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|. Empirical data suggests that the search 2. Unlike Brownian motion that has a typical length scale, Levy
patterns of many animals, including humans, is flights are scale-free. The corresponding probability distribution
closer to Lévy flights than Brownian motion. function (pdf) is not a Normal pdf but a "heavy-tailed” Lévy

i PR v e pdf, which is solution of a fractional-order diffusion equation.
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- . a = 2 : Normal second-order

diffusion.
a < 2 : Anomalous fractional-
order diffusion, ie superdiffusion.

Normal df , , , <> — 2l

Performing Levy flights maximizes the
chance of encountering randomly distributed
targets when their concentration is low.

4. Here we consider a |ID competition model between 2 species,
represented by density functions $,(x,t) and S,(x,t), that both perform
Levy flights with indices o, and o, 95,

3. In a simple fractional-order
reaction diffusion model, traveling

waves no longer propagate at a e 1 Koy —0oDY Sy + a151(1 — b1151 — b12Ss)
For simplicity, we assume that the %
constant speed but accelerate. . s . 02 _ 1 pasg Gl — b Gr — b G
fractional-order diffusion term s o = Kaz—oo 5?52 + a255(1 — b2151 — b2252)
1 oc 0%c T . 9y 9 T
| = Kop— +&c(1—¢) only “left-sided". . 1 [y & 10 / Si(y, t)
0.8 O O P g — Qi ¢, —
o t T o D31Si(x,t) = F [(zk) Sz(k,t)] [2— o) 022 ) (@ — y)] dy
gl What is the impact of Lévy-flight foraging patterns on
=2 rmal diffusion . e : ”
0" o2 sion both species dynamics? Can we derive a “catch-up
\ condition if one species is chasing the other?
0'2_01<2 , . .
'm0« Je—— 6. In the example below, §, is both quicker (&, = 1.95, &, =
1.8) and stronger than §,. The system evolves towards the
equilibrium state corresponding to the extinction of §,.
5. Let us assume that $, is introduced in 5.(2.) 100r 5
o P : 1 ’ | S, further accelerates
the wake of §, to control it. Initially, S, is l S, is initially at its carrying capacity Lonce it has “jumped
) . . . . for x<20. Since it has a smaller ahead” of S,
at ItS Cal’l‘)'lng C&P&C'ty 18 the reg|0n Whel‘e i acceleration than S,, it is quickly fahead of o,

caught up and controlled by ..

S, is introduced. The asymptotic solution
then reads:

20+

Behind S, S, accele-
Y rates as expected.

S1(x,t) ~ (Kalt)e"‘lta:_(al“),

Sz(fl?,t) ~ (Kazt)eaz(l—b21/b11)tx—(a2+1)

Fractional-order diffusion being a non-

Both solutions have a power-law decaying 5 local operator that has a far-reaching
) ) ) influence, it gives rise to non-zero ’
tail and lead to exponentially-accelerating , values of S, ahead of the §, front. 0 - 3
traveling waves. By computing the ‘ | 0 The system dynamics is
. ' ' Sl(.’l?,t) ) .
:-agganglaz tra]eCtOrl;)y Of a Ifon;t”at the : Both solutions have RN | thUS Stl"Ong|)’ |nﬂuenced
the expected power- ’ .
cd Ing e gef’ Onhe .F) 1ains i de © OWIng (- [avv defaying ta:DiI. by LeV)’ ﬂ'ghts aS the)’
exXpressions r1or C 1e ront SpeEeda. 1072 ‘|" | | give rise to accelerating
c1(t) ~ 1 1 (Kf*lt) ekt (al n 1) rather than constant-
a1 + S t )’ —4 .
1 o Lo , 07 speed traveling waves,
1 o t\ @2+l  ag(1—bgy/byq) 1 . .
ea(t) ~ — +1( & ) B (az(l ) Z) which are predicted by
2 2 11 _6
_ . | T R E— T T 2nd-order models.
S, will therefore catch up with S, if
a'2(1 — b21/b11) aq References:
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