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Stem cells, including mesenchymal stem cells (MSCs) 
and pluripotent stem cells (PSCs), have shown great 
potential for various biomedical applications including 
drug discovery, disease modeling, and tissue engineer-
ing [1-4]. Especially, the discovery of  induced pluripo-
tent stem cells (iPSCs) with similar characteristics to 
embryonic stem cells (ESCs) opens a new era for stem 
cell research and transplantations [5]. Bioprocess en-
gineering provides a platform to generate a controlled 
microenvironment that could potentially recreate a 
stem cell niche in view of  promoting stem cell prolif-
eration or the lineage-specific differentiation.

A bioprocess engineering strategy, through the use 
of  well-controlled bioreactors, aims at achieving the 
large scale production of  stem cells, improving their 
biological properties, and ensuring the safety in clinical 
use following the guidelines of  current Good Manu-
facturing Practices (cGMP) [6, 7]. For instance, mi-
crocarrier-based bioreactors enable easy scale up for 
anchorage-dependent stem cells, demonstrating high 
reproducibility on regulation of  cellular behaviors with 

the compliance under cGMP. Microcarriers have been 
investigated for stem cell expansion and differentiation 
in stirred tank bioreactors and rotating wall bioreac-
tors, including MSCs and PSCs as well as the differ-
entiated tissue-specific cells (e.g. osteoblasts, neurons, 
cardiomyocytes etc.) [8-13]. As for custom-made bio-
materials, the accurate biochemical and biomechanical 
characterization of  the microcarriers (i.e. surface com-
position and modulus) will help to fully exploit their 
potential in regulating the stem cell fate decision. For 
instance, it has been shown that microcarrier surface 
properties modulated MSC adhesion and cytoskeleton, 
which in turn regulated chondrogenic differentiation 
[14]. Another suspension culture organization in biore-
actors is the self-assembled aggregates, which has been 
shown recently for both PSCs and MSCs [6, 15]. This 
3-D organization promotes cell-cell adhesion and the 
secreted factors, allowing the large scale expansion as 
well as the enhanced therapeutic potential. Most im-
portantly, suspension culture in bioreactors with either 
microcarriers or aggregates enables the process inte-
gration of  iPSC reprogramming, stem cell self-renew-
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al, and the lineage-specific differentiation [16, 17]. 

Bioreactors promote efficient mass transfer and en-
able the control of  nutrient feeding mode to regulate 
cell metabolism [18]. For instance, glucose and oxygen 
metabolisms play a key role in MSC and PSC expan-
sion and differentiation [19]. The efficient expansion 
of  stem cells relies on glycolysis, while during differ-
entiation stem cells generally switch the metabolism 
to oxidative phosphorylation (e.g. cardiomyocytes de-
rived from PSCs) [20-22]. As a consequence, the re-
quirements for glucose and oxygen vary upon different 
phases of  stem cell production. Accurate understand-
ing of  stem cell metabolism is critical for the rational 
design of  culture parameters such as feeding regime in 
bioreactors for efficient integrated expansion and dif-
ferentiation at large scale. In the same vein, the genera-
tion of  gradient of  cytokines and growth factors in the 
bioreactors enables the design of  ad-equate niches to 
promote efficient stem cell differentiation, as shown 
in mesodermal lineage commitment and the regulation 
of  ESC self-renewal [23, 24].

Besides the improved mass transfer and diffusion, bio-
reactors also enable the control of  stem cell’s exposure 
to mechanical force, providing additional signaling for 
differentiation or sustainment of  the stem cell proper-
ties [25]. For instance, the activation of  Wnt signaling 
for MSC osteogenic differentiation or the sustained 
self-renewal of  ESCs and alternatively their commit-
ment is regulated by mechanical force [26-28]. The 
mechanical stress has also been shown to induce au-
tocrine/paracrine signaling of  transforming growth 
factor (TGF)-β superfamily and activate Smad2/3 
pathway to suppress spontaneous differentiation of  
human PSCs [29, 30].  These findings underscore the 
importance of  reciprocal interactions of  autocrine/
paracrine signals and mechanical force in 3-D cellular 
organizations during stem cell self-renewal and lineage 
commitment.  

Together, this editorial indicates that rational bio-
process engineering strategies applied to stem cell 
cultivation in bioreactors constitutes the ideal way to 
monitor the microenvironment of  stem cells. Accurate 
microcarrier characterization, the controlled feeding 
mode, and the magnitude of  applied mechanical force 
should lead to the improvement in stem cell expansion 
and differentiation ex vivo that ultimately meet the clini-
cal demand with the large number of  cells as well as 
the safety considerations.
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