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Acetylcholine (ACh), the major parasympathetic neurotrans-
mitter, is released by intrapancreatic nerve endings during
the preabsorptive and absorptive phases of feeding. In �-cells,
ACh binds to muscarinic M3 receptors and exerts complex
effects, which culminate in an increase of glucose (nutrient)-
induced insulin secretion. Activation of PLC generates diacyl-
glycerol. Activation of PLA2 produces arachidonic acid and
lysophosphatidylcholine. These phospholipid-derived mes-
sengers, particularly diacylglycerol, activate PKC, thereby in-
creasing the efficiency of free cytosolic Ca2� concentration
([Ca2�]c) on exocytosis of insulin granules. IP3, also produced
by PLC, causes a rapid elevation of [Ca2�]c by mobilizing Ca2�

from the endoplasmic reticulum; the resulting fall in Ca2� in
the organelle produces a small capacitative Ca2� entry. ACh

also depolarizes the plasma membrane of �-cells by a Na�-
dependent mechanism. When the plasma membrane is al-
ready depolarized by secretagogues such as glucose, this ad-
ditional depolarization induces a sustained increase in
[Ca2�]c. Surprisingly, ACh can also inhibit voltage-dependent
Ca2� channels and stimulate Ca2� efflux when [Ca2�]c is ele-
vated. However, under physiological conditions, the net effect
of ACh on [Ca2�]c is always positive. The insulinotropic effect
of ACh results from two mechanisms: one involves a rise in
[Ca2�]c and the other involves a marked, PKC-mediated in-
crease in the efficiency of Ca2� on exocytosis. The paper also
discusses the mechanisms explaining the glucose dependence
of the effects of ACh on insulin release. (Endocrine Reviews 22:
565–604, 2001)
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I. Introduction

DESPITE THE ALTERNATION of fasting and feeding
periods, the concentration of plasma glucose is main-

tained within a narrow range by a finely tuned balance
between insulin, the only hypoglycemic hormone, and glu-
cagon, epinephrine, corticosteroids, and GH, the major hy-
perglycemic hormones. The secretion of insulin by �-cells of
the endocrine pancreas is regulated by glucose and other
circulating nutrients. It is also modulated by several hor-
mones and neurotransmitters, among which acetylcholine
(ACh) plays a prominent role.

The complex neural control of hormone secretion by the
endocrine pancreas has been the subject of other reviews
(1–3). It will be addressed only briefly in our contribution,
which focuses on the cholinergic control of the �-cell func-
tion. After an overview of the in vivo data demonstrating
the role of the parasympathetic system in the regulation of
glycemia, we analyze and synthesize the in vitro experi-
ments that have elucidated the cellular mechanisms by
which ACh influences �-cells. Particular attention is paid
to the effects of ACh on phospholipid metabolism, mem-
brane potential, free cytosolic Ca2� concentration
([Ca2�]c), and insulin secretion. This article updates and
extends other reviews on the subject (4 –7).

II. The Innervation of the Endocrine Pancreas

A. General anatomical considerations

The endocrine pancreas is organized in small organs, the
pancreatic islets or islets of Langerhans, that are dispersed
in the exocrine parenchyma. The islets are composed of a
few hundred to several thousands of cells, of which 65–
80% are insulin-secreting �-cells. These cells are mainly
located in the center of the islet and are surrounded by a
mantel of three other cell types, i.e., glucagon-secreting
�-cells, somatostatin-secreting �-cells, and pancreatic
polypeptide-secreting cells (PP-cells).

The endocrine pancreas is richly innervated, but the abun-
dance and organization of this innervation are highly vari-
able between species (8). Most of the nerve fibers enter the
pancreas along the arteries (9, 10). Unmyelinated nerve fibers
are found in the neighborhood of all islet cell types at the
periphery and within the islet. At some distance from the
islets, glial Schwann cells often form a thin sheet around
nerve fibers on their travel toward and within the islet. In the
vicinity of islet cells, however, it is not rare to see some nerve
fibers lacking this glial protection and coming close to or
ending blindly 20–30 nm from the endocrine cells (8, 11–17).
Well differentiated synapses with islet cells have rarely been
observed (18–20). Interestingly, the innervation of the islet is
very plastic, as suggested by the observation that islets trans-
planted in the portal vein of diabetic rats became reinner-
vated by hepatic nerves (21).

The autonomic innervation of the endocrine pancreas has
several origins (for review, see Refs. 2 and 3). Classically, the
autonomic nervous system uses two interconnected neurons
to control effector functions and is divided into two systems,
the sympathetic and the parasympathetic nervous systems,

according to the location of the preganglionic cell bodies.
However, there are indications suggesting that these two
systems are not always independent of each other, but dis-
play anatomical interactions (22) or share similar neurotrans-
mitters (23–25). The endocrine pancreas also receives other
types of nerves, the anatomical origin and the function (mo-
tor efferent or sensory afferent) of which are not clearly
known. These nerves are of peptidergic and nonpeptidergic
nature (2, 3).

B. The parasympathetic innervation

The preganglionic fibers of the parasympathetic limb orig-
inate from perikarya located in the dorsal motor nucleus of
the vagus (26–33) and possibly also in the nucleus ambiguus
(26, 34–37), which are both under the control of the hypo-
thalamus. They are organized in well separated branches
traveling within the vagus nerves (cranial nerve X), and
through the hepatic, gastric (31, 38), and possibly celiac
branches of the vagus (39), they reach intrapancreatic ganglia
that are dispersed in the exocrine tissue. These ganglia send
unmyelinated postganglionic fibers toward the islets (9, 10,
38, 40). Preganglionic vagal fibers release ACh that binds to
nicotinic receptors on intraganglionic neurons. Postgangli-
onic vagal fibers release several neurotransmitters: ACh, VIP,
gastrin-releasing peptide (GRP), nitric oxide (NO), and pi-
tuitary adenylate cyclase-activating polypeptide (PACAP)
(3, 27, 41–51). Cholinergic terminals are found in the neigh-
borhood of all islet cell types at the periphery and within the
islet (50, 52–56). The importance of the cholinergic innerva-
tion of the endocrine pancreas is attested by the presence of
a 10-fold higher activity of choline acetyltransferase and ace-
tylcholinesterase (the enzymes involved, respectively, in the
synthesis and the degradation of ACh) in the islets than in the
surrounding exocrine tissue (57). Cholinergic synapses with
endocrine cells have been observed in some species (58, 59).

Understanding the organization of the pancreatic in-
nervation permits correct interpretation of some experi-
ments using different cholinergic antagonists. The stim-
ulation of insulin release occurring upon electrical
stimulation of vagal nerves in the dog is abolished by both
nicotinic and muscarinic antagonists (60). In the perfused
rat pancreas, nicotine produces an increase of insulin se-
cretion that is blocked by atropine (10). These observations
can be explained by the presence of nicotinic receptors on
pancreatic ganglia and nerves (61– 64) and muscarinic re-
ceptors on �-cells (see Section X).

The overall effect of a parasympathetic stimulation is an
increase of insulin secretion (see Section III). Because post-
ganglionic fibers contain various neurotransmitters in addi-
tion to the classic neurotransmitter ACh, it is important to
keep in mind that parasympathetic neurotransmission is the
sum of various biological effects. VIP and PACAP stimulate
insulin secretion by increasing cAMP levels (3). GRP and its
amphibian homolog, bombesin (3), are also insulinotropic
(3, 42, 65–68). They act on the same family of receptors (69)
and exert their action by two mechanisms, directly by stim-
ulating �-cells through the PLC-PKC pathway (3), and in-
directly by activating intrapancreatic postganglionic nerves
that stimulate insulin secretion (68). NO synthase has been
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detected in nerves in several organs wherein NO is consid-
ered a neurotransmitter (70, 71), and in pancreatic nitrergic
nerves (45, 48, 49, 67). Various effects of NO on �-cells have
been reported (72–75), but it is unclear whether NO is im-
plicated in the parasympathetic modulation of insulin
secretion.

The parasympathetic system also controls the secretion of
the other islet hormones. Vagal nerve stimulation increases
glucagon (31, 41, 60, 76–78) and PP secretion (41). The effect
of vagal stimulation on �-cells is less clear, as it was reported
to stimulate (79) or inhibit somatostatin secretion (78, 80). In
vitro and in vivo experiments using various cholinergic agents
have shown that ACh stimulates glucagon and PP secretion
through atropine-sensitive mechanisms (81–84). The effects
of cholinergic agonists on in vitro somatostatin secretion are
again controversial (2, 80, 82, 85), although this might reflect
species differences.

C. The sympathetic innervation

The sympathetic innervation of the pancreas originates
from preganglionic perikarya located in the thoracic and
upper lumbar segments of the spinal cord (86). The myelin-
ated axons of these cells traverse the ventral roots to form the
white communicating rami of the thoracic and lumbar nerves
that reach the paravertebral sympathetic chain (87). Pregan-
glionic fibers either communicate with a nest of ganglion
cells within the paravertebral sympathetic chain or pass
through the sympathetic chain, travel through the splanchnic
nerves, and reach the celiac (2, 3, 35, 86, 88) and mesenteric
ganglia (86). Ganglia within the paravertebral sympathetic
chain, and the celiac and mesenteric ganglia, give off post-
ganglionic fibers that eventually reach the pancreas. The
existence of intrapancreatic sympathetic ganglia has also
been reported (25, 26, 37). The preganglionic fibers release
ACh that acts on nicotinic receptors on intraganglionic
neurons, whereas the postganglionic fibers release several
neurotransmitters: norepinephrine, galanin, and NPY (3, 51,
89–91). A rich supply of adrenergic nerves in close proximity
of the islet cells has been observed in several mammalian
species (53–55, 92).

The net physiological effect of splanchnic nerve stimula-
tion is a lowering of plasma insulin concentration (93–96).
This effect is attributed to release of norepinephrine from
nerve fibers close to �-cells and to elevation of catecholamine
(epinephrine and norepinephrine) plasma levels because of
the stimulation of the adrenal medulla. Catecholamines have
long been known to inhibit insulin secretion in vivo (1–3, 97)
and in vitro (1–3, 98–101). Their action is mediated by �2-
adrenoceptors (102), probably of the �2a- and �2c-subtypes
(103), which have been identified in �-cells by both phar-
macological (104) and molecular approaches (103, 105). Ac-
tivation of �2-adrenoceptors interferes with the secretory
process through several mechanisms that are all prevented
by pertussis toxin treatment and are, thus, likely mediated by
G�i or G�o (106): an inhibition of adenylate cyclase leading to
a lowering of �-cell cAMP, an opening of K� channels of
small conductance leading to partial membrane repolariza-
tion and decrease in Ca2� influx, and a major inhibition of a
late step of exocytosis (106). Similar pathways are implicated

in the inhibitory action of galanin, which may cooperate with
catecholamines to inhibit insulin secretion in response to
splanchnic nerve stimulation (3, 106). In contrast, an increase
in plasma insulin can be evoked by selective �-adrenergic
agonists, particularly of the �2-subtype (2, 95, 107, 108), that
activate adenylate cyclase and increase cAMP. However,
these usually have little effect on insulin secretion by isolated
islets (109). Moreover, the presence of �2-adrenoceptors in
�-cells remains controversial (105, 110). It is also important
to emphasize that a number of pharmacological studies have
been misinterpreted because antagonists of adrenoceptors
can influence insulin secretion by acting on other targets, e.g.,
on ATP-sensitive K� (K�-ATP) channels (111). The mecha-
nisms by which NPY inhibits insulin release are not clearly
known and might involve a decrease in cAMP levels (3).

The sympathetic nervous system exerts profound effects
on the secretion of the other islet hormones. Splanchnic nerve
stimulation increases glucagon secretion (93–96, 112, 113),
and epinephrine stimulates glucagon secretion in vivo and in
vitro (84, 100, 114, 115). This effect results from the activation
of �-adrenoceptors (101), probably of the �2-subtype (110),
although one report implicates �-adrenoceptors (96). It has
been shown that pancreatic �-cells express �1-, �2-, and �3-
subtypes (103). Splanchnic nerve stimulation decreases so-
matostatin secretion (80, 96, 116), and norepinephrine inhib-
its somatostatin release by isolated rat islets (100). The results
are less clear for PP secretion. Thus, splanchnic nerve stim-
ulation has been reported to increase (3, 113, 117) or inhibit
PP secretion (2, 116). Catecholamines stimulate PP release by
isolated islets (118).

Overall, the sympathetic nervous system serves to main-
tain or increase glycemia in various conditions of stress such
as neuroglycopenia, hypovolemia, or physical exercise (3). Its
pancreatic action not only involves inhibition of insulin se-
cretion, but also stimulation of glucagon secretion (3, 119).

D. Sensory fibers

Calcitonin gene-related peptide (CGRP) and substance P
(SP) are thought to report sensory information in many sys-
tems (120). CGRP (51, 121, 122)- and SP-immunoreactive (51,
123, 124) nerve fibers have been observed in both the exocrine
and endocrine pancreas. Vanilloid receptors, activated by
heat, low pH, and various vanilloid agents (such as cap-
saicin), are localized in sensory fibers and generally report
pain information (120). Neonatal treatment of mice with cap-
saicin destroys the majority of capsaicin-sensitive neurons
and has often been used to identify sensory fibers (120). This
treatment was followed by a marked reduction of CGRP-
immunoreactive fibers in both the endocrine and exocrine
pancreas (122) and by a partial reduction in SP-immuno-
reactive fibers (36, 125).

It is thought that sensory afferents leave the pancreas
along the sympathetic fibers within the splanchnic nerves
and that the perikarya of the sensory fibers are present in
dorsal root ganglia, mainly at the level of the lower thoracic
segments of the spinal cord, transmitting noxious informa-
tion to the central nervous system by synapsing on second-
order neurons of the dorsal horn of the spinal cord (2, 86, 126,
127). The existence of such an anatomical route is supported
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by experiments of retrograde labeling (36, 86, 126, 128). It has
been suggested that the pancreas is also innervated by sen-
sory afferents that run within the vagus nerve, the perikarya
of which are in the nodose ganglion and transmit information
to the nucleus tractus solitarius (30, 35, 36, 129, 130).

There is no doubt that sensory nerve fibers report pain
information associated with diseases of the exocrine tissue,
such as pancreatic cancer and pancreatitis (127, 131), but
there are no reports of sensations of pain associated with a
destruction of the endocrine pancreas. However, it is possible
that sensory fibers play a role in the control of insulin se-
cretion. Thus, neonatal treatment of mice with capsaicin (to
destroy these fibers) results in more glucose-stimulated in-
sulin secretion than in nontreated mice, suggesting that sen-
sory fibers exert a direct, tonic inhibition of insulin secretion
(132). CGRP may inhibit insulin secretion through a direct
action on the islets (121, 133), whereas both inhibitory (134)
and stimulatory (124, 135) effects of SP have been reported.
Indirect effects of capsaicin-sensitive fibers are also possible.
Indeed, it has been reported that removal of endogenous
sensory neuropeptides by deafferentation of capsaicin-
sensitive sensory nerves improves glucose tolerance by in-
creasing in vivo insulin sensitivity (136, 137).

E. Other types of nerves

Immunocytochemistry has revealed the presence of neuro-
transmitters other than those described above in pancreatic
nerves: cholecystokinin (138), 5-hydroxytryptamine (5-HT or
serotonin) (139, 140), and methionine-enkephalin (3, 51).
These might also influence insulin secretion: cholecystokinin
stimulates insulin release by activating PLC and PLA2 (138),
but the effects of 5-HT are controversial, as both inhibition
(141, 142) and stimulation (143) of insulin secretion have been
reported. Enkephalin also exerts variable effects depending
on the concentration used and the species studied (144, 145).

The pancreatic innervation presents other interesting fea-
tures. The section of extrinsic pancreatic nerves has revealed
that many of the intrinsic pancreatic neurons are indepen-
dent of the integrity of the extrinsic nerves (146), suggesting
that the pancreatic innervation might behave as an indepen-
dent system. This is supported by the observation that intra-
pancreatic ganglia are interconnected with one another, as
are enteric ganglia (37, 140). It has also been suggested that
intrapancreatic ganglia are connected with the duodenal my-
enteric plexus by nerve fibers (50), suggesting the existence
of an entero-pancreatic innervation. On the other hand, gan-
glia from the myenteric plexus of the stomach and duode-
num send nerve fibers toward the pancreas (50, 139). Many
of these nerves are immunoreactive for 5-HT. Whether these
innervations play a physiological role in the regulation of
hormone secretion by the endocrine pancreas remains to be
investigated.

III. Physiological Role of the Parasympathetic
Control of �-Cells

In 1927, Zunz and LaBarre (147), using a cross-perfused
canine model, showed that stimulation of the vagus nerve in
one dog induced hypoglycemia in the other animal. In 1967,

three in vivo studies performed in the dog and the baboon
reported that stimulation of the vagus nerve increased
plasma insulin, and that this effect involved muscarinic re-
ceptors because it was inhibited by atropine (148–150). At the
same time, an in vitro study showed that cholinergic agonists
stimulated insulin release from pieces of rat pancreas, and
this effect was also antagonized by atropine (99).

The most important characteristic of the influence of ACh
on insulin secretion is a tight dependence on the ambient
glucose concentration. In vivo, electrical stimulation of the
vagus nerve has little effect on the concentration of plasma
insulin during hypoglycemia, but increases it more and more
efficiently as the concentration of plasma glucose augments
(41, 151–155). Similar observations have been made in vitro
when the perfused pancreas (81, 156–160) or isolated islets
(161–164) were used to study insulin secretion directly
(Fig. 1A). This behavior is typical of a potentiating agent. The
mechanisms underlying this potentiation will be explained
in detail in Section IX.

From here, it is important to bear in mind that the majority
of in vitro experiments were conducted with rodent islets, and
that the concentration dependence of glucose-induced insulin
secretion is different in rodent and human islets. Indeed, the
threshold glucose concentration and the half-maximal effective
concentration for insulin secretion are, respectively, around 4
and 9 mm for human islets as compared with 7 and 15 mm for
mouse islets (165).

A. Difficulties and pitfalls of in vivo studies

Species differences must be considered when interpreting
the effects of ACh on insulin secretion in vivo. As already
mentioned in Section II, vagal stimulation can release at least
five neurotransmitters (ACh, VIP, PACAP, GRP, and NO),
the relative contribution of which differs between species. In
the dog (49, 60, 76, 149, 166), rat (78), albino mouse (167), and
calf (41), vagal stimulation of insulin secretion is mediated
mainly or exclusively by muscarinic receptors because it is
largely or fully prevented by atropine. This is not the case in
the pig (113, 168) and in the cat (10, 169), in which neuro-
transmitters other than ACh are probably implicated.

A second difficulty is linked to the number of physiolog-
ical events that are under parasympathetic control. Cholin-
ergic agonists or antagonists, stimulation of the vagus nerve,
and vagotomy induce multiple effects that can indirectly
interfere with insulin secretion. Cholinergic agents influence
the secretion of the other islet hormones (see Section II), but
it is difficult to establish to what extent the observed changes
in insulin secretion are influenced by paracrine or endocrine
interactions. Such interactions depend on the organization of
the microvascularization and the direction of blood flow,
which are still a matter of debate (170–172). In addition, clear
evidence for intraislet paracrine influences has not yet been
reported (172). Importantly, the effects of ACh on insulin
secretion are observed at glucose concentrations that are
substimulating or stimulating for insulin release but inhib-
itory for glucagon release.

Several intestinal hormones, particularly glucose-depen-
dent insulin-releasing peptide (GIP) and glucagon-like pep-
tide-1, potently increase insulin secretion (173–175). GIP- and
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glucagon-like peptide-1-secreting cells possess muscarinic
receptors (176, 177), and both the stimulation of the vagus
nerve and cholinergic agonists stimulate their release (178).

ACh also stimulates gastric emptying (179), which may
affect the rate of glucose absorption, change in glycemia, and
hence, insulin secretion (180, 181). It has also been reported
that the increase in islet blood flow produced by a rise in
blood glucose is mediated by the central nervous system,
which senses the changes in glycemia and sends signals to
islet vessels through the vagus nerves (182).

B. Physiological situations

1. Role of the vagus nerve on glucose tolerance. In lean animals
or humans, basal insulin secretion is not affected or is only
slightly decreased by vagotomy or atropinization (9, 149,
183–196), which indicates that there is no significant tonic
stimulation of the �-cells by the parasympathetic system in
the fasting state. In contrast, it is generally agreed that the
vagus nerves participate in the control of insulinemia during
the periods of feeding. The difficulty is to assess their con-
tribution to the overall insulin-secretory response. Thus, de-
pending on the study, the tolerance to a glucose load is
unaffected or impaired by atropine or vagotomy, whereas
the associated insulin response is larger, similar, or smaller.
The results become more consistent when the insulinogenic
index (� insulinemia/� glycemia) is calculated, and the
mode of administration of glucose (oral or iv) is taken into
account (197–199). Thus, when glucose is administered iv,
the insulinogenic index is not affected or is hardly modified
by atropine or vagotomy (185, 187, 191, 193, 195, 197–201). In
contrast, when glucose is given orally, the insulinogenic in-
dex is significantly decreased by atropine or vagotomy (184,
197, 199, 200, 202). In addition, the rise in plasma insulin is
delayed, which also contributes to the glucose intolerance of
vagotomized or atropine-treated rats (1, 199, 203). These
results suggest that ACh potentiates the insulin response to
glucose after a glucose load, a conclusion that is supported
by experiments using animal models without parasympa-
thetic innervation of the �-cells. After destruction of their
�-cells by alloxan or streptozotocin, rats were transplanted
with isolated islets. The vagus nerves of the receivers were
intact, but the transplanted �-cells were presumably dener-
vated at the time of test (203–205). Meal ingestion induced a
glucose increase that was larger in transplanted than in nor-
mal control rats, and that was associated with a delayed
insulin response (40, 206, 207). This confirms that a direct
parasympathetic innervation of �-cells improves glucose
tolerance.

2. The vagus nerves transmit signals of several origins. When
evaluating the physiological role of the muscarinic control of
�-cells, it is important to bear in mind that the vagus nerves
are the parasympathetic effectors of signals that are all in-
tegrated in the brain but come from at least four sources:
cephalic sensory organs including those of the oral cavity and
the visual and olfactory systems, the gut, the liver, and the
brain itself (208). The sequential activation of all these inputs
will affect insulin secretion in a time-dependent manner
upon meal ingestion.

a. Cephalic sensory organs and the gastrointestinal tract. The
preabsorptive insulin phase corresponds to the earliest
plasma insulin rise during the first minutes of food ingestion.
It does not depend on nutrient assimilation, as it occurs
before the glycemia has increased (1, 200, 206, 207, 209–216)
and is sometimes associated with a transient hypoglycemia
(28, 203, 217). The amplitude of the preabsorptive insulin
phase is highly variable from one study to another, but it is
consistently much smaller than the postabsorptive insulin
phase occurring when glycemia starts increasing. It corre-
sponds to a rise of approximately 20% (28, 216, 217) or more

FIG. 1. General characteristics of ACh effects on insulin secretion in
vitro. Mouse islets were perifused with a medium containing 2.5 mM
CaCl2 (Ca2.5) or no CaCl2 (Ca0) and 3, 15, or 30 mM glucose (G3, G15,
and G30, respectively). A, Experiments with freshly isolated islets. In
the experiments shown in the lower panel, 100 �M tolbutamide (Tolb)
was added to the medium to close K�-ATP channels and depolarize
the �-cell membrane despite the low glucose concentration. [The lower
panel was redrawn from M. P. Hermans et al.: Endocrinology 120:
1765–1773, 1987 (279).] B, Experiments with cultured islets. In the
experiments shown in the lower panel, the medium was supplemented
with 100 �M diazoxide (Dz) to open K�-ATP channels and hold the
membrane hyperpolarized despite the high glucose concentration.
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(1, 206) above basal insulinemia, which may be an under-
estimation of the reality, because insulin is measured in pe-
ripheral or heart blood and not directly in the portal circu-
lation. Insulin is indeed very rapidly degraded by the liver
(50% during the first passage of blood), and the amplitude of
the changes in insulinemia is much smaller in peripheral than
in portal blood (192, 218). The preabsorptive insulin response
involves both cholinergic and noncholinergic mechanisms (3,
216). It can be subdivided into the cephalic phase and the
enteric phase.

The cephalic phase does not even require ingestion of
nutrients, as it can occur in response to oral saccharin or
water intake in animals (1, 204), but not in humans (219). Its
mechanisms involve stimulation of oropharyngeal receptors
(210, 220, 221) and probably also conditioned visual and
olfactory reflexes, because an early peak of insulin secretion
can be observed in animals that simply see or smell food (28).
A cephalic phase exists in humans (Refs. 28 and 222–225, but
see Ref. 226), but is less easily conditioned than in animals
(227, 228). Because no cephalic phase occurs after vagotomy,
nor is this phase observed in diabetic animals transplanted
with denervated islets, it is ascribed to a direct stimulation
of �-cells by both cholinergic and noncholinergic fibers of the
vagus nerves (3, 203–206). The sympathetic nervous system
might also contribute to the cephalic phase in the dog by
activating �2-adrenoceptors (229).

The enteric phase has been much less extensively studied
because of the difficulty in separating it from the preceding
cephalic phase and the following postabsorptive phase,
which rapidly causes an increase in glycemia (28, 203, 217,
230, 231). This phase has been observed after direct infusion
of a meal into the stomach or the duodenum (176, 203, 232)
and is sometimes reflected by a single preabsorptive insu-
linemia peak (203). Abolition of this phase by vagotomy and
atropine implicates the vagus nerve (176, 217, 232), but it
remains unclear whether the response is mediated indirectly
by a vagally induced release of incretins (203), or more di-
rectly by a reflex involving gut glucoreceptors augmenting
efferent activity of the pancreatic branch of the vagus nerve
(233, 234). Glucoresponsive neurons equipped with K�-ATP
channels similar to those of �-cells have recently been iden-
tified in the myenteric plexus of the guinea pig ileum (235).

The role of the preabsorptive phases of insulin secretion
was initially addressed by comparing the insulin and glucose
responses to oral vs. iv glucose administrations (203, 236).
However, it was later found that this type of comparison
might be misleading because a lesser glucose tolerance after
iv administration of the sugar could result from the lack of
incretin effect rather than the lack of preabsorptive insulin
secretion. The importance of the cephalic phase for glucose
homeostasis was established by experiments showing that
plasma glucose and insulin concentrations increased more
after direct administration into the stomach than after oral
intake of the same amount of nutrients (237, 238). These
results were confirmed in a more recent study that compared
the insulin and glucose responses to gastric glucose admin-
istration in humans allowed or not allowed to taste food
(239). Prevention of cephalic phase during food intake di-
minished the glucose tolerance without changing insulin
secretion during the 3-h period after the beginning of food

intake. This glucose intolerance was attributed to differences
in the kinetics of the changes in insulinemia, and possibly
also to a larger glucagon secretion over the same period of
time (239).

That the cephalic phase exerts a beneficial, long-lasting
effect has also been elegantly demonstrated after oral glu-
cose administration to insulin-deficient rats transplanted
with denervated islets. The missing cephalic phase in these
rats was mimicked by a small premeal iv injection of
insulin. This restored early insulin peak did not affect
subsequent plasma insulin levels during the period of
glucose intake, but attenuated (without normalizing) the
rise in plasma glucose levels (40).

With the exception of two reports (196, 240), all the above-
described studies suggest that the timing of insulin secretion
is important for optimal glucose homeostasis. By promoting
anticipatory use of glucose by the liver, muscles, and adipose
tissue, and by inhibiting glucose production by the liver, the
preabsorptive insulin phases restrain the changes in glyce-
mia and insulinemia within a narrow range. This may serve
as a protection against overworking of the �-cells.

b. Liver. Like �-cells, the liver receives efferent vagal stim-
uli in response to an oral stimulus (220, 241). Neurophysi-
ological studies have also revealed that portal glucose injec-
tion increases efferent vagus activity innervating the
pancreas, and it has been suggested that hepatic glucosen-
sitive mechanisms may affect pancreatic function by involv-
ing hepatic vagus afferents and pancreatic vagus efferents
(208). These results are supported by some physiological
experiments demonstrating that a rise of the glucose con-
centration in the portal circulation to the liver induces an
increase of insulin secretion that is prevented by vagotomy
of the hepatic branch (242) and is mimicked by hepatic vagal
stimulation (243). However, other studies have reported that
a rise in insulinemia is mimicked by a section of the hepatic
branches of the vagus nerve, whereas a drop in insulinemia
is induced by electrical stimulation of this branch (241, 244).
Therefore, it has been suggested that afferent fibers exert a
tonic inhibition in brainstem centers of an efferent vagal
branch innervating the pancreas (241, 244). This implies that
the afferent hepatic nerve activity is inversely related to the
portal glucose level, which is confirmed by neurophysiolog-
ical data (245–247). It is difficult to establish how glucose
homeostasis is influenced by these vagally mediated mes-
sages from the liver to the endocrine pancreas.

c. Brain. Several studies suggest that an increase in the
glucose concentration in the brain can increase vagal tone.
Indeed, injection of glucose in the carotid artery of rats, in an
amount insufficient to modify systemic plasma glucose con-
centration, induced a rapid increase in insulin secretion that
was abolished by vagotomy (182). This effect likely involves
glucoresponsive neurons in the hypothalamus and the nu-
cleus tractus solitarius (220, 248).

3. Is there a long-lasting vagal stimulus during the absorptive
phase? Whereas it is clear that the parasympathetic system
contributes to the preabsorptive insulin response, it is less
obvious whether a parasympathetic stimulus of the endo-
crine pancreas persists during the meal. Because ACh is
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quickly degraded by cholinesterases in plasma, it is impos-
sible to reliably measure the pancreatic ACh spillover as an
index of parasympathetic neural activity of the pancreas
(229). Measurements of plasma PP provide an alternative
approach to evaluate the parasympathetic activity. Indeed,
PP secretion is predominantly under vagal control because
its secretion in vivo is nearly completely prevented by atro-
pine or vagotomy (249–251). Meal ingestion induces a bi-
phasic PP secretion characterized by a rapid first phase fol-
lowed by a second sustained response. Both phases are
prevented by atropine (229). The first phase has sometimes
been correlated to the preabsorptive insulin response (250,
252). The presence of the second sustained phase supports
the existence of a long-lasting cholinergic stimulus. Because
cholinergic nerve fibers innervating PP and �-cells likely
have a common origin, it is highly plausible that �-cells are
also under the influence of a long-lasting vagal stimulus
during meals. This suggestion is corroborated by the obser-
vation that atropine markedly suppressed insulin response
to a meal (251). However, recent data obtained with mice
lacking the M3 muscarinic receptor (the main muscarinic
receptor on �-cells, see Section X) do not clarify the issue.
These mice do not show any signs of impaired glucose in-
tolerance after oral or ip glucose administration (253), but it
is unclear to which extent other factors that were observed
in these mice, such as increased insulin sensitivity, hypolep-
tinemia, and hypophagia, contributed to glucose tolerance.

C. Pathophysiological situations: hyperinsulinemia, obesity,
and insulin resistance

The net effect of the central nervous system on insulin
secretion is the result of a balance between the influence of
the inhibitory sympathetic system and the stimulatory para-
sympathetic system. The metabolic consequences of a dys-
regulation of this subtle balance have been reviewed recently
(254). Only the troubles associated with an anomaly of the
parasympathetic system will be briefly mentioned here.

Two areas in the brain play a major role in the control of
the efferent autonomic pathways, the ventromedial hypo-
thalamic nuclei (VMH, also called the satiety center) and the
lateral hypothalamic area (LHA, also called the feeding
center) (241, 254). The VMH increases the activity of the
sympathetic nervous system and decreases that of the para-
sympathetic nervous system, whereas opposite effects are
produced by the LHA. The VMH and the LHA reciprocally
inhibit each other.

Several animal models of hyperinsulinemia are character-
ized by a dysregulation of the sympathetic and parasympa-
thetic pathways. A lesion of the VMH in the rat causes an
exaggerated insulin response to an iv or intragastric glucose
load. This hyperinsulinemia occurs rapidly, 10 min after the
lesion (255), and is abolished by atropine or vagotomy (256–
259). In animal models of hyperinsulinemia associated with
a defect in leptin signaling, such as the ob/ob mice (abnormal
leptin) or fa/fa (Zucker) rats (abnormal leptin receptors), the
earliest detectable alteration of insulin secretion is a hyper-
responsiveness to glucose that occurs before the animals
become hyperphagic (193, 260–265). It is mediated by the
vagus nerve, as it is abolished by atropine (194, 255, 260, 266)

or vagotomy (193, 266). NPY is a potent physiological stim-
ulator of feeding that is present at abnormally high levels in
the hypothalamus of fa/fa rats and ob/ob mice. Rats that un-
dergo a chronic intracerebroventricular infusion of NPY dis-
play basal and glucose-induced hyperinsulinemia that is pre-
vented by vagotomy (267, 268). A common feature of all these
animal models is a hyperinsulinemia that results from an
excessive vagal cholinergic tone and an attenuation of the
inhibitory sympathetic tone (254). The chronic influence of
hyperglycemia on the autonomic system may also aggravate
the syndrome (269).

An increased sensitivity of �-cells to ACh might also con-
tribute to hyperinsulinemia. This has been reported in ob/ob
mice (262) and in genetically normal mice subjected to a
high-fat diet (46, 270, 271). The hyperinsulinemia brought
about by an enhanced cholinergic over sympathetic tone
and/or an exaggerated sensitivity of �-cells to ACh might be
a compensatory mechanism for insulin resistance.

This fairly clear picture obtained in experimental animals
cannot readily be extrapolated to human subjects. Although
indirect evidence suggests that insulin secretion is more sen-
sitive to cholinergic stimulation in insulin-resistant obese
subjects than in lean subjects (272), it is widely agreed that
atropine does not correct the hyperinsulinemia of obese sub-
jects (195, 196). Moreover, the preabsorptive phase of insulin
secretion was found to be enhanced (273), normal (224, 274,
275), or absent in obese subjects (276). In type 2 diabetes, the
initial rise in insulin levels after a meal is often delayed or
deficient (277, 278), but it is unknown whether an impaired
preabsorptive vagal stimulus contributes to this defect.

IV. General Characteristics of Acetylcholine (ACh)
Effects on Insulin Secretion in Vitro

The glucose dependence of the effects of ACh on insulin
release has already been emphasized (see Section III and Refs.
162 and 163) and is illustrated in Fig. 1A. At the concentration
of 1 �m, ACh does not affect basal insulin secretion (3 mm
glucose), but causes a rapid, marked, and sustained poten-
tiation of insulin secretion induced by 15 mm glucose (the
half-maximally effective concentration in this model). The
effect of ACh starts to appear between 5 and 7 mm glucose,
i.e., around the threshold concentration of the sugar (not
illustrated), and persists in the presence of a maximally ef-
fective concentration of glucose (30 mm). ACh also increases
insulin secretion in the presence of nutrients other than glu-
cose, e.g., leucine (279). However, nutrients can be replaced
by tolbutamide to unmask the insulinotropic effect of ACh.
As shown in the lower panel of Fig. 1A, the addition of 100 �m
tolbutamide to a medium containing 3 mm glucose evokes a
small increase in insulin secretion (mediated by K�-ATP
channel closure and membrane depolarization), and the sub-
sequent addition of 1 �m ACh slightly potentiates insulin
secretion. The larger efficacy of ACh in the presence of high
glucose than in the presence of low glucose plus tolbutamide
can largely be ascribed to the amplification of insulin secre-
tion (increase in Ca2� efficiency in exocytosis) that the sugar
produces (280). This glucose dependence persists when ACh
is used at high concentrations (e.g., 100 �m), which, however,
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also induce a small sustained elevation of basal insulin se-
cretion (not shown).

The pattern of ACh-induced insulin secretion critically
depends on whether Ca2� influx can occur (281–288). In the
presence of a control medium containing extracellular Ca2�,
the stimulation of secretion is sustained. When Ca2� is omit-
ted from the medium, only high ACh concentrations (�10
�m) trigger a rapid, transient peak of secretion that also
requires the presence of a high concentration of glucose (or
other nutrients) (Refs. 162 and 289–291 and Fig. 1B). Ca2�

influx can also be prevented by opening K�-ATP channels
with diazoxide and holding the membrane at the resting
potential. Under these conditions, the effect of ACh is similar
to that produced in the absence of extracellular Ca2� (289)
(Fig. 1B, lower panel). Blockade of voltage-operated Ca2�

channels similarly affects the action of ACh on secretion (not
shown) (287).

The mechanisms underlying these glucose, membrane
potential, and Ca2� dependencies of ACh-induced insulin
secretion will be explained in the following paragraphs.

V. Effects of ACh on �-Cell Phospholipases

A. Activation of PLC

1. Type of PLC and mechanisms of activation. PLC enzymes
hydrolyze the phosphodiester bond on the third (sn-3)
position of phosphoglyceride molecules to release diacyl-
glycerol (DAG) and a phosphorylated polar head group
(Figs. 2 and 3). There exist three main groups of PLC (PLC-�,
PLC-�, and PLC-�), each containing several subtypes (292–
294). PLC-� are activated by heterotrimeric G proteins,
whereas PLC-� are activated by tyrosine kinases. The mech-
anisms of activation of PLC-� are unknown (294). All three
types hydrolyze phosphatidylinositol (PI), PI 4-phosphate
(PIP), and PI 4,5-bisphosphate (PIP2) in a Ca2�-dependent
manner to produce DAG and inositol 1-phosphate (1 IP), ino-
sitol 1,4-bisphosphate, and IP3, respectively. At low [Ca2�]c,
PIP2 is the preferred substrate (293). In some tissues, certain

PLC isoforms can hydrolyze plasmenylcholine, phosphati-
dylethanolamine, or phosphatidylcholine (PC) (295–298).

In pancreatic �-cells, PLC is both cytosolic and membrane
associated (299–301) and specifically hydrolyzes phospho-
inositides (300, 302). Stimulation of normal �-cells (5, 286,
303–309) and insulin-secreting tumor cells (310–313) with
cholinergic agonists has long been shown to cause DAG and
IP3 accumulation. By analogy with other tissues (314, 315),
it is assumed that this results from activation of a PLC-�
isozyme. However, it is not known which of the three PLC-�
isoforms (�1, �2, or �3) identified in �-cells (316–320) is
coupled to the muscarinic receptor. Activation of PLC by
cholinergic agonists involves a G protein (310, 321, 322). One
single study, performed with rat islets, reported that the G
protein activated by carbachol is pertussis toxin sensitive and
suggested that it corresponds to a G�o protein (323). All other
studies, performed with RINm5F cells (324, 325), rat islets
(321, 326, 327), and �-TC3 cells (328), found the G protein
coupled to the muscarinic receptor to be pertussis and chol-
era toxin insensitive. It is thought to belong to the Gq sub-
family (328), like the G protein that couples muscarinic re-
ceptors to PLC-� in other tissues. Activation of PLC-� has
been reported to be directly mediated by the �-subunit of the
Gq protein (329). The Gq subfamily contains several members
(G�q, G�11, G�14, G�15, and G�16) (330, 331) that seem to
specifically interact with the different PLC-� subtypes (292).
The nature of the G�-subunit involved in the coupling of the
muscarinic receptors to PLC-� in �-cells is unknown.

Phospholipid hydrolysis and inositol production is larger
in �-cells maintained in a Ca2�-containing medium than in
a Ca2�-free medium (5, 162, 290, 303, 332), and are markedly
reduced in insulin-secreting cells loaded with the Ca2�-
chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N�,N�-tetraacetic
acid (BAPTA) (333). Two hypotheses have been put forward to
explain this Ca2� dependence. Because PLC is strictly Ca2�

dependent (293), the enhanced hydrolysis of phosphoinositides
observed in cells bathed in a Ca2�-containing medium has
sometimes been attributed to a direct activation of PLC by Ca2�

(300, 305, 307, 322, 332–338), independently from calmodulin

FIG. 2. Influence of ACh on phospho-
inositide metabolism in pancreatic
�-cells. See text (Section V.A.2) for ex-
planations.
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(300, 337). This proposal was supported by the observations that
high K�, which induces a large rise in [Ca2�]c, increased IP3 or
total IPs levels (332, 339, 340) and accelerated the efflux of
radioactivity from rat islets prelabeled with [3H]inositol (335).
However, these results must be interpreted with caution. First,
the effect of high K� on IP3 levels is species dependent and
larger in the rat than in the mouse (340), perhaps because of the
expression of different PLC isoforms (317, 320, 341, 342). Sec-
ond, even in the rat, phosphoinositide breakdown is much
larger in response to carbachol than to high K� (316, 332, 335,
339). Therefore, a second hypothesis suggests that the poten-
tiation by Ca2� of ACh-induced IP3 production results from a
synergistic effect between Ca2� and muscarinic activation (309,
316). As G proteins have been reported to enhance the Ca2�

sensitivity of PLC (343–346), the Ca2� requirement would be
reduced to the resting [Ca2�]c levels. This would also explain
how muscarinic agonists can elicit a significant phosphoinosi-
tide hydrolysis in cells bathed in a Ca2�-free medium. Finally,
three studies have proposed that PLC activity can also be con-
trolled by the membrane potential, independently from a
change in [Ca2�]c. Depolarization in a medium supplemented
with methoxyverapamil or in a Ca2�-free medium was re-
ported to increase PLC activity in ob/ob islets (347) or in insulin-
secreting �-TC3 cells loaded with 1,2-bis(o-aminophenoxy)-
ethane-N,N,N�,N�-tetraacetic acid (BAPTA) (338). The opposite
effect, a decrease in PLC activity, was measured in rat islets
(339). Thus, the question remains unanswered.

2. Phosphoinositol and phosphoinositide metabolism. Experi-
ments with RINm5F cells or rat islets have shown that IP3 is
very rapidly transformed into inositol 1,3,4,5-tetrakisphos-
phate (307, 332, 348) by a kinase activated by Ca2�-calmod-
ulin (305, 349, 350), and into inositol 1,4-bisphosphate by a
phosphatase (305, 348, 351, 352) (Fig. 2). Inositol 1,3,4,5-
tetrakisphosphate can then be degraded into inositol 1,3,4-
trisphosphate. All inositol phosphate isomers can be further
metabolized through complex pathways (350, 353). In several

studies in which the different isomers of inositol phosphate
were not separated (5, 290, 311, 313), cholinergic agonists
caused a monotonic increase of inositol trisphosphate levels
to a plateau that was reached within approximately 1 min
and thereafter maintained with only a minor decline. When
the two major isomers of inositol trisphosphate, i.e., IP3 and
inositol 1,3,4-trisphosphate, were separated, very different
time courses of accumulation emerged (305, 311, 352). In-
deed, IP3 accumulation consisted in a burst, reaching a peak
within the first 5 sec of stimulation, followed by a decrease
and then a lower sustained phase. By contrast, inositol 1,3,4-
trisphosphate levels increased slowly, reached a maximum
after approximately 30 sec of stimulation, and plateaued at
that level thereafter. The biphasic increase in IP3 probably
involves both a negative feedback effect of PKC on PLC
activity (see Section V.A.3) and a rapid degradation of IP3
(352, 354). Indeed, the two-step conversion of IP3 into inositol
1,3,4-trisphosphate initiated by the Ca2�-calmodulin-sensi-
tive IP3 kinase was markedly attenuated if the rise in [Ca2�]c

that IP3 produces (see Section VIII.A.1) was abolished (305).
This suggests that the rise in [Ca2�]c contributes to the rapid
degradation of IP3 and, therefore, also contributes to the
transient nature of its accumulation (305, 352).

Whereas it is well established that muscarinic stimulation
of insulin secretion increases with the glucose concentration,
it remains unclear whether glucose, per se, potentiates ACh-
induced IP3 accumulation. The larger effect that carbachol
produces in the presence of high glucose (164, 304, 316, 355)
might well result from an additional Ca2�-dependent acti-
vation of PLC due to a greater increase in [Ca2�]c (see Section
VIII.A.3). This interpretation is supported by the observation
that glucose failed to enhance carbachol-induced accumula-
tion of inositol trisphosphate in rat islets incubated in a
Ca2�-free medium (339). Glucose itself and various inter-
mediates of its metabolism were without effect on PLC
activity in a cytosolic fraction of mouse islet homogenate

FIG. 3. Influence of ACh on phospho-
lipid metabolism in pancreatic �-cells
and its role in the control of insulin se-
cretion. Arrows with solid lines repre-
sent metabolic or biophysical pathways.
Arrows with dashed and dotted lines
illustrate stimulatory and inhibitory in-
fluences. Question marks denote PKC-
stimulating pathways that are still de-
bated or are not clearly demonstrated in
�-cells. See text (Section V) for expla-
nations.
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(300). However, other reports have suggested that glucose
metabolism might interact with phosphoinositol and phos-
phoinositide metabolism. Thus, glucose metabolites inhib-
ited IP3 degradation (356, 357) and increased IP3 production
(358) in rat islet and RINm5F cell homogenates, and directly
stimulated Ca2� release from intracellular Ca2� stores of
HIT-T15 cell homogenates (359). Moreover, glucose has been
reported to stimulate the de novo synthesis of DAG, inositol
phosphate, phosphoinositides, or polyphosphoinositides (4,
302, 305, 311, 358, 360–366). More experiments must be per-
formed to evaluate the possible direct effects of glucose on
ACh-induced IP3 accumulation.

In many tissues, PLC mainly hydrolyzes PIP2. In pancre-
atic �-cells, cholinergic agonists also stimulate PI hydrolysis
as shown by the rapid accumulation of 1 IP independently
from the other phosphoinositol intermediates in rat islets
challenged with carbachol (348) (Fig. 2). In agreement with
this observation, PI was found to be a better substrate than
PIP2 for PLC from the cytosolic fraction of mouse islet
homogenates (300). Surprisingly, carbachol-induced accu-
mulation of 1 IP in rat islets is stimulated by hyperpolariza-
tion and is inhibited by depolarization of the plasma mem-
brane (339). The underlying mechanisms are not known. The
predominance of PI hydrolysis over that of PIP2 during pro-
longed stimulation (348) implies that DAG can be formed
independently of IP3 formation. However, the potential im-
portance of this pathway for the stimulation of insulin release
has yet to be established.

At the same time cholinergic agonists hydrolyze phos-
pholipids, they also accelerate PI turnover. DAG can be re-
synthesized back to PI by the following steps (Fig. 2): 1)
diacylglycerol kinase converts DAG into phosphatidic acid
(PA) at the expense of an ATP; and 2) PA then reacts with
CTP to form CMP-phosphatidate (CDP-DAG), which in turn
reacts with inositol to form PI (346, 367–369). The enzymes
involved in this cycle are present in rat islets (370, 371).
Because the cycle requires phosphorylated nucleotides, its
turnover was estimated by labeling islets with 32PO4

3�. It was
found that carbachol stimulates the labeling of PA and de-
creases that of PIP and PIP2, which suggests that cholinergic
agonists accelerate PI turnover after PLC activation in rat
islets (5, 312, 360, 372, 373). This effect was strongly inhibited
in a Ca2�-free medium, which might result from the Ca2�

dependence of PLC (334, 372). Concomitantly, there is an
enhanced flux from PI 3 PIP 3 PIP2, which is necessary
for resynthesis of PIP2 (322). This increased flux might
result from a direct stimulation of the activity of PI 4-
kinase, the enzyme responsible for the synthesis of PIP
from PI (322). Because PIP kinase is inhibited by its prod-
uct, PIP2, hydrolysis of PIP2 by PLC could also relieve this
inhibition, therefore stimulating the flux for PIP2 synthe-
sis. This latter mechanism has been demonstrated in other
cell types (374), but not in �-cells. Cholinergic agonists not
only accelerate PI turnover, they also stimulate de novo
synthesis of phospholipids, as deduced from the enhanced
incorporation of [3H]glycerol into DAG (375), PA, and PI
in rat islets (360). Again, this de novo synthesis pathway is
very much Ca2� dependent (360).

Of all inositol species formed upon ACh stimulation, IP3

is the physiologically more important isomer. Its effects will
be described later (see Section VI.A.1).

3. Diacylglycerol and PKC. DAG is liposoluble and remains in
the plasma membrane. It causes the translocation of its target,
PKC, from the cytosol to the membrane. This translocation
also requires Ca2� and an acidic phospholipid, such as phos-
phatidylserine (376, 377). Metabolism of DAG, either by
DAG lipase-catalyzed deacylation (which yields arachidonic
acid) or by DAG kinase-catalyzed phosphorylation (which
yields PA), terminates its action on PKC (299, 378) (Fig. 3).

Cholinergic agonists produce two major species of DAG
that are enriched in either arachidonate (a polyunsaturated
fatty acid) or palmitate (a saturated fatty acid), and accu-
mulate with different time courses in �-cells (Fig. 3). The
concentration of arachidonate-enriched DAG increases
quickly during the first seconds of stimulation, before de-
clining and remaining at a lower sustained level. This type
of DAG probably originates from PIP2 that mostly contains
arachidonate at the sn-2 position of the phospholipid (302,
379). By contrast, the palmitate-enriched DAG accumulates
monotonically during the first minutes of stimulation (302,
375). This species resembles that produced upon glucose
stimulation (365, 375), but its source upon ACh stimulation
is unknown. It might originate from PLD activation (see
Section V.C) and hydrolysis of PC, a phospholipid enriched
in palmitate in islets, from a synergistic effect with glucose
on de novo DAG synthesis, or from other undefined pathways
(302, 380). A biphasic increase in polyunsaturated DAG and
a delayed accumulation of saturated DAG have been docu-
mented in many other cell types (381). The differential time
course of accumulation of the two DAG species might have
an impact on PKC activation. Indeed, polyunsaturated DAG
is a much more potent PKC activator than saturated DAG in
HIT cells (365, 382) and other cell types (379).

The PKC family comprises a number of phosphatidylserine-
binding isoforms that can be classified in four groups. The
conventional isoforms, or cPKC, are activated by Ca2� and
DAG or phorbol esters; they include �, �I, �II, and �, of which
�I and �II refer to the two gene products resulting from alter-
native splicing of the same PKC� gene. The novel isoforms, or
nPKC (�, �, �, and 	), are unresponsive to Ca2� but are activated
by DAG alone or phorbol esters. The atypical isoforms, or aPKC
(
, and �/�; PKC� is the mouse homolog of human PKC�), are
Ca2� independent and do not bind DAG or phorbol esters. The
PKC� isoform is also Ca2� independent and is activated by
phorbol esters, but has a structure different from the other
isoforms (298, 381, 383–386). The nature of the PKC isoforms
present in insulin-secreting cells remains controversial (re-
viewed in Ref. 376). In pancreatic islets, the isoform � predom-
inates, but one or several of the isoforms �, �, �, 
, and � may also
be present (376, 387–396). This does not necessarily mean that
all these isoforms are expressed in �-cells because approxi-
mately 20–35% of the islet cells are non-�-cells. Insulin-secret-
ing cell lines express one or several of the isoforms �, �, �, �, �,

, �/�, and � (382, 387, 392, 394, 397–400).

Several studies demonstrate that cholinergic agonists in-
duce the translocation of PKC to membranes (163, 312, 365,
382, 401), but they do not establish which isoforms are trans-
located. Because cholinergic agonists induce DAG accumu-
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lation (302, 339, 375), it seems reasonable to assume that they
stimulate all DAG-sensitive isoforms present in normal and
tumoral insulin-secreting cells. However, a recent study sug-
gests that this might not be the case. Carbachol was found to
translocate the �, �, and 
 isoforms without affecting the �,
�, �, and � isoforms in RINm5F cells (400). These data must
be interpreted with caution because they were obtained with
an insulin-secreting cell line whose responses to cholinergic
agonists differ from those of normal �-cells (see Section IX.D).

PKC phosphorylate their substrates on serine and/or thre-
onine residues. It has been suggested that the targeting of
PKC isoforms to particular membranes is mediated by spe-
cific anchoring proteins including the receptors for activated
C kinases (384, 402), which might explain why a PKC isoform
is translocated either to the nucleus or the plasma membrane.
It is possible that the multiple phospholipid-derived second
messengers produced upon ACh stimulation activate differ-
ent PKC isoforms that, after being translocated to specific
targets, activate different pathways (403). Such a differential
activation of PKC isoforms has been reported upon glucose
stimulation, with �PKC and �PKC being translocated to the
cell periphery and �PKC and 
PKC being translocated to
perinuclear sites (396).

Many proteins are phosphorylated by PKC in islets (for
review, see Ref. 376), but their nature is largely unknown.
One identified target for PKC in �-cells is the myristoylated
alanine-rich C kinase substrate (MARCKS) (404), a protein
that binds actin and Ca2�-calmodulin and that has been
implicated in cell movement and vesicle transport (405, 406).
This substrate is phosphorylated in response to carbachol
(407, 408). Other PKC substrates might be the G proteins that
are associated with the �2-adrenoceptor and uncouple from
the receptor after phosphorylation. This mechanism might
explain how phorbol esters and carbachol reduce the ability
of adrenoceptors to inhibit glucose-induced insulin secretion
from rat islets (409, 410). In view of the importance of the
PKC-dependent pathway in the stimulation of insulin secre-
tion by ACh (see Section IX.B.1), identification of the targets
of PKC in �-cells is an important question.

It has been suggested that PKC activation also exerts a
negative feedback control on the signal transduction linked
to PLC and activated by ACh. Indeed, stimulation of PKC
inhibits the production of inositol phosphates induced by
cholinergic agonists (290, 312, 322, 352, 393). This effect
occurs within 10 min (perhaps within even less time) of
stimulation with phorbol esters (352). It likely contributes to
the biphasic time course of accumulation of IP3 and arachi-
donate-enriched DAG upon stimulation with ACh. This
PKC-mediated negative feedback might result from the un-
coupling of PLC from the ACh receptor (411), either by a
direct phosphorylation of PLC by PKC (412) and/or Ca2�-
calmodulin kinase (413), by a modification of the G protein
coupling the ACh receptor to PLC (414, 415), or by phos-
phorylation of the receptor itself (416). A muscarinic receptor
kinase has recently been identified that might fulfill this role
leading to decreased PLC activity (315, 417). Alternatively,
cholinergic stimulation could cause a down-regulation of
muscarinic receptors via (312, 418) or independently (419) of
PKC activation.

B. Activation of PLA2

PLA2 enzymes hydrolyze the sn-2 ester linkages in phos-
phoglyceride molecules to release a lysophospholipid and a
free acid, such as arachidonate (Fig. 3). They can hydrolyze
various substrates, such as PC, phosphatidylethanolamine,
phosphatidylserine, PI, PA, and plasmalogens (420).

There exist several types of mammalian PLA2 (421). Types
I, II, V, and VII are associated with membranes and, because
they are secreted, are referred to as secretory PLA2 (sPLA2).
Types I, II, and V are stimulated by millimolar Ca2� con-
centrations, whereas type VII is Ca2� independent (421).
Types IV, VI, and VIII are cytosolic. Type IV is Ca2� depen-
dent, requiring micromolar Ca2� concentrations to be trans-
located to the membrane, whereas types VI and VIII are Ca2�

independent (421). Types IV and VI PLA2 display a speci-
ficity for phospholipids with arachidonic acid esterified to
the second carbon of the glycerol backbone (422, 423),
whereas types I and II show little specificity for the hydro-
lyzed fatty acid chain (293, 423).

The presence of sPLA2 in insulin-secreting cells is well
documented, but controversies persist concerning the type of
sPLA2 that is expressed (424–426). sPLA2 might be associ-
ated with insulin-secretory granules (427). Pancreatic islets
and insulin-secreting cell lines also contain type IV PLA2 and
type VI cytosolic, ATP-stimulatable Ca2�-independent PLA2

(ASCI-PLA2) (422, 425, 426, 428–432).
Several studies suggest that ACh activates PLA2 in islets

(Fig. 3). Thus, cholinergic agonists stimulate efflux of radio-
activity from rat or mouse islets prelabeled with radioactive
arachidonic acid (5, 433–435), and arachidonate represents
the major metabolite present in the effluent fractions (433).
This effect is largely Ca2� dependent, as the stimulated efflux
of radioactive arachidonic acid was markedly reduced by
verapamil or removal of external Ca2� (433, 434, 436). The
persistence of a small stimulation of the efflux in a Ca2�-free
medium is compatible with the activation of a Ca2�-
independent pathway (433, 434). Similar results were ob-
tained by studying carbachol-induced production of PGE2,
an eicosanoid derived from arachidonic acid (327). Musca-
rinic activation of PLA2 is also supported by the demonstra-
tion that both lysophosphatidylcholine (434) and arachidonic
acid (375, 434, 437) accumulate in rat islets upon stimulation
with carbachol. However, because the accumulation of ara-
chidonic acid was larger than that of lysophosphatidylcho-
line and was approximately 65% inhibited by RG80267, an
inhibitor of DAG lipase, it is likely that only a fraction of
arachidonic acid accumulation results from PLA2 activation
(434). The other fraction of arachidonic acid could derive
from DAG lipase-catalyzed deacylation of DAG formed after
PLC activation (299, 434). Because PLC can be activated by
ACh in Ca2�-dependent and Ca2�-independent ways, this
pathway could explain how some arachidonic acid accumu-
lates even in the absence of Ca2�. Carbachol has also been
suggested to activate ASCI-PLA2, but this proposal was
based on the use of haloenol lactone suicide substrate
(HELSS), an inhibitor of ASCI-PLA2 (438) that has since been
shown to exert nonspecific effects in �-cells (435).

The transduction mechanisms leading to activation of
PLA2 in �-cells are not known. It is likely that the increase in
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[Ca2�]c produced by cholinergic agonists activates the cyto-
solic Ca2�-dependent PLA2 (439). Indeed, high K� and the
Ca2� ionophore A23187 also increased arachidonic acid ac-
cumulation within rat islets and also increased PGE2 release
from rat islets (440). Other mechanisms might also activate
PLA2, including emptying of intracellular Ca2� stores (441),
G protein regulation (420), PKC (297, 298), and MAPK (442).

The two primary products formed upon PLA2 activation are
arachidonic acid and lysophosphatidylcholine (Fig. 3). Arachi-
donic acid has been reported to exert various effects in �-cells
(380). These include Ca2� mobilization from the endoplasmic
reticulum (Refs. 443–448, but see Refs. 324 and 448), facilitation
of voltage-dependent Ca2� entry (380, 449), increase in [Ca2�]c
through voltage-independent Ca2� channels (449), activation of
K�-ATP channels (450), and stimulation of PKC (446, 451).
Among all these effects, the last one deserves particular atten-
tion because it also exists in other cell types and consists of a
direct activation of PKC or a potentiation of the PKC stimula-
tion by DAG (297, 298, 381, 403, 452, 453). Arachidonic acid is
also the precursor of cyclooxygenase (PGs, prostacyclins, and
thromboxane) and lipoxygenase products (hydroperoxyeico-
satetraenoic acids, hydroxyeicosatetraenoic acids, and leuko-
trienes) (297) that seem to exert various, although not major,
modulatory effects on insulin secretion (380, 454, 455). Lyso-
phosphatidylcholine also activates PKC in the presence of DAG
in various cell types (381). In �-cells and insulin-secreting cell
lines, it stimulates 45Ca2� efflux and insulin secretion (456–459).

C. Activation of PLD

PLD catalyzes the hydrolysis of the terminal diester bond
of the membrane glycerophospholipids, resulting in the for-
mation of PA and a free polar head group (Fig. 3). Different
PLD isoforms hydrolyze various substrates, such as PC, PI,
phosphatidylserine, or phosphatidylethanolamine (460,
461). PC is the most abundant phospholipid in pancreatic
islets (462–464), and its hydrolysis by PLD yields PA and
choline. PLD can be activated by numerous pathways, in-
cluding tyrosine kinases, PKC, or small G proteins, and
seems to require various cofactors, such as fatty acids, or
Ca2�, for its activation (461, 465, 466).

The studies of PLD activation in islets have yielded con-
flicting results. Carbachol has been reported to increase the
production of [3H]choline in mouse islets prelabeled with
[methyl-3H]choline (467), which suggests that PLD was
activated. Because this effect was mimicked by sodium
fluoride, which activates PLC, and by a phorbol ester, it
might result from PKC activation (467, 468). Activation of
PLD by PKC has been documented in other cell types (293,
460, 461, 466). However, carbachol did not affect [3H]choline
production in rat islets prelabeled with [3H]choline (302).
Therefore, the carbachol-induced accumulation of PA in rat
islets (437) was not ascribed to PLD activation, but to phos-
phorylation by DAG kinase of DAG derived from PLC
activation (318).

In various cell types, PLD activation is implicated in the
regulation of vesicular trafficking, and its main product, PA,
is involved in secretion, mitogenesis, and inflammation
(461). PA has been reported to directly activate PKC (469).
However, early suggestions that PA can act as a second

messenger to stimulate insulin release (470, 471) still await
confirmation. The action of PA is terminated by its conver-
sion into lyso-PA by a PLA2 or DAG by PA-phosphohydro-
lase (472). The resulting DAG accumulation might theoret-
ically activate PKC. However, this mechanism is probably of
minor importance because DAGs derived from PLD contain
saturated or mono-unsaturated fatty acids at the sn-2 posi-
tion and are poor activators of PKC (379).

VI. Effects of ACh on the Membrane Potential
of �-Cells

To understand how ACh influences the membrane poten-
tial of �-cells, it is important to bear in mind the mechanisms
by which glucose regulates this membrane potential. Glucose
enters the �-cell by a facilitated transport system belonging
to the GLUT family (473–475), and its metabolism leads to a
rapid increase in the ATP/ADP ratio (476), which closes
K�-ATP channels in the plasma membrane. In the absence of
glucose or at a nonstimulating glucose concentration, the
ATP/ADP ratio is low. Enough K�-ATP channels are open
to confer a low electrical resistance to the plasma membrane
and to keep it at the resting potential, close to the equilibrium
potential of K�. In the presence of a stimulating glucose
concentration, the ATP/ADP ratio is high, and K�-ATP
channels are largely closed, which increases the resistance of
the membrane. The decrease of the K� permeability allows
a yet unidentified current to depolarize the plasma mem-
brane. When the threshold potential for activation of voltage-
dependent Ca2� channels is reached, an oscillating electrical
activity starts (477, 478). Each oscillation of the membrane
potential is characterized by a sustained depolarizing phase,
commonly called slow wave, on top of which Ca2� spikes
occur. The effect of glucose on the membrane potential can
be mimicked by other nutrients, e.g., leucine, that are
metabolized by the �-cell. It can also be reproduced by a
pharmacological agent, such as tolbutamide, that directly
closes K�-ATP channels (479). In contrast, the effect of
glucose on the membrane potential can be antagonized by
diazoxide, which directly opens K�-ATP channels even
when the ATP/ADP ratio has been increased by glucose.

A. Dependence on the electrical resistance of the
plasma membrane

The effects of ACh on the membrane potential depend on
the glucose concentration (Fig. 4, A–C). In the presence of a
low glucose concentration (�5 mm), when the membrane
potential is high (resting potential), cholinergic agonists (1–
100 �m) produce only a small and sustained depolarization
and do not induce electrical activity (279, 480–483) (Fig. 4A).
In contrast, when the membrane has already been partially
depolarized by a stimulatory concentration of glucose, the
depolarizing effect of ACh is larger and is accompanied by
an increase of the electrical activity (Fig. 4B). However, if
glucose-induced depolarization is reversed by diazoxide, the
effect of ACh on the membrane potential is again similar to
that produced in low glucose (Fig. 4C). This difference is not
due to the absolute level of the membrane potential before
addition of ACh. Thus, the effect of ACh remains small when
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the membrane is depolarized by high K� or arginine in the
presence of diazoxide, and is large when the membrane is
depolarized by tolbutamide in low glucose (279). These re-
sults indicate that the depolarizing action of ACh critically
depends on the resistance of the plasma membrane. When
K�-ATP channels are open, either because the glucose con-
centration is low or because of the presence of diazoxide, the
plasma membrane has a low resistance, and ACh produces
only a minor depolarization. The depolarizing action of ACh
is much larger when the plasma membrane has a high re-
sistance because of the closure of K�-ATP channels by glu-
cose or tolbutamide. In the presence of a stimulating glucose
concentration, cholinergic agonists accelerate the slow waves
of membrane potential or produce a sustained depolariza-
tion with continuous electrical activity (161, 279, 482, 484–
487) (Fig. 4B). This depolarizing effect is already manifest at
low concentrations of ACh (�0.1 �m) or cholinergic agonists
(161, 279, 482). One report has described a peculiar inhibitory
effect of muscarinic agonists on glucose-induced electrical
activity in �-cells (488).

B. Mechanisms of the depolarization

Several ionic mechanisms may depolarize the plasma
membrane: a decrease of K� permeability, an increase of
Na�, Ca2�, or Cl� permeability, or an inhibition of the elec-
trogenic Na� pump.

Before K�-ATP channels were identified in �-cells and
were shown to be the target of glucose metabolism, mea-
surements of 86Rb� efflux (a tracer of K� efflux) from mouse
islets indicated that ACh depolarizes the �-cell membrane by
a mechanism other than a decrease in K� conductance (285).
Thus, under no experimental condition did ACh decrease
86Rb� efflux as do glucose and tolbutamide. Moreover, the
effects of ACh on the electrical activity were very different
from those induced by glucose through closure of K�-ATP
channels. Indeed, a rise in the glucose concentration in-
creased the duration of the plateau phase without affecting
the frequency of slow waves, whereas low concentrations of
ACh increased the frequency of slow waves of the membrane
potential without affecting the duration of the plateau phase
(279, 484). All available data, except those of one study (486),
speak against an effect of ACh on K�-ATP channels. How-
ever, no direct test with the patch-clamp technique has been
reported. In view of the recent suggestion that PIP2 might
negatively modulate K�-ATP channels, and that its hydrol-
ysis by PLC-linked agonists might decrease K�-ATP channel

potential of a �-cell perifused with a medium containing 10 mM glu-
cose throughout. Diazoxide (100 �M) was added when indicated. By
reducing the resistance of the plasma membrane, it decreases the
depolarizing action of ACh. [Redrawn from M. P. Hermans et al.:
Endocrinology 120:1765–1773, 1987 (279). © The Endocrine Society.]
D, Inhibition of voltage-dependent Ca2� current in an isolated �-cell.
The current, recorded in the whole-cell mode of the patch-clamp tech-
nique, was elicited by a depolarization from �80 to �10 mV every 10 s.
The upper trace shows control current and current after the appli-
cation of ACh. The lower trace represents the time course of the peak
Ca2� current. An upward deflection corresponds to a decrease of its
amplitude. The inhibitory effect of ACh depends on the concentration
used and is reversible. [Redrawn from P. Gilon et al.: J Physiol 499:
65–76, 1997 (630).]

FIG. 4. Effects of ACh on the membrane potential (A–C) and voltage-
dependent Ca2� current (D) of mouse pancreatic �-cells. A–C, The
membrane potential of a single cell within an islet was recorded with
a high resistance microelectrode. A, Sodium dependence of the effect
of 20 �M ACh on the membrane potential of �-cells perifused with a
medium containing 3 mM glucose (G) and 2.5 mM Ca2�. ACh was
added when indicated to a medium containing 135 mM Na� (Na 135
mM) or to a medium in which Na� has been replaced by N-methyl-
D-glucamine (Na 0). [Redrawn from J. C. Henquin et al.: Endocrinol-
ogy 122:2134–2142, 1988 (480) © The Endocrine Society.] B, Effects
of two concentrations of ACh (1 and 100 �M) on the membrane po-
tential of a �-cell perifused with a medium containing 15 mM glucose
throughout. The two recordings are shown without interruption.
[Redrawn from P. Gilon et al.: Biochem J 311:259–267, 1995 (545).
© the Biochemical Society.] C, Effect of 1 �M ACh on the membrane
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activity (489, 490), it would be interesting to evaluate whether
ACh indirectly influences K�-ATP channels in �-cells.

It has been suggested that ACh inhibits Cl� channels in
outside-out patches of �-cell membrane (491). However,
ACh was found not to affect 36Cl� efflux from normal mouse
islets (492) and 36Cl� retention by ob/ob mouse islets (493).
Moreover, the depolarization produced by ACh was unaf-
fected in a Cl�-free medium (492). Overall, these observa-
tions indicate that Cl� plays no major role in the effect of ACh
on the �-cell membrane potential.

The currently accepted hypothesis is that ACh depolarizes
the �-cell membrane by increasing its permeability to Na�

(480, 493). The cornerstones of this proposal are the abolition
of the depolarization by omission of extracellular Na�

(Fig. 4A) (480) and the activation of a small Na�-dependent
inward current by ACh (494). The hypothesis is also sup-
ported by the observations that ACh increases total Na�

content (495), 22Na� uptake (480, 493), and free cytosolic Na�

concentration ([Na�]c) (496) in islet cells. The mechanisms by
which ACh activates a Na� current are not known. Activa-
tion of voltage-dependent Na� channels has been ruled out
for two reasons: 1) these channels are already completely
inactivated at the resting potential in mouse �-cells (497) or
at the plateau potential in the rat (498); and 2) tetrodotoxin,
a blocker of voltage-dependent Na� channels, does not pre-
vent the depolarization, the 22Na� uptake, the [Na�]c in-
crease, or the inward current produced by ACh (480, 494,
496). Nicotinic receptors are nonselective cation channels
(416, 499). However, these channels are not present in pan-
creatic �-cells. All effects of ACh on membrane potential,
Na� current, and [Na�]c measurements are completely pre-
vented by atropine, whereas they are unaffected by tubocu-
rarine or hexamethonium, two nicotinic antagonists, and are
not mimicked by nicotine (480, 484, 486, 493, 494, 496). In
cardiac Purkinje cells, ACh was found to increase [Na�]c by
blockade of the Na� pump (500). This is not the case in
�-cells, because ACh- and ouabain-induced [Na�]c increases
were additive (495, 496).

In various cell types, emptying of intracellular Ca2� pools
activates different conductances (Ca2�, Na�, or K�) (501–
505) carried by a family of channels called store-operated
channels (SOCs) (503–505). The tumoral insulin-secreting
MIN6 cells express the transient receptor potential 1 gene
(506), whose human homolog encodes a nonselective
channel permeable to Na� and Ca2� and is activated by
Ca2� store depletion (507). In platelets and lymphocytes
(508, 509), intracellular Ca2� store depletion by thapsigar-
gin and cyclopiazonic acid, two inhibitors of the sarco-
endoplasmic reticulum Ca2�-ATPase (SERCA) pump, ac-
tivates Na� influx. It has been hypothesized that ACh,
which also depletes intracellular Ca2� stores (see Section
VIII.A.1), activates Na� influx by a similar mechanism
(487). However, this pathway accounts for only a small
fraction of the influx of Na� elicited by ACh in �-cells,
because thapsigargin or cyclopiazonic acid, which empty
intracellular Ca2� pools much more efficiently than does
ACh, did not mimic or abolish the rise in [Na�]c produced
by ACh (510). Likewise, thapsigargin did not prevent ACh
from activating an inward Na� current (494).

It is clear that K� is the major counterion for the increased

Na� influx in �-cells. Indeed, ACh induces a sustained stim-
ulation of 86Rb� efflux from mouse islets, which is abolished
in a Na�-free medium (162, 285, 480). This acceleration of K�

efflux is a very sensitive response to ACh, similar to that of
the membrane potential, as it is almost maximally stimulated
by 1 �m ACh. Its resistance to omission of extracellular Cl�

and to furosemide rules out the intervention of the
Na�K�2Cl� cotransport system (492). It remains unclear
whether the channel activated by ACh is highly selective for
Na� or is nonselective, carrying both K� efflux and Na�

influx.
Activation of a Na� conductance by muscarinic receptors

is not classical, but it has also been reported in other systems.
M2 receptors induce a tetrodotoxin- and pertussis toxin-
resistant Na� current in ventricular myocytes (511–513).
Muscarinic stimulation activates a nonselective cationic con-
ductance in guinea pig gastric and ileal smooth muscle cells
(514–517), rabbit jejunal longitudinal cells (518), canine py-
loric circular muscle cells (519), and chromaffin cells (520).
Recently, an inward monovalent cation current activated by
carbachol has been reported in Chinese hamster ovary
(CHO) cells expressing the M3 receptor (521).

It is important to emphasize here that although the SOC
current is not responsible for the influx of Na� triggered by
ACh, it can depolarize the plasma membrane by stimulating
Ca2� influx (capacitative Ca2� entry; see Section VIII.A.2).
Indeed, thapsigargin has been reported to stimulate Ca2�

influx and to depolarize �-cells (522, 523). This mechanism
is activated by high concentrations of ACh (100 �m), but
contributes much less to the depolarization of the plasma
membrane than does the stimulation of Na� influx that is
already operative at low concentrations of the neurotrans-
mitter (�1 �m).

C. Paradoxical hyperpolarization by ACh

Several (482, 483, 486, 487, 524, 525), but not all (480, 484),
studies have reported that high concentrations of cholinergic
agonists (�10 �m) produce an early transient hyperpolar-
ization of �-cells when islets are perifused with a stimulating
concentration of glucose. Because this hyperpolarization is
blocked by charybdotoxin, it might result from the transient
opening of large conductance maxi K(Ca) channels activated
during the large [Ca2�]c increase resulting from Ca2� mo-
bilization (482). Activation of a K� current synchronized
with Ca2� release from intracellular Ca2� stores is well doc-
umented in pancreatic acinar cells (526) and �-cells (527–530).

The rise in [Na�]c brought about by ACh activates the
sodium pump, which is electrogenic and produces a re-
polarizing current. However, the impact of this current
only becomes evident when the depolarizing current pro-
duced by ACh stops. It is responsible for the marked and
transient repolarization of the �-cell membrane upon
washing of ACh (161, 480, 486, 531). It is also possible that
this pump current is involved in the acceleration of the
slow waves by ACh (480, 484).

VII. Other Effects of ACh in Islet Cells

Many other effects of ACh in �-cells have been reported,
but they have remained controversial. Only those that were
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believed to be important for the control of insulin secretion
will be mentioned briefly.

A. Effects on glucose metabolism

ACh has been reported to slightly increase glucose utili-
zation (532) and nicotinamide adenine dinucleotide (reduced
form) (NADH) content in rat islets (533, 534). This effect
might result from the [Ca2�]c increase produced by ACh.
However, other studies found glucose oxidation by mouse
islets (493) and reduced nicotinamide-adenine dinucleotide
(phosphate) [NAD(P)H] fluorescence (535) and glucose uti-
lization (341) in rat islets to be unaffected by ACh. We have
already emphasized that the effects of ACh on ionic fluxes
and �-cell membrane potential differ from those induced by
an increase in nutrient concentration.

B. Effects on cyclic nucleotides

ACh induced a small, rapid (284), and transient (534) in-
crease in cAMP levels in rat islets incubated in low glucose,
probably via the activation of Ca2�-calmodulin-sensitive ad-
enylate cyclase (536, 537). However, in the presence of stim-
ulating glucose concentrations, ACh did not affect islet
cAMP levels (161, 284, 286). In contrast to the situation in the
exocrine pancreas (538) and various other cell types (539),
cholinergic agonists do not increase cyclic GMP (161) and NO
production (540) in islets.

C. Effects on cytoplasmic pH

It has been suggested that alkalinization of �-cells in-
creases insulin release under certain conditions (541). ACh
slightly increases intracellular pH in mouse �-cells and prob-
ably does so through the activation, by PKC, of the Na�/H�

exchanger, because the effect was observed in a HEPES-
buffered, bicarbonate-free medium (542, 543).

VIII. ACh Controls Free Cytosolic Ca2�

Concentration ([Ca2�]c) in �-Cells

The rise of [Ca2�]c in �-cells serves as a triggering signal
for exocytosis of insulin granules. The complex effects of
ACh on this triggering signal were first deciphered by 45Ca2�

efflux measurements. The conclusions of these experiments
were later confirmed by more direct approaches using flu-
orescent probes to measure [Ca2�]c directly inside the cells
(Fig. 5). ACh has only small effects on �-cell [Ca2�]c in the
presence of low, nonstimulatory glucose concentrations (Fig.
5A), but causes a sustained [Ca2�]c rise in the presence of
high glucose (Fig. 5, B and C) (544–546). This sustained
response, however, requires the presence of extracellular
Ca2� and the possibility for Ca2� to enter �-cells through
voltage-operated Ca2� channels (Fig. 5A). At high concen-
trations, ACh also unexpectedly lowers [Ca2�]c in �-cells
(Fig. 5C) (545). The following paragraphs describe the mech-
anisms by which ACh produces these changes.

A. Mechanisms by which ACh increases [Ca2�]c

1. Mobilization of Ca2� from intracellular Ca2� stores (Figs. 5A
and 6, A and B). Mobilization of Ca2� from intracellular Ca2�

stores can be studied by monitoring 45Ca2� efflux from or
[Ca2�]c in islets perifused with a Ca2�-free medium, i.e.,
when no Ca2� influx can occur. Under these conditions,
cholinergic agonists increase the 45Ca2� efflux rate (162, 279,
285–287, 291, 304, 483, 547, 548) and [Ca2�]c (545, 546, 549,
550). The mechanisms underlying this [Ca2�]c rise have been
extensively studied with subcellular fractions or permeabil-
ized insulin-secreting cells (324, 351, 354, 357, 443, 547, 551–
561). They involve rapid production of IP3, catalyzed by PLC
(see Section V.A.1), and its binding to specific IP3 receptors
located on intracellular Ca2� stores. The concentration of IP3
accumulated in response to maximal concentrations of car-
bachol has been estimated in experiments performed with
RINm5F cells in which phosphoinositides were labeled to
isotopic equilibrium with [3H]inositol (311). An increase of
IP3 of 1.5 �m was calculated, which is close to the reported
half-maximal concentration (0.5–3 �m) that releases Ca2�

from the endoplasmic reticulum in permeabilized insulin-
secreting cells (351, 552, 562). Accumulation of IP3 was very
fast, in keeping with the rapidity of Ca2� mobilization by
ACh (311, 333). This Ca2� mobilization is not produced by
physiological phosphoinositols other than IP3 (367, 447, 552,
554, 563) and is prevented by injecting �-cells with heparin,
an antagonist of IP3 receptors (523, 557, 564, 565).

The response to ACh is different in whole islets and in
single cells. In whole islets, ACh induces a concentration-
dependent transient peak of [Ca2�]c followed by a small
sustained elevation (545) (Figs. 5A and 6A). A similar bi-
phasic pattern was reported for 45Ca2� efflux (162, 279, 285,
287, 547, 548). This contrasts with the two types of responses
occurring in single cells: a rapid single [Ca2�]c transient (510,
546, 550, 566) or a series of [Ca2�]c oscillations (510, 566, 567)
(Fig. 6B). Similar oscillations can be produced by infusing
�-cells with guanosine 5�-[�-thio]triphosphate (527, 529, 568,
569). The reason why islets do not display [Ca2�]c oscillations
in response to ACh in a Ca2�-free medium is attributed to the
fact that the recorded Ca2� signal is the average of the [Ca2�]c

responses of all �-cells within the islet. Contrary to glucose-
induced [Ca2�]c oscillations that result from periodic de-
polarizations of the plasma membrane and are coupled be-
tween all �-cells of the islet through gap junctions (289, 570,
571), IP3-induced [Ca2�]c oscillations are not synchronized
between electrically coupled �-cells (572).

The amplitude of the transient peak of [Ca2�]c or 45Ca2�

efflux triggered by ACh largely depends on the glucose con-
centration present before and during ACh stimulation (162,
547, 548, 556, 573–575). It is much smaller at a low glucose
concentration than at a high glucose concentration (Fig. 5A).
This difference is attributed to the filling of intracellular Ca2�

stores by glucose (562, 565, 574). Other mechanisms, such as
an enhanced production or a decreased degradation of IP3 in
the presence of glucose (see Section V.A.1.b), might also be
involved.

Three isoforms of the IP3 receptor have been described
(I, II, and III) (576) that form both homo- and heterotetramers
(577). Rat islets express more type III isoforms than types I
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and II (578–580), and mouse islets express more type I iso-
forms than types II and III (581, 582). Type II isoform was,
however, undetectable in �-cells by immunocytochemistry
(582). Because of the use of different techniques, it is unclear
whether this difference between the rat and the mouse is real
or only apparent. The contribution of non-�-cells in this
expression is also unknown.

Studies in various tissues have shown that the three iso-
forms are differently regulated by cAMP, IP3, ATP, Ca2�,
and other factors (583, 584). Type II isoform has a higher
affinity for IP3 than types I and III (584–587). Type I isoform
contains a regulatory domain for PKA (588, 589), which
might explain the observation that cAMP-producing agents
enhance the carbachol-induced mobilization of Ca2� in ob/ob

mouse �-cells (347). All isoforms are regulated by Ca2�,
possibly through a Ca2�/calmodulin complex (590). Type I
and II isoforms are allosterically modulated by Ca2� so that
the Ca2�-mobilizing action of IP3 is markedly amplified
when [Ca2�]c increases from basal (100 nm) to intermediate
levels (typically 300 nm), whereas it is inhibited when
[Ca2�]c reaches higher concentrations (584, 591–593). These
positive and negative feedback mechanisms of Ca2� are con-
sidered important for generation of Ca2� oscillations from
IP3-sensitive Ca2� stores. In contrast, type III isoform is only
positively modulated by Ca2�, and this isoform would not be
suitable for [Ca2�]c oscillations (584, 594).

The subcellular localization of IP3 receptors has not been
firmly established in �-cells, although subcellular fraction-

FIG. 5. General characteristics of ACh
effects on mouse islet cell [Ca2�]c. Cul-
tured islets were perifused with a me-
dium without Ca2� (Ca0) or with 2.5 mM
Ca2� (Ca2.5), and containing 3 or 15 mM
glucose (G3 and G15, respectively). A,
Left panel, The biphasic increase in
[Ca2�]c produced by 100 �M ACh is con-
siderably reduced in a medium contain-
ing only 3 mM glucose. Middle and right
panels, The second sustained [Ca2�]c
phase produced by 100 �M is also
strongly reduced when Ca2� influx is
prevented by perifusing the islet with a
Ca2�-free medium (middle panel) or
with a medium containing Ca2� and the
K�-ATP channel opener, diazoxide (Dz
250 �M), that keeps the plasma mem-
brane at resting potential. The large ini-
tial increase observed under these con-
ditions results from mobilization of
Ca2� from intracellular stores as dem-
onstrated by its persistence in a Ca2�-
free medium. B and C, In a medium
containing Ca2� and 15 mM glucose,
ACh induced a biphasic increase in
[Ca2�]c, the characteristics of which de-
pended on the concentration of ACh. A
low concentration of ACh (1 �M) accel-
erated the frequency of [Ca2�]c oscilla-
tions induced by 15 mM glucose,
whereas a high concentration of ACh
(100 �M) transformed [Ca2�]c oscilla-
tions into a sustained phase. Note that
100 �M ACh induced the largest initial
increase but the lowest sustained
phase.
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ation experiments show that they are located on Ca2� stores
distinct from the mitochondria. An immunocytochemical
study using an antibody against IP3 receptors of type III
suggested that their preferential localization is on insulin-
containing granules (595, 596). However, this conclusion was
subsequently shown to be incorrect (597), which is consistent
with the observations that IP3 does not release Ca2� from
subcellular fractions enriched in secretory granules (552,
598), and that granules do not regulate the ambient free Ca2�

concentration (551, 599–602) even though they contain high
levels of Ca2� (536, 600, 603). The endoplasmic reticulum
appears to be the major source of Ca2� released by IP3. This
is consistent with the following two observations: First, ACh-
or carbachol-induced mobilization of Ca2� is completely
suppressed by thapsigargin and cyclopiazonic acid, two
SERCA pump inhibitors (510, 545, 546, 549, 600, 604). Second,
a drop in the free Ca2� concentration in the endoplasmic
reticulum has recently been visualized upon carbachol stim-
ulation of INS-1 cells expressing the Ca2�-sensitive photo-
protein, aequorin, in the endoplasmic reticulum. It is likely
that the Golgi apparatus can also release Ca2� upon ACh
stimulation (605).

Experiments using INS-1 cells expressing aequorin in the
endoplasmic reticulum also revealed that high carbachol
concentrations (100 �m) decreased free Ca2� concentration in
the endoplasmic reticulum by only 20–25%, in contrast to
SERCA pump inhibitors that completely emptied the endo-
plasmic reticulum (606). This is in agreement with the ob-
servation that thapsigargin can still release Ca2� from the

FIG. 6. Mechanisms of the effects of ACh on [Ca2�]c in mouse pan-
creatic �-cells. All experiments were performed in the presence of 15
mM glucose. A, Mobilization of intracellular Ca2� in an islet perifused
with a Ca2�-free medium. Atropine (Atr) suppressed the ACh-induced
small sustained elevation of [Ca2�]c due to mobilization. B, [Ca2�]c
oscillations due to mobilization of intracellular Ca2� in a single cell
perifused with a Ca2�-free medium. Thapsigargin (Thapsi 1 �M), a
specific inhibitor of the SERCA pump, abolished the oscillations by
preventing uptake of Ca2� into the endoplasmic reticulum and
thereby emptying it of Ca2�. [Redrawn from Y. Miura et al.: Biochem
Biophys Res Commun 224:67–73, 1996 (510).] C, Mobilization of in-
tracellular Ca2� followed by capacitative Ca2� entry in clusters of
cells whose plasma membrane was hyperpolarized with diazoxide (Dz
250 �M). Ca2� mobilization was observed in a Ca2�-free medium, and
capacitative Ca2� entry occurred upon Ca2� readmission to the me-
dium. A blocker of voltage-dependent Ca2� channels, D-600 (100 �M),
was added to the medium to ensure that the sustained [Ca2�]c in-
crease that was observed upon Ca2� readmission resulted exclusively
from influx through voltage-independent Ca2� channels. D, Sus-
tained [Ca2�]c elevation in an islet perifused with a medium contain-
ing 2.5 mM Ca2�. This sustained rise resulted essentially from the
plasma membrane depolarization that ACh produced. It was lower at
a high (100 �M) ACh concentration than at a low (1 �M) ACh con-
centration because the high concentration of the neurotransmitter
activates mechanisms of [Ca2�]c decrease that oppose to the mech-
anisms of [Ca2�]c increase. [Redrawn from P. Gilon et al.: Biochem J
311:259–267, 1995 (545).] E, Sustained decrease of [Ca2�]c in islets
whose [Ca2�]c was raised by depolarizing the plasma membrane with
45 mM K�. Diazoxide (Dz 250 �M) was added to the medium to
decrease the plasma membrane resistance and prevent ACh from
affecting the membrane potential. The initial [Ca2�]c peak upon ACh
addition reflects Ca2� mobilization from the endoplasmic reticulum,
whereas the transient drop induced by atropine (Atrop 10 �M) reflects
Ca2� sequestration into the endoplasmic reticulum. [A, D, and E re-
drawn from P. Gilon et al.: Biochem J 311:259–267, 1995 (545).
© the Biochemical Society.]
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endoplasmic reticulum in the presence of ACh (510, 607). It
is unclear why ACh is unable to empty the endoplasmic
reticulum to the same extent as IP3 itself (50% or more in
permeabilized cells) (565, 606, 608). Because desensitization
of IP3 receptors does not seem to occur (369, 561, 562, 606,
608), the transient time course of IP3 elevation may be
involved.

In agreement with the widespread localization of the en-
doplasmic reticulum within the cell, mobilization of Ca2� by
carbachol produces a rather uniform increase in [Ca2�]c,
contrary to agents that stimulate Ca2� influx through volt-
age-dependent Ca2� channels and raise [Ca2�]c preferen-
tially in the periphery of the cell (566, 570, 609, 610). This
spatial difference has sometimes been taken as an argument
to explain the poor insulinotropic effect of ACh in a Ca2�-free
medium. Probably because of close contacts between the
endoplasmic reticulum and mitochondria (611, 612), high
concentrations of carbachol can also increase the mitochon-
drial free Ca2� concentration in clonal �-cells (613).

It is important to emphasize that the process of Ca2� mo-
bilization by ACh requires relatively high concentrations (�1
�m) of the neurotransmitter (162, 545). Even in the presence
of optimal glucose concentrations, the half-maximal effective
concentration of ACh-induced Ca2� mobilization is approx-
imately 10 �m (545). Stimulation of Ca2� influx is much more
sensitive to ACh (see Section VIII.A.3).

2. Capacitative Ca2� entry (Fig. 6C). In nonexcitable cells, PLC-
linked agonists induce a biphasic rise in [Ca2�]c. The first
phase corresponds to mobilization of Ca2� from intracellular
stores, whereas the second phase corresponds to Ca2� influx
through voltage-independent Ca2� channels belonging to
the family of SOCs. The process by which emptying of in-
tracellular Ca2� pools activates Ca2� influx has been called
capacitative Ca2� entry (614), but the mechanisms link-
ing Ca2� pool depletion to Ca2� influx are still disputed
(615, 616).

A capacitative Ca2� entry has been documented in pan-
creatic �-cells (522, 550, 617). Indeed, cholinergic agonists
and thapsigargin activate a Ca2� entry sensitive to La3� but
resistant to the blockade of voltage-dependent Ca2� channels
by D-600 (methoxyverapamil) (Fig. 6C) or membrane hy-
perpolarization with diazoxide. However, the rise in [Ca2�]c
that this entry produces is small, approximately 8-fold less
than that after the opening of voltage-dependent Ca2� chan-
nels by high K�. Moreover, it decreases when the membrane
depolarizes, probably because the driving force for Ca2�

diminishes as the membrane potential approaches the equi-
librium potential for Ca2� (522). Contrary to other systems
(615, 618), the capacitative Ca2� entry in �-cells is not affected
by the energy state of the cell, PKC activation, or serine/
threonine phosphatase or tyrosine kinase inhibition (550).
The situation is different in RINm5F cells in which capaci-
tative Ca2� entry requires activation of PKC (619).

The concentration dependence of the capacitative Ca2�

entry elicited by ACh has not been precisely studied,
but high concentrations of agonists (100 �m) seem to be
necessary (550).

3. Ca2� influx through voltage-dependent Ca2� channels (Figs. 5
and 6D). Under control conditions, when extracellular Ca2�

is present, the effects of cholinergic agonists on [Ca2�]c and
45Ca2� efflux largely depend on the glucose concentration or,
more exactly, on the �-cell membrane potential set by the
glucose concentration. In the presence of a nonstimulatory
glucose concentration, when �-cells are hyperpolarized, ACh
induces a biphasic change in [Ca2�]c (Fig. 5A) and 45Ca2�

efflux (162, 285, 480) characterized by an initial slight peak
followed by a small sustained elevation. When �-cells are
depolarized by a stimulatory or near-stimulatory glucose
concentration, cholinergic agonists also induce a biphasic
change in [Ca2�]c and 45Ca2� efflux, but both phases are now
much larger than at low glucose (162, 279, 285, 287, 480, 483,
545, 617, 620, 621) (Figs. 5B–C). When Ca2� influx is inhibited
by keeping the membrane hyperpolarized with diazoxide or
by blocking the voltage-dependent Ca2� channels, the initial
peak is only partially reduced, whereas the sustained phase
is largely suppressed (Fig. 5A). This indicates that the con-
tribution of Ca2� influx through voltage-dependent Ca2�

channels is much more important to the sustained phase
than the early phase. When Ca2� influx through voltage-
dependent Ca2� channels is prevented, the residual initial
peak results from Ca2� mobilization from the endoplasmic
reticulum, and the small residual sustained phase is caused
by continuous mobilization and capacitative Ca2� entry.

ACh stimulation of Ca2� influx through voltage-dependent
Ca2� channels is explained by the effects of the neurotrans-
mitter on the membrane potential (described above). In low
glucose or in high glucose plus diazoxide, the depolarization by
ACh is too small to activate voltage-dependent Ca2� channels.
In contrast, in the presence of high glucose and other depolar-
izing secretagogues, ACh further activates voltage-dependent
Ca2� channels (279, 480, 545, 546, 617, 622). This consti-
tutes the major mechanism by which ACh, already at low
concentrations (�0.01 �m) (545, 546), induces a sustained
[Ca2�]c increase (545).

4. Relative importance and physiological relevance of these three
mechanisms. Because the rise in [Ca2�]c resulting from the
capacitative Ca2� entry is very small, requires high concen-
trations of ACh, and decreases when the membrane de-
polarizes, its contribution to the overall rise in [Ca2�]c pro-
duced by ACh is minimal and will not be discussed further.

Although Ca2� mobilization is by far the most widely
studied effect of ACh on [Ca2�]c, its importance in the elec-
trically excitable �-cell must be qualified. In the absence of
glucose or in the presence of low concentrations of the sugar
(�3 mm), ACh has almost no effect on [Ca2�]c because little
Ca2� can be mobilized from nearly empty intracellular Ca2�

pools, and because the membrane depolarization is insuffi-
cient to open Ca2� channels. At glucose concentrations (3–6
mm) that allow refilling of intracellular stores with Ca2� (565,
623) but remain below the threshold for generation of elec-
trical activity (7 mm), mobilization of Ca2� is the major mech-
anism by which ACh increases [Ca2�]c. At near-stimulating
glucose concentrations (�6–7 mm), the depolarization that
ACh produces also triggers Ca2� influx through voltage-
dependent Ca2� channels. At stimulating glucose concen-
trations, this mechanism contributes even more than the
mobilization of Ca2� to the overall increase in [Ca2�]c
brought about by ACh. Moreover, the different concentra-
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tion dependencies of Ca2� mobilization and Ca2� influx for
ACh at stimulating glucose concentrations reinforce the role
of the depolarization in the [Ca2�]c rise. Indeed, Ca2� influx
is already stimulated by low concentrations of the neuro-
transmitter (�0.1 �m), whereas Ca2� mobilization requires
higher ACh concentrations (�1 �m).

The relative contribution of each mechanism to the action
of ACh in vivo is difficult to evaluate, but two reasons rein-
force the view that the changes in membrane potential play
a predominant role. First, without knowing what concen-
tration of ACh can be reached in the vicinity of �-cells upon
cholinergic nerve stimulation, it is reasonable to assume that
the effect observed with the lower concentrations is likely to
be physiological. Second, because of the influence of non-
glucose stimuli (which are not present in the experimental
buffers), the threshold glucose concentration that triggers
depolarization of �-cells is lower in vivo than in vitro (624).

B. Mechanisms by which ACh decreases [Ca2�]c

When the effects of various concentrations of ACh on
[Ca2�]c were compared in glucose-stimulated islets, it was
unexpectedly found that the steady-state [Ca2�]c was higher
in the presence of low concentrations (0.1–1 �m) of ACh than
in high (�10 �m) concentrations (Figs. 5, B and C, and 6D).
This suggests that ACh might also decrease [Ca2�]c, an effect
that is clearly demonstrated in islets steadily depolarized
with high K� (545) (Fig. 6E). The 45Ca2� efflux measurements
indicate that a slight acceleration of Ca2� efflux contributes
to this effect. This acceleration may be ascribed to PKC stim-
ulation because phorbol esters also promote Ca2� efflux (407,
625, 626) by activating the plasma membrane Ca2�-ATPase
(627) or the Na�/Ca2� exchanger (628). PA and DAG, which
increase in the presence of muscarinic agonists, stimulated
Ca2�-ATPase activity in an islet cell plasma membrane-
enriched fraction (629).

However, membrane potential measurements also re-
vealed that whereas low ACh concentrations increased the
electrical activity elicited by glucose, high concentrations of
the neurotransmitter decreased the amplitude of the spikes
(Fig. 4B). Because spikes reflect Ca2� influx through voltage-
dependent Ca2� channels, this observation suggested that
high concentrations of ACh might inhibit these channels
(545). This was confirmed by patch-clamp experiments (630)
(Fig. 4D). ACh dose dependently inhibited the whole-cell
voltage-dependent Ca2� current of the L-type. Maximum
inhibition was produced by approximately 100 �m ACh and
reached about 35%, whereas the 50% inhibitory concentra-
tion was observed at 5 �m ACh. This effect was mediated by
a pertussis- and cholera toxin-insensitive G protein. It is
unlikely to involve DAG-sensitive PKCs, because phorbol
esters increase voltage-dependent Ca2� currents in insulin-
secreting cells (393, 631–634). The inhibitory effect of ACh on
the Ca2� current is compatible with the inhibition of the
L-type current by photorelease of guanosine 5�-[�-thio]
triphosphate in �-cells (635). Inhibition of L-type current by
muscarinic receptors has also been observed in smooth mus-
cle (636) and neuronal cells (637–641). In contrast to the
situation found in normal �-cells, the muscarinic agonist
bethanechol increased the L-type Ca2� current by activating

PKC in HIT-T15 cells (634). This discrepancy might be related
to the very different responses to muscarinic agents between
normal and insulin-secreting cell lines (see Section IX.D).

The decrease in [Ca2�]c occurring in the presence of high
concentrations of ACh might constitute a protective mech-
anism against deleterious Ca2� overload. As will be
discussed below, it is not accompanied by an equivalent
decrease in insulin secretion.

IX. Mechanisms of the Stimulation of Insulin
Secretion by ACh

ACh brings into operation at least two types of Ca2�-
dependent mechanisms: the first one involves a rise in
[Ca2�]c, and the second one increases the efficacy of Ca2� on
exocytosis.

A. The rise in [Ca2�]c by ACh triggers exocytosis

When the stimulation by ACh is applied in the presence
of diazoxide or a voltage-dependent Ca2� channel blocker, or
in a Ca2�-free medium, there exists a tight temporal paral-
lelism between the rise in [Ca2�]c and insulin secretion. In-
deed, insulin release is stimulated only during the transient
elevation of [Ca2�]c (compare trace with open circles of Fig. 1B
with middle panel of Fig. 5A). This indicates that ACh triggers
exocytosis by increasing [Ca2�]c. Two effects of Ca2� may be
involved: a direct action of Ca2� on the exocytotic machinery
close to the zone of fusion of secretory granules with the
plasma membrane (642–645), and a Ca2�-mediated acceler-
ation of granule movements to sites of release (646–648). This
second effect, which may serve to amplify exocytosis upon
subsequent stimulation, could be independent from PKC
activation but might involve a Ca2�-calmodulin-dependent
protein kinase (376), either myosin light chain kinase (647) or
Ca2�/calmodulin-dependent kinase II (648).

The amplitude of the transient secretory peak in a Ca2�-
free medium depends on the glucose concentration (162).
Two reasons may explain this glucose-dependence: mobili-
zation of Ca2� is greater in the presence of glucose (see Section
VIII.A.1), and Ca2�-induced insulin secretion is increased by
glucose through its amplifying pathway (for a given [Ca2�]c,
more insulin is secreted at high glucose than at low glucose)
(280, 649).

B. ACh increases the efficacy of Ca2� on exocytosis

In a Ca2�-containing medium, the effects of ACh on in-
sulin secretion result from a balance between multiple mech-
anisms that increase or decrease [Ca2�]c and amplify the
efficacy of Ca2� on exocytosis. Indeed, there is no good
temporal or quantitative relationship between the sustained
changes in [Ca2�]c and insulin secretion induced by ACh in
the presence of 15 mm glucose. During the first minutes of
stimulation, both [Ca2�]c and insulin responses (initial
peaks) increase with the concentration of the neurotransmit-
ter (Fig. 7). However, during steady-state stimulation, con-
centrations of ACh that barely increase [Ca2�]c strongly po-
tentiate glucose-induced insulin secretion. This indicates that
one or several mechanisms other than the rise in [Ca2�]c
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become operative and increase the efficacy of Ca2� on the
secretory machinery. In patch-clamp experiments using
membrane capacitance measurements in which the intra-
cellular Ca2� concentration is artificially clamped (650), it has
been clearly demonstrated that ACh sensitizes the secretory
machinery to Ca2�. This sensitization is also evident in islets
depolarized with high K� and diazoxide. Under these con-
ditions, ACh exerts no or minor effects on the membrane
potential of �-cells (279, 545), lowers [Ca2�]c (545), but
potentiates insulin secretion (651).

1. The PKC pathway plays a major role. Whereas accumulation
of phosphoinositols per se is devoid of any stimulatory effect
on insulin secretion (311, 319, 341), activation of PKC sen-
sitizes the secretory machinery to Ca2� (326, 625, 632,
652–655).

Involvement of PKC in the stimulation of insulin secretion
by ACh is suggested by experiments using various PKC
inhibitors, including bisindolylmaleimide, H-7, and stauro-
sporine (400, 408, 656–658). However, these experiments are
not conclusive because the inhibitors are nonselective kinase
inhibitors or exert nonspecific effects (376, 659). Synthetic
pseudosubstrate peptide inhibitors permit more specific in-
hibition of certain PKC isoforms. The insulin response of rat
islets to carbachol was completely prevented by an inhibitory
peptide corresponding to the consensus sequence of the
pseudosubstrate regions of the PKC isoforms � and � (660).
Down-regulation of PKC by prolonged exposure (�20 h) of
�-cells to phorbol esters strongly inhibited the insulin re-
sponse to a subsequent cholinergic stimulation (163, 290, 399,
573, 661, 662). Because the treatment with the phorbol ester
down-regulated DAG-sensitive PKC isoforms, with the sur-
prising exception of PKC�II isoform in MIN6 cells (399), it
was suggested that one or several of the three PKC isoforms,
�, �, and/or � play a major role in the stimulatory effect of
ACh on insulin release. Because PKC� isoform is the only
isoform that has been implicated in experiments with both
PKC pseudosubstrates and PKC down-regulation, and it is

the major isoform expressed in normal �-cells, it is likely that
most of the PKC-dependent effects of ACh on insulin secre-
tion are mediated by this isoform.

A small residual stimulation of insulin secretion by mus-
carinic agonists was observed in islets with down-regulated
PKC (163, 290, 662, 663). It probably results from the increase
in [Ca2�]c that cholinergic agents still produce in such islets
(290) and from the activation of PKC-independent pathways.
It is important to stress here that translocation of PKC to the
plasma membrane by carbachol does not stimulate insulin
secretion when [Ca2�]c is low (163, 657). The PKC-dependent
stimulation of insulin secretion only occurs when [Ca2�]c is
elevated (Figs. 1, A and B). It is therefore teleologically un-
derstandable that ACh brings into operation separate mech-
anisms that simultaneously increase [Ca2�]c (depolarization)
and stimulate PKC.

As described above, PKC activation exerts a negative feed-
back control on the signal transduction linked to PLC, which
might explain the biphasic time course of accumulation of
arachidonate-enriched DAG upon stimulation by cholinergic
agents. However, this feedback control does not determine
the time course of insulin secretion; cholinergic agonists can
induce a sustained insulin secretion for relatively long
periods (30–60 min) without any sign of desensitization (161,
162, 263, 286, 288, 664, 665). This suggests that the decrease
in PLC-derived DAG levels is probably not accompanied by
a parallel decrease of PKC activation. Low levels of PLC-
derived DAG levels might be sufficient to maintain a sus-
tained PKC activation. Other phospholipid-derived products
formed during stimulation by ACh (arachidonic acid, lyso-
phosphatidate, phosphatidate, various DAGs, and probably
several other metabolites) may, alone or in synergy, stimu-
late PKC (297, 453) and support the sustained secretion of
insulin. Such a time-dependent, multifactorial activation of
PKC has been reported in various systems (381).

2. The role of the PLA2 pathway is uncertain. Whereas the role of
the PLC-PKC pathway in the insulinotropic effect of ACh is

FIG. 7. Comparison of the effects of
various concentrations of ACh on
[Ca2�]c and insulin secretion measured
during the first minutes of stimulation
(integrated over 2 min for [Ca2�]c and 4
min for insulin secretion) and the
steady-state stimulation (integrated
over 3 min for [Ca2�]c and 6 min for
insulin secretion) with ACh. The results
are presented as percentages of control
values, which were computed by inte-
grating [Ca2�]c and insulin secretion
during the last 3 and 6 min, respec-
tively, before addition of ACh. The glu-
cose concentration of the medium was
15 mM throughout. All data were ob-
tained with cultured mouse islets. (De-
rived from Ref. 545 for [Ca2�]c experi-
ments.)
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firmly established, it remains unclear whether the PLA2 path-
way is also involved, and if so, whether its effects are also
mediated by PKC. The reported effects of arachidonic acid on
insulin secretion are extremely controversial (666, 667). Exog-
enous arachidonic acid inhibited, had no effect, or stimulated
insulin secretion by mouse or rat islets depending on the glu-
cose concentration used (435, 440, 446, 451, 668, 669). It also
induced insulin release from permeabilized islets (670, 671).
Arachidonic acid-stimulated insulin secretion has been re-
ported to involve PKC (446), but it has also been reported not
to involve PKC (668, 671, 672). At the concentrations that induce
insulin secretion, arachidonic acid may also exert toxic effects
in islets and inactivate PKC (672). Its insulinotropic effect is not
blocked by norepinephrine (670), which, in contrast, prevents
ACh-induced insulin secretion (673). Because of all these con-
troversies, the contribution of the PLA2 pathway to the insu-
linotropic effect of cholinergic agonists is still unsettled.

C. Delayed effects of ACh on insulin secretion

It has been suggested that cholinergic agonists also exert
long-lasting effects on insulin secretion. The phenomenon,
referred to as time-dependent potentiation or priming, con-
sists in the enhancement of the �-cell secretion response to
various stimuli, including glucose, GIP, cholecystokinin, and
tolbutamide, by prior transient stimulation with cholinergic
agonists (164, 342, 366, 674, 675). This effect has been ob-
served in the rat and the mouse (658) and might play a role
during the preabsorptive phase (see Section III.B.2.a). Because
it was mimicked by phorbol 12-myristate 13-acetate (PMA)
(658, 676, 677), it has been ascribed to a persistent activation
of PKC, which can then be readily activated by the rise in
[Ca2�]c that glucose produces. However, in the perfused rat
pancreas, the phenomenon could be induced by PMA (678),
but not by carbachol (679). Comparison of the effects of both
agents is not easy because PMA, unlike carbachol, exerts
irreversible activation of PKC even after short application.

Whereas brief stimulation with ACh amplifies insulin se-
cretion, prolonged stimulation might exert adverse affects.
Exposure of rat islets to 10 �m carbachol for 3.5 h has been
reported to desensitize �-cells to subsequent stimulation by
glucose and cholinergic agonists (263, 665, 680). This desen-
sitization might result from an impaired phosphoinositide
pathway (342). Ubiquitination is a process whereby ubiq-
uitin, a 76-residue protein, is associated with certain proteins
to make them recognizable by the proteasome pathway that
degrades them (681). Prolonged exposure (6 h) to carbachol
has recently been shown to down-regulate IP3 receptors in
mouse islet by the ubiquitin/proteasome pathway (582).

D. Muscarinic responses are often abnormal in insulin-
secreting cell lines

Insulin-secreting cell lines have been used extensively to
study stimulus-secretion coupling. They can be useful when
responses occurring in non-�-cells of the islets complicate
interpretation of the results, when large amounts of cells are
needed for biochemical determinations, and for transfection
experiments. Their use has yielded interesting data that can
sometimes be extrapolated to normal �-cells. However, it is

important to bear in mind that they are, in many respects,
different from normal �-cells. A major difference between
normal �-cells and some cell lines that were established long
ago is a markedly different glucose dependence (682).
Described below are some important differences regarding
cholinergic effects.

RINm5F cells (a clonal rat �-cell line) are not depolarized by
cholinergic agonists (311, 607), but are depolarized by phorbol
esters that activate PKC (607, 654, 683, 684). This is exactly
opposite to the situation in normal �-cells, in which ACh de-
polarizes the plasma membrane, whereas PMA lacks this effect
(407, 625). In RINm5F cells, carbachol induces a transient in-
crease in [Ca2�]c by mobilizing intracellular Ca2�, but causes a
sustained secretion of insulin that is independent from a rise in
[Ca2�]c and persists after depleting the Ca2� content of the
endoplasmic reticulum with thapsigargin (311, 607). The effect
of ACh on insulin secretion is poorly glucose dependent (685),
and PKC down-regulation or inhibition does not affect (400,
607) or paradoxically enhances (397) insulin secretion in re-
sponse to carbachol in RINm5F cells. Some of these peculiar
effects might be explained by the fact that carbachol also trans-
locates the phorbol ester-insensitive 
-isoform of PKC (400).

In MIN6 (a mouse �-cell line) and HIT cells (a clonal
hamster �-cell line), ACh and carbachol induce a transient
rise in [Ca2�]c, which mainly results from Ca2� influx. Sur-
prisingly, they stimulate insulin secretion even when [Ca2�]c

has returned to basal levels (573, 686). The latter effect is
markedly reduced by PKC down-regulation (163, 399, 573).
In MIN6 (686) and HIT cells (685), the insulinotropic effect of
ACh is poorly dependent on the glucose concentration.

X. Nature of the Muscarinic Receptor Activated
by ACh

With the exception of two reports from the same group
(687, 688), there is general agreement that all direct effects of
ACh on insulin-secreting cells are exclusively mediated by
muscarinic receptors (288, 480, 486, 621, 689, 690).

Muscarinic receptors belong to the family of receptors with
seven transmembrane domains connected by three cytoplas-
mic loops and three extracellular loops (691–694). Five mus-
carinic receptor subtypes, which elicit classical responses,
have been cloned so far: the M1, M3, and M5 subtypes are
linked to G proteins of the Gq class and activate PLC, and the
M2 and M4 are linked to pertussis toxin-sensitive G proteins
of the Gi or Go class and initiate several processes such as
inhibition of adenylate cyclase or of voltage-dependent Ca2�

channels and activation of the atrial cardiac K� channel by
M2 (314, 416, 513, 637, 638, 640, 693–696). However, classi-
fication of muscarinic receptors on the basis of the signal
transduction is unreliable because of the overlap between the
transduction pathways activated by the different subtypes
(692, 697, 698).

Three strategies have been used to identify the muscarinic
receptor subtypes present in �-cells: pharmacological block-
ade of physiological responses by selective antagonists, bind-
ing studies of selective ligands, and molecular biology
studies.
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A. Pharmacological studies

More than a decade ago, only three muscarinic receptor
subtypes were identified and classified as neuronal M1 (high
affinity for pirenzepine), cardiac M2 (M2�, low affinity for
pirenzepine/high affinity for AF-DX 116), and glandular M2
(M2�, low affinity for both pirenzepine and AF-DX 116). A
first study comparing the effects of atropine and pirenzepine
on insulin secretion from the perfused rat pancreas sug-
gested that the receptor present in �-cells was different from
the M1 receptor (664). Subsequent experiments testing atro-
pine, pirenzepine, and AF-DX 116 on insulin release, 86Rb�

efflux, and Ca2� efflux ruled out the presence of M1 and
cardiac M2 receptors in mouse islets and suggested that the
receptor present in �-cells was a glandular M2 subtype (699).
This was confirmed by studying the effect of other agonists
or antagonists on the electrical activity (486) and insulin
release (700). Later, when gene receptor analysis revealed the
existence of 5 muscarinic subtypes (691, 692, 701), it clearly
appeared that the glandular M2 receptor corresponded to a
new subtype, the M3 receptor (702, 703). The observations
that the insulin response to cholinergic agonists is mediated
by a M3 subtype (699) were confirmed in vitro in RINm5F
cells (704) and rat islets (288) and in vivo in the mouse (705)
with more specific antagonists.

B. Binding studies

The presence of muscarinic receptors in the endocrine
pancreas was clearly demonstrated by measuring the specific
binding of the muscarinic antagonists [3H]-methylscopol-
amine or [3H]quinucliolinyl benzilate (QNB) to rat (321, 700,
706–709), mouse (46, 485), and guinea pig islets (710), or to
insulin-secreting tumoral RINr cells (312) and INS-1 cells
(711). Scatchard plot analysis revealed a single population of
high affinity binding sites without any obvious low affinity
binding sites (312, 485, 706, 709). Displacement of the binding
of [3H]-methylscopolamine by various antagonists indicated
the presence of M3 receptors in rat islets (700).

C. Molecular identification of the receptor subtypes

Using RT-PCR or ribonuclease protection assays, RNA
encoding M3 and M1 receptor subtypes was detected in rat
islets (288, 711). These two receptor subtypes were much
more expressed than the M5 receptor subtype (711). Al-
though similar results were obtained in INS-1 cells (711),
this type of determination does not prove that the three
types of receptors are expressed in �-cells because isolated
islets contain at least four endocrine cell types (�-cells,
�-cells, �-cells, and PP-cells) as well as vascular muscle
and endothelial cells. Immunocytochemical experiments
using a specific antibody against the M3 receptor subtype
indeed indicated that both central (mainly �-cells) and
peripheral cells (mainly non-�-cells) express the M3 re-
ceptor (711). On the other hand, M3 (704, 711) and M4
receptor subtypes (704, 711), but not M1 (711), were de-
tected in RINm5F cells. Interestingly, although several
studies reported the presence of M3 and non-M3 receptors,
two of these (288, 704) suggested that only M3 receptors are

involved in the secretion of insulin in response to cholin-
ergic agonists.

D. One or several receptor subtypes for several
transduction pathways?

On the basis of pharmacological, binding, and RT-PCR
studies, it is clear that the M3 receptor plays a central role in
�-cells. The idea that this sole subtype activates several trans-
duction pathways is supported by the observation that three
different parameters of the �-cell function (insulin secretion,
86Rb� efflux, and Ca2� efflux) displayed a similar antago-
nistic profile (699).

Activation of multiple transduction pathways by a single
class of muscarinic receptors is not a unique feature of the
pancreatic �-cell. Another example of complexity is found in
ventricular myocytes in which cholinergic agonists, likely
acting solely on the M2 subtype, inhibit L-type Ca2� current
through an inhibition of adenylate cyclase activity and ac-
tivate a Na� current (512, 513). Activation of two different
transduction pathways by two different parts of the M3 re-
ceptor has also been documented in A9 fibroblast cells (712).
The diversity of the effects mediated by ACh not only de-
pends on the nature of the muscarinic receptor subtype in-
volved, but also on posttranslational modifications (glyco-
sylation, phosphorylation, etc.), which might be different
from one cell type to another (314) or on the nature of the
effector system present in the cells (315, 512, 695, 697). In-
deed, when heart M2 muscarinic receptors, which classically
inhibit adenylate cyclase, are expressed in CHO cells, their
activation also produces nonclassical effects such as phos-
phoinositide breakdown (713). Similar results were found for
the M1 receptor (697). Activation of all five muscarinic re-
ceptor subtypes expressed in NIH 3T3 cells has recently been
shown to inhibit L-type current of this cell type (714). This
suggests that each receptor subtype elicits preferential rather
than specific effects, depending on the cell type in which it
is expressed.

In the same line of ideas, the different concentration de-
pendencies of the multiple effects of ACh in �-cells do not
necessarily imply that several muscarinic receptors are in-
volved. They might result from different sensitivities of the
effector systems to G protein activation or from other un-
identified mechanisms. Activation of transduction pathways
with different concentration dependencies has recently been
reported for the M3 receptor expressed in CHO cells. Mod-
erate concentrations of carbachol (1–10 �m) elicited maximal
capacitative Ca2� influx, whereas higher concentrations
were necessary to activate an inward monovalent cation
current that depolarizes the plasma membrane (521).

XI. Summary and Conclusions

A. The physiological role of ACh

ACh is released by intrapancreatic nerve endings under
the control of the vagus nerves during the preabsorptive,
cephalic, and enteric phases of feeding and, very likely, also
during the absorptive phase. Vagal stimulation occurs after
activation of cephalic sensory organs including those of the
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oral cavity and the visual and olfactory systems, and after
activation of glucoreceptors in the gut, brain, and liver. ACh
stimulates insulin secretion in a glucose-dependent manner,
becoming more and more effective as the plasma glucose
concentration increases. This stimulation appears to be im-
portant to ensure optimal glucose tolerance during the pe-
riods of feeding.

Several animal models of type 2 diabetes are characterized
by an alteration of the autonomic nervous system with an
increased ratio of the parasympathetic over sympathetic ac-
tivities leading to hyperinsulinemia. Hyperinsulinemia is a
characteristic of obesity, and the kinetics of insulin secretion
is often altered in type 2 diabetes, but it is unclear to which
extent these abnormalities result from an impaired activity of
the autonomic nervous system. Because their effects on in-
sulin secretion are glucose dependent, cholinergic agonists
might theoretically be helpful to improve insulin secretion
and glucose homeostasis in certain type 2 diabetic patients
(46, 715). Although supported by some animal studies (46),
this idea has not been largely tested because of insufficient
selectivity of the available muscarinic agents for �-cells.

B. The mechanisms of action of ACh in �-cells

At the �-cell level, ACh binds to M3 receptors and ac-
tivates several transduction pathways (Fig. 3); one of the
major pathways is PLC, which mainly generates IP3 and
diacylglycerol, a potent PKC activator. ACh also stimu-
lates PLA2, probably secondary to the [Ca2�]c rise. This
leads to accumulation of arachidonic acid and lysophos-
phatidylcholine. ACh might also activate PLD by a mech-
anism that possibly depends on PKC activation. Many of
the phospholipid-derived messengers are also, alone or in
synergy with other lipid messengers such as diacylglyc-
erol, activators of PKC (Fig. 3). Besides these complex
effects on lipid metabolism, ACh also depolarizes the
plasma membrane of �-cells by a Na�- or nonspecific
cationic-dependent mechanism (Fig. 8A, pathway 3), and
possibly also by a mechanism involving SOCs activated by
intracellular Ca2� pool emptying (Fig. 8A, pathway 4).
This depolarization is small and reaches the threshold
for the activation of voltage-dependent Ca2� channels only
if the plasma membrane is already depolarized by secre-
tagogues such as glucose. The glucose dependence of
this depolarization largely contributes to the glucose-
dependence of ACh effects on insulin secretion.

All these transduction pathways modulate [Ca2�]c in
�-cells (Fig. 8). ACh transiently increases [Ca2�]c by mo-
bilizing Ca2� from IP3-sensitive stores mainly in the en-
doplasmic reticulum (Fig. 8A, pathway 1). ACh induces a
sustained increase in [Ca2�]c by stimulating Ca2� influx by
two pathways: through voltage-independent Ca2� chan-
nels that open upon intracellular Ca2� pool emptying
(capacitative Ca2� entry; Fig. 8A, pathway 2) and through
voltage-dependent Ca2� channels that are activated by
depolarization (Fig. 8A, pathways 3 and 4). ACh decreases
[Ca2�]c under certain circumstances (Fig. 8B). This effect,
which is detectable only after the initial phase of intra-
cellular Ca2� mobilization and only when [Ca2�]c is sus-
tained, requires higher ACh concentrations than those de-

polarizing the plasma membrane. It results from a
stimulation of Ca2� efflux that likely involves PKC
(Fig. 8B, pathway 6) and a G protein-mediated inhibition
of Ca2� influx through voltage-dependent Ca2� channels
(Fig. 8B, pathway 5). It might protect �-cells against del-
eterious Ca2� overload.

The insulinotropic effect of ACh largely depends on the
glucose concentration and Ca2� influx. When no Ca2�

influx can occur, ACh induces a transient, small,
monophasic stimulation of insulin secretion, provided a
high concentration of glucose is present. The tight tem-
poral parallelism between the rises in [Ca2�]c and insulin
secretion that occur under these conditions indicates that
ACh triggers exocytosis by increasing [Ca2�]c. When Ca2�

influx can occur, ACh induces a biphasic stimulation of
insulin secretion, the amplitude of which, again, largely
depends on the glucose concentration. However, there is
no good temporal and quantitative relationship between
changes in [Ca2�]c and insulin secretion because, in the
steady state, a large stimulation of insulin secretion occurs
with only a moderate increase in [Ca2�]c (Fig. 7). This
suggests that an additional mechanism becomes operative
and increases the efficacy of Ca2� on the secretory ma-
chinery. The most important amplifying mechanism in-
volves PKC. This PKC-dependent mechanism increases
insulin secretion only when [Ca2�]c is sufficiently elevated
above basal levels. Thus, the insulinotropic effect of ACh
results from two Ca2�-dependent mechanisms, one that
involves a rise in [Ca2�]c and another that increases the
efficacy of Ca2� on exocytosis (Fig. 3).

Although the mechanisms of action of ACh have been
extensively studied, many remain incompletely under-
stood. How PKC increases insulin secretion is unclear.
Because of the transient accumulation of the PLC-derived
arachidonate and the multiple interactions between PKC
and various phospholipid-derived products, it is not
known which routes require PKC or lead to PKC activa-
tion. Interactions between PLA2-, PLC-, and PLD-derived
products and PKC are not well defined. Moreover, it is
unclear which PKC isoform is activated by ACh, whether
the neurotransmitter translocates specific isoforms to dif-
ferent targets, and which proteins are phosphorylated by
PKC. Phorbol esters not only stimulate insulin secretion,
they also activate early genes and stimulate cell prolifer-
ation (403). It is unknown whether ACh could exert such
effects physiologically. Many other questions await clear
answers: What are the precise roles of PLA2 and PLD in the
action of ACh? What is the identity of the channel involved
in the depolarization produced by ACh? Is the ACh-
induced inhibition of the Ca2� current mediated by a
cytosolic diffusible messenger or by a direct interaction
with Ca2� channels? How can a single subtype of receptor
activate so many different transduction pathways with
different concentration dependencies for ACh? Answers
to this last question might be provided by the use of the
recently developed model of muscarinic receptor-knock-
out mice (253, 641, 716) and of systems expressing trun-
cated muscarinic receptors subtypes.
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635. Ämmälä C, Berggren PO, Bokvist K, Rorsman P 1992 Inhibition
of L-type calcium channels by internal GTP-�S in mouse pancreatic
� cells. Pflugers Arch 420:72–77

636. Satoh H, Sperelakis N 1995 Modulation of L-type Ca2� current by
isoprenaline, carbachol and phorbol ester in cultured rat aortic
vascular smooth muscle (A7r5) cells. Gen Pharmacol 26:369–379

637. Mathie A, Bernheim L, Hille B 1992 Inhibition of N- and L-type
calcium channels by muscarinic receptor activation in rat sympa-
thetic neurons. Neuron 8:907–914

638. Bernheim L, Mathie A, Hille B 1992 Characterization of musca-
rinic receptor subtypes inhibiting Ca2� current and M current in rat
sympathetic neurons. Proc Natl Acad Sci USA 89:9544–9548

639. Howe AR, Surmeier DJ 1995 Muscarinic receptors modulate N-,
P-, and L-type Ca2� currents in rat striatal neurons through parallel
pathways. J Neurosci 15:458–469

640. Hille B 1994 Modulation of ion-channel function by G-protein-
coupled receptors. Trends Neurosci 17:531–536

641. Shapiro MS, Loose MD, Hamilton SE, Nathanson NM, Gomeza
J, Wess J, Hille B 1999 Assignment of muscarinic receptor subtypes
mediating G-protein modulation of Ca2� channels by using knock-
out mice. Proc Natl Acad Sci USA 96:10899–10904

642. Wollheim CB, Lang J, Regazzi R 1996 The exocytotic process of
insulin secretion and its regulation by Ca2� and G-proteins. Dia-
betes Rev 4:276–297

643. Burgoyne RD, Morgan A 1998 Calcium sensors in regulated exo-
cytosis. Cell Calcium 24:367–376

644. Regazzi R 1999 Mechanism of insulin exocytosis. In: Bittar EE,
Howell SL, eds. Advances in molecular and cell biology. Stamford,
CT: JAI Press, Inc.; 151–172

645. Lang JC 1999 Molecular mechanisms and regulation of insulin

602 Endocrine Reviews, October 2001, 22(5):565–604 Gilon and Henquin • Cholinergic Control of the Pancreatic �-Cell



exocytosis as a paradigm of endocrine secretion. Eur J Biochem
259:3–17

646. Hisatomi M, Hidaka H, Niki I 1996 Ca2�/calmodulin and cyclic
3,5� adenosine monophosphate control movement of secretory
granules through protein phosphorylation/dephosphorylation in
the pancreatic �-cell. Endocrinology 137:4644–4649

647. Niwa T, Matsukawa Y, Senda T, Nimura Y, Hidaka H, Niki I 1998
Acetylcholine activates intracellular movement of insulin granules
in pancreatic �-cells via inositol triphosphate-dependent mobili-
zation of intracellular Ca2�. Diabetes 47:1699–1706

648. Gromada J, Hoy M, Renström E, Bokvist K, Eliasson L, Göpel S,
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706. Grill V, Östenson CG 1983 Muscarinic receptors in pancreatic
islets of the rat. Demonstration and dependence on long-term glu-
cose environment. Biochim Biophys Acta 756:159–162

707. Grill V, Fak K 1985 Influence of thiol groups, calcium, and glucose
metabolism on cholinergic-induced insulin release and on meth-
ylscopolamine binding to muscarinic receptors in pancreatic islets
of the rat. Acta Endocrinol (Copenh) 109:355–360

708. Malaisse WJ, Mahy M, Mathias PCF 1985 Binding of (3H)-
methylscopolamine to rat pancreatic islets. IRCS (Int Res Commun
Syst) Med Sci 13:503–504
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