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Abstract

In this paper, we derive a sufficient condition for the orthant convex order based on the single
crossing of their respective joint survival functions. This condition is expressed in terms of
the generators for archimedean copulas. Numerical examples show that this condition is
valid for members of standard copula families (including Clayton and Frank).
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1 Introduction

Consider two random variables X and Y with respective distribution functions F (x) =
Pr[X ≤ x] and G(x) = Pr[Y ≤ x] and survival functions F = 1 − F and G = 1 − G, such
that E[X] ≤ E[Y ] < +∞. If there exists a constant c such that

{

F (x) ≥ G(x) for all x < c,
F (x) ≤ G(x) for all x ≥ c,

(1.1)

then the inequality E[v(X)] ≤ E[v(Y )] holds for all the non-decreasing convex functions v
such that the expectations exist (which is henceforth denoted as X �icx Y ). This result is
known as the Karlin-Novikoff cut-criterion following the work of Karlin and Novikoff (1963).
We refer the interested reader to the books of Shaked and Shanthikumar (2007) for a general
presentation of the stochastic order relations and of Denuit et al. (2005) for their applications
in risk theory.

This paper aims to extend the Karlin-Novikoff cut-criterion to the orthant convex order
among bivariate random vectors. Recall that, given non-negative random vectors (X1, X2)
and (Y1, Y2) with respective marginal survival functions F i(xi) = Pr[Xi > xi] and Gi(xi) =
Pr[Yi > xi], and joint survival functions F (x1, x2) = Pr[X1 > x1, X2 > x2] and G(x1, x2) =
Pr[Y1 > x1, Y2 > x2], i = 1, 2, (X1, X2) is smaller than (Y1, Y2) in the orthant convex order
(which is henceforth denoted as (X1, X2) �uo-cx (Y1, Y2)) if the inequalities

∫

∞

x1

F 1(u) du ≤

∫

∞

x1

G1(u) holds for all x1,

∫

∞

x2

F 2(u) du ≤

∫

∞

x2

G2(u) holds for all x2,

∫

∞

x1

∫

∞

x2

F (u1, u2) du1du2 ≤

∫

∞

x1

∫

∞

x2

G(u1, u2) du1du2 holds for all (x1, x2).

Equivalently, (X1, X2) �uo-cx (Y1, Y2) holds if, and only if, the inequality

E
[

g1(X1)g2(X2)
]

≤ E
[

g1(Y1)g2(Y2)
]

is valid for every univariate non-negative non-decreasing convex functions g1 and g2.
In this paper, we aim to show that a suitable bivariate extension of (1.1) suffices to ensure

that a pair of nonnegative random vectors are ordered with respect to �uo-cx. This is done
in Section 2. Section 3 is devoted to bivariate distributions built from archimedean copulas.
The sufficient condition of Section 2 is expressed in terms of properties of the respective
generators of these copulas. We also apply these results to compare random vectors with
different archimedean copulas. Whereas most of the literature compares members of a given
copula family when the dependence parameter varies, this paper considers copulas from
different families and provide a criterion to rank them with respect to the orthant convex
order. The final Section 4 concludes the paper with a brief discussion of the results and
provides several possible extensions.
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2 Crossing condition

Consider a set C ⊂ R
+×R

+ delimited by the axis Dx = {(x, 0), x ∈ R
+} andDy = {(0, y), y ∈

R
+}. Suppose that the upper boundary curve ∂C of C is a continuous and decreasing function

f . Let c1 > 0 and c2 > 0 and consider the following cases:

1. ∂C ∩ Dx = {c1} and ∂C ∩ Dy = {c2};

2. ∂C ∩ Dx = {c1} and ∂C ∩ Dy = ∅;

3. ∂C ∩ Dx = ∅ and ∂C ∩ Dy = {c2};

4. ∂C ∩ Dx = ∅ and ∂C ∩ Dy = ∅.

We denote by C the complement of C in R
+×R

+. We are now ready to state the main result
of this section.

Proposition 2.1. Let (X1, X2) and (Y1, Y2) be two nonnegative random vectors with contin-

uous marginal distribution functions Fi(x) = Pr[Xi ≤ x] and Gi(x) = Pr[Xi ≤ x], i = 1, 2.
Denote the corresponding survival functions F̄i = 1− Fi and Ḡi = 1−Gi, i = 1, 2. Assume

that the inequalities

E[X1I(X2>y)] ≤ E[Y1I(Y2>y)] and E[X2I(X1>x)] ≤ E[Y2I(Y1>x)]

hold true for all (x, y) ∈ C and that







Ḡ(x, y)− F̄ (x, y) ≤ 0 for all (x, y) ∈ C,

Ḡ(x, y)− F̄ (x, y) ≥ 0 for all (x, y) ∈ C.

Then, (X1, X2) �uo-cx (Y1, Y2).

Proof. Let us establish the result in case 1. The proof is similar for cases 2,3 and 4. First,
we see that (x, 0) ∈ C if x ≤ c1 and (x, 0) ∈ C if x ≥ c1. Similarly, (0, y) ∈ C if y ≤ c2 and
(0, y) ∈ C if y ≥ c2. It follows that Ḡ1(x) − F̄1(x) ≤ 0 if x ≤ c1 and Ḡ1(x) − F̄1(x) ≥ 0
if x ≥ c1, as well as Ḡ2(y) − F̄2(y) ≤ 0 if y ≤ c2 and Ḡ2(y) − F̄2(y) ≥ 0 if y ≥ c2. Since
E[X1] ≤ E[Y1] and E[X2] ≤ E[Y2], we then have Xi �icx Yi, i = 1, 2. Now, we show that for
all (x, y) ∈ R

+ × R
+

D(x, y) =

∫

∞

x

∫

∞

y

(

Ḡ(u, v)− F̄ (u, v)
)

dudv ≥ 0.

First, since the curve x 7→ f(x) is decreasing, then for all (x, y) ∈ C, [x,∞) × [y,∞) ⊂ C.
Thus, D(x, y) ≥ 0 for all (x, y) ∈ C. It remains to show that for all (x, y) ∈ C, D(x, y) ≥ 0.
Clearly, for fixed x ≤ c1, the function

φx : y 7→
∂

∂x
D(x, y) =

∫

∞

y

(

F̄ (x, v)− Ḡ(x, v)
)

dv
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defined on [0, f(x)] is decreasing, because φ′

x(y) = Ḡ(x, y)− F̄ (x, y) ≤ 0 for (x, y) ∈ [0, c1]×
[0, f(x)] ⊂ C. Thus for all x ∈ [0, c1], one has

φx(y) ≤ φx(0) = E[X2I(X1>x)]− E[Y2I(Y1>x)] ≤ 0

which implies that x → D(x, y) is decreasing for all (x, y) ∈ C. The same arguments show,
under the condition E[X1I(X2>y)] ≤ E[Y1I(Y2>y)], that y 7→ D(x, y) is also decreasing for all
(x, y) ∈ C. Consequently (x, y) 7→ D(x, y) is decreasing in C. It follows that

D(x, f(x)) ≤ D(x, y) for all (x, y) ∈ [0, c1]× [0, f(x)]

and since [x,∞) × [f(x),∞) ⊂ C, then D(x, f(x)) ≥ 0 which ensure D(x, y) ≥ 0 for all
(x, y) ∈ C.

Remark 2.2. When Fi = Gi, i = 1, 2, the condition E[X1I(X2>y)] ≤ E[Y1I(Y2>y)] is equivalent
to E[X1|X2 > y] ≤ E[Y1|Y2 > y]. Similarly E[X2I(X1>x)] ≤ E[Y2I(Y1>x)] is equivalent to
E[X2|X1 > x] ≤ E[Y2|Y1 > x].

Example 2.3. Let (U1, V1) and (U2, V2) be random vectors with unit uniform marginals and
joint distributions (or copulas) C1 and C2, respectively. Assume that C1 is a Clayton copula
with parameter θ1 = 1 and C2 is a Frank copula with parameter θ2 = 2.1, that is

C1(u, v) =

(

1

u
+

1

v
− 1

)

−1

and

C2(u, v) = −
1

2.1
ln

(

1 +
(exp(−2.1u)− 1)(exp(−2.1v)− 1)

exp(−2.1)− 1

)

.

Consider the set C = {(u, v) ∈ [0, 1]× [0, 1] : v ≤ f(u)} for some decreasing function f :
[0, 1] → [0, 1]. If (U1, V1) and (U2, V2) are such that E[U1|V1 > v] ≤ E[U2|V2 > v] and
E[V1|U1 > u] ≤ E[V2|U2 > u] for all u, v ∈ C, and if







C2(u, v)− C1(u, v) ≤ 0 for all (u, v) ∈ C,

C2(u, v)− C1(u, v) ≥ 0 for all (u, v) ∈ C
(2.1)

then from Proposition 2.1, the stochastic inequality (U1, V1) �uo-cx (U2, V2) is valid.
Figure 2.1 displays the difference C1(u, v) − C2(u, v) over the unit square. We see that

there exists a function f such that C1(u, v)−C2(u, v) ≤ 0 if v ≤ f(u) and C1(u, v)−C2(u, v) ≥
0 if v ≥ f(u). The level curve v = f(u) such that C1(u, f(u))−C2(u, f(u)) = 0 is described
in Figure 2.2. This graph shows that the domain C of this example corresponds to situation
4 as described in Section 2.

It remains to verify that E[U1|V1 > v] ≤ E[U2|V2 > v] for all v ∈ [0, 1], which is equivalent
to show that

g(v) =

∫ 1

0

(

C1(u, v)− C2(u, v)
)

du ≤ 0 for all v ∈ [0, 1].

The function v 7→ g(v) displayed in Figure 2.3 is indeed negative over [0, 1]. We can thus
conclude that (U1, V1) �uo-cx (U2, V2).
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Figure 2.1: Graph of (u, v) 7→ C1(u, v)− C2(u, v)

Figure 2.2: Graph of the level curve v = g(u)

3 Archimedean copulas

In this section, we consider random couples (X1, X2) with archimedean copula generated by
a continuous, possibly infinite, strictly decreasing convex function φ : [0, 1] → R

+ such that
φ(1) = 0. Specifically, define the pseudo-inverse φ[−1] of the generator φ as

φ[−1](t) =

{

φ−1(t) for 0 ≤ t ≤ φ(0),
0 for φ(0) ≤ t ≤ +∞.

(3.1)
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Graphic of the function g(v)
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Figure 2.3: Graph of the function v = g(u)

The archimedean copula with generator φ is defined as

Cφ(u1, u2) = φ[−1]
(

φ(u1) + φ(u2)
)

(3.2)

for 0 ≤ u1, u2 ≤ 1.
Archimedean copulas (3.2) enjoy numerous convenient mathematical properties and are

therefore appreciated for modelling or simulating bivariate data. See, e.g., Nelsen (2006,
Chapter 4) for a review. In particular, archimedean copulas naturally appear in relation
with frailty models for the joint distribution of two survival times depending on the same
latent factor (the generator being then the inverse of the Laplace transform of this latent
factor).

Our aim in this section is to study the conditions (2.1) in the class of archimedean
copulas. In particular, an alternative formulation of these conditions in terms of generators
of archimedean copulas is obtained. To this end, recall that a function h defined on [0,∞[
is subadditive in the set A ⊂ R

+ × R
+ if the inequality

h(x+ y) ≤ h(x) + h(y) for all x, y ∈ A.

Now, let φ1 and φ2 be two generators and define the sets

Cφ2
= {(φ2(u), φ2(v)) : (u, v) ∈ C}

and Cφ2
, the complement Cφ2

in R
+ × R

+.

Proposition 3.1. Let (U1, V1) and (U2, V2) be random vectors with joint distribution func-

tions C1 and C2. Assume that C1 and C2 are archimedean copulas with generators φ1 and

φ2. Assume that E[U1|V1 > v] ≤ E[U2|V2 > v] for all v. If −φ1 ◦ φ
−1
2 is subadditive in Cφ2

and φ1 ◦ φ
−1
2 is subadditive in Cφ2

, then (U1, V1) �uo-cx (U2, V2).
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Proof. For all (u, v) ∈ C, put x = φ2(u) and y = φ2(v). Since the generator φ2 is decreasing,
we have

C2(u, v) ≤ C1(u, v) for all (u, v) ∈ C

⇔ φ1 ◦ φ
−1
2 [φ2(u) + φ2(v)] ≥ φ1(u) + φ1(v) for all (u, v) ∈ C

⇔ φ1 ◦ φ
−1
2 (x+ y) ≥ φ1 ◦ φ

−1
2 (x) + φ1 ◦ φ

−1
2 (y) for all (x, y) ∈ Cφ2

⇔ −φ1 ◦ φ
−1
2 is subadditive in Cφ2

.

The same arguments show that C1(u, v) ≤ C2(u, v) for all (u, v) ∈ C is equivalent to φ1 ◦φ
−1
2

being subadditive in Cφ2
. Hence the result.

Example 3.2. Let us consider archimedean copulas in Families 2 and 6 from Table 4.1 in
Nelsen (2006). Let (U1, V1) and (U2, V2) be random vectors with joint distribution functions
C1 and C2. Assume that C1 and C2 are archimedean copulas with generators φ2,θ(t) =
− ln

(

1 − (1 − t)θ
)

and to φ1,θ(t) = (1 − t)θ, θ ∈ [1,∞). It’s easy to see for θ1, θ2 ∈ [1,∞)
that hα(t) = φ1,θ1 ◦ φ

−1
2,θ2

(t) = − ln (1− tα) where α = θ1/θ2. It follows that

hα(x+ y)− hα(x)− hα(y) = ln

(

(1− xα)(1− yα)

1− (x+ y)α

)

.

Consider the set Cα = {(x, y) ∈ [0, 1]2 : (1− xα)(1− yα) + (x+ y)α − 1 ≥ 0}. Then, −hα is
subadditive in Cα and hα is subadditive Cα.

Consider now for instance α = θ1/θ2 = 0.2. Numerical computations show that the
condition E[U1|V1 > v] ≤ E[U2|V2 > v] is verified for all v so that we have (U1, U2) �uo-cx

(U1, U2) in this particular case. For α = 0.2, Figure 3.1 displays the graph of ψα(x, y) =
hα(x+ y)− hα(x)− hα(y). We see there that their exists a certain level curve f(x) given in
Figure 3.2 such that ψα(x, y) is negative (hα subadditive) under f(x) and positive over f(x)
(−hα subadditive). Note that the level curve x 7→ f(x) is unique and can be obtained as the
solution of the implicit equation (1− xα)(1− f(x)α) + (x+ f(x))α − 1 = 0.

4 Discussion

In this paper, we have established sufficient conditions for the orthant convex order to hold
between bivariate distribution functions with special emphasis to archimedean copulas. The
conditions derived in this paper are easy to verify (at least numerically) and are satisfied by
standard copulas including Clayton and Frank families for some values of the dependence
parameter.

Of course, there are situations where the sufficient condition derived in the present paper
does not apply. Consider for instance the Fréchet copulas Cα(u, v) = αmax{u+ v − 1, 0}+
(1 − α)min{u, v}. To compare Cα to the independence copula Π(u, v) = uv, consider the
difference Dα(u, v) = Cα(u, v)−Π(u, v) and define the A = {(u, v) ∈ [0, 1]2 : u+ v − 1 ≤ 0}.

One can see that Dα(u, v) = min{u, v}
(

1− α−max{u, v}
)

if (u, v) ∈ A and Dα(u, v) =
(

1−max{u, v}
)(

min{u, v}−α
)

if (u, v) ∈ Ā (the complement of A in [0, 1]2). Take α > 1/2,
then one has Dα(u, v) ≥ 0 if (u, v) ∈ S1,α = [0, 1−α]× [0, 1−α] and Dα(u, v) ≤ 0 in A\S1,α
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Figure 3.1: Graph of ψα : (x, y) 7→ hα(x+ y)− hα(x)− hα(y)

Figure 3.2: Graph of the level curve x 7→ f(x)

(notice that S1,α ⊂ A, since α > 1/2). Also, Dα(u, v) ≥ 0 if (u, v) ∈ S2,α = [α, 1]× [α, 1] and
Dα(u, v) ≤ 0 in Ā \ S2,α (notice that S2,α ⊂ Ā, since α > 1/2). Finally, we have























Dα(u, v) ≥ 0 for all (u, v) ∈ S1,α,

Dα(u, v) ≤ 0 for all (u, v) ∈ [0, 1]2 \ S1,α ∪ S2,α,

Dα(u, v) ≥ 0 for all (u, v) ∈ S2,α.

(4.1)

In this case, we thus see that there are two level curves L1,α = {(u, 1− α), u ∈ [0, 1− α]} ∪
{(1 − α, v), v ∈ [0, 1 − α]} and L2,α = {(u, α), u ∈ [α, 1]} ∪ {(α, v), v ∈ [α, 1]} such that
Dα(u, v) is positive under L1,α, negative between L1,α and L2,α and positive over L2,α. This
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shows that we cannot establish a comparaison between Cα(u, v) and Π(u, v) = uv with
respect to the upper orthant convex order by means of our sufficient condition.

This example also suggests to derive similar sufficient conditions for the weaker bivariate
s-increasing convex order (see Denuit and Mesfioui (2010) for a definition). The extension
of the crossing condition to these weaker stochastic orderings is under investigation.
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