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Abstract 

This article is motivated by the case of a company manufacturing industrial equipment that faces two 
types of demand: on the one hand there are the so-called regular orders for installations or refurbishing 
of existing facilities, these orders have a relatively long lead time; on the other hand there are urgent 
orders mostly related to spare parts when a facility has a breakdown, the delay in such case is much 
shorter but higher margins can be obtained. We study the order acceptance problem for a firm that 
serves two classes of demand over an infinite horizon. The firm has to decide whether to accept a 
regular order (or equivalently how much capacity to set aside for urgent orders) in order to maximize its 
profit. We formulate this problem as a multi-dimensional Markovian Decision Process (MDP). We 
propose a family of approximate formulations to reduce the dimension of the state space via 
aggregation. We show how our approach can be used to compute bounds on the profit associated with 
the optimal order acceptance policy. Finally, we show that the value of revenue management is 
commensurate with the operational flexibility of the firm. 
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1 Introduction

This article is motivated by the case of a cast iron manufacturer. This company is specialized
in the production of cast iron pieces for industrial equipments. Most of its orders are either for
the preventive maintenance of installations or for the building of new facilities. Such projects are
scheduled with long lead times, but it is very important that the pieces be delivered on time because
the plant where the pieces have to be installed will have to be (at least partially) stopped for the
maintenance or installation activities to take place and obviously the duration of such stoppage
should be minimized. A different type of orders received by the company corresponds to corrective
maintenance when a breakdown occurs in a plant, in those cases a new cast iron piece is needed to
restart the facility. Given that production at the customer is stopped because of the breakdown,
a much faster service is required but the company can charge higher prices for such “emergency”
orders. Moreover, the bargaining power of the customer is much weaker in such circumstances.
Given its finite production capacity, the company cannot always accept all orders and should
sometimes forego a regular order in order to keep some possibility to accept an urgent order later
on. This dilemma is faced by many suppliers confronted with urgent requests that are potentially
very profitable but could be very disruptive if not taken into account in their planning. Typical
examples from the service sector include heating ventilation air-conditioning (HVAC) companies.
The installation of new systems is typically a large project with a relatively long lead time. In
contrast, when a system fails it could block the operations of a customer that is then willing to
pay a higher fee for speedy action. In a very different context, suppliers of the fashion industry are
known to combine orders from large vendors and more profitable orders for high fashion clothes
which often require fast delivery (see e.g. Harris and Pinder, 1995; Barut and Sridharan, 2005). The
question facing the supplier is how much capacity should be set aside for the urgent high margin
demand, given the inherent unpredictability of this type of orders.

To address this question, we build a model with a supplier that handles two demand classes, that
we will refer to as regular and urgent respectively. The regular orders are typically characterized by
longer processing times, longer lead times but lower margins, while the urgent orders have shorter
processing times, shorter lead-times and higher margins. If the supplier accepts orders without
foresight it is likely that at some point, when an urgent order arrives, the supplier will be unable
to accept this order as her short term capacity is already entirely committed for regular orders
(that were booked earlier with a longer lead time). Given the difference in margin between the two
classes, this situation causes some loss of revenue. On the other hand, rejecting a regular order in
anticipation for potential urgent orders that do not materialize, also causes some revenue loss.

This tradeoff has clear similarities with other revenue management problems. The distinct
feature is that when an order is accepted the supplier keeps some flexibility. For example, if a
regular order necessitates 10 days of work and the lead time is 20 days, in most cases the customer
does not care about the days during which the order is effectively produced as long as it is finished
on time. In revenue management terms, if we consider that the capacity available during each
period is a distinct product, an order requiring more than one period of work is in fact reserving
several products. But the supplier has some flexibility in assigning the products to the order and
does not need to make a commitment at the time of reservation. One can draw a parallelism with
the network revenue management problem but where the supplier can accept a reservation without
committing to specific legs in the network, the only commitment is on the origin and destination
points in the network.

Our first contribution is to derive a Markov Decision Process (MDP) formulation of the problem.
Likewise for the network revenue management problem, the size of this formulation quickly excludes
the possibility of solving it exactly for larger size instances. We develop a family of approximate
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formulations parametrizable to range from a coarse approximation to the original full formulation.
This makes it possible to choose between speed of solution and precision of result. What is of
particular interest is that for each formulation, we can compute an upper and lower bound on
the exact result. This last feature is rather uncommon for revenue management problems and is
particularly interesting to make sure the adequate level of approximation is chosen in the proposed
family of formulations. Through a numerical study we show that the proposed heuristics allow to
obtain near-optimal solutions in a tractable time.

A second contribution is to show how the potential benefit of revenue management is commen-
surate with operational flexibility. In our setting operational flexibility consists in the slack between
the promised lead time for an order class and the processing time needed for such order. To the
best of our knowledge, this link between flexibility and revenue management has not been studied
so far.

1.1 Related Literature

Our work belongs to the growing literature of Perishable Asset Revenue Management (PARM)
which deals with the problem of allocation of scarce resources to different demand classes. Talluri
and van Ryzin (2004) give a comprehensive overview of this topic. The first applications were
for the airline industry by Littlewood (1972), and extended by Belobaba (1987), Wollmer (1992),
and Brumelle and McGill (1993). In addition to airlines, typical service applications are in hotel
management and car rental (Kimes, 1989; Bertsimas and Popescu, 2003; Talluri and van Ryzin,
2004; Bitran and Mondschein, 1995; Geraghty and Johnson, 1997). Gradually, new applications
appeared for very different environments such as: MTO manufacturing (Balakrishnan et al., 1996;
Barut and Sridharan, 2005; Spengler et al., 2007), project management (Herbots et al., 2007, 2010)
and health care (Gupta and Wang, 2008; Dobson et al., 2011). A noteworthy example is Kapuscinski
and Tayur (2007) that propose a dynamic programming approach to address the problem of lead-
time quotation for multiple demand classes when customers are not equally sensitive to waiting.
Once the lead time is quoted, enough capacity must be reserved to ensure on-time delivery. In
contrast, our work considers the lead-time decisions as exogenously given and it focuses on order
acceptance decisions.

Gupta and Wang (2007) consider an acceptance decision problem in which the lead time of
urgent orders is a soft operational constraint. The authors formulate the problem by assuming
that a tardiness cost is incurred if the orders are not filled at the end of each period. The authors
propose a multi-dimensional MDP whose optimal solution turns out to be a threshold based policy.
This solution property is a consequence of the well-structured value function that describes the
problem. In contrast to their work, we consider the order lead time of both demand streams as
hard operational constraints, in other words, tardiness is not allowed.

The following references focus on acceptance decision problems where the lead times must be
strictly respected. Germs and Foreest (2011) study an order acceptance problem with multiple
customer classes with a common deadline, setup times and scheduling constraints. The problem
is modelled as a Markov chain controlled by a threshold policy. The authors provide a numerical
study for small instances which are computationally tractable. In contrast to their work, we provide
efficient alternative methods to treat the state space explosion. Barut and Sridharan (2005) study
an order acceptance problem involving multiple demand classes that differ in terms of price, lead
time and demand pattern. The authors propose a nested rationing policy which fulfils incoming
orders as much as possible while preserving a certain level of capacity for more profitable future
orders. The proposed policy is computed using a myopic heuristic method, that does not take the
evolution of the capacity into account. Consequently, the efficiency of the heuristic is hurt by the
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simplified estimation of the future available capacity. Our formulation keeps track more accurately
of the capacity evolution for this type of problem, leading to highly efficient policies.

Our work is closely related to the approximate dynamic programming literature, where the aim
is to reduce the computation time required to solve large instances of dynamic problems. For a
comprehensive review of the different existing techniques refer to Powell (2011). Specifically, several
studies introduce state aggregation techniques in order to deal with the ”curse of dimensionality” for
problems involving decisions over an infinite horizon (see e.g. Bean et al., 1987; Alden and Smith,
1992). The solution procedures provided in these studies suppose a finite rolling horizon whose
length is a parameter which controls a trade-off between the optimality and the computation time.
Thus, the optimal solution for the finite horizon is computed, implemented, and then the process is
repeated for the next period. In this paper, we apply aggregation techniques for a problem of order
acceptance when customer classes differ in their lead times. We aggregate some information of the
states of the system within the lead time window of the incoming orders. Thereby, the infinite
horizon problem is solved, but the state space of the problem is reduced.

There are some similarities with the network revenue management problem where the dimension
of the MDP models quickly make it impossible to solve exactly even small size problems. Con-
sequently, research in this area has concentrated on different approximation techniques, notable
examples of this stream of investigation include Bitran and Mondschein (1995); Talluri and van
Ryzin (1998); Bertsimas and Popescu (2003); Adelman (2007); Kunnumkal and Topaloglu (2008);
Zhang and Adelman (2009); Zhang (2011). The flexibility aspect present in the problem studied
here calls for different types of approximations.

The remainder of the paper is structured as follows. In Section 2 we provide a detailed descrip-
tion of our problem. We introduce an MDP formulation and discuss its resolution to obtain the
optimal admission policy in Section 3. In Section 4 we propose two heuristic formulations of the
problem based on different levels of state aggregation and report on a numerical study of our pro-
posed formulations in Section 5. Section 6 investigates the impact of operational flexibility on the
benefit of revenue management. Finally, Section 7 summarizes the main conclusions and identifies
future research directions.

2 Model Description

We consider the order acceptance problem for a firm serving two customer classes with different
profit margins and lead times. The time horizon is infinite and consists of discrete periods. In each
period, the firm is subject to a limited processing capacity, which is normalized to 1.

We consider that all uncertainty about the processing time is known when the order is placed.
This assumption is motivated by two reasons: on the one hand, in practice most uncertainty is
resolved during the ordering process; on the other hand, if the remaining uncertainty is too large it
is not possible to promise due dates without either large safety lead times or a low utilization. In the
cases that motivated our work, we observed that the remaining processing time uncertainty after
the order is placed is dealt with using some type of recourse action such as overtime or renegotiation
of the due-date. These recourse actions play only a secondary role in the management of capacity
and are beyond the scope of our investigation.

The two classes of demand will be denominated, urgent and regular orders (indexed by k =
{1, 2}, respectively). The demand (in terms of processing time) for class k at time t will be denoted
Dkt. We suppose the random variables take integer values and are iid between time periods and
independent between classes. If Dkt = 0 there is no demand for class k in period t. The profit
margin per unit capacity of a class k customer is rk and its lead time is Lk. Urgent orders are more

3



lucrative but come with a short lead time, while regular orders are not as profitable, yet have a
looser lead time. Accordingly, we assume r1 > r2 > 0 and L1 < L2. Figure 1 shows the structure
of the problem. We suppose that only a single order of each class can arrive during any period t,
this means that the demand Dkt cannot be partially accepted, the firm either accepts the order and
hence commits to deliver the order before its due date or declines the order and gets no revenue.

Figure 1: Partition of Lead Time Window of Regular Demand.

Consequently, the main decision faced by the firm is how many regular orders to accept in order
to maximize its long-run net profit. In each period, the sequence of events is as follows. A regular
order, if any, arrives first, and the firm decides whether to accept it or not. Then, an urgent order,
if any, arrives, it will be accepted as long as there is enough available capacity. Finally, the firm
uses the capacity in the current period for processing the order with the earliest due date. In fact,
the sequence of arrivals does not matter; one can assume that the urgent order arrives before the
regular order, or both arrive simultaneously, without complicating the model.

In the remainder of the paper we will assume a somewhat simpler structure for the demand.
We assume

Dkt =

{
0 with probability 1− pk
Bk with probability pk

This simplifies the notations in the following sections and our numerical tests indicate that the
distribution of the demand has no qualitative impact on our results.

3 MDP Formulation for the Optimal Steady-State Policy

The crux of developing the MDP formulation of this problem is to find an efficient representation of
the usage of future capacity. Our representation builds on the idea that when an order is accepted,
some future capacity will be “reserved”. By reservation we mean the provisional allocation of
capacity to meet the requirements of an accepted order on time. The reservation consists of
allocating provisionally the available capacity of the latest periods to process an order without
incurring tardiness. This gives the maximum flexibility to accept the future orders. Note that,
the allocation is provisional because the firm may start processing earlier the order if there is no
order to deliver before this one. When an order is (partially) processed before its provisionally
allocated time slot, some capacity is freed to process future orders. For example, when accepting
an order with a lead time of 5 and an order size of 2, the capacity of 4th and 5th periods from the
current period shall be reserved (provided that they are available for reservation), but this capacity
reservation could change in the next 4 periods if there is no order with an earlier due date.

To reserve capacity for coming orders, the firm needs to calculate the total available capacity for
reservation within the lead time windows of regular and urgent orders. Since the lead time window
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of urgent orders is contained in that of the regular orders, it suffices to calculate the total available
capacity within L1 periods, and that between (L1 + 1)th and L2th periods, i.e. Interval I and
Interval II of Figure 1, respectively. However, this aggregate information cannot fully characterize
the evolution of the system. Note that the (L1 + 1)th period, (i.e., the first period of Interval
II), will be shifted by one period and thus become the L1th period in the next period, (i.e., the
last period of Interval I). Without the information regarding how reserved capacity is distributed
in Interval II, it is impossible to know whether the shifted capacity is reserved or not in order to
update the available capacity in Interval I and II in the next period. Therefore, it is necessary to
keep a track of the distributional information in Interval II, but only of aggregate information in
Interval I.

We now introduce the notation to be used in our formulation.

• x: is the reservation vector, it keeps track of capacity that has been reserved for processing;
x[0] ∈ {0, 1, . . . , L1} denotes the total reserved capacity till L1th period, (i.e., in Interval I).
For j = 1, 2, . . . , L2−L1, x[j] = 1 if the capacity of (L1 +j)th period is reserved, and x[j] = 0
otherwise. Note that in a reservation vector we do not distinguish whether the capacity is
reserved for urgent orders or regular orders.

• y: is the cumulative (available capacity) vector1 of x; for j = 0, 1, . . . , L2 − L1, y[j] denotes
the total available capacity till the (L1 + j)th period, i.e., y[j] = L1 + j −

∑j
i=0 x[i]. For a

given cumulative vector y, its corresponding reservation vector x can be calculated as follows:
x[0] = L1 − y[0], and for j = 1, 2, . . . , L2 − L1, x[j] = y[j − 1]− y[j] + 1.

• a: represents the admission decision for regular orders; a = 1 if the firm “admits” the regular
order, and a = 0 otherwise.

• D ≡ (D1, D2): is the demand vector in each period.

• R(x,D, a): denotes the profit generated from D for a given admission decision a, if the
reservation vector at the beginning of the current period is x.

We define the system state as the reservation vector x at the beginning of a period, before
the arrival of regular and urgent orders. It is easy to check that x[L2 − L1] = 0 for any system
state, because the last element of the system state cannot be reserved by orders that arrived in
earlier periods. Thus, the system state space essentially involves L2 − L1 variables and its size is
(L1 + 1) · 2L2−L1−1. Let x̃ be the reservation vector updated from x after accepting/rejecting D2.
Additionally, let x̂ be the system state in the next period, this is the reservation vector updated
from x̃ after accepting/rejecting D1 and processing, if any, is carried out in the current period.
Further, let ỹ and ŷ be the corresponding cumulative vectors of x̃ and x̂, respectively. Thus, x̂ and
ŷ are functions of x, D and a: x̂ = x̂(x,D, a), ŷ = ŷ(x,D, a). According to the average reward
criteria (Ross 1995, Chapter 5), we provide the dynamic programming formulation as follows,

V (x) + g = ED

{
max
a
{R(x,D, a) + V (x̂(x,D, a))}

}
,∀x, (1)

1y is introduced to facilitate the notations related to transitions between system states, which are composed of
reservation vectors. There is a one-to-one correspondence between a reservation vector and its cumulative vector.
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together with the dynamics described by equations (2)-(7),

ỹ[j] =

{
y[j]− (D2 − (y[L2 − L1]− y[j]))+ , if a = 1 and y[L2 − L1] ≥ D2,

y[j], otherwise,
(2)

for j = 0, 1, , . . . , L2 − L1,

ŷ[j] =

{
min {ỹ[j + 1]−D1, L1 + j} , if ỹ[0] ≥ D1,

min {ỹ[j + 1], L1 + j} , otherwise,
(3)

for j = 1, 2, . . . , L2 − L1 − 1,

ŷ[L2 − L1] = ŷ[L2 − L1 − 1] + 1, (4)

R(x,D, a) = R1(x̃, D1) +R2(x, D2, a), (5)

R2(x, D2, a) =

{
r2 ·D2, if a = 1 and y[L2 − L1] ≥ D2,

0, otherwise,
(6)

R1(x̃, D1) =

{
r1 ·D1, if ỹ[0] ≥ D1,

0, otherwise.
(7)

In the solution of Equation (1), g represents the steady state expected profit per period. Equa-
tions (2)-(4) characterize the transition between system states x and x̂, with the help of their
corresponding cumulative vectors y and ŷ. Specifically, Equation (2) describes how y is updated
to ỹ, and Equations (3)-(4) further describe how ỹ is updated to ŷ. When updating the system
state, all accepted orders are scheduled in the reservation vector as late as possible within their lead
time windows to allow for maximal flexibility to process the orders. Equations (5)-(7) calculate the
profit generated during transitions. Specifically, R1(x̃, D1) represents the profit from urgent orders
and R2(x, D2, a) represents the profit from regular orders.

Example 1. Consider an instance with the following parameters: L1 = 4, L2 = 8, B1 = 2, B2 = 3.
Suppose the reservation vector at the beginning of current period is x = [2, 0, 1, 1, 0], meaning there
are 2 units of capacity reserved in Interval I and 2 units reserved in Interval II, totaling 4 units of
available capacity for fulfilling regular orders. If a regular order arrives (D2 = B2 = 3), and the
decision is to accept it, 1 unit of available capacity in Interval I and 2 units in Interval II will be
reserved for processing the order, and the reservation vector will be updated to x̃ = [3, 1, 1, 1, 1] or
ỹ = [1, 1, 1, 1, 1] (equation (2)). However, this leaves with only 1 unit of available capacity within
the lead time window of urgent orders, (i.e., ỹ[0] = 1) and therefore, there is not enough room to
accommodate any urgent order (since B1 = 2). Finally, the capacity of current period is used to
process one unit of order in Interval I, and one unit of reserved capacity is shifted from Interval II
into Interval I. Therefore, the reservation vector observed at the beginning of next period becomes
x̂ = [3, 1, 1, 1, 0] or ŷ = [1, 1, 1, 1, 2] (equations (3) and (4)).

Linear programming (LP) is a common approach for solving MDP problems (Ross 1995, Chapter
5). To see how it tailors to our problem, optimality condition (1) can be easily transformed into a
pair of linear inequalities. Thus, we have the following LP model that is equivalent to (1).

max g (8)

s.t. V (x) + g ≤ ED {R(x,D, 1) + V (x̂(x,D, 1))} ,∀x, (9)

V (x) + g ≤ ED {R(x,D, 0) + V (x̂(x,D, 0))} ,∀x. (10)

The variables in the LP formulation are {V (x)} and g, and thus the formulation contains (L1 +
1) · 2L2−L1−1 + 1 variables and (L1 + 1) · 2L2−L1 constraints.
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The optimal admission policy is derived from the dual problem of (8)-(10). Let λ∗(x, a) be the
optimal dual variables associated with constraints (9)-(10). Define I∗ = {x|λ∗(x, 1) + λ∗(x, 0) ≥ 0}
and I

∗
= {x|x 6∈ I∗}. An optimal stationary admission policy a∗(x) is given by: for x ∈ I∗,

a∗(x) =

{
1, if λ∗(x, 1) > λ∗(x, 0),

0, otherwise;
(11)

for x ∈ I∗, the optimal decisions are arbitrary, meaning the firm can either accept or reject regular
orders in these states.

4 State Reduction Heuristics

The formulation described in Section 3 leads to an optimal steady-state policy for accepting/rejecting
regular orders. However, solving the LP formulation becomes prohibitively hard when L2 − L1 is
large, because the number of variables and constraints increases exponentially in L2 − L1. For
example, if L1 = 5 and L2 = 25, the resulting formulation has 3,145,729 variables and 6,291,456
constraints. Despite the striking efficiency of state-of-art LP solvers, problems with such level of
complexity cannot be solved in a reasonable amount of time. Thus, we seek to develop more efficient
heuristics.

The complexity of the formulation is largely related to keeping track of the distributional in-
formation in Interval II. To reduce the complexity, one plausible idea is to somehow aggregate the
distributional information in Interval II, so that the MDP formulation can be reduced to involve
fewer variables. The reduced formulation can then be used to generate heuristic policies.

We start with the Full Aggregation Heuristic (FAH) that completely ignores the distributional
information in Interval II. Though being extremely fast, the FAH does not always achieve near-
optimal solutions. Consequently, we propose the Partial Aggregation Heuristic (PAH) which keeps
the most “important” distributional information intact while aggregating the rest in Interval II. A
major advantage of this approach is that one can easily control the tradeoff between computation
efforts and optimality.

4.1 Full Aggregation Heuristic

We propose a new MDP formulation based on aggregate reservation vectors as opposed to reser-
vation vectors in the original formulation. For a reservation vector x, we define its corresponding
aggregate reservation vector as xf = (xf [0],xf [1]), in which xf [0] = x[0] and xf [1] =

∑L2−L1
j=1 x[j],

i.e., xf [0] corresponds to the total reserved capacity in Interval I, and xf [1] corresponds to that
in Interval II. Note that there can be multiple reservation vectors mapping to the same aggregate
reservation vector. Further, we define yf = (yf [0],yf [1]) as the aggregate cumulative vector, in
which yf [0] = L1−xf [0] and yf [1] = L2−xf [0]−xf [1], i.e., yf [0] (respectively yf [1]) corresponds
to the total available capacity in the lead time window of urgent (respectively regular) demands.
The one-to-one mapping between an aggregate reservation vector and its aggregate cumulative
vector still holds.

The new system state is defined as the aggregate reservation vector in the beginning of a period,
and therefore only involves two dimensions. One way to think of the new system state is that each
one groups multiple system states in the original formulation into a “super state” (Figure 2),
resulting in a significantly shrunk state space. In other words, the size of the aggregated state
space is reduced from (L1 + 1) · 2(L2−L1−1) to (L1 + 1) · (L2 − L1).
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Figure 2: The New System States Defined by “Super States”. This illustrative example shows the
states whose first element is 1 for an instance in which L2 − L1 = 4.

Then we characterize how one new system state transits to another for a given admission
policy a and demand pattern D under the new state space. Note that transitions triggered by
accepting/rejecting demands and processing can be easily characterized, but there is one step of
transition that cannot be properly defined due to the aggregation, that is, how the aggregated
reservation vector at the end of one period evolves to the one at the beginning of the next period.
As discussed previously, without distributional information in Interval II, it is impossible to decide
whether the shifted unit of capacity is reserved or not. To address this issue, we heuristically
account for the transfer of capacity based on assumptions regarding how the reserved capacity is
distributed in Interval II. We consider three scenarios as follows.

• Optimistic scenario. Assuming that all reserved capacity in Interval II (excluding the
last unit) are distributed as late as possible, the shifted unit of capacity is reserved only
if Interval II (excluding the last unit) is “full”, i.e., all the capacity in this area has been
reserved. “Optimistic” refers to the fact that the assumption results in an overestimation of
the available capacity in Interval I.

• Pessimistic scenario. Assuming that all reserved capacity in Interval II (excluding the
last unit) are distributed as early as possible, the shifted unit of capacity is available only if
Interval II (excluding the last unit) is “empty”, i.e., none of the capacity in this area has been
reserved. “Pessimistic” refers to the fact that the assumption results in an underestimation
of the available capacity in Interval I.

• Realistic scenario. Assuming that all reserved capacity in Interval II (excluding the last
unit) are distributed uniformly, the shifted unit of capacity is reserved with a probability, de-
fined as the proportion of reserved capacity in Interval II (excluding the last unit). “Realistic”
refers to the fact that the assumption accounts for distribution in this area in a probabilistic
way, resulting in a less extreme estimation than the other two scenarios.

These assumptions do not deal with the last unit of capacity in Interval II, because whether it
is reserved or not can be explicitly characterized without introducing additional dimensions: it is
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always available at the beginning of one period, and it will become reserved whenever some regular
demand is accepted in the current period.

Let x̃f , x̂f , ỹf and ŷf be the aggregate version of vectors x̃, x̂, ỹ and ŷ, respectively. In
addition, we define yf as the aggregate cumulative vector after accepting/rejecting urgent orders
but before processing is carried out, i.e. yf serves as an intermediary between ỹf and ŷf . We
characterize the transition between xf and x̂f as follows.
Accepting/rejecting a regular order:

(ỹf [0], ỹf [1]) =

{
(yf [0]− (D2 − (yf [1]− yf [0]))+,yf [1]−D2), if a = 1 and yf [1] ≥ D2,

(yf [0],yf [1]), otherwise.
(12)

Accepting/rejecting an urgent order:

(yf [0],yf [1]) =

{
(ỹf [0]−D1, ỹf [1]−D1), if ỹf [0] ≥ D1,

(ỹf [0], ỹf [1]), otherwise.
(13)

Processing and updating to the next period:

(ŷf [0], ŷf [1]) =

{
(min{yf [0], L1 − 1},min{yf [1] + 1, L2}), with probability π

(min{yf [0], L1 − 1}+ 1,min{yf [1] + 1, L2}), with probability 1− π.
(14)

in which the value of π is contingent on whether the last unit of capacity in Interval II is reserved
or not. Some additional notation follows: let ψ be the total available capacity in Interval II after
processing, i.e., ψ = yf [1] − min{yf [0], L1 − 1}. Next, we discuss the value of π in the different
cases.
Case 1: ỹf = yf (the last unit of capacity in Interval II is available)

• In the optimistic scenario, if ψ = 1, then π = 1; otherwise, π = 0.

• In the pessimistic scenario, if ψ 6= L2 − L1, then π = 1; otherwise, π = 0.

• In the realistic scenario, π = 1− ψ−1
L2−L1−1 .

Case 2: ỹf 6= yf (the last unit of capacity in Interval II is reserved)

• In the optimistic scenario, if ψ = 0, then π = 1; otherwise, π = 0.

• In the pessimistic scenario, if ψ 6= L2 − L1 − 1, then π = 1; otherwise, π = 0.

• In the realistic scenario, π = 1− ψ
L2−L1−1 .

Figure 3 shows an example of how an aggregated reservation vector evolves in different scenarios.
In this example, L1 = 2 and L2 = 7, the aggregated reservation vector at the end of one period, (i.e.,
the one after accepting/rejecting demands and processing) is (1, 3). Assuming some regular demand
is accepted in this period, the last unit in Interval II is reserved. In the optimistic scenario, the
shifted unit of capacity is available because the Interval II (excluding the last unit) is not full, and
thus the aggregated reservation vector at the start of next period is ŷf = (1, 3); in the pessimistic
scenario, the shifted unit is reserved, leading to ŷf = (2, 2); in realistic scenario, with probability
π = 2/4 = 0.5, the shifted unit is reserved, leading to ŷf = (2, 2), and with probability 1−π = 0.5,
the shifted unit is available, leading to ŷf = (1, 3).
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Figure 3: Transition of Aggregated Reservation Vectors Between Two Periods.

The profit generated in each aggregated state can be defined in a similar fashion as in (5)-(7),
and a new MDP formulation can be further obtained from optimality equation (1) by replacing
the system states with their aggregated versions. For simplicity, we omit their representations.
We can still use LP to solve the new MDP formulation, which is much smaller than the original
formulation, as we already showed.

Finally, once an optimal admission policy for the new MDP is obtained, a heuristic policy can
be constructed in the following way: for each aggregate state, apply its admission decision to all
the corresponding states in the original formulation.

4.2 Partial Aggregation Heuristic

The lack of accuracy in characterizing the transitions between aggregate states sometimes leads
to significant profit gaps in comparison with the optimal profit, as we will show in the numerical
experiments. We wonder whether a more precise characterizing of the distributional information in
Interval II could improve the performance of the heuristic. We propose a generalized heuristic, the
PAH, that partially aggregates the distributional information in Interval II. Specifically, we split
Interval II into two parts: (i) Sub-Interval II-A, where the distributional information is precisely
tracked, and (ii) Sub-Interval II-B, where the distributional information is fully aggregated. Figure 4
shows an example of reservation vectors for different levels of aggregation.

However, we face the same issue as in the full aggregation case, that is, how to account for
the transfer of capacity between Sub-Interval II-A and Sub-Interval II-B. Again, we address this
issue by heuristic approaches in which the reserved capacity in Sub-Interval II-B is distributed
according to the pessimistic, realistic and optimistic scenarios as described in Section 4.1. The
MDP formulation is derived in the same way; for simplicity, we omit their presentation.

Let z ∈ {0, . . . , L2 − L1 − 1} be the number of periods in Sub-Interval II-A, hereafter referred
to as the disaggregation level. This parameter controls the tracking accuracy of the distributional
information in Sub-Interval II-A: if z = 0, the resulting formulation is actually identical to the full
aggregation; if z = L2−L1−1, the resulting formulation coincides with the one without aggregation
that provides the optimal steady-state policy. For a given disaggregation level z, the size of the
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Figure 4: An Example of Reservation Vectors for Different Levels of Aggregation.

resulting state space is (L1 + 1) · (L2 − L1 − z) · 2z, obviously more disaggregation leads to greater
computational efforts. Moreover, we have the following results comparing the optimal profits for
different partially aggregated MDP formulations.

Proposition 1. Let g∗o(z), g
∗
p(z) and g∗r (z) be the optimal expected profit obtained by solving the

partial aggregation model with a level of disaggregation z for the optimistic, pessimistic and realistic
scenarios, respectively. We have

g∗p(z) ≤ {g∗r (z), g∗} ≤ g∗o(z),∀z,

and g∗o(z) and g∗p(z) are non-increasing and non-decreasing with z, respectively.

Proof. The proof is based on two facts: (i) it is always feasible to shorten the lead times of
the already accepted orders given that there is available capacity in earlier periods, and (ii) for
any aggregate state, the pessimistic scenario implies shorter lead times for already accepted orders
than the realistic scenario, which further implies shorter lead times than the optimistic scenario.
Therefore, any transition between two aggregate states of scenarios implying shorter lead times can
also be achieved with scenarios implying more relaxed lead times. Consequently, for any sample
path for the formulation of scenarios implying shorter lead times, we can obtain an identical sample
path that provides the same profit with more relaxed scenarios. Thus, the profit for the formulation
of the optimistic scenario is at least as large as the profit for the formulation of the realistic scenario,
which is further at least as large as the profit for the formulation of the pessimistic scenario. The
same logic can be applied for proving the monotonicity property of g∗o(z) and g∗p(z), i.e., more
aggregation implies shorter (longer) lead times for the pessimistic (optimistic) scenario. �

Proposition 1 indicates that g∗p(z) and g∗o(z) are the lower and upper bounds for g∗r (z) and g∗,
but g∗r (z) and g∗ are not directly comparable. It also shows that the proposed bounds get tighter
as the level of disaggregation z increases.

5 Numerical Results

In this section we investigate the actual performance of the policies presented above, more specifi-
cally we analyze:

• the computation time required to obtain an acceptance policy with the different formulations.
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• the relative profits obtained with the FAH, the PAH, the optimal steady-state policy and two
benchmark policies often cited in the literature: the First-Come-First-Served (FCFS) policy
and the protection level based (PLB) policy (see Section 5.3 for a detailed description of this
policy).

• the tightness of the bounds on the profit derived for the FAH and the PAH.

In order to answer those questions, we first compute the heuristic acceptance policies and the
optimal policy for the instances small enough to do so. We then simulate the different heuristic
policies in order to determine their performance in terms of average gain per period. Indeed,
although the gains g∗o(z) and g∗p(z) computed for the optimistic and pessimistic policies constitute
upper and lower bounds on the optimal gain, the actual gains achieved by those policies – as well
as the other policies – cannot be determined from the Markov Decision Process.

We simulate the long-run net profit for an acceptance policy by generating demand realizations.
The simulation consists of an initial warm-up interval of 100,000 periods. Afterwards, the simulation
incorporates an additional 100,000 periods for which the accumulated net profit is recorded. We
repeat the process until the simulated net profit converges with a precision of 0.001%. We denote
ĝf and ĝm the simulated long-run net profit achieved by the FCFS and the PLB policies, and ĝo(z),
ĝp(z) and ĝr(z) the simulated long-run net profit achieved by the PAH with a disaggregation level
z assuming the optimistic, pessimistic and realistic scenarios, respectively. Note that the gain of
the optimal steady-state policy is given directly by the solution of the Markov Decision Process,
its value is equal to g∗.

The Markov Decision Process is solved by formulating it as linear program that is solved using
the Gurobi 4.6.1 software. The Acceptance policy simulation routine was implemented in the Java
language. The computer used was a 6-Core Intel Xeon 2× 2.66 GHz with 48 GB of RAM.

In the following subsections we introduce certain characteristics of the demand classes that we
used to generate instances of the problem (Section 5.1). Afterwards, we describe the results of
three studies: (1) the computation time for the construction of an acceptance policy for different
instances (Section 5.2); (2) the profits achieved by the optimal steady-state policy, the FCFS and
the PLB policies, and the aggregation heuristics (see Section 5.3 and Section 5.4 for the FAH and
the PAH, respectively); (3) the profits of the FAH and the PAH for large instances where the
optimal steady-state policy cannot be computed (Section 5.5).

5.1 Experiment Settings

The instances we generated are characterized by the following attributes:
Profit structure (ρ). It represents the ratio between the net profits of both demand classes,

i.e. ρ = r2/r1. Without loss of generality, the value of r1 is normalized to 1, so the value of r2 is
obtained directly from ρ. In our experiment we test the following values for ρ ∈ {0.25, 0.50, 0.75}
in order to explore high, moderate and low differences in the profit structure, respectively.

Lead-time structure L1 and L2. We investigate two aspects of our model that depend on the
values of L1 and L2. On the one hand, it is clear from the formulation of our model that the
computational complexity is closely related to the difference between L1 and L2. On the other
hand we will see that L1 influences the performance of the different policies.

Order size structure B1 and B2. The sizes of the orders determine the operational flexibility
when an order is accepted. We also did some tests with stochastic order sizes, we do not report
on this here as the results do not really differ from the deterministic case. The only difference is
larger computation times, as a result the computation of the optimal policy is restricted to even
smaller instances.
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Demand structure (β). It is defined as the ratio between the expected demand rates of both
classes, i.e. β = (p1 ·B1)/(p2 ·B2). We study how this ratio impacts the performance of the proposed
formulations. We chose the following values of β ∈ {1/2, 2/3, 1, 3/2, 2/1} (i.e. the expected demand
of one class is 100% or 50% greater than the other, or the expected demand rates of both classes
are equal).

Global demand rate (τ). It corresponds to the total expected demand for both classes per
period i.e. τ = p1 · B1 + p2 · B2. We focus in scenarios in which τ > 1, inasmuch as in these
scenarios the acceptance decision is most meaningful as some demand will have to be refused. If
τ < 1, the decision to not accept a demand is not very relevant. We chose the following values for
τ ∈ {1.2, 1.6, 2.0}

Note that, the values of p1 and p2 are functions of β, τ , B1 and B2. Their values will be derived
from these parameters.

5.2 Computation Times

In this section, we compare the average CPU times needed to calculate the optimal steady-state pol-
icy and the heuristic policies. We analyze the FAH and the PAH for the so-called realistic scenario,
which is the most demanding in terms of computation time among the three scenarios considered.
Note that, the PAH is tested for different values for the disaggregation level (z ∈ {2, 4, 6}). In this
experiment, we fix the order sizes to 1 because this leads to the longest computation times. Similar
insights can be obtained for any other combination of values of B1 and B2. As already explained,
the difference between lead times and their combinations have a direct impact on the size of the
state space of the system and, thus, the computation time. To explore this dependency we test
a wide range of values: L1 ∈ {1, 3, 5, 7} and L2 ∈ {13, 15, 17, 19}. For the other parameters, we
perform a full factorial experiment based on the different values presented in Section 5.1 (though
discarding the combinations that result in p1, p2 > 1). In total this experiment consisted of 342
instances.

Table 1 shows the average CPU times and the size of the system state space for each combination
of L1 and L2. We observe that the time needed to find the optimal steady-state policy increases
very quickly when the difference between L2 and L1 increases. In fact, for L2 − L1 ≥ 15 we could
not determine the optimal order acceptance policy.

5.3 Efficiency of the FAH

We compare the efficiency of the FAH with the optimal steady-state policy, the FCFS and the
PLB policies by measuring their relative profits. We also compare the quality of the FAH under
each of the three scenarios. In order to compare the efficiencies we compute the optimality gap of
an acceptance policy constructed by the heuristic i as follows Gapi = (g∗ − ĝi)/g∗ × 100%. Note
that the FAH is represented by i = {o(0), p(0), r(0)} and the FCFS and PLB policy by i = {f,m},
respectively.

The protection level based (PLB) policy applied in this paper is an adaptation of the well-known
revenue management approaches that divide the available capacity into two portions: protected
(reserved for the high net-profit class) and unprotected (used for both classes). These approaches are
commonly applied for the finite-horizon problems. If they are directly implemented over an infinite
horizon, the construction of the policy is computationally as intensive as the construction of the
optimal steady-state policy. Therefore, in order to reduce the complexity of the existing approaches
while at the same time capturing their essence we implement a myopic method which determines the
amount of protected capacity q that maximizes the expected net profit within L2. This corresponds
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Table 1: Average CPU Time and Dimension of the State Space of the System for the Optimal
Steady-State Policy, the FAH and the PAH Under the Realistic Scenario.

Average CPU (seconds) Size
PAH PAH

L2 L1 Optimal FAH z = 2 z = 4 z = 6 Optimal z = 6

13 1 2.55 0.00 0.01 0.02 0.17 4, 096 768
13 3 2.99 0.00 0.01 0.06 0.38 2, 048 1, 024
13 5 0.26 0.00 0.01 0.06 0.20 768 768
13 7 0.03 0.00 0.01 0.03 − 256 −
15 1 194 0, 00 0.01 0.03 0.30 16, 384 1, 024
15 3 22 0.00 0.01 0.10 1.02 8, 192 1, 536
15 5 10 0.00 0.02 0.14 1.20 3, 072 1, 536
15 7 0.47 0.01 0.02 0.12 0.39 1, 024 1, 024

17 1 ∗ 0.00 0.01 0.05 0.51 65, 536 1, 280
17 3 ∗ 0.00 0.02 0.16 2.11 32, 768 2, 048
17 5 105 0.01 0.03 0.28 1.72 12, 288 2, 304
17 7 8 0.01 0.03 0.29 3.03 4, 096 2, 048

19 1 ∗ 0.00 0.01 0.06 0.73 262, 144 1, 536
19 3 ∗ 0.00 0.02 0.24 2.45 131, 072 2, 560
19 5 ∗ 0.01 0.04 0.44 3.24 49, 152 3, 072
19 7 1, 015 0.01 0.05 0.54 3.52 16, 384 3, 072

“∗” symbolizes instances for which the optimal steady-state policy cannot
be obtained in 1 hour and “−” represents the cases where the PAH is
equivalent to the optimal policy because z ≥ L2 − L1 − 1.

to the approximations used in the literature see e.g. Barut and Sridharan (2005). The expected net
profit within L2 is computed with the following expression: r1 · E[min(D̄1,max(q, y[L2]− D̄2))] +
r2 · E[min(D̄2, y[L2] − q)], where the random variable D̄i represents the amount of demand of
class i during L2 periods. The PLB policy consists in protecting the capacity q that maximizes the
previous expression.

In order to evaluate the efficiency of the proposed policies with respect to the optimal steady-
state policy, we fix L2 = 15 and L1 ∈ {3, 7}. Under this setting the optimal steady-state policy
can be obtained within a tractable time. In order to capture the full essence of different degrees
of heterogeneity in demand classes, we consider the following values of order sizes: B1 ∈ {1, 3, 5, 7}
and B2 ∈ {3, 5, 7, 9} (note that for L1 = 3 B1 ∈ {1, 3}). For the other parameters we do a full
factorial experiment based on the values presented in Section 5.1. In this experiment, our analysis
is based on 984 instances (the instances with p1, p2 ≥ 1 are discarded).

Table 2 reports on the average optimality gaps for the two values of L1. The average optimality
gap of the FAH is lower than that of the FCFS and the PLB policies. There is also a significant
difference between the different implementations of the FAH (realistic, pessimistic and optimistic).

The lowest average optimality gap of the FAH is achieved with the realistic scenario. The
strength of the realistic scenario lies in the balance between the excess of protection of capacity
for high profitability orders (pessimistic scenario) and the assumption of maximum flexibility for
processing incoming orders (optimistic scenario).

The results also reveal that the PLB and FAH tend to perform a bit better when L1 is larger.
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Table 2: Average Optimality Gap of the FCFS, the PLB Policy and the FAH Under the Three
Scenarios for the Two Values of L1.

FAH
FCFS PLB Optimistic Pessimistic Realistic

L1 = 3 12.92% 7.27% 5.00% 1.90% 0.45%
L1 = 7 13.52% 5.13% 4.98% 0.57% 0.36%

Overall 13.33% 5.81% 4.99% 0.99% 0.39%

We also study the reliability of the different policies when the values of the parameters vary.
Figure 5 shows the dispersion of the optimality gap of the analyzed methods. The limits of each
box represent the first and third quartiles of the measured gaps. The central line corresponds
to the mean result. Finally, the bottom and top whiskers represent the fifth and the ninety-fifth
percentiles of the optimality gaps. In addition to the advantages achieved in terms of the average
optimality gap, the implementation of the FAH with the realistic scenario provides the most reliable
performance.

Figure 5: Dispersion of the Optimality Gap of Different Heuristic Methods and Distributional
Scenarios for the FAH.

5.4 Efficiency of the PAH

Despite the excellent overall performance of the FAH with the realistic scenario, the optimality
gap remains significant for 9.76% of the instances generated (Gapr(0) ≥ 1%). For these instances,
we study how the systematic disaggregation of information related to already accepted orders can
improve the quality of the acceptance policies found. For this, we calculate Gapr(z) for z ∈ {1, 6}.
The average values of Gapr(z) are displayed in Figure 6. The optimality gap of the PAH decreases
rapidly as the value of z grows. In particular, we note from Figure 6 that when z increases from
0 to 4, the average gap decreases from 1.54% to 0.73% when L1 = 3 and from 2.05% to 0.17%
when L1 = 7. Thus, the optimality gap of the FAH is greatly reduced while the computation time
remains small (see Table 1). Note that for the remaining 90.24% of the instances studied, the
average optimality gap is also improved when the value of z increases.
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Figure 6: Average Optimality Gap of the Acceptance Policies Under the Realistic Scenario for the
Instances with Gapr(0) ≥ 1% for Different Values of z and L1.

5.5 Efficiency of the FAH for Large Lead Times

As shown in Table 1 an advantage of the FAH and the PAH is to construct the policies in tractable
time even for instances for which the optimal steady-state policies cannot be obtained. In order to
evaluate the efficiency of the studied heuristics for these instances, we fix the value of L2 to be large
i.e. L2 = 29 while the other parameters take the same values as in Section 5.3. As a result our
experiments includes again 984 instances. We also compute the upper and lower bounds obtained
from Proposition 1.

The average net profits of the different policies are plotted as a function of z in Figure 7a and
Figure 7b for L1 = 3 and L1 = 7, respectively. We observe the following: first, the FAH and
the PAH with the realistic scenario significantly outperform the PLB policy. Second, the effect
of increasing z seems much stronger on the quality of the bounds than on the performance of the
realistic policy. For a vast majority of instances the disaggregation does not bring any significant
improvement. However, in a very similar fashion to Section 5.4, we observe that for the 10% of
instances with the worst performance for the FAH, the profit increased by at least 0.5% between
the PAH heuristic with z = 0 and z = 6. The average improvement for these instances is 0.781%.
This seems to indicate that the main usefulness of the PAH is to give the possibility of controlling
the quality of the proposed solution.

6 Operational Flexibility

In the previous section, we illustrated the efficiency of the proposed algorithms for a large set
of instances. Here, we try to gain some further insight into the circumstances where revenue
management would have the most significant impact. We will focus on instances following the
pattern of the cases that motivated our work (namely, a class of urgent orders with relatively low
demand and a class of regular orders with longer lead times and lower revenues).

Unsurprisingly, we observe in Figure 8 that the benefit of revenue management is strongly
correlated with the intensity of demand. The more interesting observation is that the potential
benefit of revenue management compared to the FCFS policy increases with the difference between
L2 and B2. This means that the advantage of revenue management is larger when there is more
flexibility in processing orders of class 2. Note that, the effect of the flexibility for orders of class 1
is more limited.
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(b) L1 = 7.

Figure 7: Effect of Disaggregation of the Information on the Average Long-Run Net Profits Achieved
with Different Policies for the Large Lead Time of Class 2.

Figure 8: Benefits of the Proposed Revenue Management Approach (RM) Compared to the FCFS
Policy for Different Characteristics of the Demand Streams. Results for L1 = 6, L2 = 12, ρ = 0.50
and β = 0.50. ∆i = Li−Bi where i = 1, 2. The Benefits of RM are Computed by (g∗−ĝf )/ĝf×100%.

In order to gain more insights into the impact of revenue management on the operations we
compare the acceptance rates of both classes with and without revenue management. Table 3 shows
the proportion of accepted orders for each demand class. The results illustrate how the revenue
management technique is giving gradually higher priority to the urgent orders when ρ (the relative
margin of class 2 orders) is decreasing. We also observe again that the operational flexibility once an
order is accepted plays an important role, in this experiment when B2 = 10 the impact of revenue
management is minimal, and more generally the smaller B2 (for a fixed value of L2) the larger the
impact. Of particular interest is the case where B1 = 5 and B2 = 10, that is there is hardly any
flexibility for both classes. In that case we observe that for ρ = 0.75 or 0.5 the optimal policy is
essentially FCFS, while for ρ = 0.25 the policy is to accept only the high revenue class. In other
words, given the small amount of operational flexibility there is an abrupt switch in the acceptance
policy from accept all orders (whenever feasible) to accept only high margin urgent orders when
the difference in margin is high enough.
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Table 3: Acceptance Rate Under the FCFS and the Optimal Policy and the Benefits of RM for
Different Order Sizes and Revenues.

FCFS Optimal, ρ = 0.75 Optimal, ρ = 0.50 Optimal, ρ = 0.25
B1 B2 µ1 µ2 µ1 µ2 b µ1 µ2 b µ1 µ2 b

1 2 55.6% 91.8% 96.6% 70.8% 4.9% 99.3% 68.9% 14.1% 99.9% 67.7% 31.8%
1 6 77.1% 70.7% 85.1% 65.8% 0.3% 93.4% 59.8% 3.6% 97.6% 55.2% 11.4%
1 10 85.0% 52.4% 85.1% 52.3% 0.0% 85.1% 52.3% 0.0% 90.2% 45.6% 1.6%
3 2 44.8% 95.4% 80.4% 75.2% 2.8% 87.3% 70.3% 12.5% 92.4% 62.3% 33.6%
3 6 57.7% 74.2% 57.8% 74.2% 0.0% 80.5% 57.4% 4.4% 88.5% 45.6% 17.5%
3 10 60.4% 56.5% 60.4% 56.5% 0.0% 60.4% 56.5% 0.1% 97.1% 0.0% 9.6%
5 2 36.1% 97.1% 66.0% 79.3% 1.8% 66.0% 79.3% 9.1% 71.9% 70.1% 26.4%
5 6 40.4% 77.1% 40.4% 77.1% 0.0% 53.4% 66.1% 1.8% 71.0% 48.4% 20.6%
5 10 44.4% 56.8% 44.4% 56.8% 0.0% 44.4% 56.8% 0.0% 79.6% 0.0% 9.3%

Results for L1 = 6, L2 = 12, τ = 1.25 and β = 0.50. Note that, µi is the service level of
demand stream i and b is the benefit of RM compared to the FCFS.

7 Conclusions and Future Research

In this paper we studied the order acceptance problem for a firm serving two classes of demand
that differ in net profit and lead time over an infinite horizon. We obtained the optimal order
acceptance policy by formulating the problem as a multi-dimensional Markov Decision Process.
However the construction of this policy can involve high computational requirements. To overcome
this difficulty, we proposed an efficient heuristic consisting in a parametric aggregation of the state
space. The parameter makes it possible to find the best trade-off between the computation time and
the quality of the solution. We propose several variants based on different assumptions about the
dynamics of the aggregate state. The variant which assumes that all reserved capacity is distributed
uniformly in the aggregation interval gives significantly better solutions than the other approaches
studied in the extant literature. The other variants give lower and upper bounds that make it
possible to obtain a guarantee about the quality of the solution and the possible gap with respect
to the optimal solution. Finally, the computation time remains very short even for instances with
large order lead times.

We showed that the amount of operational flexibility (in our case this means how much slack
there is between the promised lead time and the effective processing time needed) has a large
impact on the performance of revenue management. The more flexibility there is the larger the
potential benefit of implementing a revenue management based order acceptance policy. The study
of the potential benefits of revenue management associated with flexibility in other contexts is an
interesting avenue for further research. In the airline industry for example, the hub and spoke
organization is widespread. The major airlines have several hubs and for a journey that is not
starting or ending in a hub, it might be interesting to keep some flexibility in terms of the legs
traveled by a passenger (i.e. through which hub) as long as a time-slot is respected for the departure
and arrival times at the origin and destination respectively. It would be interesting to investigate
how the state aggregation policy presented in this article could be extended for the more general
network structure of airline operations.

Another direction for future work is the exploration of some properties of the value functions in
the MDP formulation. Based on the concept of L\-convexity, some recent works (see e.g. ??) par-
tially characterize the optimal policies for inventory problems with lead time issues. We conjecture
that similar properties exist in the context of our problem. If so, it might be possible to develop
more efficient computational methods.

18



References

Adelman, D., 2007. Dynamic bid-prices in revenue management. Operations Research 55 (4), 647–
661.

Alden, J., Smith, R., 1992. Rolling horizon procedures in nonhomogeneous markov decision pro-
cesses. Operations Research 40 (2), 183–194.

Balakrishnan, N., Sridharan, V., Patterson, J., 1996. Rationing capacity between two product
classes. Decision Sciences 27 (2), 185–214.

Barut, M., Sridharan, V., 2005. Revenue management in order-driven production systems. Decision
Sciences 36 (2), 287–316.

Bean, J., Birge, J., Smith, R., 1987. Aggregation in dynamic programming. Operations Research
35 (2), 215–220.

Belobaba, P., 1987. Air travel demand and airline seat inventory management. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts.

Bertsimas, D., Popescu, I., 2003. Revenue management in a dynamic network environment. Trans-
portation Science 37 (3), 257–277.

Bitran, G. R., Mondschein, S. V., 1995. An application of yield management to the hotel industry
considering multiple day stays. Operations Research 43 (3), 427–443.

Brumelle, S., McGill, J., 1993. Airline seats allocation with multiple nested fare classes. Operations
Research 41, 127–137.

Dobson, D., Hasija, S., Pinker, E., 2011. Reserving capacity for urgent patients in primary care.
Production and Operations Management 20 (3), 456–473.

Geraghty, M. K., Johnson, E., 1997. Revenue management saves national car rental. Interfaces
27 (1), 107–127.

Germs, R., Foreest, N. D. V., 2011. Admission policies for the customized stochastic lot scheduling
problem with strict due-dates. European Journal of Operational Research 213, 375–383.

Gupta, D., Wang, L., 2007. Capacity management for contract manufacturing. Operations Research
55 (2), 367–377.

Gupta, D., Wang, L., 2008. Revenue management for a primary-care clinic in the presence of patient
choice. Operations Research 56 (3), 576–592.

Harris, F. H. d., Pinder, J., 1995. A revenue management approach to demand management and
order booking in assemble-to-order manufacturing. Journal of Operations Management 13, 299–
309.

Herbots, J., Herroelen, W., Leus, R., 2007. Dynamic order acceptance and capacity planning on a
single bottleneck resource. Naval Research Logistics 54 (8), 874–889.

Herbots, J., Herroelen, W., Leus, R., 2010. Single-pass and approximate dynamic-programming
algorithms for order acceptance and capacity planning. Journal of Heuristics 16, 189–209.

19



Kapuscinski, R., Tayur, S., 2007. Reliable due-date setting in a capacitated mto system with two
customer classes. Operations Research 5 (1), 56–74.

Kimes, S., 1989. Yield management: A tool for capacity-constrained service firms. Journal of
Operations Management 4, 348–363.

Kunnumkal, S., Topaloglu, H., 2008. A refined deterministic linear program for the network revenue
management problem with customer choice behavior. Naval Research Logistics 55 (6), 563–580.

Littlewood, K., 1972. Forecasting and control of passengers bookings. In: AGIFORS 12th Annual
Symposium Proceedings. pp. 95–128.

Powell, W. B., 2011. Approximate dynamic programming solving the curses of dimensionality. John
Wiley & Sons, Hoboken, New Jersey.

Spengler, T., Rehkoopf, S., Thomas, V., 2007. Revenue management in make-to-order manufactur-
ing an application to the iron and steel industry. OR Spectrum 29, 157–171.

Talluri, K., van Ryzin, G., 1998. An analysis of bid-price controls for network revenue management.
Management Science 44 (11), 1577–1593.

Talluri, K., van Ryzin, G., 2004. The Theory and Practice of Revenue Management. Kluwer Aca-
demic Publishers, Boston, Dordrecht, London.

Wollmer, R., 1992. An airline seat management model for a single leg route when lower fare classes
book first. Operations Research 40, 26–37.

Zhang, D., 2011. An improved dynamic programming decomposition approach for network revenue
management. Manufacturing and Service Operations Management 13 (1), 35–52.

Zhang, D., Adelman, D., 2009. An approximate dynamic programming approach to network revenue
management with customer choice. Transportation Science 43 (3), 381–394.

20



Recent titles 
CORE Discussion Papers 

 
2013/6 Per J. AGRELL and Peter BOGETOFT. A three-stage supply chain investment model under 

asymmetric information. 
2013/7 Per J. AGRELL and Pooria NIKNAZAR. Robustness, outliers and Mavericks in network 

regulation. 
2013/8 Per J. AGRELL and Peter BOGETOFT. Benchmarking and regulation. 
2013/9 Jacques H. DREZE. When Borch's Theorem does not apply: some key implications of market 

incompleteness, with policy relevance today. 
2013/10 Jacques H. DREZE. Existence and multiplicity of temporary equilibria under nominal price 

rigidities. 
2013/11 Jean HINDRIKS, Susana PERALTA and Shlomo WEBER. Local taxation of global 

corporation: a simple solution. 
2013/12 Pierre DEHEZ and Sophie POUKENS. The Shapley value as a guide to FRAND licensing 

agreements. 
2013/13 Jacques H. DREZE and Alain DURRE. Fiscal integration and growth stimulation in Europe. 
2013/14 Luc BAUWENS and Edoardo OTRANTO. Modeling the dependence of conditional 

correlations on volatility. 
2013/15 Jens L. HOUGAARD, Juan D. MORENO-TERNERO and Lars P. OSTERDAL. Assigning 

agents to a line. 
2013/16 Olivier DEVOLDER, François GLINEUR and Yu. NESTEROV. First-order methods with 

inexact oracle: the strongly convex case. 
2013/17 Olivier DEVOLDER, François GLINEUR and Yu. NESTEROV. Intermediate gradient 

methods for smooth convex problems with inexact oracle. 
2013/18 Diane PIERRET. The systemic risk of energy markets. 
2013/19 Pascal MOSSAY and Pierre M. PICARD. Spatial segregation and urban structure. 
2013/20 Philippe DE DONDER and Marie-Louise LEROUX. Behavioral biases and long term care 

insurance: a political economy approach. 
2013/21 Dominik DORSCH, Hubertus Th. JONGEN, Jan.-J. RÜCKMANN and Vladimir SHIKHMAN. 

On implicit functions in nonsmooth analysis. 
2013/22 Christian M. HAFNER and Oliver LINTON. An almost closed form estimator for the 

EGARCH model. 
2013/23 Johanna M. GOERTZ and François MANIQUET. Large elections with multiple alternatives: a 

Condorcet Jury Theorem and inefficient equilibria. 
2013/24 Axel GAUTIER and Jean-Christophe POUDOU. Reforming the postal universal service. 
2013/25 Fabian Y.R.P. BOCART and Christian M. HAFNER. Fair re-valuation of wine as an 

investment. 
2013/26 Yu. NESTEROV. Universal gradient methods for convex optimization problems. 
2013/27 Gérard CORNUEJOLS, Laurence WOLSEY and Sercan YILDIZ. Sufficiency of cut-generating 

functions. 
2013/28 Manuel FORSTER, Michel GRABISCH and Agnieszka RUSINOWSKA. Anonymous social 

influence. 
2013/29 Kent WANG, Shin-Huei WANG and Zheyao PAN. Can federal reserve policy deviation 

explain response patterns of financial markets over time? 
2013/30 Nguyen Thang DAO and Julio DAVILA. Can geography lock a society in stagnation? 
2013/31 Ana MAULEON, Jose SEMPERE-MONERRIS and Vincent VANNETELBOSCH. 

Contractually stable alliances. 
2013/32 Jean-François CAULIER, Ana MAULEON and Vincent VANNETELBOSCH. Allocation rules 

for coalitional network games. 
2013/33 Georg KIRCHSTEIGER, Marco MANTOVANI, Ana MAULEON and Vincent 

VANNETELBOSCH. Limited farsightedness in network formation. 
2013/34 Ana MAULEON and Vincent VANNETELBOSCH. Relative concerns and delays in 

bargaining with private information. 



Recent titles 
CORE Discussion Papers - continued 

 
2013/35 Kristof BOSMANS, Koen DECANCQ and Erwin OOGHE. What do normative indices of 

multidimensional inequality really measure? 
2013/36 Alain PHOLO BALA, Dominique PEETERS and Isabelle THOMAS. Spatial issues on a 

hedonic estimation of rents in Brussels. 
2013/37 Lionel ARTIGE, Antoine DEDRY and Pierre PESTIEAU. Social security and economic 

integration. 
2013/38 Nicolas BOUCKAERT and Erik SCHOKKAERT. Differing types of medical prevention appeal 

to different individuals. 
2013/39 Pierre M. PICARD. Trade, economic geography and the choice of product quality. 
2013/40 Tanja B. MLINAR and Philippe CHEVALIER. Pooling in manufacturing: do opposites attract? 
2013/41 Chiara CANTA and Marie-Louise LEROUX. Public and private hospitals, congestion, and 

redistribution. 
2013/42 Mathieu LEFEBVRE, Pierre PESTIEAU and Gregory PONTHIERE. FGT poverty measures 

and the mortality paradox: Theory and evidence. 
2013/43 Nada BELHADJ, Jean J. GABSZEWICZ and Ornella TAROLA. Social awareness and duopoly 

competition. 
2013/44 Volker BRITZ, P. Jean-Jacques HERINGS and Arkadi PREDTETCHINSKI. On the 

convergence to the Nash bargaining solution for action-dependent bargaining protocols. 
2013/45 Pasquale AVELLA, Maurizio BOCCIA and Laurence WOLSEY. Single item reformulations 

for a vendor managed inventory routing problem: computational experience with benchmark 
instances. 

2013/46 Alejandro LAMAS, Tanja MLINAR, Liang LU and Philippe CHEVALIER. Revenue 
management for operations with urgent orders. 

 
Books 

 
V. GINSBURGH and S. WEBER (2011), How many languages make sense? The economics of linguistic 

diversity. Princeton University Press. 
I. THOMAS, D. VANNESTE and X. QUERRIAU (2011), Atlas de Belgique – Tome 4 Habitat. Academia 

Press. 
W. GAERTNER and E. SCHOKKAERT (2012), Empirical social choice. Cambridge University Press. 
L. BAUWENS, Ch. HAFNER and S. LAURENT (2012), Handbook of volatility models and their 

applications. Wiley. 
J-C. PRAGER and J. THISSE (2012), Economic geography and the unequal development of regions. 

Routledge. 
M. FLEURBAEY and F. MANIQUET (2012), Equality of opportunity: the economics of responsibility. 

World Scientific. 
J. HINDRIKS (2012), Gestion publique. De Boeck. 
M. FUJITA and J.F. THISSE (2013), Economics of agglomeration: cities, industrial location, and 

globalization. (2nd edition). Cambridge University Press. 
J. HINDRIKS and G.D. MYLES (2013). Intermediate public economics. (2nd edition). MIT Press. 
J. HINDRIKS, G.D. MYLES and N. HASHIMZADE (2013). Solutions manual to accompany intermediate 

public economics. (2nd edition). MIT Press. 
 

CORE Lecture Series 
 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 
A. SHAPIRO (2010), Stochastic programming: modeling and theory. 


