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Abstract 

The Inventory Routing Problem (IRP) involves the distribution of one or more products from a supplier 
to a set of customers over a discrete planning horizon. The version treated here, the so- called Vendor 
Managed Inventory Routing Problem (VMIRP), is the Inventory Routing problem arising when the 
replenishment policy is decided a priori. We consider two replenishment policies. The first is known as 
Order-Up (OU): if a client is visited in a period, then the amount shipped to the client must bring the 
stock level up to the upper bound. The latter is called Maximum Level (ML): the maximum stock level 
in each period cannot be exceeded. The objective is to find replenishment decisions minimizing the sum 
of the storage and distribution costs. 
VMIRP contains two important subproblems: a lot-sizing problem for each customer and a classical 
vehicle routing problem for each time period. In this paper we present a-priori reformulations of 
VMIRP-OU and VMIRP-ML derived from the single-item lot-sizing substructure. In addition we 
introduce two new cutting plane families - the Cut Inequalities - deriving from the interaction between 
the Lot-Sizing and the Routing substructures. 
A Branch-and-Cut algorithm has been implemented to demonstrate the effectiveness of Single-Item 
reformulations. Computational results on the benchmark instances with 50 customers and 6 periods 
with a single product and a single vehicle are presented. 
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1 Introduction

The Inventory Routing Problem (IRP) arises from the integration of two basic components of the logistic

supply chain, namely Inventory Management and Vehicle Routing. IRP involves the distribution of one

or more products from a supplier to a set of customers over a discrete planning horizon. Each customer

has a known demand to be met in each period and can hold a limited amount of stock. The product

is shipped through a distribution network by one or more vehicles of limited capacity. IRP has found

applications in several contexts, such as maritime logistics and the distribution of gas, perishable items,

groceries, etc. We refer to Federgruen and Simchi-Levi [12], Campbell et. [7], Bertazzi et al. [5], Bertazzi

and Speranza [6], Coelho [8] for surveys on IRP.

The version treated here, the so-called Vendor Managed Inventory Routing Problem (VMIRP) [3], is the

Inventory Routing problem arising when the replenishment policy is decided a priori, and the supplier

must select which customers to serve in each period, the order in which they are visited and the amount

of good to be delivered as a function of the replenishment policy.

We consider two replenishment policies, both assuming that a stock upper bound is given for each

customer. The first is known as Order-Up (OU): if a client is visited in a period, then the amount

shipped to the client must bring the stock level up to the upper bound. The latter is called Maximum

Level (ML): the maximum stock level in each period cannot be exceeded. The objective is to find

replenishment decisions minimizing the sum of the storage and distribution costs.

1.1 Literature review

Archetti et al. [3] considered three different replenishment policies for VMIRP, namely VMIRP-OU,

VMIRP-ML and VMIRP-Uncapacitated, i.e. without stock upper bounds. They introduced several

families of valid inequalities and reported computational results with a Branch-and-Cut algorithm for a

set of benchmark instances up to 50 clients with 3 periods and 30 clients with a time horizon of 6 periods.

Solyali and Süral [16] presented a reformulation of VMIRP-OU based on a shortest-path network rep-

resentation of the OU policy at each customer and a Branch-and-Cut approach. They could solve to

optimality, within four hours of computation time, instances up to 60 customers with 3 periods, and 15

customers with 12 periods.

Adulyasak et al. [1] proposed reformulations using vehicle indices for the multiple vehicle case and

introduced some symmetry breaking constraints. They also extended some of the inequalities introduced

by Archetti et al. [3] to the multi-vehicle case.

Coelho and Laporte [11] present a unified model and a Branch-and-Cut algorithm able to address several

variants of IRP, including the case with multiple vehicles. Particularly in [9] they report a detailed

computational experience on VMIRP-ML benchmark instances with a single vehicle, improving the results

shown in [3] and extending the test-bed with “large" benchmark instances introduced in [2], solving to

optimality those with 50 customers and 6 periods and providing lower and upper bounds for the larger

ones. In a very recent paper Coelho and Laporte [10] introduced some valid inequalities based on the

minimum number of visits each client must receive. They report average results showing significant

improvements in computation times.

Valid inequalities for single item Lot-Sizing with upper bounds on stocks have been studied by Atamturk

[4] and Pochet and Wolsey [15, ?] among others. However the only tight description of the convex hull of

solutions is that based on dynamic programming that is too large to be practically useful. The single-item

model with an Order-Up policy is studied in Solyali and Süral [16].

1.2 Outline of the paper

VMIRP naturally decomposes into two important subproblems: a lot-sizing problem for each customer

and a classical vehicle routing problem for each time period. In this paper we present a-priori reformula-

tions of VMIRP-OU and VMIRP-ML based on extended formulations for the single-item lot-sizing sets
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arising for each client. We then project these formulations into the original variable space, leading to new

valid inequalities/constraints, but avoiding the introduction of additional variables. The reformulations

proposed have been somewhat influenced by the benchmark instances introduced in Archetti et. [3] and

[2], which are the standard test-bed for VMIRP-OU and VMIRP-ML (see also [16, 1, 11]). Such instances

have a special structure, namely they have time-constant customer demands and stock capacities which

are small integer multiples of the respective demands. Besides the single-item reformulations, we intro-

duce two new cutting plane families - the Cut Inequalities - derived from the interaction between the

lot-sizing and the routing substructures.

A basic Branch-and-Cut algorithm, without any special-purpose primal heuristics, has been implemented

to demonstrate the strength of the lower (dual) bounds obtained using the single-item reformulations.

Computational results on the benchmark instances with 50 customers and 6 periods with a single product

and a single vehicle are presented. All ther VMIRP-OU instances appear to have been solved to optimality

for the first time, improving the best known upper bounds. For VMIRP-ML, we solved three new instances

to optimality, significantly improving computation times reported in [9] for several others.

The remainder of the paper is organized as follows. In Section 2 we give a more formal definition of

VMIRP and an initial mixed integer programming formulation. In sections 3 and 4 we present a-priori

single-item reformulations of VMIRP-OU and VMIRP-ML, respectively. In Section 5 we introduce two

new cutting plane families for VMIRP-OU and VMIRP-ML, called Cut Inequalities. Finally in Section

6 we report on a computational experience validating the effectiveness of the proposed reformulations.

2 Problem definition and formulation

Let T = {1, 2, ..., Tmax} be a discrete time horizon. In each period t ∈ T , D0 units of a single item are

delivered to the supplier 0, and the supplier then uses a vehicle of capacity C to supply a set of customers

I = {1, 2, . . . , n}. The deliveries must be planned so that the demand Di of each customer i ∈ I in

each period is satisfied and his stock capacity is not exceeded. In addition, in each period t, the vehicle

delivering to the clients leaves before the arrival of the D0 units at the supplier.

Let sinit0 be the initial stock of the supplier and let siniti and U i be the initial stock and the stock

upper bound of the customer i, respectively. Let h0 be the storage cost of the supplier. Two different

replenishment policies are considered:

Order-up (OU): if customer i ∈ I is visited in the period t ∈ T , the amount xi
t shipped to i is such

that the stock of i reaches its upper bound U i (xi
t = U i − sit−1 −Di).

Maximum Level (ML): if customer i ∈ I is visited in the period t ∈ T , then the amount xi
t shipped

to i is such that the stock of i is not greater than the upper bound U i (xi
t ≤ U i − sit−1 −Di).

Besides defining stock levels, the vehicle routes in each period t ∈ T must be determined. The distribution

network in each period t ∈ T is represented by a directed graph G(I ∪ {0, n + 1}, A) where I are the

customers, and the supplier is splitted into the nodes 0 (starting depot) and n + 1 (ending depot), and

A = {(0, j), j ∈ I} ∪ {(i, j), i, j ∈ I} ∪ {(i, n+ 1), i ∈ I}. A cost cij is associated with each arc ij ∈ A.

VMIRP consists of determining which customers must be served at time t, the order in which they are

served (i.e. the route at time t) and the delivery amounts in order to minimize the sum of the storage

and of the routing costs.

The following variables are used:

xi
t is the amount shipped to customer i ∈ I in period t ∈ T ;

sit is the stock of customer i ∈ I at the end of time period t ∈ T ∪ {0};

s0t is the stock level of the supplier at the end of time period t ∈ T ∪ {0};

zit is a binary variable which is 1 if the customer i ∈ I is visited at time t ∈ T , 0 otherwise;
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z0t is a binary variable which is 1 if the vehicle delivers to some customers in period t ∈ T , 0

otherwise;

y
ij
t is a binary variable which is 1 if the arc (ij) ∈ A belongs to the route of the vehicle at time

t ∈ T , 0 otherwise.

A formulation of VMIRP-OU is:

min
∑

i∈I

∑

t∈T∪{0}

hi
ts

i
t +

∑

t∈T

∑

(i,j)∈A

cijy
ij
t

s00 = sinit0, (1)

s0t = s0t−1 +D0
t −

∑

i∈I

xi
t, t ∈ T (2)

s0t−1 ≥
∑

i∈I

xi
t, t ∈ T (3)

si0 = siniti, i ∈ I (4)

sti = st−1
i + xt

i −Dt
i , i ∈ I, t ∈ T (5)

xi
t ≤ (

∑

i∈I

Di)zti i ∈ I, t ∈ T (6)

xt
i ≤ U i − sit−1, i ∈ I, t ∈ T (7)

xt
i ≥ Di + (U i −Di)zit − sit−1, i ∈ I, t ∈ T (8)

z0t ≥ zit, i ∈ I, t ∈ T (9)
∑

i∈I

xi
t ≤ Cz0t , t ∈ T (10)

∑

j∈I

y
0j
t = z0t , t ∈ T (11)

∑

j∈I∪{n+1}

y
ij
t = zit, i ∈ I, t ∈ T (12)

∑

j∈I∪{0}

y
ji
t = zit, i ∈ I∪, t ∈ T (13)

∑

i∈S∪{0}

∑

j∈I\S

y
ij
t ≥ zit, i ∈ I, t ∈ T (14)

∑

t∈T

z0t ≥

⌈
∑

i∈I(TmaxD
i − siniti)

C

⌉

(15)

zit ∈ {0, 1}, i ∈ I ∪ {0}, t ∈ T (16)

y
ij
t ∈ {0, 1}, i, j ∈ I, t ∈ T (17)

sit ≥ 0, i ∈ I ∪ {0}, t ∈ T ∪ {0} (18)

xi
t ≥ 0, i ∈ I, t ∈ T (19)

Constraints (1) and (2) define the stock levels for the supplier 0. Constraints (3) impose that the supplier

stock level at the end of period t − 1 must be greater than or equal to the total amount shipped to the

customers at time t. Constraints (4) and (5) define the stock levels for the customers.

The variable upper bounds (6) enforce zit = 1 if the customer i is served at time t. Constraints (7) define

stock upper bounds. Constraints (8) impose that the amount xi
t shipped to i is such that the stock of i

reaches the upper bound U i if customer i is visited at time t (i.e. if zit = 1).

Constraints (9) are variable upper bounds enforcing z0j = 1 if at least a customer is served in the period

t.

Constraints (10) impose that the total amount shipped from the supplier to customers at t cannot exceed

the vehicle capacity C.
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Constraints (11) impose that the vehicle leaves the depot if at least a customer is served in the period t

(i.e. if z0j = 1). Constraints (12) and (13) impose that the vehicle visits the customer j iff z
j
t = 1.

Constraints (14) are subtour elimination constraints [14], which are added dynamically to the formulation.

The separation algorithm consists of solving a min-cut problem between 0 and i, for each i ∈ V and t ∈ T

on the graph G(I ∪ {0, n+ 1}, A), where the arcs A are weighted with the fractional values attained by

the variables y
ij
t in the current LP relaxation.

Constraints (15) provide a lower bound on the number of periods in which at least a customer must be

visited.

We will denote by XOU the set of the (s, x, z, y) solutions which are feasible in (1)− (19).

Observation 1 A formulation of VMIRP-ML is easily derived by dropping the constraints (8). We will

denote by XML the set of the (s, x, z, y) solutions which are feasible in (1)-(7) and (10)-(19).

3 Single-Item reformulations of VMIRP-OU

Here we take into account the fact that the initial stock levels siniti and upper bound levels U i are all

integer multiples of the client demand Di. Thus we suppose that U i = DiV i where V i is a small positive

integer, V i ∈ {2, 3} in the test instances. Now the delivery quantities xi
t and the stock levels sit are

measured in units of Di.

Dropping the superscript i, we have that:

if st−1 = k ≤ V − 1 and the customer is served in t (zt = 1), then xt = V − k;

if st−1 = k and the customer is not served in t (zt = 0), then st = k − 1.

The formulation of the Single-Item Lot-Sizing problem with OU constraints is then:

st−1 + xt = 1 + st, t ∈ T, t ≥ 2

xt ≤ V zt, t ∈ T

st ≤ V − 1, t ∈ T

st ≥ (V − 1)zt, t ∈ T

st ≥ 0, t ∈ T

xt ≥ 0, t ∈ T

zt ∈ {0, 1}, t ∈ T

Note that st and xt take integral values in the extreme points of the convex hull of solutions.

We first examine two extended formulations valid for all values of V , and then the projections into the

original (s, z) space for the values V ∈ {2, 3}.

The Unit Stock Formulation

Let wut = 1 if st = u ∈ {0, 1, . . . , V − 1}. The resulting formulation is:

st =

V −1
∑

u=1

uwut, t ∈ T (20)

zt = wV −1,t, t ∈ T (21)

V −1
∑

u=0

wut = 1, t ∈ T (22)

wu,t ≥ wu−1,t+1, u ∈ {1, . . . , V − 1}, t ∈ T (23)

wut ≥ 0, u ∈ {0, 1, . . . , V − 1}, t ∈ T (24)

wut ∈ {0, 1}, u ∈ {0, 1, . . . , V − 1}, t ∈ T (25)
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where (22) forces the stock to take one of the values in {0, . . . , V − 1} and (23) indicates that if st+1 =

u− 1 < V − 1, then zt = xt = 0 and thus st = u.

The Unit Flow Formulation

Let quvt = 1 if st−1 = u and st = v where v ∈ {u− 1, V − 1}. Now one has the unit flow formulation:

wut = q
u+1,u
t , u ∈ {0, 1, . . . , V − 2}, t ∈ T, (26)

wV −1,t =
V −1
∑

u=0

q
u,V −1
t , t ∈ T (27)

q
u+1,u
t = q

u,u−1
t+1 + q

u,V−1
t+1 , u ∈ {1, . . . , V − 2}, t ∈ T, t ≤ Tmax − 1 (28)

V−1
∑

u=0

q
u,V−1
t = q

V −1,V−1
t+1 + q

V−1,V−2
t+1 , t ∈ T, t ≤ Tmax − 1 (29)

V−1
∑

u=0

q
u,V−1
t +

V −1
∑

u=1

q
u,u−1
t = 1, t ∈ T (30)

quvt ≥ 0, u, v ∈ {0, 1, . . . , V − 1}, t ∈ T (31)

quvt ∈ {0, 1} u, v ∈ {0, 1, . . . , V − 1}, t ∈ T (32)

Note that (29) is implied by (28) and (30) and is thus redundant. An example of the unit flow network

for the OU problem is shown in Figure 1.

t=1 t=2 t=3 t=4

u=3

u=2

u=1

u=0

1

V=4, sinit=2

Figure 1: Unit Flow/Stock Formulation

Theorem 1 The unit flow polyhedron (26)-(31) and the unit stock polyhedron(20)-(24) are integral poly-

hedra.

Proof The unit flow polyhedron corresponds to a unit flow in a network and so the corresponding

matrix is totally unimodular. We then project this polyhedron onto the w space using Fourier-Motzkin

elimination. Specifically from (26), (28) and (29), we have that q
u−1,V−1
t+1 = wut − wu−1,t+1 ≥ 0 giving

(23). Also (30) gives (22) and the equations (20) and (21) follow from the definition of the variables.

Corollary 1 The linear programs min{px + hs + fz : (x, s, z, w) ∈ QUS} and min{px + hs + fz :

(x, s, z, w, q) ∈ QUF } have solutions with x, s, z integer, where QUS denotes the polytope (20)-(24)) and

QUF the polytope (26)-(31).

Note that Solyali and Süral [16] have presented a shortest path extended formulation that is integral for

time-varying demands. Our unit stock formulation is very closely related to their path formulation and

also extends easily to handle time dependent demands.
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3.1 Formulation in the Original Variables

Now we fix the value of V and consider the projections into the original (x, s, z) space. First we consider

the case with V = 3. We take the extended formulation

st = w1t + 2w2t, t ∈ T

zt = w2t, t ∈ T

w0t + w1t + w2t = 1, t ∈ T

w1t ≥ w0,t+1, t ∈ T, t ≤ Tmax − 1

w2t ≥ w1,t+1, t ∈ T, t ≤ Tmax − 1

wut ≥ 0, u ∈ {0, 1, 2}, t ∈ T

and project out the w variables. We eliminate the variables w0t and then use the equations zt = w2t and

w1t = st − 2zt to complete the projection. The result is a description of the convex hull of solutions in

the original space

st−1 + st ≥ 1 + 2zt−1 + zt, t ∈ T, t ≥ 2 (33)

st ≤ zt−1 + 2zt, t ∈ T, t ≥ 2 (34)

st ≤ 1 + zt, t ∈ T (35)

st ≥ 0, t ∈ T (36)

zt ∈ {0, 1}, t ∈ T

as well as the original constraints: xt = 1 + st − st−1 ≥ 0 and st ≥ 2zt.

For V = 2, it is much simpler and one obtains

st = zt, t ∈ T (37)

zt + zt+1 ≥ 1, t ∈ T, t ≤ Tmax − 1 (38)

zt ∈ {0, 1}, t ∈ T

again with xt = 1 + st − st−1 ≥ 0.

4 Single-Item Reformulation of VMIRP-ML

We again treat Di as the basic unit for customer i. The single item model with stock upper bounds is:

st−1 + xt = 1+ st, t ∈ T

st ≤ V − 1, t ∈ T

xt ≤ V zt, t ∈ T

xt ≥ 0, t ∈ T

st ≥ 0, t ∈ T ∪ {0}

zt ∈ {0, 1}, t ∈ T

We first examine two extended formulations valid for all values of V , and then the projections into the

original (s, z) space for the values V ∈ {2, 3}.

The Unit Flow Formulation
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Let quvt = 1 if st−1 = u and st = v where v ∈ {u−1, u, . . . , V −1}. Now one has the unit flow formulation

(with added node variables wut = 1 if st = u ∈ {0, 1, . . . , V − 1}):
∑

u

quvt−1 = wvt, v, t ∈ T, t ≥ 2 (39)

∑

v

quvt−1 = wu,t−1, u, t ∈ T, t ≥ 2 (40)

∑

u,v

quvt = 1, t ∈ T (41)

quvt ≥ 0, u, v ∈ {0, 1, . . . , V − 1}, t ∈ T (42)

zt ≥
∑

u,v:u≤v

quvt−1, t ∈ T, t ≥ 2 (43)

zt ≤ 1, t ∈ T (44)

quvt ∈ {0, 1}, u, v ∈ {0, 1, . . . , V − 1}, t ∈ T (45)

zt ∈ {0, 1}, t ∈ T (46)

The Unit Stock Formulation

Fix t and consider just the bipartite graph with nodes N1 = {u}Vu=0 for period t−1 and nodes N2 = {v}Vv=0

for period t. We will also need the family S of pairs of sets S1 ⊂ N1, S2 ⊂ N2 that provide a minimal

node cover for the edges {(u, u−1)}V−1
u=1 corresponding to the arcs used in the unit flow formulation when

there is no production. Specifically for each arc, either u ∈ S1 or u − 1 ∈ S2 and |S1 ∪ S2| = V − 1,

Also let T be the set of pairs in S with the additional property that S1 6= ∅, S2 6= ∅ and all the edges

{(u, v) : u ∈ S1, v ∈ δ(u)} and {(u, v) : v ∈ S2, u ∈ δ(v)} are distinct.

Proposition 2 The following inequalities are valid:
∑

u/∈S1

wu,t−1 +
∑

v/∈S2

wvt ≥ 1, (S1, S2) ∈ T , t ∈ T, t ≥ 2 and (47)

zt +
∑

u∈S1

wu,t−1 +
∑

v∈S2

wut ≥ 1, (S1, S2) ∈ S, t ∈ T, t ≥ 2. (48)

Proof. We show the validity of the inequalities that can obtained by Fourier-Motzkin elimination. For

(S1, S2) ∈ T , LHS= 2 −
∑

u∈S1
wu,t−1 −

∑

v∈S2
wvt ≥ 2 −

∑

u∈S1

∑

v q
uv
t−1 −

∑

v∈S2

∑

u q
uv
t−1 ≥ 1, where

the last inequality follows from the disjointness property.

For (S1, S2) ∈ S, LHS ≥ (1−
∑V−1

u=1 q
u,u−1
t−1 ) +

∑V −1
u=1 q

u,u−1
t−1 ) ≥ 1. Note these are just cut inequalities.

The resulting unit stock formulation consists of
∑

u

wut = 1, t ∈ T (49)

wut ≥ 0, u ∈ {0, 1, . . . , V − 1}, t ∈ T (50)

0 ≤ zt ≤ 1, t ∈ T (51)

Inequalities (47) and (48) (52)

Theorem 3 The unit flow polyhedron (39)-(44) and the unit stock polyhedron consisting of (49)-(52) are

integral polyhedra.

Proof The unit flow polyhedron corresponds to a unit flow in a network and is integral. The additional

variables zt either become equalities or inactive with zt=1 in each extreme point and do not affect

integrality. For fixed t, the unit stock polyhedron is obtained by projecting the constraints of the unit

flow polyhedron by Fourier-Motzkin elimination (or minimum cuts). It follows that the flow polyhedron

itself is integral because the values wu,t−1, wvt, zt suffice to reconstruct a feasible qt vector for each t such

that (q1, · · · , qn) is feasible for the unit flow polyhedron.
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4.1 V ∈ {2, 3}

If V = 3, T = { ({2}, {0}) }, and S = { ({1, 2}, ∅), (∅, {0, 1}), ({1}, {1}) }, we have the following

formulation:

2
∑

u=0

wut = 1, t ∈ T

w0,t−1 + w1,t−1 + w1t + w2t ≥ 1, t ∈ T, t ≥ 2

zt + w1,t−1 + w2,t−1 ≥ 1, t ∈ T, t ≥ 2

zt + w0t + w1t ≥ 1, t ∈ T

zt + w1,t−1 + w1t ≥ 1, t ∈ T, t ≥ 2

wut ≥ 0, u ∈ {0, . . . , V − 1}, t ∈ T

0 ≤ zt ≤ 1, t ∈ T

Projecting into the s, z space, the resulting polyhedron appears to be more complicated. Below we

generate several families of valid inequalities, but they do not suffice to generate the convex hull for

instances even for n = 3 periods.

Proposition 4 With V = 3, the following inequalities are valid:

st ≤ 1 + zt, t ∈ T (53)

st−1 + zt ≥ 1, t ∈ T, t ≥ 2 (54)

st−1 + 3zt ≥ 1 + st, t ∈ T, t ≥ 2 (55)

zt−1 + 2zt ≥ st, t ∈ T, t ≥ 2 (56)

zt−2 + zt−1 + zt ≥ 1, t ∈ T, t ≥ 3 (57)

st−2 + 2zt−1 + zt ≥ 2, t ∈ T, t ≥ 3 (58)

st+1 + zt−1 + zt ≥ st, t ∈ T, 2 ≤ t ≤ Tmax − 1 (59)

st−1 + st+1 + 2zt ≥ 1 + st, t ∈ T, 2 ≤ t ≤ Tmax − 1 (60)

1 + st + 2zt+1 ≥ st−1 + st+1, t ∈ T, 2 ≤ t ≤ Tmax − 1. (61)

Proof

st ≤ 1 + zt. If zt = 0, then as st−1 ≤ 2, st ≤ 1. Alternatively is zt = 1, then valid as st ≤ 2.

st−1 + zt ≥ 1. If st−1 = 0, then zt = 1.

st−1 + 3zt ≥ 1 + st. As st ≤ 2, the inequality is satisfied when zt = 1. When zt = 0, st−1 = 1 + st, and

the inequality is satisfied.

st ≤ zt−1 + 2zt. If z + t− 1 = zt = 0, then as st−2 ≤ 2 and the demands are 1, st ≤ 0.. If zt = 1, then

validity follows as st ≤ 2.If zt−1 = 1 and zt = 0, one has st−1 ≤ 2 and thus st = st−1 − 1 ≤ 1.

zt−2 + zt−1 + zt ≥ 1. As xt ≤ 3 and the demand in each period is 1, one must produce at least once in

every three consecutive periods.

st−2 + 2zt−1 + zt ≥ 2. If zt−1 = 1, the inequality holds. If zt−1 = zt = 0 and then necessarily st−2 = 2.

If zt−1 = 0 and zt = 1, then necessarily st−2 ≥ 1, so the inequality holds.

The last three arguments are similar.
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For V = 2, one has S = { ({1}, ∅), (∅, {0}) } and the unit stock formulation is

w0t + w1t = 1, t ∈ T

zt + w1,t−1 ≥ 1, t ∈ T, t ≥ 2

zt + w0t ≥ 1, t ∈ T

wut ≥ 0, u ∈ {0, . . . , V − 1}, t ∈ T

0 ≤ zt ≤ 1, t ∈ T

so finding the formulation in the s, z space using st = w1t is straightforward.

zt + st−1 ≥ 1, t ∈ T, t ≥ 2 (62)

zt ≥ st, t ∈ T (63)

st ≥ 0, t ∈ T

0 ≤ zt ≤ 1, t ∈ T

5 Cut inequalities

Here we introduce two cutting planes families having the role of preventing infeasible short tours in each

period t ∈ T and arising from the interaction between the lot-sizing and the routing substructures.

Definition 1 Let S ⊆ I and let S = S2 ∪ S3, with Sh = {i ∈ S : V i = h}. Let t ∈ T , t ≤ Tmax − 2. We

call Cover inequality, any inequality of the form:

∑

i∈S

zit +
∑

i∈S3

zit+2 ≥ 1 (64)

We give sufficient conditions ensuring the validity of the Cover Inequalities (64) for XOU and XML,

respectively.

Proposition 5 The Cover Inequality (64) is valid for XOU if
∑

i∈S

2Di ≥ C.

Proof. Suppose
∑

i∈S

zit =
∑

i∈S3

zit+2 = 0. Then all the customers in S must be served in the period t + 1

and, due to the OU policy, xi
t+1 = 2Di for each i ∈ S. Then

∑

i∈S

xi
t+1 =

∑

i∈S

2Di > C and the problem is

infeasible.

Cover inequalities are valid for XML under stronger conditions.

Proposition 6 The Cover Inequality (64) is valid for XML if
∑

i∈S2

2Di +
∑

i∈S3

Di ≥ C.

Proof. Suppose
∑

i∈S

zit =
∑

i∈S3

zit+2 = 0. Then all the customers in S must be served in the period

t + 1 and, due to the ML policy, xi
t+1 = 2Di for each i ∈ S2 and xi

t+1 ≥ Di for each i ∈ S3. Then
∑

i∈S2

2Di +
∑

i∈S3

Di > C and the problem is infeasible.

Let δt(0 : W ) denote a cut between the node 0 and the nodes W on the graph Gt(I, At).

Proposition 7 Let S ⊂ V and let S3 = {i ∈ S : V i = 3}. Let t ∈ T , t ≤ Tmax − 2. The Cut Inequality

∑

ij∈δt(0,S)

y
ij
t +

∑

ij∈δt+2(0,S3)

y
ij
t+2 ≥ 1 (65)

is valid for XOU (XML) if the Cover Inequality (64) is valid for XOU (XML).
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Proof. From inequality (64) we get that either a customer in S in the period t or a customer in S3 in

the period t+ 2 must be visited, so either a path from 0 to one of the nodes in S on the graph Gt or a

path between 0 and S3 on the graph Gt+2 must belong to any feasible solution. But then it follows that

either the cut δt(0, S) or the cut δt+2(0, S
3) are crossed by a path.

Observation 1 Using the same arguments, it can also be proved that the Cover Inequalities
∑

i∈S

zit +
∑

i∈S3

zit−2 ≥ 1 (66)

and the Cut Inequalities
∑

(i,j)∈δ(0,S)

y
ij
t +

∑

(i,j)∈δ(0,S3)

y
ij
t−2 ≥ 1 (67)

are valid for XOU and XML, respectively, under the same conditions.

5.1 2-Cut inequalities

Definition 2 Let S ⊆ V and let S = S2 ∪ S3, with Sh = {i ∈ S : V i = h}. Let p ∈ S2 and let t ∈ T ,

t ≤ Tmax − 2. We call 2-Cover Inequality, any inequality of the form:
∑

i∈S

zit + z
p
t+1 +

∑

i∈S3∪{p}

zit+2 ≥ 2 (68)

2-Cover Inequalities (68) are valid for XOU and XML under the same conditions as in Propositions (5)

and (6) respectively.

Proposition 8 The 2-Cover inequality (68) is valid for XOU if
∑

i∈S

2Di > C.

Proof. Case 1: z
p
t+1 = 0. Since V p = 2, feasibility implies z

p
t = z

p
t+2 = 1, and the (68) is satisfied.

Case 2: z
p
t+1 = 1. We get

∑

i∈S

zit +
∑

i∈S3∪{p}

zit+2 ≥ 1 which is dominated by the cover inequality (64) and

hence is valid for XOU if
∑

i∈S

2Di ≥ C.

Proposition 9 The 2-Cover inequality (68) is valid for XML if
∑

i∈S2

2Di +
∑

i∈S3

Di > C.

Proof. Case 1: z
p
t+1 = 0. Since V p = 2, feasibility implies z

p
t = z

p
t+2 = 1, and the (68) is satisfied.

Case 2: zpt+1 = 1. We get
∑

i∈S

zit +
∑

i∈S3∪{p}

zit+2 ≥ 1 which is dominated by the (64) and hence is valid for

XML if
∑

i∈S2

2Di +
∑

i∈S3

Di > C.

As in Proposition (7), we can derive a 2-Cut inequality from the 2-Cover Inequality (68):

Proposition 10 The 2-Cut Inequality
∑

ij∈δ(0,S)

y
ij
t + z

p
t+1 +

∑

ij∈δ(0,S3)

y
ij
t+2 ≥ 2 (69)

is valid for XOU (XML respectively) if the 2-Cover inequality (68) is valid for XOU (XML respectively).

Proof. Case 1: zpt+1 = 0. Since V p = 2, customer p must be visited both in the periods t and t+2. So a

path from 0 to p on the graph Gt and a path from 0 to p on the graph Gt+2 must belong to any feasible

solution. It follows that at least one arc has to traverse each of the cuts δt(0, S) and δt+2(0, S
3 ∪ {p}).

Case 2: zpt+1 = 1. We get the
∑

i∈S

zit +
∑

i∈S3∪{p}

zit+2 ≥ 1 and it follows that either a path from 0 to one of

the nodes in S on the graph Gt or a path between 0 and S3 ∪ {p} on the graph Gt+2 must belong to any

feasible solution and that either the cut δt(0, S) or the cut δt+2(0, S
3 ∪ {p}) is crossed by a path.
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Observation 2 Using the same arguments, it can also be proved that the 2-Cover Inequalities:

∑

i∈S

zit + z
p
t−1 +

∑

i∈S3

zit−2 ≥ 2 (70)

and the 2-Cut Inequalities:

∑

ij∈δ(0,S)

y
ij
t + z

p
t−1 +

∑

ij∈δ(0,S3∪{p})

y
ij
t−2 ≥ 2 (71)

are valid for XOU and XML under the same conditions as in Propositions (8) and (9) respectively.

5.2 Separation algorithms for Cut inequalities

We use the Cut and the 2-Cut Inequalities with S = I and |S| = |I| − 1 in the a-priori reformulation

of VMIRP-OU and VMIRP-ML. Then we adopt a two-stage separation heuristic for Cut and 2-Cut

Inequalities with |S| ≤ |I| − 2.

We outline the separation heuristic for the OU case, putting into parenthesis the modifications for the

ML case. For each period t ∈ T , t ≤ Tmax − 2, we first select by a greedy heuristic a subset of customers

S ⊂ I such that
∑

i∈S

2Di > C (
∑

i∈S2

2Di +
∑

i∈S3

Di > C in the ML case) and the sum of the fractional

variables
∑

i∈S

z̄i is minimized. The greedy heuristic consists of sorting the customers I in ascending order

of the fractional values z̄it and then including them into S until
∑

i∈S

2Di > C (
∑

i∈S2

2Di +
∑

i∈S3

Di > C in

the ML case).

Then we partition S into S2 and S3 and compute a minimum cut between 0 and S in the graph Gt,

weighted with the fractional values ȳijt and a minimum cut between 0 and S3 in the graph Gt+2, weighted

with the fractional values y
ij
t+2.

The separation heuristic for the 2-Cut inequalities is a slight modification of the heuristic for the Cut

Inequalities. We need to iterate over p ∈ S2, adding the fractional value of zpt+1 and computing a minimum

cut between between 0 and S3 ∪ {p} in the graph Gt+2

6 Computational results

The reformulations outlined in sections 3, 4, 5 have been tested with a Branch-and-Cut algorithm based

on FICO Xpress 7.3 [13]. The code is written in ANSI C. Computational experiments were carried out

on a 64bit Pentium Quad-core 2.6 GHz processor Personal Computer with 4 Gb RAM and Microsoft

Windows XP64 operating system. We set Xpress 7.3 parameters to run the code with a single thread.

The node selection strategy was best bound and the branching variable selection rule was strong branching

with priority on branching on the zit variables. Xpress cut generation, primal heuristics and preprocessing

were disabled and no initial upper bound was given.

The test bed consists of the instances with 50 customers and 6 periods introduced in [2] and available

at L. Coelho’s webpage http://www.leandro-coelho.com/instances/. They are partitioned in two main

groups: those with “low" storage costs, namely hi ∈ [0.01, 0.05] and ho = 0.03, and those with “high"

storage costs, namely hi ∈ [0.1, 0.5] and h0 = 0.3.

Each instance is labeled as nXX-TY -{low,high}-k, where XX is the number of customers, Y is the

number of periods, the attribute {low, high} denotes the magnitude of the storage costs and k is a

number identifying the instance.

6.1 Results for VMIRP-OU

Preliminary tests comparing the formulations, the unit flow polyhedron (28)-(31), the unit stock poly-

hedron (22)-(24) and the formulations in the original space (33)-(38) indicated that the tight original
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space formulations gave the best results, presumably because of the smaller number of variables in the

corresponding model.

We report computational results for VMIRP-OU in Table 1, which is organized as follows. Column

“Name" shows the name of the instance and column LBIni shows the lower bounds returned by the

initial formulation (1)-(19). Columns BC report on the results provided by the Branch-and-Cut algorithm

based on the reformulations introduced in Sections 3 and 5: namely column LBLS shows the lower bound

returned by adding the single-item inequalities (33)-(38); column LBCut the lower bound returned by the

single-item reformulation (33)-(38) and by the Cut (65) and the 2-Cut (69) inequalities; columns BLB

and BUB show the best lower bound and the best upper bound found (bold means that the upper bound

has been proven to be optimal), columns Nodes and T ime show the number of tree nodes and the CPU

seconds spent to produce the final BLB and BUB values.

VMIRP-OU instances with 50 customers and 6 periods do not appear to have been addressed by exact

algorithms before, so for the sake of comparison, in the last column of Table 6.1 we show the best known

upper bounds returned by the hybrid local search heuristic of Archetti et al. [2] after one hour of CPU

time spent on an Intel Dual Core 1.86 GHz and 3.2 GB RAM Personal Computer.

Table 1: VMIRP-OU: computational results for the instances with n = 50 and Tmax = 6
BC ABHS

Name LBIni LBLS LBCut BLB BUB Nodes Time BUB

n50-T6-low-1 8374.46 9793.84 9868.16 10262.45 10262.45 1687 3255 10409.13

n50-T6-low-2 8952.24 10534.84 10555.93 10798.71 10798.71 1231 2771 10881.35

n50-T6-low-3 8732.15 10397.91 10412.18 10572.11 10572.11 661 1446 10767.39

n50-T6-low-4 8636.32 10285.43 10383.34 10546.36 10546.36 72 342 10656.21

n50-T6-low-5 8384.77 9890.79 9912.24 10166.25 10166.25 155 1118 10234.60

n50-T6-low-6 8408.77 9970.21 9991.24 10331.40 10331.40 341 2332 10533.63

n50-T6-low-7 8341.90 9801.22 9857.35 10327.51 10327.51 1069 2203 10460.82

n50-T6-low-8 8394.24 10029.70 10057.75 10363.20 10363.20 80 763 10411.20

n50-T6-low-9 8465.93 9915.72 9930.67 10243.16 10243.16 183 1494 10305.69

n50-T6-low-10 8019.13 9582.58 9616.24 9966.99 9966.99 603 2159 10470.63

n50-T6-high-1 28470.44 30113.27 30302.46 30613.81 30613.81 8679 8294 31147.82

n50-T6-high-2 27914.37 29790.68 29808.58 30068.28 30068.28 237 1369 30192.51

n50-T6-high-3 27892.29 29890.65 29910.66 30140.09 30140.09 1395 2315 30420.90

n50-T6-high-4 29493.88 31509.02 31556.38 31815.60 31815.60 179 567 31898.84

n50-T6-high-5 27436.20 29189.15 29211.27 29510.68 29510.68 49 343 29518.68

n50-T6-high-6 29939.68 31897.31 31908.24 32309.01 32309.01 966 1853 32394.50

n50-T6-high-7 27839.18 29592.91 29662.92 30146.64 30146.64 647 1057 30165.00

n50-T6-high-8 24085.85 25812.47 25847.67 26157.83 26157.83 77 529 26416.46

n50-T6-high-9 28264.44 30057.20 30092.06 30450.84 30450.84 606 1357 30671.88

n50-T6-high-10 29525.11 31388.97 31416.69 31832.59 31832.59 733 1993 32362.01

All the VMIRP-OU instances have been solved to optimality and computation times did not exceed one

hour, except n50-T6-high-1. We could significantly improve the upper bounds of Archetti et al. [2] for

all the benchmark instances.

6.2 Results for VMIRP-ML

We report computational results for VMIRP-ML in Table 2, which is organized as follows. Column

“Name" shows the name of the instance and column LBIni shows the lower bounds returned by the

initial formulation (1)-(19) except (8). Columns BC report on the results provided by the Branch-and-

Cut algorithm based on the reformulations introduced in Sections 4 and 5: namely column LBLS shows

the lower bound returned by adding the single-item inequalities (53)-(63); column LBCut the lower bound

returned by the single-item reformulation (53)-(63) and by the Cut (65) and the 2-Cut (69) inequalities;

columns BLB and BUB show the best lower bound and the best upper bound found (bold means that

the upper bound has been proven to be optimal), columns Nodes and T ime show the number of tree

nodes and the total CPU seconds.

In Table 2 we compare the results of our cutting plane algorithm with those provided by the Branch-and-

Cut algorithm of Coelho and Laporte [9]. Columns BLB, BUB and T ime show the best lower bound

and the best upper bound found in [9] respectively. Again bold means that the upper bound has been

13



proven to be optimal. For the sake of comparison we note that they ran their experiments on a GRID of

Intel Xeon processors at 2.66 Ghz, using IBM Concert Technology and Cplex 12.3 with six threads.

Table 2: VMIRP-ML: computational results for the instances with n = 50 and Tmax = 6
BC C&L

Name LBIni LBLS LBCut BLB BUB Nodes Time BLB BUB Time

n50-T6-low-1 8374.69 9754.38 9754.38 9966.14 9966.14 15123 1485 9901.42 9975.82 86400

n50-T6-low-2 8952.21 10515.99 10523.24 10632.04 10632.04 65 334 10632.0 10632.0 2536

n50-T6-low-3 8725.14 10375.98 10390.66 10510.72 10510.72 3972 1876 10510.7 10510.7 1355

n50-T6-low-4 8628.38 10242.90 10242.90 10513.43 10513.43 166667 18016 10513.4 10513.4 60289

n50-T6-low-5 8385.56 9859.51 9899.12 10113.05 10113.05 2500 2327 10113.0 10113.0 2416

n50-T6-low-6 8417.36 9944.55 9948.15 10148.02 10148.02 1900 2318 10113.6 10148.0 86400

n50-T6-low-7 8354.78 9775.95 9775.95 9982.20 9982.20 284288 28195 9982.2 9982.2 14698

n50-T6-low-8 8384.72 10015.36 10066.26 10299.13 10299.13 878 1360 10252.8 10229.1 86400

n50-T6-low-9 8483.51 9897.43 9904.03 10009.90 10009.90 819 801 10009.9 10009.9 6326

n50-T6-low-10 8014.26 9545.66 9545.66 9659.20 9659.20 2425 2081 9659.2 9659.2 3523

n50-T6-high-1 29508.20 29861.88 29905.99 30189.42 30189.42 1235 645 30189.4 30189.42 3036

n50-T6-high-2 27983.11 29600.59 29615.13 29790.05 29790.05 133 357 29790.0 29790.0 3334

n50-T6-high-3 27830.41 29633,56 29657.11 29790.91 29790.91 219 809 29790.9 29790.9 4020

n50-T6-high-4 29516.86 31240.62 31240.62 31518.26 31518.26 1424 1618 31518.3 31518.3 5737

n50-T6-high-5 27413.47 28992.54 29021.11 29240.42 29240.42 199 565 29240.4 29240.4 684

n50-T6-high-6 30007.78 31620.79 31630.26 31903.12 31903.12 367 1048 31903.1 31903.1 28320

n50-T6-high-7 27933.00 29396.58 29396.58 29734.48 29734.48 7988 1703 29734.5 29734.5 13561

n50-T6-high-8 23923.48 25692.27 25692.27 25709.61 25954.19 328 1202 25954.2 25954.2 21552

n50-T6-high-9 28467.02 29863.25 29884.01 30192.88 30192.88 390 822 30192.9 30192.9 20581

n50-T6-high-10 29508.20 31101.43 31101.43 31338.24 31338.24 83 488 31338.2 31338.2 1879

Although we must careful when comparing computation times obtained on different machines, we note

that the Branch-and-Cut algorithm produces goods results for the instances with high storage costs,

improving the results reported in [9]. We could also solve to optimality three instances still unsolved in

[9].

7 Final Remarks

In the Tables we have started by reporting the values of the lower bounds obtained after the addition of

subtour inequalities. This appears to be the natural base point given that all the other authors necessarily

add such inequalities. This then allows us to measure the effect of the lot-sizing inequalities and the

cuts described in Section 5. Other authors [3, 11, 9] have only added simple lot-sizing inequalities,

and unfortunately have not reported comparable information on the lower bounds. Their work has

concentrated more on the development of specialized branch-and-cut codes including problem-specific

primal heuristics.

Though the test instances have a very special structure in which all data and decisions concern a small

multiple of the demand Di, it is easily seen that the extended reformulations for VMIRP-OU can easily

be adapted to treat arbitrary time-dependent order up levels and demands without significantly changing

in size. For VMIRP-ML the flow models will grow in size with the data, so for more arbitrary data it is

probably preferable to use the valid inequalities proposed in Atamturk [4] and Pochet and Wolsey [15, ?].

In a very recent paper Coelho and Laporte [10] add some valid inequalities based on the minimum

number of visits each client must receive. They report average results showing significant improvements in

computation times. It appears a priori that their improvements are complementary to our reformulations.

Preliminary tests on the 100 customer OU and ML instances that they tackled indicate that, though

our approach produces lower bounds at the top node of the same quality as the lower bounds they

achieve after several hours of computation, it is not able to solve the instances to optimality in reasonable

computation times. This is presumably because of the larger duality gaps and of the growing size of

the LP relaxation, which make re-optimization much slower. So to address large scale instances, the

interaction between the lot-sizing and the routing substructure to derive new cutting planes families will

have to be further investigated as well as primal heuristics, preprocessing and more efficient techniques

to (re-)optimize LPs. Another research direction we plan to address is the extension to the multi-vehicle
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case.
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