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ABSTRACT

Positioning an unknown location node can be performed either directly from
the signals received at/from the reference nodes, or by estimating some position-
related parameters in a first step, and then combining them in an optimal way
to get the desired position in a second step. In two-step positioning strategies,
different types of parameters can be considered such as the time of arrival (TOA)
and the angle of arrival (AOA). On the other hand, Impulse radio (IR) ultra
wideband (UWB) signals are characterized by their pulses shorter than 2 ns
(bandwidth larger than 500 MHz). Such signals represent an excellent candidate
for highly accurate positioning when the TOA technique is employed.

In this thesis we consider the problem of parameter estimation for positioning
using IR-UWB signals.

We treat the general setting of non-linear estimation, study the threshold
and ambiguity phenomena, propose some approximations of the statistics of the
maximum likelihood estimator (MLE), and derive some approximate upper and
lower bounds of the mean squared error (MSE). The obtained results are applied
in the context of TOA estimation using IR-UWB signals, and exploited in the
design of the pulses that achieve the lowest attainable MSE.

We deal with TOA estimation in multiuser time-hopping IR-UWB systems.
We introduce a new receiver that we call “delaying-and-multiplying” receiver,
and propose a new estimator based on that receiver and named it “maximum
delaying-and-multiplying estimator”. We compute the asymptotic, local and
global performances of the proposed estimator and compare it with some ex-
isting benchmark estimators. We study the potential of the proposed estimator
in the presence of deterministic and random multiuser interference. We also pro-
pose a family of TOA estimators based on the discrete Fourier transform of the
received signal for both AWGN and multipath channels.

We derive the Cramer-Rao lower bounds (CRLB) for joint TOA and AOA
estimation, for AOA based positioning, and for hybrid TOA-AOA based posi-
tioning, in UWB multipath channels. We investigate the impact of the over-
lapping between the different multipath components (MPC) on the joint es-
timation of the MPCs gains and TOAs. We also derive the CRLBs for the
joint estimation of the TOA and the AOA in single-input-single-output (SISO),
single-input-multiple-output (SIMO), multiple-input-single-output (MISO) and
multiple-input-multiple-output (MIMO) systems.

We present a testbed that we realized at Université catholique de Louvain
(UCL) for ranging and positioning by using IR-UWB signals based and employ-

xxi



xxii ABSTRACT

ing the TOA technique. Two TOA estimators are considered: the MLE and a
threshold-based estimator. We have studied from measurement data the impact
of the multipath aspect of the channel and that of the shape of the transmitted
pulses on the positioning performances. The obtained results are compared with
the theoretical limits.
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CHAPTER 1

INTRODUCTION

T
he unlicensed use of the ultra wideband (UWB) spectrum has been allowed
in May 2002 by the U.S. federal communications commission (FCC) [1].

A signal is considered as UWB if its fractional bandwidth (i.e. bandwidth to
central frequency ratio) is larger than 0.2 or its bandwidth is greater than 500
MHz. For most UWB applications (see [1] for more details), emission is allowed
in the band between 3.1 and 10.6 GHz at a very low power spectral density (PSD)
level of -41.3 dBm/MHz. For example, the FCC emission masks for indoor UWB
systems are depicted in Fig. 1.1.

Five years later (in February 2007), the unlicensed use of the UWB spectrum
has been allowed in Europe by the commission of the European communities
(EC) at the same PSD level as by the FCC but in the frequency band between
6 and 8.5 GHz [2, 3].

1.1 UWB-BASED POSITIONING

Thanks to the ultra wideband and/or the ultra short pulses (shorter than 2 ns)
used in UWB signals, UWB technology can serve for highly accurate position-
ing by employing the time of arrival (TOA) technique [4]. From the different
advantages of UWB-based positioning it will suffice to mention [5–7]:
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Fig. 1.1.: FCC emission masks for indoor UWB systems.

• Accurate positioning.

• Secure communication.

• Penetrability through obstacles.

• Low cost, low power, and low size chips.

For a very nice introduction on positioning using UWB signals, we refer the
reader to [5].

1.1.1 UWB signals

UWB signals can be divided into two main categories [4, 6–8]:

• Multi-band UWB signals.

• Impulse radio (IR) UWB signals.

IR-UWB signals consist of trains of ultra short pulses modulated using pulse am-
plitude modulation (PAM) and/or pulse position modulation (PPM). Thanks to
their very low duty cycle, and because it is easier to estimate the TOA with
pulsed signals, IR-UWB signals are preferred in positioning applications. Ac-
cording to the method used to make the spectrum of the transmitted UWB
pulses falling in the target band (form 3.1 to 10.6 GHz in U.S.A and from 6 to
8.5 GHz in Europe), we distinguish:

• Pure IR-UWB signals.
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Fig. 1.2.: Pure IR-UWB; pg(t): rectangular pulse shaped by the circuit low-pass
filtering effects applied to an UWB transmit antenna; pt(t): transmitted pulse.

• Carrier-based IR-UWB signals.

With carrier-based IR-UWB, the generated baseband pulse (e.g, Gaussian pulse,
root raised cosine, etc.) is modulated by a carrier in order to move its spectrum to
the target band. However, with pure IR-UWB, the spectrum of the transmitted
pulse naturally falls in the band of interest. Thanks to the constant shape of their
pulses (i.e. there is no carrier phase uncertainty due to the mixing stage like with
carrier-based IR-UWB), pure IR-UWB signals can easily benefit from the super
accuracy on TOA estimation furnished by the passband frequency components.

A simple example for transmitting a pure IR-UWB pulse consists on generat-
ing a very short rectangular pulse then applying it directly to an UWB transmit
antenna. In fact, due to the low-pass filtering effects of the circuit, the rectan-
gular pulse becomes a Gaussian-like pulse, then once applied to the transmit
antenna the generated pulse will be shaped by the antenna frequency response.
Fig. 1.2 illustrates the Gaussian-like pulse pg(t) (generated by a digital circuit,
see more details in Chap. 6) at the input of an UWB transmit antenna, and the
corresponding transmitted pulse pt(t).

Both spread-spectrum and multiple-user-access can be ensured with IR-UWB
signals by using direct sequence (DS) and/or time-hopping (TH) codes. The
generic DS/TH-PAM/PPM-IR-UWB signal transmitted by the kth user can be
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Fig. 1.3.: Impulse response of an UWB channel: The MPCs arrive grouped in
consecutive clusters (∆−1: average cluster rate of arrival, δ−1: average MPC
rate of arrival within a cluster, Γ: cluster exponential decay constant, γ: MPC
exponential decay constant within a cluster).

written as:

s(k)(t) =

+∞
∑

i=−∞
a
(k),PAM
i

Nc−1
∑

n=0

c(k),DSn p(t− iTs − nTc − c(k),THn Th − a
(k),PPM
i ǫ)

(1.1)
where p(t) denotes the IR-UWB pulse, Ts and Tc = Ts/Nc the symbol and

chip periods respectively (Nc chips/pulses per symbol), a
(k),PAM
i and a

(k),PPM
i

the PAM and PPM modulating symbols, (c
(k),DS
n ∈ {+1,−1}) and (c

(k),TH
n ∈

{0, · · · , Nh − 1}) the DS and TH codes of length Nc, Th = Tc/Nh the time-hop
(Nh time-hops per chip), and ǫ the PPM time shift.

1.1.2 UWB channels

UWB channels are characterized by their multipath (MP) aspect. According to
the IEEE802.15.3a [7] and IEEE802.15.4a [9] UWB statistical channel models,
the MP components (MPC) of an UWB channel arrive grouped in consecutive
clusters.

Both the cluster TOA and the MPC TOA within a cluster follow Poisson
processes, and both the average power per cluster and the average power per
MPC within a cluster vanish with time according to an exponential decay. The
general allure of an UWB channel impulse response is illustrated in Fig. 1.3.

UWB statistical channel models are considered in more details in Chap. 5.
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1.1.3 Positioning systems

Depending on whether the unknown location nodes are locating themselves, po-
sitioning systems can be divided into three categories [10–12]:

• Network-based positioning (called “remote-positioning” in [5]) (e.g, cellular
networks): where the network (e.g, base stations) locates the unknown
location nodes (e.g, mobiles); the unknown location nodes are not involved
in the positioning process.

• Mobile-based positioning (called “self-positioning” in [5]) (e.g, global po-
sitioning system, GPS): where the unknown location nodes are locating
themselves.

• Mobile-assisted positioning: where the unknown location nodes cooperate
with the network to estimate their positions (e.g, cooperative localization
networks).

According to the strategy adopted to estimate the position from the received
signals, positioning techniques can be divided into two types [5, 13]:

• Direct positioning: where the position of the unknown location node is
directly estimated from the signals received at (or from) the different ref-
erence nodes.

• Two-step positioning: in the first step we estimate some parameters related
to the unknown position; then in the second step, called sometimes “data
fusion” [11], we combine in an optimal way the parameters gathered in
the first step in order to find the desired position. In geometric positioning
techniques [5], the position related parameters are the TOA, the angle of
arrival (AOA), the time difference of arrival (TDOA) and the received sig-
nal strength (RSS). Hybrid techniques where various types of information
are merged together (e.g, TOA with AOA) can also be employed.

We can also consider anchor-based and anchor-free positioning systems relying
on the availability of reference nodes in the network. More classes of positioning
techniques (e.g, geometric, statistical, and mapping/fingerprinting techniques)
counting on the type of the dependency between the useful observation and the
unknown position, and on the availability of statistical information about the
noise corrupting the useful observation are investigated in [5].

Both the TOA and the RSS determine the distance between the node to
locate and the reference nodes, so three reference nodes are sufficient to find
a two-dimensional (2D) position without ambiguity (the intersection of three
circles). Two nodes are sufficient using the AOA information (intersection of two
rays, see more details about the required number of reference nodes for 2D AOA-
based positioning in 5.1.8.2), whereas three nodes are not always sufficient using
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(a) (b)

Fig. 1.4.: (a) Uniform linear array (ULA) of M elements for AOA estimation (b)
Hyperbola corresponding to the TDOA between two reference nodes (Ref1 and
Ref2); when Unk is very far from Ref1 and Ref2, the TDOA measure determines
the AOA with ambiguity (two branches).

the TDOA [5] (intersection of hyperbolas). Note that with AOA, every reference
node should be equipped with an antenna array (see Fig. 1.4(a)).

In practice, the lines (i.e. the circles, rays and hyperbolas) obtained from the
estimated parameters do not intersect at one point due to the estimation errors.
Therefore, the data fusion step consists on estimating the position by minimizing
a given error function. As example, the unknown position can be estimated using
the TOA technique as:

(x̂, ŷ) = argmin
(x,y)

I
∑

i=1

[

d̂i − di(x, y)
]2

2σ2
d̂i

where (x, y) and (xi, yi) denote the positions of the unknown location node (Unk)
and ith reference node (Refi) respectively, di(x, y) =

√

(x− xi)2 + (y − yi)2

the distance between Unk and Refi, (x̂, ŷ) and d̂i = cτ̂i the estimated position
and distance (c denotes the speed of the light, and τi and τ̂i the true and the

estimated time of flight between Unk and Refi), and σ2
d̂i

the variance of d̂i

(assumed unbiased). Note that Unk and Refi should be synchronized for the
estimation of τi (TOA technique). However, with TDOA only the reference nodes
should be synchronized, and with AOA the elements of each antenna array.

When positioning is performed by way of UWB signals, TOA technique is
much more accurate than both RSS [5] and AOA (see the comments on Fig. 5.6(a)
and Fig. 5.6(b) in Sec. 5.1.8.3) techniques. Furthermore, TOA is more accurate
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than TDOA. For setups where Unk is surrounded by the different Refi, the
accuracy achieved by TDOA is comparable to that achieved by TOA. However
if Unk moves away from all Refi, then TDOA becomes unable to estimate the
position, whereas TOA will be still able to do it; TDOA will be only able to
provide the AOA (see Fig. 1.4(b)) of Unk with respect to the array composed
from the different Refi; in that case, the estimated position accuracy achieved
by TOA will be equal to that achieved by hybrid TOA-AOA technique based on
the array just mentioned (see Sec. 5.1.8.3 for the accuracy achieved by one array
using hybrid TOA-AOA). Finally, we can deduce TOA then TDOA are the most
promising techniques for highly accurate positioning via UWB signals.

1.1.4 TOA estimation via UWB signals

Depending on whether the transmitter and receiver clocks are synchronized, two
approaches can be considered for the estimation of the TOA [14, 15]:

• One-way delay: where the receiver finds from the transmission time, as-
sumed known, and the estimated TOA, the time of flight corresponding
to the distance. With this approach both the transmitter and the receiver
should have the same time reference.

• Two-way delay: where the transmitter sends a signal at a given time;
when the receiver receives the signal, it waits for a duration known by the
transmitter, then resend a reply signal to the transmitter; finally, from
the time of transmission of the first signal, the waited duration at the
receiver side, and the estimated TOA of the reply signal, the transmitter
can estimate the duration of the round-trip flight. This approach suffers
from the errors introduced by the time drift at the receiver side if the
waited duration is very long.

TOA estimation suffers from many undesirable effects, mainly [5, 11, 14]:

• Low signal to noise ratios (SNR).

• MP aspect of the channel.

• Multiuser interference (MUI).

• Non-line of sight (NLOS) conditions.

• The very high sampling frequency required in “all digital” receivers.

In additive white Gaussian noise (AWGN) channels, the maximum likelihood
estimator (MLE) (which is the optimal estimator) consists on maximizing either
the output of the filter matched to the transmitted signal (see Fig. 1.5(a)) or
the crosscorrelation (CCR) of the received signal and a delayed template of the
transmitted signal. The main challenge facing the realization of this estimator
is the need of either sampling the matched filter (MF) output at an ultra high
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(a)

(b)

(c)

Fig. 1.5.: (a) Filter matched to the transmitted pulse p(−t) (b) Energy receiver
(c) DT receiver (tn − tn−1 is the relative delay between two consecutive pulses).

rate (greater than or equal to the Nyquist rate equal to 2×10.6 GHz for a signal
fulfilling the FCC band), or implementing a huge number of correlation (CR)
branches (due to the spectrum and the very low duty cycle of IR-UWB signals).

As analog analog-to-digital converters (ADC) operating at the required rate do
not exist [5], various solutions such as frequency-domain channelization [16, 17]
and subsampling techniques [18, 19] have been considered. Another solution for
this problem consists on using threshold-based estimators; the main two benefits
of this approach are the high achievable accuracy (when CR or MF receivers are
used) and the possible analog implementation [14, 15]. Thresholding can also
be performed with non-coherent receivers (as done in [20–22] with an energy
receiver). Simple estimators can be implemented using low-complexity receivers
(i.e. relatively low sampling rate can be considered), such as the energy [20, 21,
23–26] and the dirty-template (DT) [27–31] receivers. However, these estimators
are less accurate than CR/MF based estimators because non-coherent receivers
are employed. As depicted in Fig. 1.5(b) and Fig. 1.5(c), respectively, an energy
receiver consists on passing the received signal through a band-pass filter (BPF),
applying the squaring operator, then integrating over a window of fixed length
T , whereas a DT receiver consists on applying the BPF, multiplying each symbol
[28] or pulse [27, 29–31] by the previous one, then integrating. Both receiver types
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can be employed in MP channels in order to capture the maximum useful energy
carried by the MPCs. The DT receiver has the advantage of benefiting from the
total energy of the distorted pulse if the used delay lines are sufficiently accurate
(a challenge of the DT receivers). The integration time T should be optimized
to obtain the maximum SNR (tradeoff between the integrated noise and MPC
energies); in [27], the optimal T in a DT receiver is calculated for both AWGN
and MP channels. In [23], the TOA is estimated in AWGN and MP channels by
considering parallel energy integrators starting at different moments. By making
use of low-complexity receivers (e.g, threshold, energy, DT) we can realize the
MLE by proceeding in two steps; in the first step we find a coarse estimate of
the TOA by employing one of the receivers just mentioned; then in the second
step, a fine estimate is obtained based on the CR receiver; such an estimator is
optimal and easy to implement.

In MP channels, the MLE of the first MPC consists on maximizing the CCR of
the received signal and a delayed version of the MP useful signal (the transmitted
signal filtered by the channel impulse response); as the channel is itself unknown,
this estimator is impossible to compute. In such a case the optimal estimator
consists on jointly estimating, using the joint MLE, the number L of MPC,
and the gains and the delays of all MPCs; this estimator is very complex to
realize because it consists on varying the candidate number of MPCs L′, and
minimizing for each considered L′ an objective function in a 2L′ dimensional
space. In channels with resolvable (i.e. non-overlapping) MPCs, a search over a
2L′ dimensional space is no longer required and the estimation process becomes
much easier; as the first MPC is not necessarily the strongest one now, the main
task consists on detecting the portion of the observation (e.g, MF, energy and
DT signals) corresponding to the first MPC.

An algorithm to estimate the TOA τ (1) of the first MPC based on the joint
approach is proposed in [32]; it detects the strongest MPC, and then the earlier
MPCs one by one; this algorithm requires to set, based on the statistics of
the channel, two thresholds determining the search-space of τ (1) and a lower
bound of α(1) (gain of the first MPC), respectively. Two other estimators called
“Search and subtract” and “Search subtract and readjust” are proposed in [33]
based on the joint approach. Both estimators assume that the first MPC belongs
to the set of the N strongest MPCs, where N has to be fixed before running
the algorithms. Obviously, the choice of N is very crucial; bad values of N
can cause large errors due to early/late detections; in [33], the optimal N is
computed based on measurement data. When the MPCs are resolvable, the last
two mentioned algorithms give the same result as the “Single search” algorithm
(very simple) also proposed in [33]. The fourth algorithm proposed in [33] (two-
step algorithm) finds a coarse estimation of τ (1) by comparing the output of the
MF to a fixed threshold, then finds a fine estimate by maximizing the output of
the MF within a window of length equal to the pulse width; in turn, the choice of
the threshold is very critical. In [33], the optimal threshold has been computed
based on measurement data; However, it is calculated in [22] from the statistics
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of the channel for both MF and energy receivers. The main drawback of the
estimators proposed in [32, 33] (except the thresholding one) is the very high
required sampling rate.

In [20], two algorithms called (in [15]) “Jump Back and Search Forward”
(JBSF) and “Serial Backward Search” (SBS) are proposed for the detection of
the first MPC. They both use an energy receiver, start by detecting the strongest
MPC, then compare the observation to a threshold to identify the first MPC. An
improved version of JBSF named (in [15]) “Serial Backward Search for Multiple
Clusters” (SBSMC) is proposed in [21] to take into account the clustered aspect
of the UWB channels (see Sec. 1.1.2 and Fig. 1.3); in fact, the use of SBS may
cause large errors due to false cluster detection when the first and the strongest
MPCs do not fall in the same cluster.

In [25, 26, 34], three two-step estimators are proposed. They all use the energy
receiver in the first step. However in the second step, the fine estimate is obtained
in [26] by comparing the MF output to a threshold. In [34], the received signal is
correlated with a set of delayed versions of the transmitted signal corresponding
to the number Nh of time-hops (of length assumed equal to the pulse width)
per chip (the so-called here “time-hop” and “chip” are named in [34] “chip” and
“frame” respectively, see Eq. 1.1); then, the optimal time-hop is obtained using
the method of moments. In [25], the second step is also based on the energy
receiver. We have already mentioned that a two-step TOA estimator based on
the MF is proposed in [33]; it consists on performing thresholding in the first
step, and a maximum search in the second step. In [35, 36], we have proposed
a two-step TOA estimator for MP channels. In the first step, we find coarse
estimates of the TOAs of the different MPCs by using a threshold estimator
based on the baseband CR receiver; then in the second step, we find the fine
estimates by employing the discrete Fourier transform (DFT) of the received
signal. This estimator is the scope of Sec. 3.3 in Chap. 3.

We have already mentioned that MUI is one of the most challenging prob-
lems for TOA estimation via IR-UWB signals. According to [15], relatively few
publications address this problem [37, 38]. However, MUI in IR-UWB systems
is widely investigated in the literature for demodulation and symbol detection
under the assumption of perfect synchronization [39–43]. In [39] the MUI is
modeled as an AWGN and the Nc pulses composing a given symbol (see Eq. 1.1)
are equally weighted like in the case of single user (i.e. the receiver depicted in
Fig. 3.1(b) in Chap. 3). The effect of MUI is mitigated in [40] by keeping the
pulses crossing a given threshold and discarding the other pulses, and in [41]
by keeping the pulses non-colliding with the interfering user pulses. The perfor-
mance of the latter approach depends on the useful energy received by/from the
user of interest and the probability of collision. In [42], a weighted combining
scheme of the different pulses is proposed in order to maximize the signal-to-
interference-plus-noise ratio (SINR). The latter method is improved in [43] to
perform optimal combining of the received MPCs as well. Some other materials
on time-hopping-multiple-access (THMA) and MUI can be found in [44–47].
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Regarding the estimation of the TOA in MP channels in the presence of MUI,
an iterative joint estimator based on successive cancellation is derived in [48];
it has been shown from simulation that the proposed estimator achieves the
Cramer-Rao lower bound (CRLB) at high SNRs. In [37], the proposed estimator
employs an energy receiver; the row vector containing the NcNsam samples per
symbol (Nsam is the number of samples per chip) is converted into a Nc×Nsam
matrix (the nth row contains the Nsam samples of the nth chip, see Eq. 1.1);
a non-linear transformation is applied to each column in order to mitigate the
MUI components; the matrix is then converted into a 1×Nsam vector by adding
the different rows; the TOA is estimated from the latter vector like in the case of
single-user. This method is improved later in [38] by applying a differential filter
to each row before adding the rows to each other; the goal of this operation is
to emphasize the beginning of the different clusters (see Fig. 1.3).

All estimators described above are based on the time-domain (except the one
in [35, 36] which is based on both the time-domain and the frequency-domain).
Some other estimators for either electromagnetic or acoustic signals are employ-
ing the DFT of the received signal [35, 36, 49–56]. In [56], a “super-resolution”
TOA estimator is proposed; first, an estimate of the frequency response of the
MP channel is obtained from the DFT of the received signal; then the mutiple
signal classification (MUSIC) algorithm is employed to estimate the TOAs of the
different MPCs. The MUSIC algorithm assumes that the number of the sources
(MP scatterers in our case) is known, and that the corresponding signals are
uncorrelated (not applicable if the MPCs are overlapping); the determination of
the number of MPCs is also investigated in [56]. Note that in the case of un-
resolvable MPCs (correlated signals) the estimates obtained from the algorithm
in [56] can be considered as coarse estimates; the fine estimates can be obtained
from another algorithm that approximates the joint MLE like the successive
cancellation [48], the alternating maximization and the gradient algorithms (see
[57] for the problem of AOA estimation). We have already mentioned that our
estimator proposed in [35, 36] will be considered in Sec. 3.3; therein, we briefly
compare it to the other DFT-based estimators.

1.2 ORGANIZATION OF THE THESIS

We present here the organization of our thesis.

In Chap. 2, we consider the general case of non-linear estimation of determinis-
tic parameters. We study the impacts of the threshold and ambiguity phenomena
on the performances of the estimation. We derive some approximations of the
statistics of the MLE based on the so-called “subdomain method”, and some
approximate upper and lower bounds for the mean squared error (MSE). We
apply the derived approximations and approximate bounds on the problem of
TOA estimation based on IR-UWB signals. Using the derived MSE approxima-
tions we compute, with respect to some features of the transmitted signal, the
SNR required to achieve the CRLB. These results are employed to optimize the



12 INTRODUCTION

spectrum of the transmitted signal with respect to the available SNR in order
to achieve the lowest attainable MSE.

In Chap. 3, we propose a new receiver for TH-IR-IWB signals, and a new
TOA estimator based on that receiver. We compute some statistics related to
the proposed receiver. We calculate the asymptotic MSE achieved by the new
TOA estimator, and derive some approximations of the local MSE and two
approximate lower bounds. The new estimator is compared with the MLE. We
also propose some TOA estimators based on the DFT of the received signal. We
compute the statistics of the proposed estimators.

In Chap. 4, we deal with TOA estimation in multiuser (MU) TH-IR-UWB
systems. We consider the new estimator introduced in Chap. 3 and another es-
timator based on the CR receiver. For both estimators, we derive some approxi-
mations of the global MSE and some approximate lower bounds. We investigate
the cases of single-user and multiuser. We analyze the performances of the two
estimators by considering deterministic MUI and random MUI.

In Chap. 5, we derive the CRLBs for the joint estimation of the TOA and the
AOA, and for the estimation of the position based on the AOA technique and
based on the hybrid TOA-AOA technique. UWB signals and MP channels have
been considered. Then, we calculate the CRLBs for the joint estimation of the
TOA and the AOA in multiple-input-single-output (MISO) and multiple-input-
multiple-output (MIMO) systems. We compare with single-input-single-output
(SISO) and single-input-multiple-output (SIMO) systems. Wideband signals and
AWGN channels have been considered. Finally, we consider the estimation of
UWB channels. We derive the CRLBs for the joint estimation of the gains and
the TOAs of the different MPCs. We study the impact of the overlapping among
the different MPCs on the estimation performance. Average CRLBs have benn
computed.

In Chap. 6, we present a testbed realized at Université catholique de Louvain
(UCL) for IR-UWB based ranging and positioning. We describe a TH-IR-UWB
generator based on a field-programmable gate array (FPGA) with high-speed
serial module. Two methods for IR-UWB pulse shaping are proposed and dis-
cussed. For our experiments, we consider one setup for ranging and another
for positioning. Ranging and positioning are performed by employing the TOA
technique. The MLE and a threshold-based estimator are investigated. We study
the impacts of the MP channel and the shape of the transmitted pulse on the
performances of both estimators.

In Chap. 7, we summarize the contributions of this thesis and draw out some
interesting problems for future investigation.



CHAPTER 2

NON-LINEAR ESTIMATION: STATISTICS

OF THE MLE, APPROXIMATE UPPER

AND LOWER BOUNDS, AND OPTIMAL

SIGNAL DESIGN

N
onlinear estimation problems, like position estimation, TOA estimation,
AOA estimation and many other estimation problems, suffer from the

threshold effect which means that for a SNR above a given threshold, estimation
can achieve the CRLB (minimum mean square error achievable by an unbiased
estimator), whereas for SNRs lower than that threshold, estimation deteriorates
drastically until the estimator becomes uniformly distributed in the a priori
domain of the unknown parameter. The behavior of the threshold effect is deter-
mined by the shape of the autocorrelation (ACR) of the observation carrying the
information on the unknown parameter. It also depends on another phenomenon,
that is the ambiguity phenomenon. Due to the threshold effect, the exact eval-
uation of the statistics of most estimators like the MLE has been considered as
a prohibitive task. In order to be used as benchmarks, and to judge the perfor-
mances of the estimators proposed for the different estimation problems, many
lower and upper bounds have been derived in literature.

In Sec. 2.1 we study the threshold and ambiguity phenomena for a general
deterministic nonlinear estimation problem. We approximate the statistics of
the MLE. We propose some approximate upper bounds and lower bounds for
the MSE. Some approximate lower bounds are based on the binary detection
principle, which has been firstly used by Ziv and Zakai [58] to derive lower
bounds for Bayesian estimation. We apply the derived approximations of the

13
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MSE and the approximate upper and lower bounds on the problem of TOA
estimation using UWB signals.

In Sec. 2.2 we consider TOA estimation based UWB signals. We use the MSE
approximations and the approximate upper and lower bounds derived in Sec. 2.1
to compute the SNR thresholds of the regions, where the estimation is useless,
where it achieves an intermediate accuracy, and where it achieves the CRLB.
The thresholds are computed with respect to some features of the transmitted
signal, and analytic expressions are also obtained.

Based on the results obtained about the thresholds, we consider in Sec. 2.2
the optimization, with respect to the available SNR, of the spectrum of the
transmitted signal in order to attain the minimum achievable MSE. We consider
the cases of signals with spectrum falling in a given frequency band, and of signals
with spectrum falling in a given frequency band and having a given bandwidth.

2.1 STATISTICS OF THE MLE AND APPROXIMATE UPPER AND
LOWER BOUNDS

Nonlinear estimation suffers from the threshold effect [58–67]. In deterministic
estimation (i.e. the unknown parameter has one deterministic value which is un-
known), this effect means that for a SNR above a given threshold, the estimation
can achieve the CRLB, whereas for SNRs below that threshold, the estimation
deteriorates remarkably until the estimator becomes uniformly distributed in the
a priori domain of the unknown parameter. In Bayesian estimation (i.e. the un-
known parameter follows a given a priori distribution), the Bayesian CRLB is
achieved at sufficiently high SNRs, and the estimator follows the a priori dis-
tribution at low SNRs. In this work we only consider the case of deterministic
estimation.

As depicted in Fig. 2.1(a), the SNR axis can be in general split into three
regions according to the achieved MSE:

1. A priori region: the region where the estimation becomes uniformly dis-
tributed in the a priori domain of the unknown parameter (region of low
SNRs). In this region, the estimation becomes useless.

2. Threshold region: the region of transition between the a priori and the
asymptotic regions (region of medium SNRs).

3. Asymptotic region: the region where the CRLB can be achieved (region of
high SNR).

As illustrated in Fig. 2.1(a), these regions are delimited by the a priori ρpr and
asymptotic ρas thresholds.

If the ACR of the signal carrying the information on the unknown parameter is
oscillating, then the estimation will be affected by the ambiguity phenomenon.
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Fig. 2.1.: SNR regions (a) A priori, threshold and asymptotic regions for non-
oscillating ACR (b) A priori, ambiguity and asymptotic regions for oscillating
ACR (c: CRLB, eU : MSE of uniform distribution in the a priori domain, e:
achievable MSE, ρpr, ρam1, ρam2, ρas: a priori, begin-ambiguity, end-ambiguity
and asymptotic thresholds).

Due to this phenomenon a new region (the ambiguity region) appears in the
threshold region. The MSE achieved in this region is determined by the curvature
of the envelope of the ACR. Accordingly, the SNR axis can be split into five
regions as depicted in Fig. 2.1(b):

1. A priori region.

2. A priori -ambiguity transition region: the region of transition between the
a priori and the ambiguity regions.

3. Ambiguity region.

4. Ambiguity-asymptotic transition region: the region of transition between
the ambiguity and the asymptotic regions.

5. Asymptotic region.

As shown in Fig. 2.1(b), these regions are delimited by the a priori ρpr, begin-
ambiguity ρam1, end-ambiguity ρam2 and asymptotic ρas thresholds.

The exact evaluation of the statistics, in the threshold region, of some es-
timators like the MLE has been considered as a prohibitive task. Many lower
bounds have been derived for both deterministic and Bayesian estimation in
order to be used as benchmarks and to describe the behavior of the MSE in
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the threshold region [68] (very nice survey in French on the different families of
deterministic and Bayesian lower bounds). Some upper bounds have been also
derived like the Seidman [69] and McAulay [70] bounds. It will suffice to men-
tion here the CRLB, Bhattacharyya, Chapman-Robbins, Barankin (BLB) and
Abel lower bounds for deterministic estimation, the Bayesian Cramer-Rao [71],
Bayesian Bhattacharyya [71], Bobrovsky-Zakai [72], Bobrovsky-MayerWolf-Zakai
[73], and Weiss-Weinstein [74] lower bounds for Bayesian estimation, and the Ziv-
Zakai lower bound (ZZLB) [58] with its improved versions: Bellini-Tartara [60],
Chazan-Ziv-Zakai [75], Weinstein [76] (approximation of Bellini-Tartara), and
Bell-Steinberg-Ephraim-VanTrees [77] (generalization of Ziv-Zakai and Bellini-
Tartara) lower bounds for Bayesian estimation too, and finally the Reuven-
Messer lower bound for simultaneously deterministic and Bayesian estimation.
It has been shown in [68] that the deterministic bounds mentioned above can be
seen as different versions of one unified bound, similarly for the ZZLB and its
improved versions, and as well as for the Bayesian Cramer-Rao, Bayesian Bhat-
tacharyya, Bobrovsky-MayerWolf-Zakai, Bobrovsky-Zakai, and Weiss-Weinstein
lower bounds.

The CRLB [78, pp. 53-56] gives the minimum MSE achievable by an unbiased
estimator. However, it is very optimistic for low and moderate SNRs and does
not indicate the presence of threshold and ambiguity regions. The BLB [79]
gives the greatest lower bound of an unbiased estimator. However, its general
form is not easy to compute for most interesting problems. A useful form of
this bound, which is much tighter than the CRLB, and which shows clearly the
threshold and ambiguity regions, is derived by McAulay and Seidman in [80] and
generalized to vector cases in [81]. Still, the bound in [80] is too optimistic so the
threshold, ambiguity and asymptotic regions (see Fig. 2.1(a) and Fig. 2.1(b)) are
detected much earlier (i.e. at lower SNRs) than the corresponding regions given
by the MSE truly achieved in practice. Some applications to BLB can be found
in [59, 61, 64, 65, 82, 83].

The Bayesian Ziv-Zakai lower bound family [58, 60, 75–77] is based on the
minimum probability of error of a binary detection problem (i.e. detection prob-
lem with two hypotheses). The Ziv-Zakai bounds are very tight, show clearly the
presence of the threshold and the ambiguity regions and detect accurately the
asymptotic region. Some applications to the Ziv-Zakai bounds, discussions and
comparison to other bounds can be found in [14, 15, 22, 66, 67, 84–88].

In [89, pp. 627-637], a method is proposed by Wozencraft to approximate the
MSE of the MLE, applied therein on TOA estimation using particular waveforms
(Cardinal sine), and used in [59] as reference to judge some upper and lower
bounds. The same method is used by McAulay in [70] to derive an approximate
upper bound that can be used with any type of waveforms. As shown in [84],
the proposed bound is very tight and can be used to accurately estimate the
threshold of the asymptotic region. Wozencraft method consists on splitting the
a priori domain of the unknown parameter into subdomains and computing the
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probability of each subdomain and the statistics of the MLE in each subdomain.
Some applications to this method can be found in [90–92].

In this work employ the method of Wozencraft [89] and the approach of
McAulay [70] to propose different approximations of the statistics (probability
density function, mean and MSE) of the MLE, and to derive two approximate
upper bounds. We derive an approximate lower bound tighter than the CRLB
using Taylor series expansion of noise limited to second order. The derived ap-
proximations of the MSE are highly accurate (tighter than the Ziv-Zakai and
the approximate McAulay [70] bounds) and follow closely the truly achieved
MSE. By making use of the method proposed by Ziv and Zakai [58] to derive
lower bounds for Bayesian estimation, we get some approximate lower bounds
for deterministic estimation. We discuss the precision and the tightness of the
derived approximations of the MSE and the obtained approximate upper and
lower bounds by applying them to the problem of TOA estimation based on
UWB waveforms.

In Sec. 2.1.1 we describe the system model. In Sec. 2.1.2 we discuss the thresh-
old and ambiguity phenomena. In Sec. 2.1.3 we derive the first approximation
of the MLE statistics. In Sec. 2.1.4 we propose some approximate lower bounds
using the method of Ziv and Zakai. In Sec. 2.1.5 we derive two other approxima-
tions of the MLE statistics, two approximate upper bounds, and an approximate
lower bound. In Sec. 2.1.6 we apply the approximations of the MSE and the ap-
proximate upper and lower bounds on TOA estimation using UWB waveforms
and discuss the obtained results.

2.1.1 System model

In this subsection we describe our system model. In Sec. 2.1.1.1 we consider a
general deterministic nonlinear estimation problem and in Sec. 2.1.1.2 we con-
sider the particular case of TOA estimation.

2.1.1.1 Deterministic nonlinear estimation

We describe now the system model of a general deterministic nonlinear es-
timation problem. Denote by Θ the unknown parameter to estimate with
DΘ = [Θ1,Θ2] being its a priori domain. We can write the observed signal
as:

r(t) = αs(t; Θ) + w̃(t) (2.1)

where s(t; Θ) is the signal carrying the information on Θ, α a known gain, and
w̃(t) an AWGN of two-sided PSD of N0

2 .

From Eq. 2.1 we can write the log-likelihood function of Θ as:

Λ(θ) = − 1

N0

∫ +∞

−∞

{

r(t) − αs(t; θ)
}2

dt (2.2)

= − 1

N0

{

Er + α2Es(θ) − 2αXs,r(θ)
}

(2.3)
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where θ ∈ DΘ denotes a variable associated with the unknown parameter Θ,
Er =

∫ +∞
−∞ r2(t)dt and Es(θ) =

∫ +∞
−∞ s2(t; θ)dt the energies of r(t) and s(t; θ)

respectively, and

Xs,r(θ) =

∫ +∞

−∞
s(t; θ)r(t)dt = αRs(θ,Θ) + w(θ) (2.4)

the CCR of s(t; θ) and r(t) with respect to θ, with

Rs(θ, θ
′) =

∫ +∞

−∞
s(t; θ)s(t; θ′)dt (2.5)

the ACR of s(t; θ) with respect to (θ, θ′) and

w(θ) =

∫ +∞

−∞
s(t; θ)w̃(t)dt (2.6)

a colored zero-mean Gaussian noise of covariance given by (E{·} denotes the
expectation operator):

Cw(θ, θ′) = E {w(θ)w(θ′)} =
N0

2
Rs(θ, θ

′). (2.7)

By assuming Es(θ) = Es Eq. 2.3 independent of θ (true for most estimation
problems) we can write the MLE of Θ as:

Θ̂ = argmax
θ

{Xs,r(θ)} (2.8)

and the CRLB of Θ from Eq. 2.2 and Eq. 2.3 as [78, pp. 39]:

c(Θ) =
−1

E{Λ̈(θ)|θ=Θ}
=

N0/2

α2Eṡ(Θ)
=

−N0/2

α2R̈s(Θ,Θ)
(2.9)

where ṡ(t; θ) denotes the first derivative of s(t; θ) with respect to θ, Λ̈(θ) and
R̈s(θ,Θ) the second derivatives of Λ(θ) and Rs(θ,Θ) respectively, and Eṡ(Θ) =
∫ +∞
−∞ ṡ2(t; θ)dt the energy of ṡ(t; θ). Unlike Es(Θ), Eṡ(Θ) = −R̈s(Θ,Θ) may

depend on Θ for many estimation problems (e.g. angle estimation [93]).

The CRLB in Eq. 2.9 is inversely proportional to the curvature of the ACR
function Rs(θ,Θ) at θ = Θ. Sometimes Rs(θ,Θ) is oscillating with respect to
θ. Then, if the SNR is sufficiently high (resp. relatively low) the maximum of
the CCR function Xs,r(θ) Eq. 2.4 will fall around the global maximum (resp.

the local maxima) of Rs(θ,Θ) and the MLE Θ̂ Eq. 2.8 of Θ will (resp. will not)
achieve the CRLB. We will see later in Sec. 2.1.6 that the MSE achieved at
relatively low (i.e. medium) SNRs is inversely proportional to the curvature of
the envelope of the ACR instead of the curvature of the ACR itself. To be able
to characterize this phenomenon, known as ambiguity phenomenon, we define
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the envelope CRLB (ECRLB, not necessarily a CRLB of an existing estimation
problem) as:

ce(Θ) = − N0/2

α2ℜ{ëRs
(Θ,Θ)} (2.10)

where ℜ{·} denotes the real part operator, eRs
(θ,Θ) the complex envelope of

Rs(θ,Θ) with respect to its mean frequency ϕc(Θ) in the frequency domain
relative to θ (dimension of 1

θ ), and ëRs
(θ,Θ) its second derivative. We can write:

Rs(θ,Θ) = ℜ
{

ej2π(θ−Θ)ϕc(Θ)eRs
(θ,Θ)

}

ϕc(Θ) =

∫ +∞
0

ϕℜ{FRs
(ϕ)}dϕ

∫ +∞
0

ℜ{FRs
(ϕ)}dϕ

(2.11)

FRs
(ϕ) =

∫ Θ2

Θ1

Rs(θ,Θ)e−j2πϕ(θ−Θ)dθ

with FRs
(ϕ) the Fourier transform of Rs(θ,Θ) with respect to θ − Θ. In

Appendix A we show that we can write the curvature of Rs(θ,Θ) with respect
to that of its envelope as:

− R̈s(Θ,Θ) = −ℜ{ëRs
(Θ,Θ)} + 4π2ϕ2

c(Θ)Es. (2.12)

Finally, we write the CRLB and the ECRLB of Θ from Eq. 2.9, Eq. 2.10 and
Eq. 2.12 as:

c(Θ) =
1

ρβ2
s (Θ)

(2.13)

ce(Θ) =
1

ρβ2
e (Θ)

(2.14)

where

ρ =
α2Es
N0/2

(2.15)

β2
s (Θ) =

Eṡ(Θ)

Es
= − R̈s(Θ,Θ)

Es
(2.16)

β2
e (Θ) = −ℜ{ëRs

(Θ,Θ)}
Es

(2.17)

denote the SNR, and the normalized curvatures of Rs(θ,Θ) and eRs
(θ,Θ) re-

spectively. We have from Eq. 2.12:

β2
s (Θ) = β2

e (Θ) + 4π2ϕ2
c(Θ). (2.18)

Consider now the BLB derived by McAulay and Seidmanin in [80]. It can be
written as:

cB = (Θ − Θ)TD−1(Θ − Θ) (2.19)
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where

Θ = (θn1
· · · θ−1 1 + Θ θ1 · · · θn2

)T

D = (di,j)|i,j=n1,··· ,n2

d0,0 =
α2Eṡ(Θ)

N0/2
=

1

c(Θ)

d0,i = di,0 =
α2

N0/2
[Ṙs(Θ, θi) − Ṙs(Θ,Θ)]

di,j =
α2

N0/2
[Rs(θi, θj) −Rs(θi,Θ) −Rs(θj ,Θ) +Es]

where θn1
, · · · , θn2

(θ0 = Θ, n1 6 0, n2 > 0) denote N = n1 − n2 + 1 testpoints
to be chosen in the a priori domain of Θ, and Ṙs(θ,Θ) the derivative of Rs(θ,Θ)
with respect to θ. The term d0,0 is equal to the inverse of the CRLB c(Θ) Eq. 2.9.
Note that the testpoint θ0 is equal to Θ and that i, j 6= 0 in the expressions of
d0,i and di,j .

Similarly to [15, 85] we assume that the maximum MSE is achieved when the
estimator becomes uniformly distributed in the a priori domain DΘ = [Θ1,Θ2].
We can write:

eU = σ2
U + (Θ − µU )2 (2.20)

µU =
Θ1 + Θ2

2

σ2
U =

(Θ2 − Θ1)
2

12
.

where eU , µU and σ2
U denote the MSE, mean and variance of a uniform distri-

bution in DΘ respectively. For more information on maximum variance, we refer
the reader to [94, 95].

2.1.1.2 TOA estimation

We consider here the special case of TOA estimation. The signal s(t; Θ) Eq. 2.1
carrying the information on Θ is given by:

s(t; Θ) = s(t− Θ)

where α Eq. 2.1 and Θ denote now the gain and delay introduced by the channel
respectively, and s(t) the transmitted signal. Accordingly, we can write Rs(θ, θ

′)
Eq. 2.5, Xs,r(θ) Eq. 2.4 and Cw(θ, θ′) Eq. 2.7 as:

Rs(θ, θ
′) = Rs(θ − θ′)

Xs,r(θ) = αRs(θ − Θ) + w(θ) (2.21)

Cw(θ, θ′) =
N0

2
Rs(θ − θ′) = Cw(θ − θ′)
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where

Rs(θ) =

∫ +∞

−∞
s(t+ θ)s(t)dt

denotes the ACR of s(t). The CRLB Eq. 2.13, ECRLB Eq. 2.14, mean frequency
ϕc(Θ) Eq. 2.11 (denoted here by fc), and Eṡ(Θ), R̈s(Θ,Θ), β2

s (Θ) Eq. 2.16,
ëRs

(Θ,Θ) and β2
e (Θ) Eq. 2.17 become now independent of Θ:

c =
1

ρβ2
s

(2.22)

ce =
1

ρβ2
e

(2.23)

β2
s =

Eṡ
Es

=
−R̈s(0)

Es
=

∫ +∞
−∞ 4π2f2|Fs(f)|2df
∫ +∞
−∞ |Fs(f)|2df

(2.24)

β2
e =

∫ +∞
−∞ 4π2f2|Fes

(f)|2df
∫ +∞
−∞ |Fes

(f)|2df
(2.25)

β2
s = β2

e + 4π2f2
c (2.26)

fc =

∫ +∞
0

f |Fs(f)|2df
∫ +∞
0

|Fs(f)|2df
(2.27)

where f denotes the frequency relative to time, and Fs(f) and Fes
(f) the Fourier

transforms of s(t) and its envelope es(t) given by s(t) = ℜ{ej2πfctes(t)}. In the
special case of TOA estimation, the envelope of the ACR of a given signal is
equal to ACR of its envelope. Furthermore, β2

s and β2
e denote now the mean

quadratic bandwidth (MQBW) of s(t) and that of its envelope (EMQBW).

We have already mentioned TOA estimation will be performed using UWB
signals. We have already mentioned as well that the unlicensed use of the UWB
spectrum from 3.1 to 10.6 GHz at a PSD level of -41.3 dBm/MHz has been
authorized by the FCC in May 2002 [1], and in Europe by the EC in February
2007 from 6 to 8.5 GHz at the same PSD level [2, 3]. In both the FCC and the
EC bands, the CRLB c Eq. 2.22 is much smaller than the ECRLB ce Eq. 2.23
because the MQBW β2

s Eq. 2.26 is much larger than the EMQBW β2
e Eq. 2.25. In

fact, for a signal occupying the whole FFC band (fc = 6.85 GHz and bandwidth

B = 7.5 GHz), we obtain β2
e = π2B2

3 ≈ 185 GHz2 (largest β2
e ), 4π2f2

c ≈ 10β2
e ,

β2
s ≈ 11β2

e and c ≈ ce

11 . Therefore, estimation seriously deteriorates at relatively
low SNR when the ECRLB is achieved instead of the CRLB due to ambiguity.
As β2

e << 4π2f2
c , the super accuracy provided by c is mainly due to the mean

frequency fc. Accordingly, β2
s Eq. 2.26 can be approximated by:

β2
s = β2

e + 4π2f2
c ≈ 4π2f2

c . (2.28)

Note that to benefit from this super accuracy at sufficiently high SNR, the suf-
ficient condition to satisfy is that the phase of the transmitted signal should not
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be modified across the communication channel (e.g. due to fading), regardless
whether the signal is pure impulse-radio UWB (carrier-less), carrier-modulated
with known phase (e.g. in monostatic radar), or carrier-modulated with unknown
phase (e.g. in most communication systems). In fact, with the latter (worse case
with non arbitrary signals) the phase can be jointly estimated with the TOA
(from the carrier and the envelope) in order to obtain a finer estimate of the
latter.

2.1.2 Threshold and ambiguity phenomena

In this section we explain the physical origin of threshold and ambiguity phe-
nomena by considering TOA estimation with UWB waveforms. The transmitted
waveform s(t) is a Gaussian pulse of width Tw modulated by carrier fc:

s(t) = es(t) cos(2πfct) (2.29)

es(t) ∝ e
−2π t2

T2
w (2.30)

where es(t) is the envelope of s(t) with respect to fc equal to the mean frequency
in Eq. 2.27.

We recall that the MLE Θ̂ Eq. 2.8 of Θ is the abscissa of the CCR Xs,r(θ)
Eq. 2.21 of the received signal r(t) Eq. 2.1 and the candidate signal s(t− θ). In
our simulation, we consider three values of the carrier (fc = 0, 4 and 8 GHz)
and three values of the SNR (ρ = 10, 15 and 20 dB) per considered fc. We take
Θ = 0, Tw = 0.6 ns, and DΘ = [−1.5, 1.5]Tw. In Fig. 2.2(a), Fig. 2.2(b) and
Fig. 2.2(c) we show the normalized ACR Eq. 2.21:

R(θ − Θ) =
Rs(θ − Θ)

Es

for fc = 0 (unmodulated pulse), 4 and 8 GHz respectively, and 1000 realizations
(called M samples) per SNR of the maximum:

M [Θ̂, X(Θ̂)]

of the normalized CCR Eq. 2.21:

X(θ) =
Xs,r(θ)

αEs
.

Denote by Nn, n = n1, n2 (n1 < 0, n2 > 0, n = 0 corresponds to the global
maximum) the number of M samples falling around the nth local maximum of
R(θ − Θ) (i.e. between the two local minima adjacent to that maximum). In
Table 2.1, we show the CRLB c Eq. 2.22 of Θ, the variance σ2

S obtained by
simulation, the variance to CRLB ratio σ2

S/c, and the number (N0 and N1) of
M samples falling around the maxima number 0 and 1, with respect to fc and
ρ.
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Fig. 2.2.: Normalized ACR R(θ − Θ) and 1000 realizations of M [Θ̂, X(Θ̂)] per
SNR (ρ = 10, 15 and 20 dB); Gaussian pulse modulated by fc, Θ = 0 ns,
Tw = 0.6 ns, DΘ = [−1.5, 1.5]Tw (a) fc = 0 GHz (b) fc = 4 GHz (c) fc = 8 GHz.

Consider first the unmodulated pulse. We can see in Fig. 2.2(a) that the M
samples are very close to the maximum of R(θ −Θ) for ρ = 20 dB, and start to
spread progressively along it for ρ = 15 and 10 dB. We can see from Table 2.1
that the CRLB is approximately achieved for ρ = 20 and 15 dB (σ2

S = 1.03c and
1.1c respectively), and not for ρ = 10 dB (σ2

S = 2.6c). From this experience we
can describe the threshold phenomenon as follows. For sufficiently high SNR, the
maximum of the CCR always falls in the vicinity of the maximum of the ACR
so the CRLB is achieved, whereas for moderate and low SNRs it spreads along
the ACR so the CRLB is not achieved. We will see in Sec. 2.2 that the CRLB is
achieved when the SNR crosses a given threshold which is only function of the
shape of the ACR regardless other parameters like the pulse width Tw.
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fc ρ c σ2
S σ2

S/c N0 N1

0
10
15
20

762

432

242

1232

462

242

2.6
1.2
1.03

1000
1000
1000

0
0
0

4
10
15
20

122

72

42

1962

312

42

250
20

1.03

773
985
1000

59
8
0

8
10
15
20

6.32

3.52

22

1982

502

142

996
206
51

481
838
987

199
75
7

Table 2.1.: CRLB c (ps2), simulated variance σ2
S (ps2), CRLB to variance ratio

σ2
S/c, and the numbers N0, N1 of the M samples falling around the maxima

number 0 and 1 with respect to fc = 0, 4 and 8 GHz, and ρ = 10, 15 and 20 dB.

Consider now the waveform with fc = 4 GHz. We can see from Fig. 2.2(b) and
Table 2.1 that for ρ = 20 dB all M samples (N0 = 1000) fall around the global
maximum of R(θ−Θ) and the CRLB is achieved (σ2

S ≈ 1.03c), whereas for ρ = 15
and 10 dB they spread along the local maxima of R(θ−Θ) (resp. only N0 = 985
and 773 samples around the global maximum) and the achieved variance is much
larger than the CRLB (resp. σ2

S ≈ 20c and 250c). Unlike the case of unmodulated
waveform where the M samples spread in continuous way along the ACR, they
spread here in discrete way along its local maxima. From this experience we
can describe the ambiguity phenomenon as follows. For sufficiently high SNR
(resp. relatively low) the noise w(t) in the CCR Xs,r(θ) Eq. 2.21 cannot (resp.
can) cross the gap between the global maximum and the local maxima of the
ACR R(θ−Θ). Consequently, for sufficiently high SNR (resp. relatively low) the
maximum of the CCR always falls around the global maximum (resp. spreads
along the local maxima) of the ACR so the CRLB is (resp. is not) achieved.
Obviously, the ambiguity phenomenon affects the threshold phenomenon because
the SNR required to achieve the CRLB depends on the gap between the global
and the local maxima of the ACR.

Consider now the waveform with fc = 8 GHz. We can see that the variance
achieved with ρ = 20 dB is 51 times larger than the CRLB. In fact, only 987 from
1000 M samples are falling around the global maximum of R(θ − Θ) because
the gap between the global and the local maxima is smaller with fc = 8 GHz
so it can be crossed by weaker noise. Consequently, a higher SNR is required
to achieve the CRLB. We will see in Sec. 2.2 that the SNR required to achieve
the CRLB increases as the inverse fractional bandwidth fc

B increases. However,
the most unexpected result is that the variance achieved at ρ = 20 dB is 12.25
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times smaller with fc = 4 GHz than with fc = 8 GHz whereas the CRLB is 4
times smaller with the latter. This result exhibits the significant loss in terms
of accuracy if the CRLB is not achieved due to ambiguity. This fact has been
discussed in [96] based on experimental results for TOA-based positioning.

2.1.3 Approximation of the MLE statistics

In this section we use the method of Wozencraft [89] and the work of McAulay
[70] to propose new approximations of the statistics of the MLE.

We have seen in Sec. 2.1.2 that threshold phenomenon is due to the spreading
of the maximum likelihood (ML) estimates along the ACR of the signal carrying
the information on the unknown parameter Θ. To characterize this phenomenon
we split the a priori domain DΘ = [Θ1,Θ2] of Θ into N = n2−n1+1 subdomains
Dn = [dn, dn+1), (n = n1, · · · , n2), (n1 6 0, n2 > 0) and write the probability
density function (PDF), mean and MSE of the MLE Θ̂ as:

p(θ) =

n2
∑

n=n1

Pnpn(θ)

µ =

∫ Θ2

Θ1

θp(θ)dθ =

n2
∑

n=n1

Pnµn

e =

∫ Θ2

Θ1

(θ − Θ)2p(θ)dθ =

n2
∑

n=n1

Pn[(Θ − µn)
2 + σ2

n] (2.31)

where

Pn = P{Θ̂ ∈ Dn} = P{∃ξ ∈ Dn;Xs,r(ξ) > Xs,r(θ),∀θ ∈ ∪n′ 6=nDn′} (2.32)

denotes the subdomain probability (i.e. probability that Θ̂ falls in Dn), and
pn(θ), µn and σ2

n the PDF, mean and variance of the subdomain MLE (Θ̂ given
Θ̂ ∈ Dn):

Θ̂n = Θ̂|Θ̂ ∈ Dn. (2.33)

We can approximate Pn Eq. 2.32 by:

Pn = P{∃ξ ∈ Dn;Xs,r(ξ) > Xs,r(θ),∀θ ∈ ∪n′ 6=nDn′}
≈ P{Xn > Xn′ ,∀n′ 6= n}

=

∫ +∞

−∞
dxn

∫ xn

−∞
dxn1

· · ·
∫ xn

−∞
dxn−1

∫ xn

−∞
dxn+1 · · ·

∫ xn

−∞
pX(x)dxn2

= P̃n (2.34)

where

Xn = Xs,r(θn) = αRs(θn,Θ) + w(θn) = αRn + wn
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denotes the value taken by the CCR Xs,r(θ) Eq. 2.4 at a testpoint θn arbitrarily
chosen in Dn and

pX(x) =
1

(2π)
N
2 |CX | 12

e−
(x−µX )C

−1
X

(x−µX )T

2

µX = α(Rn1
· · ·Rn2

)T

CX =
N0

2
[Rn,n′ ]n,n′=n1,··· ,n2

the joint PDF, mean and covariance matrix of the vector X = (Xn1
· · ·Xn2

)T

given from Eq. 2.4 and Eq. 2.7 with Rn = Rs(θn,Θ) and Rn,n′ = Rs(θn, θn′).
The precision of the approximation in Eq. 2.34 depends on the number of sub-
domains N , and the choice of the subdomains and the corresponding testpoints.
For oscillating ACR we consider a subdomain around each local maximum (i.e.
between the two local minima adjacent to it) and choose the corresponding test-
point as the abscissa of the local maximum, whereas for non-oscillating ACR we
split the a priori domain into N equal subdomains and choose the centers of
subdomains θn = dn+dn+1

2 as testpoints. For both oscillating and non-oscillating
ACRs the subdomain number zero D0 contains the global maximum, and the
corresponding testpoint θ0 is equal to the unknown parameter Θ. Wozencraft
[89] has considered Cardinal sine waveforms and chosen Θ and the roots of the
ACR as testpoints, whereas McAulay [70] has considered modulated waveforms
and chosen the abscissa of the ACR extrema as testpoints.

Next, we consider in Sec. 2.1.3.1 the approximation of the subdomain prob-
ability and in Sec. 2.1.3.2 the approximation of the statistics of the subdomain
MLE.

2.1.3.1 Computation of the subdomain probability

We consider here the computation of the subdomain probability approximation
P̃n Eq. 2.34.

Up to our knowledge, there is no closed form for the integral in Eq. 2.34
for correlated Xn (non-diagonal CX). However, it can be computed numerically
using one of the MATLAB functions QSCMVNV and QSCLATMVNV (written
by Genz based on [97–100]) which compute the multivariate normal probability
with integration region specified by a set of linear inequalities in the form a1 <
B(X − µX) < a2. Using QSCMVNV, P̃n Eq. 2.34 can be approximated by:

P (1)
n = QSCMVNV(Np, CX , a1, B, a2) (2.35)

where Np is the number of points used by the algorithm (e.g. Np = 3000), a1 =
(−∞· · · − ∞)T and a2 = µXn

− (µXn1
· · ·µXn−1

µXn+1
· · ·µXn2

)T two (N − 1)-

column vectors, and B =

(

B1

B2
B3

B4

B5

)

a (N − 1) × N matrix with

B1 = I(n − n1), B2 = zeros(N + n1 − n − 1, n − n1), B3 = −ones(N − 1, 1),
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B4 = 0(N − n2 + n − 1, n2 − n) and B5 = I(n2 − n) (we denote by I(k) the
identity matrix of rank k, and zeros(k1, k2) and ones(k1, k2) the zero and one
matrices of dimension k1 × k2).

Denote by Q(y) = 1√
2π

∫∞
y
e−

ξ2

2 dξ the Q function and R(θ,Θ) = Rs(θ,Θ)
Es

the

normalized ACR. As P{A1 ∩A2} 6 P{A1}, we can upper bound P̃n Eq. 2.34 by
[70]:

P (2)
n =

{

Q(θ0, θ1) n = 0
Q(θn, θ0) n 6= 0

(2.36)

where

Q(θ, θ′) = P{Xs,r(θ) > Xs,r(θ
′)} = Q

(

√

ρ

2

R(θ′,Θ) −R(θ,Θ)
√

1 −R(θ, θ′)

)

(2.37)

because we can show from Eq. 2.4 and Eq. 2.7 that Xs,r(θ) − Xs,r(θ
′) ∼

N (α[Rs(θ,Θ) − Rs(θ
′,Θ)], N0[Es − Rs(θ, θ

′)]). In [70], P̃0 is upper bounded by

1. If N approaches infinity, then both
∑n2

n=n1
P

(2)
n and the MSE approximation

in Eq. 2.31 based on Eq. 2.36 will approach infinity. To solve this problem we
propose the following approximation of P̃n Eq. 2.34:

P (3)
n =

P
(2)
n

∑n2

n=n1
P

(2)
n

. (2.38)

Finally the subdomain probability Pn Eq. 2.32 can be approximated by P
(1)
n

Eq. 2.35 and P
(3)
n Eq. 2.38, and approximately upper bounded by P

(2)
n Eq. 2.36

[70].

To evaluate the subdomain probability approximations P
(1)
n and P

(2)
n given in

Eq. 2.35 and Eq. 2.38 respectively, we consider an unmodulated Gaussian pulse
Eq. 2.30 with Tw = 2 ns, Θ = 0 and DΘ = [−2, 1.5]Tw (a priori domain), and the
same pulse modulated Eq. 2.29 by fc = 6.85 GHz. We split DΘ to N = 9 equal
subdomains with the unmodulated pulse, and we have N = 48 local maxima
inside DΘ with the modulated one.

Let us first consider the unmodulated pulse. In Fig. 2.3(a) and Fig. 2.3(b)

we show the subdomain probability P
(S)
n obtained by simulation based on 10000

trials, the subdomain probability approximation P
(1)
n Eq. 2.35 based on the

Genz’s algorithm [97–100], the approximate upper bound P
(2)
n Eq. 2.36 derived

by McAulay [70], and the approximation P
(3)
n Eq. 2.38 based on P

(2)
n , all versus

the SNR, for the subdomains number 0 (subdomain containing the maximum of
the ACR) and 1 respectively. We can observe that:

• The subdomain probability PSn obtained by simulation converges to 1
N at

low SNRs ∀n, and to 1 (resp. 0) at high SNRs for n = 0 (resp. n 6= 0). We
have PS0 = 0.99 and 0.999 at ρ ≈ 16 and 18 dB respectively.
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Fig. 2.3.: Subdomain probability obtained by simulation P
(S)
n , approximate sub-

domain probability upper bound P
(2)
n , and the subdomain probability approxi-

mations P
(1)
n and P

(3)
n versus the SNR ρ = −5 : 20 dB (unmodulated Gaussian

pulse, Tw = 2 ns, Θ = 0, DΘ = [−2, 1.5]Tw) (a) n = 0 (b) n = 1.

• Both P
(1)
n and P

(3)
n are very accurate and closely follow PSn . However, P

(1)
n

is more accurate than P
(3)
n because it takes into account the correlation

between the testpoints of all subdomains.

• The approximate upper bound P
(2)
n is not tight at low SNRs. It converges

to 0.5 ∀n instead of 1
N . This result could be predicted from the expression

Eq. 2.36 of P
(2)
n . However, it converges to 1 (resp. 0) for n = 0 (resp. n 6= 0)

at high SNRs, simultaneously with P
(S)
n so it can be used to accurately

approximate the threshold of the asymptotic region as we will see later in
Sec. 2.2.

Consider now the modulated pulse. In Fig. 2.4(a) and Fig. 2.4(b) we again

show P
(S)
n , P

(1)
n , P

(2)
n and P

(3)
n versus the SNR, for the subdomains number 0

and 1 respectively. We can now observe that for n = 0 (subdomain containing

the global maximum of the ACR) the subdomain probability P
(S)
0 (probability

of non-ambiguity) converges to 0.99 and 0.999 at ρ ≈ 30 and 32 dB respectively
instead of 16 and 18 dB obtained in the case of the unmodulated pulse. In fact,
we have now 48 subdomains instead of 9 which makes the ACR gap between the
different testpoints smaller so it can be more easily crossed by the noise. We can
deduce that the convergence speed depends on the shape of the ACR of the used
signal. The convergence is faster for signals with higher fractional bandwidth
because the gap between the local maxima of the ACR will be larger.
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Fig. 2.4.: Subdomain probability obtained by simulation P
(S)
n , approximate sub-

domain probability upper bound P
(2)
n , and the subdomain probability approx-

imations P
(1)
n and P

(3)
n versus the SNR ρ = −5 : 40 dB (modulated Gaussian

pulse, Tw = 2 ns, fc = 6.85 GHz, Θ = 0, DΘ = [−2, 1.5]Tw) (a) n = 0 (b) n = 1.

2.1.3.2 Statistics of the subdomain MLE

We approximate here the statistics of the subdomain MLE Θ̂n = Θ̂|Θ̂ ∈ Dn

Eq. 2.33. We have already mentioned in Sec. 2.1.3 that for an oscillating (resp.
non-oscillating) ACR we consider a subdomain around each local maximum
(resp. split the a priori domain into equal subdomains). The global maximum is
always contained in subdomain D0. Accordingly, the ACR inside a given subdo-
main is either increasing then decreasing (i.e. subdomain with local maximum)
or monotone (i.e. increasing, decreasing or constant).

As the distribution of Θ̂n should follow the shape of the ACR in the consid-
ered subdomain, the subdomain variance is upper bounded by the variance of
uniform distribution in Dn = [dn, dn+1]. Accordingly, the subdomain mean µn
and variance σ2

n can be approximated by:

µn,U =
dn + dn+1

2
(2.39)

σ2
n,U =

(dn+1 − dn)
2

12
. (2.40)

Note that for a subdomain with decreasing then increasing ACR (i.e. subdomain
with local minimum, not considered here), σ2

n is upper bounded by the variance
of a Bernoulli distribution with two atoms of equal probability:

σ2
n,max =

(dn+1 − dn)
2

4
> σ2

n,U . (2.41)
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It has been assumed in [70] that σ2
n is upper bounded by σ2

i,U Eq. 2.40 for
both subdomains with local maximum and minimum. See [94, 95] for further
information on maximum variance.

We can approximate the CCR Xs,r(θ) Eq. 2.4 in Dn by its Taylor series
expansion limited to second order about θn:

Xs,r(θ) = αRs(θ,Θ) + w(θ)

≈ (αRn + wn) + (αṘn + ẇn)(θ − θn) + (αR̈n + ẅn)
(θ − θn)

2

2
(2.42)

where wn = w(θn), ẇn = ẇ(θn), ẅn = ẅ(θn), Rn = Rs(θn,Θ), Ṙn = Ṙs(θn,Θ)
and R̈n = R̈s(θn,Θ). From Eq. 2.6, we can show that (νn denotes the coefficient
of correlation between ẇn and ẅn):

ẇn ∼ N (0, σ2
ẇn

) (2.43)

ẅn ∼ N (0, σ2
ẅn

)

with

σ2
ẇn

=
N0

2

∫ +∞

−∞
ṡ2(t; θn)dt =

N0

2
Eṡ(θn) (2.44)

σ2
ẅn

=
N0

2

∫ +∞

−∞
s̈2(t; θn)dt =

N0

2
Es̈(θn)

νn =
E{ẇnẅn}
σẇn

σẅn

=

∫ +∞
−∞ ṡ(t; θn)s̈(t; θn)dt
√

Eṡ(θn)Es̈(θn)
.

Let us first consider a subdomain with monotone ACR function. By neglecting
ẅn and R̈n in Eq. 2.42 (linear approximation), we can approximate the subdo-
main MLE by:

Θ̂n = argmax
θ∈Dn

{Xs,r(θ)} ≈







dn αṘn + ẇn < 0

dn+1 αṘn + ẇn > 0
dn,1+dn,2

2 αṘn + ẇn = 0

. (2.45)

As P{αṘn + ẇn = 0} = 0, the latter approximation follows a Bernoulli distri-
bution with two atoms of probabilities, mean and variance given from Eq. 2.15,
Eq. 2.43 and Eq. 2.44 by:

P{dn} = 1 − P{dn+1} = P{−ẇn > αṘn} = Q
(αṘn
σẇn

)

= Q
(

√

ρṘ2
n

EsEṡ(θn)

)

(2.46)

µn,B = dnP{dn} + dn+1P{dn+1}
σ2
n,B = P{dn}P{dn+1}(dn+1 − dn)

2



STATISTICS OF THE MLE AND APPROXIMATE UPPER AND LOWER BOUNDS 31

where σ2
n,B is upper bounded by σ2

n,max Eq. 2.41 and reaches it for P{dn} = 0.5.

As P{dn} = 0.5 just means that Θ̂n is uniformly distributed in Dn (because Θ̂n

can fall anywhere inside Dn), µn and σ2
n should be approximated by:

µn,1,c = µn,B (2.47)

σ2
n,1,c = min{σ2

n,U , σ
2
n,B}. (2.48)

By neglecting ẇn in Eq. 2.42 and Eq. 2.45 we obtain the following approximation:

µn,2,c =







dn Ṙn < 0

dn+1 Ṙn > 0
dn+dn+1

2 Ṙn = 0

(2.49)

σ2
n,2,c = 0. (2.50)

Consider now a subdomain with local maximum. By neglecting ẅn in Eq. 2.42,
and taking into account that Ṙn = 0 (local maximum), Θ̂n can be approximated
by:

Θ̂n = argmax
θ∈Dn

{Xs,r(θ)} ≈ θn − ẇn

αR̈n
(2.51)

which follows a normal distribution whose PDF, mean and variance can be ob-
tained from Eq. 2.9, Eq. 2.43, Eq. 2.44 and Eq. 2.51:

pn,N (θ) =
1√

2πσn,N
e
− (θ−µn,N )2

2σ2
n,N (2.52)

µn,N = θn (2.53)

σ2
n,N =

σ2
ẇn

α2R̈2
n

=
N0

2 Eṡ(θn)

α2R̈2
n

= c
−R̈0Eṡ(θn)

R̈2
n

. (2.54)

For n = 0 (around the global maximum), σ2
n,N is equal to the CRLB Eq. 2.9

because −R̈0 = Eṡ(θ0). To take into account that subdomain Dn is finite, we
propose from Eq. 2.53 and Eq. 2.54 the following PDF, mean and variance ap-
proximation:

pn,1,o(θ) =
pn,N (θ)

∫ dn+1

dn
pn,N (θ)dθ

µn,1,o =

∫ dn+1

dn

θpn,1,o(θ)dθ ≈ θn (2.55)

σ2
n,1,o =

∫ dn+1

dn

(θ − µn,1,o)
2pn,1,o(θ)dθ ≈ min{σ2

n,N , σ
2
n,U} (2.56)

By neglecting w(θ) in Eq. 2.42 and Eq. 2.51, we obtain the following mean and
variance approximation:

µn,2,o = θn (2.57)

σ2
n,2,o = 0. (2.58)
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For both oscillating and non-oscillating ACR, subdomain D0 falls around the
global maximum, and the testpoint θ0 is equal to Θ. To guarantee the conver-
gence of the MSE approximation in Eq. 2.31 to the CRLB c Eq. 2.9, µ0 and σ2

0

should always be approximated using Eq. 2.55 and Eq. 2.56 by:

µ0,0 = Θ (2.59)

σ2
0,0 = min{c, σ2

0,U}. (2.60)

Finally, the subdomain mean and variance can be approximated by:

• µ0,0 Eq. 2.59 and σ2
0,0 Eq. 2.60 for n = 0.

• µn,U Eq. 2.39 and σ2
n,U Eq. 2.40, µn,1,c Eq. 2.47 and σ2

n,1,c Eq. 2.48, or

µn,2,c Eq. 2.49 and σ2
n,2,c Eq. 2.50 for subdomain with monotone ACR.

• µn,U Eq. 2.39 and σ2
n,U Eq. 2.40, µn,1,o Eq. 2.55 and σ2

n,1,o Eq. 2.56, or

µn,2,o Eq. 2.57 and σ2
n,2,o Eq. 2.58 for subdomain with local maximum.

Note that σ2
n,U Eq. 2.40 overestimates σ2

n whereas σ2
n,2,c Eq. 2.50 and σ2

n,2,o

Eq. 2.58 underestimate it. In [70], McAulay approximates µn and σ2
n by µn,2

Eq. 2.55 and σ2
n,U Eq. 2.40 respectively.

As for TOA estimation, Eṡ(θ) Eq. 2.24 is independent of θ, we can then write
P{dn} Eq. 2.46 and σ2

n,N Eq. 2.54 as:

P{dn} = Q
(

√

ρṘ2
n

EsEṡ(θn)

)

= Q
(√

ρ
Ṙn
Esβs

)

σ2
n,N = c

−R̈0Eṡ(θn)

R̈2
n

= c
R̈2

0

R̈2
n

.

To evaluate the subdomain variance approximations σ2
n,U Eq. 2.40, σ2

n,1,c

Eq. 2.48 and σ2
n,1,o Eq. 2.56, we consider an unmodulated Gaussian pulse and a

modulated Gaussian pulse with Tw = 0.6 ns, fc = 8 GHz, DΘ = [−1.5, 1.5]Tw
and ρ = 10 dB. For the unmodulated pulse we split DΘ to N = 15 equal subdo-
mains, and for the modulated pulse we have N = 15 local maxima.

Consider first the unmodulated pulse. In Fig. 2.5(a) we show the subdomain
variance obtained by simulation σ2

n,S based on 50000 trials, and the subdomain

variance approximations σ2
n,U Eq. 2.40 and σ2

n,1,c Eq. 2.48 with respect to the

subdomain number n = −6, · · · , 6. We can see that σ2
n,S is upper bounded

by σ2
n,U as expected. We can also see that σ2

n,S is close to σ2
n,U which means

that for subdomains with monotone ACR we can approximate the subdomain
MLE Θ̂n by a random variable uniformly distributed in Dn because the ACR
is approximately constant in Dn. The subdomain variance approximation σ2

n,1,c

Eq. 2.48 does not follow σ2
n,S closely. For n = 2 (resp. -2), we have σ2

n,1,c =

2.7σ2
n,S (resp. 2.8σ2

n,S). In fact, the subdomain MLE is approximated for σ2
n,1,c
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Fig. 2.5.: (a) Subdomain variance obtained by simulation σ2
n,S , and approximate

subdomain variances σ2
n,U and σ2

n,1,c with respect to the subdomain number
n = −6, · · · , 6 (unmodulated Gaussian pulse, Tw = 0.6 ns, N = 15, ρ = 10 dB)
(b) σ2

n,S , σ2
n,U and the approximate subdomain variance σ2

n,1,o with respect to
n = −6, · · · , 6 (modulated Gaussian pulse, Tw = 0.6 ns, fc = 8 GHz, ρ = 10
dB).

by a Bernoulli variable with two atoms while in practice the ML estimate may
fall anywhere in Dn.

Consider now the modulated pulse. In Fig. 2.5(b) we show σ2
n,S , σ2

n,U and the

subdomain variance approximation σ2
n,1,o Eq. 2.56 with respect to n = −6, · · · , 6.

We can see that σ2
n,S is upper bounded by σ2

n,U as expected and that σ2
n,1,o closely

follows σ2
n,S . Unlike the case of subdomains with monotone ACR, the subdomain

MLE cannot be approximated now by a uniform variable in Dn because the
magnitude of the ACR varies widely in Dn (between the local maximum and
the two local minima). The smallest variance corresponds to n = 0 (subdomain
with global maximum) because the curvature of Rs(θ,Θ) reaches its maximum
at θ = Θ.

We did not show numerical results for the proposed subdomain mean approx-
imations because they are all very close to the mean obtained by simulation.

2.1.4 Approximate lower bounds based on Ziv and Zakai method

In this section we use the principle of binary detection to derive approximate
lower bounds for deterministic estimation. This principle was initiated by Ziv
and Zakai [58] to derive exact lower bounds for Bayesian estimation. The lower
bound obtained in [58] has been later improved by Bellini and Tartara in [60],
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Chazan, Ziv and Zakai in [75], and generalized by Bell, Steinberg, Ephraim and
VanTrees in [77].

Before presenting our approximate lower bound that is derived for determin-
istic estimation problems, we will present the generalized forms of the ZZLB and
the Bellini-Tartara lower bound (BTLB) obtained in [77] for Bayesian estimation
problems.

Denote by pΘ(θ) the a priori distribution of Θ, {ǫ|θ} = {Θ̂[r(t)] − Θ
∣

∣Θ = θ}
the local error (error when Θ is deterministic and equal to θ) and ǫ = Θ̂[r(t)]−Θ
the global error (error when Θ is random). In order to find the global MSE we
have to perform the expectation of ǫ2 with respect to both Θ (because it is
random) and the noisy observation r(t), while in order to find the local MSE
we have to perform the expectation only with respect to r(t) (because Θ is
deterministic). According to [101], we can write the global MSE as:

e = EΘ,r(t){ǫ2}

=

∫ Θ2−Θ1

0

ξ2p|ǫ|(ξ)dξ

= 2

∫ Θ2−Θ1

0

ξP|ǫ|>ξdξ − {ξ2P|ǫ|>ξ}|Θ2−Θ1
0

=
1

2

∫ 2(Θ2−Θ1)

0

ξP|ǫ|> ξ
2
dξ (2.61)

where p|ǫ|(ξ) =
∫ Θ2

Θ1
p|ǫ|
∣

∣θ
(ξ)pΘ(θ)dθ (resp. p|ǫ|

∣

∣θ
(ξ)) is the PDF of the absolute

global (resp. local) error, and P|ǫ|>ξ =
∫ Θ2

Θ1
P|Θ̂−Θ|>ξ|θpΘ(θ)dθ (resp. P|Θ̂−Θ|>ξ|θ)

the probability that the absolute global (resp. local) error is greater than ξ.

In order to find a lower bound of the global MSE e Eq. 2.61, we first search
for a lower bound of the probability of error P|ǫ|> ξ

2
:

P|ǫ|> ξ
2

=

∫ Θ2

Θ1

P|ǫ|> ξ
2 |θ
pΘ(θ)dθ =

∫ Θ2

Θ1

Pǫ> ξ
2 |θ
pΘ(θ)dθ +

∫ Θ2

Θ1

Pǫ<− ξ
2 |θ
pΘ(θ)dθ

=

∫ Θ2

Θ1

Pǫ> ξ
2 |θ
pΘ(θ)dθ +

∫ Θ2−ξ

Θ1−ξ
Pǫ<− ξ

2 |θ+ξ
pΘ(θ + ξ)dθ

=

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]Pnear(θ, θ + ξ)dθ +

∫ Θ2

Θ2−ξ
Pǫ> ξ

2 |θ
pΘ(θ)dθ

+

∫ Θ1

Θ1−ξ
Pǫ<− ξ

2 |θ+ξ
pΘ(θ + ξ)dθ

>

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]Pnear(θ, θ + ξ)dθ

>

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]Pmin(θ, θ + ξ)dθ (2.62)
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where

Pnear(θ, θ + ξ) =
pΘ(θ)

pΘ(θ) + pΘ(θ + ξ)
Pǫ> ξ

2 |θ
+

pΘ(θ + ξ)

pΘ(θ) + pΘ(θ + ξ)
Pǫ<− ξ

2 |θ+ξ

(2.63)

is the probability of error of the nearest decision rule:

Ĥnear =

{

H1 if |Θ̂ − θ| < |Θ̂ − (θ + ξ)|
H2 if |Θ̂ − θ| > |Θ̂ − (θ + ξ)|

of the decision problem with two hypotheses:

H =

{

H1 : Θ = θ PH1
= pΘ(θ)

pΘ(θ)+pΘ(θ+ξ)

H2 : Θ = θ + ξ PH2
= pΘ(θ+ξ)

pΘ(θ)+pΘ(θ+ξ)

(2.64)

and
Pmin(θ, θ + ξ) = PH1

PĤmin=H2|H1
+ PH2

PĤmin=H1|H2
(2.65)

the minimum probability of error of the same decision problem Eq. 2.64 obtained
by the optimum decision rule based on the likelihood ratio test [89, pp. 30]:

Ĥmin =

{

H1 if Λ(θ) − Λ(θ + ξ) > ln
PH2

PH1

H2 if Λ(θ) − Λ(θ + ξ) < ln
PH2

PH1

(2.66)

where Λ(θ) Eq. 2.2, Eq. 2.3 is the log-likelihood function.

From Eq. 2.61 and Eq. 2.62 we can write the generalized ZZLB cZZ as:

e =
1

2

∫ 2(Θ2−Θ1)

0

ξP|ǫ|> ξ
2
dξ

>
1

2

∫ Θ2−Θ1

0

ξ

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]Pmin(θ, θ + ξ)dθdξ

= cZZ (2.67)

where the upper integration limit is set to Θ2−Θ1 instead of 2(Θ2−Θ1) because
the two-hypothesis decision problem in Eq. 2.62 cannot be formulated if |ǫ| >
Θ2 − Θ1 because at least one of the two hypotheses (θ and θ + ξ) will then fall
outside the a priori domain DΘ.

As P|ǫ|> ξ
2

Eq. 2.62 is a decreasing function, tighter lower bounds of P|ǫ|> ξ
2

and

e can be obtained by filling the valleys of the lower bound of P|ǫ|> ξ
2

in Eq. 2.62

as proposed by Bellini and Tartara in [60] so that the generalized BTLB cBT
can be written as:

e >
1

2

∫ Θ2−Θ1

0

ξV
{

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]Pmin(θ, θ + ξ)dθ
}

dξ

= cBT (2.68)
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where

V {f(ξ)} =

{

max{g(ξ′ > −ξ)} ξ < 0
max{f(ξ′ > ξ)} ξ > 0

, g(ξ) = f(−ξ)

is the valley-filling function.

If Pmin(θ, θ + ξ) is independent of θ (i.e. Pmin(θ, θ + ξ) = Pmin(ξ), ∀θ) (e.g.
time delay estimation), then the bounds in Eq. 2.67 and Eq. 2.68 can be written
as:

cZZ =
1

2

∫ Θ2−Θ1

0

ξPmin(ξ)

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]dθdξ

cBT =
1

2

∫ Θ2−Θ1

0

ξV
{

Pmin(ξ)

∫ Θ2−ξ

Θ1

[pΘ(θ) + pΘ(θ + ξ)]dθ
}

dξ.

In Eq. 2.62 it is possible to find a lower bound of the probability of error P|ǫ|> ξ
2

using the minimum probability of error Pmin(θ, θ+ξ) because both θ and θ+ξ are
possible values of the unknown parameter Θ thanks to the a priori distribution
pΘ(θ) of the latter. Accordingly, it is possible to formulate a decision problem
with two hypotheses Eq. 2.64 and to find the corresponding nearest-decision-rule
probability of error Pnear(θ, θ + ξ) Eq. 2.63 and minimum probability of error
Pmin(θ, θ + ξ) Eq. 2.65. In deterministic estimation problems only one value of
the unknown parameter is possible (Θ = θ0 and pΘ(θ) = δ(θ−θ0)). Hence, there
is no decision problem with two hypotheses that can be formulated in order to
find the corresponding nearest-decision-rule probability of error Pnear(θ, θ + ξ)
and minimum probability of error Pmin(θ, θ + ξ). To overcome this problem we
assume that the probabilities Pǫ> ξ

2 |θ
and Pǫ<− ξ

2 |θ
obtained by the estimator

achieving the minimum local MSE are independent of θ (i.e. Pǫ> ξ
2 |θ

= Pǫ> ξ
2 |θ0

,

∀θ and Pǫ<− ξ
2 |θ

= Pǫ<− ξ
2 |θ0

, ∀θ). Therefore, we can write:

e
∣

∣θ0 =

∫ ǫmax

0

ξ2p|ǫ|
∣

∣θ0
(ξ)dξ

= 2

∫ ǫmax

0

ξP|ǫ|>ξ
∣

∣θ0
dξ − {ξ2P|ǫ|>ξ

∣

∣θ0
}
∣

∣

ǫmax

0

=
1

2

∫ 2ǫmax

0

ξP|ǫ|> ξ
2

∣

∣θ0
dξ (2.69)
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Pǫ<− ξ
2 |θ0

Pǫ<− ξ
2 |θ0+ξ

pΘ̂|θ0+ξ(θ)pΘ̂|θ0(θ)

Θ1 Θ2θ0 + ξθ0

ξ
2

Pǫ> ξ
2 |θ0

ξ
2

ξ
2

Fig. 2.6.: Decision problem with two equiprobable hypotheses: H1 : Θ = θ0 and
H2 : Θ = θ0 + ξ.

where

P|ǫ|> ξ
2 |θ0

= 2

[

1

2
Pǫ> ξ

2 |θ0
+

1

2
Pǫ<− ξ

2 |θ0

]

≈ 2











Pǫ0 = 1
2Pǫ> ξ

2 |θ0−
ξ
2

+ 1
2Pǫ<− ξ

2 |θ0+
ξ
2

Pǫ1 = 1
2Pǫ> ξ

2 |θ0−ξ
+ 1

2Pǫ<− ξ
2 |θ0

Pǫ2 = 1
2Pǫ> ξ

2 |θ0
+ 1

2Pǫ<− ξ
2 |θ0+ξ

> 2







Pmin(θ0 − ξ
2 , θ0 + ξ

2 )
Pmin(θ0 − ξ, θ0)
Pmin(θ0, θ0 + ξ)

(2.70)

with ǫmax = max{Θ2−θ0, θ0−Θ1}. We denote by Pǫ0 , Pǫ1 and Pǫ2 the probabil-
ities of error of the nearest decision rule of the following two-hypothesis decision
problems (decision problem in Eq. 2.72 is illustrated in Fig. 2.6):

H =

{

H1 : Θ = θ0 − ξ
2 PH1

= 1
2

H2 : Θ = θ0 + ξ
2 PH2

= 1
2

H =

{

H1 : Θ = θ0 − ξ PH1
= 1

2
H2 : Θ = θ0 PH2

= 1
2

(2.71)

H =

{

H1 : Θ = θ0 PH1
= 1

2
H2 : Θ = θ0 + ξ PH2

= 1
2

(2.72)

and by Pmin(θ0− ξ
2 , θ0+ ξ

2 ), Pmin(θ0−ξ, θ0) and Pmin(θ0, θ0+ξ) the corresponding
minimum probabilities of error obtained by the optimum decision rule based on
the likelihood ratio test.

From Eq. 2.69 and Eq. 2.70 we obtain the following approximate lower bounds:

z0 =

∫ ǫ0

0

ξPmin(θ0 −
ξ

2
, θ0 +

ξ

2
)dξ (2.73)

z1 =

∫ ǫ1

0

ξPmin(θ0 − ξ, θ0)dξ (2.74)

z0 =

∫ ǫ2

0

ξPmin(θ0, θ0 + ξ)dξ (2.75)
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where ǫ0 = min{2(θ0−Θ1), 2(Θ2−θ0)}, ǫ1 = min{θ0−Θ1, ǫ0} and ǫ2 = min{Θ2−
θ0, ǫ0}. The integration limits are set to ǫ0, ǫ1 and ǫ2 because at least Pǫ> ξ

2 |θ0
or

Pǫ<− ξ
2 |θ0

Eq. 2.70 is equal to zero for ξ > ǫ0, and because θ0 − ξ Eq. 2.71 and

θ0 + ξ Eq. 2.72 fall outside DΘ for ξ > (θ0 −Θ1) and ξ > (Θ2 − θ0) respectively.

Similarly to the BTLB for Bayesian estimation, tighter bounds can be ob-
tained by filling the valleys of Pmin(θ0 − ξ

2 , θ0 + ξ
2 ), Pmin(θ0 − ξ, θ0) and

Pmin(θ0, θ0 + ξ):

b0 =

∫ ǫ0

0

ξV {Pmin(θ0 −
ξ

2
, θ0 +

ξ

2
)}dξ (2.76)

b1 =

∫ ǫ1

0

ξV {Pmin(θ0 − ξ, θ0)}dξ (2.77)

b2 =

∫ ǫ2

0

ξV {Pmin(θ0, θ0 + ξ)}dξ. (2.78)

When Pmin(θ, θ′) is a function of θ′ − θ (e.g. TOA estimation) we can write
the bounds in Eq. 2.73, Eq. 2.74, Eq. 2.75, Eq. 2.76, Eq. 2.77 and Eq. 2.78 as
(i = 0, 1, 2):

zi =

∫ ǫi

0

ξPmin(ξ)dξ (2.79)

bi =

∫ ǫi

0

ξV {Pmin(ξ)}dξ (2.80)

where z0 and b0 are the tightest given that ǫ0 > ǫ1, ǫ2.

As the probability of error of an arbitrary detector Ĥ is given by:

Pe = PH1
PĤ=H2|H1

+ PH2
PĤ=H1|H2

. (2.81)

we can write the minimum probability of error from Eq. 2.3, Eq. 2.37, Eq. 2.66
and Eq. 2.81 as:

Pmin(θ, θ′) =
1

2

[

PΛ(θ′)>Λ(θ)|Θ=θ + PΛ(θ)>Λ(θ′)|Θ=θ′
]

=
1

2

[

Q(θ′, θ)|Θ=θ +Q(θ, θ′)|Θ=θ′
]

= Q
(

√

ρ

2
[1 −R(θ, θ′)]

)

(2.82)

where it has been taken into account that Rs(θ, θ
′) = Rs(θ

′, θ) Eq. 2.5.

2.1.5 Alternate MSE approximations and approximate bounds

In this this section we derive two approximate upper bounds and two approx-
imations of the statistics of the MLE based on the subdomain probability ap-

proximation P
(3)
n Eq. 2.38, as well as an approximate lower bound based on the

Taylor series expansion of the CCR to second order Eq. 2.42.
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As P
(3)
n Eq. 2.38 is an approximation of Pn = P{Θ̂ ∈ Dn} Eq. 2.32 (probabil-

ity that the MLE Θ̂ falls in subdomain Dn), we can approximate the PDF Θ̂ by

the limit of P
(3)
n as N approaches infinity (so that the width of Dn approaches

zero). As such, we can write the approximate PDF, mean and MSE as:

pM (θ) = lim
N→∞

P (3)
n =

Q(θ,Θ)
∫ Θ2

Θ1
Q(θ,Θ)dθ

(2.83)

µM =

∫ Θ2

Θ1

θpM (θ)dθ (2.84)

eM =

∫ Θ2

Θ1

(θ − Θ)2pM (θ)dθ. (2.85)

We will see from the numerical results in Sec. 2.1.6 that eM acts as an upper
bound and converges to a multiple of the CRLB at high SNR. In fact, pM (θ)
overestimates the true PDF of Θ̂ in the vicinity of Θ. To force eM to converge
to the CRLB, we approximate the PDF of Θ̂ by a mixture of pM (θ) and the
normal distribution p0,N (θ) Eq. 2.52 (of mean equal to Θ and variance equal to
the CRLB):

pMC(θ) = (1 − 2PM )p0,N (θ) + 2PMpM (θ) (2.86)

µMC = (1 − 2PM )Θ + 2PMµM (2.87)

eMC = (1 − 2PM )c(Θ) + 2PMeM (2.88)

where 2PM is the probability that Θ̂ does not fall in the vicinity of Θ (i.e.
probability of threshold effect). To compute PM we choose a testpoint θM , the
closest to Θ but not in its vicinity, and compute PM as PM = V {Q0(θM )}. The
factor 2 is due to the symmetry of the ACR around Θ. With oscillating ACR,
θM should not be farther than the first local maximum (whose abscissa θ1 is the
best testpoint) after the global one. We use the valley-filling function V {·} to
force PM to give a good indication on the threshold effect if θM falls in the valley
between the global and the first local maximum. By doing so, PM becomes the
same at θM and θ1. We intuitively assume that the vicinity of Θ corresponds to
half the positive mainlobe of Rs(θ,Θ) so we can set θM at θM = Θ + π

4βs(Θ) .

In fact, as can be seen in Fig. 2.2(b) the half positive mainlobe width can be
approximated by 1

4φc(Θ) that can be approximated in turn from Eq. 2.18 by
π

2βs(Θ) .
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As with oscillating ACR, Θ̂ only falls around the local maxima, more approx-
imations can be obtained using the valley-filling function:

pV (θ) =
V {Q(θ,Θ)}

∫ Θ2

Θ1
V {Q(θ,Θ)}dθ

(2.89)

µV =

∫ Θ2

Θ1

θpV (θ)dθ (2.90)

eV =

∫ Θ2

Θ1

(θ − Θ)2pV (θ)dθ (2.91)

pV N (θ) = (1 − 2PM )p0,N (θ) + 2PMpV (θ) (2.92)

µV N = (1 − 2PM )Θ + 2PMµV (2.93)

eV N = (1 − 2PM )c(Θ) + 2PMeV . (2.94)

Consider now the approximation of the statistics of Θ̂ Eq. 2.8 using the Taylor
series in Eq. 2.42 about θ0 = Θ (global maximum). As Ṙ0 = 0, we can write:

Θ̂ = argmax
θ

{Xs,r(θ)} ≈ Θ̂C = Θ − ẇ0

αR̈0 + ẅ0

(2.95)

where ẇ0

αR̈0+ẅ0
is a ratio of two normal variables. Statistics of normal variable

ratio are studied in [102–104]. We can show from [103] that Θ̂C is distributed as:

Θ̂C ∼ Θ + a1 +
χ

a2
(2.96)

with a1 = ν0
σẇ0

σẅ0
, a2 =

σẅ0

h , h = sign(ν0)σẇ0

√

1 − ν2
0 , sign(ξ) = 1 (resp. -1) for

ξ > 0 (resp. ξ < 0), and:

pχ(ξ) =
e−

1
2 (a2

3+a
2
4)

π(1 + ξ2)

{

1 +
√

2πqe
q2

2

[

1

2
−Q (q)

]}

(2.97)

where pχ(ξ) is the PDF of χ, q = a3ξ+a4√
1+ξ2

, a3 = αR̈0
a1

h and a4 = −αR̈0

σẅ0
=

√
ρβ

2(Θ)
δ2(Θ)

with δ4(θ) = Es̈(θ)
Es

. From Eq. 2.97 we can approximate the PDF, mean, variance

and MSE of Θ̂C by:

pC(θ) = sign(ν0)a2pχ[a2(θ − Θ − a1)] (2.98)

µC =

∫ Θ2

Θ1

θpC(θ)dθ (2.99)

σ2
C =

∫ Θ2

Θ1

(θ − µC)2pC(θ)dθ (2.100)

eC = (µC − τ)2 + σ2
C . (2.101)
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Note that the moments
∫∞
−∞ ξipχ(ξ)dξ, i = 1, 2, · · · (infinite domain) are infinite

like with Cauchy distribution [103]. We will see in Sec. 2.1.6 that eC Eq. 2.101
behaves as a lower bound of the MSE of the MLE. This result could be proved
using the Taylor series expansion in Eq. 2.42. As we do not provide here an
explicit proof, we will consider eC as an approximate lower bound.

2.1.6 Numerical results and discussion

In this section we show and discuss some numerical results of the derived MSE
approximations and approximate upper and lower bounds for TOA estimation
using UWB waveforms.

We consider an unmodulated Gaussian pulse with Tw = 2 ns, Θ = 0 and
DΘ = [−2, 1.5]Tw, and the same pulse modulated by fc = 6.85 GHz. With the
former we consider N = 9 equal subdomains and with the latter a subdomain
around each local maximum (N = 48).

Denote by:

ei,j,x =

n2
∑

n=n1

P (i)
n [(Θ − µn,j,x)

2 + σ2
n,j,x] (2.102)

the MSE approximation based on Eq. 2.31 and using the subdomain probability

approximation P
(i)
n (i ∈ {1, 2, 3}, see Eq. 2.35, Eq. 2.36, Eq. 2.38) and subdomain

mean and variance approximations µn,x,y and σ2
n,x,y ((j, x) = U in Eq. 2.39,

Eq. 2.40, and (j, x) ∈ {1, 2} × {c, o} in Eq. 2.47–Eq. 2.50, Eq. 2.55–Eq. 2.58).
The approximate upper bound derived in [70] corresponds to e2,U .

The results about the unmodulated pulse are shown and discussed in
Sec. 2.1.6.1 and those about the modulated pulse in Sec. 2.1.6.2

2.1.6.1 Unmodulated Gaussian pulse

Here we show and discuss the numerical results obtained for the unmodulated
pulse.

In Fig. 2.7(a) we show the MSE eS obtained by simulation based on 10000
trials, five MSE approximations: e1,U , e1,1,c, e1,2,c, e3,1,c Eq. 2.102 and eMN

Eq. 2.88 (equal to eMN Eq. 2.94 because of the non-oscillating ACR), the CRLB
c Eq. 2.22 (equal to the ECRLB ce Eq. 2.23 because unmodulated pulse) and
the maximum MSE eU Eq. 2.20, versus the SNR.

In Fig. 2.7(b) we show eS , c, eU and two approximate upper bounds e2,U
Eq. 2.102 and eM Eq. 2.85 (equal to eV Eq. 2.91 because of the non-oscillating
ACR).

In Fig. 2.7(c) we show eS , c, the BLB cB Eq. 2.19, two approximate lower
bounds: eC Eq. 2.101 and z0 Eq. 2.79 (equal to b0 Eq. 2.80 because non-
oscillating ACR), and eU .
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Fig. 2.7.: MSE approximations and approximate upper and lower bounds ob-
tained with the unmodulated Gaussian pulse with respect to the SNR ρ (Tw = 2
ns, Θ = 0, DΘ = [−2, 1.5]Tw) (a) Simulated MSE eS , MSE approximations e1,U ,
e1,1,c, e1,2,c, e3,1,c and eMN , CRLB c, maximum MSE eU (b) eS , c, eU , approx-
imate upper bounds e2,U and eM (c) eS , c, BLB cB , approximate lower bounds
cC and z0, eU .

We can see from eS that, as mentioned in the introduction of Sec. 2.1, the
SNR axis can be divided into three regions:

1. A priori region: where the maximum MSE eU is achieved (estimator uni-
formly distributed in the a priori domain).

2. Threshold region: the region of transition between the a priori and asymp-
totic regions.
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3. Asymptotic region: where the CRLB is achieved.

Denote by:

ρpr = ρ ; e(ρ) = 0.5eU (2.103)

ρas = ρ ; e(ρ) = 1.1c (2.104)

the a priori and asymptotic thresholds delimiting the a priori, threshold and
asymptotic regions (see Fig. 2.1(a)). From eS , we have ρpr = 4 dB and ρas = 16
dB.

The MSE approximations e1,U , e1,1,c, e1,2,c, e3,1,c derived in Sec. 2.1.3 using
the subdomain method are very accurate and closely follow eS ; e1,1,c is more
accurate than e3,1,c which slightly overestimates eS , because e1,1,c uses the sub-

domain probability approximation P
(1)
n Eq. 2.35 which considers all testpoints

during the computation of the probability, whereas e3,1,c uses the approximation

P
(3)
n Eq. 2.38 based on the approximate upper bound P

(2)
n Eq. 2.36 which only

consider the 0th and the nth testpoints; e1,1,c is more accurate than e1,U which
slightly overestimates eS , and than e1,2,c which slightly underestimates eS , be-
cause e1,1,c uses the subdomain mean and variance approximations µn,1,c Eq. 2.47
and σ2

n,1,c Eq. 2.48 obtained from the Taylor approximation of the noise w(θ) in
Eq. 2.4 to first order, whereas e1,U uses µn,U Eq. 2.39 and σ2

n,U Eq. 2.40 assuming
the subdomain MLE uniformly distributed in the subdomainDn (overestimation
of the noise), and e1,2,c uses µn,2,c Eq. 2.49 and σ2

n,2,c Eq. 2.50 neglecting the
noise.

The MSE approximation eMN derived in Sec. 2.1.5 based on the mixture of
two distributions is very accurate as well.

The approximate upper bound e2,U derived by McAulay [70] converges to the
CRLB simultaneously with eS so it can be used to accurately compute the asymp-
totic threshold. However, it is less tight in the a priori and a priori -asymptotic
transition regions because it uses the approximate subdomain probability upper

bound P
(2)
n Eq. 2.36 which is not tight in these regions as already shown and

discussed in Fig. 2.3(a) and Fig. 2.3(b). Moreover, it approaches infinity when
N → ∞ as already mentioned in Sec. 2.1.3.1.

The approximate upper bound eM derived in Sec. 2.1.5 is quite tight. It con-
verges to a multiple of the CRLB (2.68c) at high SNR. In fact, it is obtained
from the PDF approximation pM (θ) Eq. 2.83 which is more flat in the vicinity
of Θ than the true PDF since it is obtained from the approximate upper bound

P
(2)
n Eq. 2.36. Nevertheless, it can be used to accurately calculate the asymptotic

threshold because it converges to its asymptotic regime simultaneously with eS .
This fact will be more apparent in Fig. 2.8(b) with the modulated pulse.

Both the BLB cB and the approximate lower bound eC derived in Sec. 2.1.5
outperform the CRLB. Unlike the case of modulated pulse considered later, eC
is much better than cB which converges much earlier to the CRLB.
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Fig. 2.8.: MSE approximations and approximate upper and lower bounds ob-
tained with the modulated Gaussian pulse with respect to the SNR ρ (Tw = 2
ns, fc = 6.85 GHz, Θ = 0, DΘ = [−2, 1.5]Tw) (a) MSE obtained by simulation
eS , four MSE approximations e1,1,o, e3,1,o, eMN and eV N , CRLB c, ECRLB ce,
maximum MSE eU (b) eS , c, ce, eU , approximate upper bounds e2,U , eM and eV
(c) eS , c, ce, BLB cB , approximate lower bounds cC , z0 and b0, eU (c) eS , eS,e
(eS,e is the MSE obtained by simulation with the unmodulated pulse considered
in Sec. 2.1.6.2), c, ce, and eU .

The approximate lower bound z0 derived in Sec. 2.1.4 is sufficiently tight and
converges to the CRLB simultaneously with eS .

2.1.6.2 Modulated Gaussian pulse

Here we show and discuss the numerical results obtained for the modulated pulse.
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In Fig. 2.8(a) we show the MSE obtained by simulation eS , four MSE approx-
imations: e1,1,o, e3,1,o Eq. 2.102, eMN Eq. 2.88 and eMN Eq. 2.94, the CRLB
c Eq. 2.22, the ECRLB ce Eq. 2.23 (equal to CRLB of the unmodulated pulse)
and the maximum MSE eU Eq. 2.20, versus the SNR.

In Fig. 2.8(b) we show eS , c, ce, eU and three approximate upper bounds e2,U
Eq. 2.102, eM Eq. 2.85 and eV Eq. 2.91.

In Fig. 2.8(c) we show eS , c, ce, the BLB cB Eq. 2.19, three approximate
lower bounds: eC Eq. 2.101, z0 Eq. 2.79 and b0 Eq. 2.80, and eU .

In Fig. 2.8(d) we show the MSE obtained by simulation for the modulated
pulse eS (ρ = −5, · · · , 40 dB) and that for the unmodulated pulse eS,e (ρ =
−5, · · · , 20 dB) (eS,e is equal to eS shown in Sec. 2.1.6.1), c, and eU , versus the
SNR.

From eS we can see that the SNR axis can be divided into five regions as
already mentioned in the introduction of Sec. 2.1:

1. A priori region.

2. A priori -ambiguity transition region.

3. Ambiguity region: where the ECRLB is achieved.

4. Ambiguity-asymptotic transition region.

5. Asymptotic region.

As shown in Fig. 2.1(b), these regions are delimited by the a priori ρpr and
asymptotic ρas thresholds defined in Eq. 2.103 and Eq. 2.104 and the begin-
ambiguity and end-ambiguity thresholds defined as:

ρam1 = ρ ; e(ρ) = 2ce (2.105)

ρam2 = ρ ; e(ρ) = 0.5ce. (2.106)

From eS we have ρpr = 7 dB, ρam1 = 15 dB, ρam2 = 28 dB and ρas = 33 dB.

The MSE approximations e1,1,o and e3,1,o obtained using the subdomain
method are very accurate and closely follow eS .

The MSE approximations eMN and eV N Eq. 2.94 (version of eMN using the
valley-filling function) are very accurate too but less accurate than e1,1,o and
e3,1,o. They converge to the CRLB a bit earlier than eS ; eMN is more accurate
than eMN thanks to the valley-filling function.

The approximate upper bound e2,U [70] is very tight above the a priori region.

The approximate upper bounds eM and eV are sufficiently tight (tighter than
z0 based on the binary detection method); eM (resp. eV ) is tighter than eV (resp.
eM ) at high (resp. low) SNR. They both converge to a multiple of the CRLB
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(1.75c) in the asymptotic region. This is due to the overestimation of the PDF
of the MLE in the vicinity of the global maximum. This problem is solved in
Sec. 2.1.5 by approximating the PDF of the MLE by a mixture of two PDF
which leads to the MSE approximations eMN and eV N already examined. The
main advantage of eM , eV , eMN and eV N is that they are very easy to compute
(no need of testpoints).

The BLB cB clearly indicates the presence of the ambiguity and asymptotic
regions. However, it detects them very early so it cannot be used correctly cal-
culate the begin-ambiguity, end-ambiguity and asymptotic thresholds (ρam1 = 5
dB, ρam2 = 20 dB and ρas = 26 dB instead of 15, 28 and 33 dB). Furthermore,
it does not describe correctly the behavior of the MSE in the a priori region.

The approximate lower bound eC outperforms the CRLB, but is outperformed
by the BLB cB (unlike the case of unmodulated pulse). It is very optimistic and
does not indicate the presence of the ambiguity region.

The approximate lower bound z0 is sufficiently tight, but b0 Eq. 2.80 is much
tighter thanks to the valley-filling function. They both can be used to accu-
rately calculate the asymptotic threshold and to roughly detect the a priori and
ambiguity regions.

Let us now compare the MSE eS achieved by the modulated pulse with eS,e
achieved by the unmodulated one. Both pulses approximately achieve the same
MSE below the end-ambiguity threshold of the modulated pulse (ρam2 = 28
dB) and achieve the ECRLB between the begin-ambiguity and end-ambiguity
thresholds. The MSE achieved with the unmodulated pulse is slightly smaller
than that achieved with the modulated one because with the former the ML es-
timates spread in continuous manner along the ACR whereas with the latter they
just spread around the local maxima. The asymptotic threshold of the unmodu-
lated pulse (16 dB) is approximately equal to the begin-ambiguity threshold of
the modulated pulse (15 dB). Above the end-ambiguity threshold, the MSE of
the modulated pulse rapidly converges to the CRLB while that of the unmodu-
lated one remains equal to the ECRLB.

To summarize we can say that, for a given nonlinear estimation problem with
oscillating ACR, the MSE achieved by the ACR is the same as that achieved by
its envelope below the end-ambiguity threshold. They both achieve the ECRLB
between the begin-ambiguity and end-ambiguity thresholds. Above the latter
threshold, the MSE achieved by the ACR converges to the CRLB whereas that
achieved by its envelope remains equal to the ECRLB.

In the next section we will consider the problem of TOA estimation based
on UWB signals and compute the thresholds of the different SNR regions with
respect to some features of the transmitted signal. We will then exploit the
obtained results to design, according to the available SNR, the spectrum of the
transmitted signal that minimizes the achievable MSE.
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2.2 THRESHOLD COMPUTATION

In Sec. 2.1, we have studied the threshold and ambiguity phenomena. We have
seen that due to the threshold phenomenon, the SNR axis can be in general split
into three regions (see Fig. 2.1(a)): 1) the a priori region where the estimator
becomes uniformly distributed in the a priori domain, 2) the threshold region
where an intermediate accuracy is achieved, and 3) the asymptotic region where
the CRLB is achieved. In the special case of oscillating ACRs, the SNR axis can
be split into five regions (see Fig. 2.1(b)): 1) the a priori region, 2) the a pri-
ori -ambiguity transition region, 3) the ambiguity region where an intermediate
accuracy (the ECRLB) determined by the curvature of the envelope of the ACR
is achieved, 4) the ambiguity-asymptotic transition region, and finally 5) the
asymptotic region. As depicted in Fig. 2.1(a) and Fig. 2.1(b), we have denoted
by ρpr, ρam1, ρam2 and ρas the a priori, begin-ambiguity, end-ambiguity and
asymptotic thresholds delimiting the different regions.

We have derived some approximations of the MSE of the MLE by splitting
the a priori domain of the unknown parameter into subdomains and then com-
puting the probability of each subdomain and the statistics of the MLE in each
subdomain. As already mentioned in Sec. 2.1, this method has been firstly pro-
posed by Wozencraft [89] and improved by McAulay [70] in order to derive an
approximate upper bound for TOA estimation. As shown in Sec. 2.1, the pro-
posed approximations of the MSE are highly accurate and closely follow the truly
achieved MSE in practice.

We have also derived some approximate lower bounds for deterministic esti-
mation using the principle of binary detection, which has been firstly used by
Ziv and Zakai [58] to derive exact lower bounds for Bayesian estimation. The
derived approximate bounds are very tight.

In order to better understand the threshold and ambiguity phenomena, we
consider in this section the problem of TOA estimation based on UWB signals.
We compute the thresholds of the SNR regions mentioned above with respect
to some features of the transmitted signal. The thresholds are computed using
the MSE approximations and approximate lower bounds derived in Sec. 2.1, and
Analytic expressions of the thresholds have been obtained based on the approxi-
mate upper bound derived by McAulay [70]. Both modulated and unmodulated
waveforms have been considered. The features of the transmitted signal that we
have considered are a priori time bandwidth product (ATBW) and the inverse
fractional bandwidth (IFBW).

We will show that the a priori threshold depends on both the a priori domain
and the shape of the envelope of the ACR of the transmitted signal. Regarding
the begin-ambiguity threshold (beginning of the ambiguity region), it only de-
pends on the shape of the envelope of the ACR. However, the end-ambiguity (end
of the ambiguity region) and asymptotic (beginning of the asymptotic region)
thresholds only depend on the shape of the ACR, or equivalently on any set of
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parameters determining this shape, like the shape of the envelope with the IFBW
feature, regardless the values taken by other parameters like the bandwidth and
the carrier.

In Sec. 2.2.1 we recall the system model for TOA estimation based on UWB
signals, the MSE approximations, the lower bounds and the approximate lower
bounds what we will use in this section. In Sec. 2.2.2 we compute the thresh-
olds of the SNR regions with respect to the features of the transmitted signal
for both modulated and unmodulated UWB signals. In Sec. 2.2.3 we show and
discuss some numerical results about the thresholds for both modulated and
unmodulated Gaussian pulses.

2.2.1 System model, MSE approximations, and approximate lower bounds

As mentioned before, we recall here the system model, the MSE approximations,
the lower bounds and the approximate lower bounds that will be used in Sec. 2.2.

2.2.1.1 System model

We can write the received signal as:

r(t) = αs(t− Θ) + w̃(t) (2.107)

where s(t) denotes the transmitted signal, α and Θ the gain and the time delay
introduced by the channel, and w̃(t) the AWGN of two-sided power spectral
density (PSD) of N0

2 . The deterministic unknown parameter to estimate is Θ,
and DΘ = [Θ1,Θ2] denotes its a priori domain.

We can write the MLE Θ̂ of Θ as:

Θ̂ = argmax
θ

{Xr,s(θ)} (2.108)

Xr,s(θ) = αRs(θ − Θ) + w(θ) = αEsR(θ − Θ) + w(θ) (2.109)

R(θ) =
Rs(θ)

Es
(2.110)

whereXr,s(θ) is the CCR r(t) of s(t), Rs(θ) the ACR of s(t), R(θ) the normalized
ACR, and w(θ) = Xw̃,s(θ) (CCR w̃(t) of s(t)) a colored zero-mean Gaussian noise
of covariance Cw(θ) = N0

2 EsR(θ).

We can write the CRLB, ECRLB (envelope CRLB) and maximum MSE of Θ
as:

c =
N0/2

α2Eṡ
=

−N0/2

α2R̈s(0)
=

1

ρβ2
s

(2.111)

ce = − N0/2

α2ℜ{ëRs
(0)} =

1

ρβ2
e

(2.112)

eU =
(Θ2 − Θ1)

2

12
+
[

Θ − Θ1 + Θ2

2

]2

(2.113)
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where

ρ =
α2Es
N0/2

(2.114)

β2
s =

Eṡ
Es

= − R̈s(0)

Es
=

∫ +∞
−∞ 4π2f2|Fs(f)|2df
∫ +∞
−∞ |Fs(f)|2df

(2.115)

β2
e =

∫ +∞
−∞ 4π2f2|Fes

(f)|2df
∫ +∞
−∞ |Fes

(f)|2df
(2.116)

denote the SNR, the MQBW of s(t) and the envelope EMQBW (equal to the
MQBW of the envelope), with

β2
s = β2

e + 4π2f2
c ≈ 4π2f2

c . (2.117)

We have already mentioned in Sec. 2.1 that the CRLB c Eq. 2.111 is much
smaller than the ECRLB ce Eq. 2.112 because the MQBW β2

s Eq. 2.117 is much
larger than the EMQBW β2

e Eq. 2.116 so the estimation seriously deteriorates if
the ECRLB is achieved instead of the CRLB due to ambiguity. We recall that to
benefit from this super accuracy at sufficiently high SNR, the sufficient condition
to satisfy is that the phase of the transmitted signal should not be modified across
the communication channel (e.g. due to fading), regardless whether the signal
is pure impulse-radio UWB (carrier-less), carrier-modulated with known phase
(e.g. in monostatic radar), or carrier-modulated with unknown phase (e.g. in
most communication systems).

2.2.1.2 MSE approximations obtained from the subdomain method

We have seen in Sec. 2.1 that by splitting the a priori domain DΘ = [Θ1,Θ2] of
Θ into N = n2 −n1 + 1 subdomains Dn = [dn, dn+1), (n = n1, · · · , n2), (n1 6 0,
n2 > 0), we can write the MSE of Θ̂ as:

e =

n2
∑

n=n1

Pn[(Θ − µn)
2 + σ2

n] (2.118)

where Pn = P{Θ̂ ∈ Dn} denotes the subdomain probability (i.e. probability
that Θ̂ falls in Dn), µn and σ2

n the mean and variance of the subdomain MLE
Θ̂n = Θ̂|Θ̂ ∈ Dn.

According to Sec. 2.1, the subdomain probability Pn in Eq. 2.118 can be

approximately upper bounded by P
(2)
n [70] and approximated by P

(3)
n :

P (2)
n =

{

Q(θ0, θ1) or 1 n = 0
Q(θn, θ0) n 6= 0

(2.119)

P (3)
n =

P
(2)
n

∑n2

n=n1
P

(2)
n

(2.120)
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where θn1
, · · · , θn2

denote N testpoints chosen in the subdomains Dn1
, · · · , Dn2

respectively, and

Q(θ, θ′) = P{Xr,s(θ) > Xr,s(θ
′)} = Q

(

√

ρ

2

R(θ′ − Θ) −R(θ − Θ)
√

1 −R(θ − θ′)

)

(2.121)

with Q(y) = 1√
2π

∫∞
y
e−

ξ2

2 dξ being the Q function.

We have seen in Sec. 2.1 that for oscillating ACR Rs(θ). we consider a subdo-
main around each local maximum (i.e. between the two local minima adjacent to
it) and choose the corresponding testpoint as the abscissa of the local maximum.
Whereas for non-oscillating ACR, we split the a priori domain of Θ into N equal
subdomains and choose the centers of subdomains θn = dn+dn+1

2 as testpoints.
For both oscillating and non-oscillating ACR the subdomain D0 contains the
global maximum, and the corresponding testpoint θ0 is equal to the unknown
parameter Θ. As such, the ACR inside a given subdomain is either increasing
then decreasing (i.e. subdomain with local maximum) or purely monotone (i.e.
increasing, decreasing or constant).

As shown in Sec. 2.1, we can approximate the subdomain mean µn and vari-
ance σ2

n in Eq. 2.118 by:

• µ0,0 and σ2
0,0 for n = 0.

• µn,U and σ2
n,U , µn,1,c and σ2

n,1,c, or µn,2,c and σ2
n,2,c for subdomain with

monotone ACR.

• µn,U and σ2
n,U , µn,1,o and σ2

n,1,o, or µn,2,o and σ2
n,2,o for subdomain with

local maximum.

where

µn,U = dn+dn+1

2 ; σ2
n,U = (dn+1−dn)2

12 (2.122)

µn,1,c = µn,B ; σ2
n,1,c = min{σ2

n,U , σ
2
n,B} (2.123)

µn,2,c =







dn Ṙn < 0

dn+1 Ṙn > 0
dn+dn+1

2 Ṙn = 0

; σ2
n,2,c = 0 (2.124)

µn,1,o = θn ; σ2
n,1,o = min{σ2

n,N , σ
2
n,U} (2.125)

µn,2,o = θn ; σ2
n,2,o = 0 (2.126)

µ0,0 = θ0 = Θ ; σ2
0,0 = min{c, σ2

0,U} (2.127)
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with Rn = Rs(θn − Θ) and

µn,B = dnP{dn} + dn+1P{dn+1} (2.128)

σ2
n,B = P{dn}P{dn+1}(dn+1 − dn)

2 (2.129)

P{dn} = 1 − P{dn+1} = Q
(√

ρ
Ṙn
Esβs

)

(2.130)

σ2
n,N = c

−R̈0Eṡ(θn)

R̈2
n

= c
R̈2

0

R̈2
n

. (2.131)

Finally we can write the MSE approximation based on Eq. 2.118 as:

ei,j,x =

n2
∑

n=n1

P (i)
n [(Θ − µn,j,x)

2 + σ2
n,j,x] (2.132)

where i = 2 or 3 (see Eq. 2.119 and Eq. 2.120), and (j, x) = U (see Eq. 2.122)
or (j, x) ∈ {1, 2} × {c, o} (see Eq. 2.123, Eq. 2.124, Eq. 2.125, Eq. 2.126).

We have seen in Sec. 2.1 that all combinations of ei,j,x are highly accurate and
closely follow the truly achieved MSE in practice except for i = 2 which gives a
very tight upper bound at medium and high SNRs.

2.2.1.3 approximate lower bounds based on the Ziv and Zakai method

Using the binary detection principle proposed by Ziv and Zakai [58] we have
derived in Sec. 2.1 the following approximate lower bounds:

z0 =

∫ ǫ0

0

ξPmin(ξ)dξ (2.133)

b0 =

∫ ǫ0

0

ξV {Pmin(ξ)}dξ (2.134)

where ǫ0 = min{2(θ0 −Θ1), 2(Θ2 − θ0)}, V {f(ξ)} denotes the valley-filling func-
tion, and

Pmin(ξ) = Q
(

√

ρ

2
[1 −R(ξ)]

)

. (2.135)

We have seen in Sec. 2.1 that both z0 and b0 are sufficiently tight, but b0 is
much tighter than z0 with oscillating ACR.

2.2.2 Threshold computation

In order to better understand the threshold and ambiguity phenomena, we com-
pute in this section the thresholds separating the different SNR regions with
respect to some features of the transmitted signal. The obtained results will be
later used in Sec. 2.3 in the design of the transmitted signal.
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The a priori, begin-ambiguity, end-ambiguity and asymptotic thresholds can
be defined as:

ρpr = ρ ; e(ρ) = αpreU (2.136)

ρam1 = ρ ; e(ρ) = αam1ce (2.137)

ρam2 = ρ ; e(ρ) = αam2ce (2.138)

ρas = ρ ; e(ρ) = αasc (2.139)

where we take, like in Sec. 2.1, αpr = 0.5, αam1 = 2, αam2 = 0.5 and αas = 1.1.

The aim is to compute theses thresholds with respect to the a priori time
bandwidth product (ATBW), and inverse fractional bandwidth (IFBW) of the
transmitted signal, defined as:

γ = TB (2.140)

λ =
fc
B

(2.141)

where T = Θ2 −Θ1 (a priori time) denotes the width of the a priori domain of
Θ and B the bandwidth of the transmitted signal. To realize this aim, we vary γ
(resp. λ) by either fixing T (resp. fc) and varying B, or vice versa, and compute
the thresholds for each considered value, using one of the MSE approximations
or approximate upper and lower bounds presented in Sec. 2.2.1.

2.2.2.1 Expressions of the begin-ambiguity, end-ambiguity and asymptotic

thresholds

We have just seen that the threshold computation should be performed nu-
merically based on a given MSE approximation or an approximate upper or
lower bound. Here we present a simpler method to derive the expressions of the
begin-ambiguity, end-ambiguity and asymptotic thresholds based on the MSE

approximation in Eq. 2.132 with i = 2, P
(2)
0 = 1 (see Eq. 2.119), j = 2, x = c for

non-oscillating ACR, and x = o for oscillating ACR. The resulting expressions
are highly accurate.

Assume that the CRLB is achieved for a given SNR. Then, this SNR falls in
the asymptotic region and all the ML estimates of the unknown parameter fall
in the vicinity of the maximum (resp. global maximum) of the non-oscillating
(resp. oscillating) ACR. In the course of decreasing the SNR, the threshold region
(resp. ambiguity region) of the non-oscillating (resp. oscillating) ACR begins
when the ML estimates start to spread along the ACR (resp. the local maxima
of the ACR) instead of falling only in the vicinity of the maximum (resp. global
maximum). Therefore, the ML estimates only fall, at the beginning (if we start
from high SNRs) of the threshold (resp. ambiguity) region, in the subdomain D0

containing the maximum (resp. global maximum) and the subdomains D−1 and
D1 at the left and the right of D0 respectively. It follows that, the MSE can be
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approximated from Eq. 2.132 and Eq. 2.127 by taking i = 2, P
(2)
0 = 1, j = 2,

x = c for non-oscillating ACR, and x = o for oscillating ACR by:

e2,2,x =

1
∑

n=−1

P (2)
n [(Θ − µn,2,x)

2 + σ2
n,2,x]

= P
(2)
0 σ2

0,0 +
∑

n=−1,1

P (2)
n [(Θ − µn,2,x)

2

= c+ 2(Θ − θ1)
2Q(θ1,Θ)

= c+ 2b2xQ
(

√

ρ

2
[1 −R(bx)]

)

; bx = θ1 − Θ (2.142)

where we have assumed for non-oscillating ACR (x = c) that D−1 and D1 are
sufficiently narrow so that µ−1,c ≈ θ−1 and µ1,c ≈ θ1 (see Eq. 2.124).

For non-oscillating ACR we take θ−1 = Θ− π
4βs

and θ1 = Θ + π
4βs

. Note that
the latter θ1 is equal to the testpoint θM considered in Eq. 2.88 and Eq. 2.94
in Sec. 2.1 and assumed there as the closest point to the maximum of the non-
oscillating ACR, not in its vicinity. Hence, we get:

bc = θ1 − Θ =
π

4βs
. (2.143)

For oscillating ACR (x = o) we have θ−1 ≈ Θ − 1
fc

, θ1 ≈ Θ + 1
fc

(abscissa of

the two local maxima around the global one) so:

bo = θ1 − Θ ≈ 1

fc
≈ 2π

βs
(2.144)

where the approximation 2π
βs

is obtained using Eq. 2.117.

Consider first the case of non-oscillating ACR. From Eq. 2.111, Eq. 2.139,
Eq. 2.142 and Eq. 2.143 we can write the constraint of the asymptotic threshold
(right side equality in Eq. 2.139) as:

G(ρ, bc) =
αas − 1

2b2cβ
2
s

=
8(αas − 1)

π2
= Gas,c (2.145)

where

G(ρ, θ) = ρQ
(

√

ρ

2
[1 −R(θ)]

)

. (2.146)

Consider now the case of oscillating ACR. From Eq. 2.111, Eq. 2.112,
Eq. 2.138, Eq. 2.139, Eq. 2.142 and Eq. 2.144 we can write the constraints of the
end-ambiguity and asymptotic thresholds (right side equalities in Eq. 2.138 and
Eq. 2.139) as:

G(ρ, bo) =
1

2b2o
(
αam2

β2
e

− 1

β2
s

) ≈ αam2f
2
c

2β2
e

≈ αam2β
2
s

8π2β2
e

= Gam2,o (2.147)

G(ρ, bo) =
αas − 1

2b2oβ
2
s

≈ αas − 1

8π2
= Gas,o. (2.148)
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To compute the begin-ambiguity threshold for oscillating ACR using Eq. 2.142
we cannot take θ1 ≈ Θ+ 1

fc
because the ML estimates fall now, not only around

the local maxima numbers −1, 0 and 1, but around all local maxima in the
vicinity of the maximum of the envelope of the ACR. Accordingly, we choose
similarly to the case of non-oscillating ACR θ1 ≈ Θ + π

4βe
(βe Eq. 2.116 instead

of βs Eq. 2.115, Eq. 2.117) so:

bam1,o = θ1 − Θ =
π

4βe
(2.149)

and use the normalized ACR envelope:

eR(θ) =
ℜ{eRs

(θ)}
EeRs

(2.150)

in the computation of the Q function in Eq. 2.142. We can then write the con-
straint of the begin-ambiguity threshold (right side equality in Eq. 2.137) from
Eq. 2.137, Eq. 2.142, Eq. 2.149 and Eq. 2.150 as:

Ge(ρ, bam1,o) =
1

2b2am1,o

(
αam1

β2
e

− 1

β2
s

) ≈ 8αam1

π2
= Gam1,o (2.151)

where

Ge(ρ, θ) = ρQ
(

√

ρ

2
[1 − eR(θ)]

)

. (2.152)

Note that Ge(ρ, θ) Eq. 2.152 can be used instead of G(ρ, θ) Eq. 2.146 in both
Eq. 2.147 and Eq. 2.148 to compute the end-ambiguity and asymptotic thresholds
since:

R(θmax) local maximum of R(θ)
⇓

R(θmax) ≈ eR(θmax)
(2.153)

which extremely simplifies the threshold computation. In fact, if we want to
compute the end-ambiguity and asymptotic thresholds of a modulated pulse
with respect to the IFBW λ Eq. 2.141, then instead of computing the normalized
ACR R(θ) for each value of λ we just compute the normalized ACR Re(θ) of the
unmodulated pulse (independent of λ) and vary the value of bo Eq. 2.144 with
respect to λ. Note also that it is much easier to compute the begin-ambiguity,
end-ambiguity and asymptotic thresholds from Eq. 2.145, Eq. 2.147, Eq. 2.148
and Eq. 2.151 than from using one of the MSE approximations and approximate
upper and lower bounds presented in Sec. 2.2.1 because G(ρ, θ) Eq. 2.146 and
Ge(ρ, θ) Eq. 2.152 are much easier to evaluate.

Now, in order to derive analytic expressions of the begin-ambiguity, end-
ambiguity and asymptotic thresholds we consider the following approximation
of the Q function [89, pp. 83]:

(

1
ξ − 1

ξ3

)

1√
2π
e−

ξ2

2 < Q(ξ) < 1
ξ

1√
2π
e−

ξ2

2 , ξ > 0

⇓
Q(ξ) ≈ 1

ξ
1√
2π
e−

ξ2

2 , ξ >> 1

(2.154)
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where the downside of Eq. 2.154 is due to the fact that 1
ξ − 1

ξ3 ≈ 1
ξ for ξ >> 1.

Using Eq. 2.154 we can after some manipulations write Eq. 2.145, Eq. 2.151,
Eq. 2.147 and Eq. 2.148 as:

H(ρ, bc)e
H(ρ,bc) = −πG

2
as,c[1 −R(bc)]

2
= Has,c (2.155)

He(ρ, bam1,o)e
He(ρ,bam1,o) = −πG

2
am1,o[1 − eR(bam1,o)]

2
= Ham1,o(2.156)

H(ρ, bo)e
H(ρ,bo) = −πG

2
am2,o[1 −R(bo)]

2
= Ham2,o (2.157)

H(ρ, bo)e
H(ρ,bo) = −πG

2
as,o[1 −R(bo)]

2
= Has,o (2.158)

where

H(ρ, θ) = −ρ[1 −R(θ)]

2
(2.159)

He(ρ, θ) = −ρ[1 − eR(θ)]

2
(2.160)

so the asymptotic threshold for non-oscillating ACR and the begin-ambiguity,
end-ambiguity and asymptotic thresholds for oscillating ACR can be approxi-
mated from Eq. 2.155, Eq. 2.156, Eq. 2.157 and Eq. 2.158 as:

ρas,c = −2
W−1(Has,c)

1 −R(bc)
(2.161)

ρam1,o = −2
W−1(Ham1,o)

1 − eR(bam1,o)
(2.162)

ρam2,o = −2
W−1(Ham2,o)

1 −R(bo)
(2.163)

ρas,o = −2
W−1(Has,o)

1 −R(bo)
(2.164)

where W−1(ξ) denotes the branch “−1” (because Has,c, Ham1,o, Ham2,o and
Has,o are negative) of the Lambert W function that gives the solution of the
equation: W−1(ξ)e

W−1(ξ) = ξ. This function, like other non-elementary functions
(e.g. Q function, error function, etc), has Taylor series expansion and recursive
formula to compute it, and is implemented in MATLAB so the corresponding
solution can be considered as an analytic solution as it can directly be obtained.

Now we consider both modulated and unmodulated waveforms and prove that
for waveforms that can be written as (e.g. Gaussian, cardinal sine, raised cosine,
etc.):

wB(t) = w(t′), t′ = Bt (2.165)

where B denotes the bandwidth, the asymptotic threshold only depends on the
shape w(t′) (i.e. independent of B, constant for Gaussian and cardinal sine, and
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function of the roll-off for raised cosine), and that for the modulated waveforms:

wB,fc
(t) = wB(t) cos(2πfct) = w(t′) cos(2πλt′), t′ = Bt (2.166)

where fc denotes the carrier, the begin-ambiguity threshold only depends on
the shape w(t′) of the envelope wB(t) of wB,fc

(t), whereas the end-ambiguity
and asymptotic thresholds are functions of the shape w(t′) and the IFBW λ
(i.e. independent of the values taken by B and fc separately). This is equivalent
to say that the begin-ambiguity threshold is only function of the shape of the
envelope of the signal, whereas the end-ambiguity and asymptotic thresholds are
only functions of the shape of the signal itself, regardless any other parameters
like the bandwidth and the carrier.

Let us first prove that the asymptotic threshold Eq. 2.145 of the unmodulated
waveform wB(t) is independent of B. From Eq. 2.165 we can write the normalized

ACR of wB(t) as R(θ) = RwB
(θ) =

∫ +∞

−∞
wB(t)wB(t−θ)dt
∫ +∞

−∞
w2

B
(t)dt

=
∫ +∞

−∞
w(t′)w(t′−θ′)dt′

∫ +∞

−∞
w2(t′)dt′

=

Rw(θ′), θ′ = Bθ, and the MQBW Eq. 2.115 as β2
s = − R̈s(0)

Es
= −R̈(0) =

−d2RwB
(θ)

dθ2 |θ=0 = −B2 d
2Rw(θ′)
dθ′2 |θ′=0 = −B2R̈w(0), so Eq. 2.145 becomes inde-

pendent of B because Gas,c = 8(αas−1)
π2 is independent of B and G(ρ, bc) =

ρQ(
√

ρ
2 [1 −R(bc)]) = ρQ(

√

ρ
2 [1 −Rw(b′c)]) with b′c = Bbc = B π

4βs
= π

4
√

−R̈w(0)

is independent of B.

Let us now prove that the begin-ambiguity threshold Eq. 2.151 of the mod-
ulated waveform wB,fc

(t) is independent of B and fc. The normalized ACR
envelope eR(θ) and the EMQBW β2

e of wB,fc
(t) can be written from Eq. 2.166

as the normalized ACR and the MQBW of the envelope wB(t) of wB,fc
(t) de-

rived above: eR(θ) = RwB
(θ) = Rw(θ′), θ′ = Bθ, β2

e = −B2R̈w(0), so Eq. 2.151
becomes independent of B and fc because Gam1,o = 8αam1

π2 is independent of B

and fc, andGe(ρ, bam1,o) = ρQ(
√

ρ
2 [1 − eR(bam1,o)]) = ρQ(

√

ρ
2 [1 −Rw(b′am1,o)])

with b′am1,o = Bbam1,o = B π
4βe

= π

4
√

−R̈w(0)
is independent of B and fc.

Let us prove that the end-ambiguity Eq. 2.147 and asymptotic Eq. 2.148
thresholds of the modulated waveform wB,fc

(t) are only function of the IFBW
λ Eq. 2.141. Using Eq. 2.153 we can write G(ρ, bo) in Eq. 2.147 and Eq. 2.148 as
G(ρ, bo) ≈ ρQ(

√

ρ
2 [1 − eR(bo)]) = ρQ(

√

ρ
2 [1 −Rw(b′o)]) with b′o = Bbo = B

fc
= 1

λ

(only function of λ). On the other hand we haveGam2,o =
αam2f

2
c

2β2
e

= − αam2f
2
c

2B2R̈w(0)
=

−αam2λ
2

2R̈w(0)
(only function of λ) and Gas,o = αas−1

8π2 (independent of B and fc).

Whence, Eq. 2.147 and Eq. 2.148 are only functions of λ.

Note that thanks to the latter proved properties we can express the end-
ambiguity and asymptotic thresholds with respect to the IFBW λ but we omit
it as we have provided many details.

In Sec. 2.2.3 we show and discuss some numerical results about the thresholds
for both modulated and unmodulated Gaussian pulses.
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2.2.3 Numerical results on thresholds

In this subsection we show and discuss some numerical results about the thresh-
olds for both modulated s(t) and unmodulated es(t) Gaussian pulses. We can
write s(t) and es(t) as:

s(t) = es(t) cos(2πfct) (2.167)

es(t) ∝ e
−2π t2

T2
w (2.168)

where es(t) is the envelope of s(t) with respect to fc. The bandwidth B at -10
dB and the EMQBW β2

e Eq. 2.115 [22] are given by:

B = 2

√

ln 10

π

1

Tw
(2.169)

β2
e = 2π

1

T 2
w

(2.170)

The results about the unmodulated pulses are given in Sec. 2.2.3.1 an those
about the modulated ones in Sec. 2.2.3.2.

2.2.3.1 A priori and asymptotic thresholds of unmodulated waveforms with

respect to the ATBW

In this paragraph we consider an unmodulated Gaussian pulse s(t) = es(t)
Eq. 2.168 with variable pulse width Tw and fixed a priori domain DΘ = [−2, 2]
ns, and compute the a priori and asymptotic thresholds with respect to the
ATBW γ Eq. 2.140 feature.

In Fig. 2.9(a), we show the CRLB c Eq. 2.111, the maximum MSE eU
Eq. 2.113, and the MSE approximation e1,1,c Eq. 2.132 with respect to the SNR
ρ and the pulse width Tw. We can see that e1,1,c converges from eU to c smoothly
for large Tw and promptly for small Tw.

In Fig. 2.9(b), we show the a priori threshold ρpr,1,1,c (obtained from Eq. 2.136
using e1,1,c), the asymptotic thresholds ρas,1,1,c, ρas,3,1,c and ρas,z (obtained from
Eq. 2.139 using e1,1,c, e3,1,c Eq. 2.132 and z0 Eq. 2.133 respectively), and the
asymptotic threshold ρas,c (obtained from the analytic expression in Eq. 2.161)
with respect to the ATBW γ Eq. 2.140.

We can see that ρas,1,1,c, ρas,3,1,c, ρas,z and ρas,c are all almost constant
(ρas,1,1,c ≈ ρas,3,1,c = 17 dB, ρas,z ≈ 16.5 dB and ρas,c = 18.5 dB). We have
already proved in Sec. 2.2.2 that the asymptotic threshold is independent of
the bandwidth B for an unmodulated pulse (inversely proportional to the pulse
width Tw, see Eq. 2.169) if the type (e.g. Gaussian, cardinal sine, raised cosine
with constant roll-off, etc.) of the used pulse does not change. In this special
case of non-oscillating ACR, we can see that the asymptotic threshold obtained
from the approximate ZZLB Eq. 2.133 is the closest to the asymptotic threshold
obtained by simulation (equal to 16 dB, see Fig. 2.7(a) in Sec. 2.1.6.1).
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Fig. 2.9.: (a) CRLB c, maximum MSE eU and MSE approximation e1,4 with
respect to the SNR ρ and the pulse width Tw (b) A priori and asymptotic
thresholds with respect to the ATBW γ (c) e1,1,c with respect to Tw for ρ = 8 :
1.5 : 20 dB (unmodumated Gaussian pulse with variable Tw and fixed DΘ).

In Fig. 2.9(c), we show e1,1,c with respect to the pulse width Tw for different
values of the SNR (ρ = 8 : 1.5 : 20 dB). We can see that for relatively low
SNR (ρ 6 14 dB) the achieved MSE is approximately constant, whereas for
relatively high SNR (ρ > 15.5 dB) it decreases as the pulse width Tw decreases
(resp. the bandwidth B increases). It becomes proportional to T 2

w (resp. inversely
proportional to B2) when the CRLB c is achieved (i.e. above the asymptotic
threshold) because c Eq. 2.111 is inversely proportional to β2

s which is in turn
inversely proportional to T 2

w for unmodulated pulses (see Eq. 2.170). It follows
that with unmodulated pulses, we cannot (resp. can) improve the estimation
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performance by changing the parameters (resp. increasing the bandwidth) of the
used pulse if the available SNR is below (resp. above) the asymptotic threshold.

Note that the achievable MSE and the thresholds of the SNR regions ef-
fectively depend on the parameters of the ACR. They depend on those of the
transmitted signal via the parameters of the ACR (e.g. dependency on the pulse
width Tw via the bandwidth B). In fact, it is possible to design signals with dif-
ferent widths and shapes but with approximately the same spectral content (e.g.
chirp with constant amplitude and increasing/decreasing frequency compared
to a cardinal sine) so their ACRs become almost identical and approximately
achieve the same MSE. This fact can be clearly observed from the derived MSE
approximations and approximate upper and lower bounds based all on the ACR
of the transmitted signal.

2.2.3.2 A priori, begin-ambiguity, end-ambiguity and asymptotic thresholds of

modulated waveforms width respect to the IFBW

In this paragraph we consider a modulated Gaussian pulse with variable pulse
width Tw and fixed fc = 6.85 GHz and DΘ = [−2, 1.5]Tw, and compute the a
priori, begin-ambiguity, end-ambiguity and asymptotic thresholds with respect
to the IFBW λ Eq. 2.141 feature. The number of the local maxima of the ACR
increases, and the gap between neighboring maxima decreases, as the IFBW
increases.

In Fig. 2.10(a), we show the CRLB c Eq. 2.111, the ECRLB ce Eq. 2.112, the
maximum MSE eU Eq. 2.113, and the MSE approximation e1,1,o Eq. 2.132 with
respect to the SNR ρ and the pulse width Tw. We can observe that:

• The maximum MSE increases with Tw since the width of the a priori
domain DΘ = [−2, 1.5]Tw is proportional to Tw.

• The ECRLB increases with Tw as it is inversely proportional to the
EMQBW β2

e Eq. 2.170 which is inversely proportional to T 2
w.

• The CRLB is approximately constant with respect to Tw because it is
inversely proportional to the MQBW β2

s Eq. 2.117 that is approximately
equal to 4π2f2

c (fc is constant in this experience).

• The ambiguity region is not observable for small Tw since e1,1,o converges
from eU to c without staying long equal to ce due to the weak oscillations
in the ACR. This explains why the begin-ambiguity and end-ambiguity
thresholds are very close to each other for small IFBW as can be seen in
Fig. 2.10(b).

• For high Tw, the ambiguity region is easily observable. It has a triangu-
lar shape due to the gap between the begin-ambiguity and end-ambiguity
thresholds that increases as the IFBW λ increases as can be seen in
Fig. 2.10(b).
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Fig. 2.10.: (a) CRLB c, ECRLB ce, maximum MSE eU , and MSE approximation
e1,4 with respect to the SNR ρ and the pulse width Tw (b) A priori, begin-
ambiguity, end-ambiguity, and asymptotic thresholds with respect to the IFBW
λ (Gaussian pulse with variable Tw and DΘ, and fixed fc).

In Fig. 2.10(b), we show the a priori threshold ρpr,1,1,o (obtained from
Eq. 2.136 using e1,1,o), the begin-ambiguity threshold ρam1,1,1,o (obtained from
Eq. 2.137 using e1,1,o), the begin-ambiguity threshold ρam1,o (obtained from
the analytic expression in Eq. 2.162), the end-ambiguity threshold ρam2,1,1,o

(obtained from Eq. 2.138 using e1,1,o), the end-ambiguity threshold ρam2,o (ob-
tained from the analytic expression in Eq. 2.163), the asymptotic thresholds
ρas,1,1,o = ρas,3,1,o, ρas,z and ρas,b (obtained from Eq. 2.139 using e1,1,o, z0
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Eq. 2.133 and b0 Eq. 2.134 respectively), and the asymptotic threshold ρas,o
(obtained from the analytic expression in Eq. 2.164) with respect to the IFBW
λ Eq. 2.141. We can observe that:

• Both the a priori and begin-ambiguity thresholds are approximately con-
stant. In fact, we have already seen in Sec. 2.1 that a modulated signal
achieves below its end-ambiguity threshold the same MSE as its envelope.
Therefore, the a priori and begin-ambiguity thresholds of the modulated
signal are approximately equal to the a priori and asymptotic threshold of
its envelope. Furthermore, the a priori threshold of an unmodulated Gaus-
sian pulse (envelope of the modulated pulse under study) is function of the
ATBW Eq. 2.140 (which is now constant), and its asymptotic threshold is
constant as proved in Sec. 2.2.2 and observed in Sec. 2.2.3.1. This explains
why the a priori and begin-ambiguity thresholds should be constant here.

• Both the end-ambiguity and asymptotic thresholds increase as the IFBW
increases. In fact, by increasing the IFBW we reduce the gap between the
global and the local maxima of the ACR so it can be crossed by a relatively
low noise. Therefore, a higher SNR is required to guarantee that all ML
estimates will only fall around the global maximum.

• The gap between the end-ambiguity and asymptotic thresholds increases
as the IFBW increases. This might be due to the gap between the CRLB
and ECRLB that increases with the IFBW.

• The begin-ambiguity, end-ambiguity and asymptotic thresholds ρam1,o,
ρam2,o and ρas,o obtained from the analytic expressions in Eq. 2.162,
Eq. 2.163 and Eq. 2.164 are very close to the corresponding thresholds
ρam1,1,1,o, ρam2,1,1,o and ρas,1,1,o obtained from Eq. 2.137, Eq. 2.138 and
Eq. 2.139 using e1,1,o Eq. 2.132. The thresholds ρam1,1,1,o, ρam2,1,1,o and
ρas,1,1,o are computed with respect to the IFBW by fixing the carrier fc
and varying the pulse width Tw, whereas ρam1,o is directly obtained from
its expression by considering an unmodulated Gaussian pulse with an arbi-
trary value of Tw, and ρam2,o and ρas,o are directly from their expressions
as well by considering the same unmodulated pulse used for ρam1,o and
by varying the value of fc (in the expressions of the thresholds) according
to the value of the IFBW λ. The obtained results validate the obtained
expressions of the thresholds, as well as the proved fact, that the begin-
ambiguity threshold is constant for a constant envelope shape, and that
the end-ambiguity and asymptotic thresholds are functions of the IFBW.

• The asymptotic threshold ρas,1,1,o is very close to that obtained from the
approximate BTLB b0 Eq. 2.134, and a bit far from that obtained from the
approximate ZZLB z0 Eq. 2.133. We did not compute the begin-ambiguity
and end-ambiguity thresholds using the approximate ZZLB and BTLB
because we have seen in Sec. 2.1 that they roughly detect the ambiguity
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region, unlike the asymptotic region that they can accurately detect (see
Fig. 2.8(c)).

Thanks to Fig. 2.10(b), we can predict the value of the achievable MSE based
on the values of the available SNR and IFBW (ρ, λ). It is approximately equal to
the maximum MSE if (ρ, λ) falls in the a priori region (below the a priori thresh-
old curve), between the maximum MSE and the ECRLB if (ρ, λ) falls in the a
priori ambiguity transition region (between the a priori and begin-ambiguity
threshold curves), approximately equal to the ECRLB if (ρ, λ) falls in the ambi-
guity region (between the begin-ambiguity and end-ambiguity threshold curves),
between the ECRLB and the CRLB if (ρ, λ) falls in the ambiguity asymptotic
transition region (between the end-ambiguity and asymptotic threshold curves),
and approximately equal to CRLB if (ρ, λ) falls in the asymptotic region (above
the asymptotic threshold curve).

To summarize we can say that:

• The a priori threshold depends on both the shape of the envelope of the
ACR and the a priori domain.

• The begin-ambiguity threshold only depends on the shape of the envelope
of the ACR function regardless any other parameter like the bandwidth.
This shape is sometimes described by a parameter like the roll-off for raised
cosine waveforms.

• The end-ambiguity and asymptotic thresholds only depend on the shape of
the ACR function, or on any set of parameters describing this shape like the
shape of the envelope and the IFBW together. They do not depend on any
other parameter like the bandwidth and the mean frequency separately.

2.3 SIGNAL DESIGN FOR MINIMUM MSE ON TOA ESTIMATION

We have seen in Sec. 2.2.2 and Sec. 2.2.3 that the achievable MSE depends on the
available SNR and some parameters of the transmitted signal. It has been shown
that according to the IFBW of the transmitted waveform, the MSE achieved by
a given SNR can be equal to the CRLB, the ECRLB, the maximum MSE, or
an in-between value. In this section we investigate the design of the transmitted
signal with respect to the available SNR in order to minimize the achievable
MSE.

We assume that the transmitted signal is a modulated Gaussian pulse
Eq. 2.167. Our goal is to find the optimal values Tw,0 and fc,0 of the pulse
width Tw and the carrier fc that minimize the achievable MSE given that the
available SNR ρ is equal to ρ0.

We consider two constraints about the spectrum of the transmitted pulse. The
first constraint says that the spectrum of the transmitted pulse should fall in a
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Fig. 2.11.: Feasible regions corresponding to the constraints C1 Eq. 2.171 (region
with horizontal dashed bars) and C2 Eq. 2.183 (region with vertical solid bars).

given available frequency band, whereas the second one says that the spectrum
should fall in the available band, and it should also have a given bandwidth.
The optimization problem with respect to the first constraint is considered in
Sec. 2.3.1 and the problem with respect to the second constraint in Sec. 2.3.2.

2.3.1 Waveform with spectrum falling in a given frequency band

In this subsection we consider the constraint that the spectrum of the transmitted
pulse should fall into the frequency band [fl, fh]. This constraint can be written
as:

C1 :







fc, B > 0
fc − B

2 > fl
fc + B

2 6 fh.
(2.171)

In our numerical examples we consider the FCC [1] UWB band [fl, fh] =
[3.1, 10.6] GHz. We can formulate our optimization problem as:

(B0, fc,0) = argmin
(B,fc)

{e} s.t. ρ = ρ0, C1 (2.172)

where e is the achievable MSE. The optimal pulse width Tw,0 can be obtained
from the optimal bandwidth B0 using Eq. 2.169. As we can see in Fig. 2.11, the
feasible region corresponding to constraint C1 Eq. 2.171 is a triangular region
(region with horizontal dashed bars) in the space of (B, fc) limited by the three
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lines:

L0 : B = 0 (2.173)

Lfl
: fc = fl +

B

2
(2.174)

Lfh
: fc = fh −

B

2
. (2.175)

Obviously, the maximum available bandwidth is:

Bmax = fh − fl (2.176)

where Bmax = 7.5 GHz for the FCC UWB band.

For a given bandwidth B = b, the minimal IFBW is given by:

λb,min =
fl
b

+
1

2
(2.177)

and corresponds to the point of intersection

Lb ∩ Lfl
= (b, fl +

b

2
) (2.178)

of the lines Lfl
Eq. 2.174 and

Lb : B = b. (2.179)

It follows that, the minimal IFBW in the feasible region of C1 Eq. 2.171 is equal
to:

λmin =
fl

fh − fl
+

1

2
(2.180)

and corresponds to the point (fh−fl, fl+fh

2 ). We have λmin = 0.913 for the FCC
UWB band.

Let us now consider the minimization of the achievable MSE. According to
the value of the available SNR ρ0, four cases can be distinguished:

1. ρ0 is lower than or equal to the a priori threshold.

2. ρ0 is between the a priori and the begin-ambiguity thresholds.

3. ρ0 is close to the begin-ambiguity threshold

4. ρ0 is larger than the begin-ambiguity threshold.

Consider first the case ρ0 6 ρpr where the available SNR is lower than or
equal to the a priori threshold. Obviously, the maximum MSE is achieved in
this case and nothing can be done to improve the estimation which is useless.

Consider now the second case where the available SNR is between the a pri-
ori and begin-ambiguity thresholds (ρpr < ρ0 < ρam1). We have already seen
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that both the modulated signal and its envelope approximately achieve the same
MSE below the begin-ambiguity threshold of the modulated signal (approxi-
mately equal to the asymptotic threshold of the envelope), and we have seen in
Fig. 2.9(c) that below the asymptotic threshold of the envelope the achieved MSE
is approximately constant and independent of the pulse width and the band-
width. In result, nothing can be done to reduce the MSE when ρpr < ρ0 < ρam1.

Consider the third case where the available SNR is close to the begin-
ambiguity threshold (ρ0 ≈ ρam1). As the ECRLB ce Eq. 2.112 is approximately
achieved in this case, we can minimize the achievable MSE by maximizing the
bandwidth B (i.e. minimizing the pulse width Tw, see Eq. 2.169) so the EMQBW
β2
e Eq. 2.112 is maximized and ce (inversely proportional to β2

e ) is minimized. We
have already seen in Fig. 2.9(c) that the achieved MSE becomes proportional to
the squared pulse width T 2

w when the SNR is approximately equal to the begin-
ambiguity threshold. Accordingly, the optimal solution when ρ0 ≈ ρam1 and the
corresponding achievable MSE are given by:

(B0, fc,0) = (fh − fl,
fl + fh

2
) (2.181)

e0 ≈ 1

ρ0β2
e,0

=
T 2
w,0

2πρ0
=

2 ln 10

π2B2
0ρ0

(2.182)

where Eq. 2.182 is obtained using Eq. 2.169 and Eq. 2.170. Note that fh − fl is
equal to the maximum bandwidth Bmax Eq. 2.176. As ρam1 ≈ 14 dB as can be
seen in Fig. 2.10(b), we have e0 ≈ 330.24 ps2 for the FCC band (B0 = 7.5 GHz).

Consider now the last case where the available SNR is larger than the begin-
ambiguity threshold (ρ0 > ρam1). As we can see in Fig. 2.10(b), the point (ρ0, λ)
will fall, according to the value of the IFBW λ, in the ambiguity region, the
ambiguity-asymptotic transition region, or the asymptotic region. Therefore, the
achievable MSE is equal to the ECRLB ce, between the ECRLB and the CRLB
c, or equal to the CRLB. Now, in order to find the optimal bandwidth B0 and
carrier fc,0 we proceed as follows:

1. We pick from Fig. 2.10(b) the value λ0 of the IFBW λ for which the
available SNR ρ0 belongs to the asymptotic threshold curve. Note that it
is possible to express λ0 with respect to ρ0, but this is omitted for the sake
of conciseness.

2. In order to guarantee that the CRLB is achieved, we consider the constraint
that λ is lower than or equal to the picked λ0. If this constraint cannot
be satisfied because ρ0 is lower than the minimal IFBW λmin Eq. 2.180
in the feasible region of constraint C1 Eq. 2.171, then the CRLB cannot
be achieved. In order to make the achievable MSE the closest possible to
the CRLB, we set λ at the minimal IFBW λmin. This constraint can be
expressed as:

C2 :

{

λ = fc

B = λmin if λ0 < λmin

λ = fc

B 6 λ0 if λ0 > λmin
(2.183)
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3. Now, given that the estimator achieves the CRLB or a MSE that is the
closest possible to the CRLB thanks to the previous step, we minimize the
achievable MSE by minimizing the CRLB itself.

Following the last step, we can write from Eq. 2.171 and Eq. 2.183 the mini-
mization problem in Eq. 2.172 as:

(B0, fc,0) = argmin
(B,fc)

{c} s.t. C1, C2. (2.184)

As c can be approximated from Eq. 2.111 and Eq. 2.117 by:

c =
1

ρβ2
s

=
1

ρ(β2
e + 4π2f2

c )
≈ 1

ρ4π2f2
c

(2.185)

we can rewrite the minimization problem in Eq. 2.184 as:

(B0, fc,0) = argmax
(B,fc)

{fc} s.t. C1, C2. (2.186)

As shown in Fig. 2.11, the feasible region of constraint C2 Eq. 2.183 is the
half-space (region with vertical solid bars) below the line:

Lλ0
: fc = λ0B. (2.187)

We have already seen that the feasible region of constraint C1 Eq. 2.171 is the
triangle limited by the lines L0, Lfl

and Lfh
. Therefore, the feasible region

of C1 and C2 together is the triangular region limited by Lfl
, Lfh

and Lλ0

(region with both vertical and horizontal bars). Consequently, the solution of
the maximization problem in Eq. 2.186 corresponds to the point of intersection
( 2
2λ0+1fh,

2λ0

2λ0+1fh) of the lines Lfh
and Lλ0

as can easily be seen from Fig. 2.11.
In the special case where λ0 < λmin, the feasible region of C2 reduces to the
line Lλmin

: fc = λminB so the feasible region of C1 and C2 reduces to the point
(fh − fl,

fl+fh

2 ) which is consequently the solution of Eq. 2.186.

Finally, the solution for ρ0 > ρam1 and the corresponding achievable MSE are
given by:

{

(B0, fc,0) = (fh − fl,
fl+fh

2 )
e0 ∈ ( 2 ln 10

π2B2
0ρ0

, e0,1); e0,1 <
1

4π2f2
c,0ρ0

if λ0 < λmin

{

(B0, fc,0) = ( 2
2λ0+1fh,

2λ0

2λ0+1fh)

e0 = 1
4π2f2

c,0ρ0

if λ0 > λmin

(2.188)

where the term 2 ln 10
π2B2

0ρ0
is the achievable MSE Eq. 2.182 when ρ0 ≈ ρam1.

The solution given in Eq. 2.188 for λ0 > λmin is suboptimal. As a matter of
fact:

• The minimum MSE is not reached in the asymptotic region but at the end
of the end-ambiguity asymptotic transition region but slightly below the
asymptotic region.
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• The asymptotic threshold is defined as the SNR when the MSE becomes
equal to αas = 1.1 times the CRLB.

• The asymptotic threshold is obtained from a MSE approximation or ap-
proximate bound.

• We have neglected the term β2
e in the expression of the CRLB in Eq. 2.185

used to formulate Eq. 2.186.

Even tough, the obtained solution is approximately equal to the optimal one as
we will see below in Fig. 2.12(a), Fig. 2.12(b) and Fig. 2.12(c). The main two
advantages of the proposed method is that it is highly accurate and very easy
to compute. It can directly be found from the curve of the asymptotic threshold
with respect to the IFBW. To find the optimal solution we should perform an
exhaustive search in the feasible region using the true achievable MSE. The latter
method is however much more complicated than our proposal. Furthermore, as
we do not know the expression of the true MSE, the exhaustive search should
be performed using a MSE approximation or an approximate bound.

Denote by (B1, fc,1) the point minimizing the MSE approximation e1,1,o in
the feasible region of C1 Eq. 2.171, e1 the minimal e1,1,o, and λ1 the correspond-
ing IFBW. The feasible region is swept using an increment of 0.2 GHz for the
bandwidth B and 0.1 GHz for the carrier fc.

In Fig. 2.12(a) we show λ0 (obtained from the suboptimal method) and λ1

with respect to the available SNR ρ0. We can see that λ1 is a bit smaller than λ0.
This is due to the factor αas = 1.1 in the definition of the asymptotic threshold
in Eq. 2.139.

In Fig. 2.12(b) we show B0 and fc,0 (bandwidth and carrier obtained from
the suboptimal method), and B1 and fc,1 (obtained from the exhaustive search)
with respect to ρ0. We can see that B0 is very close to B1, and fc,0 to fc,1 which
validates that the suboptimal solution (B0, fc,0) is very close to the optimal one.
We can also see that B1 (resp. fc,1) is a bit larger (resp. lower) than B0 (resp.
fc,0). In fact, ρ1 / ρ0 as already seen from Fig. 2.12(a).

In Fig. 2.12(c) we show e0 (minimum MSE obtained by the suboptimal
method) and e1 (obtained from the exhaustive search) with respect to ρ0. We
can see that e0 and e1 are very close to each other. For ρ0 = 22 dB, we have
λ0 = 1.9 and λ1 = 1.8, (B0, fc,0) = (4.42, 8.39) GHz and (B1, fc,1) = (4.6, 8.3)
GHz, and e0 = 2.27 ps2 and e1 = 2.32 ps2.

To summarize, we can say that:

• For an available SNR lower than the begin-ambiguity threshold (ρ0 <
ρam1), nothing can be done to improve the estimation.

• For an available SNR approximately equal to the begin-ambiguity threshold
(ρ0 ≈ ρam1) the optimal solution given in Eq. 2.181 consists on using the
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Fig. 2.12.: (a) Suboptimal λ0 and optimal λ1 IFBW with respect to the available
SNR ρ0 (b) Suboptimal (B0, fc,0) and optimal (B1, fc,1) bandwidth and carrier
frequency with respect to ρ0 (c) Suboptimal e0 and optimal e1 MSE with respect
to ρ0.

total available band. The achievable MSE in this case is approximately
equal to the ECRLB Eq. 2.182.

• For an available SNR greater than the begin-ambiguity threshold (ρ0 >
ρam1) with λ0 > λmin, the suboptimal solution given in Eq. 2.188 varies
with ρ0. The achievable MSE in this case is approximately equal to the
CRLB.

• For an available SNR greater than the begin-ambiguity threshold (ρ0 >
ρam1) with λ0 < λmin, the optimal solution given in Eq. 2.188 consists
on using the total available band. The achievable MSE in this case lies
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between the ECRLB Eq. 2.182 achievable for ρ0 ≈ ρam1, and the CRLB
achievable for ρ0 > ρam1 and λ0 > λmin.

In practice, we do not need to compute the suboptimal bandwidth B0 and carrier
fc,0 in real time. It suffices to compute them once for all possible values of the
available SNR, then during the communication we measure the SNR, pick the
corresponding B0 and fc,0, and tune the spectrum of the transmitted signal to
meet the suboptimal band.

2.3.2 Waveform with spectrum falling in a given frequency band and

having a given bandwidth

In this subsection we consider the constraint that the spectrum of the transmitted
pulse has a given bandwidth B = b, and falls in the frequency band [fl, fh].

The feasible region corresponding to the constraints C1 Eq. 2.171 and:

C3 : B = b (2.189)

is the segment of the line Lb Eq. 2.179 limited by the lines Lfl
Eq. 2.174 and

Lfh
Eq. 2.175. We can see from Fig. 2.11 that in this feasible region, the IFBW

λ belongs to the interval [λb,min, λb,max] where λb,min is given in Eq. 2.177 and
corresponds to the intersection Lb ∩ Lfl

Eq. 2.178 of the lines Lb and Lfl
, and

λb,max is given by:

λb,max =
fh
b

− 1

2
(2.190)

and corresponds to the intersection

Lb ∩ Lfh
= (b, fh −

b

2
) (2.191)

of the lines Lb and Lfh
.

As the available SNR should fall in the asymptotic region in order to minimize
the MSE, we can write the following constraint similarly to C2 Eq. 2.183:

C4 :







λ = fc

B = λb,min if λ0 < λb,min

λ = fc

B 6 λ0 if λb,min 6 λ0 6 λb,max

λ = fc

B = λb,max if λ0 > λb,max.

(2.192)

Similarly to Eq. 2.186 we formulate our optimization problem as:

(B0, fc,0) = argmax
(B,fc)

{fc} s.t. C1, C3, C4. (2.193)

Obviously, the solution of Eq. 2.193 is Lb∩Lfl
Eq. 2.178 for λ0 < λb,min, Lb∩Lfh

Eq. 2.191 for λ0 > λb,max, and the intersection:

Lb ∩ Lλ0
= (b, λ0b) (2.194)
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of the lines Lb and Lλ0
.

Finally, we can write the solution of our optimization problem and the corre-
sponding achievable MSE as:

{

(B0, fc,0) = (b, fl +
b
2 )

e0 > 1
4π2f2

c,0ρ0

if λ0 < λb,min

{

(B0, fc,0) = (b, λ0b)
e0 = 1

4π2f2
c,0ρ0

if λb,min 6 λ0 6 λb,max

{

(B0, fc,0) = (b, fh − b
2 )

e0 = 1
4π2f2

c,0ρ0

if λ0 > λb,max.

(2.195)

Note that the results obtained in this section are completely different from
the results that we get by minimizing the CRLB. With the latter method, the
threshold and ambiguity effects are not taken into account so the optimal solution
always consists on filling the available band with the maximum allowed PSD
starting from the highest frequency, which is absolutely different from the method
described above.

2.4 CONCLUSION

In this chapter, we have considered the problem of deterministic nonlinear esti-
mation and studied the threshold and the ambiguity phenomena.

We have approximated the statistics of the MLE by splitting the a priori
domain of the unknown parameter into subdomains, and computing the subdo-
main probability and the statistics of the subdomain MLE. The derived MSE
approximations are highly accurate and follow closely the truly achieved MSE.
We have used the subdomain probability to propose other approximations of the
MLE statistics and to derive two approximate upper bounds. The MSE approxi-
mations obtained via this method are very accurate as well and the approximate
upper bounds are sufficiently tight. We have used the Taylor series expansion
of the noise limited to second order to get an approximate lower bound tighter
than the CRLB. We have employed the principle of binary detection proposed
by Ziv and Zakai to derive some approximate lower bounds for deterministic
estimation. Numerical results about the derived MSE approximations and ap-
proximate upper and lower bounds are obtained by considering the problem of
TOA estimation based on UWB signals.

By making use of the derived MSE approximations and approximate upper
and lower bounds, we have computed the thresholds of the a priori, ambiguity
and asymptotic regions. We have derived analytic expressions for the begin-
ambiguity, end-ambiguity and asymptotic thresholds. We have shown that the
a priori threshold depends on both the shape of the envelope of the ACR and
the a priori domain, whereas the begin-ambiguity threshold only depends on the
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shape of the envelope of the ACR. The end-ambiguity and asymptotic thresholds
only depend on the shape of the ACR regardless any other parameter like the
bandwidth and the carrier. We have accordingly shown that both the asymptotic
threshold of unmodulated waveforms and begin-ambiguity threshold of modu-
lated waveforms are constant for a given waveform shape (e.g. Gaussian, cardi-
nal sine, raised cosine with constant roll-off), and that the end-ambiguity and
asymptotic thresholds of modulated waveforms vary with the IFBW regardless
the values of the bandwidth and the carrier separately.

We have exploited the results about the begin-ambiguity and asymptotic
thresholds to design, according to the available SNR, the spectrum of the signal
that achieves the minimum attainable MSE. We have proposed an optimization
method that is very simple and very accurate. We have considered the constraint
that the spectrum of the transmitted signal falls in a given frequency band, and
the constraint that it falls in a given band and has a fixed bandwidth.





CHAPTER 3

NEW TOA ESTIMATORS: MAXIMUM

DELAYING-AND-MULTIPLYING

ESTIMATOR AND DFT-BASED

ESTIMATORS

T
hanks to their ultra short pulses, IR-UWB signals can serve to perform
highly accurate positioning by employing the TOA technique. However,

TOA estimation via IR-UWB signals suffers from the MP aspect of the channel
and the effects of the MUI. While the estimation of the TOA is widely investi-
gated in the literature for MP channels, only few works addressed this problem
in MU systems (see Sec. 1.1.4 for more details about the state-of-the-art).

As already mentioned in Sec. 1.1.4, the existing TOA estimators are based on
either the time-domain or the frequency-domain. Most time-domain estimators
make use of the following receivers:

• CR/MF receivers.

• Energy receivers.

• Dirty-template receivers.

In this chapter we propose two new TOA estimators. The first one is con-
sidered for MU systems employing TH-IR-UWB signals and is based on the
time-domain; it makes use of a new receiver, also proposed in this chapter. The
second estimator, or more precisely, class of estimators, is based on the frequency-
domain and can be used with any type of UWB signals; the proposed frequency-
domain estimators are investigated for single-user in AWGN/MP channels.

73
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In Sec. 3.1, we describe the new receiver that we call “delaying-and-
multiplying” (DM) receiver. We derive some statistics and probabilities of error
related to both, the new receiver and the CR receiver.

In Sec. 3.2, we introduce the new TOA estimator that we name “maximum
delaying-and-multiplying estimator” (MME). We derive some approximations of
the local MSE achieved by this estimator, and compute the asymptotic MSE.
The MME is compared to the MLE. Note that in the case of single-user, the
MLE is equivalent to the so-called “maximum CR estimator” (MCE) that is
based on the CR receiver. The MCE consists on maximizing the CCR of the
received signal and the waveform corresponding to the user of interest.

In Sec. 3.3, we propose two TOA estimators based on the phase of the DFT
of the received signal. The first one relies on the relative phase, whereas the
second one relies on the absolute phase. We derive the statistics of the proposed
estimators and compare them to the MLE. Both the cases of AWGN and MP
channels will be considered.

The main contributions in this chapter are the following:

• We propose a new receiver for TH-IR-UWB signals, compute its statistics
and compare it with the CR receiver. The proposed receiver is totally
different from the three receivers presented at the beginning of this chapter.

• We propose the MME, compute its local and asymptotic MSE, and com-
pare to the MLE. We show that both estimators approximately have the
same performances.

• We propose two TOA estimators for AWGN channels based on the DFT
of the received signal. We compute the MSE achieved by both estimators.
The first/second estimator asymptotically achieves the baseband/passband
CRLB. The passband CRLB is achieved by the MLE faster than ours. De-
spite the case of time-domain estimators where the sampling period should
be smaller than desired accuracy (which increases the number of the treated
samples), only few samples (obtained at a sampling rate equal to the signal
bandwidth) are required in our approach to perform the estimation. At low
SNRs, the proposed estimators outperforms the MLE. We show that many
improvements can be introduced to our estimators in order to make them
achieving the CRLB faster.

• A two-step TOA estimator for MP channels is proposed by making use of
the DFT based estimators mentioned above.

• We compute the exact statistics of the unwrapped phase of the DFT of a
signal corrupted by an AWGN.

We recall that the MME is mainly proposed for MU systems; therefore, its
main role is to mitigate the MUI. Optimal mitigation can be performed using
the joint MLE of the TOAs of all users. As this estimator is very complex to
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implement (even by using iterative algorithms like the one proposed in [48]), a
simple approach (proposed in [39] for symbol detection, see Sec. 1.1.4) consists
on modeling the MUI by an AWGN so the TOA of the user of interest can be
estimated using the MCE. The main goal in this thesis regarding the MME, is
to compare the potentials of the MME and the MCE in mitigating the MUI. As
the MCE is equivalent for single-user to the MLE, we are interested in checking
the asymptotic (whether the estimator achieves the CRLB), local (effects of the
shape of the used pulse) and global (effects of the shape of the TH-IR-UWB
waveform) performances of the MME in the case of single-user as well. Note
that the performance degradation related to the shape of a given TH-IR-UWB
waveform is due to the collision among the pulses of the same waveform (when
an ACR is performed), whereas the degradation related to the MUI is due to
the collision among the pulses of the different user waveforms (when a CCR is
performed). For this reason, it seems more coherent to study the asymptotic and
local performances for single-user in this chapter, and to postpone the study of
the global performances for single-user and multiuser to the next chapter.

3.1 DELAYING-AND-MULTIPLYING RECEIVER

In this section, we introduce the DM receiver. We compute the local and global
statistics and probabilities of error for both the DM and the CR receivers. As we
will see later, the DM receiver consists on filtering the received signal, delaying
it according to the used TH codeword, then multiplying the delayed branches.

The DM receiver will be used later in this chapter to derive the MME. The
local (resp. global) statistics will be employed in this chapter (resp. the next
chapter) to study the asymptotic and local (resp. global) performances of both
the MME and the MCE.

In Sec. 3.1.1, we describe the considered system model. In Sec. 3.1.2, we
present the DM and the CR receivers. In Sec. 3.1.3 and Sec. 3.1.4, we compute
the local and global statistics and probabilities of error for both receivers.

3.1.1 System model

We describe here the considered system model. The transmitted signal

s(t) =

√

E

Nc

Nc−1
∑

i=0

p(t− ciTh) (3.1)

consists of a TH waveform of energy E and duration T , containing Nc pulses
located at ciTh, (i = 0, · · · , Nc − 1) with Th = T

Nh
the time-hop (larger than the

pulse width) and c = (ci)i=0,··· ,Nc−1, ci ∈ {0, · · · , Nh − 1} the considered TH
codeword. Obviously, the energy of p(t) in Eq. 3.1 is normalized to one.

We can write the received signal as:

r(t) = αs(t− Θ) + w̃(t) (3.2)
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(a)

(b)

Fig. 3.1.: (a) DM receiver and MME estimator (b) CR receiver and MCE esti-
mator.

where α and Θ denote the gain and the time delay introduced by the channel,
and w̃(t) the AWGN of two-sided PSD of N0

2 .

3.1.2 CR receiver and delaying-and-multiplying receiver

We present now the DM and the CR receivers. As depicted in Fig. 3.1(a), the
DM receiver consists on filtering the received signal with the filter p(−t) matched
to the transmitted pulse p(t), delaying the filtered signal by the delays −ciTh,
(i = 0, · · · , Nc − 1) corresponding to the different pulses of the transmitted
signal, then multiplying the Nc obtained signals. The CR receiver, represented
in Fig. 3.1(b) simply consists on adding the delayed signals instead of multiplying
them. Denote by Xr,p(θ) the received signal filtered with p(−t), and by Pr,p(θ)
and Ar,p(θ) the DM and the CR signals obtained at the outputs of the DM and
CR receivers respectively.

By splitting the time axis into the intervals

In =
[

nTh + Θ − Th
2
, nTh + Θ +

Th
2

[

, n = −∞, · · · ,+∞ (3.3)
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of equal width Th, we can write Xr,p(θ) from Eq. 3.2 as:

Xr,p(θ) = r(θ) ⊗ p(−θ) = α

√

E

Nc

Nc−1
∑

i=0

Rp(θ − Θ − ciTh) + w(θ)

=

+∞
∑

n=−∞
Xn(θ) (3.4)

Xn(θ) = Rn(θ) + wn(θ) (3.5)

Rn(θ) =

{

α
√

E
Nc
Rp(θ − Θ − nTh) n ∈ {c0, · · · , cNc−1}

0 n /∈ {c0, · · · , cNc−1}
(3.6)

wn(θ) =

{

wn(θ) θ ∈ In
0 θ /∈ In

(3.7)

where Rp(θ) denotes the ACR of p(t), w(θ) the filtered Gaussian noise of covari-
ance

Cw(θ) =
N0

2
Rp(θ), (3.8)

andXn(θ), Rn(θ) and wn(θ) the filtered received signal, filtered useful signal, and
filtered noise in the interval In respectively. Obviously, each In contains either the

sum of a pulse ACR component α
√

E
Nc
Rp(θ−Θ− nTh) and a noise component

wn(θ) (when n ∈ {c0, · · · , cNc−1}, see Eq. 3.6), or only a noise component (when
n /∈ {c0, · · · , cNc−1}, see Eq. 3.6). Given that Th (equal to the width of In)
is larger than the width of p(t), we can deduce from Eq. 3.8 that the noise
components wn(θ) corresponding to different intervals are uncorrelated.

As both the DM and CR signals are obtained from Nc delayed versions
of the filtered received signal Xr,p(θ) containing Nc pulse ACR components

α
√

E
Nc
Rp(θ − Θ − nTh) corrupted by noise, the signal at the output of the DM

receiver (resp. CR receiver) will contain in each interval In the product (resp.
the sum) of Nn ∈ {0, · · · , Nc} pulse ACR components corrupted by uncorre-
lated noise components, and of Nc − Nn pure uncorrelated noise components.
Accordingly, the DM and CR signals Pr,p(t) and Ar,p(t) can be written as:

Pr,p(θ) =

Nc−1
∏

i=0

Xr,p(θ + ciTh) =
+∞
∑

n=−∞
Pn(θ) (3.9)

Ar,p(θ) =

Nc−1
∑

i=0

Xr,p(θ + ciTh) =
+∞
∑

n=−∞
An(θ) (3.10)

Pn(θ) =

Nn−1
∏

i=0

{

α

√

E

Nc
Rp(θ − Θ − nTh) + wn,i(θ)

}

Nc−1
∏

i=Nn

wn,i(θ)(3.11)

An(θ) =

Nn−1
∑

i=0

{

α

√

E

Nc
Rp(θ − Θ − nTh) + wn,i(θ)

}

Nc−1
∑

i=Nn

wn,i(θ)(3.12)
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where wn,0(θ), · · · , wn,Nc−1(θ) correspond to a permutation of the Nc uncorre-
lated noise components wn+c0(θ+ c0Th), · · · , wn+cNc−1

(θ+ cNc−1Th). Note that
Ar,p(θ) is also equal to the received signal filtered by the filter s(−t) matched
to the transmitted signal s(t). For n = 0, we have N0 = Nc, and the interval
I0 = [Θ− Th

2 ,Θ+ Th

2 [ is located around Θ (the unknown time delay to estimate)
and contains the global maxima of the useful components of both Pr,p(θ) and
Ar,p(θ). Therefore, we can write:

P0(θ) =

Nc−1
∏

i=0

{

α

√

E

Nc
Rp(θ − Θ) + w0,i(θ)

}

(3.13)

A0(θ) =

Nc−1
∑

i=0

{

α

√

E

Nc
Rp(θ − Θ) + w0,i(θ)

}

(3.14)

3.1.3 Local statistics and probabilities of error

In this subsection, we compute the local statistics and probabilities of error
relative to the DM and the CR receivers. By local statistics and probabilities of
error, we mean those in the interval I0. The goal of computing these statistics is
to study the impact of the ambiguity due to the pulse shape on the DM receiver.

Let us consider the interval I0 containing the useful component carrying the
information on Θ. We rewrite P0(θ) and A0(θ) from Eq. 3.13 and Eq. 3.14 as:

P0(θ) = Π0(θ) + V0(θ) (3.15)

A0(θ) = S0(θ) + U0(θ) (3.16)

where

Π0(θ) =
[

α

√

E

Nc
Rp(θ − Θ)

]Nc

(3.17)

S0(θ) = α
√

NcERp(θ − Θ) (3.18)

V0(θ) =

Nc
∑

i=1

[

α

√

E

Nc
Rp(θ − Θ)

]Nc−i
W0,i(θ) (3.19)

W0,i(θ) =
∑

j1 6=···6=ji
w0,j1(θ) · · ·w0,ji(θ), (j1, · · · , ji = 0, · · · , Nc − 1)(3.20)

U0(θ) = W0,1(θ) =

Nc−1
∑

j=0

w0,j(θ) (3.21)

with W0,i(θ) equal to the sum of the product of the possible combina-
tions w0,j1(θ), · · · , w0,ji(θ) of i elements among the Nc noise components

w0,0(θ), · · · , w0,Nc−1(θ). The number of terms in W0,i(θ) is equal to CNc

i (the
combination of i in Nc). We can see Π0(θ) and S0(θ) as the useful DM and CR
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observations respectively. To illustrate this, we write Π0(θ) in the case of Nc = 3:

P0(θ) =
[

α

√

E

Nc
Rp(θ − Θ)

]3

+
[

α

√

E

Nc
Rp(θ − Θ)

]2[

w0,0(θ) + w0,1(θ) + w0,2(θ)
]

+ α

√

E

Nc
Rp(θ − Θ)

[

w0,0(θ)w0,1(θ) + w0,0(θ)w0,2(θ) + w0,1(θ)w0,2(θ)
]

+ w0,0(θ)w0,1(θ)w0,2(θ).

As the noise components w0,i(θ), (i = 0, · · · , Nc − 1) are all zero-mean
and uncorrelated, we can easily show that E{w0,j1(θ) · · ·w0,ji(θ)} = 0 if
j1 6= · · · 6= ji, E{w0,j1(θ) · · ·w0,ji(θ)w0,j′1

(θ′) · · ·w0,j′
i′
(θ′)} = 0 if i 6=

i′ (because we have at least one noise component that appears only one
time inside the expectation), E{W0,i(θ)W0,i′(θ

′)} = 0 if i 6= i′ (thanks
to the previous equation), E{w0,j1(θ) · · ·w0,ji(θ)w0,j′1

(θ′) · · ·w0,j′i
(θ′)} = 0 if

(j1, · · · , ji) 6= (j′1, · · · , j′i) (because we have at least two noise components
that appear only one time inside the expectation), and E{W0,i(θ)W0,i(θ

′)} =
∑

j1 6=···6=ji E{w0,j1(θ) · · ·w0,ji(θ)w0,j1(θ
′) · · ·w0,ji(θ

′)} = CNc

i Ciw(θ − θ′) =

CNc

i [N0

2 Rp(θ − θ′)]i (thanks to the previous equation, CNc

i denotes the com-
bination and Cw(θ) the covariance in Eq. 3.8) so the mean, the covariance and
the variance of P0(θ) Eq. 3.15 can be expressed as:

mP0
(θ) = Π0(θ) (3.22)

CP0
(θ, θ′) =

[α2Es
Nc

]Nc
[

Rp(θ − Θ)Rp(θ
′ − Θ)

]Nc
{[

1

+
Nc
ρ

Rp(θ − θ′)

Rp(θ − Θ)Rp(θ′ − Θ)

]Nc

− 1
}

(3.23)

≈ N2
c

ρ

[α2Es
Nc

]Nc

Rp(θ − θ′)
[

Rp(θ − Θ)Rp(θ
′ − Θ)

]Nc−1

= CP0,G
(θ, θ′) (3.24)

σ2
P0

(θ) = CV0
(θ, θ) =

[α2Es
Nc

]Nc

R2Nc
p (θ − Θ)

{[

1

+
Nc
ρ

1

R2
p(θ − Θ)

]Nc

− 1
}

(3.25)

≈ N2
c

ρ

[α2Es
Nc

]Nc

R2(Nc−1)
p (θ − Θ) = σ2

P0,G
(θ) (3.26)
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and those of A0(θ) Eq. 3.16 as:

mA0
(θ) = S0(θ) (3.27)

CA0
(θ, θ′) = Nc

N0

2
Rp(θ − θ′) (3.28)

σ2
A0

(θ) = CA0
(θ, θ) = Nc

N0

2
. (3.29)

We can see from Eq. 3.23 and Eq. 3.24 that P0(θ) is not a weak-stationary process
because CP0

(θ, θ′) cannot be written as a function of θ−θ′. We can also see that
CP0

(θ, θ′) = CP0
(θ′, θ). In Eq. 3.24 and Eq. 3.26, CP0,G

(θ, θ′) and σ2
P0,G

(θ) denote

the covariance and the variance of the process P0,G(θ) defined below in Eq. 3.31.
For θ = Θ, the variance of P0(θ) is given by:

σ2
P0

(Θ) =
[α2Es
Nc

]Nc
{[

1 +
Nc
ρ

]Nc

− 1
}

≈ N2
c

ρ

[α2Es
Nc

]Nc

. (3.30)

Note that the approximated Covariance and variance in Eq. 3.24 and Eq. 3.26
can directly be obtained by approximating P0(θ) from Eq. 3.15 and Eq. 3.19 by:

P0,G(θ) =
[

α

√

E

Nc
Rp(θ − Θ)

]Nc−1[

α

√

E

Nc
Rp(θ − Θ) + U0(θ)

]

(3.31)

where the process P0,G(θ) is Gaussian due to the distribution of U0(θ) Eq. 3.21.
Note that although P0,G(θ) is Gaussian, it is not weak-stationary. The approx-
imation in Eq. 3.31 is only valid at sufficiently high SNRs where the sum in
Eq. 3.19 can be limited to the first term (i.e. i = 1).

As the approximate upper bounds, as well as the approximate ZZLB and
BTLB lower bounds, all derived in Chap. 2, are based on the probability that
the observation at a given testpoint is larger than the observation at the testpoint
θ = Θ, it makes sense to define the local probabilities of error relative to the DM
and CR receivers as follows:

QP0
(θ,Θ) = P

{

P0(θ) > P0(Θ)
}

(3.32)

QA0
(θ,Θ) = P

{

A0(θ) > A0(Θ)
}

(3.33)

and to express from Eq. 3.23 and Eq. 3.24 the covariance of the DM observation
P0(θ) for θ′ = Θ as:

CP0
(θ,Θ) =

[α2Es
Nc

]Nc

RNc
p (θ − Θ)

{[

1 +
Nc
ρ

]Nc

− 1
}

(3.34)

≈ N2
c

ρ

[α2Es
Nc

]Nc

RNc
p (θ − Θ) = CP0,G

(θ,Θ). (3.35)

To compute the probability of error relative to the DM receiver we have to
know the bivariate cumulative distribution function relative to the distribution
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of P0(θ) Eq. 3.15, which does not seem easy to compute analytically. To over-
come this problem we assume that the SNR is sufficiently high so P0(θ) can be
approximated by the Gaussian process P0,G(θ) in Eq. 3.31. Accordingly, we can
approximate QP0

(θ,Θ) Eq. 3.32 and write QA0
(θ,Θ) Eq. 3.33 as:

QP0,G
(θ,Θ) = P

{

P0,G(θ) − P0,G(Θ) > 0
}

= Q
[

√
ρ

Nc

1 −RNc
p (θ − Θ)

√

1 +R
2(Nc−1)
p (θ − Θ) − 2RNc

p (θ − Θ)

]

(3.36)

QA0
(θ,Θ) = Q

[

√

ρ

2

[

1 −Rp(θ − Θ)
]

]

(3.37)

where denotes the Q function already introduced in Chap. 2. The statistics of
P0,G(θ) − P0,G(Θ) are given from Eq. 3.31, Eq. 3.26 and Eq. 3.35 by:

P0,G(θ) − P0,G(Θ) ∼ N
(

m∆P0,G
(θ), σ2

∆P0,G
(θ)
)

(3.38)

where

m∆P0,G
(θ) =

[

α

√

E

Nc

]Nc
[

RNc
p (θ − Θ) − 1

]

σ2
∆P0,G

(θ) =
N2
c

ρ

[α2Es
Nc

]Nc
[

1 +R2(Nc−1)
p (θ − Θ) − 2RNc

p (θ − Θ)
]

.(3.39)

We can see from Eq. 3.36 and Eq. 3.37 that the approximated probability of
error of the DM receiver is equal to the probability of error of the CR receiver
for Nc = 1.

As the distribution involving the product of independent Gaussian variables
has, unlike the Gaussian distribution, a very sharp shape in the vicinity of zero,
we expect that the approximation of the joint distribution of P0(θ) and P0(Θ) by
a joint Gaussian distribution (based on Eq. 3.31) leads to a considerable overes-
timation of the probability of error QP0

(θ,Θ) Eq. 3.32. To solve this problem, we
evaluate QP0

(θ,Θ) by simulation. To do so we proceed as follows. From Eq. 3.13,
we can easily show that QP0

(θ,Θ) can be written as:

CP0
(θ,Θ) = P

{

ζ − ξ > 0
}

(3.40)

ξ =

Nc
∏

i=1

{

1 +
[Nc
ρ

]
1
2 γi

}

ζ =

Nc
∏

i=1

{

Rp(θ − Θ) +
[Nc
ρ

]
1
2

[

Rp(θ − Θ)γi +
√

1 −R2
p(θ − Θ)νi

]}

where γ1, · · · , γNc
, ν1, · · · , νNc

∼ N (0, 1) and are statistically independent.
Then, by randomly generating according to N (0, 1), once, a 2Nc × Nrnd ma-
trix of independent elements, with Nrnd being the size of the population, we can
compute CP0

(θ,Θ) along the θ axis.
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Fig. 3.2.: Rp(θ−Θ) and RNc
p (θ−Θ) (Nc = 5, Θ = 0) (a) Tw = 0.685 ns, B = 2.5

GHz, fc = 7.25 GHz (b) Tw = 0.228 ns, B = 7.5 GHz, fc = 6.85 GHz.

In Fig. 3.2(a) we show Rp(θ − Θ) (useful CR observation S0(θ) Eq. 3.18
normalized with respect to α

√
NcE) and RNc

p (θ − Θ) (useful DM observation

Π0(θ) Eq. 3.17 normalized with respect to [α
2E
Nc

]
Nc
2 ) with respect to θ − Θ. We

consider a Gaussian pulse of Tw = 0.685 ns of width (bandwidth at -10 dB equal
to B = 2.5 GHz) modulated with fc = 7.25 GHz (pulse filling the total EC UWB
spectrum [2, 3]). We take Nc = 5 and Θ = 0. We can see that RNc

p (θ − Θ) is
much shorter than Rp(θ−Θ) and that the gap between the global and the local
maxima is much larger with RNc

p (θ − Θ) than with Rp(θ − Θ).

In Fig. 3.2(b) whe show Rp(θ−Θ) and RNc
p (θ−Θ) for Tw = 0.228 ns (B = 7.5

GHz) and fc = 6.85 GHz (pulse filling the total FCC UWB spectrum [1]). Now,
RNc
p (θ − Θ) has only one positive maximum.

We can expect from the shape of RNc
p (θ − Θ) (i.e. the relatively high gap

between the global and the local maxima), that the DM receivers can serve to
mitigate the ambiguity effects due to the local maxima in Rp(θ − Θ). However,
we will see later that, unfortunately this is not true because the noise is amplified
due to the multiplication with Rp(θ−Θ) in the expression of P0(θ) (see Eq. 3.15
and Eq. 3.19).

In Fig. 3.3(a) we show C̃P0
(θ,Θ) and C̃P0,G

(θ,Θ) (exact CP0
(θ,Θ) Eq. 3.34

and approximated CP0,G
(θ,Θ) Eq. 3.35 covariances of the DM observation, nor-

malized with respect to [α
2Es

Nc
]Nc) with respect to θ − Θ, for the EC pulse (i.e.

Tw = 0.685 ns and fc = 7.25 GHz) with Nc = 5, Θ = 0 and ρ = 15 dB (SNR),
and in Fig. 3.3(b) σ̃2

P0
(θ) and σ̃2

P0,G
(θ) (exact σ2

P0
(θ) Eq. 3.25 and approximated

σ2
P0,G

(θ) Eq. 3.26 variances of the DM observation, normalized with respect to

[α
2Es

Nc
]Nc). We can see that for the considered SNR (ρ = 15 dB), the exact co-

variance is slightly larger than the approximated one, and this holds similarly for
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Fig. 3.3.: (a) Exact C̃P0
(θ,Θ) and approximated C̃P0,G

(θ,Θ) normalized covari-
ances of the DM observation P0(θ) (b) Exact σ̃2

P0
(θ) and approximated σ̃2

P0,G
(θ)

normalized variances of P0(θ) (c) Local probability of error QA0
(θ,Θ) of the CR

receiver, and simulated QP0
(θ,Θ) and approximated QP0,G

(θ,Θ) local probabil-
ities of error of the DM receiver (Gaussian pulse, Tw = 0.685 ns, fc = 7.25 GHz,
Nc = 5, Θ = 0, ρ = 15 dB).

the exact and approximated variances. This means that a higher SNR is required
to ensure the convergence of the DM observation P0(θ) to the Gaussian process
P0,G(θ) in Eq. 3.31.

In Fig. 3.3(c) we show for the same setup as in Fig. 3.3(a) and Fig. 3.3(b), the
local probability of error QA0

(θ,Θ) Eq. 3.37 of the CR receiver, and simulated
QP0

(θ,Θ) Eq. 3.40 and approximated QP0,G
(θ,Θ) Eq. 3.36 local probabilities

of error of the DM receiver. We can see that the CR probability of error is
smaller than the DM probability of error. Note that the gap between QA0

(θ,Θ)
and QP0

(θ,Θ) increases as Nc increases. We can expect from this that TOA
estimation based on the CR receiver will outperform that based on the DM
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receiver. We can also see that the probability of error QP0,G
(θ,Θ) obtained from

the Gaussian estimation of the DM observation highly overestimates the one
QP0

(θ,Θ) obtained by simulation. This validates the fact, already mentioned
above, that the DM observation P0(θ) cannot be rigorously approximated by a
Gaussian process except for sufficiently high SNRs.

We show neither the variance of the CR observation since it is constant, nor
its covariance because it has the same shape as Rp(θ − Θ) (see Fig. 3.2(a) and
Fig. 3.2(b)).

3.1.4 Global statistics and probabilities of error

We compute here the global statistics and probabilities of error relative to the
DM and the CR receivers. By global statistics, we mean those inside an interval
In, n 6= 0, and by global probability of error, the probability that the observed
signal is stronger in In, n 6= 0, than in I0. The goal of this study is to evaluate
the effects of the ambiguity due to the collision between the different pulses of
the TH transmitted waveform on the TOA estimators based on the DM and the
CR receivers. Unlike the case of Sec. 3.1.3, the results of this subsection will
not be used in this chapter but in Chap. 4 dedicated to TOA estimation in MU
systems.

From Eq. 3.11 and Eq. 3.12, we can write the DM and CR observations in the
interval In as:

Pn(θ) = Pn,Nn
(θ)Vn,Nn

(θ) (3.41)

An(θ) = An,Nn
(θ) + Un,Nn

(θ) (3.42)

where

Pn,Nn
(θ) =

Nn−1
∏

i=0

{

α

√

E

Nc
Rp(θ − Θ − nTh) + wn,i(θ)

}

(3.43)

Vn,Nn
(θ) =

Nc−1
∏

i=Nn

wn,i(θ) (3.44)

An,Nn
(θ) =

Nn−1
∑

i=0

{

α

√

E

Nc
Rp(θ − Θ − nTh) + wn,i(θ)

}

(3.45)

Un,Nn
(θ) =

Nc−1
∑

i=Nn

wn,i(θ) (3.46)

Note that Pn,Nn
(θ) and An,Nn

(θ) correspond to the product and the sum of the
Nn pulse ACR components corrupted by noise, colliding in In, respectively.

Let us consider the computation of the global probabilities of error QP0
(θ,Θ)

and QA0
(θ,Θ) corresponding to the DM and CR receivers respectively. We define
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the global probability of error relative to a given observation, as the probability
that the observation at the testpoint (middle of In)

θn = Θ + nTh (3.47)

is stronger than the observation at Θ (abscissa of the global maximum of the
useful observation, middle of I0). We can write from Eq. 3.9, Eq. 3.10, Eq. 3.11
and Eq. 3.12:

QPn
(θn,Θ) = P

{

Pr,p(θn) > Pr,p(Θ)
}

= P
{

Pn(θn) > P0(Θ)
}

(3.48)

QAn
(θn,Θ) = P

{

Ar,p(θn) > Ar,p(Θ)
}

= P
{

An(θn) > A0(Θ)
}

. (3.49)

As the transmitted signal contains only Nc pulses, and as the interval I0
contains Nc pulse ACR components (after delaying the filtered received signal
with respect to the TH delays corresponding to the diffferent pulses), the DM
component Pn,Nn

(θ) Eq. 3.43 of Pn(θ) Eq. 3.41 is totally contained in P0(θ)
Eq. 3.13 (interval I0), and the CR component An,Nn

(θ) Eq. 3.45 of An(θ) Eq. 3.42
is totally contained in A0(θ) Eq. 3.14. It follows from Eq. 3.13 and Eq. 3.14 that:

P0(θ) = Pn,Nn
(θ + nTh)P0,Nc−Nn

(θ) (3.50)

A0(θ) = An,Nn
(θ + nTh) +A0,Nc−Nn

(θ) (3.51)

where the noise components in P0,Nc−Nn
(θ) and A0,Nc−Nn

(θ) are different (so
uncorrelated) from those in Pn,Nn

(θ + nTh) and An,Nn
(θ + nTh).

Using Eq. 3.41, Eq. 3.42, Eq. 3.50 and Eq. 3.51, we can write the probabilities
of error QP0

(θ,Θ) Eq. 3.48 and QA0
(θ,Θ) Eq. 3.49 as:

QPn
(θn,Θ) = P

{

Pn,Nn
(θn)Vn,Nn

(θn) > Pn,Nn
(θn)P0,Nc−Nn

(Θ)
}

= QPn,1QPn,2 + (1 −QPn,1)(1 −QPn,2)

= 1 + 2QPn,1QPn,2 − (QPn,1 +QPn,2) (3.52)

QAn
(θn,Θ) = P

{

An,Nn
(θn) + Un,Nn

(θn) > An,Nn
(θn) +A0,Nc−Nn

(Θ)
}

= P
{

Un,Nn
(θn) > A0,Nc−Nn

(Θ)
}

(3.53)

where

QPn,1 = P
{

Pn,Nn
(θn) > 0

}

(3.54)

QPn,2 = P
{

Vn,Nn
(θn) > P0,Nc−Nn

(Θ)
}

. (3.55)

Let us now compute the means and the covariances of the signals Pn,Nn
(θ),

Vn,Nn
(θ), An,Nn

(θ) and Un,Nn
(θ) present in Eq. 3.52 and Eq. 3.53. Similarly to
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the methodology followed in Sec. 3.1.3 we can write:

mPn,Nn
(θ) = Πn,Nn

(θ) (3.56)

CPn,Nn
(θ, θ′) =

[α2Es
Nc

]Nn
[

Rp(θ − θn)Rp(θ
′ − θn)

]Nn
{[

1

+
Nc
ρ

Rp(θ − θ′)

Rp(θ − θn)Rp(θ′ − θn)

]Nn

− 1
}

(3.57)

≈ NnNc
ρ

[α2Es
Nc

]Nn

Rp(θ − θ′)
[

Rp(θ − θn)Rp(θ
′ − θn)

]Nn−1

= CPn,Nn,G
(θ, θ′) (3.58)

mVn,Nn
(θ) = 0 (3.59)

CVn,Nn
(θ, θ′) =

[N0

2

]Nc−Nn

RNc−Nn
p (θ − θ′) (3.60)

mAn,Nn
(θ) = Sn,Nn

(θ) (3.61)

CAn,Nn
(θ, θ′) = Nn

N0

2
Rp(θ − θ′). (3.62)

mUn,Nn
(θ) = 0 (3.63)

CUn,Nn
(θ, θ′) = (Nc −Nn)

N0

2
Rp(θ − θ′). (3.64)

where

Πn,Nn
(θ) =

[

α

√

E

Nc
Rp(θ − θn)

]Nn

(3.65)

Sn,Nn
(θ) = αNn

√

E

Nc
Rp(θ − θn). (3.66)

Note that both Pn,Nn
(θ) and Vn,Nn

(θ) are not weak-stationary, and that Pn,Nn
(θ)

can be approximated by a Gaussian process at sufficiently high SNRs which is not
the case of Vn,Nn

(θ) (product of pure zero-mean Gaussian processes). However,
both An,Nn

(θ) and Un,Nn
(θ) are weak-stationary and Gaussian.

From Eq. 3.61, Eq. 3.62, Eq. 3.63 and Eq. 3.64 we can write the CR global
probability of error QAn

(θn,Θ) Eq. 3.53 as:

QAn
(θn,Θ) = P

{

N
[

− (Nc −Nn)
[α2E

Nc

]
1
2 , 2(Nc −Nn)

N0

2

)

> 0
]}

= Q
(

√

ρ

2

[

1 − Nn
Nc

]

)

. (3.67)

By assuming both Pn,Nn
(θ) and Vn,Nn

(θ) Gaussian, we can approximate
QPn

(θn,Θ) Eq. 3.52 from QPn,1 Eq. 3.54, QPn,2 Eq. 3.55, Eq. 3.56, Eq. 3.58,
Eq. 3.59 and Eq. 3.60 by:

QPn,G
(θn,Θ) = 1 + 2QPn,G,1QPn,G,2 − (QPn,G,1 +QPn,G,2) (3.68)
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where

QPn,G,1 = P
{

N
(

[α2E

Nc

]
Nn
2 ,

NnNc
ρ

[α2Es
Nc

]Nn

)

> 0
}

= Q
(

−
√

ρ

NnNc

)

(3.69)

QPn,G,2 = P
{

N
(

−
[α2E

Nc

]
Nc−Nn

2 ,
[N0

2

]Nc−Nn
+

(Nc −Nn)Nc
ρ

×
[α2Es
Nc

]Nc−Nn

)

> 0
}

= Q
([ (Nc −Nn)Nc

ρ
+
[Nc
ρ

]Nc−Nn

]− 1
2
)

. (3.70)

Like the local DM probability of error (see Sec. 3.1.3), the global DM probability
of error QPn

(θn,Θ) can be computed form Eq. 3.52 via simulation by noticing
that:

QPn,1 = P
{

κ > 0
}

(3.71)

QPn,2 = P
{

ζ − ξ > 0
}

(3.72)

κ =

Nn
∏

i=1

{

1 +
[Nc
ρ

]
1
2 υi

}

ξ =

Nc−Nn
∏

i=1

{

1 +
[Nc
ρ

]
1
2 γi

}

ζ =
[Nc
ρ

]
Nc−Nn

2
Nc−Nn
∏

i=1

νi

where υ1, · · · , υNn
, γ1, · · · , γNc−Nn

, ν1, · · · , νNc−Nn
∼ N (0, 1) and are statisti-

cally independent. Accordingly, by randomly generating following N (0, 1), a
2Nc × Nrnd matrix of independent elements, with Nrnd being the size of the
population, we can compute QPn,1 and QPn,2 for all possible values of ρ and Nn.
Note that for a given Nn, a [Nn + 2(Nc −Nn)] ×Nrnd matrix is required.

In Fig. 3.4(a) we show with respect to the SNR ρ for Nn = 0, · · · , Nc − 1
with Nc = 5, the global probabilities of error of the CR observation QAn

(θn,Θ)
Eq. 3.67, and the global probability of error of the CR observation obtained
by the Gaussian approximation QPn,G

(θn,Θ) Eq. 3.68 and by simulation (from
a population of million elements) QPn

(θn,Θ) based on Eq. 3.52, Eq. 3.71 and
Eq. 3.72. We can observe that:

• The probabilities of error corresponding to both, the CR and the DM
observations converge to zero at high SNRs for all the values of Nn.

• The probability of error is much smaller (at low SNRs) and convergences
(to zero) much faster with the CR receiver than with the DM receiver.
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Fig. 3.4.: (a) Global probability of error of the CR receiver QAn
(θn,Θ), and

global probabilities of error of the CR receiver obtained by the Gaussian ap-
proximation QPn,G

(θn,Θ) and by simulation QPn
(θn,Θ) (from a population of

million elements) with respect to the SNR ρ for Nn = 0, · · · , Nc−1 with Nc = 5
(b) QPn

(θn,Θ) in logarithmic scale.

• The probability of error increases as the number Nn of the colliding pulses
in the interval In increases.

• The gap between the values of the probability of error obtained at the
different values of Nn is more significant with the CR receiver than with
the DM receiver. This is due to the addition of the elementary observations
(i.e. the delayed versions of the filtered received signal) with the former and
to their multiplication with the latter.

• The Gaussian approximation of the probability of error relative to the
DM receiver significantly underestimates (resp. overestimates) at low (resp.
relatively high) SNRs the probability obtained by simulation.

In Fig. 3.4(b) we show the global probability of error of the DM observation
obtained by simulation QPn

(θn,Θ) in the logarithmic scale. We can see that
QPn

(θn,Θ) is not evaluated above ρ = 21 dB for Nn = 0, 1 and 2 because
it becomes lower than 10−6 while we have considered a population of million
elements.

3.2 MAXIMUM DELAYING-AND-MULTIPLYING ESTIMATOR

In this section, we compute the asymptotic and local performances of the MME
(maximum delaying-and-multiplying estimator); as mentioned above, we post-
pone the global performances to the next chapter.

In Sec. 3.2.1, we define the new estimator. In Sec. 3.2.2, we compute its
asymptotic performances. In Sec. 3.2.3, we derive some approximations of its
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achieved MSE. In Sec. 3.2.4, we present and discuss some numerical results
about the proposed estimator in comparison with the MLE.

3.2.1 The estimator

Denote by Θ̂dm the MME obtained by maximizing the DM observation (see
Fig. 3.1(a)). We have:

Θ̂dm = argmax
θ∈DΘ

Pr,p(θ) (3.73)

where Pr,p(θ) is the DM observation given in Eq. 3.9 and DΘ = [Θ1,Θ2] the a
priori domain of Θ.

In this chapter, we are only interested in the local performances of the pro-
posed estimator. The goal is to study how it is influenced by the ambiguity due
to the shape of the transmitted pulse. The ambiguity due to the shape of trans-
mitted TH waveform will be considered in Chap. 4. Accordingly, we can limit
our study to the interval I0 = [Θ + Th

2 ,Θ − Th

2 ] Eq. 3.3. Using Eq. 3.9, we can

write Θ̂dm as:

Θ̂dm = argmax
θ∈I0

P0(θ) (3.74)

where P0(θ) Eq. 3.15 is the DM observation inside the interval I0.

3.2.2 Asymptotic performances

In this subsection, we study the asymptotic (i.e. at high SNRs) performances of
the MME Θ̂dm.

To do so, we consider the Taylor series expansion of the DM observation
P0(θ) about Θ. For convenience, we recall the expressions of P0(θ) Eq. 3.15, the
useful DM observation Π0(θ) Eq. 3.17, and the Gaussian approximation of the
covariance CP0

(θ,Θ) Eq. 3.35 of P0(θ):

P0(θ) = Π0(θ) + V0(θ) (3.75)

Π0(θ) =
[

α

√

E

Nc
Rp(θ − Θ)

]Nc

(3.76)

CP0
(θ,Θ) ≈ N2

c

ρ

[α2Es
Nc

]Nc

RNc
p (θ − Θ). (3.77)

By limiting the expansion of the useful observation Π0(θ) to second order and
that of the DM noise V0(θ) to first order, and taking into account that Π̇0(Θ) = 0
(because Θ is the abscissa of the global maximum of Π0(θ), see Eq. 3.17), we
can approximate P0(θ) Eq. 3.75 by:

P0(θ) ≈ Π0(Θ) +
1

2
Π̈0(Θ)(θ − Θ)2 + V0(Θ) + V̇0(Θ)(θ − Θ)
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so that Θ̂dm Eq. 3.74 can be approximated by:

Θ̂dm = {θ; Ṗ0(θ) = 0} ≈ Θ − V̇0(Θ)

Π̈0(Θ)
. (3.78)

The second derivative of Π0(θ) follows from Eq. 3.76:

Π̈0(θ) = Nc

[

α

√

E

Nc

]Nc
[

(Nc − 1)RNc−2
p (θ − Θ)Ṙ2

p(θ − Θ)

+RNc−1
p (θ − Θ)R̈p(θ − Θ)

]

. (3.79)

Using the Wiener-Khintchine theorem, we can write the mean and the covariance
of the derivative V̇0(θ) of the DM noise V0(θ), from Eq. 3.19 and Eq. 3.77 as:

mV̇0
(θ) = E

{

V̇0(θ)
}

= 0 (3.80)

CV̇0
(θ,Θ) = F−1

{

4π2f2F
{

CP0
(θ,Θ)

}

}

=
N2
c

ρ

[α2Es
Nc

]Nc

F−1
{

4π2f2
[

⊗Nc F
{

Rp(θ − Θ)
}]

}

=
N2
c

ρ

[α2Es
Nc

]Nc

F−1
{

[

⊗Nc−1 F
{

Rp(θ − Θ)
}]

⊗ 4π2f2F
{

Rp(θ

− Θ)
}

}

= −N
2
c

ρ

[α2Es
Nc

]Nc

RNc−1
p (θ − Θ)R̈p(θ − Θ) (3.81)

where F{·} denotes the Fourier transform operator and f the frequency variable.
It has been taken into account in Eq. 3.81 that j2πf and −4π2f2 are the fre-
quency responses of the first and second derivative filters, respectively. By taking
θ = Θ we get from Eq. 3.79 and Eq. 3.81:

Π̈0(Θ) = Nc

[

α

√

E

Nc

]Nc

R̈p(0) (3.82)

mV̇0
(Θ) = 0 (3.83)

σ2
V̇0

(Θ) = −N
2
c

ρ

[α2Es
Nc

]Nc

R̈p(0) (3.84)

From Eq. 3.78, Eq. 3.82, Eq. 3.83 and Eq. 3.84, we can write the asymptotic
mean and variance of the MME Θ̂dm as:

µ∞ = Θ (3.85)

σ2
∞ =

σ2
V̇0

(Θ)

Π̈2
0(Θ)

= − 1

ρR̈p(0)
=

1

ρβ2
= c (3.86)

where

β2 = −R̈p(0) =

∫ +∞

−∞
4π2f2|F{p(t)}|2df (3.87)

c =
1

ρβ2
(3.88)
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denote the MQBW of p(t) and the CRLB of Θ, respectively (the energy of p(t)
in the expression of β2 is equal to one).

Finally, we can deduce that the MME is asymptotically unbiased and achieves
asymptotically the CRLB.

3.2.3 Approximation of the local MSE

We have shown in the last subsection that the MME achieves asymptotically
the CRLB. In this subsection, we consider the performances of the MME at
medium and low SNRs. We use the subdomain method proposed in Chap. 2 to
approximate the MSE of the MME, and the approximate lower bounds derived
therein to propose two alternate approximations of the MSE.

We have seen in Chap. 2 that by splitting the a priori domain DΘ = [Θ1,Θ2]
of Θ into N = n2 − n1 + 1, (n1 6 0, n2 > 0) subdomains Dn (Θ should be
contained in D0), we can write the MSE of the MME Θ̂dm as:

e =

n2
∑

n=n1

Pn[(Θ − µn)
2 + σ2

n] (3.89)

where Pn denotes the probability that Θ̂dm falls in the subdomain Dn, and µn
and σ2

n its mean and variance in that subdomain. As pointed out above, the a
priori domain DΘ is equal in our case to I0 = [Θ + Th

2 ,Θ − Th

2 ] (see Eq. 3.3)

because we are interested here in the local performances of Θ̂dm.

Let us choose a testpoint tn in each subdomain Dn, assume that µ0 ≈ Θ and
σ2

0 ≈ c (c is the CRLB) in D0 (around Θ) thanks to the asymptotic performances
of the MME (see Sec. 3.2.2), approximate µn by tn (width of Dn much smaller
than |tn − Θ|, ∀tn ∈ Dn), neglecting σ2

n for n 6= 0 (σ2
n much smaller than

(Θ − µn)
2), and approximate, as in Sec. 2.1.3.1, Pn by:

P(3)
n =

P(2)
n

∑n2

n=n1
P(2)
n

where

P(2)
n =

{

1 n = 0
P
{

P0(tn) > P0(Θ)
}

= QP0
(tn,Θ) n 6= 0

with QP0
(θ,Θ) being the local probability of error of the DM receiver computed

in Sec. 3.1.3. We recall that QP0
(θ,Θ) can either be computed from Eq. 3.36

by assuming Gaussian processes or from Eq. 3.40 by simulation. We also recall
that for signals with oscillating ACR, the testpoints tn should be chosen as the
abscissa of the local maxima of the ACR. Let us further approximating P0 by 1
(because σ2

0 ≈ c << µ2
n ≈ t2n, n 6= 0). We can now approximate the MSE of the
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MME by:

edm = c+
∑

n6=0

P(3)
n (tn − Θ)2. (3.90)

From the approximated ZZLB and BTLB lower bounds derived in Chap. 2,
we propose the following two approximations of the MSE of the MME:

zdm =

∫ ǫ0

0

θQP0
(θ,Θ)dθ (3.91)

bdm =

∫ ǫ0

0

θV
{

QP0
(θ,Θ)

}

dθ (3.92)

where V {f(ξ)} = max{f(ξ′ > ξ)}, ξ > 0, is the valley-filling function, and
ǫ0 = 2

√
eU , with

eU = σ2
U + (Θ − µU )2 (3.93)

the maximum MSE given in Chap. 2 (see Eq. 2.20). We have considered zdm
and bdm as approximations and not as approximate lower bounds. Indeed, to
derive the approximate lower bounds we have to find the likelihood function of
the DM observation, then compute properly the minimum probability of error
relative to the optimal decision rule based on the likelihood ratio (see Sec. 2.1.4).
We have set ǫ0 at 2

√
eU to force zdm and bdm to converge to eU at low SNRs.

In fact, QP0
(θ,Θ) approaches 1

2 at low SNRs, so both zdm and ddm approach
1
2

∫ ǫ0
0
θdθ =

ǫ20
4 .

3.2.4 Numerical results and discussion

Here, we discuss some numerical results about the MME and compare it with
the MLE. We consider the EC (i.e. Tw = 0.685 ns and fc = 7.25 GHz) and FCC
(i.e. Tw = 0.228 ns and fc = 6.85 GHz) pulses already used in Sec. 3.1.3 (see
Fig. 3.2(a) and Fig. 3.2(a)). We take Θ = 0 and Th = 2Tw.

As mentioned in the beginning of this chapter, the MLE is equivalent for
single-user to the MCE (maximum correlation estimator) Θ̂cr obtained by max-
imizing the CR observation (see Fig. 3.1(b)). We have:

Θ̂cr = argmax
θ∈I0

A0(θ) (3.94)

where A0(θ) is the CR observation in I0 (see Eq. 3.14, Eq. 3.16).

In Fig. 3.5(a) and Fig. 3.5(b) we show for the EC and FCC pulses, respectively,
the CRLB c Eq. 3.88, the ECRLB ce (derived in Chap. 2, see Eq. 2.23), the
maximum MSE eU Eq. 3.93, the MSE ecr,S of the MLE obtained by simulation
(10000 trials), the MSE edm,S of the MME obtained by simulation, and four MSE
approximations edm,G, edm, zdm and bdm of the MME, all versus the SNR ρ. Note
that both edm,G and edm are obtained from the subdomain formula Eq. 3.90,



MAXIMUM DELAYING-AND-MULTIPLYING ESTIMATOR 93

0 5 10 15 20 25 30

10
−24

10
−22

10
−20

ρ (dB)

s
e
c

2

 

 

c

c
e

e
U

e
cr,S

e
dm,S

e
dm,G

e
dm

z
dm

b
dm

(a)

0 5 10 15 20 25 30

10
−24

10
−22

10
−20

ρ (dB)

s
e
c

2

 

 

c

c
e

e
U

e
cr,S

e
dm,S

e
dm,G

e
dm

z
dm

b
dm

(b)

Fig. 3.5.: CRLB c, ECRLB ce, maximum MSE eU , MSE ecr,S of the MLE
obtained by simulation, MSE edm,S of the MME obtained by simulation, and
four MSE approximations edm,G, edm, zdm and bdm of the MME, all versus the
SNR ρ (a) EC pulse (b) FCC pulse.

whereas zdm and bdm follow from Eq. 3.91 and Eq. 3.91 respectively. However,
edm,G uses the Gaussian approximation (in Eq. 3.36) of the local probability of
error QP0

(tn,Θ), whereas edm, zdm and bdm all use the local probability of error
computed by simulation according to Eq. 3.40.

We can observe that:
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• The CRLB is approximately achieved by both the MLE and the MME at
the same SNR.

• In the ambiguity region of the EC pulse, the MLE slightly outperforms the
MME. We can deduce that the ambiguity phenomenon has approximately
the same impact on both estimators.

• In the threshold region of the FCC pulse, the MLE outperforms signifi-
cantly the MME. We can deduce that the impact of the threshold phe-
nomenon is stronger on the MME.

• The MSE approximation edm,G of the MME based on the subdomain
method and the Gaussian approximation of the local probability of er-
ror overestimates appreciably the MSE truly achieved in both ambigu-
ity/threshold and asymptotic regions. In fact, the Gaussian probability
approximation overestimates widely the true probability as already ob-
served and discussed in Fig. 3.3(c).

• The MSE approximation edm of the MME based on the subdomain method
and the simulated local probability of error converges to the CRLB at
approximately the same SNR (especially for the EC pulse) as the simulated
MSE edm,S . However, it overestimates edm,S in the ambiguity/threshold
region. This can be interpreted by the fact that the local probability of
error does not take into account the correlation between all testpoints, but
just between the actual testpoint and the tespoint Θ.

• Both MSE approximations zdm and bdm, based on the approximated ZZLB
and BTLB respectively, seem to be more accurate below the asymp-
totic/threshold region than the MSE approximation edm; bdm is slightly
more accurate than zdm thanks to the valley-filling function (especially for
the EC pulse where the local maxima are stronger).

Let us now discuss why the MLE outperforms the MME at medium SNRs. Due
to the TH coding, the total available energy is split among the pulses of the TH
waveform, so the SNR relative to each pulse isNc times lower than the total SNR.
This makes the ambiguity and threshold effects stronger if we consider the pulses
separately. With the CR receiver, the effect of the SNR splitting is completely
canceled thanks to the addition operation (because the noise components are
independent). However, with the delaying-and-multiplying receiver, this effect
cannot be completely canceled, due to the multiplication operation.

Finally, we can say that the local performances of the MLE and the proposed
maximum delaying-and-multiplying estimator are very similar.

3.3 DFT-BASED ESTIMATORS

In this section, we propose two TOA estimators based on the phase of the DFT of
the received signal. The first one relies on the relative phase, whereas the second
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one on the absolute phase. For both estimators, we compute the local estimates
corresponding to the different frequency components, and then combine them to
get the global estimates.

The main contributions of this work have been stated in the beginning of this
chapter. We have already mentioned in Sec. 1.1.4 that some estimators inves-
tigated in the literature employ the DFT. However, there are many differences
between this work and the previous proposals. The TOA estimation in [51, 52]
is not built on the phase of the DFT. In [53, 54], the authors bypass the problem
of phase ambiguity by assuming that the maximum time delay is smaller than
the period of the highest frequency component. Although the problem of phase
ambiguity is well investigated in [49, 50, 55], it is however solved by the Chinese
remainder theorem in [49, 50], and by a recursive correction of the TOA estimate
in [55]. In contrast, the problem is solved in our approach by unwrapping the
phase.

From the advantages of our estimators is that they require a sampling fre-
quency equal to the bandwidth of the transmitted signal and generate directly
their TOA estimates from few samples with no need of further interpolations.
They can be used for IR-UWB signals as well as for MC-UWB signals. How-
ever, they do perform better with IR-UWB signals. The main goal of this work
is to show that we can estimate the TOA by using the phase of the DFT of
the received signal in such a way to obtain interesting performances. Many im-
provements can be introduced to the proposed estimators in order to make them
achieving the CRLB at lower SNRs.

In Sec. 3.3.1, we describe our system model. In Sec. 3.3.2, we consider the
MLE of the local (i.e. at a given frequency component) phase and compute the
statistics of the unwrapped phase. In Sec. 3.3.3, we derive the local phase-slope-
based and the local absolute-phase-based TOA estimators, and in Sec. 3.3.4 the
corresponding global ones. In Sec. 3.3.5, we show how one can apply our proposed
estimators in UWB MP channels.

3.3.1 System model

We describe here our system model. We assume that the transmitter and the
receiver communicate through an AWGN channel.

Denote by s(t), r(t) and n(t) the complex envelopes (i.e. baseband signals) of
the transmitted signal, the received signal and the AWGN, all band-pass filtered
in the band [fc − B

2 , fc + B
2 ] (fc is the central frequency and B the bandwidth).

We can write r(t) as:

r(t) = αe−j2πfcτs(t− τ) + n(t)

= αe−j2πfcτsτ (t) + n(t)

where α and τ are the gain and the time delay introduced by the channel, and
sτ (t) = s(t− τ).
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After sampling at the rate B, we get:

r[m] = αe−j2πfcτsτ [m] + n[m]

where z[m] denotes the sample of the signal z(t) at t = mTs (Ts = 1
B is the sam-

pling period). The sequence n[m] is a white (i.e., the samples n[m] are indepen-
dent and identically distributed) Gaussian sequence because the sampling rate
is equal to band-pass filter width. The variance of n[m] is given by σ2

n = 2N0B
where 2N0 is the one-sided power spectral density of the AWGN.

Denote by R[k], (k = −M
2 , . . . ,

M
2 − 1 assuming M to be even) the DFT of

r[m]. Then:

R[k] =
M−1
∑

m=0

r[m]e−j2π
mk
M = αe−j2πfcτSτ [k] +N [k] (3.95)

where Sτ [k] and N [k] are the DFTs of sτ [m] and n[m], respectively. As n[m] is a
white Gaussian sequence, N [k] is also white Gaussian with a variance given by
σ2
N = Mσ2

n = 2MN0B [78]. By assuming that the Shannon sampling theorem is
respected, and that both s(t) and sτ (t) are falling in the period of observation,
we can write:

Sτ [k] =
Sτ (fk)

Ts
=

e−j2πfkτS(fk)

Ts
= e−j2πfkτS[k] (3.96)

where Sτ (f) and S(f) denote the FTs of sτ (t) and s(t), respectively, S[k] the
DFT of s[m], and:

fk =
k

MTs
= k∆f. (3.97)

To simplify the discussion, we denote from now on S[k], R[k] and N [k] by
Sk, Rk and Nk, respectively. From Eq. 3.95 and Eq. 3.96, we can write Rk as
follows:

Rk = αe−j2π(fc+fk)τSk +Nk = Uk +Nk (3.98)

where Uk = αe−j2π(fc+fk)τSk is the DFT of the useful part of the received signal.
Denote by ρZ , θZ , xZ and yZ the modulus, phase, real part and imaginary part
of the complex number Z. From Eq. 3.98, we can define ϕk as:

ϕk = θSk
− θUk

= 2π (fc + fk) τ. (3.99)

Given that Nk is Gaussian, we can write the PDF of Rk as:

TRk
(xRk

, yRk
) =

1

2πσ2
e−

(xRk
−xUk

)2+(yRk
−yUk

)2

2σ2

TRk
(ρRk

, θRk
) =

ρRk

2πσ2
e−

ρ2
Rk

+ρ2
Uk

−2ρRk
ρUk

cos(θRk
−θUk

)

2σ2 (3.100)

where σ2 =
σ2

N

2 = MN0B denotes the variance of both xNk
and yNk

.
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3.3.2 Statistics of the unwrapped phase

In this subsection, we consider the MLE of the phase and compute the statistics
of its unwrapped version.

The joint log-likelihood function of ρUk
and ϕk can be written from Eq. 3.99

and Eq. 3.100 as:

ΛρUk
,ϕk = −ρ

2
Rk

+ ρ2
Uk

− 2ρRk
ρUk

cos(θRk
− θSk

+ ϕk)

2σ2
. (3.101)

From Eq. 3.101, we can easily write the CRLB of ϕk as:

cϕk =
σ2

ρ2
Uk

=
1

νk
(3.102)

where

νk =
ρ2
Uk

σ2
= α2

ρ2
Sk

σ2
(3.103)

is the SNR obtained at the frequency fk. We call νk the local (or instantaneous)
SNR (i.e. the SNR corresponding to the local frequency fk). The global SNR is
defined as:

ν =

N
2 −1
∑

k=−N
2

νk. (3.104)

Obviously, the time delay can be estimated from an estimate of ϕk Eq. 3.99
as:

• The phase ϕk to angular frequency 2π(fc + fk) ratio.

• The slope of the phase with respect to the angular frequency.

For both approaches, the phase estimate should be continuous (i.e. not limited
to an interval of width 2π). With the former the phase estimate should also be
around its true absolute value, whereas with the latter a constant offset along
the frequency axis is acceptable. As in practice the phase is computed modulo
2π (i.e. the wrapped phase), an unwrapped version of it is needed in order to
rebuild the continuous phase.

In practice, the unwrapped phase can be obtained recursively by adding a
multiple of 2π to the wrapped one until the absolute difference between the
neighboring unwrapped phases becomes less than or equal to π. Denote by ϕ̂k
the wrapped MLE of the phase and by ϕ̃k the unwrapped version of ϕ̂k. We can
write the unwrapping criterion as follows:

|ϕ̃k − ϕ̃k−1| 6 π (3.105)



98 NEW TOA ESTIMATORS

where the non-ambiguity condition 2π∆fτ < π should be respected. The un-
wrapping procedure can be performed using the “unwrap” MATLAB function.

As the true value of the phase is unknown in practice, we can start the un-
wrapping procedure from an arbitrary k0 by taking ϕ̃k0 = ϕ̂k0 , then running
the unwrapping procedure for k0 + 1, . . . , M2 − 1 and k0 − 1, . . . ,−M

2 . Obviously,
the unwrapped phase may have an offset (almost the same for all frequency
components) with respect to the true phase. This offset depends on the offset
2π(fk0 + fc)τ − ϕ̂k0 present at the starting unwrapping point.

Let us now consider the wrapped MLE ϕ̂k (called in the sequel the “wrapped
phase”). By equating to zero the partial derivative of ΛρUk

,ϕk Eq. 3.101 with
respect to ϕk, we can write ϕ̂k as:

ϕ̂k = θSk
− θRk

= θSkR∗

k
(3.106)

where {·}∗ denotes the complex conjugate. Given that Nk Eq. 3.98 is a white
sequence, the estimates ϕ̂k obtained at the different frequencies k are indepen-
dent. By integrating the joint PDF TRk

(ρRk
, θRk

) Eq. 3.100 of ρRk
and θRk

over
ρRk

(in order to obtain the marginal PDF of θRk
[105]), we can write the PDF

of ϕ̂k using Eq. 3.106 as:

Twrϕ̂k
(ϕ̂k) =

e−
νk
2

2π
+

√

νk
2π

cos(ϕ̂k − ϕk)e
− νk

2 sin2(ϕ̂k−ϕk)

×Q [
√
νk cos(ϕ̂k − ϕk)] (3.107)

where Q(·) denotes the Q function, and the superscript wr the wrapped phase.
Obviously, Twrϕ̂k

(ϕ̂k) is 2π-periodic and can be defined in any interval Ick
=

[ck − π, ck + π] of width 2π (
∫

Ick

Twrϕ̂k
(ϕ̂k)dϕ̂k = 1, ∀ck). It has been shown

in [106] that the distribution of the wrapped phase can be approximated by
a normal distribution if the local SNR νk is sufficiently high, and a uniform
distribution along Ick

if νk is very low.

Let us now compute the PDF of the unwrapped version ϕ̃k (called from now on
the “unwrapped phase”) of the wrapped phase ϕ̂k. We assume that we start the
unwrapping procedure from k = 0 (i.e. ϕ̃0 = ϕ̂0). Let Tϕ̃k

(ϕ̃k) be the marginal
PDF of ϕ̃k. We will show below that Tϕ̃k

(ϕ̃k) can be computed recursively for
k = 1, . . . , M2 − 1 and k = −1, . . . ,−M

2 starting from ϕ̃0.

From the unwrapping criterion in Eq. 3.105 we can write the domain of ϕ̃k
given ϕ̃k−1 as:

Dk|ϕ̃k−1 = Iϕ̃k−1
= [ϕ̃k−1 − π, ϕ̃k−1 + π]. (3.108)

As for k = 0 the marginal domain of ϕ̃k is given by D0 = [−π, π] (because
ϕ̃0 = ϕ̂0), we can write from Eq. 3.108 the marginal domain of ϕ̃k as:

Dk =
[

− |k + 1|π, |k + 1|π
]

, (k = −N
2
, . . . ,

N

2
− 1). (3.109)
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Given that ϕ̃k is unwrapped with respect to ϕ̃k−1, T
wr
ϕ̂k

(ϕ̂k) Eq. 3.107 is 2π-
periodic, and |ϕ̃k − ϕ̂k| = 2lπ (with l integer due to the unwrapping), we can
write the PDF of ϕ̃k given ϕ̃k−1 as:

Tϕ̃k|ϕ̃k−1
(ϕ̃k) = Twrϕ̂k

(ϕ̃k)

where the domain of Tϕ̃k|ϕ̃k−1
(ϕ̃k) is Iϕ̃k−1

Eq. 3.108.

Now, in order to express the marginal PDF Tϕ̃k
(ϕ̃k) of ϕ̃k with respect to that

of ϕ̃k−1, we first compute the joint PDF Tϕ̃k,ϕ̃k−1
(ϕ̃k, ϕ̃k−1) of ϕ̃k and ϕ̃k−1,

and then integrate with respect to ϕ̃k−1 taking into account that ϕ̃k−1|ϕ̃k ∈
[ϕ̃k − π, ϕ̃k + π] (due to the unwrapping criterion in Eq. 3.105). Accordingly we
can write:

Tϕ̃k,ϕ̃k−1
(ϕ̃k, ϕ̃k−1) = Tϕ̃k|ϕ̃k−1

(ϕ̃k)Tϕ̃k−1
(ϕ̃k−1) = Twrϕ̂k

(ϕ̃k)Tϕ̃k−1
(ϕ̃k−1)

Tϕ̃k
(ϕ̃k) =

ϕ̃k+π
∫

ϕ̃k−π

Tϕ̃k,ϕ̃k−1
(ϕ̃k, ϕ̃k−1)dϕ̃k−1

= Twrϕ̂k
(ϕ̃k)

ϕ̃k+π
∫

ϕ̃k−π

Tϕ̃k−1
(ϕ̃k−1)dϕ̃k−1 (3.110)

where the domain of Tϕ̃k
(ϕ̃k) is Dk Eq. 3.109. So, Tϕ̃k

(ϕ̃k) can now be computed
recursively from Eq. 3.110 for k = 1, . . . , M2 −1 and k = −1, . . . ,−M

2 taking into
account that:

Tϕ̃0
(ϕ̃0) = Twrϕ̂k

(ϕ̃0)

Using Eq. 3.109 we can write the mean and the variance of ϕ̃k as:

µϕ̃k
=

|k+1|π
∫

−|k+1|π

ϕ̃kTϕ̃k
(ϕ̃k)dϕ̃k (3.111)

σ2
ϕ̃k

=

|k+1|π
∫

−|k+1|π

(ϕ̃k − µϕ̃k
)2Tϕ̃k

(ϕ̃k)dϕ̃k. (3.112)

In Fig. 3.6(a), we show the true phase ϕk Eq. 3.99, a realization of the wrapped
phase ϕ̂k (ϕ̂k ∈ [−π, π]), and the corresponding unwrapped phase ϕ̃k, all versus
the frequency fk + fc. The transmitted signal consists on a cardinal sine of a
bandwidth of B = 2 GHz modulated by the carrier fc = 2 GHz. We consider a
time delay of τ = 2 ns, a global SNR Eq. 3.104 of ν = 17 dB, and M = 16 samples
(k = −8, . . . , 7). The unwrapping procedure is started here from k = −8. We
can see that ϕ̃k is almost continuous with a phase offset almost constant with
respect to the true phase.
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(a)

(b)

(c)

Fig. 3.6.: (a) True phase ϕk versus fk + fc (a) (b) (c) one realization of the
wrapped phase ϕ̂k and the corresponding unwrapped one ϕ̃k (cardinal sine wave-
form modulated by fc = 2 GHz, k = −8, . . . , 7).

In Fig. 3.6(b) and Fig. 3.6(c) we show two more realizations of the wrapped
ϕ̂k and unwrapped ϕ̃k phases. We can see that some errors multiple of −2π have
been introduced to ϕ̃k during the unwrapping procedure. This happens when the
unwrapping procedure should add a multiple of 2π to the next phase (for instance
at k = −3 in Fig. 3.6(b)), but does not add it because the absolute difference
between the neighboring wrapped phases is less than π (i.e. |ϕ̂−3 − ϕ̂−4| 6 π)
due to the noise. Each time this phenomenon happens, an further error of −2π
will be introduced.
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Fig. 3.7.: Marginal PDF Tϕ̃k
(ϕ̃k) of the unwrapped phase ϕ̃k (a) k = 1, . . . , 15

(b) k = 15.

Note that errors multiple of 2π can also be introduced. This happens when
the unwrapping procedure should not add a multiple of 2π to the next phase,
but adds it because the absolute difference between the neighboring wrapped
phases is greater than π due to the noise. Such errors rarely occur if the phase
ϕk Eq. 3.99 is increasing with the frequency (i.e. positive slope).

In Fig. 3.7(a) and Fig. 3.7(b) we show the marginal PDF Tϕ̃k
(ϕ̃k) Eq. 3.110

of the unwrapped phase ϕ̃k for k = 1, . . . , 15 and k = 15, respectively. We take
B = 2 GHz, fc = 0 GHz, τ = 1 ns, M = 32, and a local SNR Eq. 3.103 of
νk = 5 dB, ∀k. In this experience, we have started the unwrapping procedure
from k = 0. We can see in Fig. 3.7(b) that for k = 15 (the phase corrected at the
end of the unwrapping procedure), the PDF has three secondary lobes located
at −4π,−2π, and 2π from the main lobe. The strongest secondary lobe is the
one located at −2π from the main lobe.

As already mentioned above, the presence of these secondary lobes is due
to errors multiple of ±2π introduced by the unwrapping procedure. The main
lobe becomes weaker and the secondary lobes stronger as the frequency increases.
This means that we have more chance that such errors (i.e. the errors multiple of
±2π) occur. In fact, the ±2π errors accumulate over the course of the unwrapping
procedure as the frequency increases because the unwrapping is performed recur-
sively (see Fig. 3.6(b) and Fig. 3.6(c)). If we decrease the local SNR Eq. 3.103 by
either increasing the number of samples or decreasing the global SNR Eq. 3.104,
then the secondary lobes (which are located at · · · ,−4π,−2π, 2π, 4π, · · · from
the main lobe) become stronger. Errors multiple of −2π (resp. 2π) are more
frequent if the slope of the true phase is positive (resp. negative). We can see
from the PDF of ϕ̃k that the unwrapped phase is biased. As the secondary lobes
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Fig. 3.8.: Theoretical and simulated (simu) variance σ2
ϕ̃k

and MSE ǫ2ϕ̃k
, and the

CRLB cϕk of ϕk versus fk + fc (a) νk = 5 dB, ∀k (b) νk = 28 dB, ∀k.

become stronger when the frequency increases, we can expect that both the bias
and the variance of ϕ̃k will increase with the frequency.

In Fig. 3.8(a) and Fig. 3.8(b), we show for the same setup considered
in Fig. 3.7(a) and Fig. 3.7(b) the theoretical variance σ2

ϕ̃k
and MSE ǫ2ϕ̃k

=

σ2
ϕ̃k

+ (µϕ̃k
−ϕk)

2 of the unwrapped phase ϕ̃k (µϕ̃k
and σ2

ϕ̃k
are computed from

Eq. 3.111 and Eq. 3.112 respectively), the CRLB cϕk Eq. 3.102 of ϕk, and the
variance and MSE of obtained by simulation (based on 10000 trials), all versus
the frequency, for a local SNR of νk = 5 and 28 dB, ∀k, respectively.
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In Fig. 3.8(a) (where a relatively low local SNR of νk = 5 dB is considered),
we can see that the simulated variance and MSE follow closely the theoretical
ones, which validates our theoretical approach. However, the variance and the
MSE do not follow the CRLB, and they both increase with the frequency. This
fact, which has been expected in our comments to the PDF of ϕ̃k in Fig. 3.7(b),
is due to the errors multiple of ±2π introduced by the unwrapping procedure.

In Fig. 3.8(b) (where a sufficiently high local SNR of νk = 28 dB is considered),
we can see that the theoretical and simulated variance and MSE are all very close
to the CRLB. In fact, the wrapped phase ϕ̂k is correctly unwrapped, and there
are no ±2π errors that have been introduced by the unwrapping procedure,
because the considered local SNR is very high.

3.3.3 Phase-slope-based and absolute-phase-based local TOA estimators

In the previous subsection, we have studied the wrapped ϕ̂k and unwrapped ϕ̃k
phases. Here, we propose two local TOA estimators based on the unwrapped
phase ϕ̃k.

In order to overcome the defect of the phase offset between the true phase
ϕk and the unwrapped phase ϕ̃k recognized in Fig. 3.6(a), we can define from
Eq. 3.99 the first local TOA estimator based on the slope of ϕ̃k as:

τ̃ bbk =
ϕ̃k − ϕ̃0

2πfk
, k 6= 0 (3.113)

where τ̃ bbk is referred to as the “local baseband TOA estimator” because the
information on the time delay τ is only carried by the frequency components fk
of the envelope (we have get rid of the information carried by fc, see Eq. 3.99).
By assuming (for simplicity of the exposition) that the samples of ϕ̃k obtained at
the different frequency tones are independent (not true due to the unwrapping
procedure), the covariance of τ̃ bbk can be written as:

Γ(τ̃ bbk , τ̃
bb
k′ ) =







σ2
ϕ̃0

4π2fkfk′

k 6= k′

σ2
ϕ̃k

+σ2
ϕ̃0

4π2f2
k

= σ2
τ̃bb

k

k = k′
(3.114)

where σ2
τ̃bb

k

denotes the variance of τ̃ bbk .

As the offset between ϕ̃k and ϕk is multiple of 2π, it can be estimated by:

∆̃ϕ = 2π round

{

2πfcτ̃
bb − ϕ̃0

2π

}

(3.115)

where “round” denotes the “round to nearest integer” function, and τ̃ bb the
global slope-based estimator (i.e. the estimator involving the samples of the
local estimator obtained at all frequency tones). The expression of τ̃ bb is given
in Sec. 3.3.4 as a linear combination of τ̃ bbk Eq. 3.113.
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In order to benefit from the information carried on τ by the passband fre-
quency components, we can now define from Eq. 3.99 and Eq. 3.115 the second
local TOA estimator, based on the absolute phase as:

τ̃pbk =
ϕ̃k + ∆̃ϕ

2π(fk + fc)
(3.116)

where τ̃pbk is named “the local passband TOA estimator” because the information
on τ is carried now by the frequency components fc + fk of the real passband
transmitted signal (see Eq. 3.99). By assuming ∆̃ϕ equal to the true offset (true
for sufficiently high SNRs), and by assuming that the samples of ϕ̃k are inde-

pendent, the covariance of τ̃pbk can be written as:

Γ(τ̃pbk , τ̃
pb
k′ ) =

{

0 k 6= k′

σ2
ϕ̃k

4π2(fk+fc)2
= σ2

τ̃pb

k

k = k′
(3.117)

where σ2
τ̃pb

k

denotes the variance of τ̃pbk .

The local passband CRLB of τ can be written from Eq. 3.99 and Eq. 3.102
as:

cpbk =
1

4π2νk (fc + fk)
2 . (3.118)

By getting rid of the information carried on τ by the central frequency fc we
can define the local baseband CRLB (equivalent to the envelope CRLB defined
in Chap. 2) from Eq. 3.118 as:

cbbk =
1

4π2νkf2
k

. (3.119)

As for sufficiently high SNRs, the unwrapped phase becomes unbiased and its
variance converges to its CRLB cϕk Eq. 3.102, we can deduce from Eq. 3.117
and Eq. 3.118 that the local passband TOA estimator becomes unbiased and
achieves its local passband CRLB too. From Eq. 3.102, Eq. 3.114 and Eq. 3.119
we can see that the local baseband TOA estimator achieves asymptotically the
sum cbb0 + cbbk .

In Fig. 3.9, we show the local baseband and passband CRLBs (cbbk and cpbk ),
and the MSEs of the local baseband and passband TOA estimators (ǫ2

τ̃bb
k

and

ǫ2
τ̃pb

k

) obtained by simulation based on 1000 trials, versus fk+fc. The transmitted

signal is a Gaussian pulse of width Tw modulated by a carrier:

s(t) ∝ e
−2π t2

T2
w cos(2πfct).

We take Tw = 0.5 ns, Ts = Tw

4 (sampling period), fc = 4 GHz, τ = 1 ns, M = 32

(number of samples) and ν = 25 dB (global SNR). We can see that τ̃pbk achieves
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Fig. 3.9.: Local baseband and passband CRLBs (cbbk , c
pb
k ), and MSEs of the local

baseband and passband TOA estimators (ǫ2
τ̃bb

k

and ǫ2
τ̃pb

k

) obtained by simulation,

versus fk + fc.

the passband CRLB because the SNR is sufficiently high, whereas τ̃ bbk does not
achieve the baseband CRLB. In fact, The gap between ǫ2

τ̃bb
k

and cbbk is equal to

the baseband CRLB cbb0 at k = 0 and corresponds to the term
σ2

ϕ̃0

4π2f2
k

in the

expression of σ2
τ̃bb

k

in Eq. 3.114.

3.3.4 Phase-slope-based and absolute-phase-based global TOA estimators

In this subsection, we derive the global TOA estimators based on the local TOA
estimators considered in Sec. 3.3.3.

The global baseband (resp. passband) TOA estimator τ̃ bb (resp. τ̃pb) is defined
as the minimum-variance unbiased linear combination of the local estimators τ̃ bbk ,

(k = −M
2 , . . . ,

M
2 − 1) (resp. τ̃pbk ).

Consider M unbiased estimators ζ̃k of the same parameter ζ. The minimum-
variance unbiased linear combination of (ζ̃k) is given by:

ζ̃ = ãT
ζ̃
ζ̃ ;











ãζ̃ = argmin
a

{σ2
aT ζ̃

}

s. t.
∑

a = 1

⇒ ãζ̃ =
Γ−1

ζ̃
1

∑

(Γ−1

ζ̃
1)

(3.120)

where {·}T denotes the transpose operator, z the vector (z1 · · · zM )T , σ2
aT ζ̃

=

E{(aT (ζ̃ − ζ1))2} (E{·} denotes the expectation operator),
∑

a the sum of the
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elements of a, 1 = (1 · · · 1)T , and Γ
ζ̃

the covariance matrix of ζ̃. The variance of

ζ̃ is given by:

ãTΓ
ζ̃
ã.

From Eq. 3.114 and Eq. 3.120, we can write the global baseband estimator
and its variance as:

τ̃ bb =
(Γ−1

τ̃bb1)T

∑

(Γ−1

τ̃bb1)
τ̃ bb (3.121)

σ2
τ̃bb = ãTτ̃bbC

τ̃bb ãτ̃bb . (3.122)

Given that the covariance matrix of τ̃pb is diagonal (see Eq. 3.117), we can
write the global passband estimator and its variance as:

τ̃pb =

∑N−1
k=0

τ̃pb

k

σ2

τ̃
pb
k

∑N−1
k=0

1
σ2

τ̃
pb
k

(3.123)

σ2
τ̃pb =

1
∑N−1
k=0

1
σ2

τ̃
pb
k

. (3.124)

We can see from Eq. 3.121 and Eq. 3.123 that in order to compute the global
baseband and passband TOA estimators, we need to know the covariances of
the corresponding local estimators. These covariances can be computed from
Eq. 3.114 and Eq. 3.117 based on the variance σ2

ϕ̃k
Eq. 3.112 of ϕ̃k. If we assume

that ϕ̃k achieves its CRLB cϕk Eq. 3.102, we can replace σ2
ϕ̃k

in Eq. 3.121 and

Eq. 3.123 by 1
ρ2

Sk

(because cϕk is inversely proportional to ρ2
Sk

, see Eq. 3.102

and Eq. 3.103). If cϕk is not achieved by ϕ̃k (due to the threshold phenomenon
studied in Chap. 2), then the latter approach (i.e. replacing σ2

ϕ̃k
by 1

ρ2
Sk

) will not

be anymore optimal and the performances of the global estimators deteriorate
with respect to what can be achieved by considering the true variance σ2

ϕ̃k
. We

have already seen in Fig. 3.8(a) that for relatively low local SNRs, σ2
ϕ̃k

becomes
much larger than the CRLB cϕk , and increases with the frequency.

Given that Nk in Eq. 3.98 is a white sequence (which makes the global log-
likelihood function equal to the sum over k of the local log-likelihood functions
in Eq. 3.101), the global passband and baseband CRLBs of τ can be written
from the corresponding local CRLBs in Eq. 3.118 and Eq. 3.119 as:

cpb =
1

∑

k
1

cpb

k

=
1

∑

k 4π2νk(fc + fk)2
=

1

ν(4π2f2
c + β2

s )

cbb =
1

∑

k
1
cbb

k

=
1

∑

k 4π2νkf2
k

=
1

νβ2
s
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TOA estimators, and the MSE ǫ2τ̃ml (obtained by simulation) of the time-domain
MLE, all versus the SNR ν.

where ν is the global SNR defined in Eq. 3.104 and β2
s =

∑

k 4π2ρ2Sk
f2

k
∑

k ρ
2
Sk

the discrete

mean quadratic bandwidth of s[k]. Note that when the assumptions of Eq. 3.96
are satisfied, then the global SNR and the discrete mean quadratic bandwidth
become equal to the SNR and the mean quadratic bandwidth of the continuous
signal s(t), respectively.

Denote by spb(t) and rpb(t) the real passband transmitted and received signals
respectively. We can write the time-domain MLE of τ as:

τ̃ml = argmax
ζ

{rpb(ζ) ⊗ spb(−ζ)}

where ⊗ denotes the convolution operator.

In Fig. 3.10, we show the baseband and passband CRLBs (cbb and cpb) of τ , the
MSEs (ǫ2τ̃bb and ǫ2τ̃pb) obtained by simulation based on 10000 trials of the global
baseband and passband TOA estimators (τ̃ bb Eq. 3.121 and τ̃pb Eq. 3.123), and
the MSE ǫ2τ̃ml of the time-domain MLE τ̃ml obtained by simulation, all versus
the global SNR ν. We consider a modulated Gaussian pulse with Tw = 0.5 ns,
fc = 4 GHz, Ts = Tw

4 (sampling period), τ = 1 ns, and M = 32 (number of
samples). For the MLE, the sampling period must be smaller than the expected

accuracy (Tmls 6
√
cpb). For instance we have taken Tmls = 1 ps (125 times

smaller than the DFT-based sampling period Ts). The global TOA estimators



108 NEW TOA ESTIMATORS

τ̃ bb and τ̃pb are computed from Eq. 3.121 and Eq. 3.123 respectively by assuming
that ϕ̃k achieves the CRLB cϕk of ϕk.

We can see that the global baseband estimator τ̃ bb achieves asymptotically
a multiple of the the baseband CRLB cbb (ǫ2τ̃bb ≈ 1.5cbb at ν = 28 dB). This
factor of 1.5 is due to the term σ2

ϕ̃0
in the expression of the variance of the local

baseband estimator τ̃ bbk and to the CR between the different samples of τ̃ bbk (see
the covariance of τ̃ bbk in Eq. 3.114). Both the time-domain MLE τ̃ml and the
global passband estimator τ̃pb achieve asymptotically the passband CRLB cpb.
However, τ̃ml achieves cpb much faster than τ̃pb (8 dB of difference between the
corresponding asymptotic SNR thresholds). We have already mentioned that
many improvements can be introduced to our estimators for they achieve the
baseband and passband CRLBs faster (e.g. considering the true variance σ2

ϕ̃k
of

ϕ̃k instead of approximating it by the CRLB cϕk).

We have to emphasize the fact that with time-domain-based estimators the
sampling period should be smaller than the expected accuracy (i.e. the square
root of the CRLB), or interpolation should be performed to find precisely the
location of the global maximum. However, with the proposed DFT-based esti-
mators, the required sampling frequency is equal to the bandwidth of the trans-
mitted signal, and the TOA estimates are directly generated from a very small
number of samples, and without any interpolation.

Below, we will briefly describe one more improved baseband estimator and an-
other improved passband estimator. We have already seen that the unwrapping
procedure introduces errors multiple of −2π to the unwrapped phase. These er-
rors seriously deteriorate our estimators. In order to overcome this vexing defect,
we first consider the following phase-slope-based TOA estimator:

τ̃spk =
ϕ̃k − ϕ̃k−1

2π∆f
(3.125)

where ∆f = 1
MTs

(already defined in Eq. 3.97). Its covariance can be written as:

Γ(τ̃spk , τ̃spk′ ) =















0 |k − k′| > 1

− σ2
ϕ̃k

4π2∆f2 k′ = k + 1
σ2

ϕ̃k
+σ2

ϕ̃k−1

4π2∆f2 = σ2
τ̃sp

k

k′ = k

(3.126)

where σ2
τ̃sp

k

denotes the variance of τ̃ spk . In order to mitigate the −2π errors in-

troduced by the unwrapping procedure, we force the time delay to be positive by
putting the reference pulse at the beginning of the observation period, then com-
pute τ̃spk Eq. 3.125 and only keep the positive samples. Denote by τ̃ sp+ the vector
containing the positive samples of τ̃ spk and by Γ

τ̃sp
+

the corresponding covariance

matrix. A new global phase-slope-based TOA estimator can be obtained from
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Eq. 3.120 and Eq. 3.126 as:

τ̃sp+ =
(Γ−1

τ̃sp
+

1)T

∑

(Γ−1

τ̃sp
+

1)
τ̃sp+ . (3.127)

Now, we want to find again the baseband an passband local and global TOA
estimators using τ̃ sp+ Eq. 3.127. To do so we generate from the wrapped phase ϕ̂k
a new unwrapped phase ϕ̃spk , which is not unwrapped recursively like ϕ̃k, but for
each k we unwrap ϕ̂k with respect to 2π(fk + fc)τ̃

sp
+ to obtain ϕ̃spk . Accordingly,

ϕ̃spk falls now around the true phase ϕk and there is no phase offset (i.e. the phase
offset is equal to zero for good SNRs) to be estimated like in Eq. 3.115. Denote
by τ̃ bbk,+ and τ̃ bb+ the new local and global baseband TOA estimators respectively,

and by τ̃pbk,+ and τ̃pb+ the new local and global passband estimators. Finally, τ̃ bbk,+
is obtained from Eq. 3.113 after replacing ϕ̃k by ϕ̃spk , τ̃ bb+ from Eq. 3.121 using

τ̃ bbk,+ instead of τ̃ bbk , τ̃pbk,+ from Eq. 3.116 after replacing ϕ̃k + ∆̃ϕ by ϕ̃spk , and τ̃pb+

from Eq. 3.123 using τ̃pbk,+ instead of τ̃pbk ,

The MSEs ǫ2
τ̃bb
+

and ǫ2
τ̃pb
+

(obtained by simulation) of τ̃ bb+ and τ̃pb+ respectively,

are shown in Fig. 3.10. We can see that the new global baseband estimator
τ̃ bb+ achieves the global baseband CRLB cbb faster than the initial estimator

τ̃ bb, and the new global passband estimator τ̃pb+ achieves the global passband
CRLB cpb faster than the initial estimator τ̃pb. Still, the time-domain MLE
achieves the global passband CRLB cpb much faster than both the initial and
the new global passband estimators. However, both the new global baseband and
passband estimators outperform the time-domain MLE at low SNRs (ν < 14 dB).

3.3.5 DFT-based estimation in multipath channels

Consider now a multipath UWB channel with IR-UWB signals. The baseband
channel impulse response can be written as:

h(t) = 2

L
∑

l=1

α(l)e−j2πfcτ
(l)

δ(t− τ (l))

where α(l) and τ (l) denote the gain and the time delay introduced by the lth
MPC. We assume that the relative delay between two neighboring MPCs is
greater than the width of the transmitted pulses so the MPCs can be assumed
resolvable. The corresponding baseband received signal can be written as:

rMP (t) = s(t) ⊗ h(t).

Denote by:

ΓrMP ,s(t) = |rMP (t) ⊗ s(−t)|
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the modulus of the CCR of the baseband transmitted and received signals. We
assume that the baseband received signal is sampled at a rate equal to the
bandwidth B of s(t).

The proposed estimator consists of two steps:

1. Coarse estimation: we estimate the time delays of the different MPCs as
the locations of the peaks of ΓrMP ,s(t) crossing a given threshold.

2. Fine estimation: we consider a window around each MPC slightly wider
than the pulse width and we apply our DFT-based estimators to each MPC
separately.

The performances of the proposed multipath estimator are expected to be the
same as those of the DFT-based estimators presented in the previous subsections.

3.4 CONCLUSION

In this chapter we have introduced a new receiver (the DM receiver) for TH-IR-
UWB signals. We have computed for both the DM and the CR receivers, the
local and global statistics and probabilities of error. We have seen that the CR
receiver always outperforms the DM receiver.

We have proposed a new TOA estimator (the MME) based on the DM re-
ceiver. We have computed its asymptotic performances and derived some ap-
proximations of its local MSE. We have compared it with the MLE. The MME
and the MLE approximately achieve the CRLB at the same SNR. However, the
MLE slightly outperforms the MME in the ambiguity and the threshold regions.

We have proposed two TOA estimators (the global baseband estimator and
the global passband estimator) based on the relative and the absolute unwrapped
phase of the DFT of the received signal. We have derived the local estimators
and combined them to get the corresponding global estimators. We have shown
that the global baseband (resp. passband) estimator achieves asymptotically the
global baseband (resp. passband) CRLB. We have seen that the time-domain
MLE achieves the global passband CRLB faster than the global passband esti-
mator which outperforms the MLE at low SNRs. Unlike the case of time-domain
estimators where the sampling period should be in the same order of the ex-
pected accuracy, the proposed DFT-based estimators require a sampling fre-
quency equal to the bandwidth of the transmitted signal, and estimate the TOA
directly from few samples without performing any interpolation. We have calcu-
lated the statistics of the unwrapped phase. We have shown that our estimators
can be improved for they achieve the CRLB faster. We have also described how
the proposed estimators can be employed in MP channels.



CHAPTER 4

TOA ESTIMATION IN MULTIUSER

SYSTEMS USING TH-IR-UWB SIGNALS:

MAXIMUM-DELAYING-AND-MULTIPLYING

AND MAXIMUM-CORRELATION

ESTIMATORS

M
ultiuser interference is one of the major challenges in the realization of low-
complexity TOA estimators. It has been already mentioned in Sec. 1.1.4

that few publications addressed this field in the literature.

In this chapter, we investigate the MME (maximum delaying-and-multiplying
estimator) and the MCE (maximum correlationn estimator) introduced in the
previous chapter. We consider the case of single-user, then the case of multiuser.
We evaluate the global performances of both estimators. We derive some approx-
imations of the MSE and some approximate lower bounds. The MUI effects are
studied by assuming both deterministic MUI and random MUI. Given that the
effects of the MUI closely depend on the properties of the ACR and the CCR of
the used waveforms, we propose some algorithms to generate THMA codes with
minimum sidelobe ACR and minimum CCR.

The main contributions in this chapter are as follows:

• We derive some approximations of the MSE achieved by both estimators
and some approximate lower bounds for the case of single-user, by employ-
ing the subdomain and the Ziv and Zakai methods introduced in Chap. 2.
The obtained results allow us to examine the properties of the candidate
TH-IR-UWB waveform before using it.

111
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• We considere some particular setups with deterministic MUI, and analyzed
for each case the potential of each estimator in mitigating the MUI.

• We derive an approximation of the MSE achieved by each estimator when
the MUI is random. We have modeled the MUI as an AWGN. We have
compared the derived approximations with the MSEs obtained by simula-
tion and discussed the obtained results.

In Sec. 4.1, we introduce our system model. In Sec. 4.2, we consider the MCE
and the MME and derive some MSE approximations and some approximate
lower bounds. We handle the case of single-user in Sec. 4.3 and study the MUI
effects in Sec. 4.4. In Sec. 4.5, we consider the generation of THMA codes with
optimal properties.

4.1 MULTIUSER SYSTEM MODEL AND JOINT MLE AND CRLBS

In this section we describe the considered MU system model and derive the
expressions of the joint MU gain and TOA MLE and the CRLBs for the joint
MU gain and TOA estimation.

In Sec. 4.1.1 we describe the structure of the considered TH waveforms, and
in Sec. 4.1.2 we consider the joint MLE and CRLBs.

4.1.1 Time-hopping waveforms

Denote by:

wk(t) =

√

E

Nc

Nc−1
∑

n=0

p(t− t(k)n ) (4.1)

the TH waveform of energy E and duration T transmitted by the kth user
(k = 1, · · · ,K) (E and T are assumed to be equal for all users), where p(t)

denotes the used pulse, and t
(k)
n ∈ [0, T [, (n = 0, · · · , Nc − 1) the time delays

introduced by the TH code to the Nc pulses of wk(t) (called Waveform k). The
energy of p(t) is normalized to one.

We consider two types of TH waveforms:

• Waveforms with chip separation: the time delay corresponding to the nth
pulse is given by:

t(k)n = nTc + c(k)n Th = (nNh + c(k)n )Th (4.2)

where Tc = T
Nc

denotes the chip period (average pulse repetition period)

(we have Nc chips per waveform), Th = Tc

Nh
the time-hop (Nh is the number

of time-hops per chip), and

c(k) = (c(k)n )n=0,··· ,Nc−1, c
(k)
n ∈ {0, · · · , Nh − 1} (4.3)
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the TH codeword associated with the kth user (called User k). In this case
we have:

Ns =
T

Th
= NcNh (4.4)

time-hops per waveform.

• Waveforms without chip separation: in order to make the waveforms
shorter, we directly split the waveform duration T into

Ns = Nh =
T

Th
(4.5)

time-hops so that the time delay corresponding to the nth pulse can be
written as:

t(k)n = c(k)n Th (4.6)

where c
(k)
n is given in Eq. 4.3.

For both codes, the time-hop Th should be larger than the pulse width Tw.
Obviously, the waveform wk(t) is totally contained in the interval:

IT = [−Th
2
, T − Th

2
[. (4.7)

Denote by:

Xx,y(θ) =

∫ +∞

−∞
x(t+ θ)y(t)dt

Rx(θ) = Xx,x(θ)

Ex = Rx(0)

the CCR of the two generic signals x(t) and y(t), the ACR and the energy of
x(t), respectively. From Eq. 4.1 we can write the CCR Xwk,wk′

(θ) of Waveforms
k and k′ and the ACR Rwk

(θ) of Waveform k as:

Xwk,wk′
(θ) =

E

Nc

Nc−1
∑

n=0

Nc−1
∑

n′=0

Rp(θ − [t(k)n − t
(k′)
n′ ]) (4.8)

Rwk
(θ) =

E

Nc

Nc−1
∑

n=0

Nc−1
∑

n′=0

Rp(θ − [t(k)n − t
(k)
n′ ]) (4.9)

where Rp(θ) is the ACR of p(t) (Rp(0) = Ep = 1). As Th > Tw, we can write
Rp(θ) ≈ 0 for τ /∈ [−Th

2 ,
Th

2 ].

Let us call ξRp(θ − ζ) “pulse ACR component” (ξ and ζ denote two con-
stants). We can see from Eq. 4.8 and Eq. 4.9 that Xwk,wk′

(θ) contains up to N2
c

pulse ACR components corresponding to the N2
c possible couples (t

(k)
n , t

(k′)
n′ ),
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(n = 0, · · · , Nc − 1), (n′ = 0, · · · , Nc − 1). If, for M
(k,k′)
j different couples

(t
(k)
n , t

(k′)
n′ ) the relative delays t

(k)
n − t

(k′)
n′ are all equal to the same value t

(k,k′)
j ,

then Xwk,wk′
(θ) will contain the pulse ACR component M

(k,k′)
j

E
Nc
Rp(θ− t(k,k

′)
j )

(of amplitude M
(k,k′)
j

E
Nc

, and located at t
(k,k′)
j ). As for Rwk

(θ), the Nc differ-

ent couples (t
(k)
n , t

(k)
n ), (n = 0, · · · , Nc − 1) have all the same relative delay

t
(k)
n − t(k)n = 0, Rwk

(θ) contains up to N2
c − (Nc−1) = Nc(Nc−1)+1 pulse ACR

components (for this reason, we will have N
(k)
0 = Nc, below in Eq. 4.16). Let:

T (k,k′) =
{

t(k)n − t
(k′)
n′

∣

∣

n,n′=0,··· ,Nc−1

}

(4.10)

T (k) =
{

t(k)n − t
(k)
n′

∣

∣

n,n′=0,··· ,Nc−1

}

. (4.11)

Given that t
(k)
n is a multiple of Th, we can write Xwk,wk′

(θ) and Rwk
(θ) in the

interval

I2T =] − T, T [ (4.12)

as:

Xwk,wk′
(θ) =

E

Nc

j(k,k′)

∑

j=1

M
(k,k′)
j Rp(θ − t

(k,k′)
j ) (4.13)

=
E

Nc

Ns−1
∑

i=−(Ns−1)

N
(k,k′)
i Rp(θ − iTh) (4.14)

Rwk
(θ) =

E

Nc

j(k)

∑

j=1

M
(k)
j Rp(θ − t

(k)
j ) (4.15)

=
E

Nc

Ns−1
∑

i=−(Ns−1)

N
(k)
i Rp(θ − iTh) (4.16)

where Ns is given in Eq. 4.4, Eq. 4.5, j(k,k
′) 6 N2

c , M
(k,k′)
j ∈ {0, · · · , Nc},

j(k) 6 Nc(Nc − 1) + 1, M
(k)
j ∈ {0, · · · , Nc},

∑j(k,k′)

j=1 M
(k,k′)
j =

∑+∞
i=−∞N

(k,k′)
i =

∑+∞
i=−∞N

(k)
i =

∑j(k)

j=1M
(k)
j = N2

c , t
(k,k′)
j ∈ T (k,k′), t

(k)
j ∈ T (k), and

N
(k,k′)
i =

{

0 iTh /∈ T (k,k′)

M
(k,k′)
j iTh = t

(k,k′)
j

(4.17)

N
(k)
i =







Nc i = 0
0 iTh /∈ T (k)

M
(k)
j iTh = t

(k)
j .

(4.18)



MULTIUSER SYSTEM MODEL AND JOINT MLE AND CRLBS 115

Note that both Xwk,wk′
(θ) and Rwk

(θ) are null outside I2T Eq. 4.12 because

t
(k)
n ∈ [0, T [, (n = 0, · · · , Nc − 1). From now on, we call M

(k,k′)
j , N

(k,k′)
i , M

(k)
j

and N
(k)
i “normalized amplitudes”.

We can deduce that if

t(k)n − t
(k′)
n′ 6= t(k)m − t

(k′)
m′ , ∀(n, n′) 6= (m,m′) (4.19)

t(k)n − t
(k)
n′ 6= t(k)m − t

(k)
m′ , ∀(n, n′) 6= (m,m′), n 6= n′, (4.20)

then Waveforms k and k′ will have minimum CCR, and Waveform k will
have minimum sidelobe ACR, respectively. We mean by minimum CCR that
Xwk,wk′

(θ) contains N2
c different pulse ACR components of normalized ampli-

tudes equal to one (i.e.M
(k,k′)
j = 1, ∀j, N (k,k′)

i = 0 or 1, ∀i, in Eq. 4.13, Eq. 4.14),
and by minimum sidelobe ACR that Rwk

(θ) contains one pulse ACR component
of normalized amplitude equal to Nc, and Nc(Nc − 1) other pulse ACR compo-

nents of amplitude equal to one (i.e. M
(k)
j = Nc for t

(k)
j = 0, M

(k)
j = 1, ∀t(k)j 6= 0,

N
(k)
0 = Nc and N

(k)
i = 0 or 1, ∀i 6= 0, in Eq. 4.15, Eq. 4.16).

4.1.2 Joint MLE and CRLBs for the multiuser gain and TOA

In this subsection we describe the considered MU system model and derive the
expressions of the joint MU gain and TOA MLE and the CRLBs for the joint
MU gain and TOA estimation. We consider in Sec. 4.1.2.1 the case where only
one waveform is transmitted by each user, then in Sec. 4.1.2.2 the case where
periodic signals are transmitted.

4.1.2.1 One transmitted waveform per user

Let us assume here that every user only transmits one waveform. We can write
the signal received through an AWGN channel as:

r(t) =
K
∑

k=1

αkwk(t− Θk) + ṽG(t) (4.21)

where αk and Θk denote, respectively the gain and the time delay introduced by
the channel between User k and the receiver, and ṽG(t) stands for the AWGN
of two-sided power spectral density (PSD) of N0

2 .

Throughout this chapter, we consider User k as the user of interest, and the
other as interfering users. We assume that the delay Θk corresponding to User k
has a deterministic unknown value in the a priori domain assumed equal to be
equal to IT :

DΘ = IT = [−Th
2
, T − Th

2
[. (4.22)

We also assume that the delays corresponding to the interfering users are uni-
formly distributed in DΘ. Accordingly, the maximum MSE (obtained when the
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estimator becomes uniformly distributed in DΘ) is given by:

eU =

(

Θk −
T − Th

2

)2

+
T 2

12
. (4.23)

From Eq. 4.21, we can write the log-likelihood function for the joint estimation
of all users parameters α = (α1 · · ·αK)T and Θ = (Θ1 · · ·ΘK)T as [78]:

Λ(α′, θ) = − 1

N0

∫ +∞

−∞

{

r(t) −
K
∑

k=1

α′
kwk(t− θk)

}2

dt (4.24)

= − 1

N0

{

Er +

K
∑

k=1

K
∑

k′=1

α′
kα

′
k′Xwk,wk′

(θk′ − θk) − 2

K
∑

k=1

α′
kXr,wk

(θk)
}

(4.25)

where α′ = (α′
1 · · ·α′

K)T and θ = (θ1 · · · θK)T denote the vectors of the users
candidate gains and delays, respectively. From Eq. 4.21 we can write the CCR
Xr,wk

(θ), in Eq. 4.25, of the received signal r(t) and Waveform k as:

Xr,wk
(θ) = αkRwk

(θ − Θk) +

K
∑

k′=1,k′ 6=k
αk′Xwk′ ,wk

(θ − Θk′) + vk(θ)

= αkRwk
(θ − Θk) + v

(k)
MU (θ) + vG,k(θ) (4.26)

where vG,k(θ) = XṽG,wk
(θ) is a zero-mean colored Gaussian noise of covariance

given by:

CvG,k
(θ) = E

{

vG,k(t)vG,k(t− θ)
}

=
N0

2
Rwk

(θ) (4.27)

and

v
(k)
MU (θ) =

K
∑

k′=1,k′ 6=k
αk′Xwk′ ,wk

(θ − Θk′) (4.28)

is the MUI component corrupting, beside the noise component vG,k(θ), the useful
correlation component αkRwk

(θ − Θk). Note that we can regard Xr,wk
(θ) as

the observation relative to User k. Note also that Xr,wk
(θ) can be written as

[ ENc
]
1
2 times the correlation observation at the output of the correlation receiver

presented in Chap. 3.

By assuming that the waveforms associated with different users are uncorre-
lated:

Xwk,wk′
(θ) = 0, ∀θ, ∀k 6= k′ (4.29)

we can write the log-likelihood function in Eq. 4.25 as:

Λ(α′, θ) = − 1

N0

{

Er + Ew

K
∑

k=1

(α′
k)

2 − 2

K
∑

k=1

α′
kXr,wk

(θk)
}

. (4.30)
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As the energy Er of the received signal is independent of the candidate gains α′

and delays θ, we can easily show from Eq. 4.30, by equating to zero the partial
derivatives of Λ(α′, θ) with respect to the elements of the vectors α′ and θ, that
the joint MLE of the gains αk and delays Θk of all users (k = 1, · · · ,K) is given
by:

α̂k =
Xr,wk

(Θ̂k)

E
, (4.31)

Θ̂k = argmax
θ∈DΘ

{

Xr,wk
(θ)
}

. (4.32)

We can see from the expression of the observation Xr,wk
(θ) in Eq. 4.26 that,

when the assumption of uncorrelated waveforms in Eq. 4.29 is not satisfied, then
the estimator in Eq. 4.32 no longer corresponds to the MLE of Θk due to the MUI

component v
(k)
MU (θ) in Eq. 4.28 corrupting Xr,wk

(θ). Note that Θ̂k corresponds
to the maximum correlation estimator already considered in Chap. 3.

Let us now compute the CRLBs for the joint estimation of α and Θ. The
CRLBs of the elements of α and Θ are the diagonal elements of the inverse of
the Fisher information matrix (FIM) given by [78]:

F (α,Θ) =
(

fΦl,Φl′

)

l,l′=1,··· ,2K , Φl ∈ (α|Θ) (4.33)

fΦl,Φl′
= −E

{∂2Λ(α′, θ)

∂φl∂φl′

∣

∣

∣

φl=Φl′ ,φl=Φl′

}

, φl ∈ (α′|θ).

Always under the assumption of uncorrelated waveforms, we can show from the
expression of the log-likelihood function in Eq. 4.30 that the elements of the FIM
in Eq. 4.33 can be written as:

fαk,αk′
=

E

N0/2
δk,k′ (4.34)

fΘk,Θk′
=

α2
kXwk,ẅk

(0)

N0/2
δk,k′ =

α2
kR̈wk

(0)

N0/2
δk,k′ (4.35)

fΘk,αk′
=

αkwk(t)|+∞
−∞

N0/2
δk,k′ = 0 (4.36)

where δk,k′ = { 1, k=k′

0, k 6=k′ . We have assumed in Eq. 4.36 that wk(t) → 0 as t→ ±∞.

We can see from Eq. 4.34, Eq. 4.35 and Eq. 4.36 that the FIM F (α,Θ) is diagonal,
so we can write the CRLBs of αk and Θk as:

cαk
=

1

fαk,αk

=
1

ρt
(4.37)

cΘk
=

1

fΘk,Θk

=
1

ρkβ2
w

(4.38)
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where

ρ =
α2Ew
N0/2

(4.39)

β2
w = − R̈wk

(0)

E
=
Eẇk

E
=

∫ +∞
−∞ 4π2f2|Fwk

(f)|2df
∫ +∞
−∞ |Fwk

(f)|2df

≈
∫ +∞

−∞
4π2f2|Fp(f)|2df = β2

p (4.40)

denote, respectively the SNR and the MQBW of wk(t). We assume that β2
w is

the same for all users, and is equal to the MQBW of the used pulse p(t). In
Eq. 4.40 we denote by Fwk

(f) and Fp(f) the Fourier Transforms of wk(t) and
p(t), respectively.

We recall that the expressions of the MLEs and the CRLBs of αk and Θk in
Eq. 4.31, Eq. 4.32, Eq. 4.37 and Eq. 4.37 are all obtained under the assumption of
uncorrelated waveforms in Eq. 4.29. In practice, this assumption can be satisfied
only if the multiple-access codes are orthogonal and the users are synchronized.
As we consider in this work the localization in asynchronous systems, the un-
correlated waveforms assumption is not satisfied, so the estimators in Eq. 4.31
and Eq. 4.32 no longer correspond to the MLEs and the CRLBs in Eq. 4.37 and
Eq. 4.37 can no longer be necessarily achieved. To obtain the true joint MLE
corresponding to this case, we have to maximize the log-likelihood function in
Eq. 4.24 and Eq. 4.25, which is obviously much more complicated to perform.

Nevertheless, in the sake of designing low complexity receivers, we will employ
the estimators in Eq. 4.31 and Eq. 4.32. Therefore, it is interesting to reduce as

much as possible the effects of the MUI component v
(k)
MU (θ) in Xr,wk

(θ) Eq. 4.26.

From the expressions of v
(k)
MU (θ) Eq. 4.28 and the CCR Xwk,wk′

(θ) Eq. 4.13 of
Waveforms k and k′, one may intuitively says that it is possible to reduce the

effects of v
(k)
MU (θ) by considering waveforms with minimum CCR components

N
(k,k′)
i Rp(θ − iTh) (i.e. N

(k,k′)
i = 0 or 1, ∀i).

We have also seen in Chap. 2 that the performances of any nonlinear estima-
tion problem fully depend on the shape of the ACR, and that they drastically
deteriorate at low and medium SNRs due to the presence of strong local maxima
in the ACR. Therefore, it seems to be interesting to consider waveforms with

minimum sidelobe ACR components N
(k)
i Rp(θ − iTh) (i.e. Nk

i = 0 or 1, ∀i 6= 0,
see Eq. 4.15). The design of waveforms with both minimum sidelobe ACR and
minimum CCR is investigated below in Sec. 4.5.

4.1.2.2 Periodic transmitted signals

Assume now that the waveforms of the different users are periodically trans-
mitted. This assumption matches to the reality more than the last assumption
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of only one transmitted waveform does. In this case, we can write the signal
transmitted by User k and the signal received from all users as:

sk(t) =

+∞
∑

i=−∞
wk(t− iT ) (4.41)

r(t) =

K
∑

k=1

αksk(t− Θk) + ṽG(t). (4.42)

As the signal transmitted by User k is infinite, we have to correlate at the
receiver side by the waveform wk(t) instead of the whole transmitted signal.
Therefore, all the integrals considered above should now be computed in an
interval of duration T . Obviously, this can be performed using the circular ACR
and CCR. Without loss of generality, let us assume that the interval of interest
(i.e. period of observation) is IT Eq. 4.7. We can then define the circular CCR
of the signals x(t) and y(t) inside IT as:

XC
x,y(θ) =

∫

IT

x(t)

+∞
∑

i=−∞
y(t− iT − θ)dt. (4.43)

It can be easily seen that XC
x,y(θ) is T -periodic. Now all the signals Xwk,wk′

(θ),

Rwk
(θ), Xr,wk

(θ), vG,k(θ) and v
(k)
MU (θ) should be replaced by their circular ver-

sions.

Let us first consider the circular CCR XC
wk,wk′

(θ) of Waveforms k and k′ and

the circular ACR RCwk
(θ) of Waveform k. We can show from the non-circular

CCR Xwk,wk′
(θ) and ACR Rwk

(θ) in Eq. 4.14 and Eq. 4.16 respectively that we
can write XC

wk,wk′
(θ) and RCwk

(θ) inside IT as:

XC
wk,wk′

(θ) =
E

Nc

Ns−1
∑

i=0

N
(k,k′)
i,C Rp(θ − iTh) (4.44)

RCwk
(θ) =

E

Nc

Ns−1
∑

i=0

N
(k)
i,CRp(θ − iTh), (4.45)

where

N
(k,k′)
i,C =

{

N
(k,k′)
0 i = 0

N
(k,k′)
i +N

(k,k′)
i−Nc

i 6= 0

N
(k)
i,C =

{

Nc i = 0

N
(k)
i +N

(k)
i−Nc

i 6= 0,

with N
(k,k′)
i and N

(k)
i being the normalized amplitudes corresponding to the

non-circular CCR and ACR, respectively (see Eq. 4.14, Eq. 4.16, Eq. 4.17 and
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Eq. 4.18). Note that the main difference between the non-circular CCR and ACR,
and the circular ones, is that the latter contain all the pulse ACR components
which are contained in the former, but concentrated in the interval IT Eq. 4.7
(instead of being spread out in I2T Eq. 4.12).

Note that the circular CCR expression in Eq. 4.44 can be interpreted as
follows: if the circular relative delay (Θk′ − Θk)

C (where (Θk′ − Θk)
C =

Θk′ − Θk + κT , Θk′ − Θk + ιT ∈ IT , κ integer) corresponding to the signals

wk′(t− Θk′) and wk(t− Θk) is equal to iTh, then we will have N
(k,k′)
i,C colliding

pulses.

Let us now consider the circular versions of the signals Rwk
(θ − Θk) and

Xwk′ ,wk
(θ − Θk′) in Eq. 4.26 and Eq. 4.28 respectively. Let:

ik = round
(Θk

Th

)

(4.46)

δk = Θk − ikTh (4.47)

θ
(k)
i = δk + iTh (4.48)

where round denotes the “round to nearest integer” function (we have |δk| 6 Th

2 ).
From Eq. 4.44 and Eq. 4.45, we can write:

RCwk
(θ ⊖ Θk) =

E

Nc

Ns−1
∑

i=0

L
(k)
i Rp(θ − θ

(k)
i ) (4.49)

XC
wk′ ,wk

(θ ⊖ Θk′) =
E

Nc

Ns−1
∑

i=0

L
(k′,k)
i Rp(θ − θ

(k′)
i ) (4.50)

where ⊖ denotes the operator of the circular shifting to the right, with

L
(k)
i =

{

N
(k)
i−ik,C i = ik, · · · , Ns − 1

N
(k)
Ns−ik+i,C i = 0, · · · , ik − 1

(4.51)

L
(k′,k)
i =

{

N
(k′,k)
i−ik′ ,C i = ik′ , · · · , Ns − 1

N
(k′,k)
Ns−ik′+i,C i = 0, · · · , ik′ − 1.

(4.52)

In the case of periodic waveforms, two categories of estimators can be consid-
ered. In the first category we look at the whole received signal to estimate the
TOA, whereas in the second category we only look at the received signal in the
interval IT . From the first category, we can give the example of the estimator
consisting on correlating the whole received signal, using the normal correlation,
with the waveform of the user of interest, then looking at the maximum in the
a priori domain of Θk. From the second category, we can give the example of
the estimator consisting on correlating the received signal inside IT , using the
circular correlation, with the waveform of the user of interest, then looking at
the maximum. We can show that the second estimator outperforms the first one.
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In fact, the first estimator introduces noise components from outside IT . How-
ever, the main drawback of the second estimator is that, for signals modulated
with data, we have to consider all the cases possible for two consecutive data
symbols, then to correlate for each case, the received signal inside IT , with the
two consecutive waveforms corresponding to that case.

Note that in this work, we consider the case of periodic transmitted signals,
and study some estimators from the second category where we only look at the
received signal in the interval IT .

4.2 MSE APPROXIMATIONS AND APPROXIMATE LOWER BOUNDS
FOR THE MAXIMUM-CORRELATION ESTIMATOR AND THE
MAXIMUM-DELAYING-AND-MULTIPLYING ESTIMATOR

In this section we consider the MME and the MCE already introduced in Chap. 3.
In Sec. 4.2 we derive for both estimators the general expressions of the MSE
approximation based on the subdomain method proposed in Chap. 2, and of the
approximate ZZLB and BTLB also proposed in Chap. 2, then we consider the
special case of single-user in Sec. 4.3 and the case of multiuser in Sec. 4.4.

In the system model considered now, where the transmitted signals are pe-
riodic, the CR (resp. DM) receiver consist on filtering the received signal with
the filter matched to the used pulse p(t), retaining the piece of the filtered signal
falling inside the interval IT Eq. 4.7, circularly delaying the retained filtered piece

by the delays −t(k)n , (i = 0, · · · , Nc − 1) corresponding to the different pulses of
Waveform k, then adding (resp. multiplying) the Nc delayed signals.

Denote by X
(k)
r,p (θ) the filtered signal inside IT (i.e. before performing the

delaying operation). From Eq. 4.1, Eq. 4.41 and Eq. 4.42, we can write X
(k)
r,p (θ)

as:

X(k)
r,p (θ) = αk

√

E

Nc

Nc−1
∑

n=0

Rp(θ − t(k)n ⊖ Θk) + u(k)(θ) (4.53)

u(k)(θ) = u
(k)
MU (θ) + uG(θ) (4.54)

u
(k)
MU (θ) =

√

E

Nc

K
∑

k′=1,k′ 6=k
αk′

Nc−1
∑

n=0

Rp(θ − t(k
′)

n ⊖ Θk′) (4.55)

where u(k)(θ) denotes the total noise, u
(k)
MU (θ) the MUI noise, and uG(θ) a zero-

mean colored Gaussian noise of covariance given by:

CuG
(θ) =

N0

2
Rp(θ). (4.56)

Let us split the a priori domain DΘ Eq. 4.22 into the subdomains:

D
(k)
i = [θ

(k)
i − Th

2
, θ

(k)
i +

Th
2

[, (i = 0, · · · , Ns − 1). (4.57)
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Note that if δk 6= 0, then D
(k)
0 ∪ · · · ∪D(k)

Ns−1 corresponds to a slightly translated
version of DΘ. Denote by:

u
(k)
i (θ) =

{

u(k)(θ) θ ∈ D
(k)
i

0 θ /∈ D
(k)
i

(4.58)

u
(k)
G,i(θ) =

{

u
(k)
G (θ) θ ∈ D

(k)
i

0 θ /∈ D
(k)
i

(4.59)

u
(k)
MU,i(θ) =

{

u
(k)
MU (θ) θ ∈ D

(k)
i

0 θ /∈ D
(k)
i

(4.60)

the total, Gaussian and MUI noise components inside the subdomain D
(k)
i , re-

spectively.

Denote by P
(k)
r,p (θ) and A

(k)
r,p (θ) the signals at the outputs of the DM and CR

receivers (called like in Chap. 3, DM and CR observations), respectively. From
Eq. 4.53 and Eq. 4.49 we can write:

P (k)
r,p (θ) =

Ns−1
∑

i=0

P
(k)
i (θ) (4.61)

A(k)
r,p (θ) =

Ns−1
∑

i=0

A
(k)
i (θ) (4.62)

P
(k)
i =

L
(k)
i −1
∏

l=0

{

α

√

E

Nc
Rp(θ − θ

(k)
i ) + u

(k)
i,l (θ)

}

Nc−1
∏

l=L
(k)
i

u
(k)
i,l (θ) (4.63)

A
(k)
i =

L
(k)
i −1
∑

l=0

{

α

√

E

Nc
Rp(θ − θ

(k)
i ) + u

(k)
i,l (θ)

}

Nc−1
∑

l=L
(k)
i

u
(k)
i,l (θ) (4.64)

where u
(k)
i,0 (θ), · · · , u(k)

i,Nc−1(θ) correspond to a permutation of the Nc noise com-

ponents w
n+t

(k)
0 /Th

(θ⊕t(k)0 ), · · · , w
n+t

(k)
Nc−1/Th

(θ⊕t(k)Nc−1) (see Eq. 4.59) (we denote

by ⊕ the operator of the circular shifting to the left).

Let us consider the MCE Θ̂
(k)
cr and the MME Θ̂

(k)
dm. These estimators have

been already utilized in Chap. 3. They consist on maximizing the outputs of the
CR and DM receivers, respectively. Accordingly, we can write:

Θ̂(k)
cr = argmax

θ∈DΘ

{

A(k)
r,p (θ)

}

(4.65)

Θ̂
(k)
dm = argmax

θ∈DΘ

{

P (k)
r,p (θ)

}

. (4.66)

Denote by e
(k)
cr and e

(k)
dm the MSEs achieved by the MCE Θ̂

(k)
cr Eq. 4.65 and

the MME Θ̂
(k)
dm Eq. 4.66, respectively. For simplicity, we use from now on the
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subscript x to refer to both the CR and the DM receivers (i.e. x = cr or dm)

(e.g. Θ̂
(k)
x , e

(k)
x ).

Using the subdomain method presented in Chap. 2, we can write the MSE

e
(k)
x achieved by the estimator Θ̂

(k)
x as:

e(k)x =

Ns−1
∑

i=0

P(k)
x,i e

(k)
x,i =

Ns−1
∑

i=0

P(k)
x,i

[

(Θk − µ
(k)
x,i )

2 + (σ
(k)
x,i )

2
]

(4.67)

where P(k)
x,i = P

{

Θ̂
(k)
x ∈ D

(k)
i

}

denotes the probability that the estimator Θ̂
(k)
x

falls in the subdomain D
(k)
i (subdomain probability), and µ

(k)
x,i , (σ

(k)
x,i )

2 and e
(k)
x,i

the mean, the variance and the MSE of the subdomain estimator Θ̂
(k)
x,i defined

by Θ̂
(k)
x,i =

{

Θ̂
(k)
x |Θ̂(k)

x ∈ D
(k)
i

}

(subdomain mean, variance and MSE).

We have seen in Sec. 2.1.3.1 that P(k)
x,i can be approximated by:

P(k)(3)
x,i =

P(k)(2)
x,i

∑Ns−1
i=0 P(k)(2)

x,i

(4.68)

where

P(k)(2)
x,i =

{

1 i = ik

P
{

O
(k)
r,p (θ

(k)
i ) > O

(k)
r,p (Θk)

}

i 6= ik,
(4.69)

with O
(k)
r,p (θ) being the observation at the output of the receiver of interest (i.e.

O = A for the CR receiver and P for the DM receiver). We have already defined

ik in Eq. 4.46 and θ
(k)
i in Eq. 4.48.

Note that P(k)(2)
x,i in Eq. 4.69 corresponds to the global probability of error

considered in Sec. 3.1.4 in the case of single-user, and e
(k)
x,ik

in Eq. 4.67 to the
local MSE considered in Sec. 3.2.3 in the same case of single-user. Remind that

ik Eq. 4.46 is the index of the subdomain D
(k)
ik

containing the global maximum

of the useful observation. Accordingly, P(k)
x,ik

is the probability of the local error

(i.e. probability that the estimator Θ̂
(k)
x falls inside D

(k)
ik

).

By approximating the probability of the local error P(k)
x,ik

by 1 (because

e
(k)
x,ik

<< e
(k)
x,i , i 6= ik), µ

(k)
x,i by θ

(k)
i Eq. 4.48 (because the width Th of D

(k)
i

is much smaller than |θ(k)i − Θk|) and neglecting (σ
(k)
x,i )

2 for i 6= 0 (because

(σ
(k)
x,i )

2 is upper bounded by
T 2

h

12 which is much smaller than (θ
(k)
i − Θk)

2), we

can approximate e
(k)
x Eq. 4.67 by:

e
(k)
1,x = e

(k)
x,ik

+ T 2
h

Ns−1
∑

i=0,i 6=ik
P(k)
x,i (i− ik)

2. (4.70)
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Denote by:

P(k)
x,g =

Ns−1
∑

i=0,i 6=ik
P(k)
x,i = 1 − P(k)

x,ik
(4.71)

the probability of the global error (i.e. probability that the estimator Θ̂
(k)
x falls

outside D
(k)
ik

). By assuming P(k)
x,ik

= 1, that all subdomains, except D
(k)
ik

, have

equal probabilities (i.e. P(k)
x,i =

P(k)
x,g

N−1 , ∀i 6= ik) and that the subdomain estimator

Θ̂
(k)
x,i is uniformly distributed in D

(k)
i (i.e. µ

(k)
x,i = θ

(k)
i and (σ

(k)
x,i )

2 =
T 2

h

12 , ∀i 6= ik),
we get from Eq. 4.67 the following MSE approximation:

e
(k)
2,x = e

(k)
x,ik

+
P(k)
x,g

N − 1
T 2
h

Ns−1
∑

i=0,i 6=ik

[

(i− ik)
2 +

1

12

]

= e
(k)
x,ik

+ P(k)
x,g

N

N − 1

{

T 2
h

Ns−1
∑

i=0

1

N

[

(i− ik)
2 +

1

12

]

− 1

N

T 2
h

12

}

= e
(k)
x,ik

+ P(k)
x,g

N

N − 1

{

eU − 1

N

T 2
h

12

}

≈ e
(k)
x,ik

+ P(k)
x,ge

(k)
U (4.72)

where e
(k)
U is the maximum MSE given in Eq. 4.23. To simplify the discussion,

we can approximate P(k)
x,g by:

P(k)
x,g,min = (Ns − 1)min

i6=ik
{P(k)

x,i }, (4.73)

and so we obtain from Eq. 4.72 an approximation that acts globally (i.e. with
respect to the effects of the shape of the considered TH waveform) as an approxi-

mate lower bound. However, the behavior of e
(k)
2,x depends locally (i.e. with respect

to the effects of the shape of the used pulse) on the approximation adopted for

the local MSE e
(k)
x,ik

. As we will see later, the approximate lower bound obtained
from Eq. 4.72 and Eq. 4.73 is very interesting because it is independent of the
used codeword.

Let us now consider the derivation of the approximate ZZLB. As shown in
Sec. 2.1.4, if the minimum probability of error corresponding to the considered
observation can be written as a function of one variable, then we can write the
approximate ZZLB as:

z(k)
x =

∫ ǫ(k)

0

ξP
(k)
min,x(ξ)dξ, (4.74)

where P
(k)
min,x(ξ) denotes the minimum probability of error to find, and

ǫ(k) = max
{

ǫ
(k)
1 , ǫ

(k)
2

}

(4.75)
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with

ǫ
(k)
1 = min

{

Θk +
Th
2
, ǫ

(k)
0

}

ǫ
(k)
2 = min

{

T − Th
2

− Θk, ǫ
(k)
0

}

ǫ
(k)
0 = min

{

2

(

Θk +
Th
2

)

, 2

(

T − Th
2

− Θk

)}

.

As we will see later, the shape of P
(k)
min,x(ξ) follows that of the circular ACR

RCwk
(θ) in Eq. 4.45. Accordingly, P

(k)
min,x(ξ) is even around iTh in the interval

[iTh− Th

2 , iTh + Th

2 ] for i 6= 0 (because the corresponding pulse ACR component

is even) so
∫

Th
2

−Th
2

ξP
(k)
min,x(ξ + iTh)dξ = 0. Taking this fact into account, we can

write z
(k)
x from Eq. 4.74 as:

z(k)
x =

∫

Th
2

0

ξP
(k)
min,x(ξ)dξ +

i(k)
∑

i=1

∫ iTh+
Th
2

iTh−Th
2

ξP
(k)
min,x(ξ)dξ

=

∫

Th
2

0

ξP
(k)
min,x(ξ)dξ +

i(k)
∑

i=1

∫

Th
2

−Th
2

(ξ + iTh)P
(k)
min,x(ξ + iTh)dξ

=

∫

Th
2

0

ξP
(k)
min,x(ξ)dξ + Th

i(k)
∑

i=1

i

∫

Th
2

−Th
2

P
(k)
min,x(ξ + iTh)dξ

= z
(k)
x,0 + T 2

h

i(k)
∑

i=1

iz̄
(k)
x,i (4.76)

where

z
(k)
x,0 =

∫

Th
2

0

ξP
(k)
min,x(ξ)dξ (4.77)

denotes the local approximate ZZLB (the one considered in Chap. 2 for the CR
receiver and in Chap. 3 for the DM receiver) with

z̄
(k)
x,i =

1

Th

∫

Th
2

−Th
2

P
(k)
min,x(ξ + iTh)dξ (4.78)

the average of the minimum probability of error in the interval [iTh− Th

2 , iTh+ Th

2 ]
for i 6= 0, and

i(k) = round

(

ǫ(k) − Th

2

Th

)

− 1. (4.79)

Let:
z̄
(k)
x,min = min

i6=0
{z̄(k)
x,i }. (4.80)
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From Eq. 4.76 and Eq. 4.80, we obtain the following approximate lower bound:

z
(k)
1,x = z

(k)
x,0 + z̄

(k)
x,minT

2
h

i(k)(i(k) + 1)

2
≈ z

(k)
x,0 + z̄

(k)
x,min

(ǫ(k))2

2
(4.81)

where ǫ(k) is the upper integration limit in Eq. 4.74. The last approximate ZZLB
is very interesting because it is valid for any considered codeword.

Let us now consider the derivation of the approximate BTLB. As shown in
Sec. 2.1.4, we can write the approximate BTLB as:

b(k)x =

∫ ǫ(k)

0

ξV
{

P
(k)
min,x(ξ)

}

dξ (4.82)

where V {·} denotes the valley-filling function. We have already mentioned that

the shape of P
(k)
min,x(ξ) follows that of the circular ACR RCwk

(θ) in Eq. 4.45. Ac-

cordingly, the global maximum of P
(k)
min,x(ξ) in each interval [iTh − Th

2 , iTh + Th

2 ]
is located at ξ = iTh. Denote by i1, · · · , iN(k)

b,x

the indexes of the intervals con-

taining the highest normalized amplitudes N
(k)
i,C (see Eq. 4.45) in the descending

order starting from i = 1. We look at the intervals with i = 1, · · · , i(k) (i(k) is
given in Eq. 4.79). We can write:

i1 = argmax
i=1,··· ,i(k)

N
(k)
i,C (4.83)

ij = argmax
i=ij−1,··· ,i(k)

N
(k)
i,C (4.84)

i
N

(k)
b,x

= i(k) (4.85)

Accordingly, b
(k)
x can be written as:

b(k)x =

∫

Th
2

0

ξV
{

P
(k)
min,x(ξ)

}

dξ +

i(k)
∑

i=1

∫ iTh+
Th
2

iTh−Th
2

ξV
{

P
(k)
min,x(ξ)

}

dξ

=

∫

Th
2

0

ξV
{

P
(k)
min,x(ξ)

}

dξ + P
(k)
min,x(i1Th)

∫ i1Th

Th
2

ξdξ

+

N
(k)
b,x
∑

j=2

P
(k)
min,x(ijTh)

∫ ijTh

ij−1Th

ξdξ

= b
(k)
x,0 +

T 2
h

2

[

P
(k)
min,x(i1Th)(i

2
1 − 0.52) +

N
(k)
b,x
∑

j=2

P
(k)
min,x(ijTh)(i

2
j − i2j−1)

]

(4.86)

where

b
(k)
x,0 =

∫

Th
2

0

ξV
{

P
(k)
min,x(ξ)

}

dξ (4.87)
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denotes the local approximate BTLB (the one considered in Chap. 2 for the CR
receiver and in Chap. 3 for the DM receiver).

When the used code is with minimum sidelobe ACR, then the maximum

normalized amplitude (i.e. N
(k)
i,C in Eq. 4.45) is less than or equal to one for

∀i 6= 0. By assuming that the last pulse MPC ACR component falls in the

interval [(Ns−1)Th− Th

2 , (Ns−1)Th+ Th

2 ], then we can show that N
(k)
b,x = 1 (see

Eq. 4.85) so b
(k)
x becomes from Eq. 4.86:

b
(k)
1,x = b

(k)
x,0 +

T 2
h

2
P

(k)
min,x(i1Th)(i

2
1 − 0.52) ≈ b

(k)
x,0 + b̄

(k)
x,min

(ǫ(k))2

2
(4.88)

where

b̄
(k)
x,min = P

(k)
min,x(iTh); N

(k)
i,C = 1. (4.89)

The bound in Eq. 4.88 is also a bound that fits to any codeword. It is very close
globally to that given in Eq. 4.81. However, it depends locally on the used pulse
shape (like we have seen in Chap. 2).

Finally, note that if we are only interested in the global performances of the

used TH waveforms then we can replace e
(k)
x,ik

in Eq. 4.70 and Eq. 4.72, z
(k)
x,0 in

Eq. 4.76 and Eq. 4.81, and b
(k)
x,0 in Eq. 4.86 and Eq. 4.88 by the CRLB.

4.3 TOA ESTIMATION WITH SINGLE-USER

In this section, we consider the case where only one user is transmitting. The goal
is to study the impact of the shape of the used TH waveform on the achieved
MSE, and then to compare the performances of TH codes with and without
minimum sidelobe ACR. Another point to mention is that the case of multiuser
with random MUI is very similar to the case of single-user. In fact, the main
difference between both cases is how the MUI noise will be modeled. However,
the case of single-user is totally different from that of multiuser with deterministic
MUI. As the case of single-user is considered, the corrupting noise is only the
AWGN.

In this work, we only consider deterministic codes. We mean by determin-
istic codes that the codewords associated with the different users are known.
Considering the case of deterministic codes seems to be more interesting than
the case of random codes, because it allows us to examine the performances of
the candidate codeword before using it. However, by just studying the average
performances of a given random code, we may generate a codeword with very
bad performances even the average performances are very good.

In Sec. 4.3.1 we consider the MCE and in Sec. 4.3.2 the MME.
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4.3.1 Maximum-correlation estimator

We consider here the maximum correlation estimator. The MSE approximations

and approximate lower bounds that we will evaluate here are e
(k)
1,cr Eq. 4.70, e

(k)
2,cr

Eq. 4.72, z
(k)
cr Eq. 4.76, z

(k)
1,cr Eq. 4.81, b

(k)
cr Eq. 4.86 and b

(k)
1,cr Eq. 4.88.

To compute e
(k)
1,cr Eq. 4.70 based on the probability approximation in Eq. 4.68,

we need P(k)(2)
cr,i Eq. 4.69, which corresponds to the global CR probability of error

computed in Sec. 3.1.4. From Eq. 3.67 and Eq. 4.49 we can write P(k)(2)
cr,i as:

P(k)(2)
cr,i = Q

(

√

ρ

2

[

1 − L
(k)
i

Nc

]

)

. (4.90)

To compute e
(k)
2,cr Eq. 4.72 we need P(k)

cr,g,min Eq. 4.73. By noticing that the lowest

L
(k)
i is equal to zero, we can easily show from Eq. 4.68, Eq. 4.69, Eq. 4.73 and

Eq. 4.90 that:

P(k)
cr,g,min = Q

(

√

ρ

2

)

. (4.91)

Notice that the expression of e
(k)
2,cr Eq. 4.72 obtained by means of Eq. 4.91 is very

easy to evaluate, especially if we replace e
(k)
x,ik

by the CRLB. We recall that e
(k)
x,ik

corresponds to the local MSE approximated in Chap. 2.

To compute z
(k)
cr Eq. 4.76 we need P

(k)
min,cr(ξ). We can show from the expression

of the CR observation in Eq. 4.62 and Eq. 4.64 and from Eq. 4.45 that P
(k)
min,x(ξ)

can be written as:

P
(k)
min,cr(ξ) = Q

(

√

√

√

√

√

ρ

2

[

1 −
i
(k)
z,b
∑

i=0

N
(k)
i,C

Nc
Rp(ξ − iTh)

])

(4.92)

where

i
(k)
z,b = round

(

max
{

Θk + Th

2 , T − Th

2 − Θk

}

Th

)

− 1. (4.93)

From Eq. 4.92 we can see that z̄
(k)
cr,i Eq. 4.78 used in z

(k)
cr Eq. 4.76 is given by:

z̄
(k)
cr,i =

1

Th

∫

Th
2

−Th
2

Q
(

√

ρ

2

[

1 −
N

(k)
i,C

Nc
Rp(ξ)

])

dξ. (4.94)

To compute z
(k)
1,cr Eq. 4.81 we need z̄

(k)
cr,min Eq. 4.80. Now, we can easily see from

Eq. 4.94 that z̄
(k)
cr,min is given by:

z̄
(k)
cr,min = Q

(

√

ρ

2

)

. (4.95)
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Again, the expression of z
(k)
1,cr Eq. 4.81 becomes very easy to compute by making

use of Eq. 4.95.

To compute b
(k)
cr Eq. 4.86 and b

(k)
1,cr Eq. 4.88 we need P

(k)
min,cr(ijTh) and b̄

(k)
cr,min

Eq. 4.89 respectively. Now, we can easily see from Eq. 4.92 that:

P
(k)
min,cr(ijTh) = Q

(

√

ρ

2

[

1 −
N

(k)
ij ,C

Nc

])

(4.96)

b̄
(k)
cr,min = Q

(

√

ρ

2

[

1 − 1

Nc

])

. (4.97)

Let us consider some THMA codewords with and without minimum sidelobe
ACR and compute the derived MSE approximation and approximate ZZLB and
BTLB, as well as the MSE obtained by simulation.

We consider the following three codewords with Nc = 5 and Ns = 25:

• c1 = (0, 1, 3, 7, 12) (with minimum sidelobe ACR);

• c2 = (3, 14, 16, 20, 24) (randomly generated);

• c3 = (0, 1, 2, 3, 4) (with equidistant pulses).

We use the FCC pulse used in Chap. 3 (i.e. with pulse width of Tw = 0.228
ns and carrier of fc = 6.85 GHz). We take Th = 0.5 ns and Θk = 12Th. From
Eq. 4.79 and Eq. 4.75, we have ǫ(k) = T

2 and i(k) = 12 and from Eq. 4.93 we

have i
(k)
z,b = 12.

In Fig. 4.1(a), Fig. 4.1(b) and Fig. 4.1(c), we show the circular ACR RCwk
(θ)

Eq. 4.45 normalized with respect to E
Nc

, corresponding to c1, c2, and c3 respec-
tively. We can see that with c1 the normalized amplitudes of all sidelobe ACR
components are equal to one, whereas with c2 we have sidelobe components
with normalized amplitudes equal to one, two and three, and with c2 normalized
amplitudes equal to one, two, three and four.

In order to make the equations of the approximate ZZLB and BTLB more
clear we show in Fig. 4.2(a), Fig. 4.2(b) and Fig. 4.2(c), for the considered

codewords, the minimum probability of error P
(k)
min,cr(ξ) Eq. 4.92 and its version

after applying the valley-filling function. We take ρ = 0 dB. Now the derivation

of Eq. 4.76 can be understood by looking at P
(k)
min,cr(ξ) for any considered code.

To understand Eq. 4.86 we look at P
(k)
min,cr(ξ) and V {P (k)

min,cr(ξ)} for the second

code; in this case we have N
(k)
b,cr = 3 Eq. 4.85. To understand Eq. 4.88 we look

at P
(k)
min,cr(ξ) and V {P (k)

min,cr(ξ)} for the first code; in this case we have N
(k)
b,x = 1.

By examining P
(k)
min,cr(ξ) we can see that for oscillating pulse ACR, the average

z̄
(k)
cr,i Eq. 4.94 can be approximated by z̄

(k)
cr,min Eq. 4.95; this is in fact due to the
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Fig. 4.1.: Normalized circular ACR RCwk
(θ) of the codewords (Nc = 5 and Ns =

25): (a) c1 = (0, 1, , 3, 7, 12) (b) c2 = (3, 14, 16, 20, 24) (c) c3 = (0, 1, 2, 3, 4).

average of Rp(ξ) which is approximately null, and to the approximate linearity

of P
(k)
min,cr(ξ) with respect to Rp(ξ).

In Fig. 4.3(a), Fig. 4.3(b) and Fig. 4.3(c) we show for c1, c2, and c3 respec-
tively, the maximum MSE eU Eq. 4.23, the CRLB cΘk

Eq. 4.38 (we have omitted
the subscript Θk

), the MSE obtained by simulation eS,cr, the MSE approxima-
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Fig. 4.2.: Minimum probability of error P
(k)
min,cr(ξ) before and after filling its

valleys, for the codewords (Nc = 5 and Ns = 25): (a) c1 = (0, 1, , 3, 7, 12) (b)
c2 = (3, 14, 16, 20, 24) (c) c3 = (0, 1, 2, 3, 4).

tions e1,cr Eq. 4.70 and e2,cr (approximate lower bound) Eq. 4.72 (we have omit-
ted the superscript (k)), the approximate ZZLBs zcr Eq. 4.76 and z1,cr Eq. 4.81,
and BTLBs bcr Eq. 4.86 and b1,cr Eq. 4.88 (the superscript (k) is omitted), all
with respect to the SNR ρ. We can obsevre that:
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Fig. 4.3.: Maximum correlation estimator (MCE): maximum MSE eU , CRLB c,
MSE obtained by simulation eS,cr, MSE approximations e1,cr and e2,cr, approx-
imate ZZLBs zcr and z1,cr, and approximate BTLBs bcr and b1,cr, with respect
to the SNR ρ in dB (a) codeword c1 (b) codeword c2 (c) codeword c3.

• The MSE obtained by simulation eS,cr converges to the CRLB at ρ = 17
dB with both c1 and c2, and at ρ = 21 dB with c3. The codeword c1
with minimum sidelobe ACR slightly outperforms c2 randomly generated,
whereas both c1 and c2 highly outperform c3 due to the strong sidelobes
in the ACR of the latter.

• The MSE approximation e1,cr is very close to eS,cr below the asymptotic
region but converges to the CRLB later than eS,cr. The same problem
is observed with the approximate BTLB bcr which is only tight below
the asymptotic region. We think that this problem is due to some issues
related to the simulation (the number of trials should probably be larger
than 10000).

• The approximate ZZLB zcr act very well in all regions.
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• The approximate lower bounds e2,cr, z1,cr and b1,cr (stated to be valid for
any codeword) act very well.

4.3.2 Maximum-delaying-and-multiplying estimator

We consider here the MME. The MSE approximations and approximate lower

bounds that we want to evaluate here are e
(k)
1,dm Eq. 4.70, e

(k)
2,dm Eq. 4.72, z

(k)
1,dm

Eq. 4.81, b
(k)
dm Eq. 4.86 and b

(k)
1,dm Eq. 4.88. We do not compute here z

(k)
dm Eq. 4.76

because the continuous minimum probability of error function P
(k)
min,dm(ξ) is not

easy to evaluate.

Similarly to the case of the maximum correlation estimator, the required
probabilities of error have been already computed in Sec. 3.1.4. However, with
the DM receiver we have seen in Sec. 3.1.4 that probabilities are evaluated by
simulation, and under the Gaussian approximation.

From Eq. 3.52 we can write P(k)(2)
dm,i (needed to compute e

(k)
1,dm) as:

P(k)(2)
dm,i = 1 + 2P(k)(2)

dm,i,1P
(k)(2)
dm,i,2 − (P(k)(2)

dm,i,1 + P(k)(2)
dm,i,2) (4.98)

where P(k)(2)
dm,i,1 and P(k)(2)

dm,i,2 are given under the Gaussian approximation from
Eq. 3.69 and Eq. 3.70 by:

P(k)(2)
dm,i,1 = Q

(

−
√

ρ

L
(k)
i Nc

)

(4.99)

P(k)(2)
dm,i,2 = Q

([ (Nc − L
(k)
i )Nc

ρ
+
[Nc
ρ

]Nc−L(k)
i

]− 1
2
)

(4.100)

and by simulation from Eq. 3.71 and Eq. 3.72 by:

P(k)(2)
dm,i,1 = P

{

κ > 0
}

(4.101)

P(k)(2)
dm,i,2 = P

{

ζ − ξ > 0
}

(4.102)

κ =

L
(k)
i
∏

i=1

{

1 +
[Nc
ρ

]
1
2 υi

}

ξ =

Nc−L(k)
i

∏

i=1

{

1 +
[Nc
ρ

]
1
2 γi

}

ζ =
[Nc
ρ

]

Nc−L
(k)
i

2

Nc−L(k)
i

∏

i=1

νi

where υ1, · · · , υL(k)
i

, γ1, · · · , γNc−L(k)
i

, ν1, · · · , νNc−L(k)
i

∼ N (0, 1) and are statis-

tically independent.
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We can write P(k)
dm,g,min and z̄

(k)
dm,min needed to compute e

(k)
2,dm and z

(k)
1,dm re-

spectively, under the Gaussian approximation as:

P(k)
dm,g,min = z̄

(k)
dm,min = Q

([N2
c

ρ
+
[Nc
ρ

]Nc

]− 1
2
)

(4.103)

and by simulation as:

P(k)
dm,g,min = z̄

(k)
dm,min = P

{

ζ − ξ > 0
}

(4.104)

ξ =

Nc
∏

i=1

{

1 +
[Nc
ρ

]
1
2 γi

}

ζ =
[Nc
ρ

]
Nc
2

Nc
∏

i=1

νi

where γ1, · · · , γNc
, ν1, · · · , νNc

∼ N (0, 1) and are statistically independent.

Now, P
(k)
min,dm(ijTh) and b̄

(k)
dm,min that are needed to compute b

(k)
dm and b

(k)
1,dm,

respectively, are given from Eq. 4.98 by replacing L
(k)
i by N

(k)
ij ,C

Eq. 4.45 and 1,
respectively.

Now we only treat the codeword with minimum sidelobe ACR c1 considered
above. The probabilities of error are computed using the Gaussian approximation
and by simulation. In Fig. 4.4(a) (Probabilities of error obtained by the Gaussian
approximation) and Fig. 4.4(b) (Probabilities of error obtained by simulation) we
show the maximum MSE eU , the CRLB c (the subscript Θk

is omitted), the MSEs
eS,cr and eS,dm obtained by simulation for the MCE and the MME, the MSE
approximations e1,dm and e2,dm (approximate lower bound) (the superscript (k)

is omitted), the approximate ZZLB z1,dm, and the approximate BTLBs bdm and
b1,dm (the superscript (k) is omitted), all with respect to the SNR ρ. We can
obsevre that:

• The MCE outperforms the MME. However, the MME comports very well.
We recall that we do not expect that the MME outperforms the MCE in
the case where only an AWGN is corrupting the observation, because the
MCE corresponds in this case to the MLE which is the best. We just want
that the MME will not be very worse than the MCE.

• All the MSE approximations and approximate lower bounds obtained using
the Gaussian approximation highly overestimate the MSE truly achieved.
In fact, the Gaussian approximation overestimates the probability of error
as we have already seen in Sec. 3.1.4 (see Fig. 3.4(a)).

• The MSE approximations and approximate lower bounds obtained using
the probabilities of error computed by simulation, are much better than
those obtained via the Gaussian approximation. However, they still over-
estimate the truly achieved MSE.
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Fig. 4.4.: Maximum delaying-and-multiplying estimator (MME): maximum MSE
eU , CRLB c, MSEs obtained by simulation eS,cr (MCE) and eS,dm (MME), MSE
approximations e1,dm and e2,dm, approximate ZZLB z1,dm, and approximate
BTLBs bdm and b1,dm, with respect to the SNR ρ in dB (codeword c1) (a)
Gaussian approximation (b) Probabilities of error obtained by simulation.

4.3.3 Summary

Let us summarize what we have seen in this section with single-user. We have
applied the subdomain method proposed in Chap. 2 and the approximate lower
bounds derived there to derive some MSE approximations and approximate lower
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bounds for TOA estimation based on TH-IR-UWB signals. We have considered
both the MCE and the MME.

We have also compared the global performances of the MCE and the MME
and seen that the MCE slightly outperforms the MME. We have also noticed
that this result was expected because the MCE corresponds in the case of single-
user to the MLE which is the best. However, the MME comports very well as it
approximately achieves the CRLB at the same SNR as the MME.

4.4 TOA ESTIMATION WITH MULTIUSER INTERFERENCE

In this section, we consider both the MCE and the MME in the case of multiuser.
We consider the case where the MUI is deterministic in Sec. 4.4.1, and the case
where it is random in Sec. 4.4.2.

Before continuing, we recall here that the MME has been mainly proposed as
mentioned in Chap. 3 to examine its potential in mitigating the MUI.

4.4.1 Deterministic multiuser interference

We mean here by deterministic interference that we know the values of the delays
introduced by the channel to the waveforms of the interfering users.

The first goal of this study is to understand in a rigorous manner the origin of
the deterioration of the estimation caused by MUI. The second goal is to verify
whether there are some special scenarios where the MME outperforms the MCE.
To reach both goals we consider a MU system with three users using codes with
minimum circular sidelobe ACR and minimum circular CCR (in Sec. 4.5 we
describe some algorithms proposed to generate code with minimum CCR and
sidelobe ACR). For the underlying system we consider different realizations of
the delays of the interfering users and examine for each realization the achieved
MSE by both the MCE and the MME.

Before proceeding, let us explain why we have thought that the MME may
outperform the MCE in mitigating the effects of MUI. We have seen that, for
both CR and DM receivers, we filter the received signal with the filter matched
to the transmitted pulse, then shift the filtered signal with the negatives of the
delays corresponding to the different pulses of the TH codeword of the user of
interest. Accordingly, we will obtain Nc branches corresponding to the Nc pulses
of the TH-IR-UWB waveform. With the CR receiver, we add the signals of these
branches whereas with the DM receiver, we multiply them.

Assume for instance that the AWGN is null. Then imagine that inside a given

subdomain D
(k)
i (of width Th, see Eq. 4.57), some branches contain interfering

components whereas the remaining branches do not. By adding the different
branches the resulting signal will contain an interfering component in the con-
sidered subdomain. However, by multiplying the branches, the resulting signal
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Fig. 4.5.: Reference case: (a) Normalized TH-IR-UWB waveforms w1(t), w2(t)
and w3(t) (b) Normalized RCw1

(θ), XC
w2,w1

(θ) and XC
w3,w1

(θ) (c) Maximum MSE
eU , CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

will not contain any interfering component thanks to the multiplying operation
if one or more branches do not contain interfering components. Assume now that
the AWGN is not null. We can expect that the probability that the observation

in the considered subdomain is stronger than that in the subdomain D
(k)
ik

(see
Eq. 4.46) containing the maximum of the useful observation, is lower with the
DM receiver than with the CR receiver.

In our case study we consider the following codewords with Nc = 3 and
Ns = 21:

• c1 = (0, 1, 10);

• c2 = (0, 2, 8);

• c3 = (0, 3, 7).
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We assume that User 1 is the user of interest. We take α1 = α2 = α3 = α.

In Fig. 4.5(a) we show the normalized waveforms associated with c1, c2 and c3,
and in Fig. 4.5(b) the normalized (with respect to E

Nc
) ACR RCw1

(θ) Eq. 4.45 of

Waveform 1 and the normalized CCRs XC
wk,w1

(θ), k = 2, 3 Eq. 4.44 of Waveform
2 and 3 with Waveform 1.

In Fig. 4.5(c) we show, in the case where only w1(t) is transmitted, the maxi-
mum MSE eU , the CRLB c, and the MSEs eS,cr and eS,dm achieved by the MCE
and MME respectively (obtained by simulation), with respect to the SNR. This
case is considered as the reference case for all the cases considered later. We can
see that both the MCE and the MME achieve the CRLB at ρ = 17 dB.

4.4.1.1 Case 1

We consider here the first case. We take Θ1 = 0, Θ2 = −4Th and Θ3 = −4Th.

We show in Fig. 4.6(a) the three normalized branches of the receiver (by
assuming null AWGN), and in Fig. 4.6(b) the normalized CR Ar,p(θ) and DM
Pr,p(θ) observations (i.e. the sum and the product of the branches respectively,
we have omitted the superscript (k)). In Fig. 4.6(c) we show the maximum MSE
eU , the CRLB c, and the MSEs eS,cr and eS,dm achieved by the MCE and MME
respectively (obtained by simulation), with respect to the SNR.

We can see in Fig. 4.6(a) that we have in the filtered signal a component of
normalized amplitude equal to 2. This means that there are two signals (those
of Users 2 and 3) colliding at one position. In Fig. 4.6(b), the useful component
(around θ = 0) of the CR observation Ar,p(θ) has an amplitude equal to 3 which
is expected because we have three pulses per waveform. Ar,p(θ) also contains
sidelobe components of amplitudes equal to 1 and 2. With the DM receiver, we
can only see the useful component of amplitude equal to 1. In fact, the sidelobe
components are all killed by the branch with no MU component. Note that in
this scenario, Waveform 1 is not colliding with any other waveform because the
amplitude of the useful component of Ar,p(θ) is equal to Nc and that of Pr,p(θ)
to one.

In Fig. 4.6(c) we can see that MME outperforms the MCE. It achieves the
CRLB at ρ = 22 dB instead of ρ = 25 dB with the MCE. This is in fact due to
the MUI components killed thanks to the DM receiver.

4.4.1.2 Case 2

We consider here the second case, with Θ1 = 0, Θ2 = 0 and Θ3 = 0.

The results are shown in Fig. 4.7(a), Fig. 4.7(b) and Fig. 4.7(c). We can
observe that:

• Waveforms 1, 2 and 3 are all colliding at one pulse. In fact, the filtered
signal (see Fig. 4.7(a)) has a component of amplitude equal to 3, and the
amplitude of the useful component of Ar,p(θ) (see Fig. 4.7(b)) is equal to
5.
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Fig. 4.6.: Case 1: (a) Normalized branches of the CR and DM receivers (b)
Normalized CR Ar,p(θ) and DM Pr,p(θ) observations (c) Maximum MSE eU ,
CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

• Both the MCE and the MME achieve a bound lower than the CRLB. This
is in fact due to the constructive collision with the user of interest which
makes its energy higher.

• Both eS,cr and eS,dm converge approximately to their asymptotic regions
at the same SNR (ρ = 18 dB). The MME does not outperform the MCE
because the gap between the useful and the sidelobe components of Ar,p(θ)
is sufficiently big (equal to 2). In Case 1 (see Fig. 4.6(b)), it was equal to
one.

4.4.1.3 Case 3

We consider here the third case, with Θ1 = 0, Θ2 = Th and Θ3 = 2Th.
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Fig. 4.7.: Case 2: (a) Normalized branches of the CR and DM receivers (b)
Normalized CR Ar,p(θ) and DM Pr,p(θ) observations (c) Maximum MSE eU ,
CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

The results are shown in Fig. 4.8(a), Fig. 4.8(b) and Fig. 4.8(c). We can
observe that:

• Waveform 1 collides with Waveform 2 or 3 at one pulse, and Waveforms
2 and 3 collide at one pulse. Note that it is impossible that two wave-
forms collide at more than one pulse thanks to the minimum CCR of the
considered code.

• The gap between the useful and the sidelobe components of Ar,p(θ) is not
sufficiently big (equal to 1). We can expect that, like in Case 1 (with gap
equal to 1 too, see Fig. 4.6(b)), the MME will outperform the MCE.

• The MME outperforms the MCE; it achieves the CRLB at ρ = 21 dB
instead of ρ = 24 dB.
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Fig. 4.8.: Case 3: (a) Normalized branches of the CR and DM receivers (b)
Normalized CR Ar,p(θ) and DM Pr,p(θ) observations (c) Maximum MSE eU ,
CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

4.4.1.4 Case 4

We consider here the fourth case, with Θ1 = 0, Θ2 = 3Th and Θ3 = 4Th.

The results are shown in Fig. 4.9(a), Fig. 4.9(b) and Fig. 4.9(c). We observe
that:

• In Ar,p(θ), we have three sidelobe components with amplitudes equal to
that of the useful component (i.e. 3). This phenomenon is not observed in
Pr,p(θ). In fact, by looking at the three branches of the filtered signal, we
can see that the sidelobe component at the right of the useful one, is the
sum of three components of amplitudes 1, 0 and 2 respectively. In the DM
receiver, the component of amplitude 0 kills the two other components.
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Fig. 4.9.: Case 4: (a) Normalized branches of the CR and DM receivers (b)
Normalized CR Ar,p(θ) and DM Pr,p(θ) observations (c) Maximum MSE eU ,
CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

• Due to the phenomenon discussed in the last point, the MCE is approx-
imately uniformly distributed in the a priori domain of Θ1; the MSE
achieved by it is slightly larger than the maximum MSE. However, the
MME achieves the CRLB at ρ = 24 dB.

4.4.1.5 Case 5

In the last four considered cases, the collisions among the different waveforms
were constructive because the relative delays were multiples of the modulating
carrier period. As in practice the waveforms can arrive with any relative delays,
it seems to be interesting to consider too the case of destructive collisions. To
do so we consider the destructive version of the last case (Case 4) which was the
worst for the MCE.
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Fig. 4.10.: Case 5: (a) Normalized branches of the CR and DM receivers (b)
Normalized CR Ar,p(θ) and DM Pr,p(θ) observations (c) Maximum MSE eU ,
CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

Let Θ1 = 0, Θ2 = 3Th and Θ3 = 4Th + 1
2fc

(fc is the carrier). The results are

shown in Fig. 4.10(a), Fig. 4.10(b) and Fig. 4.10(c).

We can observe that:

• In Ar,p(θ), there are no sidelobe components with amplitudes equal to that
of the useful component like in Case 4. By contrast, Ar,p(θ) has now the
shape of a CR observation in the case of single-user (sidelobe amplitudes
equal to 1) because the colliding pulses of Waveforms 2 and 3 are destruc-
tive.

• Both the MCE and the MME comport now much better than in Case
4; they achieve the CRLB at ρ = 21 dB and ρ = 22 dB respectively.
Obviously, the MCE outperforms now the MME.
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Fig. 4.11.: Case 6: (a) Normalized branches of the CR and DM receivers (b)
Normalized CR Ar,p(θ) and DM Pr,p(θ) observations (c) Maximum MSE eU ,
CRLB c, MSEs eS,cr (MCE) and eS,dm (MME) obtained by simulation, with
respect to the SNR ρ.

4.4.1.6 Case 6

In Case 5 we have considered interfering users destructing themselves (favorable
case). Let us consider here the case of interfering users destructing the user of
interest. To do so, we consider the destructive version of Case 3. Note that this
case is very important to understand what will happen with random MUI.

Let Θ1 = 0, Θ2 = Th + 1
2fc

and Θ3 = 2Th. The results are shown in

Fig. 4.11(a), Fig. 4.11(b) and Fig. 4.11(c).

We can observe that:

• The amplitude of Ar,p(θ) at θ = 0 is now equal to 2.275 instead of 3 due
to the destructive collision.
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• The asymptotic MSE does not converge in this case to the CRLB but
to a constant value. This means that a bias has been introduced by the
destructive collision. The absolute value of this bias will almost be lower
than the pulse width Tw of p(t). Accordingly, we can propose the following
asymptotic MSE approximation in the case of random MUI:

eMU,as =
(2Tw)2

12
(4.105)

which corresponds to a variable uniformly distributed in [−Tw, Tw]. We did
not propose [−Tw, Tw] because we will find this value in the case of random
MUI but because in both Ar,p(θ) and Pr,p(θ), the present component is the
ACR of p(t) and not p(t) itself.

4.4.2 Random multiuser interference

In this subsection we consider the case of random MUI. We assume that the TOA
of the user of interest is deterministic, whereas those of the interfering users are
uniformly distributed in the a priori domain DΘ Eq. 4.22.

Let us first consider the CR receiver. Instead of using the expression of the

CR observation A
(k)
r,p (θ) in Eq. 4.62, we consider the circular version of Xr,wk

(θ)

in Eq. 4.26 (the latter is equal to [ ENc
]
1
2 times the former). The circular version

of Xr,wk
(θ) can be written as:

XC
r,wk

(θ) = αkR
C
wk

(θ ⊖ Θk) + vCMU (θ) + vCG,k(θ)

= αkR
C
wk

(θ ⊖ Θk) +

K
∑

k′=1,k′ 6=k
vCMU,k′(θ) + vCG,k(θ), (4.106)

vCMU,k′(θ) = αk′X
C
wk′ ,wk

(θ ⊖ Θk′) (4.107)

where for convenience we rewrite the expressions of RCwk
(θ ⊖ Θk) Eq. 4.49 and

XC
wk′ ,wk

(θ ⊖ Θk′) Eq. 4.50:

RCwk
(θ ⊖ Θk) =

E

Nc

Ns−1
∑

i=0

L
(k)
i Rp(θ − θ

(k)
i ) (4.108)

XC
wk′ ,wk

(θ ⊖ Θk′) =
E

Nc

Ns−1
∑

i=0

L
(k′,k)
i Rp(θ − θ

(k′)
i ). (4.109)

The covariance of vCG,k(θ) is given by:

CvC
G,k

(θ) =
N0

2
RCwk

(θ)
θ∈[−Th

2 ,
Th
2 [

=
N0

2
ERp(θ) (4.110)

where we have taken into account in the right side of Eq. 4.110 that N
(k)
0,C = Nc

(see Eq. 4.45). As Θk′ , k
′ 6= k is uniformly distributed in DΘ, the noise vCMU,k′(θ)
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is weakly stationary. The mean and the covariance of vCMU,k′(θ) are given by:

mC
MU,k′(θ) =

1

T

∫ T−Th
2

−Th
2

vCMU,k′(θ)dΘk′ ≈ 0 (4.111)

CCMU,k′(θ) ≈ 1

T

∫ T−Th
2

−Th
2

vCMU,k′(θ
′ + θ)vCMU,k′(θ

′)dΘk′

θ∈[−Th
2 ,

Th
2 [

=
1

T
α2
k′
E2

N2
c

Ns−1
∑

i=0

(L
(k′,k)
i )2RRp

(θ) (4.112)

where

RRp
(θ) =

∫ +∞

−∞
Rp(t+ θ)Rp(t)dt (4.113)

is the ACR of Rp(θ). Denote by ERp
= RRp

(0) the energy of Rp(θ) (ERp
is not

like the energy of p(t) which is equal to one). Note that mC
MU,k′(θ) is approxi-

mately null only for oscillating pulses.

From Eq. 4.106, Eq. 4.108, Eq. 4.110 and Eq. 4.112, and taking into account
that the delays of the interfering users are statistically independent, we can write
the SINR of User k (the user of interest) as:

ρ
(k)
G,MU =

[

αkR
C
wk

(0)
]2

CvC
G,k

(0) +
∑K
k′=1,k′ 6=k C

C
MU,k′(0)

=
α2
kE

N0

2 +
EERp

TN2
c

∑K
k′=1,k′ 6=k α

2
k′E

(k′,k)
d

=
1

1
ρk

+ 1

ρ
(k)
MU

(4.114)

where

E
(k′,k)
d =

Ns−1
∑

i=0

(L
(k′,k)
i )2 > N2

c (4.115)

ρk =
α2
kE

N0/2
(4.116)

ρ
(k)
MU =

α2
kTN

2
c

ERp

∑K
k′=1,k′ 6=k α

2
k′E

(k′,k)
d

. (4.117)

We can see in Eq. 4.114 that ρ
(k)
G,MU approaches ρ

(k)
MU as ρk approaches infinity.

In Eq. 4.115, E
(k′,k)
d becomes equal to N2

c for codes with minimum circular CCR

(because L
(k′,k)
i = 0 or 1, ∀i). Accordingly, the maximum SINR is given by:

ρ
(k)
G,MU,max =

α2
kE

N0

2 +
EERp

T

∑K
k′=1,k′ 6=k α

2
k′

. (4.118)
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Let us consider the same setup considered in Sec. 4.3. We have:

• T = NsTh = 1.05 × 10−8 s.

• ERp
≈ 8 × 10−11 s.

• E
(k′,k)
d = N2

c = 9.

• ρ
(k)
MU ≈ 65 ≈ 18 dB.

In Fig. 4.12(a) we show the total SINR ρ
(k)
G,MU Eq. 4.114 with respect to the SNR

ρk Eq. 4.116 (we have omitted the superscript (k) and the subscript k). We can

see that ρ
(k)
G,MU converges to ρ

(k)
MU ≈ 18 dB as expected from Eq. 4.114. From

this result we can expect that the MSEs achieved asymptotically by both the
MCE and the MME are equal to those achieved in the case of single-user at the
SNR equal to the asymptotic SINR. We can see from Fig. 4.5(c) that the MSE
achieved by both the MCE and the MME at ρk = 18 dB is approximately equal
to 9 ps2. We can deduce that the MSE achieved in the case of MUI depends on
both the SINR and the MSE achieved at this SNR in the case of single-user. To
be rigorous we have to say that this is true if the MUI comports as an AWGN.

In Fig. 4.12(b) we show the maximum MSE eU , the CRLB c, the MSE eS,cr
of the MCE obtained by simulation (by randomly generating the AWGN and
the delays of Waveforms 2 and 3), the MCE MSE approximation e1,cr, the MSE
eS,dm of the MME obtained by simulation, the MME MSE approximation e1,dm,
and the asymptotic MUI MSE approximation eMU,as Eq. 4.105 proposed in Case
6 Sec. 4.4.1.6, all with respect to the SNR ρ. Note that the MSE approximations
of both the MCE and the MME are obtained from Eq. 4.70 by using the SINR

instead of the SNR, and by replacing e
(k)
x,ik

by the CRLB. For the MME, we have
computed the probability of error by simulation. We can observe that:

• The MCE MSE and the MME MSE converge to the constant values 2 ×
10−20 s2 and 6.5 × 10−20 s2 respectively. This phenomenon is due to the
average effect of the destructive collision with the user of interest.

• The MSE approximations e1,cr and e1,dm have the same behavior as the
ones obtained by simulations (i.e. they converge to a constant value). How-
ever, they do not follow them closely.

• The asymptotic MUI MSE approximation eMU,as proposed in Sec. 4.4.1.6
is very close to the asymptotic MUI MSE truly achieved. This value is
totally different from that expected from the asymptotic SINR and the
MSE achieved in the case of single-user. In fact, the effects of the MUI
cannot be rigorously approximated by those of an AWGN. The single-user
SNR achieving the MSE which is achieved here, is equal to ρk = 16 dB
instead of 18 dB (see Fig. 4.5(c)).

• The MCE slightly outperforms the MME.
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Fig. 4.12.: Random MUI: (a) SINR ρG,MU with respect to the SNR ρ (b) Max-
imum MSE eU , CRLB c, MCE MSE obtained by simulation eS,cr, MCE MSE
approximation e1,cr, MME MSE obtained by simulation eS,dm, MME MSE ap-
proximation e1,dm, and asymptotic MUI MSE approximation eMU,as, with re-
spect to the SNR ρ.

4.5 THMA CODES WITH MINIMUM CCR AND SIDELOBE ACR

In this section we propose some algorithms to generate time-hopping codes with
minimum sidelobe ACR and minimum CCR. We consider two THMA codes
structures: with chip separation (see Eq. 4.2, Eq. 4.3 and Eq. 4.4) and without
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chip separation (see Eq. 4.3, Eq. 4.5 and Eq. 4.6). For both structures we consider
the cases of non-periodic and periodic signals.

In Sec. 4.5.1, Sec. 4.5.2, Sec. 4.5.3 and Sec. 4.5.4 we consider the cases of
THMA codes with chip separation for non-periodic signals, with chip separation
for periodic signals, without chip separation for non-periodic signals, and without
chip separation for periodic signals, respectively. In Sec. 4.5.5 we deal with the
same codes considered in Sec. 4.5.1, Sec. 4.5.2, Sec. 4.5.3 and Sec. 4.5.4 but with
variable code length. In Sec. 4.5.6 we show and discuss some codes generated
using the proposed algorithms.

4.5.1 THMA code with chip separation and minimum CCR and sidelobe

ACR

We consider here THMA codes with chip separation for non-periodic signals.

For convenience we rewrite the normalized (with respect to E
Nc

) versions of
Eq. 4.8 and Eq. 4.9:

Xwk,wk′
(τ) =

E

Nc

Nc−1
∑

n=0

Nc−1
∑

n′=0

Rp(τ − [t(k)n − t
(k′)
n′ ]) (4.119)

Rwk
(τ) =

E

Nc

Nc−1
∑

n=0

Nc−1
∑

n′=0

Rp(τ − [t(k)n − t
(k)
n′ ]). (4.120)

We can see from Eq. 4.120 that the global maximum of Rwk
(θ) (equal to Nc)

is located at τ = 0, and that Nc(Nc − 1) local maxima equal to 1 are located

at τ = t
(k)
n − t

(k)
n′ , ∀n 6= n′, if and only if, for each couple (n, n′) the condition

t
(k)
n − t

(k)
n′ 6= t

(k)
m − t

(k)
m′ is satisfied ∀(m,m′) 6= (n, n′). However if we can find

No 6 Nc − 1 couples (n, n′) having the same relative delay t
(k)
n − t

(k)
n′ , then a

local maximum equal to No will be located at τ = t
(k)
n − t

(k)
n′ . We can see from

Eq. 4.119 that N2
c local maxima equal to 1 are located at τ = t

(k)
n −t(k

′)
n′ , ∀(n, n′),

if and only if, for each couple (n, n′) the condition t
(k)
n − t

(k′)
n′ 6= t

(k)
m − t

(k′)
m′ is

satisfied ∀(m,m′) 6= (n, n′). However if we can find No 6 Nc couples (n, n′)

having the same relative delay t
(k)
n − t

(k′)
n′ , then a local maximum equal to No is

located at τ = t
(k)
n − t

(k′)
n′ . Accordingly, and by assuming that Ep = 1, we can

write:

R(k)
max = max

τ /∈[−Th
2 ,

Th
2 ]

{Rwk
(τ)} ∈ {1, · · · , Nc − 1} (4.121)

X(k,k′)
max = max

τ
{Xwk,wk′

(τ)} ∈ {1, · · · , Nc} (4.122)

where R
(k)
max denotes the maximal local maximum of Rwk

(τ) outside [−Th

2 ,
Th

2 ],

and X
(k,k′)
max stands for the maximal local maximum of Xwk,wk′

(τ). Note that



150 TOA ESTIMATION IN MULTIUSER SYSTEMS USING TH-IR-UWB SIGNALS

more local maxima may fall around the mentioned local maxima due to the
oscillations in the used IR-UWB pulse.

Taking into account that Rwk
(τ) is symmetric (i.e. t

(k)
n −t(k)n′ and t

(k)
n′ −t(k)n are

both locations of local maxima), and that t
(k)
n − t

(k′)
n′ 6= t

(k)
m − t

(k′)
m′ is equivalent

to t
(k)
n − t

(k)
m 6= t

(k′)
n′ − t

(k′)
m′ , the necessary and sufficient conditions for R

(k)
max =

min
(c

(k)
n )

{R(k)
max} = 1 and X

(k,k′)
max = min

(c
(k)
n ),(c

(k′)
n )

{X(k,k′)
max } = 1 can be written

as:

d
(k)
n,n′ 6= d

(k)
m,m′ ; ∀(n, n′ > n);∀(m,m′ > m) 6= (n, n′) (4.123)

d
(k)
n,n′ 6= d

(k′)
m,m′ ; ∀(n, n′ > n);∀(m,m′ > m) (4.124)

where d
(k)
n,n′ denotes the normalized relative delay between the nth and n′th

pulses of wk(t), given by:

d
(k)
n,n′ =

t
(k)
n′ − t

(k)
n

Th
= (n′ − n)Nh + ∆

(k)
n,n′ (4.125)

∆
(k)
n,n′ = c

(k)
n′ − c(k)n ∈ {−Nh + 1, · · · , Nh − 1}. (4.126)

Note that Eq. 4.123 means that there are no different couples of pulses in wk(t)
having equal relative delays, whereas Eq. 4.124 means that the relative delay of
any couple in any waveform wk(t), (k = 1, · · · ,K) is different from the relative
delays of all other couples in the same waveform and in the other waveforms.
Accordingly, Eq. 4.124 guarantees that both the minimum CCR and the min-

imum sidelobe ACR are satisfied. Denote by d
(k)
i , (i = 1, · · · , Nc − 1) the row

vector of Nc− i elements, containing the normalized relative delays between the
pulses of wk(t) separated by i chips:

d
(k)
i = (d

(k)
n−i,n)n=i,··· ,Nc−1 = iNh + ∆

(k)
i (4.127)

∆
(k)
i = (∆

(k)
n−i,n)n=i,··· ,Nc−1. (4.128)

Using Eq. 4.127, we can write the necessary and sufficient conditions in Eq. 4.123
and Eq. 4.124 as:

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d(k) (4.129)

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d (4.130)

where xj and xj′ denote the jth and j′th elements in the row vectors

d(k) = (d
(k)
1 | · · · |d(k)

Nc−1) (4.131)

d = (d(1)| · · · |d(K)) (4.132)

of
∑Nc−1
i=1 (Nc−i) = Nc(Nc−1)

2 and KNc(Nc−1)
2 elements containing the normalized

relative delays between all pulse couples in wk(t), and in all wk(t). By assuming
that:

d
(k)
n−i,n 6= d

(k′)
n′−i′,n′ ;∀(d

(k)
n−i,n, d

(k′)
n′−i′,n′) ∈ di × di′>i (4.133)
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where

di = (d
(1)
i | · · · |d(K)

i ) = ∆i + iNh (4.134)

∆i = (∆
(1)
i | · · · |∆(K)

i ). (4.135)

We can write the necessary and sufficient conditions in Eq. 4.123 and Eq. 4.124
using Eq. 4.127 and Eq. 4.128 as:

xj 6= xj′ ; ∀j 6= j′;∀i;xj , xj′ ∈ ∆
(k)
i (4.136)

xj 6= xj′ ; ∀j 6= j′;∀i;xj , xj′ ∈ ∆i (4.137)

where j, j′ = 1, · · · , Nc − i in Eq. 4.136 (Nc − i is the length of ∆
(k)
i ), and

j, j′ = 1, · · · ,K(Nc − i) in Eq. 4.137 (K(Nc − i) is the length of ∆i). Note that

Eq. 4.136 and Eq. 4.137 mean that ∀i, ∆
(k)
i (see the rows of ∆(k) Eq. 4.138), as

well as ∆i Eq. 4.135, should not contain equal elements:

∆(k) =









∆
(k)
1

...

∆
(k)
Nc−1









=









∆
(k)
0,1 · · · ∆

(k)
Nc−2,Nc−1

. . .
...

∆
(k)
0,Nc−1









. (4.138)

Note that Eq. 4.133 used to obtain Eq. 4.136 and Eq. 4.137 is satisfied ∀i′ >
i + 1, and for i′ = i + 1 only if ∆

(k)
n−i,n − ∆

(k′)
n′−i′,n′ 6= Nh, ∀n, n′, k, k′, i. In fact,

d
(k′)
n′−i′,n′ − d

(k)
n−i,n = (i′ − i)Nh + ∆

(k′)
n′−i′,n′ − ∆

(k)
n−i,n with |∆(k′)

n′−i′,n′ − ∆
(k)
n−i,n| 6

2Nh − 2 because |∆(k)
n−i,n| 6 Nh − 1 as c

(k)
n ∈ {0, · · · , Nh − 1}. Due to this fact

we will set Nh = Nh + 1 during the procedure described below until Eq. 4.133
becomes satisfied.

Let us now describe the algorithm proposed to generate the THMA code
satisfying Eq. 4.124. We assume that only K and Nc are known:

1. Finding c(k), (k = 1, · · · ,K) that satisfy Eq. 4.151:

(a) Generate arbitrarily c
(k)
0 , (k = 1, · · · ,K); generate the empty vectors

∆i Eq. 4.135, (i = 1, · · · , Nc − 1).

(b) For n = 1, · · · , Nc − 1:
For k = 1, · · · ,K:

i. Set c
(k)
n = 0.

ii. Compute ∆
(k)
n−i,n, (i = 1, · · · , n) using Eq. 4.126.

iii. If ∃i s.t. ∆
(k)
n−i,n ∈ ∆i, then set c

(k)
n = c

(k)
n + 1 and repeat from

Item 1(b)ii until ∆
(k)
n−i,n /∈ ∆i, (i = 1, · · · , n).

iv. Put ∆
(k)
n−i,n in ∆i, (i = 1, · · · , n).

2. Finding Nh that satisfies Eq. 4.133:
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(a) Set Nh = maxk,n{c(k)n } + 1.

(b) Generate d = (d1| · · · |dNc−1), di = ∆i + iNh.

(c) If d contains equal elements, then set Nh = Nh + 1 and repeat from
Item 2b until d contains no equal elements.

Note that the value of Nh varies with the choice of c
(k)
0 in Item 1a. We can reduce

Nh by trying different values of c
(k)
0 .

4.5.2 THMA code with chip separation and minimum circular CCR and

sidelobe ACR

In the code presented in Sec. 4.5.1 we have computed the CCR and the ACR by
considering only one waveform for each user. As in practice waveforms are sent
periodically, it is also interesting to consider the circular correlation. Accordingly,
we have to verify now that the relative delays of the pulse couples in any non-
repeated waveform wk(t) are different from the relative delays of all other couples
in the same waveform repeated twice wk(t)+wk(t−T ) and in the other waveforms
repeated twice.

In Sec. 4.5.1, we have considered the normalized relative delay d
(k)
n,n′ =

t
(k)

n′
−t(k)

n

Th

Eq. 4.125 with both t
(k)
n and t

(k)
n′ Eq. 4.2 (positions of the pulses) in the same

waveform (n, n′ < Nc − 1, n′ > n). Now, we have to consider in addition:

d̃
(k)
n,n′ =

t̃
(k)
n′ − t

(k)
n

Th
= (Nc + n′ − n)Nh + ∆

(k)
n,n′ (4.139)

where ∆
(k)
n,n′ is defined in Eq. 4.126, and

t̃(k)n = T + nTc + c(k)n Th = (NcNh + nNh + c(k)n )Th (4.140)

is the position of the nth pulse in the waveform wk(t− T ). As for n′ > n, d̃
(k)
n,n′

Eq. 4.139 becomes equal to d
(k)
n,n′ Eq. 4.125 modulo Ns Eq. 4.4, we have to only

consider n′ < n in Eq. 4.139. We can see from Eq. 4.139 that to have two pulses
distant by i chips, we should now have Nc + n′ − n = i. Accordingly for the
pulses distant by one chip we have to only consider the first pulse n′ = 0 in the
second waveform with the last pulse n = Nc − 1 in the first waveform, whereas
for the pulses distant by Nc − 1 chips we have to consider the pulses number
n′ = 0, · · · , Nc− 2 in the second waveform with those number n = 1, · · · , Nc− 1

in the first waveform. Accordingly we can write the duals of d
(k)
i Eq. 4.127,

∆
(k)
i Eq. 4.128, d(k) Eq. 4.131, d Eq. 4.132, di Eq. 4.134 and ∆i Eq. 4.135,



THMA CODES WITH MINIMUM CCR AND SIDELOBE ACR 153

(i = 1, · · · , Nc − 1) as:

d̃
(k)
i = (d̃

(k)
Nc+n−i,n)n=0,··· ,i−1 = iNh + ∆̃

(k)
i (4.141)

∆̃
(k)
i = (∆

(k)
Nc+n−i,n)n=0,··· ,i−1 (4.142)

d̃(k) = (d̃
(k)
1 | · · · |d̃(k)

Nc−1) (4.143)

d̃ = (d̃(1)| · · · |d̃(K)) (4.144)

d̃i = (d̃
(1)
i | · · · |d̃(K)

i ) (4.145)

∆̃i = (∆̃
(1)
i | · · · |∆̃(K)

i ) (4.146)

with

∆̃
(k)

=









∆̃
(k)
1

...

∆̃
(k)
Nc−1









=









∆
(k)
Nc−1,0

...
. . .

∆
(k)
1,0 · · · ∆

(k)
Nc−1,Nc−2









(4.147)

where the term in the first row in ∆̃
(k)

Eq. 4.147 is the opposite of that in

the last row in ∆(k) Eq. 4.138 (∆
(k)
Nc−1,0 = −∆

(k)
0,Nc−1), and the terms in the

last row in ∆̃
(k)

Eq. 4.147 are the opposite of those in the first row in ∆(k)

Eq. 4.138 (∆
(k)
1,0 = −∆

(k)
0,1, · · · ,∆

(k)
Nc−1,Nc−2 = −∆

(k)
Nc−2,Nc−1). Note that unlike

d
(k)
i Eq. 4.127 which contains Nc − i elements, d̃

(k)
i Eq. 4.141 contains i ele-

ments. However, d̃(k) Eq. 4.143 and d̃ Eq. 4.144 contain like d(k) Eq. 4.131 and

d Eq. 4.132,
∑Nc−1
i=1 i =

∑Nc−1
i=1 (Nc − i) = Nc(Nc−1)

2 and KNc(Nc−1)
2 elements

respectively.

The conditions in Eq. 4.129 and Eq. 4.130 can now be written as:

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d̂(k) = [d̃(k)|d(k)] (4.148)

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d̂ = [d̃|d] (4.149)

and those in Eq. 4.136 and Eq. 4.137 as:

xj 6= xj′ ; ∀j 6= j′;∀i;xj , xj′ ∈ ∆̂
(k)
i = [∆̃

(k)
i |∆(k)

i ] (4.150)

xj 6= xj′ ; ∀j 6= j′;∀i;xj , xj′ ∈ ∆̂i = [∆̃i|∆i] (4.151)

under the assumption:

x 6= x′;∀(x, x′) ∈ d̂i × d̂i′>i (4.152)

where d̂i = [d̃i|di]. Note that we can write ∆̂
(k)
i in Eq. 4.150 from Eq. 4.138 and

Eq. 4.147 as:

∆̂
(k)

= [∆̃
(k)|∆(k)] = [− l ∆(k)|∆(k)] (4.153)



154 TOA ESTIMATION IN MULTIUSER SYSTEMS USING TH-IR-UWB SIGNALS

where − l ∆(k) denotes the opposite of the matrix ∆(k) flipped in the up-down

direction about a horizontal axis. Note that ∆̂
(k)

is Nc × Nc whereas ∆(k) is

Nc − 1 ×Nc − 1 but empty below the diagonal and ∆̃
(k)

is Nc − 1 ×Nc − 1 but
empty above the diagonal.

Let us now describe the algorithm proposed to generate the THMA code
satisfying Eq. 4.149:

1. Finding c(k), (k = 1, · · · ,K) that satisfy Eq. 4.137:

(a) Arbitrarily generate c
(k)
0 , (k = 1, · · · ,K); generate the empty vectors

∆̂i Eq. 4.146, (i = 1, · · · , Nc − 1).

(b) For n = 1, · · · , Nc − 1:
For k = 1, · · · ,K:

i. Set c
(k)
n = 0.

ii. Compute ∆
(k)
n−i,n, (i = 1, · · · , n) using Eq. 4.126.

iii. If ∃i s.t. ∆
(k)
n−i,n ∈ ∆̂i or −∆

(k)
n−i,n ∈ ∆̂Nc−i, then set c

(k)
n = c

(k)
n +1

and repeat from Item 1(b)ii until ∆
(k)
n−i,n /∈ ∆̂i and −∆

(k)
n−i,n /∈

∆̂Nc−i, (i = 1, · · · , n).

iv. Put ∆
(k)
n−i,n in ∆̂i and −∆

(k)
n−i,n in ∆̂Nc−i, (i = 1, · · · , n).

2. Finding Nh that satisfies Eq. 4.133:

(a) Set Nh = maxk,n{c(k)n } + 1.

(b) Generate d̂ = (d̂1| · · · |d̂Nc−1), d̂i = ∆̂i + iNh.

(c) If d̂ contains equal elements, then set Nh = Nh + 1 and repeat from

Item 2b until d̂ contains no equal elements.

4.5.3 THMA code without chip separation and with minimum CCR and

sidelobe ACR

Now we consider the generation of THMA codes without chip separation (see
Eq. 4.3, Eq. 4.5 and Eq. 4.6) and with minimum CCR and sidelobe ACR.

The row vectors containing the normalized relative delays of the couples of
pulses of wk(t) separated by i pulses (i = 1, · · · , Nc − 1, i = 1 corresponds
to adjacent pulses), of all couples of wk(t), and of all couples of all waveforms
(k = 1, · · · ,K) are given by:

d
(k)
i = (d

(k)
n−i,n)n=i,··· ,Nc−1 = ∆

(k)
i (4.154)

d(k) = (d
(k)
1 | · · · |d(k)

Nc−1) (4.155)

d = (d(1)| · · · |d(K)) (4.156)
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where

d
(k)
n,n′ =

t
(k)
n′ − t

(k)
n

Th
= ∆

(k)
n,n′ (4.157)

denotes the normalized relative delay between the nth and n′th pulses of wk(t)

with t
(k)
n given in Eq. 4.6 and ∆

(k)
n,n′ in Eq. 4.126.

The necessary and sufficient conditions for minimum sidelobe ACR and min-
imum CCR can now be written like in Eq. 4.123 and Eq. 4.124 as:

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d(k) (4.158)

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d (4.159)

where xj and xj′ denote the jth and j′th elements in the vectors d(k) Eq. 4.155

and d Eq. 4.156 of
∑Nc−1
i=1 (Nc − i) = Nc(Nc−1)

2 and KNc(Nc−1)
2 elements respec-

tively.

Let us now describe the algorithm proposed to generate the THMA code
satisfying Eq. 4.149:

1. Finding c(k), (k = 1, · · · ,K) that satisfy Eq. 4.159:

(a) Set c
(k)
0 = 0, (k = 1, · · · ,K); generate the empty vector d.

(b) For n = 1, · · · , Nc − 1:
For k = 1, · · · ,K:

i. Set c
(k)
n = c

(k)
n−1 + 1.

ii. Compute ∆
(k)
n−i,n, (i = 1, · · · , n) using Eq. 4.126.

iii. If ∃i s.t. ∆
(k)
n−i,n ∈ d, then set c

(k)
n = c

(k)
n + 1 and repeat from

Item 1(b)ii until ∆
(k)
n−i,n /∈ d, (i = 1, · · · , n).

iv. Put ∆
(k)
n−i,n, (i = 1, · · · , n) in d.

2. Finding Nh: Nh = maxk,n{c(k)n } + 1.

4.5.4 THMA code without chip separation and with minimum circular

CCR and sidelobe ACR

In this section we propose an algorithm to generate THMA codes without chip
separation and with minimum circular CCR and sidelobe ACR.

We can write the normalized relative delay between the n′th pulse of the
repeated waveform wk(t − T ) and the nth pulse of the non-repeated waveform
wk(t) as:

d̃
(k)
n,n′ =

t̃
(k)
n′ − t

(k)
n

Th
= Nh + ∆

(k)
n,n′ (4.160)
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where ∆
(k)
n,n′ is defined in Eq. 4.126, and

t̃(k)n = T + c(k)n Th = (Nh + c(k)n )Th (4.161)

is the position of the nth pulse in the waveform wk(t − T ). The row vectors
containing the normalized relative delays of the couples of pulses of wk(t) and
wk(t − T ) (the first pulse in the first waveform and the second in the repeated
one) separated by i pulses (i = 1, · · · , Nc−1, where i = 1 corresponds to adjacent
pulses), of all couples between wk(t) and wk(t − T ), and of all couples between
wk(t) and wk(t− T ) for all users (k = 1, · · · ,K) can be expressed as:

d̃
(k)
i = (d̃

(k)
Nc+n−i,n)n=0,··· ,i−1 = Nh + ∆̃

(k)
i (4.162)

∆̃
(k)
i = (∆

(k)
Nc+n−i,n)n=0,··· ,i−1 (4.163)

d̃(k) = (d̃
(k)
1 | · · · |d̃(k)

Nc−1) (4.164)

d̃ = (d̃(1)| · · · |d̃(K)) (4.165)

where the terms of ∆̃
(k)
i Eq. 4.163 for a given i are the opposite of those of ∆

(k)
Nc−i

Eq. 4.154.

The minimum circular sidelobe ACR and CCR constraints can be written as:

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d̂(k) = [d̃(k)|d(k)] (4.166)

xj 6= xj′ ; ∀j 6= j′;xj , xj′ ∈ d̂ = [d̃|d]. (4.167)

Let us now describe the algorithm proposed to generate the THMA code
satisfying Eq. 4.167:

1. Finding c(k), (k = 1, · · · ,K) that satisfy Eq. 4.159:

(a) Set c
(k)
0 = 0, (k = 1, · · · ,K); generate the empty vector d Eq. 4.156.

(b) For n = 1, · · · , Nc − 1:
For k = 1, · · · ,K:

i. Set c
(k)
n = c

(k)
n−1 + 1.

ii. Compute ∆
(k)
n−i,n, (i = 1, · · · , n) using Eq. 4.126.

iii. If ∃i s.t. ∆
(k)
n−i,n ∈ d, then set c

(k)
n = c

(k)
n + 1 and repeat from

Item 1(b)ii until ∆
(k)
n−i,n /∈ d, (i = 1, · · · , n).

iv. Put ∆
(k)
n−i,n, (i = 1, · · · , n) in d.

2. Finding Nh so that the generated c(k) satisfy Eq. 4.167:

(a) Set Nh = maxk,n{c(k)n } + 1.

(b) Generate d̂ = [d̃|d] = [Nh − d|d].
(c) If d̂ contains equal elements, then set Nh = Nh + 1 and repeat from

Item 2b until d̂ contains no equal elements.
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4.5.5 THMA codes with variable length

In this section we assume that we know the duration of the waveform in time-hops
Ns Eq. 4.4, Eq. 4.5, and the minimum Nc,min and maximum Nc,max code lengths.
We propose an algorithm to generate the maximum number of codewords (with
variable length) of the codes presented in Sec. 4.5.1, Sec. 4.5.2, Sec. 4.5.3 and
Sec. 4.5.4.

For the THMA codes in Sec. 4.5.1 and Sec. 4.5.2 we take Nh = Ns

Nc,max
, and

for the THMA codes in Sec. 4.5.3 and Sec. 4.5.4 we have Nh = Ns Eq. 4.5.
Remind that unlike the codes in Sec. 4.5.1 and Sec. 4.5.3, those in Sec. 4.5.2 and
Sec. 4.5.4 consider the circular correlation.

Denote by K the number of generated codewords (size of codeword book),
Nc = (Nc,1 · · ·Nc,K) the vector containing the number of pulses in each code-
word, c̃ = (c̃0 · · · c̃Ñc−1) a candidate codeword (not necessarily added after to the

codeword book) of instantaneous length Ñc, and c̃e an instantaneous candidate
element to c̃ (not necessarily added to it).

Let us first describe the algorithm proposed to generate codewords for the
THMA code given in Sec. 4.5.4:

1. Generate the empty vectors d̂ and Nc; set K = 0.

2. Set c̃ = 0.

3. Set c̃e = c̃Ñc−1 + 1.

4. Compute d̃ = c̃e − c̃.

5. Set d̂ = (d̃|Ns − d̃).

6. If {d̂ contains equal elements or ∃x ∈ d̂e; x ∈ d̂}, then set c̃e = c̃e + 1 and

repeat from Item 4 until either, {d̂ contains no equal elements and ∄x ∈ d̂e;

x ∈ d̂}, or {c̃e = Nh}.
7. If c̃e 6= Nh, then set c̃ = (c̃|c̃e), Ñc = Ñc + 1 and d̂ = (d̂|d̃) and proceed to

Item 8, otherwise proceed to Item 9.

8. If Ñc = Nc,max, then set Nc = (Nc|Ñc) and K = K + 1, add c̃ to the
codeword book, and proceed to Item 2.

9. If Ñc > Nc,min, then set Nc = (Nc|Ñc) and K = K + 1, add c̃ to the
codeword book, and proceed to Item 2, otherwise stop the algorithm.

Now, for the THMA code in Sec. 4.5.1, we can generate c̃ randomly in Item 2,
we set c̃e = 0 in Item 3, we compute d̃ as d̃ = c̃e − c̃ + (Ñc · · · 1)Nh in Item 4,
and we skip Item 5.

For the THMA code in Sec. 4.5.2, we do the same as for the code in Sec. 4.5.1
but we do not skip Item 5.

For the THMA code in Sec. 4.5.3, we just skip Item 5.
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Fig. 4.13.: Code 1: K = 5, Nc = 10, Ns = 640 and Nh = 64 (a) Codewords (b)
ACR and CCR (c) Circular ACR and CCR.

4.5.6 Numerical results

In this section we present some numerical results obtained using the algorithms
proposed in Sec. Sec. 4.5.1, Sec. 4.5.2, Sec. 4.5.3, Sec. 4.5.4 and Sec. 4.5.5.

We denote by Code 1, Code 2, Code 3 and Code 4 the codes presented in
Sec. 4.5.1, Sec. 4.5.2, Sec. 4.5.3, Sec. 4.5.4 respectively, and by Code 5.1, Code
5.2, Code 5.3 and Code 5.4 the codes with variable length presented in Sec. 4.5.5
and having the properties of Codes 1, 2, 3 and 4. We recall that for Codes 1, 2, 3
and 4, the number of codewords K and the length Nc of the code are both known
and constant, whereas for Codes 5.1, 5.2, 5.3 and 5.4, the duration Ns of the
waveform in time-hops is known as well as the minimum Nc,min and maximum
Nc,max code lengths, but K is unknown and Nc is not the same for all codewords.
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Fig. 4.14.: Code 2: K = 5, Nc = 10, Ns = 1140 and Nh = 114 (a) Codewords
(b) Circular ACR and CCR.

Let us first consider Codes 1, 2, 3 and 4. We take K = 5 and Nc = 10. We
have obtained Nh = 64 and Ns = 640 for Code 1, Nh = 114 and Ns = 1140
for Code 2, Ns = Nh = 409 for Code 3 and Ns = Nh = 789 for Code 4. The
codewords obtained for Codes 1, 2 and 3 are given below:

c =













10 0 3 1 16 27 39 3 45 19
5 0 5 11 2 15 33 0 20 47
1 0 4 12 0 19 15 8 44 28
1 1 3 10 2 24 7 32 53 0
3 0 1 10 20 0 14 43 59 3













c =













1 0 5 0 10 22 39 6 59 32
2 0 4 10 1 16 37 8 54 39
0 0 3 11 4 18 34 52 71 23
6 0 2 9 18 0 31 53 25 72
3 0 1 12 0 20 33 13 48 76













c =













0 1 17 26 65 85 165 228 332 402
0 2 15 29 62 98 153 219 322 395
0 3 10 31 54 89 126 171 261 358
0 4 12 34 53 105 145 233 275 383
0 5 11 43 61 118 142 220 296 408













.

Note that the codewords of Codes 3 and 4 are equal as can be seen from the
algorithms in Sec. 4.5.3 and Sec. 4.5.4. However, the waveform duration Ns is
not the same for both. We can see that Codes 1 and 2 (Ns = 640 and 1140)
are longer than Codes 3 and 4 (Ns = 409 and 789) respectively due to the chip
Tc = NhTh separation between the consecutive pulses of Codes 1 and 2, and that
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Fig. 4.15.: Code 3: K = 5, Nc = 10, Ns = Nh = 409 (a) Codewords (b) ACR
and CCR (c) Circular ACR and CCR.

Codes 2 and 4 are longer than Codes 1 and 3 respectively because they satisfy
the circular correlation constraints.

Let us now consider Codes 5.1, 5.2, 5.3 and 5.4. We take Ns = 1000,
Nc,min = 6 and Nc,max = 10. Different results have been obtained for

Codes 5.1 and 5.2 because c
(k)
0 is generated randomly. We have obtained

K = 9 with Nc = (10, 10, 10, 10, 10, 10, 10, 7, 6) for Code 1, K = 9
with Nc = (10, 10, 10, 10, 8, 8, 6, 6, 6) for Code 2, K = 13 with Nc =
(10, 10, 10, 10, 10, 10, 9, 8, 7, 7, 6, 6, 6) for Codes 5.3, and K = 10 with Nc =
(10, 10, 10, 10, 10, 10, 10, 10) for Codes 5.4.
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Fig. 4.16.: Code 4: K = 5, Nc = 10, Ns = Nh = 789 (a) Codewords (b) Circular
ACR and CCR.

Denote by:

wk[j], j = 0, · · · , Ns − 1 (4.168)

Xwk,wk′
[j] =

∑

ξ wk[ξ + j]wk′ [ξ] (4.169)

the discrete waveform relative to wk(t), and the discrete CCR of wk[j] and wk′ [j],
with wk[j] = 1 (resp. 0) if a pulse is (resp. is not) contained in [jTh, (j+1)Th). The
circular correlation can be obtained by correlating wk[j] with wk′ [j]+wk′ [j−Ns].

In Fig. 4.13(a) we show the discrete waveforms of all codewords of Code 1, in
Fig. 4.13(b) the discrete ACR of all waveforms (figure on the top) and the discrete
CCR of all different waveforms (figure on the bottom), and in Fig. 4.13(c) the
discrete circular ACR and CCR. We can see that the constraint of minimum
CCR and sidelobe ACR is satisfied (CCR and sidelobe ACR always lower than
or equal to one) but not the constraint of minimum circular correlation (we have
some points where the CCR and the sidelobe ACR are equal to two). Note that
the ACR is always equal to Nc for a relative delay equal to a multiple of Ns
(waveform duration in time-hops).

In Fig. 4.14(a) we show the obtained waveforms of Code 2, and in Fig. 4.14(b)
the corresponding circular ACR and CCR. We can see that the constraint of
minimum circular CCR and sidelobe ACR is satisfied.

In Fig. 4.15(a) we show the obtained waveforms of Code 3, in Fig. 4.15(b) the
corresponding ACR and CCR, and in Fig. 4.15(c) the circular ACR and CCR.
Like Code 1, we can see that the constraint of minimum CCR and sidelobe ACR
is satisfied but not the constraint of minimum correlation.
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Fig. 4.17.: Ns = 1000, Nc,min = 6 and Nc,max = 10 (a) Code 5.1 (b) Code 5.2
(c) Code 5.3 (d) Code 5.4

In Fig. 4.16(a) we show the obtained waveforms of Code 4, and in Fig. 4.16(b)
the corresponding circular ACR and CCR. Like Code 2, the constraint of mini-
mum circular CCR and sidelobe ACR is satisfied.

By comparing Codes 1 and 3 (resp. Codes 2 and 4), we can see that unlike
Code 3 (resp. Code 4), the pulses of Code 1 (resp. Code 2) are approximately
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equidistant thanks to the chip separation. However, the waveforms of Code 1
(resp. Code 2) are longer as already mentioned. By comparing Codes 3 and 4 we
can see that a guard time (less than the duration of the waveforms of Code3)
is added after the last pulse to satisfy the constraint of minimum circular CCR
and sidelobe ACR.

In Fig. 4.17(a), Fig. 4.17(b), Fig. 4.17(c) and Fig. 4.17(d) we show the obtained
waveforms for Codes 5.1, 5.2, 5.3 and 5.4 respectively. We can see that unlike
Codes 5.1 and 5.2, the average relative delays between the consecutive pulses of
the waveforms of Codes 5.3 and 5.4 increase with the waveform generation order
(i.e. it is larger for a waveform generated later). This is due to the generation
algorithms proposed in Sec. 4.5.5.

4.6 CONCLUSION

In this chapter we have considered TOA estimation based on TH-IR-UWB sig-
nals using both the MCE and the MME. We have derived based on the results of
Chap. 2 and Chap. 3 some MSE approximations and approximate lower bounds
for both estimators. The derived MSE approximations and approximate lower
bounds are applied to TOA using TH-IR-UWB signals assuming single-user. We
have seen that both the MCE and the MME approximately have the same global
performances. We have considered TOA estimation with MUI. The cases of de-
terministic and random MUI are treated separately. We have presented some
cases where the proposed MME outperforms the MCE. We have compared the
MSE approximations to the MSE truly achieved with random MUI. The MCE
slightly outperforms the MME in the case of random MUI. We have also pre-
sented some algorithms to generate THMA codes with minimum sidelobe ACR
and minimum CCR





CHAPTER 5

CRLBS FOR POSITION ESTIMATION AND

JOINT TOA AND AOA ESTIMATION IN

MIMO AND UWB SYSTEMS

T
here is a growing interest in UWB based positioning since the FCC has
allowed in 2002 the unlicensed use of the UWB spectrum [1].

Different techniques, like the RSS, the TOA, the AOA, and the hybrid based
methods, can be used, following the target application and the features of the
transmitted and received signals.

The AOA estimation is based on the use of antenna arrays. An array of three
non-collinear elements can determine the two-dimensional (2D) AOA without
ambiguity. With RSS and TOA techniques, three reference nodes at least are
needed to perform the 2D positioning without ambiguity. However, with the AOA
technique, only two reference nodes are, in general, sufficient (see Sec. 5.1.8 for
more details). By combining different techniques together (e.g. TOA and AOA),
only one reference becomes sufficient.

In this chapter we consider positioning in UWB systems, TOA and AOA
estimation in wideband (WB) SISO, SIMO, MISO and MIMO systems, and the
estimation of the gain and the TOA in UWB MP channels.

In Sec. 5.1 we assume that UWB signals are transmitted. We derive the CRLB
for position estimation based on the AOA technique, and for position estimation
based on the TOA and AOA techniques simultaneously. The communication
channel is supposed to be of the MP type, but with non-overlapping components.

165
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The subject investigated in this section is based on our work published in [93,
107].

In Sec. 5.2 we investigate the problem of positioning in MISO and MIMO sys-
tems. We derive the CRLBs for the joint estimation of the TOA and the AOA.
We assume that WB signals are transmitted. We consider both the cases of or-
thogonal and non-orthogonal signals. We compare the CRLBs obtained in SISO,
SIMO, MISO and MIMO systems to each others under the assumption that the
total transmitted energy is the same for all systems. We show that for TOA esti-
mation, SIMO and MIMO systems are equivalent, and MISO and SISO systems
are equivalent as well, when the transmitted signals are orthogonal. However,
for non-orthogonal signals, MIMO systems are better than SIMO systems, and
MISO systems are superior to SISO systems, in the regions where the received
signals are constructive. For AOA estimation, we show that MIMO systems are
better than SIMO systems, and that SIMO systems outperform MISO systems,
when the transmitted signals are orthogonal. However, for non-orthogonal sig-
nals, MIMO systems become much more better in the regions where the received
signals are constructive. The results presented in this section are already pub-
lished in [108, 109].

As mentioned above, we consider in Sec. 5.1 UWB channels with non-
overlapping MPCs. In order to study the impact of the overlapping among
the neighboring MPCs on the performances of the estimation, we consider in
Sec. 5.3 the problem of the joint estimation of the gains and the TOAs of all
present MPCs, and derive the corresponding CRLBs. We have already treated
this topic in [110, 111]. We compute the average CRLBs for the IEEE802.15.4a
UWB channel model. The CRLBs obtained by averaging more than 80% of the
possible cases of the considered channels, are very close to the CRLBs obtained
under the non-overlapping assumption.

5.1 CRLBS FOR UWB-BASED POSITIONING USING AOA AND
HYBRID TOA-AOA TECHNIQUES

UWB-based positioning has been mainly studied for the TOA method [112, 113].
Only few works can be found on CRLB for UWB-based AOA estimation [107,
114]. AOA is widely investigated in the literature for narrowband and WB signals
but under the assumption of a narrowband signal [115–118]. In [116], the authors
report the CRLB on the position for DS code division multiple access (CDMA)
based positioning using simultaneously TOA and AOA whereas in [117], CRLBs
are reported for joint AOA and TOA estimation in DS-CDMA systems.

In this section we consider the AOA method in a rigorous manner, that
is, without the narrowband assumption. Furthermore we investigate a hybrid
method by incorporating both the AOA and TOA information. The UWB signal
under consideration is supposed to be composed from a train of pulses modu-
lated by unknown data. The channel is supposed to be of the MP type; however
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Fig. 5.1.: The unknown location node and the reference nodes arrays.

the impact of MP will be shown to be limited thanks to a realistic assumption
(i.e. the non-overlapping assumption introduced in Sec. 5.1.2).

Our goal in this work is to evaluate the potential of a number of positioning
techniques when a UWB signal is used. We do not focus however on implemen-
tation challenges.

In Sec. 5.1.1 we describe our system model. In Sec. 5.1.2 we introduce the
non-overlapping assumption. In Sec. 5.1.3 we derive the CRLBs for the joint
estimation of the direct path TOA and AOA. In Sec. 5.1.4 we propose a method
that allows us to obtain the CRLBs for the joint estimation of a set of parameters,
from the CRLBs of another set of parameters, that is function of the first set.
In Sec. 5.1.5 we derive the CRLBs for AOA-based positioning. In Sec. 5.1.6
we derive the CRLBs for hybrid TOA-AOA based positioning. In Sec. 5.1.7 we
compare the exact AOA CRLB to the approximated CRLB obtained using the
narrowband approximation. In Sec. 5.1.8 we present and discuss the numerical
results obtained for AOA-based positioning and hybrid positioning, considering
some typical scenarios.

5.1.1 System model

In our reference scenario depicted in Fig. 5.1, we consider an unknown location
node called Unk and N reference nodes called Ref1, · · · ,RefN . Unk is equipped
with a one-element antenna for transmission, and each Refn, (n = 1, · · · , N)
equipped with a planar antenna array of Mn elements for reception. We call
Eltn,m the mth element of Refn.

UWB channels are very challenging. One of the main channel impairment is
the MP propagation. In view of this, several simplifying assumptions are intro-
duced:
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• The channel is assumed to contain a line of sight (LOS) component, to be
non distorting and with AWGN.

• Unk and the scatterers leading to MP are sufficiently far away from all
reference nodes, so that the received signals arrive as plane waves; this is
equivalent to the far-field assumption.

• For a given element of the receive array, the contribution carried by the di-
rect path in the received signal does not overlap with the replicas carried by
the other paths. This condition is called the “non overlapping assumption”
(NOLA).

We will show in Sec. 5.1.3 that once the NOLA is satisfied, the position estimate
will not be impacted by the MP phenomenon. The NOLA will be discussed in
Sec. 5.1.2.

The signal received at Eltn,m can be written as:

rn,m(t) =

Ln
∑

l=1

α(l)
n,ms(t− τ (l)

n,m) + nn,m(t) (5.1)

=

Ln
∑

l=1

α(l)
n,ms

(l)
n,m(t) + nn,m(t) (5.2)

where s(t) denotes the signal transmitted by Unk, Ln is the number of paths

between Unk and any element Refn, α
(l)
n,m and τ

(l)
n,m are the gain and the time

delay introduced by the lth path between Unk and Eltn,m, and nn,m(t) is the
AWGN at Eltn,m. Signals nn1(t), · · · , nnMn

(t) are independent and identically
distributed with two-sided PSD of N0/2.

The signal transmitted s(t) is given by:

s(t) =

K
∑

k=1

akp(t− kTs) (5.3)

where a1, · · · , aK denote K unknown symbols belonging to a pulse amplitude
modulation (PAM) constellation, Ts is the symbol period, and p(t) is the basic
pulse waveform.

The far-field assumption allows us to write:

α(l)
n,m ≈ α(l)

n , ∀m (5.4)

τ (l)
n,m ≈ τ (l)

n − rn,m
c

cos(ϕ(l)
n − ϕn,m) (5.5)

where τ
(l)
n denotes the delay corresponding to the lth path between Unk and Gn

(the geometric center of the nth reference node), ϕ
(l)
n is the AOA with respect
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to the x axis of the tap associated with the lth scatterer, rn,m and ϕn,m are the
polar coordinates of Eltn,m with respect to Gn, and c is the speed of light.

Denote by (x, y) and (xn, yn) the Cartesian coordinates of Unk and Refn,
respectively, with respect to an absolute reference and by (rn, ϕn) the polar
coordinates of Unk with respect to the geometric center Gn of Refn. We can
write rn and ϕn as:

rn =
√

(x− xn)2 + (y − yn)2 (5.6)

ϕn = 2arctan

[

(y − yn)

(x− xn) +
√

(x− xn)2 + (y − yn)2

]

(5.7)

where the expression of ϕn is valid ∀(x, y), except the points with y − yn = 0

and x − xn < 0 simultaneously. Notice that rn =
τ(1)

n

c and ϕn = ϕ
(1)
n where

τ
(1)
n and ϕ

(1)
n are the time delay and the AOA associated with the direct path,

respectively (see Eq. 5.5).

5.1.2 Non-overlapping assumption

In this subsection we analyze the impact of the NOLA and discuss whether this
assumption is valid for realistic environments.

The following conditions are sufficient in order to benefit from the NOLA:

{

τ
(2)
n − τ

(1)
n > Tw + D

c

τ
(Ln)
n − τ

(1)
n 6 Ts − Tw − D

c

(5.8)

where D denotes the diameter of the smallest circle centered on Gn and including
all the elements of Refn, and Tw is the duration of p(t). The first condition is
associated with the possible overlapping between the direct path and the first
replica, of a given transmitted pulse (we have K transmitted pulses, see Eq. 5.3);
the second condition concerns the possible overlapping between the last replica
of a given transmitted pulse, and the direct path of the next pulse.

Let us now consider a simplified version of the UWB channel model proposed
for IEEE 802.15.4a in [9]. It has been assumed that the MP taps arrive grouped in
consecutive clusters. The cluster TOA follows a Poisson process with conditional
probability:

p(Ti|Ti−1) = ∆exp [−∆(Ti − Ti−1)]

where Ti denotes the TOA of the ith cluster and ∆ the average rate of arrival
of clusters. Within a given cluster, the TOA of a given tap follows a mixture of
two Poisson processes with conditional probabilities:

p(τj,i|τj−1,i) = ηδ1 exp [−δ1(τj,i − τj−1,i)] + (1 − η)δ2 exp [−δ2(τj,i − τj−1,i)]
(5.9)
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Residential LOS Office LOS

Range[m] 7 − 20 3 − 28

∆−1[ns] 21.28 62.5

Γ[ns] 22.61 14.6

δ−1
1 , δ−1

2 [ns] 0.65, 6.7 5.26, 0.34

η 0.095 0.0184

γ[ns] 12.53 6.4

σ[dB] 2.75 3

Table 5.1.: Parameters of the IEEE 802.15.4a channel model for LOS residential
and LOS office environments.

where τj,i denotes the TOA for the jth tap of the ith cluster and δ1 and δ2 tow
average rates of arrival. The mean power corresponding to τj,i is given by:

E
{

|αj,i|2
}

∝ Ωi exp

(

−τj,i
γ

)

where E{·} denotes the expectation operator, γ is the intra-cluster time constant;
Ωi follows a log-normal distribution:

10 log(Ωi) = 10 log

[

exp

(

−Ti
Γ

)]

+ N (0, σ2). (5.10)

Γ denotes the inter-cluster time constant, and N stands for a normal distribution
with variance σ2.

Table 5.1 shows the values taken by the model parameters for LOS residential
and LOS office environments. From this table, the values of Tw and Ts can
be chosen so that NOLA is approximately satisfied, that is to say the first tap
overlaps rarely with next taps and the replicas of a certain impulse reach the next
impulse with relatively small energy in average. The probability of overlapping
is computed in Sec. 5.3 of this chapter, with respect to the pulse width and the
average taps rate of arrival.

5.1.3 CRLBs for the joint estimation of the direct path TOA and AOA

In this subsection, we derive the CRLBs for the joint estimation of the parameters

of the direct path (i.e. τ
(1)
n and ϕ

(1)
n ). In Sec. 5.1.3.1 we assume that the symbols

a1, · · · , aK modulating the transmitted signal are known (see Eq. 5.3), whereas
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in Sec. 5.1.3.2 we assume that they should be jointly estimated with the the
direct path parameters.

Denote by Θ = (Θ1 · · ·ΘNΘ
)T (·T denotes the transpose operator) a vector of

NΘ unknown parameters to estimate. The CRLBs of the elements of Θ are the
diagonal elements of the CRLB matrix C given by [78]:

C = FIM−1 (5.11)

F =
(

fΘi,Θi′
)

i,i′=1,··· ,NΘ
(5.12)

fΘi,Θi′ = −E
{

∂2Λ

∂θi∂θi′

∣

∣

∣

θi=Θi,θi′=Θi′

}

(5.13)

where F denotes the FIM and Λ the log-likelihood function for the joint estima-
tion of Θ1, · · · ,ΘNΘ

.

5.1.3.1 Pilot aided case

Here, we assume that the modulating data a1, · · · , aK are pilot symbols known
to the receiver. Accordingly, the unknown parameters present in our model, for
a given Refn, are:

α(1)
n , τ (1)

n , ϕ(1)
n , · · · , α(Ln)

n , τ (Ln)
n , ϕ(Ln)

n

in which only τ
(1)
n and ϕ

(1)
n are the useful parameters; all remaining parameters

are nuisance parameters.

In order to find the CRLBs for the estimation of τ
(1)
n and ϕ

(1)
n , we first consider

the joint estimation of all channel parameters.

The log-likelihood function for the joint estimation of all channel parameters
can be written from Eq. 5.2 as:

Λ = − 1

N0

Mn
∑

m=1

∫ t2

t1

[

rn,m(t) −
Ln
∑

l=1

α(l)
n s

(l)
n,m(t)

]2

dt (5.14)

where [t1, t2] is the observation period.

Denote by ẋ(t) the derivative of a generic signal x(t), and by Ex =
∫ t2
t1
x2(t)dt

its energy. From Eq. 5.12, Eq. 5.13 and Eq. 5.14, we can write the elements of
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the FIM as:

fϕ
(1)
n ,ϕ(1)

n =
2(α

(1)
n )2

N0c2
Eṡin(ϕ

(1)
n ) (5.15)

fτ
(1)
n ,τ (1)

n =
2Mn(α

(1)
n )2

N0
Eṡ (5.16)

fϕ
(1)
n ,τ (1)

n =
−2α

(1)2
n

N0c
Eṡr

⊥
n = 0 (5.17)

fα
(1)
n ,ω(1)

n = s2(t)
∣

∣

t2

t1

Mn
∑

m=1

k
α(1)

n ω(1)
n

m = 0 (5.18)

fω
(l′)
n ,ω(1)

n =

Mn
∑

m=1

k
ω(l′)

n ω(1)
n

m

∫ t2

t1

ṡ(l
′)

n,m(t)ṡ(1)n,m(t)dt = 0 (5.19)

fα
(l′)
n ,ω(1)

n =

Mn
∑

m=1

k
α(l′)

n ω(1)
n

m

∫ t2

t1

s(l
′)

n,m(t)ṡ(1)n,m(t)dt = 0 (5.20)

where ω
(1)
n ∈ {ϕ(1)

n , τ
(1)
n }, l′ 6= 1, k

{·}
m is a deterministic number, and

in(ϕ
(1)
n ) =

Mn
∑

m=1

r2n,m sin2(ϕ(1)
n − ϕn,m) (5.21)

r⊥n =

Mn
∑

m=1

rn,m sin(ϕ(1)
n − ϕn,m) = sin(ϕ(1)

n )

Mn
∑

m=1

rn,m cos(ϕn,m)

− cos(ϕ(1)
n )

Mn
∑

m=1

rn,m sin(ϕn,m) = 0. (5.22)

In Eq. 5.17 and Eq. 5.22, r⊥n is null because (rn,m, ϕn,m), (m = 1, · · · ,Mn) are
the polar coordinates of the elements of Refn with respect to their geometric
center Gn, so

∑Mn

m=1 rn,m cos(ϕn,m), and
∑Mn

m=1 rn,m sin(ϕn,m) are null directly
from the definition of the geometric center. In Eq. 5.18, we have assumed that the

observation interval [t1, t2] is sufficiently large so that s2(t)
∣

∣

t2

t1
= 0. In Eq. 5.19

and Eq. 5.20, both
∫ t2
t1
ṡ
(l′)
n,m(t)ṡ

(1)
n,m(t)dt and

∫ t2
t1
s
(l′)
n,m(t)ṡ

(1)
n,m(t)dt are null because

the direct path does overlap with any MP replica, thanks to the NOLA.

The magnitude in(ϕ) in Eq. 5.21 can be seen as a kind of inertia in the
direction ϕn − π

2 . It becomes constant when the array of Refn is regular (i.e.

rn,m = rRefn , ∀m, and ϕn,m = ϕn0 + 2(m−1)π
Mn

), or when it is the superposition
of regular arrays, all centered in Gn; in Appendix B, we show that for regular
arrays, in(ϕ) becomes independent of ϕ (i.e. omni-directional):

in(ϕ) = M
r2Refn

2
= i ,∀ϕ. (5.23)
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From Eq. 5.15, Eq. 5.16, Eq. 5.17, Eq. 5.18, Eq. 5.19 and Eq. 5.20 we can
write the FIM for the estimation of the parameters relative to Refn as:

FRefn =









fϕ
(1)
n ϕ(1)

n 0

0 fτ
(1)
n τ(1)

n

0

0 FΩnuisance
n









(5.24)

where Ωnuisance
n is the nuisance parameters vector.

From Eq. 5.15 we can write the CRLB matrix Cτ
(1)
n ,ϕ(1)

n for the joint estimation

of ϕ
(1)
n and τ

(1)
n as:

Cτ
(1)
n ,ϕ(1)

n =
N0/2

(α
(1)
n )2Eṡ

(

1
Mn

0

0 c2

in(ϕ
(1)
n )

)

=
1

ρ
(1)
n β2

s

(

1
Mn

0

0 c2

in(ϕ
(1)
n )

)

(5.25)

ρ(1)
n =

(α
(1)
n )2Es
N0/2

(5.26)

β2
s =

Eṡ
Es

=

∫ −∞
−∞ 4π2f2|S(f)|2df
∫ −∞
−∞ |S(f)|2df

(5.27)

where ρ
(1)
n denotes the SNR of the direct path at Eltn,m, β2

s is the mean quadratic
bandwidth of the transmitted signal, S(f) is the Fourier transform of s(t), and
f the frequency variable.

Two conclusions can be drawn:

• Under the NOLA, the CRLBs for the joint estimation of the direct path pa-
rameters do not depend on the parameters of the other paths. Accordingly,
the accuracy achievable in such MP channels is the same as the accuracy
achievable in AWGN channels.

• With an array of Mn elements, the CRLB for the estimation of the TOA is
Mn times smaller than the CRLB with only one antenna. In fact, the signals
received at the different elements of the array carry all the same information

on τ
(1)
n . Furthermore, these signals are corrupted by independent noise

components.

5.1.3.2 Joint estimation of data and parameters

Here, we assume that the modulating data a1, · · · , aK are not known to the
receiver, and have to be estimated jointly with the parameters of the direct
path.

In order to compute the FIM for this joint estimation problem, we need to
incorporate new terms into the FIM, which are of the form:

fak,ω
(1)
n = p2(t)

∣

∣

t2

t1

∑

m

k
akω

(1)
n

m = 0 (5.28)
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where k
akω

(1)
n

m denotes a deterministic number; fak,ω
(1)
n is null because p2(t)|t2t1 = 0.

The result in Eq. 5.28 also means that with unknown data, the achievable
accuracy of the parameters is not impacted when joint estimation of parameters
and data is performed.

5.1.4 FIM transformation formula

In this subsection, we propose a method to obtain the FIM for the joint estima-
tion of a set of parameters, from the FIM of another set of parameters, which is
function of the first set. The obtained formula will be later used in Sec. 5.1.5 and
Sec. 5.1.6 to find the CRLBs for the estimation of the position using the AOA
technique, and using the hybrid TOA-AOA technique.

Denote by Ψ = (Ψ1 · · ·ΨI)
T and Ω = (Ω1 · · ·ΩJ )T two vectors of I and J

parameters respectively. We assume that the FIM FΩ of Ω is known. Our goal is
to find the FIM FΨ of Ψ taking into account the fact that Ψ and Ω are functions
of each other.

It can be shown that:

∂2Λ

∂ψi′∂ψi
=

J
∑

j=1

{

∂ωj
∂ψi

J
∑

j′=1

∂2Λ

∂ωj′∂ωj

∂ωj′

∂ψi′

}

+
∂Λ

∂ωj

∂2ωj
∂ψi′∂ψi

=

(

∂ω

∂ψi′

)T
∂2Λ

∂ω2

∂ω

∂ψi
+
∂Λ

∂ω

∂

∂ψi′

(

∂ω

∂ψi

)

(5.29)

where Λ denotes the log-likelihood function, and

∂ω

∂ψi
=

(

∂ω1

∂ψi
· · · ∂ωJ

∂ψi

)T

∂Λ

∂ω
=

(

∂Λ

∂ω1
· · · ∂Λ

∂ωJ

)

∂2Λ

∂ω2
=

(

∂2Λ

∂ωj∂ωj′

)

j,j′=1,··· ,J
.

By applying the expectation operator to the negative of ∂2Λ
∂ψi′∂ψi

in Eq. 5.29,

in conjunction with the regularity condition E
[

∂Λ
∂ω

]

= 0, we obtain the generic

element of the FIM of Ψ:

fψi′ψi = E
[

− ∂2Λ

∂ψi′∂ψi

]

=

(

∂ω

∂ψi′

)T

FΩ ∂ω

∂ψi
(5.30)

Finally, we can write the FIM of Ψ from Eq. 5.30 as:

FΨ =
(

J
ω
ψ

)T

FΩ J
ω
ψ (5.31)
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where

J
ω
ψ =

∂ω

∂ψ
=

(

∂ωj
∂ψ

i

)

i=1,··· ,I,j=1,··· ,J
(5.32)

is the Jacobian of ω with respect to ψ.

5.1.5 CRLBs for AOA-based positioning

In this subsection we derive the CRLBs for the estimation of the position, based
on the information on the angles of arrival, at the different reference nodes, of
the signal transmitted by the unknown location node. As already mentioned,
the CRLBs will be computed using the FIM transformation formula derived in
Sec. 5.1.4. As we only focus on the first path, we omit from now on index 1, for
the sake of conciseness.

Given that the AOAs ϕ1 · · ·ϕN at the different reference nodes are considered
as independent parameters, we can write the FIM for the estimation of ϕ =

(ϕ1 · · ·ϕN )
T

from Eq. 5.15, Eq. 5.26 and Eq. 5.27 as:

Fϕ = diag
{

fϕ1,ϕ1 · · · fϕN ,ϕN

}

=
β2
s

c2
diag

{

ρ1i1(ϕ1) · · · ρ1iN (ϕN )
}

(5.33)

where diag (·) denotes the diagonal matrix.

From Eq. 5.31, we can write the FIM for the joint estimation of the Cartesian
coordinates (x, y) of Unk using the AOA technique as:

Fx,y =
(

J
ϕ
x,y

)T

Fϕ J
ϕ
x,y (5.34)

where J
ϕ
x,y is the Jacobian of ϕ with respect to (x, y) given from Eq. 5.32 and

Eq. 5.7 by:

J
ϕ
x,y =

(− sinϕ1

r1
· · · − sinϕN

rn
cosϕ1

r1
· · · cosϕN

rn

)T

. (5.35)

From Eq. 5.34, Eq. 5.34 and Eq. 5.35, we have:

Fx,y =
β2
s

c2

N
∑

n=1

ρnin(ϕn)

r2n

(

sin2 ϕn − sin(2ϕn)
2

− sin(2ϕn)
2 cos2 ϕn

)

. (5.36)

By inverting Fx,y, the CRLB matrix becomes:

Cx,y =
c2

β2
s∆

x,y

N
∑

n=1

ρnin(ϕn)

r2n

(

cos2 ϕn
sin(2ϕn)

2
sin(2ϕn)

2 sin2 ϕn

)

(5.37)

where

∆x,y =

N−1
∑

n=1

N
∑

n′=n+1

ρnin(ϕn)

r2n

ρn′ in′(ϕn′)

r2n′

sin2(ϕn − ϕn′). (5.38)
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Denote by cx and cy the CRLBs of x and y, respectively. They are the diagonal
elements of Cx,y.

5.1.6 CRLBs for hybrid TOA-AOA based positioning

In this subsection we derive the CRLBs for the estimation of the position, based
on the information on the angles and the times of arrival, at the different reference
nodes, of the signal transmitted by the unknown location node. Like for the case
of AOA-based positioning considered in Sec. 5.1.5, the CRLBs will be computed
here using the FIM transformation formula derived in Sec. 5.1.4.

In Sec. 5.1.6.1, we consider the problem of hybrid positioning based on only
one array. In Sec. 5.1.6.2, we consider the same problem but based on N arrays.

5.1.6.1 Hybrid positioning with one array

As mentioned above, we consider here the case of one array.

For the polar coordinates (rn, ϕn) of the position of the Unk with respect to
the center Gn of Refn, the FIM can be easily deduced from Eq. 5.24, and the
CRLB matrix from Eq. 5.25:

Frn,ϕn =
ρnβ

2
s

c2

(

Mn 0
0 in(ϕn)

)

(5.39)

Crn,ϕn =
c2

ρnβ2
s

( 1
Mn

0

0 1
in(ϕn)

)

. (5.40)

Denote by crn and cϕn the CRLBs of rn and ϕn respectively. Then, crn and cϕn

are the diagonal elements of Crn,ϕn . We want now to find the CRLBs for the
estimation of (x, y). We first compute the Jacobian Jrn,ϕn

x,y and then use the FIM
transformation formula derived in Sec. 5.1.4 to find the FIM of (x, y); Jrn,ϕn

x,y is
given from Eq. 5.32, Eq. 5.6 and Eq. 5.7 by:

Jrn,ϕn
x,y =

(

cosϕn sinϕn
− sinϕn

rn

cosϕn

rn

)

. (5.41)

About the FIM,

Fx,yn =
(

Jrn,ϕn
x,y

)T
Frn,ϕnJrn,ϕn

x,y =
ρnβ

2
s

c2

(

dx,xn dx,yn
dx,yn dy,yn

)

(5.42)

where,

dx,xn = Mn cos2 ϕn + in(ϕn)
sin2 ϕn

r2n

dy,yn = Mn sin2 ϕn + in(ϕn)
cos2 ϕn

r2n

dx,yn = sin(2ϕn)
2

(

Mn − in(ϕn)
r2n

)

By inverting Fx,yn Eq. 5.42 we obtain the CRLB matrix of (x, y):

Cx,y =
c2r2n

Mnρnβ2
s in(ϕn)

(

dy,yn −dx,yn
−dx,yn dx,xn

)

. (5.43)
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5.1.6.2 Hybrid positioning with N arrays

As already mentioned, we consider here the case of N arrays.

For simplicity reasons, we assume that the N arrays are identical and regular.
Accordingly, the inertia becomes omni-directional (i.e. Mn = M , in(ϕ) = i, ∀ϕ,
∀n, see Eq. 5.23).

The total FIM is equal to the sum of the N elementary FIMs in Eq. 5.42.
This is due to the statistical independence between signals observed at different
arrays. We can write:

Fx,y =

N
∑

n=1

Fx,yn =
β2
s

c2

N
∑

n=1

ρn

(

dx,xn dx,yn
dx,yn dy,yn

)

.

Hence, the CRLB matrix becomes:

Cx,y =
c2

β2
s

1

∆x,y

N
∑

n=1

ρn

(

dy,yn −dx,yn
−dx,yn dx,xn

)

where,

∆x,y =

N
∑

n=1

ρ2
n

M i

r2n
+

N−1
∑

n=1

N
∑

n′=n+1

ρnρn′

{

sin2(ϕn − ϕn′)

(

M2 +
i2

r2nr
2
n′

)

+ iM cos2(ϕn − ϕn′)

(

1

r2n
+

1

r2n′

)

}

.

5.1.7 Comparison of the exact AOA CRLB and the CRLB obtained with

the narrowband assumption

In this subsection we compare the exact value of the CRLB for AOA estimation
with the approximated value obtained when the narrowband approximation is
made (i.e. when the transmitted signal is assumed to be a monochromatic sine
wave around the central frequency). Obviously, the signal used in both cases is
the same: a UWB signal.

The purpose here is not to compare the potential of narrowband with that
of UWB-based positioning, but to compare the bounds obtained by considering
the true UWB structure with those computed by making a narrowband approx-
imation.

Under the narrowband approximation, the mean quadratic bandwidth in
Eq. 5.27 becomes:

β2
s ≈ β2

NB = 4π2f2
c (5.44)

where fc denotes the central frequency of the spectrum of the transmitted sig-
nal (subscript NB denotes “narrowband”). Denote by NWR the narrowband to
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Fig. 5.2.: The narrowband to UWB, AOA CRLBs ratio, with respect to the
central frequency fc and the bandwidth B.

UWB CRLBs ratio, and by fl, fh, and B = fh − fl the lowest frequency, the
highest frequency, and the bandwidth of the transmitted signal, respectively.
From Eq. 5.25, we can write NWR as:

NWR =
cϕn

NB

cϕn
=

β2
s

β2
NB

=

∫ fh

fl
f2|S(f)|2df

f2
c

∫ fh

fl
|S(f)|2df

(5.45)

where cϕn denotes the exact value of the CRLB and cϕn

NB the approximated one.

Eq. 5.45 shows that cϕn

NB is greater than cϕn because in general
∫ fh

fc
f2|S(f)|2df

is larger than
∫ fc

fl
f2|S(f)|2df .

When |S(f)| is constant in the interval [fl, fh], NWR becomes:

NWR = 1 +
B2

3f2
c

. (5.46)

Fig. 5.2 shows the values of NWR for different values of fc and B when |S(f)|
is constant inside [fl, fh]. We can see that, as can be expected from Eq. 5.46,
that NWR increases as the fractional bandwidth B

fc
increases. Obviously, as

the CRLBs ratio is very close to one, we can deduce that for relatively low
fractional bandwidths, narrowband and UWB signals theoretically achieve the
same accuracy for AOA estimation. However, this does not mean that both
systems are equivalent. In fact, UWB signals may outperform narrowband signals
for ambiguity issues.



CRLBS FOR UWB-BASED POSITIONING USING AOA AND HYBRID TOA-AOA TECHNIQUES 179

Fig. 5.3.: The triangular array in use and, the polar and Cartesian bounds.

5.1.8 Numerical results and discussion

In this subsection we consider a special scenario for which we provide numerical
values for the CRLBs. In Sec. 5.1.8.1 we describe the considered scenario, and
in Sec. 5.1.8.2 and Sec. 5.1.8.3 we present and discuss the results obtained for
AOA-based positioning and hybrid positioning, respectively.

5.1.8.1 Illustration scenario

As mentioned above, we describe here our illustration scenario.

The transmitted signal s(t) is supposed to have the following characteristics:
Cardinal sine pulse (in order to have a flat spectrum) modulated by carrier
with [fc, B] = [6.85, 7.5] GHz (i.e. [fl, fh] = [3.1, 10.6] GHz), γs(f) = γs = −41.3
dBm/MHz (PSD) and T = 1µs (time of observation). The pulse mainlobe width
(from zero to zero) is given by Tw = 2

B ≈ 0.27 ns.

From Eq. 5.9 we can approximate the average rate of arrival of replicas within
clusters by δ−1 = ηδ−1

1 + (1 − η)δ−1
2 . From Table 5.1 we obtain δ−1 ≈ 0.43 ns

(resp. δ−1 ≈ 6.1 ns) for LOS office (resp. LOS residential) environments. As
Tw = 0.27 ns, we can suppose that the first condition of the NOLA (see Eq. 5.8)
is satisfied for LOS office environments. Furthermore, we can see from Eq. 5.10
that the time constant Γ (Γ = 14.6 ns for LOS office environments, see Table 5.1)
determines the vanishment of the average power of clusters. Therefore, if we
consider a symbol period Ts sufficiently larger than 14.6 ns, we can suppose that
the second condition of the NLOA (see Eq. 5.8) is also satisfied.

We consider identical arrays of three elements built from an equilateral trian-
gle (see Fig. 5.3). Accordingly, in(ϕ) Eq. 5.21, Eq. 5.23 is omni-directional thanks
to the array regularity. Denote by e the length of one side of the triangle. For
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e = 25 cm, we obtain D ≈ 29 cm (diameter of the smallest circle containing the
array) and i = 0.0312 m2. We suppose that the far field assumption is satisfied

beyond dff = 2D
2

λh
≈ 5.9 m (λh = c

fh
denotes the wavelength of the highest

frequency).

For convenience, we recall the expression of the SNR in Eq. 5.26:

ρ =
α2Es
N0/2

(5.47)

where α denotes now the gain (i.e. attenuation) of the channel including all the
undesired effects, and Es the energy of the transmitted signal. We can write Es
and α2 as:

Es = γs(f)BT (5.48)

α2 =
λ2
c

4π

1

4πd2

1

ηilηnf
(5.49)

where
λ2

c

4π is the aperture of the receive antenna evaluated with respect to the
central frequency fc (λc is the corresponding wavelength), 1

4πd2 the attenuation
due to the propagation, ηil = 2.5 dB the implementation loss and ηnf = 6.6 dB
the noise figure. We take N0 = −110 dBm/MHz.

In Sec. 5.1.8 we denote by σrn , σϕn , σx and σy the square roots of the CRLBs
cϕn , crn , cx and cy, respectively.

5.1.8.2 AOA-based positioning

Here, we present and discuss the results obtained for AOA-based positioning.

We consider the two following setups:

1. Setup with two reference nodes located at (−10, 0) m (Cartesian coordi-
nates) and (10, 0) m, respectively.

2. Setup with four reference nodes located at (−10,−10) m, (−10, 10) m,
(10,−10) m and (10, 10) m, respectively.

Let us start with the first setup. Fig. 5.4(a) and Fig. 5.4(b) show the square
roots of the CRLBs of x and y with respect to the position of Unk, respectively.
Fig. 5.4(c) shows the SNRs at Ref1 and Ref2 with respect to the position of
Unk. The positions of Ref1 and Ref2 correspond to the maxima of the corre-
sponding SNR curves. In Fig. 5.4(a) we see that σx approaches infinity when
Unk approaches the axis joining the geometric centers of the two used arrays.
This result can be expected from the expression of the CRLBs in Eq. 5.37. We
can deduce that, in order to be able to locate Unk everywhere using the AOA
technique, two reference nodes are insufficient. We can see from Fig. 5.4(a) and
Fig. 5.4(b) that for (x, y) = (−30,−15) m, we have σx ≈ 0.65 m and σy ≈ 0.46
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Fig. 5.4.: AOA-based positioning: setup with two arrays located at (−10, 0) m
and (10, 0) m (a) Square root of the CRLB of x with respect to the position
(x, y) of Unk (b) Square root of the CRLB of y with respect to (x, y) (c) SNR
at Ref1 and Ref2 with respect to (x, y).

m, whereas for (x, y) = (−30,−1.5) m (near the axis joining the two arrays), we
have σx ≈ 5.1 m (very high) and σy ≈ 0.37 m.

Consider now the second setup. Fig. 5.4(a) and Fig. 5.4(b) show the standard
deviations corresponding to the CRLBs of x and y, and Fig. 5.4(c) the SNRs
at Ref1, Ref2, Ref3 and Ref4, all with respect to the position of Unk. We can
see that the CRLBs of both x and y are much smaller with the actual setup of
four arrays, than with the previous setup of only two arrays. We can see that
for (x, y) = (0, 0) m, we have (σx, σy) ≈ (1.6, 1.6) cm, whereas for (x, y) =
(−30,−30) m, we rather have (σx, σy) ≈ (37, 37) cm.

5.1.8.3 Hybrid positioning

Here, we present and discuss the results obtained for hybrid positioning.



182 CRLBS FOR POSITION ESTIMATION AND JOINT TOA AND AOA ESTIMATION IN MIMO AND UWB SYSTEMS

−20

0

20

−20

0

20

10
−2

10
−1

x (m)

X: 0
Y: 0
Z: 0.01635

X: −30
Y: −30
Z: 0.37

y (m)

(C
Ax
)0

.5
 (

m
)

(a)

−30
−20

−10
0

10
20

−20

0

20

10
−2

10
−1

x (m)

X: 0
Y: 0
Z: 0.01635

X: −30
Y: −30
Z: 0.37

y (m)

σ
y
 (

m
)

(b)

−30
−20

−10
0

10
20

−20

0

20

20

30

40

50

 

x (m)y (m)
 

S
N

R
 (

d
B

)

Ref
1

Ref
2

Ref
3

Ref
4

(c)

Fig. 5.5.: AOA-based positioning: setup with four arrays located at (−10,−10)
m, (−10, 10) m, (10,−10) m and (10, 10) m (a) Square root of the CRLB of x
with respect to the position (x, y) of Unk (b) Square root of the CRLB of y with
respect to (x, y) (c) SNR at Ref1, Ref2, Ref3 and Ref4 with respect to (x, y).

We consider the two following setups:

1. Setup with one reference node located at (0, 0) m.

2. Setup with four reference nodes located at (−10,−10) m, (−10, 10) m,
(10,−10) m and (10, 10) m, respectively (the same as the second setup
considered for AOA-based positioning).

Let us consider the first setup.
Before discussing the obtained results, let us denote by tn = rnϕn the curvilin-

ear abscissa (or tangential abscissa) of Unk with respect to Refn (tn is depicted
in Fig. 5.3). From Eq. 5.40, we can write the CRLB of tn as:

ctn = r2nc
ϕn =

c2r2n
ρnβ2

s in(ϕn)
. (5.50)
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Fig. 5.6.: Hybrid positioning: setup with one array located at (0, 0) m (a) Square
roots of the CRLBs of rn and tn with respect to the position (x, y) of Unk (b)
Square roots of the CRLBs of x and y with respect to (x, y).

We also denote by σtn the square root of ctn .

From Fig. 5.3 (where σxx = σx, σyy = σy, σrnrn = σrn , σtntn = σtn , σϕnϕn =
σϕn), we can see that σxx (resp. σyy) is mainly determined by σrnrn when Unk
is closer to the x axis (resp. y axis) than the y axis (resp. x axis). However, when
Unk moves away from the x axis (resp. y axis), σxx (resp. σyy) becomes mainly
determined by σtntn .

Consider now Fig. 5.6(a) and Fig. 5.6(b) where are shown the square roots
of the CRLBs of rn and tn, and those of x and y with respect to the position
of Unk, respectively. We see in Fig. 5.6(a) that σrn is much smaller than σtn .
For (x, y) = (0,−30) m, we have σrn ≈ 0.35 mm and σtn ≈ 10.4 cm. This result
could be expected from Eq. 5.40 and Eq. 5.50. In Fig. 5.6(b), we see that σx

(resp. σy) reaches its lowest values along the x axis (resp. y axis). This result
could be expected from our comments above Fig. 5.3 in conjunction with the fact
(already observed in Fig. 5.6(a)) that σrn is much smaller than σtn . It also could
be expected from the expressions of the CRLBs in Eq. 5.43. For (x, y) = (0,−30)
m (the same considered above), we have σx ≈ 10.4 cm and σy ≈ 0.35 mm. Notice
that, as Unk is now located at the y axis, we have σx ≈ σtn and σy ≈ σrn .

Consider now the second setup with four reference nodes. Fig. 5.7(a) and
Fig. 5.7(b) show the standard deviations corresponding to the CRLBs of x and
y, respectively. Thanks to the information about the position contained in the
TOA information, we can see that the CRLBs are now highly much smaller than
those obtained with the same setup but using the AOA technique. We can see
that for (x, y) = (−30,−30) m (the same point considered above in the setup of
four reference nodes with the AOA technique, see Fig. 5.5(a) and Fig. 5.5(b)),
we have (σx, σy) ≈ (0.85, 0.85) mm.
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Fig. 5.7.: Hybrid positioning: setup with four arrays located at (−10,−10) m,
(−10, 10) m, (10,−10) m and (10, 10) m (a) Square root of the CRLB of x with
respect to the position (x, y) of Unk (b) Square root of the CRLB of y with
respect to (x, y).

5.2 CRLBS FOR JOINT TOA AND AOA ESTIMATION IN WIDEBAND
MISO AND MIMO SYSTEMS: COMPARISON WITH SISO AND
SIMO SYSTEMS

MIMO technology has been widely investigated in the literature for communica-
tion systems in order to exploit the spatial diversity in fading channels. In this
paper we aim to see if we can benefit from MISO and MIMO configurations for
positioning purpose. To do so, we derive the CRLBs for the joint estimation of
the TOA and the AOA at the receiver. This matter has already been investigated
for target detection in MIMO Radar systems [119–124]. The main two differences
between the two scenarios are that in MIMO Radar we locate the target instead
of the receiver or the transmitter like in our case and that the received signals are
the reflection of the transmitted signals by the target instead of being received
directly from the transmitter.

In [122] the CRLB of the target position (x, y) is computed assuming orthog-
onal signals. In [121, 123, 124] the CRLB for direction estimation is computed
using the same array for both transmission and reception. In [121] arbitrary
signals are considered, unlike [123, 124] where signals are supposed to be orthog-
onal. In [119] it has been shown that the CRLB for direction estimation is the
same in 1 × 2 and 2 × 1 setups when orthogonal signals are used which has also
been shown in [120] for 1× 3, 2× 2 and 3× 1 setups. However, in [119, 120] the
energy captured by each one of SIMO antennas is supposed to be the same as
the energy received from each one of the MISO transmit antennas which means
that the total radiated energy in the N × 1 MISO setup is N times the energy
radiated in a 1 ×N SIMO setup.
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Fig. 5.8.: MIMO model: Tx and Rx are sufficiently far away so that the rays
coming from Tx can be considered parallel at Rx.

We first consider arbitrary signals. Then we show that, constrained to the
total radiated energy, SISO is equivalent to MISO and SIMO is equivalent to
MIMO for TOA estimation when the signals are orthogonal. For non-orthogonal
signals, MISO performs better than SISO, and MIMO outperforms SIMO in the
regions where the received signals are constructive. For AOA estimation we show
that for orthogonal signals MIMO is the best, then SIMO, then MISO. For non-
orthogonal signals, we show that in constructive regions, MIMO is better than
orthogonal MIMO, and MISO is worse than orthogonal MISO.

In Sec. 5.2.1 the system model is described. In Sec. 5.2.2 the expressions of the
CRLBs for the estimation of the TOA and AOA are derived. In Sec. 5.2.3 the
CRLBs of the TOA and AOA are compared in SISO, SIMO, MISO and MIMO
systems. In Sec. 5.2.4 a typical scenario is considered and numerical results are
provided and discussed.

5.2.1 System model

In this subsection we describe our MIMO system model. Given that MISO is a
special case of MIMO, we derive the CRLBs in MIMO systems and then deduce
those of MISO conditions.

In our model depicted in Fig. 5.8, we consider an antenna array Tx of N
elements for transmission and an array Rx of M elements for reception. Let
(ρn, θn) and (rm, φm) be the polar coordinates of Txn (nth element of Tx) and
Rxm (mth element of Rx) with respect to GT (geometric center of Tx) and
GR (geometric center of Rx), respectively. Given the definition of (ρn, θn) and
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(rm, φm) we can write:

∑N
n=1 ρn sin(θ − θn) = 0 ,∀θ (5.51)

∑M
m=1 rm sin(θ − φm) = 0 ,∀θ (5.52)

where θ denotes the angle of departure measured with respect to the geometric
centers of Tx and Rx. In Fig. 5.8, DT and DR denote the diameters of the
smallest circles containing the arrays Tx and Rx, respectively.

Assume that the communication channel between Tx and Rx is AWGN. Even
if this assumption is not realistic especially in WB systems, it allows us to obtain
the lowest reachable CRLBs and to compare with SISO and SIMO configurations.
Assume also that Tx and Rx are sufficiently far from each other so that:

{

αn,m ≈ α
τn,m ≈ τ − ρn

c cos(θ − θn) + rm

c cos(θ − φm)
∀(n,m) (5.53)

where α and τ (resp. αn,m and τn,m) denote the gain and the time delay of the
channel between GT and GR (resp. Txn and Rxm), and c the speed of light.

Let sn(t) be the complex envelope of the signal transmitted by Txn; sn(t) can
be written as:

sn(t) =

+∞
∑

i=−∞
dn,i

Nc−1
∑

j=0

cn,jp(t− iTs − jTc) (5.54)

where (dn,i) are the modulating symbols associated to Txn, (cn,j) the code of
length Nc associated to Txn, Ts the symbol period, Tc (Ts = NcTc) the chip
period and p(t) the used waveform.

Let vm(t) be the complex envelope of the signal received by Rxm; we can
write:

vm(t) = α

N
∑

n=1

e−jω0τn,msn(t− τn,m) + nm(t) (5.55)

=

N
∑

n=1

un,m(t) + nm(t) (5.56)

where ω0 is the angular frequency of the carrier, and un,m(t) and nm(t) are the
complex envelopes of the useful signal received by Rxm from Txn and the back-
ground noise at Rxm respectively. Assume that n1(t), · · · , nM (t) are independent
and identically distributed, and that 2N0 is their PSD (N0

2 is the PSD of the real
bandpass noise). Denote by ẋ(t) the derivative of the generic signal x(t), X(f) its

Fourier transform, Ex =
∫

|x(t)|2dt its energy and β2
x = Eẋ

Ex
=

∫

4π2f2|X(f)|2df
∫

|X(f)|2df its

mean quadratic bandwidth. We assume that the energy and the mean quadratic
bandwidth are the same for all transmit antennas (i.e. Esn

= Es, ∀n, and
β2
sn

= β2
s , ∀n).
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5.2.2 CRLBs for the joint estimation of the TOA and the AOA

In this subsection we derive the FIM and the CRLBs for the joint estimation
of the TOA and the AOA in MIMO and MISO systems. We assume that the
unknown parameters are τ and θ only.

The part of interest in the log-likelihood function can be written from Eq. 5.56
as:

Λτ,θ =
−1

2N0

M
∑

m=1

∫ +∞

−∞

∣

∣

∣

∣

∣

vm(t) −
N
∑

n=1

un,m(t)

∣

∣

∣

∣

∣

2

dt. (5.57)

Denote by x∗(t) the complex conjugate of x(t), Xx,y(τ) =
∫

x(t+τ)y∗(t)dt the
cross-correlation function of x(t) and y(t), ν = α2Es/N0 the signal to noise ratio

(SNR) per one transmitted signal, νt = Nν the total SNR, iT =
∑N
n=1 ρ

2
n sin2(θ−

θn) and iR =
∑M
m=1 r

2
m sin2(θ − φm) the inertias (the interia of an array has

been already defined in Sec. 5.1, see Eq. 5.21) of Tx and Rx (remind that Tx
and Rx are arrays) in the direction θ (remind that iT and iR are independent of

θ+ π
2 in the case of regular arrays, see Eq. 5.23),

∑

n6=n′{·} =
∑N
n

∑N
n′=n+1{·},

An = ρn sin(θ − θn), and ∆τn′,n the delay between un′m(t) and un,m(t). Note
that iT , iR, An and ∆τn′,n are all functions of θ. However, we omit θ for sake of
conciseness. From Eq. 5.53, we can write ∆τn′,n as:

∆τn′,n = τn′m − τn,m

=
1

c
[ρn cos(θ − θn) − ρn′ cos(θ − θn′)] . (5.58)

Given that we are in the far-field assumption, ∆τn′,n is independent of m, the
shape of Rx and the distance between Tx and Rx; it just depends on the shape
of Tx and the angle θ.

Taking the negatives of the expectations of the second partial derivatives of
Λτ,θ Eq. 5.57 with respect to τ and θ and taking account of Eq. 5.51 and Eq. 5.52,
the elements of the FIM of τ and θ (see the definition of the FIM in Eq. 5.12)

Fτ,θ =

(

fτ,τ fτ,θ

fθ,τ fθ,θ

)

(5.59)
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can be written as:

fτ,τ = Mν

{

β2
s (N + Γω0

ṡ ) + ω2
0(N + Γω0

s ) − 2ω0βsΓ
ω0

ṡ,s

}

(5.60)

fθ,θ =
ν

c2

{

β2
s

[

iR(N + Γω0

ṡ ) +M(iT + Iω0

ṡ )
]

+ ω2
0

[

iR(N + Γω0
s )

+ M(iT + Iω0
s )
]

− 2ω0βs

[

iRΓω0

ṡ,s +MIω0

ṡ,s

]

}

(5.61)

fτ,θ = fθ,τ =
Mν

c

{

β2
sJ

ω0

ṡ + ω2
0J

ω0
s − 2ω0βsJ

ω0

ṡ,s

}

(5.62)

where the expressions of Γω0
s , Iω0

s and Jω0
s are given below, whereas those of Γω0

ṡ ,
Γω0

ṡ,s, I
ω0

ṡ , Iω0

ṡ,s, J
ω0

ṡ and Jω0

ṡ,s in Appendix C since they will be shown below to be
negligible. We have:

Γω0
s = 2

∑

n6=n′

X̂ω0
snsn′

(5.63)

Iω0
s = 2

∑

n6=n′

AnAn′X̂ω0
snsn′

(5.64)

Jω0
s =

∑

n6=n′

(An +An′)X̂ω0
snsn′

(5.65)

where

X̂ω0
snsn′

= ℜ
{

ejω0∆τn′,n
Xsnsn′

(∆τn′,n)

Es

}

. (5.66)

X̂ω0
snsn′

denotes the correlation coefficient between un,m(t) and un′m(t) (i.e. the

signals received by Rxm from Txn and Txn′ respectively). We have |X̂ω0
snsn′

| 6 1
because it is normalized with respect to Es (Es is the energy of sn(t), ∀n).
Given the expression of ∆τn′,n (see Eq. 5.58), X̂ω0

snsn′
is the same for all reception

elements. It just depends on the transmitted signals, the shape of Tx and the
direction (i.e the angle of departure θ) of Rx. Note that Γω0

s is a number like
X̂ω0
snsn′

, Iω0
s a squared distance like iT and iR, and Jω0

s is a distance.

For narrowband and WB signals where the carrier frequency f0 is much larger
than the bandwidth B, β2

s (mean quadratic bandwidth of the baseband trans-
mitted signal) can be neglected with respect to ω2

0 . If |U(f)| is constant along
the band, β2

s reaches its maximum π2B2. For B = 20 MHz and f0 = 2.4 GHz,
we have βs

ω0
= B

2f0
≈ 0.0042 (note that even for UWB signals we can neglect

the envelope mean quadratic bandwidth, see Sec. 5.1.7, and our comments to
Eq. 2.28 in Sec. 2.1.1.2). Accordingly, fτ,τ , fθ,θ and fτ,θ can be approximated
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from Eq. 5.60, Eq. 5.61 and Eq. 5.62 by:

fτ,τ = Mνω2
0(N + Γω0

s ) (5.67)

fθ,θ =
νω2

0

c2

[

iR(N + Γω0
s ) +M(iT + Iω0

s )
]

(5.68)

fτ,θ =
Mνω2

0

c
Jω0
s . (5.69)

In the computation of fτ,τ , fθ,θ and fτ,θ we have assumed that we are able to
know the phase of the carrier at Tx and Rx; otherwise the accuracy on the
estimation of τ will be much lower and ω2

0 must be replaced by β2
s in Eq. 5.67.

We have also to note that, due to the ambiguity phenomenon studied in Chap. 1,
the accuracy associated with ω2

0 cannot be in general achieved with WB signals
except at very high SNRs. The accuracy on the estimation of the angle is always
dependent on ω2

0 since θ is function of the time difference of arrival of the signals
received at Rx rather than the absolute time delay between Tx and Rx.

We have already seen in the definition of the CRLB in Eq. 5.11 in Sec. 5.1.3
that the CRLBs are the diagonal elements of the inverse of the FIM. Accordingly,
when the FIM Fτ,θ Eq. 5.59 of τ and θ is diagonal (i.e. fτ,θ = fθ,τ = 0), then
the CRLBs of τ and θ will be given by cτ = 1

fτ,τ and cθ = 1
fθ,θ , respectively. In

the general case, the expressions of cτ and cθ are much more complicated and
difficult to interpret. Below, we analyze the expressions of fτ,τ , fθ,θ and fτ,θ (the
elements of the FIM) and compute cτ and cθ in some special cases.

In Eq. 5.67 and Eq. 5.68, Γω0
s is a measure of the correlation among

u1m(t), · · · , uNm(t) (the useful signals received by Rxm from Tx1, · · · ,TxN re-
spectively). From now on, received signal components will stand for the use-
ful components u1m(t), · · · , uNm(t) of an arbitrary received signal vm(t) (see
Eq. 5.56) instead of v1(t), · · · , vM (t) (the signals received at Rx1, · · · ,RxM ).
From Eq. 5.63 and Eq. 5.66, we can see that Γω0

s is the same for all Rxm; it
depends on s1(t), · · · , sN (t), the shape of the array Tx, and θ. It belongs into
the interval [−N,N(N − 1)]. Note that it is not necessary that Γω0

s takes all its
possible values in every scenario.

Γω0
s is positive (resp. negative) when the received signal components are con-

structive (resp. destructive) and null when they are orthogonal. Note that the
energy of the sum of constructive (resp. destructive) signals is greater (resp. less)
than the sum of their energies, and that the energy of the sum of orthogonal sig-
nals is equal to the sum of their energies. Γω0

s reaches its upper bound when the
received signal components are completely correlated (i.e. X̂ω0

snsn′
= 1,∀(n, n′))

and reaches its lower bound when the sum of the received signal components is
null. Given that Γω0

s is function of θ, the received signal components cannot be
constructive, destructive or orthogonal for all positions.

When Γω0
s is equal to N(N − 1), then Iω0

s Eq. 5.64 is equal to −iT (θ), Jω0
s

Eq. 5.65 and fτ,θ Eq. 5.69 are equal to zero (diagonal FIM), and fτ,τ Eq. 5.67 is
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accordingly maximal, so cτ becomes minimal. The expressions of the CRLBs of
τ and θ are given in this case by:

cτMIMO,c =
1

MN2νω2
0

=
1

MNνtω2
0

(5.70)

cθMIMO,c =
c2

N2νω2
0iR

=
c2

Nνtω2
0iR

(5.71)

where the subscript c denotes that the received signal components are construc-
tive. In Eq. 5.70 and Eq. 5.71 the term N2 highlights the fact that the energy
of the sum of N identical signals is equal to N2 times the energy of each one of
them. In the expression of cθMIMO,c we do not see iT (the inertia of the array
Tx) because receiving the sum of identical signals coming from different trans-
mission elements is equivalent to having only one transmission element. For the
same reason we will see below in Eq. 5.73 that in MISO systems, cθ approaches
infinity when the received signals are identical.

The expressions of the CRLBs of τ and θ in MISO systems, in the case of
constructive received signal components, can be deduced from those (i.e. Eq. 5.70
and Eq. 5.71) in MIMO systems by taking M = 1 and iR = 0:

cτMISO,c =
1

Nνtω2
0

(5.72)

cθMISO,c = ∞. (5.73)

When Γω0
s is equal to −N (received signal components completely destruc-

tive), then cτ approaches infinity in MIMO and MISO systems whereas cθ be-
comes a function of the shape of the array Tx and the distribution of the trans-
mitted signals on the transmission elements.

In both cases considered above (i.e. Γω0
s = N(N−1) and Γω0

s = −N), cτ and cθ

are very sensitive to the value of the angle; they are subject to strong oscillations
with the variation of θ. To illustrate this fact, we consider a uniform linear array
(ULA) of two elements transmitting the same signal; the ULA is supposed to be
orthogonal to the x axis. The signal received by an element located on the x axis
is the sum of two identical signals, so ∆τ1,2 = 0 and X̂ω0

s1s2 = 1. If we move the
receiver so that ∆τ1,2 becomes equal to half the period of the carrier, then u1(t)
and u2(t) become destructive (in phase opposition) and their sum becomes quasi
null (X̂ω0

s1s2 ≈ −1, we say “quasi” because the corresponding envelopes are not
100% equal because they are delayed from each other). For the first position, cτ

reaches its minimum, whereas for the second position it becomes quasi infinite.

Assume now that the codes (cn,j) and (cn′,j) used in transmission (see
Eq. 5.54) are orthogonal, ∀n 6= n′. We have already mentioned that the re-
ceived signal components are not necessarily orthogonal at the receiver, even if
they are orthogonal at the transmitter. The maximum possible delay between
two different received signal components is given by ∆τmax

n′,n = DT

c (see Eq. 5.58,
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DT has been already defined as the diameter of the smallest circle containing
Tx). Given that the array inter-element spacing is in general smaller than half
the carrier wavelength, ∆τmax

n′,n will be in the order of a few periods of the carrier.
Furthermore, given that the chip period Tc (see Eq. 5.54) is much larger, in WB
signals, than the carrier period, ∆τmax

n′,n will be much smaller than Tc, so the
received signal components can be considered orthogonal for all values of θ. It
follows that X̂ω0

snsn′
, Γω0

s , Iω0
s and Jω0

s are all quasi null ∀θ. The CRLBs of τ
and θ obtained in this case, can be approximated from Eq. 5.67, Eq. 5.68 and
Eq. 5.69 by:

cτMIMO,o =
1

MNνω2
0

=
1

Mνtω2
0

(5.74)

cθMIMO,o =
c2

νω2
0 [NiR +MiT ]

=
c2

νtω2
0

[

iR + M
N iT

] (5.75)

where the subscript o indicates that the transmitted signals are orthogonal. In
Eq. 5.74 and Eq. 5.75, the termN highlights the fact that the energy of the sum of
N identical orthogonal signals is equal to N times the energy of each one of them.
The term M highlights the fact that the Fisher information contained in the M
signals received at the M elements of Rx, is M times the Fisher information
contained in each one of them, because they are statistically independent, and
separately contain equal information.

The expressions of the CRLBs of τ and θ in MISO systems, in the case of
orthogonal transmitted signals, can be deduced from those (i.e. Eq. 5.74 and
Eq. 5.75) in MIMO systems by taking M = 1 and iR = 0:

cτMISO,o =
1

νtω2
0

(5.76)

cθMISO,o =
Nc2

νtω2
0iT

. (5.77)

5.2.3 Comparison of SISO, SIMO, MISO and MIMO configurations

In this subsection we compare the CRLBs of the SISO, SIMO, MISO and MIMO
configurations. We assume that the total transmitted energy is the same in all
systems. We also assume that the arrays Tx and Rx are identical and have the
same orientation so that M = N and iR = iT , ∀θ.
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Let us first give the expressions (easily deduced from the expressions obtained
in MIMO systems) of cτ in SISO and SIMO systems, and cθ in SIMO systems:

cτSISO =
1

νtω2
0

(5.78)

cτSIMO =
1

Mνtω2
0

(5.79)

cθSIMO =
c2

νtω2
0iR

. (5.80)

Consider first the TOA estimation. We can deduce from the expressions es-
tablished above that the smallest value of cτ , which is also insensitive to the
angle, is obtained in SIMO and orthogonal MIMO configurations; it is M times
lower than the smallest value obtained in SISO and orthogonal MISO configu-
rations. However, MIMO can do better than SIMO, and MISO can do better
than SISO in the regions where the received signal components are constructive.
When the received signal components are completely correlated, the value of cτ

obtained in MIMO configurations is N times lower than that obtained in SIMO
configurations, and the value of cτ obtained in MISO configurations is N times
lower than that obtained in SISO configurations.

Consider now the AOA estimation. The smallest value of cθ, which is also
insensitive to the angle, is obtained in orthogonal MIMO configurations, then
in SIMO configurations, then in orthogonal MISO configurations. The smallest
value of cθ obtained in orthogonal MIMO configurations is half (for identical Tx
and Rx) of that obtained in SIMO configurations, and this latter isN times lower
than that obtained in orthogonal MISO configurations. However, MIMO can do
better than orthogonal MIMO in the regions where the received signal com-
ponents are constructive. When the received signal components are completely
correlated, the value of cθ obtained in MIMO configurations is N times lower
(instead of being equal to the half) than that obtained in SIMO configurations
(for identical Tx and Rx), whereas it approaches infinity in MISO configurations.

5.2.4 Numerical results and discussion

In this section we show and discuss some numerical results obtained in some
typical scenarios.

The considered setups are:

• SISO: 1 × 1.

• SIMO: 1 × 2 and 1 × 4.

• MISO: 2 × 1 and 4 × 1.

• MIMO: 2 × 2 and 4 × 4
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Fig. 5.9.: SISO 1× 1, SIMO 1× 2, MISO 2× 1 and MIMO 2× 2 systems (a) Γω0
s

with respect to the angle θ (b) Square root στ of the CRLB of τ with respect to
θ (c) Square root σθ of the CRLB of θ with respect to θ.

In 2 × 1, 2 × 2, 4 × 1 and 4 × 4, both orthogonal transmitted signals, and
identical transmitted signals have been considered. When orthogonal signals are
considered, Alamouti code [125] is used in 2 × 1 and 2 × 2, and Hadamard (4)
code in 4 × 1 and 4 × 4. ULAs are used in transmission and reception. Tx and
Rx are orthogonal to the x axis. The modulating symbols (±1± j) (20 symbols)
are generated randomly and shaped by a root raised cosine of roll-off equal to
0.5. We take f0 = 2.4 GHz (carrier), Rc = 20 MHz (chip rate), νt = 20 dB (total
SNR, the same for all systems) and d = 5 cm < 6.25 cm = λ0

2 (d denotes the
array inter-element spacing, and λ0 the wavelength of the carrier). We denote
by στ and σθ the square roots of cτ and cθ respectively.

Consider first the systems SISO 1 × 1, SIMO 1 × 2, MISO 2 × 1 and MIMO
2 × 2.
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In Fig. 5.9(a) we show Γω0
s with respect to the angle θ, for MISO and MIMO,

for both the orthogonal and identical transmitted signals cases. We can see that
Γω0
s is quasi null for the case of orthogonal signals. For the case of identical

signals, we can see the regions where the received signal components are con-
structive (for θ ∈ [0, 38]o where Γω0

s > 0) and destructive (for θ ∈ [39, 80]o where
Γω0
s < 0). We can also see that as N = 2, we have Γω0

s ∈ [−2, 2]. It has been
already noticed that Γω0

s ∈ [−N,N(N − 1)].

In Fig. 5.9(b) we show the square root στ of the CRLB of τ with respect to
the angle θ, for SISO, SIMO, MISO and MIMO, for both the orthogonal and
identical transmitted signals cases. We can see that, like it has been expected, the
smallest στ is obtained with MIMO in the constructive region, then with SIMO
and orthogonal MIMO, then with MISO in the constructive region and MIMO
in the region where the received signal components are not very destructive (i.e.
for θ ∈ [39, 56]o), then with SISO and orthogonal MISO, then with MISO in the
destructive region and MIMO in the region where the received signal components
are very destructive (i.e. for θ ∈ [57, 80]o).

In Fig. 5.9(c) we show the square root σθ of the CRLB of θ with respect to
the angle θ, for SIMO, MISO and MIMO, for both the orthogonal and identical
transmitted signals cases. We can see that the smallest σθ is obtained with MIMO
(for both orthogonal and identical transmitted signals), then with SIMO, then
with orthogonal MISO. The value of σθ is increasing with θ because iT and iR
are decreasing with θ; iT and iR are maximal for θ = 0 and approach infinity
(because linear arrays) for θ = π/2. We do not show σθ for identical transmitted
signals because it approaches infinity when θ approaches zero (see Eq. 5.73).
In Sec. 5.2.3 we have seen that σθ is the lowest in constructive MIMO but is
very sensitive to θ. However, σθ is the same here in constructive and orthogonal
MIMO. In fact, in this special case where we consider a MIMO 2 × 2 with two
identical arrays, we can prove that iRΓω0

s +MIω0
s = 0, ∀θ (see Eq. 5.68) which

leads to the obtained result.

Consider now the systems SISO 1 × 1, SIMO 1 × 4, MISO 4 × 1 and MIMO
4 × 4.

We can see in Fig. 5.10(a) that Γω0
s varies now, in the case of identical trans-

mitted signals, from −N = −4 to N(N−1) = 16. For θ ≈ 38o, we have Γω0
s ≈ −4

which means that the received signal components are quasi, completely destruc-
tive; we can see in Fig. 5.10(b) that in this region of strong destruction, στ

approaches infinity in both MIMO and MISO systems, as has been already ex-
pected; however, we can see in Fig. 5.10(c) that unlike στ , σθ is not singular in
this region. As now iRΓω0

s +MIω0
s 6= 0 (unlike the case of MIMO 2×2 considered

above), we can see in Fig. 5.10(c) that σθ is, as expected, the lowest in MIMO
systems in the constructive region than in orthogonal MIMO systems.
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Fig. 5.10.: SISO 1×1, SIMO 1×4, MISO 4×1 and MIMO 4×4 systems (a) Γω0
s

with respect to the angle θ (b) Square root στ of the CRLB of τ with respect to
θ (c) Square root σθ of the CRLB of θ with respect to θ.

5.3 CRLBS FOR UWB CHANNEL ESTIMATION: IMPACT OF THE
OVERLAPPING OF THE MPCS ON THE JOINT GAIN AND TOA
ESTIMATION

UWB signals can serve for very accurate positioning thanks to their high fre-
quency components and large bandwidth. One of the most severe challenges is
the parameter estimation in MP channels. CRLBs for UWB MP channel estima-
tion have been widely studied in the literature assuming non overlapping MPCs
[93, 126]. In [127] the overlapping between the different MPCs is investigated.
It has been shown that the smallest CRLBs are obtained under the NOLA and
more MPCs leads in general to higher CRLBs and less performance.

In this section we study the impact of the overlapping on the performance of
the estimation. We compute the probability of the overlapping between neighbor-



196 CRLBS FOR POSITION ESTIMATION AND JOINT TOA AND AOA ESTIMATION IN MIMO AND UWB SYSTEMS

ing MPCs with respect to the pulse width to average MPC rate of arrival ratio.
We consider the IEEE802.15.3a [7] and IEEE802.15.4a [9] UWB channel models.
We show that for a pulse width sufficiently smaller than the average MPC rate
of arrival, the probability to have more than three overlapping MPCs is rela-
tively small. We show also that instead of considering all MPCs together we can
split the received signal into consecutive non-overlapping blocks and study each
block separately. We compute the CRLBs for MPC gain and TOA estimation in
blocks of up to three overlapping MPCs and compute the average bounds. We
show that for a pulse width to average rate of arrival ratio equal to 0.3824 and
an SNR of zero dB, the bounds obtained by averaging more than 80% of cases
are very close to the smallest reachable bounds (i.e. the ones obtained in AWGN
channels, and in MP channels under the non-overlapping assumption).

In Sec. 5.3.1 we describe our system model. In Sec. 5.3.2 we present the con-
sidered channel statistical model. In Sec. 5.3.3 we compute the probability of
overlapping between neighboring MPCs. In Sec. 5.3.4 we derive the FIM for the
joint estimation of the MPCs gains and TOAs. In Sec. 5.3.5 we compute the
CRLBs corresponding to blocks of up to three MPCs. In Sec. 5.3.6 we compute
the average CRLBs.

5.3.1 System model

In this subsection we describe our system model. We consider a LOS MP AWGN
communication channel. The signal received by the receiver (Rx) can be written
as:

r(t) =

L
∑

l=1

α(l)s(t− τ (l)) + n(t) (5.81)

where s(t) is the signal sent by the transmitter (Tx), α(l) and τ (l) the gain and
the time delay of MPC(l) (the lth MPC), L the number of MPCs and n(t) the
AWGN. Let γn = νnf

N0

2 be the bilateral PSD of n(t) where νnf is the noise

figure and N0

2 the PSD at the room temperature.

The transmitted signal s(t) is an IR-UWB signal. Both PAM and PPM mod-
ulations can be used, and both DS and TH spreading and multiple access codes
as well. Signal s(t) can be written as:

s(t) =

+∞
∑

i=−∞
ai

Nc−1
∑

i=0

cjpTw
(t− iTs − jTc − djTh − biǫ) (5.82)

where pTw
(t) is the used pulse and Tw its width, ai and bj the PAM and PPM

symbols respectively, (cj) and (dj) the DS and TH codes, Nc the code length, Ts
the symbol period, Tc (Ts = NcTc) the chip period, Th the time hop and ǫ the
PPM time shift. We say that s(t) is invariant with respect to the time to pulse
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Fig. 5.11.: SNR ρ
(1)
r in dB with respect to the distance d.

width ratio (t/Tw) if pTw
(t) can be written as:

pTw
(t) = p

(

t

Tw

)

,∀Tw. (5.83)

Gaussian pulse and its multiple derivatives are an example of pulses satisfying
Eq. 5.83. In this section we consider a doublet (second derivative of the Gaussian
pulse) for numerical illustration:

pTw
(t) ∝

[

1 − 4π

(

t

Tw

)2
]

e−2π( t
Tw

)
2

.

Denote by γs(f) and Ps =
∫ +∞
0

γs(f)df the unilateral PSD and the power of

s(t), T the integration time, ν
(l)
p the loss due to the propagation through the lth

path (ν
(1)
p = 4πd2 where d is the distance between Tx and Rx), A = c2/4πf2

c

(fc the central frequency) the aperture of Rx, νil the implementation loss, ρt the

transmitted signal to received noise ratio, and ρ
(l)
r the SNR of MPC(l). We can

write ρt (ρt is independent of d) and ρ
(l)
r as:

ρt =
PsT

γn

ρ(l)
r =

PsTA

ν
(l)
p νilγn

.

In Fig. 5.11 we show ρ
(l)
r with respect to d when a doublet is used. We take

γpeaks = −41.3 dBm/MHz, Tw = 0.13 and 1.3 ns, T = 50 and 200 ns, N0/2 =
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Residential LOS Office LOS Outdoor LOS 0-4 LOS

Range (m) 7 − 20 3 − 28 5 − 17 0 − 4

1/Λ (ns) 21.28 62.5 208.3 42.92

1/λ1 (ns) 0.65 5.26 3.7 0.4

1/λ2 (ns) 6.67 0.34 0.41

1/λ (ns) 6.1 0.43 0.44 0.4

Table 5.2.: Parameters of UWB channels in some types of environments.

−114 dBm/MHz, νnf = 6.6 dB and νil = 2.5 dB. For Tw = 0.13 ns, T = 50 ns

and d = 9 m, we obtain ρ
(1)
r ≈ 20 dB and ρt ≈ 90 dB.

5.3.2 Channel statistical model

In this subsection we describe the statistical model of our UWB MP channel.

Based on the IEEE 802.15.3a and IEEE 802.15.4a models [7, 9], we assume
that the MPCs arrive to Rx in consecutive clusters. The TOA of a cluster follows
a Poisson process of average-rate-of-arrival of 1/Λ while the TOA of a MPC
within a cluster follows a mixture of two Poisson processes of average-rates-of-
arrival 1/λ1 and 1/λ2. We can write:

Tτi,1|τi−1,1
= Λe−Λ(τi,1−τi−1,1) (5.84)

Tτi,j |τi,j−1
= κλ1e

−λ1(τi,j−τi,j−1) + (1 − κ)λ2e
−λ2(τi,j−τi,j−1) (5.85)

where T{·} denotes the probability density function (PDF), τi,j the TOA (taking

as reference the time of transmission) of the jth MPC within the ith cluster, and
κ ∈ [0, 1].

We define the average of the MPC average-rates-of-arrival (within a cluster)
as:

1/λ = κ/λ1 + (1 − κ)/λ2. (5.86)

Unless otherwise mentioned, we mean from now on by average-rate-of-arrival the
magnitude 1/λ defined above.

In Table 5.2 we show for some environments the cluster average-rate-of-arrival
1/Λ, the MPC average-rates-of-arrival 1/λ1 and 1/λ2, and the average-rate-of-
arrival 1/λ.
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5.3.3 Probability of overlapping between neighboring MPCs

In this subsection we compute the probability of overlapping between neighboring
MPCs.

Assuming that the chip period Tc in Eq. 5.82 is larger than the time delay
corresponding to the last MPC, we can consider without loss of generality the
transmission of only one pulse. From the channel statistical model presented in
Sec. 5.3.2, we can assume that if the pulse width is sufficiently smaller than
the average-rate-of-arrival, then the received signal can be split into consecutive
non overlapping blocks, of overlapping pulses (i.e. the blocks are not overlapping
while the MPCs within a given block are overlapping).

Denote by P t0∆τ the probability that ∆τ (l,l−1) = (τ (l′) − τ (l)) 6 t0. Assuming
that MPC(l−1) and MPC(l) fall in the same cluster, we can write:

P t0∆τ =

∫ t0

0

{

κλ1e
−λ1t + (1 − κ)λ2e

−λ2t
}

dt

= κ(1 − e−λ1t0) + (1 − κ)(1 − e−λ2t0). (5.87)

Denote by P lbLb
the probability that the number Lb of the MPCs falling in the

first block, is equal to lb. Assuming that BK1 (BKi denotes the ith block) falls
in the first cluster, we can write:

P lbLb
= P

{

Lb = lb

}

= P
{(

∆τ (l,l−1) 6 Tw, l = 2, lb

)

&
(

∆τ (lb+1,lb) > Tw

)}

= (PTw

∆τ )lb−1(1 − PTw

∆τ ) (5.88)

where P{·} denotes the probability operator.

Note that even if BK1 does not fall in the first cluster, Eq. 5.88 can be con-
sidered as a good approximation if the pulse width Tw and 1/λ are sufficiently
smaller than 1/Λ. However, the probability that an arbitrary block contains lb
MPCs is slightly different from that given in Eq. 5.88.

Let us define the pulse width to average-rate-of-arrival ratio as:

λTw (5.89)

where 1/λ is the average-rate-of-arrival defined in Eq. 5.86.

In Fig. 5.12 we show P lbLb
with respect to the pulse width to average-rate-of-

arrival ratio λTw for lb = 1, 2, 3 and for lb 6 3. We vary λTw from 0.1 to 2.
Residential LOS and office LOS environments have been considered. We can see
that P 1

Lb
> P 2

Lb
> P 3

Lb
, ∀λTw; this result could be expected from Eq. 5.88. We

can also see that for λTw = 0.5, the probability to have no more than three
MPCs in the first block, is greater than 0.9 for both residential LOS and office
LOS environments.
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Fig. 5.12.: P lbLb
with respect to λTw for lb = 1, 2, 3 and for lb 6 3 in residential

LOS (Res.) and office LOS (Off.) environments.

We will see in Sec. 5.3.4 that non-overlapping blocks can be studied separately.
In addition, by taking into consideration the small probability to have more than
three MPCs per block, we can simplify our study by only considering blocks
of one, two and three MPCs instead of considering the whole channel impulse
response. When the pulse width becomes larger than the average-rate-of-arrival,
blocks of more than three MPCs should be considered. In this work, we only
consider blocks of up to three MPCs.

5.3.4 Fisher information matrix for multipath channel parameter

estimation

In this subsection we derive the FIM for the joint estimation of the channel
parameters.

We assume that the unknown parameters to estimate are
α(1), τ (1), · · · , α(L), τ (L). Denote by Jα,τ the FIM for the joint estimation

of α = (α(1) · · ·α(L))T and τ = (τ (1) · · · τ (L))T , and by cα
(l)

and cτ
(l)

the CRLBs
of α(l) and τ (l) respectively.

From Eq. 5.81 we can write the log likelihood function for the joint estimation
of α and τ as:

Λα,τ = K − 1

2γn

∫

T

{

r(t) −
L
∑

l=1

α(l)s(t− τ (l))

}2

dt (5.90)
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where K denotes a constant.

Denote by ẋ(t), X(f), Ex =
∫

T
x2(t)dt, β2

x = Eẋ/Ex =
∫

4π2f2|X(f)|2df/
∫

|X(f)|2df and Rx(τ) =
∫

T
x(t + τ)x(t)dt the deriva-

tive, Fourier transform, energy (in T ), mean quadratic bandwidth, and auto-
correlation function of x(t) respectively, Xx,y(τ) =

∫

T
x(t + τ)y(t)dt the cross-

correlation function of x(t) and y(t), and R̂x(τ) = Rx(τ)/Ex and X̂x,y(τ) =

Xx,y(τ)/
√

ExEy the normalized auto and cross correlation functions (|R̂x(τ)| 6

1 and |X̂x,y(τ)| 6 1). We can prove that when x(t) satisfies Eq. 5.83, then R̂x(τ)
satisfies it as well, and β2

x becomes inversely proportional to the squared pulse
width T 2

w (i.e. β2
xT

2
w is constant), and when both x(t) and y(t) satisfy it, then

X̂x,y(τ) satisfies it as well.

Taking the negatives of the expectations of the second partial derivatives of
Λα,τ leads to the following elements of the FIM Jα,τ :

fα
(l),α(l′)

=
R

(l′,l)
s

γn
= ρtR̂

(l′,l)
s (5.91)

fτ
(l),τ (l′)

=
α(l)α(l′)R

(l′,l)
ṡ

γn
=

√

ρ
(l)
r ρ

(l′)
r β2

s R̂
(l′,l)
ṡ (5.92)

fα
(l),τ (l′)

=
−α(l′)X

(l′,l)
sṡ

γn
= −

√

ρtρ
(l′)
r βsX̂

(l′,l)
sṡ (5.93)

where x(l′,l) denotes x(∆τ (l′,l)), and fα
(l),τ (l′)

= fτ
(l′),α(l)

. Taking l = l′ and
assuming that s2(t)|T = 0, we obtain the elements of Jα,τ corresponding to
MPC(l):

fα
(l),α(l)

= ρt (5.94)

fτ
(l),τ (l)

= ρ(l)
r β

2
s (5.95)

fα
(l),τ (l)

= 0. (5.96)

therefore, we can write Jα,τ as:

Jα,τ =













J (1,1) J (1,2) · · ·

J (2,1) J (2,2) . . .

...
. . .

. . .













(5.97)

where,

J (l,l′) =

(

fα
(l),α(l′)

fα
(l),τ (l′)

fτ
(l)α(l′), fτ

(l),τ (l′)

)

.
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Note that for l′ 6= l, the matrix J (l,l′) is diagonal because fα
(l),τ (l)

= 0 (see
Eq. 5.96). Furthermore, if MPC(l) does not overlap with any other MPC, then
J (l,l′) becomes null for all l′ 6= l (see Eq. 5.91, Eq. 5.92 and Eq. 5.93, and take
into account that Xx,y(τ) = 0 if x(t+τ) and y(t) do not overlap). As the CRLBs
of the parameters to estimate correspond to the diagonal elements of the FIM
inverse (Jα,τ )−1, we can easily show that when MPC(l) does not overlap with

any other MPC, then the CRLBs cα
(l)

and cτ
(l)

of α(l) and τ (l) are the inverses

of fα
(l),α(l)

Eq. 5.94 and fτ
(l),τ (l)

Eq. 5.95 respectively. The CRLBs obtained
in this case are the smallest that can reached. They correspond to the CRLBs
obtained in an AWGN channel.

We have seen in Sec. 5.3.3 that the received signal can be split into non-
overlapping blocks of overlapping MPCs when the pulse width is sufficiently
smaller than the average-rate-of-arrival. Let us denote by J

α,τ
bi

the FIM corre-

sponding to the block BKi. As the Fisher information fα
(l),α(l′)

Eq. 5.91, fτ
(l),τ (l′)

Eq. 5.92 and fα
(l),τ (l′)

Eq. 5.93 are null if MPC(l) and MPC(l′) belong into two
different blocks (because they do not overlap), we can write the FIM in Eq. 5.97
as:

Jα,τ =













J
α,τ
b1

0 · · ·

0 J
α,τ
b2

. . .

...
. . .

. . .













. (5.98)

We can deduce from the structure of Jα,τ in Eq. 5.98 that the CRLBs of the
parameters of a given block can be obtained by only inverting the sub-FIM
corresponding to the concerned block. This means that different blocks can be
considered separately and that by studying all possible cases of an arbitrary
block, we can characterize the whole channel. We have already mentioned that
only blocks of up to three MPCs will be considered in this work.

5.3.5 CRLBs for channel parameter estimation

In this subsection we compute the CRLBs of the gains and the TOAs of the
MPCs belonging to blocks of one (Sec. 5.3.5.1), two (Sec. 5.3.5.2) and three
MPCs (Sec. 5.3.5.3). From now on, we denote by MPC(l) the lth MPC in the
considered block.

5.3.5.1 CRLBs for blocks of one MPC

Here we consider blocks of one MPC. Given that the considered MPC does not
overlap with any other MPC, the CRLBs of α(1) and τ (1) are given from Eq. 5.94,
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Fig. 5.13.: Block of one MPC (a) Square root σα
(1)

Lb=1 of the CRLB of α(1) with

respect to ρt (b) Normalized square root στ
(1)

Lb=1/Tw of the CRLB of τ (1) with

respect to ρ
(1)
r .

Eq. 5.95 and Eq. 5.96 by:

cα
(1)

Lb=1 =
1

fα(1),α(1)
=

1

ρt
(5.99)

cτ
(1)

Lb=1 =
1

fτ(1),τ (1)
=

1

ρ
(1)
r β2

s

. (5.100)

We can see in Eq. 5.99 and Eq. 5.100 that cα
(1)

Lb=1 is, unlike cτ
(1)

Lb=1, independent of

α(1); it depends just on the transmitted signal to received noise ratio ρt. Given
that β2

sT
2
w is constant for pulses satisfying Eq. 5.83, it seems more significant to

evaluate cτ
(1)

Lb=1/T
2
w instead of cτ

(1)

Lb=1.

Remember that all the numerical results provided in this paper are obtained

using a doublet. In Fig. 5.13(a) we show σα
(1)

Lb=1 (the square root of the CRLB

cα
(1)

Lb=1 of α(1)) with respect to ρt. ρt is varying from 70 to 100 dB. For ρt = 90

dB, we obtain σα
(1)

Lb=1 = 0.3 × 10−4.

In Fig. 5.13(b) we show the normalized square root στ
(1)

Lb=1/Tw of the CRLB

cτ
(1)

Lb=1 of τ (1) with respect to ρ
(1)
r . We vary ρ

(1)
r from 0 to 30 dB. Remember that

the difference of 70 dB between ρt and ρ
(1)
r corresponds to Tw = 0.13 ns, d = 9 m

and νil = 2.5 dB. We can see that for ρ
(1)
r = 20 dB, we have στ

(1)

Lb=1 = 0.0182Tw.

5.3.5.2 CRLBs for blocks of two MPCs

Here, we consider blocks of two MPCs.
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The FIM J
α,τ
bi

corresponding to the block BKi has the same structure as the

FIM in Eq. 5.97. Accordingly, the CRLBs cα
(l)

Lb=2 and cτ
(l)

Lb=2, l = 1, 2, of α(l) and

τ (l), respectively, can be obtained by inverting J
α,τ
bi

then taking the correspond-
ing diagonal elements. Using Eq. 5.91, Eq. 5.92 and Eq. 5.93 we obtain:

cα
(l)

Lb=2 =
1 −

[

X̂
(2,1)
sṡ

]2

−
[

R̂
(2,1)
ṡ

]2

ρt∆
(5.101)

cτ
(l)

Lb=2 =
1 −

[

X̂
(2,1)
sṡ

]2

−
[

R̂
(2,1)
s

]2

ρ
(l)
r β2

s∆
(5.102)

where

∆ = 1 − 2
[

X̂
(2,1)
sṡ

]2

−
[

R̂(2,1)
s

]2

−
[

R̂
(2,1)
ṡ

]2

+
(

R̂(2,1)
s R̂

(2,1)
ṡ +

[

X̂
(2,1)
sṡ

]2 )

.

In Eq. 5.101 and Eq. 5.102, we can see that cα
(l)

Lb=2 does not depend on any

MPC gain whereas cτ
(l)

Lb=2 only depends on the gain of MPC(l). This property is

true with blocks of any size. Both cα
(l)

Lb=2 and cτ
(l)

Lb=2 depend on the transmitted

signal and the inter-MPC delay ∆τ (2,1). Thanks to the symmetry in blocks of

two MPCs, we have cα
(1)

Lb=2 = cα
(2)

Lb=2 regardless the values taken by α(1) and α(2),

whereas cτ
(1)

Lb=2 = cτ
(2)

Lb=2 only if α(1) = α(2).

Notice that both cα
(l)

Lb=2 and cτ
(l)

Lb=2 approach infinity when ∆τ (2,1) approaches
zero. This just means that we are unable, due to the background noise, to dis-
tinguish between two neighboring MPCs when they are very close to each other.
However, we are always able (if MPC(1) and MPC(2) are not destructive) to esti-
mate α(l) and τ (l) with high accuracy by doing marginal estimation and treating
MPC(1) and MPC(2) as one MPC. The optimal solution consists on choosing
the joint estimation when it is more accurate and the marginal estimation when
it is more accurate. Since the CRLBs of marginal estimation are not computed
here, we assume that we are unable to distinguish between MPC(1) and MPC(2)

when the CRLB cτ
(1)

Lb=2 of the TOA of MPC(1) is larger than the squared inter-

MPC delay (∆τ (2,1))2. Denote by ∆τmin
Lb=2 the value of ∆τ (2,1) for which, we have

cτ
(1)

Lb=2 = (∆τ (2,1))2.

Given that Eq. 5.83 holds for R̂s(τ), R̂ṡ(τ) and X̂sṡ(τ) if it holds for pTw
(t), it

seems more significant to evaluate cα
(l)

and cτ
(l)

/Tw with respect to ∆τ (2,1)/Tw
instead of ∆τ (2,1). In Fig. 5.14(a) we show σα

(1)

Lb=1 (the square root of the CRLB

obtained in the case of blocks with one MPC) and σα
(l)

Lb=2 (the same for l = 1, 2)

with respect to ∆τ (2,1)/Tw. We take ρt = 90dB. For ∆τ (2,1) = 0.1Tw, we obtain

σα
(l)

Lb=2 ≈ 0.0027 ≈ 85σα
(1)

Lb=1.
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Fig. 5.14.: Block of two MPCs (a) σα
(1)

Lb=1 (one MPC per block) and σα
(l)

Lb=2

with respect to ∆τ (2,1)/Tw (b) στ
(1)

Lb=1/Tw (one MPC per block), στ
(l)

Lb=2/Tw and

∆τ (2,1)/Tw (first bisector) with respect to ∆τ (2,1)/Tw.

In Fig. 5.14(b) we show στ
(1)

Lb=1/Tw (corresponding to the case of one MPC

per block), στ
(l)

Lb=2/Tw (the same for l = 1, 2 if we consider equal SNRs) and

∆τ (2,1)/Tw (first bisector) with respect to ∆τ (2,1)/Tw. We take ρ
(l)
r = 20dB. We

can see that στ
(l)

Lb=2 becomes larger than ∆τ (2,1) for ∆τ (2,1) < ∆τmin
Lb=2 = 0.16Tw.

Note that ∆τmin
Lb=2 decreases as the SNR ρ

(l)
r increases. For ∆τ (2,1) = 0.1Tw, we

obtain στ
(l)

Lb=2 ≈ 0.45Tw ≈ 25στ
(1)

Lb=1.

We can see from Fig. 5.14(a) and Fig. 5.14(b) that σα
(l)

Lb=2 becomes ap-

proximately equal to σα
(1)

Lb=1, and στ
(l)

Lb=2 approximately equal to στ
(1)

Lb=1, for

∆τ (2,1) = 0.5Tw.

5.3.5.3 CRLBs for blocks of three MPCs

Here, we consider blocks of three MPCs.

As cα
(l)

Lb=3 and cτ
(l)

Lb=3 do not have closed form in this case, we compute them
numerically. Given the non-symmetry of blocks of more than two MPCs, the
CRLBs of the parameters of the different MPCs are not equal even if the MPC
gains are equal. For this reason, we only consider here the first MPC.

In Fig. 5.15(a) we show σα
(1)

Lb=1 (the case of one MPC per block) and σα
(1)

Lb=3

with respect to both ∆τ (2,1)/Tw (normalized relative delay between MPC(1)

and MPC(2)) and ∆τ (3,2)/Tw (normalized relative delay between MPC(2) and

MPC(3)). We can see that for ∆τ (2,1) = ∆τ (3,2) = 0.1Tw, we have σα
(1)

Lb=3 ≈
0.0072 ≈ 226σα

(1)

Lb=1.
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Fig. 5.15.: Block of three MPCs (a) σα
(1)

Lb=1 (one MPC per block) and σα
(1)

Lb=3

with respect to ∆τ (2,1)/Tw and ∆τ (3,2)/Tw (b) στ
(1)

Lb=1/Tw (one MPC per block),

στ
(1)

Lb=3/Tw and ∆τ (2,1)/Tw (bisector) with respect to ∆τ (2,1)/Tw and ∆τ (3,2)/Tw.

In Fig. 5.15(b) we show στ
(1)

Lb=1/Tw (the case of one MPC per block), στ
(1)

Lb=3/Tw
and ∆τ (2,1)/Tw (bisector) with respect to ∆τ (2,1)/Tw and ∆τ (3,2)/Tw. We can

see that for ∆τ (2,1) and ∆τ (3,2) larger than ∆τmin
Lb=3 = 0.24Tw, στ

(1)

Lb=3 becomes

larger than ∆τ (2,1).

We can also see from Fig. 5.15(a) and Fig. 5.15(b) that σα
(l)

Lb=3 becomes close

to σα
(1)

Lb=1, and στ
(l)

Lb=3 close to στ
(1)

Lb=1, for ∆τ (2,1) = 0.5Tw even if ∆τ (3,2) = 0.1Tw.

5.3.6 Average CRLBs

In this subsection we compute the averages of the square roots of the CRLBs of
the gain and the TOA of the first MPC, when the square root of the CRLB of
the TOA is smaller than the inter-MPC delay, in blocks of up to three MPCs.
Since the considered average does not take account of all possible cases, we also
compute the probability of the averaged cases.

The average of the square root of the CRLB of θ ∈ {α(1), τ (1)} is given by:

〈

σθ
〉

=

∑3
i=1 Pi

〈

σθi
〉

∑3
i=1 Pi

(5.103)
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where

P1 = P
{

Lb = 1
}

= 1 − PTw

∆τ

P2 = P
{

(Lb = 2)&(∆τ (2,1) > ∆τmin
Lb=2)

}

= (PTw

∆τ − P
∆τmin

Lb=2

∆τ )(1 − PTw

∆τ )

P3 = P
{

(Lb = 3)&(∆τ (2,1),∆τ (3,2) > ∆τmin
Lb=3)

}

= (PTw

∆τ − P
∆τmin

Lb=3

∆τ )2(1 − PTw

∆τ )

and

〈

σθLb=1

〉

= σθLb=1 (5.104)

〈

σθLb=2

〉

=

∫ Tw

∆τmin
Lb=2

σθLb=2T
t1
∆τdt1

∫ Tw

∆τmin
Lb=2

T t1∆τdt1
(5.105)

〈

σθLb=3

〉

=

∫ Tw

∆τmin
Lb=3

∫ Tw

∆τmin
Lb=3

σθLb=3T
t1
∆τT

t2
∆τdt1dt2

∫ Tw

∆τmin
Lb=3

∫ Tw

∆τmin
Lb=3

T t1∆τT
t2
∆τdt1dt2

. (5.106)

with t1 = ∆τ (2,1), t2 = ∆τ (3,2), and T t∆τ the PDF given in Eq. 5.85. Note that
σθLb=2 and σθLb=3 are functions of t1 and (t1, t2) respectively.

We can easily show that the average of all possible cases approaches infinity.
This does not mean that we are not able to estimate the MPC parameters with
good accuracy. It just says that we can not distinguish between neighboring
MPCs when they are very close to each other. The probability of the cases
averaged in Eq. 5.103 is given by:

P = P1 + P2 + P3.

In Fig. 5.16(a), we show the square root bound of α(1) in blocks of one

MPC σα
(1)

Lb=1, the average square root bounds in blocks of two and three MPCs
〈

σα
(1)

Lb=lb

〉

, lb = 2, 3, and the average square root bound in blocks of up to three

MPCs
〈

σα
(1)
〉

with respect to the transmit SNR ρt. We consider a doublet of

Tw = 0.13 ns, and office LOS environments, so the pulse width to average-rate-
of-arrival ratio is equal to λTw = 0.3824.

In Fig. 5.16(b), we show the square root bound of τ (1) in blocks of one MPC

στ
(1)

Lb=1/Tw, the average square root bound in blocks of two and three MPCs
〈

στ
(1)

Lb=lb

〉

/Tw, lb = 2, 3, the average square root bound in blocks of up to three

MPCs
〈

cτ
(1)
〉

/Tw and the minimum inter-MPC delay ∆τmin
Lb=lb

/Tw, all with

respect to the SNR of the first MPC ρ
(1)
r .
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Fig. 5.16.: (a) σα
(1)

Lb=1 (one MPC per block),
〈

σα
(1)

Lb=lb

〉

for lb = 2, 3 (average

bounds), and
〈

σα
(1)
〉

(average bound) with respect to the transmit SNR ρt (b)

στ
(1)

Lb=1/Tw (one MPC per block),
〈

στ
(1)

Lb=lb

〉

/Tw for lb = 2, 3 (average bounds),
〈

στ
(1)
〉

/Tw (average bound), and ∆τmin
Lb=lb

/Tw (minimum inter-MPC delay) with

respect to the SNR of the first MPC ρ
(1)
r (c) Probabilities to have one P1, two

P2, three P3, and up to three P MPCs per block, with respect to ρ
(1)
r .
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In Fig. 5.16(c) we show the probabilities to have blocks with one MPC P1,
two MPCs P2, three MPCs P3, and up to three MPCs P , with respect to the

SNR of the first MPC ρ
(1)
r .

We can see that the average bounds for both gain and TOA estimation are
very close to the bounds obtained under the non-overlapping assumption (which
are the smallest reachable bounds). We can also see that the probability of the

averaged cases is greater than 0.8 (resp. 0.9) for ρ
(1)
r = 0 dB (resp. ρ

(1)
r > 23

dB). This means that, in the case where the CRLBs can be achieved (i.e. in the
asymptotic region), good accuracy can be often achieved by joint estimation in
the considered environments. Note that by performing marginal estimation when
the neighboring MPCs are very close to each other, and joint estimation when
they are sufficiently far, we can then average all the possible cases to obtain
small bounds instead of infinite bounds.

5.4 CONCLUSION

In this chapter we have considered the derivation of performance limits for pa-
rameter estimation for positioning in WB and UWB systems, assuming AWGN
and MP channels.

We have considered UWB-based positioning using the AOA-based method
and the hybrid TOA-AOA based method. For both methods, we have derived
the CRLBs for position estimation. We have first derived the CRLBs for the joint
estimation of the direct path TOA and AOA, assuming an UWB MP channel.
We have shown, that under the non-overlapping assumption, the estimation is
not impacted by the MP aspect of the channel. We have compared the exact
AOA CRLB and the approximated one obtained by assuming a narrowband
signal. The analytical results obtained for the CRLBs have been illustrated by
numerical results for some typical scenarios.

We have derived the CRLBs for the joint estimation of the TOA and the
AOA in WB MISO and MIMO systems. For TOA estimation, SIMO and MIMO
are equivalent, and MISO and SISO as well when the transmitted signals are
orthogonal. For non-orthogonal signals, MIMO is better than SIMO, and MISO
is better than SISO when the received signals are constructive. For AOA esti-
mation, MIMO is better than SIMO, and SIMO is better than MISO when the
transmitted signals are orthogonal. For non-orthogonal signals, MIMO is much
better when the received signals are constructive. However, the CRLBs obtained
in MISO and MIMO systems when the transmitted signals are not orthogonal
are very sensitive to the angle. As AWGN channels have been assumed, the
CRLBs for the joint estimation of the TOA and the AOA should be investigated
in realistic MIMO configurations where MP fading channels are considered.

We have considered parameter estimation in UWB MP channels. We have
studied the impact of the overlapping of the MPCs on the joint MPC gain and
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TOA estimation. Instead of considering the estimation of the total channel im-
pulse response, we can split the received signal into non-overlapping blocks of
overlapping MPCs, then estimate the parameters of these blocks separately. We
have considered the IEEE802.15.3a and IEEE802.15.4a UWB channel models.
For sufficiently small pulse width to average-rate-of-arrival ratio, the probabil-
ity to have more than three MPCs per block is relatively small. Accordingly,
we have computed the CRLBs for the joint MPC gain and TOA estimation in
blocks of up to three overlapping MPCs. Based on the obtained results we have
computed the average CRLBs. It appears that the CRLBs obtained by averaging
more than 80% of possible cases are very close to the CRLBs obtained under the
non-overlapping assumption.



CHAPTER 6

TESTBED FOR IR-UWB BASED RANGING

AND POSITIONING: EXPERIMENTAL AND

THEORETICAL PERFORMANCES

T
esting the algorithms and estimators proposed in the literature on measure-
ment data is a fundamental step in the development of positioning systems.

IR-UWB based positioning faces many challenges including multipath con-
ditions where the detection of the first MPC which is not always the strongest
one becomes a hard problem especially at low SNRs. Many TOA estimators
has been proposed for dense multipath channels. In [22], the authors have stud-
ied the threshold and energy based estimators and evaluated their performances.
They have also obtained some results based on experimental measurements in an
indoor residential environment. In [33], the authors have considered a threshold-
based estimator and some suboptimal estimators based on peak detection and
tested them on data collected in a typical office building.

In this chapter we describe a testbed for IR-UWB based ranging and posi-
tioning. The testbed is realized at UCL. It consists of a FPGA with high speed
serial module used as pulse generator, four UWB antennas, and either a sam-
pling oscilloscope or realtime oscilloscope used as receiver. Two setups have been
considered, one for ranging with one transmit antenna and one receive antenna,
and another one for positioning with one transmit antenna and three receive
antennas. The results presented in this chapter are based on the work published
in [96, 128].

211
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In order to estimate the distances and the position we first estimate the TOA
by either using the MLE, or a threshold-based estimator. Based on the collected
data, we compute the variances for range and position estimation and compare
them to the corresponding CRLBs. We discuss the impact of the shape of the
autocorrelation of the transmitted pulse, and that of the multipath ascpect of
the channel on the estimation accuracy.

When the TOA is estimated using the MLE, the variances for ranging and
positioning are very close to the corresponding CRLBs if the first MPC is the
strongest one, and if the mainlobe of the autocorrelation of the received pulse is
stronger than the sidelobes. However, when a given MPC is stronger than the first
one due to the channel, or when a given sidelobe is stronger than the mainlobe
due to the additive noise and/or the channel fading, the estimation performances
deteriorate drastically. In fact, a false MPC (resp. sidelobe) detection easily
leads to an error of 60 cm (resp. 21 cm) in ranging and 14 cm (resp. 7 cm) in
positioning.

By estimating the TOA using a threshold-based estimator, we can detect
the first MPC even if it is not the strongest one, so the estimation errors due
to false MPC detection can be removed. However, the errors due to sidelobe
detection cannot be removed using threshold-based estimators. We will also see
from experimental results that, even in the presence of errors due to false MPC
detection, the positioning accuracy can be improved by increasing the number
of receivers.

In Sec. 6.1 we describe the TH-IR-UWB generator. In Sec. 6.2 we describe
the realized testbed. In Sec. 6.3 we present the characteristics of the generated,
transmitted and received signals. In Sec. 6.4 we describe the channel model
adopted in this work and the considered TOA estimator. We show and discuss
the results obtained for ranging in Sec. 6.5 and those obtained for positioning in
Sec. 6.6.

6.1 TH-IR-UWB GENERATOR

Many UWB pulse generators have been proposed in the literature. It will suf-
fice to mention the step recovery diode pulse generators [129–132], the tunnel
diode pulsers [8], the emitter coupled logic [8], the Scholtz’s monocycle generator
[133], the programmable Complementary metal-oxide semiconductor (CMOS)
pulse generator [134], and the voltage controlled ring oscillator (VCRO) based
generator [135, 136].

The main goal of the research activities in this field is to design integrated
low-consumption generators, that respect the emission masks, and that can be
integrated in future UWB transceivers. However, our objective in this work is
restricted to design a multiuser TH-IR-UWB generator for experimentation pur-
poses.
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Fig. 6.1.: Xilinx ML505 development board.

The proposed generator is based on a FPGA with high-speed serial mod-
ule. The main issues considered in this work are the generation of monopulses
(i.e. pulses of one positive lobe), the generation of shaped pulses (i.e. oscillating
pulses), and the generation of TH-IR-UWB waveforms for single-user and for
multiuser.

In Sec. 6.1.1 we will describe the monopulse generator and the TH-IR-UWB
generator for single-user. In Sec. 6.1.2 we will describe the multi-user TH-IR-
UWB generator. In Sec. 6.1.3 we will describe the methods proposed to obtain
shaped pulses from the unshaped generated monopulses.

6.1.1 Monopulse and single-user TH-IR-UWB generation

We will describe here how an FPGA with a high-speed serial module can serve
as a monopulse generator and a TH-IR-UWB generator.

In our experimentations we have considered the following three Xilinx de-
velopment boards, each of them containing an FPGA and a high-speed serial
module:

1. The ML505 board (see Fig. 6.1) based on the Virtex 5XC5VLX50T FPGA
and a single-channel GTP RocketIo serial module of maximum line rate of
Rb = 3.75 Gb/s.

2. The ML507 board based on the Virtex XC5VFX70T FPGA and a single-
channel GTX RocketIo serial module of maximum line rate of Rb = 6.5
Gb/s.

3. The ML523 board based on the Virtex XC5VFXT100 FPGA and 16 chan-
nels GTX RocketIo serial module of maximum line rate of Rb = 6.5 Gb/s.
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Fig. 6.2.: (a) LVDS driver with two complementary outputs (Out 1 and Out 2)
(b) The TH-IR-UWB waveforms observed at Out 1 and Out 2 for the pattern
“00000000000000000001”.

In order to generate our monopulse we use the Xilinx’s Integrated bit error
ratio tester (IBERT) application which allows the serial module to send period-
ically a pattern of Nb = 20 bits (Nb is the number of bits per pattern) at the
rate Rb = 1/Tb (Tb is the duration of one bit). By setting 19 bits to “0” and one
bit to “1” we obtain a periodic monopulse with pulse width of Tw ≈ 1/Rb and
repetition period of Tr = 20Tb.

On the electronic level, the predefined patterns are sent using a low voltage
differential signaling (LVDS) driver (see Fig. 6.2(a)), containing two complemen-
tary outputs (Out 1 and Out 2) accessible on SubMiniature version A (SMA)
connectors.

By increasing the rate Rb of the serial module, we decrease the pulse duration
until it reaches a given threshold determined by the present low-pass filtering
effects. In the latter case, the pulse width is no longer equal to the bit duration
(i.e. Tw > Tb). The repetition period is always given by Tr = NbTb.

The main drawback of the IBERT application is its very short pattern of
Nb = 20 bits. Assume for example that a given repetition period is required to
garantee that the last MPC (due to the multipath channel where the measure-
ment campaign will be carried out) corresponding to a given transmitted pulse,
is received before sending the next pulse. Then, to increase the repetition period
Tr = 20Tb we have to decrease the rate Rb, which makes the generated pulses
wider.

To solve this problem we have used another application which allows us to
define, in the memory of the FPGA, patterns with the required lengths. By using
this application, the pulse duration Tw can be chosen by tuning the rate Rb of
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Fig. 6.3.: TH-IR-UWB waveforms corresponding to different patterns.

the serial module, and the repetition period Tr by varying the length Nb of the
predefined pattern.

The generated signal can be written as:

s(t) =

∞
∑

i=0

w(t− iNbTb) =

∞
∑

i=0

Nb−1
∑

j=0

ajpg(t− iNbTb − jTb)

where pg(t) denotes the generated monopulse, w(t) the TH-IR-UWB waveform
corresponding to the defined pattern, Nb the length of the pattern, and aj the
value of the jth bit in the pattern. By setting aj to either “0” or “1” we obtain
the wanted waveform.

In Fig. 6.2(b) we show the TH-IR-UWB waveforms obtained at the comple-
mentary outputs Out 1 and Out 2 of the LVDS driver (see Fig. 6.2(a)), for the
pattern “00000000000000000001”, at the rate Rb = 3.75 GHz, using the board
ML505.

In Fig. 6.3 we show the TH-IR-UWB waveforms corresponding to
the following patterns: “00000000000000000001”, “10000000000000000101”,
“00001000010000100001” and “00000111110000011111”.

6.1.2 Multiuser TH-IR-UWB waveforms generation

In Sec. 6.1.1 we have described how TH-IR-UWB waveforms for single-user can
be generated by setting the bits of the available pattern to either “0” or “1”.
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Here we will describe the methods proposed to generate multiuser TH-IR-UWB
waveforms.

TH is a particular type of multiple-access techniques. The kth user TH wave-
form can be written as (k = 1, · · · ,K):

w(k)(t) =

Nc−1
∑

n=0

pg(t− nTc − c(k)n Th) (6.1)

where Tc denotes the chip period, Nc the number of chips per waveform (Nc is
also the length of the TH code), Th = Tc

Nh
the time-hop equal to the bit duration

Tb, and (c
(k)
0 , · · · , c(k)Nc−1), c

(k)
n ∈ {0, · · · , Nh − 1} the code of the kth user.

In order to generate multiuser TH-IR-UWB waveforms, both single-channel
(e.g, ML505 and ML507) and multi-channel (e.g, ML523) boards can be used.

With multi-channel boards, multiuser waveforms can be generated by as-
signing a channel to each user, then defining for each channel its own pat-
tern. The TH-IR-UWB waveforms in Eq. 6.1 are obtained by considering pat-

terns of Nb = NcNh bits, then setting the bits of number nNh + c
(k)
n + 1,

(n = 0, · · · , Nc − 1) to “1” and the remaining bits to “0”. For Nc = 3,
Nh = 4 and K = 2 (K denotes the number of users), the codes c(1) = (0, 0, 1)
and c(2) = (1, 3, 1) are obtained by the patterns p(1) = 100010000100 and
p(2) = 010000010100 respectively. The main advantage of this approach is its
simple implementation. However, its main two drawbacks are that:

• The number of users is limited to the number of available channels.

• Multi-channel boards are more expensive than single-channel boards.

In Fig. 6.4 we show the normalized TH-IR-UWB waveforms corresponding
to the codes c(1) and c(2). Note that we have successfully generated multiuser
TH-IR-UWB waveforms using the ML523 board. However, the waveforms shown
in Fig. 6.4 are obtained by simulation.

With single-channel boards, multi-user waveforms can be generated by defin-
ing one pattern of Nb = KNcNh bits obtained by concatenating the patterns
of the different users. For the same example considered above, the pattern to
define is p(1,2) = p(1)|p(2) = 100010000100010000010100. Now, to separate the
waveforms corresponding to the different users from each others, we have to de-
multiplex the output of our single-channel at the frequency 1

Nb
= 1

NcNh
. The

demultiplexer can easily be fabricated from low-cost switches. For 2l users, we
need 1+2+4+ · · ·+2l−1 = 2l−1 switches. The major drawback of this approach
is that the waveforms at the output of the demultiplexer are K times longer than
the required waveform length. In contrast, the main advantage is that there is
no limitation regarding the total number of users.
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Fig. 6.4.: TH-IR-UWB waveforms corresponding to the TH codes c(1) = (0, 0, 1)
and c(2) = (1, 3, 1).

6.1.3 Pulse shaping

In Sec. 6.1.1 and Sec. 6.1.2 the generated waveforms are based on monopulses
(i.e. pulses of one lobe, we also call them unshaped pulses). As the spectra of
such pulses fall around the DC frequency, the generated monopulses should be
shaped in order to make their spectra falling in higher frequency bands.

In order to obtain pure IR-UWB waveforms, we have considered two shap-
ing methods, the antenna based shaping method and the complementary-
output based shaping method, both without modulating by a carrier. In
Sec. 6.1.3.1 we present the antenna-based shaping method, and in Sec. 6.1.3.2
the complementary-output based shaping method.

6.1.3.1 Antenna based shaping

We describe here the shaping method based on the use of the transmit antenna.

This method simply consists on sending the generated monopulse directly
to the transmit antenna. Therefore, the received pulse is shaped by both the
transmit and the receive antennas.

In Fig. 6.5(a), we show the normalized monopulse p(t) generated by the board
ML523 at the rate Rb = 6.5 Gb/s, the normalized received pulse p1(t) shaped
by an UWB antenna having the same shape as the antenna (called Antenna
1) described in [137] and shown in Fig. 6.6(a), but 4 times smaller, and the
normalized received pulse p2(t) shaped by a 2.4 GHz dipole antenna (called
Antenna 2). The widths of p(t), p1(t) and p2(t) are equal to Tw = 368 ps,
Tw,1 = 1.2 ns and Tw,2 = 3.6 ns, respectively.



218 TESTBED FOR IR-UWB BASED RANGING AND POSITIONING

0 2 4 6

x 10
−9

−0.5

0

0.5

1

t

N
o
rm

a
liz

e
d
 p

u
ls

e
s

 

 

p(t)

p
1
(t)

p
2
(t)

(a) Antenna based shaping.
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Fig. 6.5.: (a) Normalized monopulse p(t), and normalized pulses p1(t) and p2(t)
shaped by Antenna 1 and Antenna 2 (b) Normalized ESDs γ(f), γ1(f) and γ2(f)
of p(t), p1(t) and p2(t).

In Fig. 6.5(b), we show the normalized energy spectral densities (ESDs) γ(f),
γ1(f) and γ2(f) corresponding to p(t), p1(t) and p2(t) respectively. The band-
width at -10 dB of p(t) is equal to B = 2fh = 6.7 GHz (fh denotes the highest
frequency). The bandwidths and central frequencies corresponding to p1(t) and
p2(t) are equal to (fc,1, B1) = (2.67, 2.35) GHz and (fc,2, B2) = (2.41, 0.48) GHz,
respectively.

The energy Eg of the generated monopulse is measured by connecting Out
1 directly to the oscilloscope (Out 2 is connected to the transmit antenna); we

can write Eg =
∫ +∞
−∞

p2g(t)

R dt = 0.36 pJ where pg(t) denotes the voltage signal
observed by the oscilloscope and R = 50Ω the impedance of the oscilloscope.
The received energy Er is measured by connecting the receive antenna to the

oscilloscope; we can write Er =
∫ +∞
−∞

p2r(t)
R dt where pr(t) denotes the signal

observed by the oscilloscope. Denote by Pr(f) the Fourier transform of pr(t),

and γet (f) and γer(f) = |Pr(f)|2
R the transmitted and received ESDs respectively.

The transmitted energy is given by:

Et =

∫ +∞

−∞
γet (f)df (6.2)

Using the Friis transmission formula, we can write:

γet (f) =
γer(f)

ν(f)
(6.3)
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(a) (b)

Fig. 6.6.: (a) UWB antenna (b) ML507 board with two complementary out-
puts, chain of connectors used to introduce delay, power combiner, and sampling
oscilloscope visualizing the shaped pulse.

where

ν(f) = GtGr
1

4πd2

c2

4πf2
= GtGr

(

c

4πdf

)2

(6.4)

with Gt and Gr representing the gains (approximately constant in the considered
frequency bands) of the transmit and receive antennas respectively (non-isotropic
antennas), d the distance between transmit and receive antennas (we have con-

sidered d = 30 cm), 1
4πd2 the loss due to free-space propagation, and c2

4πf2 the
aperture of the receive antenna around the frequency f .

By computing Et and dividing it by Eg we have found that 1/4 and 1/30
of the generated energy is radiated by Antenna 1 and Antenna 2 respectively
(i.e. 3/4 and 29/30 dissipated). For the antenna described in [137], shown in
Fig. 6.6(a) and used later in Sec. 6.2 we have found that 1/13 of the energy is
radiated. Note that for the antenna in [137] we have Gt = Gr = 2.15 dB whereas
for Antenna 1 and Antenna 2 we have assumed that the antennas are isotropic
(i.e. Gt = Gr = 0 dB) because we do not know their specifications (this means
that the values of corresponding radiated energies are lower than the obtained
ones).

The main weaknesses of antenna based shaping lie in the fact that:

• Most generated energy is dissipated in the transmit antenna, and only a
small portion is radiated.

• The bandwidth of the shaped pulse is much smaller than that of the un-
shaped one.
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Fig. 6.7.: (a) Complementary monopulses w1(t) and w2(t) and shaped pulse
w1,2(t) (b) Normalized ESDs γ1(f), γ1,2(f) of w1(t) and w1,2(t).

• The required transmission frequency band (i.e. that of the shaped pulse)
should totally fall in the frequency band of the generated pulse. This also
means that the monopulse should be highly short.

6.1.3.2 Complementary-output based shaping

We describe here the shaping method based on the use of the complementary
outputs of the LVDS driver.

As pointed out in Sec. 6.1.1, we have two complementary outputs per channel
thanks to the LVDS driver (see Fig. 6.2(a) and Fig. 6.2(b)). The second shaping
method consists on exploiting these outputs in the shaping procedure. To do so,
we apply a time delay approximately equal to the monompulse width to one of
the two outputs, then add both outputs.

To validate our idea, we have used a chain of connectors to introduce the
necessary delay and the R&S RVZ 0-2700 MHz power splitter (and combiner) to
add the two outputs. In Fig. 6.6(b), we can see the ML507 board used to generate
the monopulse with the two complementary outputs, the chain of connectors, the
combiner and the shaped pulse on the oscilloscope.

In Fig. 6.7(a) we show the complementary generated monopulses w1(t) and
w2(t), and their sum w1,2(t) after shifting w1(t). In Fig. 6.7(b) we show the nor-
malized ESDs γ1(f) and γ1,2(f) corresponding to w1(t) and w1,2(t) respectively.
The unshaped pulse (generated using the ML507 board at the rate Rb = 3 Gb/s)
has a width of Tw = 600 ps and a bandwidth of B = 2.44 GHz, whereas the
shaped pulse has a width of Tw = 950 ps, a central frequency of fc = 1.45 GHz,
and a bandwidth of B = 1.79 GHz. The energy loss due to the power combiner
is equal to 4.5 dB.
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Fig. 6.8.: (a) Complementary waveforms w1(t) (two consecutive monopulses)
and w2(t) and shaped waveform w1,2(t) (b) Normalized ESDs γ1(f), γ1,2(f) of
w1(t) and w1,2(t).

In Fig. 6.8(a) we show the complementary generated waveforms w1(t) and
w2(t) when two consecutive monopulses have been generated, and the shaped
waveform w1,2(t). In Fig. 6.8(b) we show the normalized ESDs corresponding to
w1(t) and w1,2(t).

The main advantage of this shaping method is that the energy loss is relatively
small because it is only due to the component introducing the delay and to
the combiner. However, like the antenna based shaping method, the required
transmission frequency band should totally fall in the frequency band of the
generated pulse.

6.2 THE TESTBED

In this section we describe the testbed realized at UCL in order to perform
ranging and positioning based on IR-UWB signals.

We have already mentioned that the testbed is composed of a FPGA with
high speed serial module as IR-UWB pulse generator, four UWB antennas, one
(Tx) for transmission and three (Rxi, i = 1, 2, 3 for reception, and an oscilloscope
used as receiver.

The IR-UWB pulse generator has been considered in detail in Sec. 6.1. In
the measurement campaigns presented in this chapter, we have used the Xilinx
single-channel ML507 development board as pulse generator. Now, instead of
combining the two outputs Out 1 and Out 2 together to obtain a shaped pulse, we
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(a) (b)

Fig. 6.9.: (a) Tektronix (top) and Agilent (bottom) oscilloscopes (b) Character-
ization room.

have connected Out 1 to the transmit antenna Tx, and Out 2 to the oscilloscope
in order to be used as a reference for TOA estimation.

The RocketIo output Out 1 is matched to 50 Ω impedance such that it can be
connected to Tx. The UWB antennas (3×10×8 cm3, see Fig. 6.6(a)) are designed
and fabricated at UCL [137].

Either the Tektronix 11801C digital sampling oscilloscope, or the Agilent
DSA91304A Digital Signal Analyzer, have been used in the carried out measure-
ment campaigns. The Tektronix 11801C Digital Sampling Oscilloscope shown in
Fig. 6.9(a) (the one on the top) has a bandwidth from DC to 50 GHz and a
sampling interval equal to 0.01 ps. It contains 4 heads with up to 2 channels per
head. The Agilent DSA91304A Digital Signal Analyzer shown in Fig. 6.9(a) (the
one on the bottom) has a bandwidth of 13 GHz and a sampling frequency of 40
GS/s. It contains 4 channels.

Gore phaseflex cables [138] of 4 and 8 meters are used to connect the FPGA
to the transmit antenna and the oscilloscope, and the receive antennas to the
oscilloscope. An amplifier is also used to compensate the losses in the cables.

Two setups have been considered: one for ranging and one for positioning.
In the first setup, we have used one transmit antenna and one receive antenna,
whereas in the second setup, we have used one transmit antenna and three receive
antennas. For both setups, the measurement phase is preceded by a phase of
calibration. The main roles of the phase of calibration are:

• Finding the characteristics of the generated, transmitted and received
pulses.
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• Estimating the noise corrupting the acquisition.

• Estimating the delays introduced by the cables.

The measurement campaigns are carried out in a wide characterization room
(33× 9× 2.8 m3) containing many tables with many electronics equipments (see
Fig. 6.9(b)).

6.3 SIGNALS CHARACTERISTICS

In this section we present the characteristics of the generated, transmitted and
received signals.

Denote by pg(t) the generated pulse, pgc(t) the clean generated pulse obtained
by bandpass filtering pg(t) between 0.2 and 2 GHz then keeping the main lobe
of the filtered pulse, pr(t) the received pulse, and prc(t) the clean received pulse
obtained by bandpass filtering pr(t) between 0.5 and 2 GHz then keeping five
main lobes of the filtered pulse. The generated pg(t) and clean generated pgc(t)
pulses are shown in Fig. 6.10(a), and the received pr(t) and clean received prc(t)
pulses in Fig. 6.10(b). Note that we have defined the clean generated and received
pulses in order to remove the ringing present at the output of the FPGA, and
to obtain smooth spectra that can be used below in the computation of the
frequency response of the antenna. Note that we have defined the clean generated
and received pulses in order to remove the ringing present at the output of the
FPGA, and to obtain smooth spectra that can be used below in the computation
of the frequency response of the antenna.

Denote by γpg (f), γpgc(f), γpr (f) and γprc(f) the power spectral densities (PSD)
corresponding to the pulses pg(t), pgc(t), pr(t) and prc(t), respectively. The PSD
γpx(f) of a given voltage signal x(t), that is measured using the oscilloscope (such
as pg(t) and pr(t)), is given by:

γpx(f) =
|X(f)|2
RTr

(6.5)

where X(f) denotes the Fourier transform of x(t) and Tr the repetition period.
In Fig. 6.10(c) we show γpg (f) and γpgc(f), and in Fig. 6.10(d) γpr (f) and γprc(f).

For later use in Sec. 6.4 (see Eq. 6.8 and Eq. 6.10) we denote by h(t) and
H(f) the normalized (with respect to ν(f) in Eq. 6.4 so that the effects of ν(f)
will be contained in α(l) in Eq. 6.9) impulse and frequency responses counting
for all effects between the input of the transmit antenna and the output of the
receive antenna. We can write:

prc(t) = pgc(t) ⊗ h(t) (6.6)

H(f) =

{

Prc(f)√
ν(f)Pgc(f)

|f | ∈ [0.5, 2] GHz

0 elsewhere.
(6.7)
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Fig. 6.10.: (a) Generated pg(t) and clean generated pgc(t) pulses (b) Received
pr(t) and clean received prc(t) pulses (c) PSDs γpg (f) and γpgc(f) of pg(t) and
pgc(t) (d) PSDs γpr (f) and γprc(f) of pr(t) and prc(t).

In Fig. 6.11, we show |HNorm(f)|, the normalized module of H(f).

The characteristics of the clean generated pulse pgc(t) are as follows:

• Pulse duration (from zero to zero): Tgc = 672 ps.

• Bandwidth (at -10 dB from the PSD peak [1]): Bgc = 3.7 GHz.

The characteristics of the clean received pulse prc(t) are given by:

• Pulse duration: Trc = 2.1 ns

• Lowest frequency, highest frequency, mean frequency and bandwidth: fl =
0.73 GHz, fh = 1.7 GHz, fm = 1.29 GHz and Brc = 0.97 GHz.
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Fig. 6.11.: Normalized module |HNorm(f)| of the frequency response between
the generated and the received pulses.

• Mean quadratic bandwidth: β2 = 6.86 × 1019 s−2.

Regarding the radiated power and energy, we have obtained (without taking into
account the attenuation in the cables connecting the FPGA to Tx, and RXs to
the oscilloscope):

• Transmitted energy per bit: Et = 3 pJ. We have computed Et using
Eq. 6.2, Eq. 6.3 and Eq. 6.4 by considering a distance of d = 30 cm.

• Power: 0.0281 mW; this value is below the limit set by the US Federal
Communications Commission (FCC) and the European Commission (EC)
to approximately 0.5 mW and 0.167 mW, respectively. We have considered
a repetition period of Tr = 106.666 ns.

• Mean PSD: 1.11 × 10−14 W/Hz; this value is below the limit set by the
FCC and the EC to 7.4× 10−14 (-41.3 dBm/MHz). Given that we radiate
between 0.5 and 2 GHz, we should upconvert our signals into the band
located between 3.1 and 10.6 (resp. 6 and 8.5) GHz in order to be compliant
with the FCC (resp. EC) emission masks.

• PSD peak: 1.97× 10−14 W/Hz; this value is below the limit set by the EC
to 2 × 10−11 W/Hz (0 dBm/50MHz).

6.4 CHANNEL MODEL AND TOA ESTIMATOR

In this section we describe the channel model adopted in this work and the
considered TOA estimator.
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Denote by s(t) the generated signal and r(t) the signal received through a
multipath AWGN channel. Signal s(t) consists of a burst of the monopulses
pg(t) (presented in Sec. 6.3). We can write r(t) as:

r(t) = s(t) ⊗ h(t) ⊗ c(t) + n(t) =

L
∑

l=1

α(l)sr(t− τ (l)) + n(t) (6.8)

with

c(t) =
L
∑

l=1

α(l)δ(t− τ (l)) (6.9)

sr(t) = s(t) ⊗ h(t) (6.10)

where n(t) denotes the AWGN of bilateral PSD of N0/2, α(l) and τ (l) the gain
and the time delay of the lth MPC, L the number of MPCs, c(t) the channel
impulse response, and sr(t) the generated signal filtered by the transmit and
receive antennas. We recall that h(t) is given in Eq. 6.6.

By assuming the first MPC (containing the information about the distance)
the strongest one, we can estimate the time delay τ = τ (1) using the MLE:

τ̂ = argmax
t

{z(t)} (6.11)

where

z(t) = r(t) ⊗ sr(−t) (6.12)

is the cross-correlation of r(t) and sr(t).

Note that in Eq. 6.12 we have filtered the received signal by the filter matched
to sr(t) Eq. 6.10, and not to the generated signal s(t) (see Eq. 6.8). In fcat, we
have seen in Sec. 6.3 that the pulses pg(t) (the unshaped generated monopulse)
and pr(t) composing the signals s(t) and r(t) do not have the same shape. By
contrast, the pulses of r(t) Eq. 6.8 and sr(t) Eq. 6.10 have the same shape. Note
also that on the oscilloscope, we only get the samples of s(t) and r(t). So, in
order to use the MLE in Eq. 6.11, we have to filter s(t) twice by h(t) according
to Eq. 6.10 to obtain sr(t).

We have seen in Chap. 5 that when the first MPC does not overlap with the
following MPCs, the CRLB for TOA estimation can be written as:

Cτ =
N0/2

(α(1))2Etβ2
s

=
1

ρβ2
s

(6.13)

where Et denotes the transmitted energy (i.e. energy of sr(t) in Eq. 6.10), and
Er = (α(1))2Et and ρ = Er

N0/2
the useful received energy and the SNR of the first

MPC.
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6.5 RANGING

In this section we show and discuss the results obtained for ranging. We consider
one transmit antenna (Tx) and one receive antenna (RX). The distance between
Tx and RX belongs to the range 1 to 6 meters.

In order to get an accurate estimation of the TOA we must estimate the
delays introduced by the cables connecting the FPGA to the oscilloscope and
to the transmit antenna, and the cables connecting the receive antennas to the
oscilloscope. In this setup, where only one receive antenna is used, we have to
estimate only one delay (τc), while in the positioning setup in Sec. 6.6 below
where three receive antennas will be used, we have to estimate three delays (τc1,
τc2 and τc3).

In order to estimate τc, we put Rx at a known distance (dc = 30 cm) from
Tx, estimate the observed time delay τco (we mean by “observed” the time delay
containing both the time of flight and the cables delay) by using Eq. 6.11, and
subtract the time of flight dc/c from τ̂co (estimate of τco):

τ̂c = τ̂co − dc/c.

The estimate τ̂c of τc relies on one transmitted pulse. Given that we have trans-
mitted 50 pulses per acquisition, the final estimate of τc is the mean µτ̂c

of the
50 estimates τ̂c. We have found µτ̂c

= −0.32 ns.

Once the delay introduced by the cables is estimated, the distance between
Tx and Rx can be estimated by:

d̂ = c(τ̂o − µτ̂c
)

where τ̂o is the observed time delay estimated by using Eq. 6.11.

Denote by σd, µd and bd = µd − d the standard deviation, mean and bias
of d̂ obtained over the 50 transmitted pulses, respectively. The CRLB for the
estimation of d can be obtained from Eq. 6.13 as:

Cd = Cτ c
2 =

c2

ρβ2
s

=
c2N0/2

Erβ2
s

.

In order to compute Cd, we should know the values of N0/2 and Er (β2
s corre-

sponds to the mean quadratic bandwidth of the clean received pulse prc(t), see
Sec. 6.3).

We have estimated N0/2 as the average over the 50 received pulses of the
average of the PSD γpr (f) of the received signal (computed using Eq. 6.5) in the
frequency band between f1 = 6 GHz and f2 = 250 GHz (there are no useful
signal components in this band). We have found that N0/2 is in the order of
10−19 W/Hz (-100 dBm/MHz).
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Fig. 6.12.: (a) Energy of the first MPC in dB (with respect to Joule) with respect
to the distance d (b) SNR of the first MPC with respect to d (c) Standard
deviation σd and square root of the CRLB in centimeters with respect to d (d)
Bias bd in centimeters with respect to d.

By assuming the energy of the first MPC to be inversely proportional to
the squared distance, we have estimated Er by E0/d

2, where E0 denotes the
measured received energy per pulse at d = 1 m. In Fig. 6.12(a) we show the
estimated energy E0/d

2 in dB (with respect to Joule) versus the distance d (in
meters), and the energy E of the first MPC measured at each distance. We
have already mentioned that d belongs to the range 1 to 6 meters. We can see
that E closely follows E0/d

2. For d = 6 m, we have E = 1.8 × 10−17 J and
E0/d

2 = 2.1 × 10−17 J.
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(right bottom) Zoom around P5.

In Fig. 6.12(b) we show the SNR ρ in dB, obtained from the measured E and
N0/2, with respect to the distance. For d = 6 m, we have ρ = 18 dB.

In Fig. 6.12(c) we show the standard deviation and the square root of the
CRLB in centimeters with respect to the distance. The variance and the CRLB
are very close thanks to the good SNR and the shape of the transmitted pulse.
For d = 6 m, we have σd = 0.4798 cm and

√
Cd = 0.4676 cm (ρ = 18 dB).

In Fig. 6.12(d) we show the bias in centimeters with respect to the distance. It
seems to be random with respect to the distance. The minimum and maximum
values of the bias are found at d = 1 m (bd̂ = −1.48 cm) and d = 4 m (bd̂ = 1.53
cm) respectively. From our point of view, this bias is due to the fact that we
have measured the distances using a measuring tape. Given that the measured
variance is very small, we are more confident in the estimated values of the
distance than the ones obtained using the measuring tape.

6.6 POSITIONING

In this section we present and discuss the results obtained for positioning.

We have considered one transmitter Tx as unknown location node and three
receivers Rx1, Rx2 and Rx3 as reference nodes. As depicted in Fig. 6.13
(left), Rx1, Rx2 and Rx3 are located at (160.2,−416) cm, (340,−416) cm
and (66.4, 543.4) cm, respectively, and Tx at one of the following six posi-
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tions: P1(104.7, 15) cm, P2(154.5, 15) cm, P3(204.8, 15) cm, P4(244.6, 15) cm,
P5(286.3, 15) cm, and P6(336.1, 15) cm.

Like for ranging, we have first estimated the delays τc1, τc2 and τc3 introduced
by the cables connecting Rx1, Rx2 and Rx3 to the oscilloscope, respectively.
The average values obtained based on 185 transmitted pulses are equal to µτ̂c1

=
−0.39 ns, µτ̂c2

= −0.26 ns and µτ̂c3
= −0.29 ns.

In order to estimate the position of Tx, we first estimate the distance di
between Tx and Rxi (i = 1, 2, 3), then we estimate the position of Tx by tri-
angulation. The method of triangulation used here consists in minimizing the
following objective function:

(x̂, ŷ) = argmin
(x,y)

3
∑

i=1

(

d̂i −
√

(x− xi)2 + (y − yi)2
)2

2σ2
d̂i

where (x, y) and (xi, yi) denote the cartesian coordinates of Tx and Rxi respec-

tively, (x̂, ŷ) the estimated coordinates of Tx, d̂i the estimated distance and σ2
d̂i

the variance of d̂i.

Using the formula of transformation relative to the Fisher information matrix
established in Chap. 5, we can write the CRLB matrix for the estimation of
(x, y) as:

Cx,y =
c2

β2∆ρ

3
∑

i=1

ρi

(

sin2 ϕi − sinϕi cosϕi
− sinϕi cosϕi cos2 ϕi

)

(6.14)

where ϕi denotes the angle between the axis joining Tx to Rxi and the x axis,
ρi the SNR at Rxi, Cdi

the CRLB for the estimation of di, and ∆ρ is given by

∆ρ =
∑3
i=1

∑3
i′=i+1 ρiρi′ sin2(ϕi − ϕi′). The CRLBs Cx and Cx of x and y are

the diagonal elements of Cx,y: Cx = Cx,y(1, 1) and Cy = Cx,y(2, 2). Assuming
that ρi = ρ ∀i, we can write:

Cx,y =
Cd
∆

3
∑

i=1

(

sin2 ϕi − sinϕi cosϕi
− sinϕi cosϕi cos2 ϕi

)

where ∆ =
∑3
i=1

∑3
i′=i+1 sin2(ϕi − ϕi′).

In Fig. 6.13 (left) we show the positions of Rx1, Rx2 and Rx3, the different
positions Pj (j = 1, · · · , 6) occupied by Tx, and the estimated positions (Mj) of
Tx. For each Pj , we have 185 Mj based on 185 transmitted pulses. In order to
visualize the estimation errors, we make a zoom around P1, · · · , P6 in Fig. 6.13
(right top) and around P5 in Fig. 6.13 (right bottom).

In Fig. 6.13 (right bottom), we can see that the estimates of P5 are distributed
among three sets. For each set, the different estimates have approximately the
same ordinate but different abscissas which means that the ordinate is estimated
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Fig. 6.14.: Cross-correlations (for 185 transmitted pulses) of the transmitted
signal and the signals received at Rx3, and the ML estimates of the TOA when
Tx is located at P5.

more accurately than the abscissa. This is due to the geometry of our setup where
the axis joining Tx to Rxi (i = 1, 2, 3) is more aligned with the y axis than the
x axis (cos2 ϕi < sin2 ϕi). This result can be expected from Eq. 6.14 showing
that the ratio between the CRLBs of x and y can be written as: Cx/Cy =
∑3
i=1 ρi sin

2 ϕi/
∑3
i=1 ρi cos2 ϕi >> 1.

In Fig. 6.13 (right top), we can see that some estimates of P2 (resp. P3 and
P6) fall at around 23 cm (resp. 7 cm) from the true position. This error results
from an error in the estimation of the distance between Tx to Rx3. For P2,
the ranging error is due to a MPC in the signal received by Rx3 stronger than
the first MPC, whereas for P3 and P6, it is due to a sidelobe in the first MPC
stronger than the mainlobe. For P5 (see Fig. 6.13 (right bottom)), we can see
both the MPC errors and the sidelobe errors. For P1 and P4, we have only the
usual error due to the AWGN which is also the most recurrent type of error for
the other positions.

In Fig. 6.14, we show, for the 185 transmitted pulses, the cross-correlation
z3(t) = r3(t) ⊗ sr(−t) (see Eq. 6.12) of the signal r3(t) received at Rx3 and the
reference signal sr(t) Eq. 6.10, when Tx is located at P5. We can see that most
estimates correspond to the mainlobe of the first MPC, whilst some estimates
correspond to the mainlobe of the second MPC, and others to a sidelobe in the
first MPC.

When the second MPC (resp. the first sidelobe of the first MPC) is detected we
have an error on the estimation of the TOA equal to 3.1 ns (resp. 0.7 ns) which
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Fig. 6.15.: (a) Bias of the estimators of x and y in centimeters with respect to
P1, · · · , P6 for TOA MLE (bx̂ and bŷ) and threshold based estimator (bx̂′ and
bŷ′) (b) Standard deviations of the estimators of x and y in centimeters for TOA
MLE (σx̂ and σŷ) and threshold based estimator (σx̂′ and σŷ′), and square roots
of the CRLBs of x and y.

corresponds to a ranging error of 93 cm (resp. 21 cm). These ranging errors
lead to errors in positioning (distance between true and estimated positions)
which are much smaller (23 cm for false MPC detection and 7 cm for false
sidelobe detection). In fact, Rx1 and Rx2 will pull the estimated position toward
the true position. The positioning error can be even more reduced if we have
more receivers with accurate estimated distance. Suppose now that all receivers
overestimate the distance. In this case, the position obtained by triangulation
will again fall close to the true position. We can deduce that the positioning
accuracy can be highly improved and the errors due to false MPC and sidelobe
detection can be highly mitigated by increasing the number of receivers.

In Fig. 6.15(a) we show the measured bias of x̂ and ŷ (bx and by respectively)
with respect to the positions P1, · · · , P6 occupied by Tx. In Fig. 6.15(b) we show
the standard deviations of x̂ and ŷ (σx and σx) and the square roots of the CRLBs
(C0.5

x and C0.5
y ) of x and y. We can see that bx and by are relatively small, and

that σx and σy are very close to C0.5
x and C0.5

y , respectively, when neither false
MPC detection nor false sidelobe detection occur. For P4 (neither false MPC
detection nor false sidelobe detection occur), we have (bx, by) = (1.68, 0.46) cm,
(σx, σy) = (0.7, 0.13) cm and (C0.5

x , C0.5
y ) = (0.41, 0.1) cm, whereas for P5 (both

false MPC detection and false sidelobe detection occur), we have (bx, by) =
(2.84,−2.02) cm, (σx, σy) = (5.05, 6.86) cm and (C0.5

x , C0.5
y ) = (0.36, 0.1) cm.

In order to solve the problem of false MPC detection, we consider a threshold-
based TOA estimator. This estimator consists on waiting until the cross-
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correlation zi(t), (i = 1, 2, 3) Eq. 6.12 crosses a given threshold, then searching
within an interval equal to the pulse width for the maximum of zi(t). The thresh-
old should be carefully chosen with respect to the noise level and the useful signal
level in order to minimize the probability of early detection due to the AWGN,
the probability of late detection due to the channel MPCs, and the probability
of non detection.

In Fig. 6.15(a) and Fig. 6.15(b) we show the bias terms (bx′ and by′) and the
standard deviations (σx′ and σy′) when the threshold-based estimator is used.
The estimation error is highly reduced for P2 and P5. For P5, we have now
(bx′ , by′) = (1.34, 0.005) cm and (σx′ , σy′) = (0.77, 0.78) cm when the threshold-
based estimator is used compared to (bx, by) = (2.84,−2.02) cm and (σx, σy) =
(5.05, 6.86) cm when the MLE is used. Note that the errors due to the false
sidelobe detection are still present at P3, P5 and P6 with the threshold-based
estimator.

6.7 CONCLUSION

A testbed for IR-UWB based ranging and positioning is described and a TH-IR-
UWB generator is presented. The characteristics of the generated, transmitted
and received signals are analyzed.

Based on the collected data, the variances for ranging and positioning are
computed. Those obtained using the TOA MLE are found to be close to the
CRLBs when the first MPC is the strongest MPC and the pulse mainlobe is
stronger than the sidelobes. In realistic multipath environments where the last
assumption is not often true, the MLE can lead to false MPC and sidelobe
detection and to non-negligible estimation errors.

By using threshold based estimators, the errors due to false MPC detection
can be corrected. It has been also shown that the impact of the ranging errors on
the positioning accuracy can be mitigated by increasing the number of receivers.





CHAPTER 7

CONCLUSIONS

To conclude, we summarize the main contributions of this thesis and draw out
some interesting problems for future investigation.

We consider the problem of nonlinear estimation for deterministic parameters.
Both the threshold and the ambiguity phenomena are studied. Some approxima-
tions of the statistics of the MLE are proposed by making use of the subdomain
method initiated by Wozencraft [89] and improved by McAulay [70]. Some ap-
proximate upper and lower bounds are also derived. The main approximate lower
bounds rely on the Bayesian ZZLB [58] and BTLB [60]. The numerical results
obtained by considering the example of TOA estimation via IR-UWB signals,
show that the proposed MSE approximations are highly accurate and that the
derived approximate bounds are very tight.

Utilizing one of the resulting MSE approximations, the thresholds of the begin-
ambiguity, end-ambiguity and asymptotic regions are computed with respect to
the IFBW of the transmitted signal. Also, analytic expressions are derived. Some
thresholds depend on the shape of the ACR of the transmitted signal, while
others depend on the shape of its envelope.

Based on the results related to the asymptotic threshold, we propose a very
simple method to optimize the spectrum of the transmitted pulse with respect

235
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to the available SNR, so that the achieved MSE can be the lowest attainable
MSE at that SNR.

We propose a new receiver (the DM receiver) for TH-IR-IWB signals and a
new TOA estimator (the MME) based on that receiver. The statistics and the
local and global probabilities of error are derived for both the DM and the CR
receivers. Using the subdomain method introduced in Chap. 2, we approximate
the local and the global MSEs of the MME and the MCE. The performances of
the MME and the MCE are similar for single-user and for mutiuser with random
MUI. With deterministic MUI, the MME (resp. MCE) remarkably outperforms
the MCE (resp. MME) for constructive (resp. destructive) MUI. This result is
very interesting because one can combine the MME and the MCE together to
obtain an estimator that outperforms both of them.

We propose some TOA estimators for AWGN and MP channels based on the
phase of the DFT of received signal, and compute their achieved MSEs. They
achieve the CRLB asymptotically. We compare them with the MLE.

We study the performance limits of positioning and parameter estimation in
UWB systems, and wideband MIMO and MISO systems. We consider UWB
systems with MP channels and derive the CRLBs for positioning employing
either the AOA technique, or the hybrid TOA-AOA technique. Built on typical
scenarios, some numerical results are presented and discussed.

We study the impact of the overlapping of the components of an UWB channel
on the estimation of the gain and the TOA. The probability of overlapping
is calculated for the IEEE802.15.3a and the IEEE802.15.4a statistical channel
models. By evaluating the average CRLBs, it turns out that the theoretical
performances achievable in MP channels are very close to those achievable in
AWGN channels, in more than 80% of the possible cases.

We deal with the estimation of the TOA and the AOA in wideband MIMO and
MISO systems. The cases of orthogonal and non-orthogonal signals are investi-
gated, and the CRLBs obtained in SISO, SIMO, MISO and MIMO configurations
are compared.

A testbed for IR-UWB based ranging and positioning is presented. We de-
scribe the implemented TH-IR-UWB generator and the investigated shaping
methods. Positioning is performed by making use of the TOA technique. We
study the impact of the channel and the pulse shape on the achieved perfor-
mances. The potential of the threshold estimators in the detection of the first
MPC is demonstrated, and the improvement insured by increasing the number
of the reference nodes is highlighted.

Some topics of interest for future research are:

• The effects of the threshold and the ambiguity phenomena on two-step and
direct positioning.
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• Low-cost TOA estimators for MU systems with MP channels: design, im-
plementation and experimenting in realistic channels.

• Data-fusion methods for NLOS environments: design and testing.





APPENDIX A

CURVATURES OF THE

AUTOCORRELATION FUNCTION AND OF

ITS ENVELOPE

In this appendix we show that for

Rs(θ,Θ) = ℜ
{

ej2πϕc(θ−Θ)eRs
(θ,Θ)

}

(A.1)

ϕc =

∫ +∞
0

ϕℜ{FRs
(ϕ)}dϕ

∫ +∞
0

ℜ{FRs
(ϕ)}dϕ

(A.2)

FRs
(ϕ) =

∫ Θ2

Θ1

Rs(θ,Θ)e−j2πϕ(θ−Θ)dθ (A.3)

we have:

− R̈s(Θ,Θ) = −ℜ{ëRs
(Θ,Θ)} + 4π2ϕ2

cEs. (A.4)

From the definition of the complex envelope and the Fourier transform in Eq. A.1
and Eq. A.3 respectively we can write the Fourier transform of the complex
envelope eRs

(θ,Θ) as:

FeRs
(ϕ) = 2F+

Rs
(ϕ+ ϕc) (A.5)

where z+(ϕ) = z(ϕ) for ϕ > 0 and z+(ϕ) = 0 for ϕ 6 0.

From Eq. A.1 we can write:

R̈s(θ,Θ) = ℜ
{

ej2πϕc(θ−Θ)
[

ëRs
(θ,Θ) − 4π2ϕ2

ceRs
(θ,Θ) + j4πϕcėRs

(θ,Θ)
]}

(A.6)
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For θ = Θ we can write Eq. A.1 and Eq. A.6 as:

Rs(Θ,Θ) = Es = ℜ
{

eRs
(Θ,Θ)

}

(A.7)

R̈s(Θ,Θ) = ℜ
{

ëRs
(Θ,Θ)

}

− 4π2ϕ2
cℜ
{

eRs
(Θ,Θ)

}

+ 4πϕcℜ
{

jėRs
(Θ,Θ)

}

. (A.8)

Using Eq. A.7 we can write Eq. A.8 as:

R̈s(Θ,Θ) = ℜ
{

ëRs
(Θ,Θ)

}

− 4π2ϕ2
cEs + 4πϕcℜ

{

jėRs
(Θ,Θ)

}

. (A.9)

In order to prove Eq. A.4 we have to show that ℜ{jėRs
(Θ,Θ)} = 0 in Eq. A.9.

To do so we write ėRs
(θ,Θ) with respect to the Fourier transform FeRs

(ϕ)
Eq. A.5 of eRs

(θ,Θ) using the inverse Fourier transform as:

ėRs
(θ,Θ) =

∫ +∞

−∞
j2πϕFeRs

(ϕ)ej2πϕ(θ−Θ)dϕ

=

∫ +∞

−∞
j4πϕF+

Rs
(ϕ+ ϕc)e

j2πϕ(θ−Θ)dϕ

=

∫ +∞

−∞
j4π(φ− ϕc)F+

Rs
(φ)ej2π(φ−ϕc)(θ−Θ)dφ

=

∫ +∞

0

j4π(φ− ϕc)FRs
(φ)ej2π(φ−ϕc)(θ−Θ)dφ (A.10)

where φ = ϕ+ ϕc. From Eq. A.10 we can write ėRs
(Θ,Θ) as:

ėRs
(Θ,Θ) =

∫ +∞

0

j4π(ϕ− ϕc)FRs
(ϕ)dϕ. (A.11)

From Eq. A.2 and Eq. A.11 we can write ℜ{jėRs
(Θ,Θ)} in Eq. A.9 as:

ℜ{jėRs
(Θ,Θ)} = −

∫ +∞

0

4π(ϕ− ϕc)ℜ{FRs
(ϕ)}dϕ = 0

so Eq. A.4 is proved.



APPENDIX B

INERTIA OF A REGULAR ANTENNA

ARRAY

In this appendix we show that the inertia

in(ϕ) =

Mn
∑

m=1

r2n,m sin2(ϕ− ϕn,m) =

Mn
∑

m=1

r2n,m
2

(1 − cos[2(ϕ− ϕn,m)])

of an antenna array becomes independent of ϕ (i.e. omni-directional) if the array

is regular. As for regular arrays, rn,m = rRefn , ∀m, and ϕn,m = ϕn0 + 2(m−1)π
Mn

,
in(ϕ) becomes:

in(ϕ) =
r2Refn

2

{

Mn −
Mn
∑

m=1

cos

[

2

(

ϕ− ϕn0 −
2(m− 1)π

Mn

)]

}

.

Define S as:

S =

Mn
∑

m=1

{

cos

[

2

(

ϕ− ϕn0 −
2(m− 1)π

Mn

)]

+ i sin

[

2

(

ϕ− ϕn0 −
2(m− 1)π

Mn

)]}

.

The use of Euler’s formula leads to:

S = ei2(ϕ−ϕn0)
Mn
∑

m=1

e−i
4(m−1)π

Mn = ei2(ϕ−ϕn0)
1 − e−i4π

1 − e−i
4π

Mn

= 0 ,Mn > 2

where it has been taken into account that S is the sum of a geometric series.
Finally,

in(ϕ) =
Mnr

2
Refn

2
.
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APPENDIX C

FIM FOR JOINT TOA AND AOA

ESTIMATION IN MIMO SYSTEMS

In this appendix we give the expressions of the magnitudes Γω0

ṡ , Γω0

ṡ,s, I
ω0

ṡ , Iω0

ṡ,s,
Jω0

ṡ and Jω0

ṡ,s, that appear in the expressions of the elements of the FIM in
Eq. 5.60, Eq. 5.61 and Eq. 5.62 and that are neglected. We can show that:

Γω0

ṡ = 2
∑

n6=n′

X̂ω0

ṡnṡn′

Γω0

ṡ,s = 2
∑

n6=n′

X̂ω0

ṡnsn′

Iω0

ṡ = 2
∑

n6=n′

AnAn′X̂ω0

ṡnṡn′

Iω0

ṡ,s = 2
∑

n6=n′

AnAn′X̂ω0

ṡnsn′

Jω0

ṡ =
∑

n6=n′

(An +An′)X̂ω0

ṡnṡn′

Jω0

ṡ,s =
∑

n6=n′

(An +An′)X̂ω0

ṡnsn′

where

X̂ω0

ṡnṡn′
= ℜ

{

ejω0∆τn′,n
Xṡnṡn′

(∆τn′,n)

Esβ2
s

}

X̂ω0

ṡnsn′
= ℜ

{

jejω0∆τn′,n
Xṡnsn′

(∆τn′,n)

Esβs

}

.
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