Hence (y, x) satisfies (2) at equality.

Now suppose that the knapsack cover constraint is tight at (y, x). There are
two subcases.

a) x(M \ S) < a(M \ S).
Then xi = 0 for all i ∈ S and cy > B(S). Now the set of optimal points
have the same y values as in the above case, completed by xi = 0 for
i ∈ S and xi for i ∈ M \ S satisfying 0 ≤ xi ≤ ai, x(M \ S) = b− cy.
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b) xi = ai for i ∈ M \ S.

Since B(S) is not a multiple of cq, we have
∑n

j=q cjyj ≤
⌊

B(S)
cq

⌋

cq.

Then the fact that
gq−1

cq−1
>

gq
cq

together with
∑n

j=1 cjyj ≥
⌊

B(S)
cq

⌋

cq

implies that
∑n

j=q cjyj =
⌊

B(S)
cq

⌋

cq, and y0 +
∑q−1

j=1 min{cj , κ1}yj =

B(S)−
⌊

B(S)
cq

⌋

cq = κ1. Using (iii c) of Theorem 2.1, any optimal so-

lution to the problem of minimizing
∑n

j=q gjyj subject to
∑n

j=q cjyj =
⌊

B(S)
cq

⌋

cq and y ∈ Z
n
+ satisfies

∑p
t=2

∏t−1
l=2 κl

∑jt
j=it

min
{

cj
cit

, κt

}

yj =
∏p

t=2 κt − 1. Now

p
∑

t=1

Πt−1
l=1κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj

= x(S) +

q−1
∑

j=1

min{cj , κ1}yj +

p
∑

t=2

t−1
∏

l=1

κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj

= x(S) +

q−1
∑

j=1

min{cj , κ1}yj + κ1





p
∑

t=2

t−1
∏

l=2

κl

jt
∑

j=it

min

{

cj

cit
, κt

}

yj





= κ1 + κ1

(

p
∏

t=2

κt − 1

)

=

p
∏

t=1

κt.

Thus all optimal solutions satisfy this partition inequality (2) at equality.

Case 2 S = ∅: The argument is the same setting y0 = 0. �

As conv(QS
≥) is described by the trivial inequalities and the partition

inequalities, we get conv(Y≥) = ∩S⊆M conv(QS
≥) ∩ {(y, x) : xi ≤ ai, i ∈ M}.

As a corollary, one obtains a simple result concerning the intersection of
two parallel divisible knapsack sets.

Theorem 3.3. conv({y ∈ Z
n
+ : b − a ≤ cy ≤ b}) = conv({y ∈ Z

n
+ : b− a ≤

cy}) ∩ conv({y ∈ Z
n
+ : cy ≤ b}).
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Proof. Consider the case of Theorem 3.2 when m = 1, i.e., when there
is a single continuous variable. Then we have

conv(Y ′
≥) = conv({(y, x) ∈ Z

n
+×R : cy ≥ b−a})∩conv({(y, x) ∈ Z

n
+×R+ : x+cy ≥ b})

∩{(y, x) ∈ R
n+1 : x ≤ a}.

The intersection of the set on the right hand side with the set {(y, x) ∈ R
n+1 :

x = b−cy} is equal to conv({(y, x) ∈ Z
n
+×R : cy ≥ b−a})∩{(y, x) ∈ R

n+1 :
x = cy − b} ∩ conv({(y, x) ∈ Z

n
+ × R : cy ≤ b}). If we project this onto the

y space, we obtain conv(y ∈ Z
n
+ : cy ≥ b− a}) ∩ conv(y ∈ Z

n
+ : cy ≤ b}).

If we intersect the set on the left hand side with {(y, x) ∈ R
n+1 : x =

b−cy} and project onto the y space, we get conv({y ∈ Z
n
+ : b−a ≤ cy ≤ b}).

The claim follows. �

4 The continuous ≤-knapsack set

Now we study the convex hull of the continuous ≤-knapsack set, namely the
set

Q≤ = {(y, x) ∈ Z
n
+ × R

1
+ :

n
∑

j=1

cjyj ≤ b+ x},

where again the data are integer and c1| · · · |cn. Initially we suppose that
c1 does not divide b. Below we will define a new family of “≤-partition”
inequalities.

Given a partition {i1, . . . , j1}, · · · , {ip, . . . , jp} of {1, . . . , n} into intervals,

let βp = b, κt =
⌈

βt

cit

⌉

, µt = (κt − 1)cit , βt−1 = βt − µt and st = cit − βt−1

for t = p, . . . , 1.
We first consider the partition into singletons ({1}, · · · , {n}).

Observation 4.1. The following n+ 1 points

zk = (yk, xk) = (0, 0, . . . , 0, κk, κk+1 − 1 . . . , κn − 1, sk) k = 1, . . . , n

z0 = (κ1 − 1, . . . , κk − 1, κk+1 − 1 . . . , κn − 1, 0)

are in Q≤ and are linearly independent.

Observation 4.2. The ({1}, · · · , {n}) ≤-partition inequality

n
∑

j=1

πjyj ≤ π0 + x (3)

passes through these n + 1 points, where π1 = s1, πj = κj−1πj−1 + (sj −
sj−1) for j = 2, . . . , n and π0 = κnπn − sn.
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Proof. Let e′j be the jth unit vector of size n+1. z1−z0 = e′1+s1e
′
n+1 and

thus π1 = s1. For j = 2, . . . , n, zj − zj−1 = e′j − κj−1e
′
j−1 + (sj − sj−1)e

′
n+1

and thus πj = κj−1πj−1 + (sj − sj−1). Finally πyn = π0 + sn implies
π0 = κnπn − sn. �

Observation 4.3. Let
∑n

j=1 αjyj ≥ α0 denote the ({1}, {2}, · · · , {n}) par-
tition inequality (1) for the ≥-knapsack set C. Then the ≤-partition inequal-
ity (3) for Q≤ can also be viewed as a lifting of this inequality, and can be
written in the form

n
∑

j=1

(cj − (c1 − s1)αj)yj ≤ (b− (c1 − s1)α0) + x.

Proof. The points yk are precisely the roots of the facet αy ≥ α0 of
C, and cyk = b + sk. So the points zk satisfy (3) at equality. In addition
y0 = y1 − e1, so cy0 = cy1 − c1 = b+ s1 − c1 and αy0 = αy1 − α1 = α0 − 1.
So z0 also lies on the inequality and the inequalities must be identical. �

4.1 Validity of partition inequalities

We need a refinement of the notation in this subsection. We denote the
continuous ≤-knapsack set with n integer variables by Qn

≤ and the set with

the first n − 1 integer variables by Qn−1
≤ . Similarly πn

0 is the right hand

side of the partition inequality for Qn
≤ and πn−1

0 for Qn−1
≤ . In particular we

will use validity of
∑n−1

j=1 πjyj ≤ πn−1
0 + x for Qn−1

≤ to show the validity of
∑n

j=1 πjyj ≤ πn
0 + x for Qn

≤.
We first establish some basic properties. We still assume that c1 does

not divide b. First note that

βj = b−

⌊

b

cj+1

⌋

cj+1 for j = 1, . . . , n − 1

and

sj − sj−1 =

⌊

sj

cj−1

⌋

cj−1 for j = 2, . . . , n.

Lemma 4.1. i) πj ≤ cj for j = 1, . . . , n,

ii)
πj

cj
≥

πj−1

cj−1
for j = 2, . . . , n,

iii) πn
0 = πn−1

0 + (κn − 1)
(

πn − πn−1
cn

cn−1

)

,

11



iv) πn
0 = b− (cn − πn)κn.

Proof. We use induction to prove part (i). For j = 1, we have π1 =
s1 ≤ c1. Suppose that πj−1 ≤ cj−1. Then πj = πj−1κj−1 + sj − sj−1 ≤

cj−1κj−1+ sj − sj−1. The right hand side is equal to cj−1









b−

⌊

b
cj

⌋

cj

cj−1









+ cj −

cj−1 +
⌊

b
cj

⌋

cj −
⌊

b
cj−1

⌋

cj−1 = cj . Hence πj ≤ cj.

To prove (ii),

πj = κj−1πj−1 + sj − sj−1 =

⌈

cj − sj

cj−1

⌉

πj−1 + sj − sj−1 =
cj

cj−1
πj−1 −

⌊

sj

cj−1

⌋

πj−1 + sj − sj−1

≥
cj

cj−1
πj−1 −

⌊

sj

cj−1

⌋

cj−1 + sj − sj−1 =
cj

cj−1
πj−1,

where the inequality is obtained using (i) and the last equality is obtained

using sj − sj−1 =
⌊

sj
cj−1

⌋

cj−1.

Next we prove part (iii). First, πn
0 = πnκn − sn and

πn−1
0 = πn−1

⌈

b

cn−1

⌉

− sn−1 = πn−1

(

κn−1 + (κn − 1)
cn

cn−1

)

− sn−1.

Now

πn
0 − πn−1

0 = (κn − 1)(πn −
cn

cn−1
) + πn − πn−1κn−1 − sn + sn−1 = (κn − 1)(πn −

cn

cn−1
),

using the definition of πn.
Finally, since πn

0 = κnπn − sn and sn = cn − βn−1 = κncn − b, we have
πn
0 = b− (cn − πn)κn, which proves part (iv). �

Lemma 4.2. If
∑n−1

j=1 πjyj ≤ πn−1
0 + x is valid for Qn−1

≤ , then

n−1
∑

j=1

πjyj + πn−1
cn

cn−1
yn ≤ πn−1

0 + x

is valid for Qn
≤.

Proof. If (y1, . . . , yn, x) ∈ Qn
≤, then

∑n
j=1 cjyj =

∑n−2
j=1 cjyj+cn−1(yn−1+

cn
cn−1

yn) ≤ b+x. Hence (y1, . . . , yn−2, yn−1+
cn

cn−1
yn, x) ∈ Qn−1

≤ and
∑n−2

j=1 πjyj+

πn−1(yn−1 +
cn

cn−1
yn) ≤ πn−1

0 + x as claimed. �

12



Theorem 4.3. The ({1}, · · · , {n}) partition inequality is valid for Qn
≤.

Proof. The proof is by induction.
For n = 1, the MIR inequality is:

c1(1− f)y1 ≤

⌊

b

c1

⌋

c1(1− f) + x,

where (1 − f) =
⌈

b
c1

⌉

− b
c1

= s1
c1
. This is precisely the ({1}) partition

inequality s1y1 ≤ (κ1s1 − s1) + x.
Now suppose that

∑n−1
j=1 πjyj ≤ πn−1

0 +x is valid for Qn−1
≤ . We consider

two cases:
Case 1. yn ≥ κn.
Suppose that (y, x) ∈ Qn

≤, so that
∑n

j=1 cjyj ≤ b+x, or rewriting
∑n−1

j=1 cjyj+
cn(yn − κn) + cnκn ≤ b + x. As cj ≥ πj by Lemma 4.1(i), yj ≥ 0 for j =
1, . . . , n−1 and yn−κn ≥ 0, we have

∑n−1
j=1 πjyj+πn(yn−κn)+cnκn ≤ b+x,

or equivalently
∑n−1

j=1 πjyj+πnyn ≤ b−(cn−πn)κn+x. Using Lemma 4.1(iv),
we obtain

∑n
j=1 πjyj ≤ πn

0 + x.
Case 2. yn ≤ κn − 1.
From Lemma 4.2, (y, x) satisfies

∑n−1
j=1 πjyj + πn−1

cn
cn−1

yn ≤ πn−1
0 + x.

Adding πn − πn−1
cn

cn−1
≥ 0 (from Lemma 4.1(ii)) times yn ≤ κn − 1 gives

∑n
j=1 πjyj ≤ πn−1

0 + (κn − 1)(πn − πn−1
cn

cn−1
) + x = πn

0 + x where the last

equality is obtained using Lemma 4.1(iii).
Therefore by a disjunctive argument, the inequality is valid for Qn

≤. �

Example 4.1. Consider the continuous ≤-knapsack set defined by the con-
straints

5y1 + 10y2 + 30y3 ≤ 72 + x, y ∈ Z
3
+, x ∈ R

1
+.

The coefficients of the ({1}{2}{3}) partition inequality are given by

t β κ µ s

3 72 3 60 18
2 12 2 10 8
1 2 1 0 3

Then π1 = 3, π2 = 1 × 3 + (8 − 3) = 8, π3 = 8 × 2 + (18 − 8) = 26 and
π0 = 26× 3− 18 = 60 giving the inequality

3y1 + 8y2 + 26y3 ≤ 60 + x.

Note that the ({1}{2}{3}) ≥-partition inequality for

5y1 + 10y2 + 30y3 ≥ 72, y ∈ Z
3
+

13



is the inequality
y1 + y2 + 2y3 ≥ 6.

Now 5y1 +10y2 + 30y3 ≤ 72 + x plus c1 − s1 = 2 times the latter inequality
again gives 3y1 + 8y2 + 26y3 ≤ 60 + x.

Now we describe the inequality associated with an arbitrary partition
and we drop the assumption that c1 does not divide b. Thus we suppose
that cr−1|b, but cr does not divide b.

For the partition {i1, . . . , j1}, . . . , {ip, . . . , jp} of {r, . . . , n}, we construct
the partition inequality

p
∑

t=1

πityit ≤ π0 + x

for the set
p
∑

t=1

cityit ≤ b+ x, y ∈ Z
p
+, x ∈ R

1
+.

Proposition 4.4. The {i1, . . . , j1}, . . . , {ip, . . . , jp} partition inequality

p
∑

t=1

πit

jt
∑

j=it

cj

cit
yj ≤ π0 + x. (4)

is valid for Q≤.
The set of points of Q≤ that are tight for such inequalities is the union

of the sets

Zk = {(y, x) ∈ Z
n
+×R

1 : yj = 0 j < ik,

jk
∑

j=ik

cj

cik
yj = κk,

jt
∑

j=it

cj

cit
yj = κt−1 t = k+1, . . . , p, x = sk}

Z0 = {(y, x) ∈ Z
n
+×R

1 : yj = 0 j < r−1,

jt
∑

j=it

cj

cit
yj = κt−1 t = 1, . . . , p, x = 0}

W j = Z0 + {(y, x) ∈ Z
n
+ × R

1 :

r−1
∑

j=1

cjyj = δ, yj = 0 j ≥ r, x = 0}

where δ = b−
∑p

t=1 cit(κt − 1).

The proof that the inequality is valid for
∑n

j=r cjyj ≤ b+x, y ∈ Z
n−r+1
+ , x ∈

R
1
+ is as in Lemma 4.2. The structure of the tight points follows from that

of the tight points {zk}pk=0 in Observation 4.1.�
It is easily seen that some partition inequalities are not facet defining.
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4.2 Decomposition and Extended Formulation for Q≤

Here we show how the set Q≤ can be decomposed allowing one to derive
a polynomial size extended formulation for conv(Q≤). First we look at the
simple cases.

Observation 4.4. If c1| · · · |cn|b, the polyhedron

{(y, x) ∈ R
n
+ × R

1
+ :
∑

j

cjyj ≤ b+ x}

is integral and describes conv(Q≤).

Observation 4.5. If cj |b for j < r and cj > b for j ≥ r, then conv(Q≤) is
described by the original constraints cy ≤ b+ x, y, x ≥ 0 and one additional
constraint

n
∑

j=1

(cj − b)+ ≤ x.

4.2.1 Decomposition of conv(Q≤)

Let t be the index with ct ≤ b and ct+1 > b. To avoid the case covered in
Observation 4.5, we assume r ≤ t.

Let

U = {(y, x) ∈ Z
n
+ × R

1
+ :

t
∑

j=1

cjyj +
n
∑

j=t+1

(cj − µ)yj ≤ b− µ+ x}

where µ =
⌊

b
ct

⌋

ct.

Let R be the set of vectors (y, x, α, γ, δ) that satisfy

t
∑

j=1

cjαj + µ

n
∑

j=t+1

αj ≤ µ

(γ, γ0) ∈ conv(U)

yj = αj + γj j = 1, . . . , t

yj = γj + δj , γj = αj for j = t+ 1, . . . , n

x ≥ γ0 +
n
∑

j=t+1

cjδj

α, γ, δ ∈ R
n
+.

15



Proposition 4.5. projy,xR = conv(Q≤).

Proof. The extreme rays (ej , cj) for j = 1, . . . , t and (0, 1) of conv(U)
also become extreme rays of projy,xR. The variables δj provide additional
rays (ej , cj) for j > t. Thus the rays of the two sets are the same. In addition
it is straightforward to check that the points (0, 0) and the maximal points
for the partition inequalities given in Proposition 4.4 lie in projy,xR.

To show that projy,xR ⊆ conv(Q≤), consider a point (y, x) ∈ projy,xR.
Thus there exist (α, γ, δ) such that (y, x, α, γ, δ) ∈ R. Let I be the set of
extreme points of conv(U) with

∑n
j=t+1 γj = 0. As (γ, γ0) ∈ conv(U), we

can write

(γ, γ0) =
∑

i∈I

(γi, γi0)λi+

n
∑

j=t+1

(ej , cj−b)ǫj+

t
∑

j=1

(ej , cj)δj+

n
∑

j=t+1

(ej , cj−µ)φj+(0, 1)φ0

where
∑

i∈I λi +
∑n

j=t+1 ǫj = 1, λ, ǫ, φ, δ ≥ 0 with (γi, γi0) for i ∈ I and
(ej , cj − b) for j > t the extreme points of conv(U).

Also

α =

n
∑

j=0

αjνj,

n
∑

j=0

νj = 1, ν ≥ 0,

where αj for j = 0, . . . , n are the extreme points of {α ∈ R
n
+ :
∑t

j=1 cjαj +

µ
∑n

j=t+1 αj ≤ µ} (α0 = 0, αj = µ
cj
ej for j = 1, . . . , t and αj = ej for

j = t+ 1, . . . , n).
Then

(y, x) =
∑

i∈I

(γi, γi0)λi+

t
∑

j=0

(αj , 0)νj+

n
∑

j=t+1

(ej , cj−b)ǫj+

n
∑

j=t+1

(ej , cj−µ)φj+

n
∑

j=1

(ej , cj)δj+(0, 1)φ0.

Let ρ =
∑

i∈I λi and σ =
∑t

j=0 νj . For j = t+1, . . . , n, since γj = αj , we
have ǫj+φj = νj . Also

∑n
j=t+1 φj =

∑n
j=t+1(νj−ǫj) = 1−σ−(1−

∑

i∈I λi) =
ρ− σ.

Let (yij , yij0 ) = (γi, γi0) + (αj , 0) for i ∈ I and j = 0, . . . , t. Clearly

(yij , yij0 ) ∈ Q≤. Also let (zij , zij0 ) = (γi, γi0) + (ej , cj − µ) for i ∈ I and
j = t+1, . . . , n. As cγi ≤ b−µ+γi0, we have cz

ij = cγi+cj ≤ b+(γi0+cj−µ)

and thus (zij , zij0 ) ∈ Q≤. Also (ej , cj − b) ∈ Q≤ for j > t.
Now since

σ

ρ

∑

i∈I

(γi, γi0)λi +
t
∑

j=0

(αj , 0)νj =
∑

i∈I

t
∑

j=0

((γi, γi0) + (αj , 0))
1

ρ
λiνj =

∑

i∈I

t
∑

j=0

(yij , yij0 )
1

ρ
λiνj
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and

ρ− σ

ρ

∑

i∈I

(γi, γi0)λi +

n
∑

j=t+1

(ej , cj − µ)φj =
∑

i∈I

n
∑

j=t+1

((γi, γi0) + (ej , cj − µ))
1

ρ
λiφj

=
∑

i∈I

n
∑

j=t+1

(zij , zij0 )
1

ρ
λiφj ,

we can rewrite (y, x) as a convex combination of extreme points plus extreme
rays

(y, x) =





∑

i∈I

t
∑

j=0

(yij, yij0 )
1

ρ
λiνj +

∑

i∈I

n
∑

j=t+1

(zij , zij0 )
1

ρ
λiφj +

n
∑

j=t+1

(ej , cj − b)ǫj





+

n
∑

j=1

(ej , cj)δj + (0, 1)φ0,

as
∑

i∈I

∑t
j=0

1
ρ
λiνj+

∑

i∈I

∑n
j=t+1

1
ρ
λiφj+

∑n
j=t+1 ǫj = σ+(ρ−σ)+(1−ρ) =

1 and all multipliers are nonnegative. Thus (y, x) lies in conv(Q≤).�

4.2.2 An Extended Formulation for conv(Q≤)

As before, we assume that cj |b for j < r, cr does not divide b, ct < b and
cj > b for j > t. Repeating the decomposition a maximum of t − r times,
one terminates with a set U of the form

{(y, x) ∈ Z
n
+ × R

1
+ :

r−1
∑

j=1

cjyj +

n
∑

j=r

c̃jyj ≤ b− ⌊
b

cr
⌋cr + x}

where cj |(b−⌊ b
cr
⌋cr) for j < r and c̃j > (b−⌊ b

cr
⌋cr) for j ≥ r, so Observation

4.5 gives conv(U) completing the polynomial size extended formulation.

Example 4.2. Consider a set Q≤ with n = 5, c = (3, 6, 18, 90, 180) and
b = 737.
This decomposes into
3a11+6a12+18a13+90a14+180a15 ≤ 720 and 3γ1+6γ2+18γ3+90γ4+180γ5 ≤
17 + γ0.
The latter decomposes into
3a21 + 6a22 + 12a23 + 12a24 + 12a25 ≤ 12 and 3γ1 + 6γ2 + (18 − 12)a23 +
78a24 + 168a25 ≤ 5 + γ0.
The latter decomposes into
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3a31 + 3a32 + 3a23 + 3a24 + 3a25 ≤ 3 and 3γ1 + (6 − 3)a32 + (6 − 3)a23 +
75a24 + 165a25 ≤ 2 + γ0.
To complete the convex hull of the latter, we add

(3− 2)a41 + 1a32 + 1a23 + 73a24 + 163a25 ≤ γ0.

The complete formulation is:
3a11 + 6a12 + 18a13 + 90a14 + 180a15 ≤ 720
3a21 + 6a22 + 12a23 + 12a24 + 12a25 ≤ 12
3a31 + 3a32 + 3a23 + 3a24 + 3a25 ≤ 3
3a41 + 3a32 + 3a23 + 75a24 + 165a25 ≤ 2 + γ0.
1a41 + 1a32 + 1a23 + 73a24 + 163a25 ≤ γ0
y1 = a11 + a21 + a31 + a41 + δ1
y2 = a12 + a22 + a32 + δ2
y3 = a13 + a23 + δ3
y4 = a14 + a24 + δ4
y5 = a15 + a25 + δ5
x ≥ γ0 + 3δ1 + 6δ2 + 18δ3 + 90δ4 + 180δ5
aij ≥ 0 ∀ i, j, δ ≥ 0

5 The multi-item continuous ≤-knapsack set

Finally, we study the multi-item continuous ≤-knapsack set

Y≤ = {(y, x) ∈ Z
n
+ × R

m+1
+ :

∑

j∈N

cjyj ≤ b+
∑

i∈M0

xi, xi ≤ ai, i ∈ M}.

Proposition 5.1. Let S ⊆ M , B(S) = b + a(M \ S) and r(S) be the
smallest index j such that cj does not divide B(S). Let q ∈ {r(S), . . . , n}
and {i1, . . . , j1}, · · · , {ip, . . . , jp} be a partition of {q, . . . , n}. Define βp =

B(S), κt =
⌈

βt

cit

⌉

, µt = (κt − 1)cit , βt−1 = βt − µt and st = cit − βt−1

for t = p, . . . , 1. Also let π1 = sq, πt = κt−1πt−1 + (st − st−1) for t =
2, . . . , p and π0 = κpπp − sp. The partition inequality

p
∑

t=1

πit

jt
∑

j=it

cj

cit
yj ≤ π0 +

∑

i∈S0

xi (5)

is valid for Y≤.

Proof. Let

QS
≤ = {(y, x) ∈ Z

n
+ × R

m+1 : cy ≤ B(S) + x(S0), x(S0) ≥ 0}.
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The partition inequality is valid for the set QS
≤ and this set is a relaxation

of Y≤. �

Theorem 5.2. conv(Y≤) is described by the initial constraints and the par-
tition inequalities (5). Equivalently,

conv(Y≤) = ∩S⊆M conv(QS
≤) ∩ {(y, x) : xi ≤ ai i ∈ M}.

Proof. Let Ω(g, h) be the set of optimal solutions to the problem of
maximizing

∑n
j=1 gjyj −

∑m
i=0 hixi over Y≤.

If h0 < 0 or if there exists j ∈ N with gj > cjh0, then the problem is
unbounded. If hi < 0 for some i ∈ M , then all optimal solutions satisfy
xi = ai. If gj < 0 or if there exists i < j with

cj
ci
gi > gj , then Ω(g, h) ⊆

{(y, x) : yj = 0}.
Now suppose that h0 ≥ gn

cn
≥ . . . ≥ g1

c1
≥ 0 and h ≥ 0. If h0 = 0 then

g = 0 and Ω(g, h) ⊆ {(y, x) : xi = 0} for i ∈ M with hi > 0. If h0 > 0 and
hi = 0 for all i ∈ M , then (y, x) ∈ Ω(g, h) implies that (y, x0) is optimal for
max{gy−h0x0 : cy ≤ b+x0+a(M), x0 ≥ 0, y ∈ Z

n
+}. Note that the feasible

set of the latter optimization problem is Q∅
≤.

In the remaining case, we have h ≥ 0, h0 > 0, S = {i ∈ M : hi > 0} 6= ∅
and h0 ≥

gn
cn

≥ . . . ≥ g1
c1

≥ 0.
Suppose that there exists j ∈ {1, . . . , r(S) − 1} with gj > 0. Take the

smallest such j. Suppose that there exists an optimal solution (y, x) with
cy < b + x(M0). Now consider the point (y′, x) where y′k = 0 for k < j,
y′j = yj +1 and y′k = yk for k > j. As c(y′ − ej) ≤ cy < B(S) and cj divides
B(S)−c(y′−ej), it follows that c(y

′−ej) ≤ B(S)−cj . Thus (y
′, x) is feasible

and its objective value exceeds that of (y, x) by cj > 0. Hence when there
exists j ∈ {1, . . . , r(S)− 1} with gj > 0, Ω(g, h) ⊆ {(y, x) : cy = b+x(M0)}.
From now on, we take gj = 0 for j ∈ {1, . . . , r(S)− 1}.

We look at three cases. In one case, Ω(g, h) ⊆ {(y, x) : x(S0) = 0}. In
the second case, Ω(g, h) ⊆ {(y, x) : cy = b + x(M0)}. In the third case,
there exists an optimal solution (y, x) with x(S0) > 0 and there exists an
alternative optimal solution with cy < b + x(M0). Let q be the smallest
index for which there exists such an optimal solution (y, x) with x(S0) > 0
and yq > 0. This implies that q ≥ r(S) and

gq
cq

>
gq−1

cq−1
or else q = r(S) and

gq > 0.

Define φ(σ) = min{
∑

i∈S0
hixi : x(S0) ≥ σ−B(S), x ∈ R

|S0|
+ , xi ≤ ai, i ∈

S}. If σ ≤ B(S), then φ(σ) = 0. For B(S) < σ, φ(σ) is piecewise linear,
strictly increasing and convex. Let (y∗, x∗) be an an optimal solution with

19



x∗(S0) > 0 and y∗q > 0. Then since cy∗ is divisible by cq, we have cy∗ ≥
⌈

B(S)
cq

⌉

cq. In addition, optimality of (y∗, x∗) implies that gq ≥ φ(cy∗) −

φ(c(y∗ − eq)).

Suppose that (y, x) ∈ Y≤ and cy <
⌊

B(S)
cq

⌋

cq. Let y′ = y + eq. Then

cy′ = cy + cq <
⌊

B(S)
cq

⌋

cq + cq =
⌈

B(S)
cq

⌉

cq (since cq does not divide B(S)).

Now as cy∗ ≥
⌈

B(S)
cq

⌉

cq, we have cy′ < cy∗. Then gq ≥ φ(cy∗) − φ(c(y∗ −

eq)) > φ(cy′) − φ(c(y′ − eq)) where the strict inequality follows from the
form of the function φ and the fact that cy∗ > B(S). Hence (y, x) cannot be

optimal. As a result, every optimal solution (y, x) satisfies cy ≥
⌊

B(S)
cq

⌋

cq.

Now consider the partition {i1, . . . , j1}, . . . , {ip, . . . , jp} of {q, . . . , n} with
gj
cj

=
git
cit

for t = 1, . . . , p and j ∈ {it, . . . , jt} and
git
cit

>
git−1

cit−1
for t = 2, . . . , p.

We first consider optimal solutions with x(S0) = 0 and then optimal
solutions with x(S0) > 0. In an optimal solution with x(S0) = 0, we have
∑n

j=q cjyj =
⌊

B(S)
cq

⌋

cq as
gq
cq

>
gq−1

cq−1
or else q = r(S) and gq > 0, and

∑q−1
j=1 cjyj ≤ B(S) −

⌊

B(S)
cq

⌋

cq. Since
git
cit

>
git−1

cit−1
for t = 2, . . . , p, we have

∑jt
j=it

cj
cit

yj = κt − 1 for t = 1, . . . , p. So the point lies on the partition

inequality.
Now we consider an optimal solution (y, x) with x(S0) > 0. Note that

if (y′, x′) is an optimal solution with cy′ < b+ x′(M0), then x′(S0) = 0 and
cy′ < B(S). Suppose that there exists j with yj > 0 and c(y − ej) ≥ B(S).
Then as c(y − ej) > cy′, we have gj ≤ φ(c(y′ + ej)) − φ(cy′) < φ(cy) −
φ(c(y−ej)). This contradicts the optimality of (y, x). Hence, in any optimal
solution (y, x) with x(S0) > 0, we have c(y−ej) < B(S) for all j with yj > 0.

Then for (y, x) ∈ Ω(g, h) with x(S0) > 0, we have
∑n

j=ik
cjyj =

⌈

B(S)
cik

⌉

cik

for some k ∈ {1, . . . , p}, yj = 0 for j ∈ {1, . . . , ik − 1},
∑jt

j=it

cj
cit

yj = κt − 1

for t = k + 1, . . . , p,
∑jk

j=ik

cj
cik

yj = κk and x(S0) = sk. So again the point

lies on the partition inequality. �

6 Conclusion

In this paper, we have studied the polyhedra associated with knapsack sets
with integer and continuous variables and divisible capacities.

In particular, we have studied the continuous ≥-knapsack set (equiva-
lently the splittable flow arc set) with multiple capacities (facilities) and
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given a description of the convex hull when the capacities are divisible. We
have shown that conv(Y≥) = ∩S⊆Mconv(QS

≥) ∩ {(y, x) : x ≤ a} where QS
≥

is a continuous ≥-knapsack set for each S ⊆ M .
Consider the optimization problemmin{

∑

i∈M hixi+
∑

j∈N gjyj : (y, x) ∈
Y≥}. If hi < 0, xi = ai in every optimal solution and it suffices to solve
a smaller problem. Thus we can assume that 0 ≤ h1 ≤ . . . ≤ hm. Now
there exists an optimal solution (x, y) with xj = aj for j < i and xj = aj
for xj = 0 for j > i for some i. Thus it suffices to solve the m problems
zi =

∑

j:j<i pjaj +min{pixi +
∑

j∈N gjyj : xi + cy ≥ b−
∑

j:j<i aj , 0 ≤ xi ≤
ai, y ∈ Z

n
+} and take the best solution. Each of these can be represented by

a polynomial size linear program so the optimization problem is in P. Thus
separation of conv(Y≥) is polynomial using the ellipsoid algorithm.

Though polynomial time combinatorial separation algorithms are known
both for the partition inequalities for the integer ≥-knapsack set and the
residual capacity inequalities for the single facility splittable flow arc set
(see Pochet and Wolsey [16] and Atamtürk and Rajan [3], respectively),
we do not know such an efficient combinatorial algorithm to separate the
exponential family of partition inequalities (2). As a corollary it follows that,
in any non-trivial facet-defining inequality for conv(Y≥), the coefficients of
the continuous variables all take the values 0 or 1 (after scaling).

We have shown in Theorem 5.2 that a result similar to that of Theorem
3.2 holds for the corresponding multi-item continuous ≤-knapsack set Y≤.
It is natural to ask if similar results hold for other continuous knapsack sets
with some special structure. Recently Dash et al. have shown that such
results hold when there are just n = 2 integer variables [4].

Kianfar [7] has shown how the partition inequalities for the integer ≥-
knapsack set with divisible capacities can be viewed as a special case of
n-step MIR inequalities and thus generalized. It seems likely that a similar
approach can be taken for the ≤-knapsack set.
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