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Abstract

GEographic Object-Based Image Analysis (GEOBIA) has become a popular alternative for land cover
and land use classification. In this case, polygons can be selected as sampling units to match the conceptual
model of the map. However, little attention has been paid to the use of polygons for the validation of those
maps. In this paper, we quantitatively assess the prediction of the primary thematic accuracy indices when
the sampling unit is a polygon. The variable size of the sample polygons is a major concern for the prediction
of the accuracy indices. Indeed, the classification accuracy, in addition to being class-dependent, depends on
the polygon area. A practical solution supported by a theoretical framework that is conditional to the sample
dataset is proposed in this study. This new predictor takes advantage of the known classification results for
an improved efficiency. Empirical results based on synthetic maps show that the new predictor outperforms
alternative methods for overall accuracy. The RMSE of the area weighted predictor was achieved with 50%
less sample polygons thanks to our new predictor.

1. Introduction

Land cover/land use maps are of paramount importance in various applications such as land monitoring,
land use planning, hydrological modelling or natural resource management. Consequently, map users need
reliable quality information about those products for using them in an appropriate way. Previous works on
accuracy assessment have designed standard quality indices and methods which are now widely accepted
by the remote sensing community. The core of the accuracy assessment typically relies on a confusion
matrix based on a validation sample, which matches the mapped land cover to some reference information
(Congalton, 1991). The confusion matrix is often accompanied by global indices such as the overall, the
user’s and the producer’s accuracy indices (Foody, 2002; Congalton, 1991; Stehman, 1997), which provide a
useful summary of the map’s quality. According to Liu et al. (2007), these are the three primary thematic
accuracy indices.

Standard accuracy assessment methods rely also on the definition of a sampling unit used in the response
design. Congalton & Green (2009) identified 3 types of sampling units : points, pixel clusters and polygons.
A universally best spatial unit does not exist, so it is critical to recognize how the choice of a sampling
unit affects the accuracy assessment process (Stehman & Wickham, 2011). This choice also depends on the
conceptual model of the map, i.e. spatial object, field or spatial regions according to definitions of Bian
(2007):

• A spatial object is used as a conceptual model for spatially discrete information. The spatial extent of
these objects is limited in space and their boundaries are defined by a set of rules. At least one cate-
gorical variable, the object type, is associated with those objects after a chosen typology. In a response
design, spatial objects are most of the time unambiguously validated, either by photo-interpretation
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or from the field, because they can be embraced by the validation crew. Furthermore, their integrity
is often assessed as a whole, using reference polygons and resulting in class-specific metrics where the
geometric component plays a major role (Persello & Bruzzone, 2010). In this case, Zhan et al. (2005)
therefore concluded that polygon-based sampling units provide additional information compared with
point-based approaches.

• A field consists in a spatially continuous quantitative variable that can be measured in any point of
space. A typical example is the elevation above a reference surface, which is an important variable
in, e.g., hydrological modelling. Although it is possible, and in some cases recommended (Lambin,
1999), to describe the land cover using continuous fields, classification is more popular (Huang et al.,
2002), especially for large scale mapping. In any case, the validation of spatial fields primarily relies
on point-based sampling (Hansen et al., 2002) because polygons would introduce abrupt changes in
the fields values.

• A spatial region represents a mass of individuals that can be conceptualised both as a continuous
field and as discrete spatial objects, which is often the case of land cover. This duality is also found
at the level of the logical model: they can be discretised as vector polygons with consensual (fuzzy)
boundaries or represented as a grid with the proportion of each individual and no defined boundaries.
Spatial regions are delimited with an arbitrary boundary that is difficult to define with a set of rules
(e.g. ecotones), so that their position is often uncertain and the sources of geometric errors are diverse
(Radoux & Defourny, 2007). Concerning the labels, the use of unambiguous classification systems,
such as the UN Land Cover Classification System (Di Gregorio & Jansen, 2000), is recommended in
order to avoid overlapping class definitions.

When spatial objects or spatial regions are identified on a map as polygons, Congalton & Green (2009)
recommend the use of sample polygons to assess the thematic accuracy. GEographic Object Based Image
Analysis (GEOBIA) is a typical case where the resulting map is partitioned in a set of polygons. GEOBIA
is increasingly used to process remote sensing data (Blaschke, 2010) and has been successfully applied in
image classification and change detection (Radoux & Defourny, 2010; Bontemps et al., 2008). A rationale
of this approach is that the interpretation of a group of spatially adjacent pixels with similar properties
is closer to human interpretation of spatial regions than independent pixel interpretation. Intrinsically, the
polygons used in GEOBIA are thus considered as homogeneous in terms of land cover (Hay & Castilla,
2008). Those polygons are built based on an image (so called image-segments or image-objects) or obtained
from an ancillary data source.

Various methods were developed to evaluate image segmentation goodness based on supervised and
unsupervised indices (Clinton et al., 2010; Neubert et al., 2008; Zhang et al., 2008). These indices are
most of the time related to the four criteria proposed by Haralick & Shapiro (1985): i) regions should be
homogeneous with respect to some characteristics, ii) adjacent regions should exhibit marked differences
with respect to these characteristics, iii) region interiors should be free of holes, and iv) boundaries should
be spatially accurate and precise. In the frame of GEOBIA, the two first criteria are directly related to
over- and under-segmentation concerns for an image, respectively when an image-segment is only a part of
a spatial region or a spatial object, and when more than one spatial object or region are included in the
same image-segment (Carleer et al., 2005). After classification, over-segmentation and holes are potentially
removed while under-segmentation may lead to artificial class associations that often reduce the semantic
map quality.

The segmentation goodness indices, primarily based on the topological and geometric matching between
corresponding spatial object and image-object, as well as the distance between their centroids, are also
applicable for single class classification (object extraction) (Leckie et al., 2003; Ragia & Winter, 2000;
Whiteside et al., 2011). However, these methods require reference polygons that are not always available
and have not been quantitatively tested for multi-class map validation. On the other hand, various studies
focused on the development of new frameworks for assessing the accuracy of GEOBIA LULC products
(Hagen, 2003; Castilla et al., 2012; Marinho et al., 2012; Whiteside et al., 2012; Hernando et al., 2012).
Those studies go further than the thematic accuracy to include the spatial component in an integrated
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Figure 1: Representations of the same site using three different conceptual models.

index. Again, the methods to derive the proposed quality indices from a sample of the map were not
quantitatively assessed.

Sample polygons have been used for a long time, in studies where the only available reference information
was the photo-interpretation of higher resolution remote sensing data (George, 1986; Warren et al., 1990).
However, the efficiency of the sampling was not a concern in those papers. According to Stehman &Wickham
(2011), even the more recent studies paid little attention to the quantitative effects of the varying area of
sample polygons on the derived accuracy indices, despite the need to account for polygon size in some ways.
There is thus a need to account for the specificity of sample polygons where the findings of the standard
point-based accuracy assessment methods are not applicable.

Recently, Radoux et al. (2011) proposed a predictor of the overall accuracy in an object-based image
classification framework, showing that the use of sample polygons could help to increase the efficiency
of the quality assessment of GEOBIA products compared with point-based sampling under some strong
hypotheses. In the same framework and by working along the same line, that is a statistical prediction
approach as defined by Valliant et al. (2000), the aim of this paper is to derive efficient predictors of the
three primary thematic accuracy indices. These accuracy indices are thus treated as the realized values of
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random variables. More specifically, the predictors for these three indices must remain efficient when the
count-based accuracy is correlated with the area of the polygon.

The primary thematic map accuracy indices depict the proportion of the area of a particular map that
is correctly classified at a given moment in time. The value of these indices may vary from one map to
another due to the classification methodology and the landscape structure, hence the use of a predictor to
target these map-dependent quantities. The thematic map accuracy, that is the focus of this study, must be
distinguished from the proportion of correctly classified polygons, which is called classification accuracy in
this paper.

This manuscript starts with a detailed analysis of the relationship between the area of the polygons and
the classification accuracy for a GEOBIA case study (Section 2). It then describes the theoretical framework
to derive the predictors of the primary map accuracy indices from spatial units of variable size (Section 3).
A pragmatic implementation of the proposed predictors is then tested with synthetic maps simulated based
on the parameters extracted from the case study (Section 4). Section 5 includes a quantitative comparison
of the proposed framework with other methods. The advantages and drawbacks of the proposed method are
finally discussed in Section 6.

2. Case study analysis

The analysis of a GEOBIAmodel presented in this section illustrates the various relationships between the
actual and the predicted class of a polygon with respect to its area. The case study is a land use classification
of a Quickbird image in the South of France. The classification was performed using a multiresolution
segmentation algorithm and a combination of machine learning and statistical classifiers. The scale factor
used for the segmentation in the eCognition software was low (over-segmentation) in order to minimize the
number of under-segmented polygons, but a multiscale aggregation of the image-segments was used to build
more meaningful land use classes.

This map is a single realization of an underlying model (i.e. it is a specific GEographic Object-Based
Image Analysis on a single image). However, the analysis of the comprehensive validation results allows us
to observe the driving functionals related to polygon area. The focus of this preliminary analysis is thus on
the classification accuracy.

The resulting map was validated by photo-interpretation combined with the Corine Land Cover base
map and a non-exhaustive reference database from field inventory for the degraded forests. The labelling
and the response design used the same set of rules. These rules are non ambiguous at the spatial scale of
the polygons, i.e.:

• A polygon belongs to the ”urban” class if it contains more than 25 percent of buildings or infrastruc-
tures. The low percentage of man made structures set to consider a polygon as urban is due to the
importance of suburbs in the mapped region. These suburbs are indeed composed of villas with large
gardens.

• The ”agriculture” class is defined by more than 25 percent of annual or perennial crops and less than
25 percent buildings or infrastructures. Annual crop parcel may have a bare soil land cover, depending
on the vegetation cycle. Perennial crops include groves and vineyards.

• The ”natural vegetation” class includes the polygons covered with more than 75 percent natural
ligneous vegetation, including trees and shrubs.

• The ”degraded natural vegetation” class is characterized by more than 75 percent of natural vegetation
or bare soil cover, but less than 75 percent of ligneous vegetation. This class includes fire-breaks and
post-fire vegetation regrowth.

• The ”water” polygons must include at least 75 percent of water (fresh or salty).

4



Cavalaire-Sur-Mer

La Mole

Cogolin

Les Marines de Cogolin

780000 785000 790000
4
7

9
0

0
0

0
4
7

9
5

0
0

0

0 5 102.5 Kilometers

ZOOMS 6 X

Projection UTM 31 N, datum WGS 84

Figure 2: Subset of the study area illustrating the diversity of sizes in the segmented image.

A qualitative analysis of the results of the segmentation highlights a diversity of polygon sizes due to
the landscape structure and the segmentation algorithm (figure 2). For instance, there was a set of small
polygons in the urban areas and very large ones in the sea. On one hand, this is caused by the use of a
spectral heterogeneity threshold in the segmentation algorithm. In the study area, cities are indeed composed
of buildings, roads, swimming pools and vegetation that can be individually identified at the spatial resolution
of the Quickbird image and hence contribute to a large variance at the image-segment level. On the other
hand, annual crop fields and water bodies have a similar homogeneity, but their extent in the landscape is
very different. The sea consists in a single large surface while the crop fields are relatively small.

To sum up, the size distribution is driven by the landscape structure and the spectral homogeneity of
the spatial regions, which are both linked with the land use class. The corollary is that the probability of
occurrence for each class depends on the polygon’s area (figure 3). Independently of the class, the majority
of the polygons belongs to the same category of size, but the largest polygons are up to 10 000 times larger
than the smallest ones. The size distribution is therefore characterized by a large coefficient of variation
(1.96) that reflects a strong asymmetry in the corresponding distribution.

Radoux & Defourny (2008) observed an improvement of the inter-class separability when the average
polygon area increases. Those improvements were explained by the fact that the intra-class variance is
reduced by the use of the mean spectral value of each polygon. The reduction of the confidence interval
on the estimated spectral mean can also be observed at the level of individual polygons. The classification
accuracy based on maximum likelihood classifiers is therefore expected to be larger when the inter-class
separability increases. On the other hand, large polygons are more likely to be under-segmented and hence
less representative of their class. Those polygons could in turn be misclassified because their mean spectral
values do not reflect their actual content.

5



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image−segment area (sq m)

S
ta

ck
ed

 a
ct

ua
l c

la
ss

 p
ro

ba
bi

lit
ie

s

 

 

Class 1
Class 2
Class 3
Class 4
Class 5

Figure 3: Probability of each actual class with respect to the area of the polygon.

Table 1: Count-based user and overall accuracies in percent, depending on the area of the polygons. The percentages of each
class in terms of number and of area of the polygons is also provided.

Quartile 1 2 3 4 overall count % area %
Urban 86 70 67 90 77 30 13

Agriculture 47 64 65 72 62 21 14
Forest 50 69 77 87 82 25 49
Water 90 100 100 100 99 2 9

Degraded forest 42 49 50 64 50 22 15

The analysis of the accuracy assessment results presented in Table 1 shows that the per-class classification
accuracy (estimated based on 500 photo-interpreted polygons per class) tends to increase when the polygon
size increases. However, the relationship between the polygon area and the per-class classification accuracy
is not always monotonic. Water, for instance, is only misclassified for small polygons (shallow water) and
degraded forests are on average better classified when the polygon area increases. On the other hand, the
urban class is not necessarily better classified with larger areas. This is caused by the large heterogeneity
of medium to large urban polygons, where the proportion of impervious surface can range from 30 to 80
percent, while small urban objects are generally homogeneous. As a remark, similar trends in the per class
and per size classification accuracy were also observed (but not shown here) with other classifiers (artificial
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neural network, decision trees and k-nearest neighbours). This suggests that the effect of the polygon’s area
on the classification accuracy should always be considered in GEOBIA accuracy assessment.

3. Theoretical framework

3.1. Notations and formalization

Let us consider a set of N disjoint polygons that compose the totality of a map, where Si (with i =
1, . . . ,N) is the size (area) of the ith polygon. We will assume that each polygon belongs to a single actual
class j among a set of k exhaustive and mutually exclusive possible classes. In practice, this requires a
classification system that correctly handles geometric differences and polygon heterogeneity. In an object-
based classification context, each polygon will also be classified into one and only one of these k classes. Let
us denote Ω = {1, . . . , k} as the set of these classes. As each polygon belongs to a single class, let us define ai
as the actual class associated with the ith polygon. In addition, αij is defined as the membership of the ith

polygon to the class j. As we assumed that the membership is unambiguously defined, αij is equal to 1 when
the actual class ai of the ith polygon belongs to the set j and is equal to 0 otherwise. This is formalized by

αij ≡ δ(ai=j) = {1 if ai = j
0 if ai ≠ j ∀i = 1, . . . ,N (1)

where δ(.) is the Kronecker delta operator. Similarly, according to the results of the classification, we can
define bi as the predicted class of this polygon, as well as the corresponding variable βij ∈ {0,1}, with

βij ≡ δ(bi=j) = {1 if bi = j
0 if bi ≠ j ∀i = 1, . . . ,N (2)

i.e. βij is equal to 1 when the predicted class bi of the ith polygon belongs to class j and is equal to 0

otherwise. Clearly, the ith polygon is correctly classified if and only if ai = bi, that is ∑k
j=1 αijβij = 1.

Using the previous notations, the producer’s, user’s and overall accuracies, as defined by Congalton &
Green (2009), can be expressed and predicted in the same consistent framework. Indeed, as the set of all
classes consists in a partition of Ω, then

πΩ = ∑
N
i=1∑k

j=1 αijβijSi

∑N
i=1 Si

(3)

is the overall accuracy, that is the proportion of the map area that is correctly classified. Similarly, the
producer’s accuracy (πp,j) and user’s accuracy (πu,j) for any arbitrarily chosen class j are written as

πp,j = ∑
N
i=1 αijβijSi

∑N
i=1 αijSi

πu,j = ∑
N
i=1 αijβijSi

∑N
i=1 βijSi

∀j ∈ Ω (4)

3.2. Prediction of the overall accuracy

The actual class ai needs to be determined, for a subset of the map and according to the response design,
in order to compute the accuracy indices. Therefore, let us consider an equal probability random sample
of n polygons (with n ≤ N) drawn without replacement from the set of N polygons in order to build the
reference dataset. Splitting accordingly summation over these polygons in the numerator leads now, e.g. for
the overall accuracy, to the expression

πΩ = ∑
n
i=1∑k

j=1 αijβijSi +∑N
i=n+1∑k

j=1 αijβijSi

∑N
i=1 Si

(5)

For any given map, all Si’s and βij are observable ∀i = 1, . . . ,N , but the αij ’s are only observable for the
sampled polygons (∀i = 1, . . . , n). In the proposed framework, αij is thus a random variable for non sampled
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polygon, hence the second term of the numerator needs to be estimated by replacing the unknown values
with their expectation.

π̂Ω = ∑
n
i=1∑k

j=1 αijβijSi +∑N
i=n+1∑k

j=1 Ê[αijβij]Si

∑N
i=1 Si

(6)

This problem was already addressed in Radoux et al. (2011) where the correct classification was defined
as Ci, i.e. a Bernouilli distributed random variable equal to 1 when the polygon was correctly classified and
to zero otherwise. A predictor for πΩ was then obtained by defining Ci = ∑k

j=1 αijβij and replacing it with

its expectation E[Ci] = ∑k
j=1 E[αijβij]. In this case, the predictor relied on the knowledge of the expected

value of Ci, where Ci was assumed to be identically distributed. Based on the sampled polygons, an estimate
of the expectation was given by Ê[Ci] = ∑n

i=1Ci/n = p̂, where the probability p was considered as constant.
However, as shown in Section 2, some dependence is expected to occur with respect to the class and to

the size, so that the previous result is suboptimal. Various models may indeed be considered related to per
class accuracy and the possible relationship between polygon size and accuracy. Furthermore, for any given
classified polygon i, one and only one of the βij ’s is non null and equal to 1 (when j = bi). We thus have in
particular

k∑
j=1

E[αijβij] = k∑
j=1

E[αij ∣bi = j]βij = E[αij ∣bi = j] ∶= pbi ∀i with bi ∈ Ω (7)

where the conditional probability of belonging to each class is not a priori a constant value. Accordingly,
the overall accuracy predictor is now given by

π̂Ω = ∑
n
i=1 Si∑k

j=1 αijβij +∑N
i=n+1 p̂biSi

∑N
i=1 Si

(8)

where the class to pick up for the ith polygon in eq. (8) is the attributed class bi for this polygon during
the classification. The theoretical values for p1, . . . , pk are a priori unknown, but they can be estimated from
the set of sampled polygons as the observed relative frequencies of the various classes conditionally on the
label assigned by the classification process.

p̂j = n∑
i=1

αijβij/
n∑
i=1

βij ∀j ∈ Ω (9)

Clearly, as predicted and actual classes are supposed to show a good correspondence rate if the classifica-
tion process provides meaningful results, doing so is expected to reduce the uncertainty about the knowledge
of the actual class (the better the classification, the higher the probability of belonging to the same class,
where a probability value of 1 would be equivalent to the situation where the actual class is certain).

These first results need to be extended by working along two lines. The first one is the extension of the
methodology in order to obtain distinct predictors for the producer’s and the user’s accuracy, in addition
to the overall accuracy. The second one will focus on alleviating some of the assumptions that were set so
far for the pj ’s, because the case study highlighted that the pj values depend on the size of the polygons.
These aspects will be treated in separate sections for the sake of clarity.

3.3. Prediction of user’s accuracy

For each class j, the user’s accuracy is defined as the ratio between the correctly classified area for
the class and the total area classified as belonging to this class (eq. 4). Similarly to eq. 5, the summation
of the numerator can be split among the set of sampled polygons (i = 1, . . . , n) and the remaining ones
(i = n+1, . . . ,N). After replacing the unknown value by their expectation and using again E[αij ∣bi = j] ≡ pj ,
the predictor is given by

8



π̂u,j = ∑
n
i=1 αijβijSi +∑N

i=n+1 p̂jβijSi

∑N
i=1 βijSi

∀j ∈ Ω (10)

As already stated, the predicted classes (i.e., the bi’s) are known for all polygons, and so are the βij ’s that
do not need to be estimated. Basically, the prediction problem is thus solely relying on the estimation of the
various pj ’s.

3.4. Prediction of the producer’s accuracy

For each class j, the producer’s accuracy is defined as the ratio between the correctly classified area for
this class and the total area that actually belongs to this class (eq. 4). Using the previous notations and
splitting the summation as before, the producer’s accuracy for class j is then given by

πp,j = ∑
n
i=1 αijβijSi +∑N

i=n+1 αijβijSi

∑n
i=1 αijSi +∑N

i=n+1 αijSi

(11)

Replacing the unknown αij ’s with their corresponding expectations in order to obtain a predictor of πp,j

gives the result

π̂p,j = ∑
n
i=1 αijβijSi +∑N

i=n+1 p̂jβijSi

∑n
i=1 αijSi +∑N

i=n+1 Ê[αijSi] (12)

In opposition to the predictors for the overall and the user’s accuracy, one part of the denominator
also needs to be estimated. Obviously, the actual class is indeed unknown for non sampled polygons. Like
for pj , E[αij] could be estimated as a frequency. This estimation can be performed, for each actual class
j, conditionally on each predicted class j′ in order to take advantage of the knowledge of βij′ for all non
sampled polygons.

Ê[αijSi] = k∑
j′=1

Ê[αij ∣bi = j′]βij′Si (13)

3.5. Functional dependence on polygons’ area

As is, the values for the various E[αij ∣bi = j′]’s could be directly estimated from a simple confusion matrix
where predicted classes are crossed with actual classes based on the set of sampled polygons. However, it
was shown in Table 1 that the classification accuracy could also depend on the area of the polygons. In
order to account for the size effect, let us assume that, for each class j, there exists a marginal probability
distribution function (pdf ) of polygon area fj(s). Using Bayes theorem, it then comes that

E[αij ∣bi = j′, Si = s] = fj(s)E[αij ∣bi = j′]
f(s) ∀j ∈ Ω (14)

where f(s) = ∑k
j=1 fj(s)E[αij ∣bi = j′] is the marginal pdf for the area (i.e. irrespective of the class).

In practice, the fj(s)’s can be estimated from the sample (e.g., using a kernel density estimator approach
or a logistic regression) for each class conditionally on the known labels. These results, substituted into eqs. 8,
10 and 12, provide improved predictors of the accuracy indices. Indeed, knowing the polygon’s area provides
additional information about the true class when the area distributions differ among classes, as it was shown
to be the case in figure 3.
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4. Empirical quality assessment method

The characteristics of the predictors are derived in this study using a Monte Carlo procedure that makes
use of synthetic maps and simulated samples. The overall process is represented in figure 4. For each synthetic
map, the measured accuracy indices are compared with their predicted values based on a set of samples. The
statistical efficiency of the predictor is then evaluated using the absolute root mean square error (RMSE)
on the accuracy values. This unique value encompasses the bias and the variance of the predictors.

The two goals of this empirical quality assessment are to verify (i) the accuracy (being centred on the
target parameter to be estimated) and (ii) the efficiency (achieving a high precision with a limited number
of sampling units) of the proposed predictors as defined in Stehman (2001). The overall, the user’s and the
producer’s accuracies are computed within this controlled experiment.

Validated object-based classification results 

Distribution of the polygons area

Probability of each actual class
 with respect to the area

Probability of each predicted class
 with respect to the actual class and the area

Assign actual class
to each polygon

Assign area
to each polygon

Synthetic map of 
N polygons

Assign predicted class
to each polygon

Repeat j times Measured accuracy indices

Probabilistic list-based sample
of n polygons

Predicted accuracy indicesRepeat k times

Figure 4: Schema of the synthetic case study. Values for j and k are set to 200 in this study.
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4.1. Synthetic maps

The Monte Carlo procedure is based on the simulation of synthetic maps having characteristics derived
from the case study (Figure 3 and table 1). This method is similar to the procedure proposed by Radoux
et al. (2011), where a binary value for correct/incorrect classification was drawn for each polygon. In the
present study, the values of the predicted class and of the actual class are drawn separately instead of the
correct/incorrect classification result. This was necessary in order (i) to incorporate the information about
βij in equations 8, 10 and 12, and (ii) to compute and predict the user’s and producer’s accuracies.

The total number of polygons per map, N , is fixed to 5 000. Though specifying the number of polygons
lead to maps with slightly different total areas, the absolute area of the maps does not affect the quality
assessment results. It can indeed be shown that the value of the primary accuracy indices is not sensitive to
a rescaling of the map.

The area, the actual class and the predicted class are assigned for each polygon in three successive steps
:

1. The area of the polygon is randomly drawn from the cumulated probability distribution function of the
polygons area distribution.

2. The area of the polygon is used to derive the probability of each actual class. The actual class can then
be randomly selected.

3. Knowing the area and the actual class, the functions fj(s) are selected to find the probability of each
predicted class. Like in the previous steps, the predicted class is randomly chosen according to this
distribution. This step mimics the classification process.

Two distinct sets of 200 maps are used in the quantitative assessment of the predictors of accuracy indices.
These sets differ by the type of size dependence used to produce the synthetic maps. The size of each polygon
is assigned using the same rules for each set. However, the dependence between the classification accuracy
and polygon area varies:

• The first set, called Independent/Independent (II), is the most simple. Both actual and predicted
classes are assigned independently of the polygon size. The classification accuracy is however different
for each class because class-specific p̂j ’s are used. This set of maps is used for the fair comparison with
Radoux et al. (2011), which assumed the independence between the size and the classes.

• For the second type of sets, called Dependent/Dependent (DD), the actual classes are first selected
based on area-related probabilities (figure 3). Different pj ’s are then set depending on the land use/land
cover classes and the area-based classes. The area-based classes consist in deciles using interpolated
values based on table 1. By design, all the previously identified effects of the size on the classification
accuracy are thus simulated. These synthetic maps are used to test the predictors under the most
realistic simulations of GEOBIA results according to the case study analysis.

Figure 5 illustrates the variability of the second set of synthetic maps. The average coefficient of variation
of the polygon size is 1.8 and the average overall accuracy is 0.817. This map accuracy is markedly different
from the average classification accuracy (0.697). The different simulations are well distributed around these
two values with a range of 0.2 for the coefficient of variation and 0.03 for the overall accuracy.

4.2. Analysis

As shown in section 3, the proposed predictor relies on the estimation of the pj values. Statistical analysis
provides several tools to estimate such functional, including parametric and non parametric approaches. In
this study, the underlying model is known : the classification accuracy is either constant for each class or
related to the size categories defined by deciles. Predictors with area-independent p̂j ’s and with pj ’s estimated
with four (i.e. using quartiles) size categories were thoroughly tested. These class-dependent models are
referred to as CDQ4 and CD, respectively. In addition, CDQ-like predictors with logistic regression or with
3 and 10 quantiles have been tested in order to give a hint about the robustness of the method with respect
to matching between the selected internal model and the actual underlying model.
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Figure 5: Diversity of the synthetic maps with respect to their overall accuracy and coefficient of variation.

In addition to the method proposed in section 3, an area-weighted (AW) predictor and a class-independent
(CI) predictor (Radoux et al., 2011) are also tested. The equations implemented for the comparative study
are listed in table 2. An updated version of the class-independent predictor, using quartiles to estimate the
values of p and referred to as CIQ, is also tested for the sake of comparison with CDQ.

Table 2: Alternative accuracy assessment predictors using sample polygons, namely Area-Weighted (AW)(e.g. in Desclée et al.
(2006)) and class-independent (CI) (Radoux et al., 2011). n is the number of selected sample polygons, Ci is equal to 1 or 0 if
the sample polygon is correctly classified or not, respectively, and Si is the area of the polygon.

Predictor Equation

AW ∑n
i=1 SiCi/∑n

i=1 Si

CI (∑n
i=1CiSi + 1

n ∑n
i=1Ci∑N

i=n+1 Si) /∑N
i=1 Si

In the case of a quantile-based estimation of the classification accuracy for the prediction of the overall
accuracy, E[αij ∣bi = j′, Si = s] reverts to E[αij ∣bi = j′, Si ∈ q] where q is the area class defined by the
quantiles. Equation 14 then simplifies to

Ê[αij ∣bi = j′, Si ∈ q] = ∑
nq

m=1 αmj′βmj′

∑nq

m=1 βmj′
∀j′, q (15)

where m is the index of the polygon belonging to the area class q and nq is the number of sampled
polygons in this area class. Equation 15 is then substituted in equations 8, 12 and 10 for the prediction of
the accuracy indices. For instance, equation 8 becomes equation 16 when quartiles are used to define the
boundaries of the area classes.

π̂Ω =
∑k

j=1∑n
i=1 αijβijSi +∑k

j=1∑4

q=1 [∑
nq

m=1
αmjβmj

∑
nq

m=1
βmj

∑Nq

m=nq+1
βmjSm]

∑N
i=1 Si

(16)
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4.3. Sampling design

Equal probability sampling is used in all cases. Inside each area-based class, nq polygons are drawn
without replacement, where nq is the total sample size divided by the the number of size categories. All
polygons are thus selected with the same probability and each area-based class is equally represented.

In this study, the sampling is repeated 200 times per synthetic map. Because our class statistics are
based on the case study, there are 5 land use classes. Obviously, this method may need to be adjusted in
case of larger number of classes in order to avoid empty bins, but this is outside the scope of this study. For
the sake of simplicity, empty bins are here filled with the average classification accuracies per class, which
may introduce a small bias.

5. Results

The first set of maps shows the performances of the different predictors under the scope of validity
of all the compared predictors (figure 6, top). On one hand, it is observed that the larger the amount of
class-related information that is used for a predictor, the better its efficiency : the AW predictor is the
least efficient, followed with the CI predictor and eventually with the CD predictor. On the other hand, the
estimation of the parameters of the area-related relationships increased the variance of the predictors, also
because of the different sampling design. As a results, the two size-independent predictors had a smaller
standard deviation than the corresponding predictor with quartile-based size effect modelling. However, this
difference is relatively small and overfitting the size effect did not introduce a bias in the quantile-based
predictors. Overall, CDQ still remains ≈ 20% more efficient than AW in the range of 500 to 1 000 sample
polygons.

If there is a size effect on the classification accuracy, as for the second set of synthetic maps (DD), the
area-independent predictors (CI and CD) need to be discarded due to the contribution of large absolute biases
(> 10%) to their RMSE (fig 6 bottom). The predicted map accuracy indeed tends toward the classification
accuracy when i) the size effect is neglected and ii) n << N . As shown in figure 7 with 200 maps and samples
of 600 polygons, the CDQ predictor still slightly underestimates the overall accuracy by 0.6 percent on
average. The absolute value of this bias decreases linearly with the number of samples until it reaches 0 at
n = N ; it increases in the other direction (−0.8 with 200 samples for DD and CQ4). On the other hand, the
AW predictor is statistically unbiased for any sample size. But, despite AW being more accurate, the CDQ
predictor is in this case ≈ 30% more efficient than the AW predictor because its lower variance compensates
its (small) bias.

In practice, map producers aim at achieving a given level of uncertainty on their accuracy indices with
as few sampling units as possible in order to reduce the validation costs. When we compare the number of
polygons needed to achieve the same RMSE, it appears that approximately twice as many sample polygons
are needed for AW compared with CDQ with both sets of maps. In particular, the RMSE achieved with 500
sample polygons using CDQ would need 1000 sample polygons when using the AW predictor for the second
set of maps, and 935 sample polygons with the first set of maps.

The RMSE of the predictors of the user’s and the producer’s accuracies are markedly larger than for
the overall accuracy (Table 3). This is obviously due to the dispersion of the sample polygons between
the different classes; the actual classification accuracies (which come from table 1) also contribute to those
differences. Most of the time, it can be seen that the CDQ predictor of the user’s accuracy is more efficient
than the AW predictor thanks to the additional information provided by the knowledge of the class label.
However, a poor relationship between αij and βij reduces the available knowledge useful for our predictor.

For the case of the producer’s accuracy, the proposed method does not benefit from the additional
information that is knowing the predicted values for all polygons. The results of the producer’s accuracy
CDQ predictor are however better than those of user’s accuracy predictor in the II set, and systematically
outperforms the AW predictor in this case. This is no longer the case when there is an effect of the area of
the polygons on the classification accuracy, due to the uncertainty when fitting the fj(s)’s. In this case, the
AW predictor is most of the time (4 out of 5 classes) better than the CDQ predictor.

Table 5 shows the main statistics of the CDQ-like predictors when different models are used internally to
estimate the pj ’s. These models differ by the number of quantiles used. The best results are achieved using
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Figure 6: Comparison of the absolute RMSE for the overall accuracy prediction (N = 5000) with sample size ranging from 100
to 5000 based on AW(Area-weighted), CD (class-dependent), CDQ (CD with area quartiles), CI (class-independent) and CIQ
(CI with area quartiles) predictors.
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Figure 7: Histogram of the bias of the overall accuracy for the second set of synthetic maps (DD) using the area-weighted (grey
faces) and the class-dependent (transparent faces) predictors.

Table 3: RMSE and bias (both in %) on the user’s accuracy for 200(left) and 600(right) sample polygons in maps of 5000
polygons and 5 classes. The synthetic maps come from the DD set.

RMSE Bias
Class AW CDQ AW CDQ
1 7.5 6.9 0.2 0.3
2 7.9 8.2 -0.1 -0.3
3 4.0 5.5 -0.3 -3.3
4 11.3 10.7 -1.7 0.9
5 10.4 11.7 0.7 5.4

RMSE Bias
Class AW CDQ AW CDQ
1 4.2 3.9 0.0 0.3
2 4.3 4.3 -0.1 -0.3
3 2.2 3.9 -0.3 -3.0
4 0.7 0.5 -0.1 -0.0
5 5.6 7.3 0.1 4.8

Table 4: RMSE and bias (both in %) on the producer’s accuracy for 200(left) and 600(right) sample polygons in maps of 5000
polygons and 5 classes. The synthetic maps come from the DD set.

RMSE Bias
Class AW CDQ AW CDQ
1 7.3 7.4 0.2 -1.5
2 8.6 10.5 -0.2 -5.4
3 5.7 7.0 -0.1 -4.0
4 0.3 0.1 -0.0 0.0
5 9.2 10.1 -0.0 3.5

RMSE Bias
Class AW CDQ AW CDQ
1 4.0 4.4 0.0 -1.9
2 4.7 7.5 -0.1 -5.7
3 3.2 5.0 -0.0 -3.8
4 0.0 0.0 -0.0 -0.0
5 5.0 6.3 -0.1 3.8
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deciles as it matches the model used to create the synthetic maps. CDQ however remains more efficient than
AW with as few as 4 quantiles, while it becomes noticeably affected by its bias with 3 quantiles. On the
other hand, CDQ10 remained as efficient with a set of synthetic maps based on quartiles, so that overfitting
does not seem to be an issue. In addition, a logit model has been tested. The results of this model are
comparable with the decile-based model. However, fitting the logit model requires a minimum number of
points per class. Failure to fit the logit model rarely (0.3%) happens with n = 600, but it is frequent (62%)
when n = 200.
Table 5: Comparison of the predictors of the overall accuracy with N = 5000 and n = 600 under the DD4 synthetic map dataset.

Model Bias Standard deviation RMSE(in %)
CD 3 quantiles -1.6 1.6 2.3
CD 4 quantiles -0.6 1.5 1.7
CD 10 quantiles -0.0 1.2 1.2

CD Logit 0.0 1.2 1.2
AW -0.0 2.2 2.2

6. Discussion

This paper provides a methodological framework for the thematic accuracy assessment of a map based
on sample polygons. The results show that the relationship between the classification accuracy and the area
of the polygons has to be taken into account in order to efficiently predict the primary thematic accuracy
indices. Besides the statistical concerns that are due to their variable area, the initial choice of polygons
as sampling units should also be discussed with regard to the delineation errors. These two aspects are
presented in separate subsections.

6.1. Efficiency and area dependence

Evidence of the relationship between the polygon’s area and its classification accuracy were quantitatively
highlighted in a case study. Overall, there is a trend to better classify the largest polygons. However, this is
not true for all classes. While it seems plausible to encounter some relationships between the classification
accuracy and the size of polygons with most GEOBIA results, the type of these relationships could not be
generalised based on our results.

Accounting for the size of the polygons is necessary for an exact prediction of the thematic map accuracy
indices. The proposed theoretical framework allows to account for any fj(s) model of the various size effects,
so that it is in theory possible to find a model that fits reality. However, the variety of size effects and the
relatively small sample at hand make the estimation of the fj(s) parameters challenging. In practice, the
simple fj(s) model based on quantiles emerged as a safe and efficient choice because it does not make
any assumption on the shape of the distribution and reduces the risks of empty bins, compared with more
elaborate quantile-based models. On a case-by-case basis, the selection of alternative parametric (e.g. logit)
or nonparametric (e.g. kernel smoothing) models could improve the efficiency of the proposed predictor.
For instance, further evidence of mostly monotonic relationships between the size and the classification
accuracy would be in favour of a first degree logit model. The analysis of a large number of GEOBIA
results will therefore provide better insight on the best eligible models. However, the results have shown
that different model could yield equivalent results in terms of bias and standard deviation. This does not
prove the robustness of our method in general and under any possible circumstances, but it is an indication
that elaborate selection of models could be of minor benefit.

For an optimal use of the proposed method, the shape of the fj(s) functions should be statistically
analysed. For instance, the number of bins can be selected using state-of-the-art statistical tools (see e.g. He
& Meeden (1997)). On the other hand, some testing can be conducted in order to check the hypothesis that
the classification accuracies are statistically significantly different among classes of area and land cover/land
use. Krishnamoorthy et al. (2004) developed an exact method for testing the equality of several binomial
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proportions to a specified standard. This method can be applied to the classification accuracy values with
the overall classification accuracy per class as standard value. In case of equality (which was not the case in
table 1), fj(s) would be constant. Similarly, the distributions of the classification accuracy with respect to
the size can be compared 2 by 2. In case of equality, two classes can then be grouped in order to consolidate
the estimation.

In any case, the AW predictor is a robust alternative that should not be discarded because it can be
more efficient for user’s and producer’s accuracy, especially when the estimation of fj(s) is subject to large
uncertainties (e.g. for small sample size and classification accuracy close to 50%). A better handling of the
empty bins through elaborate model or ad hoc sampling designs are likely to improve the efficiency of CDQ
for the class-based estimates. On the other hand, AW estimation is less efficient for the overall accuracy
alone, despite the fact that it is unbiased. At this point, the results remain inconclusive but suggest using
CDQ for overall and user’s accuracies, and AW for the producer’s accuracies. This can be done based on
the same sample.

When the sampling unit has a variable size, the classification accuracy and the thematic accuracy of
the map take different values (Radoux et al., 2011). While the focus of this paper was the prediction of
the thematic accuracy of the map, the classification accuracy provides meaningful information about the
classifier performance. This information is therefore useful to compare different classification algorithms
and could be derived from the same sample than the map accuracy indices. Furthermore, the relationship
between the polygon area and classification accuracy could also be used to create confidence maps.

The analytical formula of the predictors variance is complex because of the presence of estimated value
in the numerator and in the denominator. Furthermore, an exact solution is not available without some
assumptions on the shape of the fj(s). To date, there is indeed too few information about classification ac-
curacy functions based on real case studies in order to generalize the use of a particular model. A preliminary
sampling analysis is therefore needed on a case by case basis, which would markedly increase the costs of the
validation process. However, the variance of the CI predictor (equation 13 in Radoux et al. (2011)) can be
used for an approximation of the standard deviation to make sure that the sample size is large enough for the
requirements of the validation plan. This theoretical variance primarily depends on p(1− p)/n and (N −n),
but it also increases when the coefficient of variation of the polygons’ area is large (which does not seem to
be the case with CDQ). Anyway, the estimation of the standard deviation should be further developed in
order to optimise the number of sample polygons in the validation plan or to derive confidence interval on
the predicted values. In the meantime, it is possible to estimate the confidence interval a posteriori based
on the sample alone using, e.g., bootstrap (Efron & Tibshirani, 1986).

Empirical results in our study showed that the RMSE of the CDQ predictor was smaller than for the
CI predictor or for a standard point-based accuracy assessment, despite the large coefficient of variation
(cv = 1.96) of the realistic maps. For instance, the RMSE achieved with 500 sample polygons would have
needed 584 sample points. In the field, however, the validation effort could be larger for polygons than
for points, depending on the response design. A case by case cost analysis including both travel cost and
validation cost is therefore necessary to compare the cost effectiveness of the two approaches.

6.2. Effect of delineation errors on polygon-based validation

GEOBIA usually assigns a unique label to each polygon based on crisp classifiers. The proposed method
addressed the case of a response design that fits to the categorical legend. However, object-based classi-
fication relies on the delineation of polygons (from ancillary data and/or image segmentation) that could
include several land cover or land use classes (e.g. due to under-segmentation). This issue exists with point-
based validation, but at a different scale. The state-of-the-art solutions, which are also applicable to sample
polygons, could be divided in two categories depending on the type of legend.

• If the legend is composed of pure end members, a ”hard” response design can be derived using a set of
decision rules including absolute or relative thresholds. For instance, Desclée et al. (2006) considered
a polygon as changed if the area of change was larger than a minimum mapping unit (in that case,
0.5 ha) and Zhan et al. (2005) considered that an object is thematically correct if its match with a
reference object is greater than 50%. However, Strahler et al. (2006) suggest that ”hard” validation
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should be replaced with ”soft” validation when the percentage of mixed pixels is ”too large”. The
”hard” validation indeed implies a trade-off between omission and commission errors depending on
the selected thresholds. For dichotomic classification, the Pareto boundary can be used to analyse this
trade-off (Boschetti et al., 2004) and soft validation was shown to outperform the ”hard” validation
protocol (Pepe et al., 2010). For a ”soft” validation with multiple classes, fuzzy set theory is generally
used to translate the goodness-of-fit between the reference and the classification results in case of
mixed pixels (Laba et al., 2002; Muller et al., 1998; Stehman et al., 2007) or classes that are not
mutually exclusive (Woodcock & Gopal, 2000). In the case of GEOBIA, soft validation as such has not
been quantitatively addressed, but specific indices have been proposed. For instance, the segmentation
accuracy (Liu & Xia, 2010) provides the upper bound of the overall accuracy when all polygons are
correctly classified according to the majority class. The theoretical framework proposed in our study
could also be adjusted to ”soft” validation by defining α ∈ [0,1] instead of α ∈ {0,1}. However, a
low segmentation accuracy should warn the end user that GEOBIA was not appropriate for the data
model. In such a case, the use of pixel-based validation should be preferred instead of complex soft
validation with sample polygons.

• On the other hand, it is always possible to build a legend composed of a set of non overlapping
classes, and the semantic content of a polygon can be higher than a pixel. For instance, the LCCS
(UN Land Cover Classification System or Land Cover Meta Language (Di Gregorio & Jansen, 2000;
Di Gregorio, 2005)) uses basic classifiers and their spatial relationships for standardized and consistent
class definitions (Bajracharya et al., 2010). There is now a general agreement that LCCS provides a
valuable common land cover language for building land cover classes (Herold et al., 2008). The use
of LCCS combined with classifier-based response design is thus a key for the thematic validation of
GEOBIA results as it allows the map producers to distinguish thematic mixed classes and spatial
mixed classes (see Di Gregorio (2005)). The thematic precision and the formalization of the legend are
then additional indices of the map quality. A high thematic accuracy with a poor thematic precision
may indeed not fit the purpose of the map.

The geometric quality of the product is another important aspect of the map validation, which can inter-
act with the thematic quality assessment, especially in fragmented landscapes (Smith et al., 2003). Therefore,
Couturier et al. (2009) proposed a fuzzy framework to handle thematic and positional accuracies together.
However, these approaches make more difficult the comparison between maps because the error sources are
not isolated. In our paper, we focused on the thematic map accuracy in order to provide tools for the sta-
tistical comparison of different classification results. Geolocation quality is therefore externalised, assuming
that it can be evaluated by other means and considering that geolocation errors have less impact on the
thematic classification results with polygons than with smaller sampling units (Stehman & Wickham, 2011;
Strahler et al., 2006). In any case, assessing the geometric quality requires additional efforts. For instance,
Schopfer et al. (2008) used manually delineated reference polygon to derive topological and geometric infor-
mation about image-objects, which is summarised in Object Fate Analysis matrix (Hernando et al., 2012),
while Radoux & Defourny (2007) assessed the precision and the accuracy of boundary delineation based on
regularly distributed points along polygon boundaries.

7. Conclusion

There is no universal best choice of the sampling unit for the accuracy assessment of a map, but polygons
should prevail for GEOBIA results based on a sound legend composed of non overlapping classes (e.g. LCCS-
based legend). In this case, information on the size distribution and the classification results can be used to
improve the efficiency of the prediction of the primary accuracy indices in a consistent framework.

Further work is necessary to extend the polygon-based validation framework to the high standards of
point-based validation. Specific GEOBIA issues include the need for i) sample-based estimation of topological
consistency and geolocation precision and ii) a better standardisation of polygon-based response designs. In
addition, the issues of i) deriving the analytical expression of the variance of the proposed predictors and ii)
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testing robustness of polygon-based validation with respect to different sampling designs should be further
investigated.
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