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Abstract

This thesis focused on side channel attacks in the field of cryptology. Tra-
ditionally, security proofs in cryptology are placed in a model known as
black box, which assumes that the adversary knows the algorithm used
and has only access to an oracle parameterized by a secret and provid-
ing the results (encryption or decryption) of its requests. In this model,
it is possible to show that for some algorithms, an adversary using an
optimal strategy can not find the secret of the oracle faster than exhaus-
tive search. However, the black box model does not enable to prove the
security of a system in practice.

In practice, indeed, the adversary may have physical access to the ora-
cle (as it is the case for smart cards, widely used in banking and mobile
telephony as security tools). In this context, he can see (or even dis-
rupt) the computations made by the oracle and measure the impact on
its environment (e.g. power consumption, computing time, etc.). These
observations are generally related to the values of intermediate results
handled by the oracle and thus provide additional information to the
adversary, enabling him to find more efficiently the secret. This model
where an adversary has access to intermediate values is called gray box
model.

The use of physical information in order to break a cryptosystem and
the study of associated countermeasures are within the scope of the side
channel analysis and of this thesis.

Initially, attention is paid to the existing side channel attacks. One goal
of this thesis is to provide a formal framework to guide the attacker.
In particular, a precise classification of the existing attacks is proposed
(Chap. 4). In addition, a link between the different attacks is established
(Chap. 5) and a new generic attack more efficient than existing ones is
exhibited.

In the second part of this thesis, we analysed in details this new attack
(Chap. 6). Many experiments were conducted to validate the link be-
tween the various known attacks and the relevance of this new attack
(Sect. 8-1).



In the third part of this thesis, we were interested in existing counter-
measures: the shuffling of data and the sharing of data (Chap. 9). In
this thesis we have proposed new schemes mixing data shuffling and
data sharing in order to benefit of both types of countermeasures while
limiting their defects. We also proposed a new framework for quantify-
ing the security provided by such techniques (Chap. 10).
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CHAPTER1
General Cryptography

1-1 Terminology

T
O understand what is cryptography, it is interesting to take
a look at its etymology: from the Greek κρυπτoς (kruptos)
which means “hidden” and γραϕειν (graphein) which means
“writing”, cryptography refers to the art of encryption (also

known as ciphering) which is the process of rewriting a given message
(called plaintext) into a non-understandable form (called ciphertext or
cryptogram) for everyone who is not aware of the process. The inverse
operation (i.e. recovering the plaintext from a ciphertext) is called de-
cryption or deciphering. At the opposite, trying to recover the plaintext
from a ciphertext without any knowledge about the encryption / decryp-
tion process (i.e. breaking the cipher) is called cryptanalysis. Both cryp-
tography and cryptanalysis build up the so-called cryptology, the “sci-
ence of secrecy”.
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chapitre I.1 – General Cryptography

1-2 History

By definition, cryptography is mainly used to provide secure communi-
cation* and thus was priorly used for military purpose†. The earliest
sign of cryptography is found in the Old Kingdom of Egypt, 4,000 years
ago and since this era, the art of cryptography has never stopped to be
improved. A well-known historical example is the so-called Caesar’s ci-
pher used by Julius Caesar (near 50 BC) to protect military significant
messages. It consists in replacing each letter of the message by a letter
some fixed number of positions down the alphabet (looping back at the
end). Such a cipher is called mono-alphabetic substitution cipher. This
kind of cryptography was widely used until the expansion of the fre-
quency analysis, around the ninth century, lead by the Arab mathemati-
cian Al-Kindi. Frequency analysis considers the frequency of each let-
ter in the ciphertext to determine the corresponding letter in the plain-
text. It was the most fundamental cryptanalytic advance until World
War II. Nevertheless, around the sixteenth century, poly-alphabetic sub-
stitution ciphers were designed to overcome frequency analysis. It is
based on the alternation of different mono-alphabetic substitutions. The
Vigenère cipher is a well-known cipher of this kind, broken many years
ago by an improvement of frequency analysis. From the beginning of
the nineteenth century, more elaborated poly-alphabetic substitution ci-
phers were designed, certain based on mechanical devices. Moreover
some design recipes began to appear such as the famous Kerckhoffs’ law
which states that the security of a cryptosystem must only rely on a
secret parameter called the key. In other terms, the knowledge of the
whole design (except the key) must not permit to break a given cipher.
This reaches to another well-known historical example: the enigma ma-
chine used by the German during World War II. After this war, the sem-
inal paper of Claude Shannon based on information theory introduced
the foundation of modern cryptography [92].

*As a matter of interest, Kama Sutra recommended cryptography for lovers com-
munication

†For instance, until 1996 in France, cryptography was considered as a military
weapon of 2nd category such as tank and military aircraft
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section 1-3: Modern Cryptography

1-3 Modern Cryptography

In 1949, Claude Shannon proved the Vernam’s principle of one time pad
in his famous article “Communication theory of secrecy systems”. It
claims that to reach a perfect secrecy encryption, a key must be used once
by encryption with a domain definition as large as for the plaintext. This
property was already known but Shannon proved that it is sufficient.
Such a constraint is impractical in real-life*, nevertheless Shannon also
introduced some design principles to reach a practical secrecy. The emer-
gence of computers and Internet made it possible to design more compli-
cated layout and brought effective cryptography into a common use. It
was the birth of the so-called modern cryptography based on the concept
of computational impossibility†. Its aim is to provide the following secu-
rity features through a – unsecured – communication channel:

Confidentiality Only authorized people (i.e. holding the corresponding
key) can read the data.

Authentication The sender identity can be verified.

Integrity Data can be checked against modification during the transfer.

The 1970’s saw two major advances. The first Data Encryption Stan-
dard (DES) is designed by IBM’s team (composed of Horst Feistel and
Don Coppersmith among others) and is still in use nowadays. In 1976,
Whitfield Diffie and Martin Hellman introduced the concept of public key
cryptography which revolutionized the cryptography world: asymmetric
cryptography was born. Since that time, a whole scientific community
has emerged and expanded quickly.

For the interested reader, more details about cryptography can be found
in the reference books [66, 89, 100] and for a more entertaining reading
[94].

*In this configuration the key must have the same length as the plaintext and
must be transfered in a secure way. If such a secure way is available, one can directly
transfer the plaintext. As a matter of interest, this kind of encryption was used during
the Cold War, where the key was transfered in a diplomatic bag.

†An exhaustive search (also known as brute force attack) can always be performed
but will need an impracticable time to succeed (an order of 106 billions of years for a
128-bit key).
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chapitre I.1 – General Cryptography

1-3.1 Symmetric Cryptography

Symmetric Cryptography refers to cryptographic algorithms for which
encryption and decryption need the same secret key to be executed. Un-
til the seminal paper of Diffie and Hellman in 1976, it was the only
kind of cryptography publicly known. Despite the fact that symmet-
ric cryptography is computationally very fast, it suffers from two main
drawbacks. First, it needs a unique different key for each couple of
sender/receiver. Secondly, the key exchange issue is not addressed. From
a mathematical point of view, a symmetric cipher can be formalized as a
bijection function sym parameterized by a key k such that

c = sym(p,k) , (1.1)

where p is the plaintext and c the ciphertext. Thus, the function sym
has the role of encryption whereas decryption is the inverse function
sym−1. Resolving c = sym(p, ·) (or similarly p = sym−1(c, ·)) must be com-
putationally infeasible without knowing k – even with a large amount of
plaintext / ciphertext pairs available – for the cipher to be secure. Sym-
metric ciphers are commonly split in two categories, stream ciphers and
block ciphers. A side category is Hash function which is generally based
on symmetric cryptography.

1-3.1.1 Stream Cipher

A stream cipher is an algorithm which aims to behave like a one-time
pad cipher. That is it produces a key stream as long as the plaintext and
then combines this key stream – generally by an exclusive-or operation
– with the plaintext to obtain the ciphertext. In practice, stream ciphers
rely on an internal state which is fed by an initial value at the beginning
of the process. Note that it is mandatory to change the initial value at
each processing. As a consequence, this initial value is generally the
output of a pseudo random generator parameterized by the secret key.
For instance, the operation of a key stream generator used to encrypt
mobile phone conversation (A5/1) can be seen in Fig. 1-3-1. As a stream
cipher generally processes the plaintext bit per bit, it is used to be faster
than block cipher.
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section 1-3: Modern Cryptography

Fig. 1-3-1 – The operation of the key stream generator in A5/1, a LFSR-
based stream cipher used to encrypt mobile phone conversations.

1-3.1.2 Block Cipher

A block cipher is a symmetric cipher which takes an n-bit block of plain-
text as input and outputs an n-bit block of ciphertext. When the length
of the plaintext is higher than the size of the block, the plaintext is split
into blocks that are then encrypted. The encryption of more than one
block is defined according to a mode of operation. The most used modes
are:

• The Electronic CodeBook (ECB) mode which encrypts each block of
plaintext independently (see Fig. 1-3-2).

• The Cipher-Block Chaining (CBC) mode where the previous ci-
phered block is exclusive-or’ed to the current plaintext block be-
fore encryption – an initial value is used for the first block (see
Fig. 1-3-3).

• The counter mode which aims to simulate a stream cipher encryp-
tion producing a key stream from the ciphering of an initial value
plus a counter (see Fig. 1-3-4).

These modes must be used with caution. For instance, ECB mode is not
assumed secure because identical plaintext blocks yield identical cipher-
text blocks (see Fig. 1-3-5 for an illustration). Moreover when an initial
value is needed, it must be diversified as often as possible. For example,
in CBC mode, the encryption of two plaintexts having the same pre-
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Fig. 1-3-2 – Electronic CodeBook mode ciphering
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Fig. 1-3-3 – Cipher-Block Chaining mode ciphering
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Fig. 1-3-4 – Counter mode ciphering
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section 1-3: Modern Cryptography

fix will yield two ciphertexts having the same prefix if the same initial
value is used.

Original picture
ECB mode
encryption

Another mode
encryption

Fig. 1-3-5 – ECB drawback

We present hereafter the two main standard block ciphers, the Data En-
cryption Standard (DES) [2] and its successor the Advanced Encryption
Standard (AES) [1].

DES standard. The DES was adopted by the US National Bureau of
Standards in 1976 as a variation of the IBM Lucifer cipher. It processes
a 64-bit block of plaintext into a 64-bit block of ciphertext using a 56-bit
master key (usually expanded to 64-bit with 8 parity bits). It is based on
a Feistel network iterating a function F called the round transformation
over 16 rounds (see Fig. 1-3-6). Those 16 rounds come after an initial
permutation IP and before a final permutation FP. The internal round
transformation processes half a DES state (32-bit) and is parameterized
by a 48-bit round-key. For more details on the DES structure and its key
scheduling, the reader can refer to [3].

AES standard. Due to the large increase of computational power in
common computers, the DES algorithm became too weak with regards
to the exhaustive search (for instance, only a few hours are needed to
find the correct key on a dedicated device [53]). Thus, the US National
Institute of Standards and Technology (NIST) decided to launch a com-
petition to find the DES successor. The Rijndael algorithm designed by
the two Belgians Vincent Rijmen and Joan Daemen was chosen to be the
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Fig. 1-3-6 – Feistel scheme

Advanced Encryption Standard AES. It is composed of a round trans-
formation iterated 10 times for a 128-bit master key (12 for a 192-bit
key and 14 for a 256-bit key). A round transformation is composed of
four parts: SubBytes, a non linear substitution step; ShiftRows, a (row)
transposition step; MixColumns, a (column) mixing step and AddRound-
Key, which combines the round key to the state by exlusive or. Such a
cipher is called a Substitution Permutation Network (SPN). The AES
scheme is recalled in Fig. 1-3-7. For more details on the AES structure
and its key scheduling, the reader can refer to [36].

1-3.1.3 Few Words about Hashing

Symmetric ciphers permit to have secure communication. They more-
over allow user identification by the way of a challenge / response pro-
tocol. That is one sends a challenge (e.g. a random message) to another
(called the challenger) which sends back the ciphered challenge. The
first sender can now decipher the challenge and thus verify if the chal-
lenger owns the same key. Nevertheless, this procedure does not permit
to authenticate the message (i.e. check the sender identity) nor data in-
tegrity. The latter properties can be achieved by hash functions and
Message Authentication Code (MAC).

Cryptographic hash function. It is a function which computes a
fixed length output from an arbitrary length input. A cryptographic
hash function must achieve the following properties: preimage resis-
tance, given a hash output, it is computationally infeasible to find a
corresponding input; second-preimage resistance, given an input, it is
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Fig. 1-3-7 – AES cipher description

computationally infeasible to find a second different input with the same
hash output as the first one; collision resistance, it is computationally in-
feasible to find two inputs with the same hash output. An hash function
permits to check data integrity as a hash value is characterized by the
input message. A different message will lead to a different hash output.
Nevertheless, the hash values have to be transmitted securely. To by-
pass the need for a secure transmission, one can imagine a keyed hash
function. It is the purpose of a Message Authentication Code.

Message Authentication Code. It is a function parameterized by a
key which computes a fixed length output from an arbitrary length in-
put. It must be computationally infeasible to compute the MAC value of
a given message without knowing the secret, even with a large sample of
pairs message / MAC available (existential forgery property). MAC pro-
vides message authentication and data integrity as a receiver can check
that the message has been sent by an owner of the key and not modified
outside by a non-owner of the key. MAC algorithms are based on hash
functions [23] or on block ciphers [25].
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1-3.2 Asymmetric Cryptography

Asymmetric cryptography (also known as public key cryptography) was
officially* invented in 1976 by Diffie and Hellman. The principle relies
on a ciphering algorithm parameterized by a pair of key, one – public
– for encryption and the other – private – for decryption such that it
is computationally infeasible to deduce the private key from the public
key (i.e. it must be computationally infeasible to decipher a ciphertext
without the private key, while the public key is known). Thus, the public
key is deployed through a Public Key Infrastructure (PKI) so that anyone
can use it to encrypt a message. At the opposite, the private key is kept
secret so that only its owner can decipher messages. The concept of PKI
is important to “guarantee” the authentication of the public key owner. It
is generally based on the concept of certificate and needs a trusted third
party acting as a certificate authority. The well-known RSA (from the
names of its authors Rivest-Shamir-Adleman) is the most widely used
asymmetric ciphering algorithm. One can also notice other asymmetric
cryptosystem such as ElGamal or Elliptic Curve based algorithms (e.g.
ECIES).

1-3.2.1 Hybrid Mode

Asymmetric ciphers are based on – computationally – hard mathemati-
cal problems, generally from number theory such as the discrete log prob-
lem. Although they provide a security proof, it implies much slower algo-
rithms than symmetric ciphers. More annoying, they operate on a fixed-
length message! In fact, asymmetric ciphers are well-suited to resolve
the key exchange issue of symmetric cryptography. That is in practice
– for efficiency reasons – an hybrid ciphering is used: a symmetric ran-
dom key is generated; then this key is used to cipher a message and
finally, this key is ciphered using an asymmetric algorithm with the re-
ceiver public key. At the reception, the receiver just needs to decipher
the key with its own private key and then decipher the message with the
deciphered key.

*It was revealed in 1997 that James Ellis from the GCHQ (UK intelligence agency)
had already established this concept in 1970.
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1-3.2.2 Few Words about Signature

The concept of public key cryptography also renders possible the digital
signature of electronic documents. That is, if someone uses his private
key to sign a message, then every one can verify the message with the
public key and thus can check the sender identity. In a more practical
view, signature schemes are often based on the hash of the message.
To ensure security, it should be computationally infeasible to compute a
valid signature without the corresponding private key.

19 / 220



20 / 220



CHAPTER2
Embedded Environment

2-1 Key Storage

I
N the previous sections, the main concepts of cryptology have
been recalled. In particular, cryptology security is based on
the secrecy of a key: the knowledge of the secret key annihi-
lates every security properties ensured by the cryptosystem.

Therefore the secure storage of this key became a crucial point. In mod-
ern cryptology, the key is usually represented as a long bit stream (gen-
erally more than fifty bit length) and thus cannot be memorized by an
average human being. Secret keys must therefore be stored in an ex-
ternal device with an easy use (writing the key on a paper is thus not
a convenient solution) and in a secure way (storing the key in a laptop
under a password-based encrypted form seems to be a good solution in a
security point of view, nevertheless the password is most of the time an
easily guessable string such as a birthday date and moreover the user

21 / 220



chapitre I.2 – Embedded Environment

must have its laptop every time a secure communication is required). To
ensure practical external secure storage, one has imagined a small token
that everyone could carry on in every place. This token would not only
securely store the key but also perform the cryptographic computations
by itself to avoid key exposure. Such a token already exists and is widely
spread: it is known as smart card.

2-2 History of Smart Card

The concept of smart cards appeared in the early 70’s more or less simul-
taneously in different countries, though several inventors coexist such
as the German Gröttrup and Dethloff, the French Moreno and Ugon, the
American Halpern, Castrucci and Ellingboe, the Japanese Arimura etc.
First represented as a memory card (with a secure access), it was then
developed in a microprocessor card (with an embedded chip). The first
mass use of this kind of cards was telephone prepaid cards in France
in the early 80’s. Soon afterward the first debit cards were spread and
smart cards began to expand all over the world. The 90’s is another
milestone for smart cards with the introduction of smart card based SIM
(Subscriber Identity Module) in mobile phone equipment. With the ex-
ponential growth of chip capabilities, microprocessor cards became as
powerful as personal computers and opened the ways to several new ap-
plications described in Sect. 2-4.

2-3 A Microprocessor Card

A microprocessor card is a plastic card of dimensions between 85.47×
53.92×0.68 and 85.72×54.03×0.84 millimeters specified by the ISO/IEC
7810 and ISO/IEC 7816 series of standards [4–18]. An embedded chip
is also present under a gold-platted area which acts as the interface be-
tween the chip and the card reader. The chip is the association of a
microprocessor (a Central Processing Unit (CPU)), some memory units,
some external communication channels and possibly some dedicated co-
processor. A typical microprocessor card is represented in Fig. 2-3-1
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Fig. 2-3-1 – A French student smart card which also includes electronic
wallet functionalities.

• The microprocessor is generally a low-cost processor with limited
power (an 8-bit architecture with a frequency of 4 MHz is common).

• The memory can be classified in three categories:

– The Read-Only Memory (ROM) which cannot be written nor
erased. Thus, the ROM is written once during the manufac-
turing of the chip and contains the programs executed by the
CPU.

– The Electrically-Erasable Programmable Read-Only Memory
(EEPROM) which can be written and erased and has the spe-
cificity to be non-volatile (i.e. the written data are preserved
when power is removed). A peculiar low-cost EEPROM, the
flash memory is also commonly used as it is faster but has a
shorter lifetime. When flash memory is used in a chip, it can
also take the role of ROM.

– The Random Access Memory (RAM) which is a fast read-write
access volatile memory and which is used to store working
spaces of programs during their execution.

• Communication protocols can either be with contact through the
contact plate or contactless through Radio-Frequency induction
technology (e.g. using the Near Field Communication (NFC) pro-
tocol) or both.

• A chip can also include some co-processor such as a random gener-
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ator, crypto-processors dedicated to particular algorithms (for in-
stance DES or AES computation), or to particular operations (for
instance large number modular computation for asymmetric pur-
pose) or a checksum co-processor for integrity checking etc.

2-4 Nowadays

Smart cards are now widely used in cryptographic context for different
applications. The most spread use of these applications are reviewed
hereafter.

2-4.1 Banking

Smart cards are widely used as debit cards to provide an electronic ac-
cess to a bank account. Thus it permits electronic payments and cash
withdrawals. Currently the major part of debit card does not embed a
microprocessor and thus user and bank account information are stored
on a magnetic stripe. As magnetic stripe cards become easily copyable
and do not contain any user authentication mechanisms (other than a
handwriting payer signature), a secured debit card is needed. Nowa-
days secured debit cards are microprocessor cards with Personal Iden-
tification Number (PIN) check and strong authentication mechanisms
are implemented according usually to the widely used banking standard
Europay Mastercard Visa (EMV) specifications.

2-4.2 Mobile Telecommunications

In mobile telecommunications, the widely used standards Global System
for Mobile communication (GSM) and Universal Mobile Telecommunica-
tion System (UMTS) are based on a SIM smart card. It contains some
specific information about the subscriber, about the mobile network and
also keys used for authentication on the network. This authentication
is performed using a challenge-response protocol, then a secure commu-
nication channel can be established between the mobile phone and the
provider’s antennas. The user is authenticated to the card through the
typing of a secret code, the PIN. Without the right PIN, the card will
refuse to perform any operation.
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2-4.3 Identity Context

Thanks to their authentication capabilities, smart cards are often used
for identification purpose. It is generally based on the secure storage
of personal data and on issuer certificates involved in a PKI scheme.
That is in some countries (e.g. Belgium) the national identity card is a
smart card which also contains an electronic identity (for instance to ac-
cess some services by Internet). The driving licence can also be found
in a smart card form for instance in Turkey. Another common use in
identity cards is the electronic passport (also known as e-passport) in
which a contactless chip is embedded. The chip contains some identity
information such as a digitalized photograph of the holder as well as bio-
metric information (fingerprints and/or iris data) and a certificate of the
issuing country. Then an e-passport provides different level of security
for authentication from challenge-response protocol to PKI based proto-
col. Eventually, access badges for instance in a company office are also a
widely use of smart cards in an identity context. A good example of such
a cards is electronic student cards (see Fig. 2-3-1).

2-4.4 Others

Beside the main uses of smart cards described above, we can notice some
emerging utilization of cryptographic smart cards:

Health Care Smart cards are used for the secure storage of medical
information (social security card).

Public Transit Smart cards take the role of an electronic ticket.

Strong Authentication and Signature Smart cards are viewed as a
secure storage / secure generator of key for PKI (secure token).

Pay-TV Smart cards protect digital television stream.

Financial Smart cards act as an electronic wallet or a pre-payment
card.

Smart card usages are close one from each other, therefore there is a con-
vergence to a kind of smart card which can take more than one role for
instance a mobile SIM card which permits banking transactions and/or
electronic ticketing in transport. An example of a convergence card is
represented in Fig. 2-3-1.
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Consequently, embedded cryptography is actively used in everyday life
to secure our communications. Thus the security efficiency is a crucial
point. Do smart cards really protect our secrets? As explained in the
next section and as developed in the rest of this thesis, this is not a
yes/no question. The quantification of the security efficiency is a real
issue and having a sound metric represents a real challenge.

2-5 Physical Analysis: Passive Vs Active

In order to evaluate the security efficiency of a cryptographic algorithm,
a model is needed to define the scope of an attacker. In theory to evalu-
ate a cryptographic algorithm Ak(·) parameterized by a secret key k the
attacker is usually supposed to know the algorithm and to have access to
some – possibly chosen – pairs of (plaintext/ciphertext) to try retrieving
the key k: this is the black box model. Another model called white box
model assumes in addition that the attacker has access to every inter-
mediate state of the algorithm. In practice cryptographic algorithms
are implemented on a physical device (e.g. a smart card) such that an
attacker can observe (or even modify) some interactions between the de-
vice and its environment (e.g. power consumption, timing, etc.). These
interactions provide a quantity of information about some intermediate
state resulting in an attacker model between black box and white box
which is naturally called gray box model. In this context new kinds of
cryptanalytic attacks become possible: physical cryptanalysis which can
be split into two categories: side channel analysis also known as pas-
sive attacks which exploit the physical leakage during the cryptographic
computation to deduce information about the secret key (see Chap. 4)
and fault analysis also known as active attacks which consist in disrupt-
ing the cryptographic algorithm to produce faulty outputs analysed to
recover information on the secret key.
Remark 1. The gray box model permits to break in practice crypto-
graphic algorithms even when they are proved secure in the black box
model

Depending on the targeted device preparation, physical attacks can be
divided into three categories:

Invasive attacks The device is deeply unpackaged (and/or modified)
to have access to some inner elements such as memory. It allows
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very accurate probing attacks as well as very fine destructive at-
tacks (Fig. 2-5-1). This kind of attack is complicated to mount and
usually requires high-tech (and high cost) equipment (e.g. a chem-
istry laboratory, a Focused Ion Beam (FIB), etc.). Most of the time
it results in a definitive alteration of the targeted device.

Fig. 2-5-1 – Example of an invasive attack using FIB alteration of an Inte-
grated Circuit.

Semi-invasive attacks The device is partly unpackaged to ease phys-
ical cryptanalysis but the chip integrity is not altered (see Fig. 2-
5-2).

Non-invasive attacks The targeted device does not need to be altered
to perform the attack. In particular, power consumption and clock
glitch based attacks are non-invasive ones.
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Fig. 2-5-2 – Example of a partial smart card unpacking in a semi-invasive
attack.
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CHAPTER3
Technical Background

3-1 Statistics and Probabilities

I
N the sequel, random variables are denoted by large letters. A
realization of a random variable X is denoted by the corre-
sponding lowercase letter x. A sample of several observations
of X is denoted by (x), or by (xi) if an indexation is needed. It

will sometimes be viewed as a vector defined over the definition set of X .
The notation (x)←- X denotes the instantiation of the set of observations
(x) from X . We shall denote the probabilities associated to events X ∈X

and X = x by P[X ∈X ] and P[X = x] respectively. If X is continuous, it
is associated with a probability density function (pdf) that satisfies for
every x ←- X :

P[X É x]=
∫ x

−∞
pdfX (t)dt .
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In case of a discrete random variable X , it is associated with a probability
mass function (pmf) defined as pmfX : x 7→ P[X = x]. In this – discrete –
case the function x 7→P[X É x] is called cumulative distribution function
(cdf) of X . The notation x 7→ P[X = x] for a continuous variable X , may
be used without ambiguity to denote the pdf of X . In our context, a
particular pdf called Gaussian pdf plays an important role. It is defined
w.r.t. a mean µ and a standard deviation σ by

Nµ,σ(u)= 1p
2πσ2

e−
(u−µ)2

2σ2 . (3.1)

The Gaussian pdf (see Fig. 3-1-1 for some drawn examples) is also called

- 3 - 2 - 1

1 2 3

- 3

- 2

- 1

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

1.0

−1 0 2 4−2−4

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

Fig. 3-1-1 – Example of Gaussian probability density functions for some
(µ,σ).

the normal distribution and can be extended to a d-dimensional random
variable U = (U1, . . . ,Ud) by

Φm,Σ(u)= 1√
(2π)d|Σ|

e−
1
2 (u−m)Σ−1(u−m)′ , (3.2)

where m ∈ Rd stands for the mean vector (E [U1], . . . ,E [Ud]), where Σ =
[mi, j]d×d ∈ Md,d(R) stands for the matching covariance matrix mi, j =
cov

(
X i , X j

)
and where |Σ| is the determinant of Σ (see Fig. 3-1-2 for some

illustrations). In a more general context, the joint pdf of a Gaussian vari-
able can be represented as a mixture of Gaussian pdf called a Gaussian
Mixture Model (GMM). That is a GMM is defined as a weighted sum of
Gaussian pdf. Such an example is represented in Fig. 3-1-3
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Fig. 3-1-2 – Example of some bivariate Gaussian probability density func-
tions.

Fig. 3-1-3 – Example of a bivariate Gaussian mixture.
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The average value of a random variable X called expectation or mean is
denoted E [X ]. The deviation of a variable X from its mean is called stan-
dard deviation and the squared standard deviation is called the vari-
ance, denoted by var [X ]. The latter equals E

[
(X −E [X ])2] which can

also be written as E
[
X2]− E [X ]2. The uncertainty associated with a

discrete random variable X which measures the amount of information
contained by one of its realizations is called entropy or Shannon entropy
and is defined by

H[X ]=− ∑
x∈X

pmfX (x) · log2
(
pmfX (x)

)
.

This notion can be extended to continuous random variables by

H[X ]=−
∫
X

pdfX (x) · log2
(
pdfX (x)

)
dx ,

and is called differential entropy. Indeed it quantifies the expected value
of information contained in a specific realization of the random variable
and thus can also be expressed as

H[X ]=−E[
log2 (P[X = x])

]
.

When two random variables are observed, the quantification of some de-
pendency can be done through dedicated statistical tools. That is the
probability of an event X knowing an event Y is called the conditional
probability of X given Y and is denoted by P[X | Y ]. In the same man-
ner the conditional expectation of event X given event Y is denoted
as E [X | Y ]. In this context, the law of total expectation is ensued as
E [X ]= E [E [X | Y ]]. By analogy, the remaining information contained by
a realization of a random variable X knowing the realization of a ran-
dom variable Y is the conditional entropy of X given Y and is denoted
by H[X | Y ] which satisfies H[X | Y ] =∑

y∈Y pmfY (y)H[X | Y = y] in the
discrete case or H[X | Y ] = ∫

Y pdfY (y)H[X | Y = y]dy in the continuous
case.

To determine if a random variable X came from the same distribution as
a random variable Y , one has to test some distribution properties. For
instance, the Difference-of-Mean test between X and Y refers to the dif-
ference E [X ]−E [Y ]. It aims to quantify how much the means of X and
Y differ. To quantify how much two random variables X and Y change
together (i.e. have a linear dependency) one can compute the covari-
ance between X and Y denoted by cov(X , Y ) which satisfies cov(X , Y )=
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E [(X −E [X ])(Y −E [Y ])]. To measure the strength of such a linear de-
pendency, the covariance can be normalized in the so-called correlation
coefficient [111] denoted by ρ (X , Y ) and defined by:

ρ (X , Y )= cov(X , Y )
σ (X )σ (Y )

. (3.3)

For a more generic dependency, one can measure the information that
a random variable Y reveals about a random variable X : the mutual
information between X and Y , denoted by I(X ; Y ) and defined by

I(X ; Y )=H[X ]−H[X | Y ] . (3.4)

It corresponds to the information contained by X minus the remaining
information about X knowing Y . Thus, if Y does not bring any infor-
mation about X , the conditional entropy of X given Y will be equal to
the entropy of X which implies a zero mutual information. At the oppo-
site, if Y brings the same information as X , the conditional entropy of X
knowing Y will be null and the mutual information equals the entropy
of X . In particular, X and Y are independent iff I(X ; Y )= 0. The inde-
pendence of X and Y implies ρ (X , Y ) = 0 but the converse is false (see
Fig. 3-1-4 for an illustration).

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Fig. 3-1-4 – Examples of correlation coefficient for different sets of (x, y)
points. The correlation reflects the noisiness and direction of a linear re-
lationship (top row), but not the slope (middle row) nor many aspects of
nonlinear relationships (bottom row).

The estimators (i.e. experimental evaluations) of the mean, variance,
standard deviation and entropy of X based on a sample of observations
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are respectively denoted by Ê (X ), v̂ar (X ), σ̂ (X ) and Ĥ[X ] . The esti-
mators of the covariance and the correlation between X and Y based
on samples of observations are denoted respectively by ĉov(X , Y ) and
ρ̂ (X , Y ). Whereas robust estimators exist for the mean, the variance,
the standard deviation, the covariance and the correlation, the entropy
suffers from the lack of such estimators. More precisely, the estima-
tion of entropy relies on the estimation of the underlying probability
mass/density function which is less robust (for a quick review about den-
sity estimation, the reader can refer to [93]).

3-2 Basics on Algebra

As modern cryptography relies on the number theory, some basics on
algebra are needed for the study and are recalled hereafter. Let F be
a R-vector space of functions defined over a vector space E (e.g. E = Fn

2
for some integer n) i.e. the set of all real linear combinations of func-
tions E 7→ R. For a set of d functions g1, . . . ,gd in F , we shall denote by
<g1, . . . ,gd> the vector space spanned by all the linear combinations of
the gi with coefficients in R. For two functions f and g in F , we call
distance between f and g and we denote by d( f , g) the real value defined
by:

d( f , g)=
√ ∑

x∈E
( f (x)− g(x))2 . (3.5)

It corresponds to the Euclidean distance between the vectorial represen-
tations of f and g.
Remark 2. If the sum in (3.5) is computed over a set of observations (xi)
(instead of E) in a statistical regression context, then d( f , g) can be in-
terpreted as the square root of a residual sum of squares (RSS for short)
between the set of variables f (xi) to be predicted and the predictions
g(xi).

For a function f and a set G , we call distance between f and G the real
value d( f ,G ) defined by:

d( f ,G )=min
g∈G
g 6=0

d( f , g) . (3.6)
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If G is the space < g1, . . . ,gd >, then (3.6) can be rewritten:

d( f ,G )= min
(a1,...,ad)∈Rd

(a1,...,ad)6=(0,...,0)

d( f ,
d∑

i=1
aigi) . (3.7)

By analogy, for two sets F and G , we call distance between F and G the
real value d(F ,G ) defined by:

d(F ,G )=min
f ∈F
f 6=0

d( f ,G ) . (3.8)

3-3 Block Cipher Model

This section describes the modeling of a block-cipher as introduced in
Sect. 1-3.1.2. A block cipher is parameterized by a master key and it
transforms a plaintext block into a ciphertext block through the repeti-
tion of key-dependent round transformations. We denote by p, and we
call state, the temporary value taken by the ciphertext during the algo-
rithm. In practice, the cipher is iterative, which means that it applies
several times the same round transformation ϕ to the state. This round
transformation is parameterized by a round key k that is derived from
the master key.

In our model, ϕ is composed of different operations: a key addition layer
(by exclusive or), a non-linear layer γ and a linear layer λ:

ϕ[k](p)= [λ◦γ](p⊕k) .

For the sake of simplicity, we assume that the non-linear layer applies
the same non-linear transformation S, called S-box, on N independent
n-bit parts pi of the state: γ(p)= (

S(p1), . . . ,S(pN)
)
.

Remark 3. Some block ciphers (e.g. DES) have different S-boxes for each
part of the state.

For efficiency reasons, the S-box is usually implemented by using Look-
Up Table (LUT). The linear layer λ is composed of L linear operations
λi that operate on L independent l-bit parts pi(l) of the state: λ(p) =(
λ1(p1(l)), . . . ,λL(pL(l))

)
.
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We also denote by l′ É l the minimum number of bits of a variable ma-
nipulated during the processing of λi. For instance, the MixColumn layer
of AES applies to columns of size l = 32 bits but it manipulates some el-
ements of l′ = 8 bits only. We further assume that the λi are sufficiently
similar to be implemented by one atomic operation that is an operation
which has the same execution flow whatever the index i is.
Remark 4. Linear and non-linear layers may involve different state in-
dexes. In AES for instance, the state is usually represented as a 4×4
matrix of bytes and the non-linear layer usually operates on its ele-
ments p1, . . . , p16 vertically (starting at the top) and from left to right.
In this case, the operation λ1 corresponding to the AES linear layer
(that is composed of ShiftRows followed by MixColumns [1]) operates on
p1(8) = (p1, p6, p11, p16).

We shall consider that the key addition and the non-linear layer are
merged in a keyed substitution layer that adds each key part ki to the
corresponding state part pi before applying the S-box S.
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CHAPTER4
Side Channel Framework

4-1 Introduction

S
IDE Channel Analysis is a cryptanalysis method which uses
physical observations leaked by the device during the exe-
cution of a given algorithm. Usual observations are timing
[50], power consumption [51, 52] and electromagnetic radia-

tions [41, 81]. These leakages depend on the performed operations and
on the processed data. They can thus bring information about interme-
diate results. An intermediate result which jointly depends on a part
of the secret key and a known value is called sensitive and allows an
attacker to efficiently recover the secret key.

In the following sections we will first present a brief history of these at-
tacks, then we will introduce a general framework to mount such attacks
and we will discuss how to classify and compare them.
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4-2 History

The purpose of a side channel attack is to take advantage of the key-
dependent physical leakages provided by a cryptographic device, in order
to recover secret information (key bytes, typically). Most of these attacks
exploit the leakages by comparing them with key-dependent models that
are available for the target device. Side channel analysis was first mo-
tivated by government services after the World War II. The first related
side channel analysis appeared in a declassified NSA document [72]
which revealed the use of oscilloscope to decipher a teletype encryption
in 1943. Another famous example comes from Peter Wright [114] that
broke the Egyptian Hagelin cipher machine (a rotor-based machine) by
the UK government using microphones (in order to hear rotor manipula-
tions). Subsequently in the early seventies, the TEMPEST program was
launched by the US government to investigate and study compromising
emission. The first academic (i.e. public) paper was published by Van
Eck [105] in 1985 and the topic is about electromagnetic emissions of
video display units. The first academic side channel analysis of a cryp-
tographic implementation was mounted by Paul Kocher and his team
in 1996 [50]. It explains how to exploit the computation time of a few
executions to break a public key cryptosystem such as RSA. Two years
later Kocher et al. described a side channel attack based on the power
consumption produced by a cryptographic computation [51, 52]. The at-
tack was later extended to electromagnetic radiations [41,81]. All these
attacks are shown to be very efficient in practice to break a large range
of cryptosystems such as the widely used DES and RSA.

The emergence of side channel attacks plunged the security and cryptog-
raphy community into a turbulent domain and a new area of research
was created with its dedicated conferences such as Cryptographic Hard-
ware and Embedded Systems (CHES). This branch had a practical im-
pact on all industries involved in embedded security, including the smart
card industry. Nowadays, these industries must take into account side
channel analysis and security certifications are delivered by indepen-
dent laboratories in order to guaranty the robustness of final products
against side channel attacks. Eventually, since the seminal work of
Kocher et al. in the late 1990’s [52], a large variety of statistical tests,
also called distinguishers, have been introduced for this purpose. Their
goal was to better take advantage of the available information, e.g., by
adapting the statistical test.
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4-3 General Framework

Side channel attacks can be classified according to three criteria:

The knowledge of the attacker

• Profiling attacks [21, 31, 88] (a.k.a. Template attacks) which
correspond to a powerful adversary who controls a copy of the
attacked device and uses it to evaluate the distribution of the
leakage according to the processed values. Once such an eval-
uation is obtained, a maximum likelihood approach is carried
out to recover the secret data manipulated by the attacked
device.

• Non-Profiling attacks (a.k.a. standard attacks) which corre-
spond to a common adversary who has a limited access to the
attacked device without the ability of learning from prior exe-
cution (i.e. changing/knowing any key used to build a training
database).

The device operation targeted by the attack

• Attacks on the operation flow (a.k.a. Simple Power Analysis
(SPA) in case of power consumption based attack) which con-
sist in analysing directly – with possible averaging to lower
the noise – the observation of an instruction flow (timings,
power curves, etc.). This allows to retrieve information on a
manipulated value (an example is given for instance in Fig. 4-
3-1).

• Attacks on the processed data (a.k.a. Differential Power Anal-
ysis (DPA) in case of power consumption based attack) which
consist in targeting an intermediate value depending on a se-
cret value and a known value. In this case the attacker needs
different observations for different known values and then ap-
ply advanced statistical tests to retrieve the secret value.
Notation. To avoid ambiguity with the Kocher et al. attack
named DPA [51], attacks on the processed data are referred
by standard side channel analysis in the following.
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Fig. 4-3-1 – Example of a Simple Power Analysis on an RSA exponentia-
tion using square-and-multiply algorithm: the bits of the exponent can be
directly read on the power curve.

The arity of the attack

• Univariate attacks if targeting only one leakage point in time.

• Multivariate attacks if targeting (d + 1) > 1 leakage points
L0, . . . ,Ld (it can be bivariate, trivariate, etc.).

Remark 5. A special case of multivariate attacks arises when we as-
sumed that the different leakage points (also called shares) are manipu-
lated at the same time (i.e. L0, . . . ,Ld are stacked in time) which can be
the case with some hardware configurations. In this case, the multivari-
ate attack can be viewed as an univariate attack as it targets only one
time instant. It is the so-called zero-offset attack [108].

In theory, profiling attacks are optimally efficient [31]. Nevertheless the
adversary needs to be able to carry out a profiling stage on a perfect
copy of the target device, which limits the attack pertinence in prac-
tice. In fact, it is difficult to have an open access to a copy of the de-
vice under attack and, even when it is possible, it remains difficult to
exploit templates acquired on one device to attack another one. That
implies that template attacks are not generally applied in an industrial
context. More precisely, template attacks are usually used as a coun-
termeasure efficiency measurement tool allowing to compare remain-
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ing leakages with respect to the noise and thus to have a sketch of the
countermeasure efficiency independently of a specific kind of attack. For
those reasons, we focus on standard side channel analysis in this thesis
(i.e. without profiling stage).
Remark 6. A divide-and-conquer method is considered in this thesis.
That is although standard side channel analysis targets an intermediate
value which depends on some parts of the key (i.e. subkey), in practice,
we perform more global attacks which aim to recover the whole master
key (e.g. targeting all possible subkeys).

In the following, we consider an adversary who has access to a physi-
cal implementation of a cryptographic algorithm and observes the side
channel leakage of successive executions with known inputs.
Remark 7. The measurement aspect is not treated in this thesis. We as-
sumed that the attacker is provided with synchronized curves and points
of interest location. This is a worst-case scenario from a defender (de-
signer) point of view.
Assumption 1 (Plaintext Uniformity). The known variable sample (xi)i
is uniformly distributed.

Assumption 1 is a common assumption in side channel analysis as it
usually corresponds to a targeted device where the attacker has no con-
trol over the processed data. It corresponds to the so called known plain-
text paradigm where the plaintexts are randomly chosen.

During the cryptographic computation, it is assumed that an interme-
diate variable Z is manipulated. This intermediate variable is a known
function F that combines a known variable X with a secret variable de-
noted by k (the subkey). The variable Z = Fk(X ) is sensitive since it de-
pends on both a known value and a secret value. Variables X and k are
assumed to be defined over Fn

2 for some integer value n (e.g. n = 8) and
the function F : X ,k 7→ Fk(X ) is from F2n

2 into Fm
2 with m such that m ≤ n

(e.g. F is an S-box and Fk(X )= F(X ⊕k)). We denote by F−1
k a reciprocal

function of Fk which maps each image of Fk to its set of preimages.

The analyses conducted in the following are done under the assumption
that the leakages satisfy:

L = δ(Z)+B , (4.1)

where δ(·) is a deterministic unknown function and the random variable
B is Gaussian. Notice that in (4.1) we make the classical assumption

43 / 220



chapitre II.4 – Side Channel Framework

that δ(·) only depends on the underlying hardware, independently of the
time. For the rest of the thesis, the following assumption is made:
Assumption 2 (Independent Noise). The noise B is independent of the
targeted variable Z.

Assumption 2 is sound in a smart card context where the leakage is due
to charge carriers within conductors [70]. When measuring, leakages
usually contain an additional noise. This noise can come from an exter-
nal source coupled with the device (external noise), from internal move-
ments within conductors (intrinsic noise), from imperfection of measure-
ment tools (particularly from Analog-to-Digital converters – quantiza-
tion noise), or from variation of the data processed by the algorithm (al-
gorithmic noise).

In the following we focus on univariate attacks. The multivariate case is
treated in Chap. 7.

To mount an attack, the adversary measures leakages (`i)i ←- L from
the targeted device using a sample (xi)i ←- X of plaintexts. Then, he
computes the hypothetic value Fk̂(xi) of the sensitive variable Fk(xi) for
every xi and for every possible k̂. A leakage model function m is subse-
quently applied to map the hypothetic sensitive values toward estimated
leakage values mk̂,i =m(Fk̂(xi)). Eventually, the adversary uses a distin-
guisher to compare the different model samples (mk̂,i)i

←-Mk̂ =m(Fk̂(X ))
with the actual leakage sample (`i)i. If the attack is successful, the
best comparison result (i.e. the highest – or lowest – value of the dis-
tinguisher) should be obtained for the model sample corresponding to
the correct subkey candidate k̂ = k. This procedure can then be re-
peated for different subkeys in order to eventually recover the full mas-
ter key.

We sum-up hereafter the different steps of a standard SCA (also recalled
in Fig. 4-3-2):

1. Perform N measurements (`i)i ←- L on the cryptographic device
using a sample (xi)i ←- X of plaintexts ;

2. Choose a function m to model the deterministic part of the leakage
;

3. For every key hypothesis k̂, compute the model values mk̂,i from
the plaintexts xi and the model function m ;

4. Choose a statistical distinguisher ∆.
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5. For every key hypothesis k̂, compute the distinguishing value ∆k̂
defined by:

∆k̂ =∆
(
(`i)i, (mk̂,i)i

)
.

This results in a score vector (∆k̂)k̂ ;

6. Output as the o most likely key candidates the o key hypotheses
that maximize – or minimize – ∆k̂.

Fig. 4-3-2 – Main steps of a standard SCA

Notation. As it can be seen in the above list, a standard SCA on a given
sensitive variable Z = Fk(X ) is only characterized by the model function
m and the distinguisher ∆. For this reason we shall use in the following
the notation (m,∆)-SCA to differentiate one such an attack from another.

From the general attack description recalled above it is clear that two
major choices are left to the adversary to perform a standard SCA attack
on a given sensitive variable computed on some device:

• the choice of the distinguisher,

• the choice of the model.

In the following, we study the impact of both such choices in a SCA at-
tack. We will first show that most of univariate SCA distinguishers that
have been proposed in the literature are equivalent – under some condi-
tions – to a same distinguisher. Namely, they lead to similar results up
to a change of model. We will then discuss the importance of the model
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for the attack soundness (i.e. the theoretically establishment of the at-
tack) and we will investigate attacks that do not require any a priori
choice of a model.

4-4 Main Univariate Side Channel Attacks
Description

In the following, we describe the main univariate attacks targeting a
unique time instant with leakage L . In this context, (4.1) became

L = δ(Z)+B . (4.2)

The first (m,∆)-SCA introduced by Kocher et al. in [52] targets a single
bit of the sensitive variable Z and shall be therefore referred to as single-
bit DPA in the rest of the thesis. Since this bit usually depends on all bits
of the subkey, the single-bit DPA may allow to unambiguously discrim-
inate the correct subkey. However, for some kinds of algebraic relation-
ships between the manipulated data and the subkey, several key candi-
dates (including the correct one) may result in the same distinguishing
value and the attack fails (this phenomenon is referred to as ghost peaks
in [27]). To exploit more information from the leakage related to the ma-
nipulation of Z and to succeed when single-bit DPA does not, the attack
was extended to several bits by Messerges in [67] in two ways: the all-
or-nothing DPA and the generalized DPA. The original single-bit DPA of
Kocher and its extensions by Messerges can all be defined in a similar
way as follows:
Definition 1 (Differential Power Analysis – DPA –). A DPA is a (m,∆)-
SCA, which involves a distinguisher ∆ defined as a Difference of Means
(DoM) between two leakage partitions defined according to the image set
Im(m).

Depending on the definition of the leakage model function m, we connect
the three DPA attacks listed above with Definition 1:

• In a single-bit DPA, the image set Im(m) is reduced to two elements
w0 and w1 and for every k̂ we have:

∆k̂ = Ê
(
L | Mk̂ = w0

)− Ê(
L | Mk̂ = w1

)
. (4.3)
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• In an all-or-nothing DPA, the image set Im(m) can have a cardinal-
ity greater than 2. Two elements ω0 and ω1 are chosen in Im(m)
and for every k̂ we have:

∆k̂ = Ê
(
L | Mk̂ =ω0

)− Ê(
L | Mk̂ =ω1

)
. (4.4)

• In a generalized DPA, two subsets Ω0 and Ω1 of Im(m) are chosen
and for every k̂ we have:

∆k̂ = Ê
(
L | Mk̂ ∈Ω0

)− Ê(
L | Mk̂ ∈Ω1

)
. (4.5)

Notation. Distinguishers ∆k̂ defined in (4.3) - (4.5) shall be denoted by
SB-DPA(k̂), AON-DPA(k̂) and G-DPA(k̂) respectively, where k̂ is the key
hypothesis.
Example 1. Typical choices for the model functions in (4.3) - (4.5) are
written hereafter. They are taken from the original papers [52] and [67]:

• Single-bit DPA: m is the function that maps Fk̂(x) to one of its bit-
coordinates and we hence have Im(m)= {ω0,ω1}= {0,1}.

• All-or-nothing DPA: m is the Hamming weight and thus we have
{ω0,ω1}= {0,n} (n being the bit-size of Fk̂(x)).

• Generalized DPA: m is the Hamming weight and thus we have
{Ω0,Ω1}= {

{1, . . . ,bn
2 c}, {dn

2 e, . . . ,n}
}
.

However, different choices for m, (ω0,ω1) and (Ω0,Ω1) may be arbitrary
made by the attacker, hence we do not fix a particular choice in the fol-
lowing.

After Messerges’ works, some other extensions of the DPA have been
proposed respectively by Le et al. in [56], by Standaert et al. in [97] (and
also Maghrebi et al. in [60]) and by Brier et al. in [27].

The generalization proposed in [56] starts from (4.5) and enables to in-
volve more than 2 subsets to eventually compute a weighted sum of
means instead of a simple DoM. We recall hereafter its definition:
Definition 2 (Partition Power Analysis – PPA –). A PPA is a (m,∆)-SCA,
which involves a distinguisher ∆ defined for every k̂ by:

∆k̂ =
∑

ωi∈Im(m)
αi · Ê

(
L | Mk̂ =ωi

)
, (4.6)

where the αi are constant coefficients in R.
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Notation. A distinguisher ∆k̂ defined such as in (4.6) shall be denoted
PPA(αi)i (k̂). Moreover, when we shall need to exhibit the model m in the
PPA, we shall use the notation PPA(αi)i ,m(k̂) for the distinguisher.

As discussed in [56], the tricky part when specifying a PPA attack is
the choice of the most suitable coefficients αi. We will show in this sec-
tion that this choice is naturally equivalent to a characterization of the
leakage function δ in (4.2).

The generalization proposed in [97] (and also [60]) starts from (4.6) and
proposes to use a weighted variance instead of a weighted mean. We
recall hereafter its definition:
Definition 3 (Variation Power Analysis – VPA –). A VPA is a (m,∆)-
SCA, which involves a distinguisher ∆ defined for every k̂ by:

∆k̂ =
∑

ωi∈Im(m)
αi · v̂ar

(
L | Mk̂ =ωi

)
, (4.7)

where the αi are constant coefficients in R.
Notation. A distinguisher ∆k̂ defined such as in (4.7) shall be denoted
VPA(αi)i (k̂). Moreover, when we shall need to exhibit the model m in the
VPA, we shall use the notation VPA(αi)i ,m(k̂) for the distinguisher.

The generalization of the DPA proposed in [26] involves the linear corre-
lation coefficient. We recall hereafter the definition of this attack:
Definition 4 (Correlation Power Analysis – CPA –). A CPA is a (m,∆)-
SCA, which involves Pearson’s correlation coefficient ρ as distinguisher.
Namely, for every k̂, we have:

∆k̂ = ρ̂
(
L , Mk̂

)= ĉov
(
L , Mk̂

)
σ̂ (L) · σ̂(

Mk̂
) , (4.8)

where σ̂ (L) and σ̂
(
Mk̂

)
denote the standard deviations of the samples

`i
1 ←- L and mk̂,i ←- Mk̂ respectively and where their covariance is de-

noted by ĉov
(
L , Mk̂

)
which is Ê

(
L Mk̂

)− Ê (L)Ê
(
Mk̂

)
.

Notation. A distinguisher ∆k̂ defined such as in (4.8) shall be denoted
by CPA(k̂). Moreover, when we shall need to exhibit the model m used in
the CPA, we shall use the notation CPAm(k̂) for the distinguisher.

Another kind of distinguisher, the mutual information which is based
on a general dependency, not only a linear dependency, was proposed by
Gierlichs et al. [42]. We recall hereafter its definition:
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Definition 5 (Mutual Information Analysis – MIA –). An MIA is a (m,∆)-
SCA, which involves the mutual information I as distinguisher. Namely,
for every k̂, we have:

∆k̂ = I(L ; Mk̂)=H[L]−H[L | Mk̂] . (4.9)

Notation. A distinguisher ∆k̂ defined such as in (4.9) shall be denoted
by MIA(k̂). Moreover, when we shall need to exhibit the model m used in
the MIA, we shall use the notation MIAm(k̂) for the distinguisher.

The attacks listed above (except VPA) have been applied in many papers,
e.g. [35,44,67], and have even been sometimes experimentally compared
one to another [55, 65, 97]. However, none of these works have enabled
to draw definitive conclusions about the similarities and the differences
of the attacks. Next chapters aim to overcome this lack.
Remark 8. The notion of weighted sum has been used with expectation
and variance nevertheless this notion can be extended to other quanti-
ties such as entropy as in the so-called Entropy Power Analysis – EPA –
introduced by Maghrebi et al. in [61]. The latter is not analysed in this
manuscript as it is linked with mutual information which is not studied
in this thesis.

Some other attacks are noticeable but they target an MIA-like distin-
guisher (such as EPA). For instance Le et al. [54] estimate the mutual
information using higher-order cumulant method. Whitnall et al. [113]
introduce the Kolmogorov-Smirnov test as a descriminant whereas Lyu
et al. [59] introduce the partial Kolmogorov-Smirnov test. The link be-
tween these attacks and MIA remains to be analysed but it is not the
purpose of this thesis.

4-5 Taxonomy

The SCA comparisons made during this thesis (and detailed in the next
chapters) enable to draw a sketch of a classification tree (Fig. 4-5-1)
and to thus clarify the non-profiled univariate side channel attacks zool-
ogy.

As we have focused on non-profiled SCA, only this branch is detailed.
We denote by “combining” univariate SCA, a multivariate attack where
leakages are preprocessed by a combination function to allow the appli-
cation of an univariate SCA as explained in Sect. 7-1.2.
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Fig. 4-5-1 – Taxonomy of non profiled SCA

50 / 220



section 4-6: Efficiency of Side Channel Attacks

4-6 Efficiency of Side Channel Attacks

The fair evaluation and comparison of side channel attacks need sound
tools to measure and to quantify their efficiency. In [98], Standaert et al.
proposed a framework based on two metrics. The first one is the success
rate of an attack, defined as the probability of the right key to be ranked
at the first place in the score vector. By extension an oth order success
rate is the probability of the good key to be ranked among the oth first
places in the score vector. The second one is the guessing entropy of an
attack, defined as the expectation of the rank of the good key. The suc-
cess rate is adapted in an attacker point of view with a fixed workload as
it directly quantifies the success of an attack. At the opposite, the guess-
ing entropy better fits with a designer point of view as it quantifies the
workload needed for an efficient attack. Nevertheless both values need
empirical measures to be estimated and thus quickly need an huge com-
putational effort. Some works (for instance [83]) deal with this problem
and propose solutions with the addition of more restrictive assumptions.
Nevertheless these values quantify the attacks at one point (with for in-
stance a fixed noise standard deviation) and do not permit to draw con-
clusions about the behavior of the attacks in a slightly different context.
To overcome this drawback, some other quantities have been already
mentioned by Messerges [67] and to a lesser extent by Prouff [78]. They
have been formalized by Oswald et al. in [112]. In particular, Oswald et
al. formalized the relative distinguishing margin which measures the –
normalized – distance between the correct key distinguisher value and
the value for the highest ranked alternative. We can expect that higher
this distance, lower the noise sensitivity. This measure is sound only
when the good key is ranked first. [112] also formalizes the absolute dis-
tinguishing margin which aims to measure the efficiency loss from the
optimal context (e.g. with no noise) to a practical context. Theses metrics
in fact permit to quantify some properties of an attack and depending on
the context (attacker, chip designer etc.) one can favor one property over
the others.

A pecular work of Mangard [63], dedicated to a specific distinguisher
(the correlation coefficient), uses the Fisher transformation to evaluate
its efficiency. It permits to deduce directly from the distinguishing value,
the success rate of an attack w.r.t. the noise standard deviation.

In this thesis we will mainly uses the notion of success rate (a.k.a. the
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number of messages needed to achieve some success rate) as it reflects
the useful information from an attacker point of view (i.e. it corresponds
to the minimal effort an attacker must do to have a probability p of
success). Moreover, we notice that in [62], Mangard et al. show that
the correlation for the good key is a sound estimator of the efficiency
of the CPA. The mutual information for the good key is also a sound
estimator of the efficiency of the MIA [99,106]. Therefore both CPA and
MIA distinguisher values are directly related to the success rate values
even if the distinguishing value for the good key depends on the given
leakage model w.r.t. the leakage function. Thus CPA (respectively MIA)
can evaluate an attack in a very particular context for instance when
the error made by the leakage model on the leakage function is exactly
known.

It must be noticed in case of an attack using a – given or computed –
leakage model (such as CPA) that the closeness of the leakage model to
the real leakage function is not directly linked to the efficiency of the
attack. That is, a more accurate leakage model does not imply a more ef-
ficient underlying attack. In fact the leakage model must be closer to the
real leakage function for the good key hypothesis than for wrong hypoth-
esis. It is usually the case when the leakage model is not parametrized
by the key hypothesis and is close to the real function (for instance in
CPA). In this case, the closest is the leakage model, more efficient is
the attack. At the opposite, if the leakage model is parametrized by the
key hypothesis (for instance in a linear regression attack) a model in-
stantiated with the wrong hypothesis can be closer to the real leakage
function than the model instantiated with the good key. A good exam-
ple of the latter is the linear regression with full basis as explained in
Sect. 7-3.

4-7 Notion of SCA-equivalency

The study shall be conducted under the following assumption that is
added to Assumption 2 introduced in Sect. 4-3:
Assumption 3 (Target Uniformity). Under Assumption 1, the predicted
variable sample (Fk̂(xi))i is balanced for every key hypothesis k̂.
Remark 9. Assumption 3 is realistic in the SCA context. Indeed, the
(Fk̂(xi))i result from the evaluation of a balanced cryptographic primi-
tive (e.g. an S-box or a linear operation over a small vector space), and we
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can fairly assume when the sample size N is large enough that (Fk̂(xi))i
is a balanced sample.
Remark 10. Since m is defined over the definition set of the values
Fk̂(xi) and since the distribution over (Fk̂(xi))i is balanced whatever
k̂, Assumption 3 implies that the mean and the standard deviation of
Mk̂ =m(Fk̂(X )) are always estimated from a balanced sample. As a con-
sequence, those estimations are constant with respect to the key hy-
pothesis k̂ and correspond exactly to the mean E

[
Mk̂

]
and the standard

deviation σ
(
Mk̂

)
of Mk̂.

Remark 11. Assumption 3 can be intentionally relaxed by using non-
uniform distributed plaintexts. Usually this is done using a – possibly
adaptive – chosen plaintext paradigm which permits to bias the distribu-
tion of (Fk̂(xi))i (see [107] for more details).
Remark 12. In some hardware context the deterministic part of the
leakage (i.e. the function δ) can be key-dependent as shown in [45] even
if Assumption 1 is fulfilled and (Fk̂(xi))i is balanced for every key hypoth-
esis. Since the function m is not parameterized by the key hypothesis,
in such a setting some keys can be more easily recovered than others
(see [47]).

Under these assumptions, we aim to compare different distinguishers
targeting the same intermediate variable. For this purpose, we intro-
duce hereafter the notion of reduction between two SCAs:
Definition 6 (SCA-reduction). A (m,∆)-SCA is said to be SCA-reducible
to a

(
m′,∆′)-SCA if there exists a function f such that m = f ◦m′ and

for every key k̂ and every sample (`i
1)i and (xi)i, there exists a strictly

monotonous function g such that:

∆
(
(`i

1)i, (mk̂,i)i

)
= g◦∆′

(
(`i

1)i, (m
′
k̂,i

)
i

)
,

where mk̂,i =m(Fk̂(xi)) and m′
k̂,i

=m′(Fk̂(xi)).

This definition implies that one attack is SCA-reducible to another, if
and only if the first one ranks the key in the same (or reverse) order
as the second one does. That is, either the success rate or the guess-
ing entropy remains unchanged by the transformation. If one attack is
SCA-reducible to another, it does not imply that the second one is SCA-
reducible to the first one. If the case arises, we will use the notion of
SCA-equivalence.
Definition 7 (SCA-equivalence). Let A be a (m,∆)-SCA and let B be
a

(
m′,∆′)-SCA. A is said to be SCA-equivalent to B if and only if A is
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SCA-reducible to B and B is SCA-reducible to A.
Remark 13. This definition extends the one in [62] in a non-asymptotic
context and thus must deal with estimation problematic. It implies that
this definition is estimation-dependent. Moreover, whereas [62] is about
equivalent efficiency, this definition is about effectiveness for a given
fixed sample.

In what follows, we establish the SCA-reductions from DPA to PPA and
from PPA to CPA. We show that each of those attacks can be reformu-
lated to reveal a correlation coefficient computation and that they only
differ in the involved model function. A direct consequence of this result
is that comparing those attacks simply amounts to compare the accu-
racy of the underlying models. Afterward, we analyse the special case
of VPA which involves variance computation instead of mean and we
show that it is in fact a zero-offset CPA. We also address attacks that
consist in summing distinguishers and we show that they are also SCA-
reducible to a CPA. These results emphasize the importance of making
a good choice for the model according to the attack context specificities,
which is eventually discussed in Sect. 5-7.
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CHAPTER5
Univariate Side Channel Analysis and Linear

Correlation

5-1 Introduction

I
N view of the large variety of distinguishers available in the
literature, a natural question is to determine the exact re-
lations between them and the conditions upon which one of
them would be more efficient. Closely related to this ques-

tion, Mangard et al. showed in [65] that for a category of attacks, de-
noted as standard univariate SCA, a number of distinguishers (namely,
those using a Difference-of-Means test or a Pearson’s correlation coeffi-
cient or Gaussian templates) are in fact asymptotically equivalent given
that they are provided with the same a priori information about the
leakages (i.e. if they use the same model). More precisely, [65] shows
that these distinguishers only differ in terms that become asymptotically
key-independent once properly estimated. While this result is limited to
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first-order (a.k.a. standard univariate) SCAs, it clearly underlines that
the selection (or construction) of a proper leakage model in SCA is at
least as important as the selection of a good distinguisher.

A natural extension of Mangard et al.’s work is to study whether their
statement holds in non-asymptotic contexts (i.e. when the number of
measurements is reasonably small). Such a study is of particular impor-
tance since it corresponds to a practical issue from both the attacker and
the security designer side. Indeed the latter ones often need to precisely
determine which of the numerous existing attacks is the most suitable
one in a given context, or reciprocally, which context is the most appro-
priate one for a given attack.

The results in this chapter can be seen as a complement to the state-of-
the-art analysis. We focus on the main used non-profiled side channel
distinguishers (see Sect. 4-4). We prove that they are not only asymptot-
ically equivalent but also, that they can be explicitly re-written one in
function of another, by only changing the leakage model. In other words,
we show that all these distinguishers exploit essentially the same statis-
tics and that any difference can be expressed as a change of model. This
provides us with a unified framework to study and to compare the at-
tacks. Moreover, it emphasizes how strong is the impact of the model
choice on the attack efficiency, not only in an asymptotic contex but also
in contexts with limited sample sizes.

5-2 From DPA to PPA

As the PPA is a generalization of the DPA, based on the same statistical
tool (namely a DoM test), we can reasonably expect that all the DPA
presented in Section 4-4 can be rewritten in terms of a PPA. We give
in the following a formal proof of this intuition. Note that our proof is
constructive and it exhibits how to reformulate any DPA in terms of a
PPA.
Proposition 1. Let DPA(k̂) be one of the DPA defined in (4.3) - (4.5).
There exist coefficients (αi)i such that DPA(k̂)=PPA(αi)i (k̂).

Proof. Let us first focus on the SB-DPA(k̂) distinguisher and let us
denote by α0 and α1 respectively the coefficients 1 and −1. Relation
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(4.3) can be rewritten:

SB-DPA(k̂)=α0Ê
(
L | Mk̂ = w0

)+α1Ê
(
L | Mk̂ = w1

)
. (5.1)

The right part of (5.1) defines a PPA distinguisher PPA(k̂) involving
the same 2-valued model m as SB-DPA(k̂) and the pair of coefficients
(α0,α1). The same reasoning holds for an all-or-nothing DPA and its dis-
tinguisher AON-DPA(k̂) defined in (4.4), by stating α0 = 1, α1 = −1 and
αi = 0 for every ωi ∈ Im(m)\{ω0,ω1}.

Let us now focus on the generalized DPA distinguisher G-DPA(k̂). It can
be easily checked that (4.5) can be rewritten:

G-DPA(k̂)= ∑
ω∈Ω0

P̂(Mk̂=ω)
P̂(Mk̂∈Ω0)

Ê
(
L | Mk̂ =ω

)− ∑
ω∈Ω1

P̂(Mk̂=ω)
P̂(Mk̂∈Ω1)

Ê
(
L | Mk̂ =ω

)
+ ∑
ω∈Im(m)\Ω0∪Ω1

0 · Ê(
L | Mk̂ =ω

)
. (5.2)

Let us denote by (ωi)i the elements in Im(m) and let (αi)i be a family of
coefficients defined such that:

αi =


P̂(Mk̂=ωi)
P̂(Mk̂∈Ω0)

if ωi ∈Ω0,

− P̂(Mk̂=ωi)
P̂(Mk̂∈Ω1)

if ωi ∈Ω1,

0 otherwise.

Under Assumption 3, coefficients αi are constant (namely independent
of the sample size and of the key hypothesis). After replacing the coeffi-
cients in (5.2) by those αi, we recognize in (5.2) the definition of a PPA
distinguisher involving the same model m as G-DPA(k̂) and the family
(αi)i as coefficients. ¦
As a direct consequence of Proposition 1, we get the following corol-
lary:
Corollary 1. Under Assumption 3, a DPA is SCA-reducible to a PPA.

In the next section, we compare the PPA with the CPA.

5-3 From PPA to CPA

It is already well known in statistics that a linear correlation coefficient
can be written as a weighted sum of means over a partition of a proba-
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bility space. As a straightforward consequence and as mentioned by Le
et al. in [56], a CPA can be viewed as a particular case of a PPA (i.e. a
CPA is SCA-reducible to a PPA). What we prove in this section is that
a PPA can be conversely re-stated as a CPA. Eventually, we argue that
both attacks are SCA-equivalent under Assumption 3.
Proposition 2. Let PPA(αi)i (k̂) be a PPA distinguisher defined with re-
spect to a model function m and a family of coefficients (αi)i. Then,
there exists a function f and two constant coefficients a and b such that
PPA(αi)i (k̂)= a·CPA(k̂)+b, where CPA(k̂) is a CPA distinguisher involving
the model function f ◦m.

Proof. We recall that, in the definition of PPA(αi)i (k̂) (see (4.6)), every
ωi ∈ Im(m) is associated with the coefficient αi. From those ωi and αi we
define a function f on Im(m) by:

f(ωi)= αi

P̂
(
Mk̂ =ωi

) . (5.3)

Under Assumption 3, probabilities P̂
(
Mk̂ =ωi

)
and thus coefficients f(ωi)

are constant (namely independent of the sample size and of the key hy-
pothesis k̂). With those new notations, (4.6) can be rewritten as:

PPA(αi)i ,m(k̂)= ∑
ωi∈Im(m)

f(ωi) · P̂
(
Mk̂ =ωi

) · Ê(
L | Mk̂ =ωi

)
. (5.4)

We therefore get the following relation:

PPA(αi)i ,m(k̂)= ∑
α∈Im(f)

α · P̂(
Mk̂ ∈ f−1(α)

) · Ê(
L | Mk̂ ∈ f−1(α)

)
(5.5)

i.e.

PPA(αi)i ,m(k̂)= ∑
α∈Im(f)

P̂
(
f(Mk̂)=α

) · Ê(
α ·L | f(Mk̂)=α

)
. (5.6)

After denoting by M′
k̂

the random variable f(Mk̂) and thanks to the law
of total expectation, we eventually deduce:

PPA(αi)i ,m(k̂)= Ê
(
L M′

k̂

)
. (5.7)

On the other hand, we have:

CPAm′(k̂)= 1

σ̂ (L) σ̂
(
M′

k̂

) · Ê(
L M′

k̂

)
−
Ê (L)Ê

(
M′

k̂

)
σ̂ (L) σ̂

(
M′

k̂

) ,
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where m′ denotes the function f ◦m. Under Assumption 3, values Ê (L),
σ̂ (L), Ê

(
Mk̂

)
and σ̂

(
Mk̂

)
are constant with respect to k̂. This implies that

the CPA distinguisher CPA(k̂) associated with the model function f ◦m
satisfies the following equality:

Ê
(
L M′

k̂

)
= a ·CPAm′(k̂)+b , (5.8)

where a and b are two constant values satisfying

a = σ̂ (L) σ̂
(
M′

k̂

)
and b =

Ê (L)Ê
(
M′

k̂

)
σ̂ (L) σ̂

(
M′

k̂

) .

From (5.7) and (5.8) we deduce that there exist two constant terms a and
b and a model transformation f such that

PPA(αi)i ,m(k̂)= a ·CPAm′(k̂)+b , (5.9)

with m′ = f ◦m. ¦
As a straightforward consequence of Proposition 2 we get the following
corollary:
Corollary 2. Under Assumption 3, a PPA is SCA-equivalent to a CPA.

Proposition 2 implies that a PPA and a CPA only differ in the model
which is involved to correlate the leakage signal. As a consequence, if
a PPA with model m and coefficients αi is more efficient than a CPA
with model m′, this simply means that the model f ◦m (for f defined as in
the proof of Proposition 2) is more linearly related to the deterministic
leakage function δ (·) than m′ does. In such a case, the CPA must be
performed with the most accurate model between both, namely f ◦m. In
other terms, we have:
Fact. The problem of finding the most pertinent coefficients αi is equiv-
alent to the problem of finding the model with maximum linear correla-
tion with the deterministic leakage function.

5-4 A (not so) Special Case: VPA

Due to the similarities with PPA definition, we can expect to have a
similar rewritting of the VPA in terms of CPA. We prove that VPA is in
fact a bivariate zero-offset product centered combining correlation power
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analysis. In other words, VPA can be restated as a CPA targeting the
square of a centered leakage.
Proposition 3. Let VPA(αi)i (k̂) be a VPA distinguisher defined with re-
spect to a model function m and a family of coefficients (αi)i. Then,
there exist a function f and two constant coefficients a and b such that
VPA(αi)i (k̂) = a ·CPA(k̂)+ b, where CPA(k̂) is a CPA distinguisher involv-
ing the model function f ◦m and applied to the square of the centered
leakage

(
L − Ê (L)

)2.

Proof. VPA can be rewritten in the same manner as PPA. That is, we
can define a function f such that f(ωi) = αi

P̂(Mk̂=ωi)
. Then using the same

rewritten procedure from (5.4) to (5.6) we obtain the following relation:

VPA(αi)i ,m(k̂)= ∑
α∈Im(f)

P̂
(
f(Mk̂)=α

) ·α · v̂ar (L | f(Mk̂)=α
)

, (5.10)

which is equivalent to:

VPA(αi)i ,m(k̂)= ∑
α∈Im(f)

P̂
(
f(Mk̂)=α

)·α·Ê((
L − Ê (L)

)2 | f(Mk̂)=α
)

. (5.11)

With the same trick – as in PPA rewriting – of renaming the random
variable f(Mk̂) by M′

k̂
and thanks to the law of total expectation, we

eventually deduce:

VPA(αi)i ,m(k̂)= Ê
((

L − Ê (L)
)2 M′

k̂

)
. (5.12)

On the other hand, in a bivariate zero-offset product centered combina-
tion setting we have:

CPA2,m′(k̂)=
Ê
((

L − Ê (L)
)2 M′

k̂

)
σ̂

((
L − Ê (L)

)2
)
σ̂

(
M′

k̂

) − Ê
((

L − Ê (L)
)2

)
Ê
(
M′

k̂

)
σ̂

((
L − Ê (L)

)2
)
σ̂

(
M′

k̂

) ,

where m′ denotes the function f ◦m.

Under Assumption 3, values Ê
((

L − Ê (L)
)2

)
, σ̂

((
L − Ê (L)

)2
)
, Ê

(
Mk̂

)
and

σ̂
(
Mk̂

)
are constant with respect to k̂. This implies that the CPA distin-

guisher CPA2,m′(k̂) satisfies the following equality:

Ê
((

L − Ê (L)
)2 M′

k̂

)
= a ·CPA2,m′(k̂)+b , (5.13)
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where a and b are two constant values satisfying

a = σ̂
((

L − Ê (L)
)2

)
σ̂

(
M′

k̂

)
and b =

Ê
((

L − Ê (L)
)2

)
Ê
(
M′

k̂

)
σ̂

((
L − Ê (L)

)2
)
σ̂

(
M′

k̂

) .

From (5.12) and (5.13) we deduce that there exist two constant terms a
and b and a model transformation f such that

VPA(αi)i ,m(k̂)= a ·CPA2,m′(k̂)+b , (5.14)

with m′ = f ◦m. ¦
Proposition 3 implies the following corollary:
Corollary 3. Under Assumption 3, a VPA is SCA-reducible to a CPA2.

5-5 Summing Distinguishers

In previous sections, we have established the SCA-reduction of DPA and
PPA to CPA. Namely, we have shown that for every DPA or PPA with
model m, there exists a new model m′ = f ◦m such that a CPA with m′

leads to a similar key-guess classification. This shows that, when per-
forming such attacks, the real issue is the choice of the model and not
the choice of the distinguisher. To deal with this issue when the best
model is not known, an approach could consist in applying one of the
distinguishers recalled in previous sections to a family of models (mi)i
and to sum the results to define a new distinguisher. Actually, this dis-
tinguisher is still reducible to a CPA-distinguisher involving a model
defined with respect to (mi)i and the “new” attack is thus nothing more
than a CPA attack with a new model. This comes down as a consequence
of the following lemma:
Lemma 1. Let CPAm1(k̂) and CPAm2(k̂) be two CPA distinguishing val-
ues defined for the same samples (`k,i)i

and (vk̂,i)i
, and with two differ-

ent model functions m1 and m2 respectively. Then, denoting by m3 the
function m1

σ̂
(
Mk̂,1

) + m2

σ̂
(
Mk̂,2

) , we have:

CPAm1(k̂)+CPAm2(k̂)= a CPAm3(k̂) ,

where Mk̂,1, Mk̂,2 and Mk̂,3 denote the model variables associated with

the model functions m1, m2 and m3 respectively, and where a = σ̂
(
Mk̂,3

)
.
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The idea consisting in summing several distinguishers to define a new
one has been for instance applied by Bévan and Knudsen in [24] to en-
hance original Kocher’s DPA. The authors propose to perform a single-bit
DPA for each bit of the sensitive variable Zk̂ and then to sum the results.
We call this attack a Multiple-DPA attack hereafter and we denote the
involved distinguisher by M-DPA(k̂). It is defined as follows:

M-DPA(k̂)=
t∑

j=0
SB-DPA(k̂) j (5.15)

where t is any integer lower than or equal to the dimension of vk viewed
as a binary-vector and where SB-DPA(k̂) j denotes the single-bit DPA
with a model function m j defined w.r.t. two real values ω0, j and ω1, j
by m j(vk̂) = (1− vk̂[ j]) ·ω0, j + vk̂[ j] ·ω1, j. As argued at the beginning of
this section (and as a consequence of Propositions 1 and 2 and Lemma
1), this attack is SCA-reducible to a CPA. We state this in the following
proposition and, for completeness, we exhibit in its proof the way how to
define the CPA-distinguisher of this reduced CPA.
Proposition 4. Under Assumption 3, an M-DPA attack is SCA-reducible
to a CPA.

Proof. Let us focus on Relation (5.15). Due to Proposition 1, for every j
the single-bit DPA distinguisher SB-DPA(k̂) j is affinely reducible to the
CPA-distinguisher CPA(k̂) j involving the model function f j ◦m j where
f j is defined on Im(m j) = {ω0, j,ω1, j} by f j(ω0, j) = 1/P̂

(
m j(Zk̂)=ω0, j

)
and

f j(ω1, j) = −1/P̂
(
m j(Zk̂)=ω1, j

)
. Let Mk̂, j denote the random variable f j ◦

m j(Zk̂). As a consequence of Proposition 1, we have:

SB-DPA(k̂) j =
CPA(k̂)m j +b

a
,

with a = 1
σ̂(L )σ̂

(
Mk̂, j

) and b = Ê(L )Ê
(
Mk̂, j

)
σ̂(L )σ̂

(
Mk̂, j

) . It can be checked that under

Assumption 3, a and b are constant with respect to j and k̂. We therefore
deduce that (5.15) is equivalent to:

M-DPA(k̂)= 1
a

t∑
j=0

CPA(k̂)m j +
t ·b
a

.

Lemma 1 then implies the following equality:

M-DPA(k̂)=
σ̂

(
M?

k̂

)
a

CPA(k̂)m? + t ·b
a

, (5.16)
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with m? being the function
∑t

j=1
f◦m j

σ̂
(
Mk̂, j

) and where M?
k̂

denotes the model

variable associated with m?. ¦

5-6 A Brief Look at MIA Distinguisher

Previously we have analysed several distinguishers based on linear de-
pendency (linear correlation). In Definition 5, a more generic distin-
guisher based on mutual information is described. From its mathemati-
cal definition (4.9) we see that only the term

H[L | Mk̂]= ∑
y∈Im(m)

P
[
Mk̂ = y

]
H[L | Mk̂ = y]

is key-dependent. Moreover the value H[L | Mk̂ = y] depends on the
pdf of the conditional leakage L | Mk̂ = y which is unknown. Thus an
adversary can try to estimate this pdf to compute an estimation of the
mutual information. Several pdf estimators exist in the literature [93]
which leads to different mutual information estimations with different
efficiency when used in MIA. Some of these pdf estimators have already
been studied by Prouff et al. in [79], namely the histogram, the paramet-
ric and the kernel method estimators. Some other mutual information
estimation methods exist that do not rely on estimation and are for in-
stance based on polynomial density expansions. For a brief survey of
mutual information estimation, we refer to [109]. When applied in an
MIA, one of the most efficient attack in practice seems to be the his-
togram based one (introduced by Gierlichs et al. in [42]) as analysed
in [22].

Histogram based MIA consists in grouping the samples into bins. The
number of bins and their width are chosen w.r.t. the context of appli-
cation and the nature of the samples. Several rules exist to empirically
deduce these values (for instance in [104], [91] or [110]). Thus the bins
are a partition of the range of the samples. In [42] it is suggested to
use a number of – identical width – bins equal to the number of distinct
model values (i.e. the number of expected components in the distribu-
tion). The histogram method can be straightforwardly extended into a
multivariate context using multidimensional bins (see e.g. [79]).

As MIA defines another class of distinguishers, we mainly focused our
study on linear correlation and not on MIA. In fact our main purpose
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was to compare the existing attacks w.r.t. the CPA techniques which are
the most widely used in practice.
Remark 14. Mutual information can detect any statistical dependency
between Mk̂ and L . Therefore, if m◦Fk̂ is injective, H[L | Mk̂] will lead to
the same value for all k̂ (for more details see [79]). Moreover, although
the model Mk̂ does not impact the asymptotic behavior of the MIA at-
tack, it has a strong impact w.r.t. the efficiency of the MIA attack in
terms of the number of messages needed (same as for CPA).
Remark 15. In some particular context, one can derive a link between
the correlation factor and the mutual information. For instance in [62]
it is shown that if X and Y are normally distributed then

I(X ; Y )=−1
2

log2
(
1−ρ (X , Y )2) .

5-7 On the Choice of the Model

In previous sections we argued that most of existing linear power anal-
ysis attacks are reducible to CPAs that only differ in the model they
involve. As a first important consequence, one of those attacks is more
efficient than another one if and only if the corresponding SCA-reduced
CPA involves a better model. This naturally raises the question of defin-
ing the model that optimizes the CPA efficiency. It has been proven
in [80] that the model function m : v 7→ E

[
L | Fk̂(X )= v

]
maximizes the

amplitude of the correlation coefficient (4.8) when the good key is tested
and hence optimizes the attack efficiency (as argued in [64]). In the con-
text of univariate SCA with leakage satisfying (4.2), this function is the
deterministic leakage function δ (·). Note that any model m(·)= a δ (·)+b
where a 6= 0, b are constant will also maximize the amplitude of the cor-
relation. As a particular observation, when all the bits of the targeted
variable Z impact the leakage expectation, the result in [80] implies that
the model must take into account all the bits of Z and that attacks ex-
ploiting only a limited number of bits (such as e.g., the single-bit DPA)
are sub-optimal. It is worth noticing that if the model is perfect (i.e. if
m(·) = δ (·)), then under the Gaussian Noise Assumption (i.e. the noise B
in (4.2) is drawn from a Gaussian distribution), the CPA is equivalent to
a maximum likelihood attack [65], which is known to be optimal for key-
recovery. Unfortunately, computing m : v 7→ E

[
L | Fk̂(X )= v

]
is not pos-

sible with no a priori knowledge about L (e.g. without a profiling stage).
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This implies that the adversary model is often not perfect and the result-
ing attacks are thus most of the time sub-optimal. In the next chapter,
we investigate a family of side channel attacks that makes weaker as-
sumptions on the device behavior than the CPA-like attacks.
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CHAPTER6
Linear Regression

I
N the previous chapter, we have shown the SCA-equivalence
(or SCA-reduction) between the main used univariate SCAs
and we have shown that the leakage modeling is a crucial
point. In this chapter we introduce and analyse SCAs which

need weaker knowledge on the leakage modeling. That is in classical
univariate SCA we restrict the leakage modeling to one fixed function
whereas in this new approach a set of functions sharing some algebraic
properties is fixed, the attack will find and use the most relevant func-
tion in the set. To succeed, those attacks, termed robust, do not require a
good affine estimation of the deterministic part δ (·) of the device leakage.
Actually, they only require some general assumptions on the algebraic
properties of δ (·) (namely the output value of the function is any linear
combination of the bits of the input value). In particular, their efficiency
does not rely on the adversary ability to find a model m which is a good
affine approximation of δ (·) as it was the case for CPA-like attacks.
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In the following we first present a robust extension of DPA and then we
introduce the linear regression which encompasses and formalizes the
first latter attack. The leakage is assumed to be defined as in (4.2).

6-1 Robust Side Channel Attacks

In this section, we investigate robust side channel attacks that are able
to succeed with only a very limited knowledge (compared to a CPA-based
attack) on how the device leaks information. The starting point is to
replace the requirement that the deterministic part of the leakage δ (·)
is greatly correlated to the attack model m by the weaker requirement
that δ (·) belongs to a set of functions sharing some algebraic properties.
Thus the aim of robust attacks is to overcome the drawback of a – bad –
leakage model selection and thus to perform a more generic attack.

Before presenting the attacks and in order to determine the kind of al-
gebraic properties of δ (·) we focus on, let us have a closer look at this
function. As any real function defined over Fm

2 , it can be represented by
a multivariate polynomial in R[z1, . . . , zm]/(z1

2 − z1, . . . , zm
2 − zm) (i.e. the

degree of every zi in every monomial is at most 1). Consequently, there
exists a unique set of real coefficients (αu)u∈Fm

2
such that for every z ∈ Fm

2
we have:

δ(z)= ∑
u=(u1,...,um)∈Fm

2

αu · zu , (6.1)

where each term zu denotes the monomial (function) z 7−→ zu1
1 zu2

2 · · · zum
m

with values in {0,1} [28]. The degree of such a monomial is hence the
Hamming weight of u. Equation 6.1 is called the algebraic normal form
of the function δ. In view of (6.1), a side channel adversary could use his
knowledge of the device technology to make an assumption on the degree
d of δ (·) viewed as a polynomial with coefficients in R. This amounts to
make the following assumption on the device.
Assumption 4 (Leakage Interpolation Degree). The multivariate de-
gree of the deterministic part δ (·) of the leakage is upper bounded by d,
for some d lower than or equal to m.

In practice and for most of devices such as smart cards, the coefficients
αu with HW(u) É 1 are significantly greater than the others. This im-
plies that the value of δ(x) is very close to the value of the linear part in
(6.1), the other non-linear terms playing a minor role [57]. In this case,
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it makes sense for the adversary to make Assumption 4 for d = 1. It is
sometimes referred as the Independent Bit Leakage (IBL) Hypothesis in
the literature [82] since it amounts to assume that the leakages related
to the manipulation of two different bit-coordinates of Z are indepen-
dent. This assumption fits well with the physical reality of numerous
electronic devices. Indeed, the power consumption and electromagnetic
emissions both result from logical transitions occurring on the circuit
wires. Thus, assuming that every bit of a processed variable contributes
independently to the overall instantaneous leakage is therefore realis-
tic.

From an attacker point of view, assuming the IBL hypothesis is often
a good strategy in practice since it enables to define an attack which,
without being optimal, has an adequate efficiency. However, from the
security designer perspective the IBL hypothesis may be considered as
too restrictive. In this case indeed, the security analysis must include
the largest class of adversaries as possible and proving resistance under
the IBL hypothesis is therefore no longer sufficient. Moreover, for some
new devices (e.g., based on architectures using 65 nm manufacturing
technology), it has been observed [37, 71, 82] that the coefficients of the
quadratic terms in (6.1) are not negligible compared to those of the linear
terms: the leakages related to the manipulation of two different bit-
coordinates of Z are no longer independent. In this case, Assumption 4
for d Ê 2 shall yield a better representation of δ.

To sum up our discussion, even if making the Assumption 4 for d = 1 may
be sufficient for an attacker to perform a succesfull attack, one (typically
a device designer) must choose d as large as possible if the purpose is to
test a device resistance in the worst case scenario.

In the next two sections we present two side channel attacks that are
able to successfully recover the expected secret k with no other assump-
tion on the deterministic part of the leakage than Assumption 4 for some
fixed value of d. The two attacks are described in the particular case
d = 1. This situation is indeed sufficient for most of practical attack
contexts and it has the advantage to allow a simple description of the
attacks. Eventually, in Section 6-1.1 we briefly explain how they can
be simply extended to deal with degree d > 1 (e.g., when neglecting the
terms of degree greater than 1 leads to attack failure). This case (d > 1)
is deeper analysed in Chap. 7.
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6-1.1 Absolute Sum DPA

It may first be noticed that the multi-bit DPA (M-DPA(k̂)) recalled in
Sect. 5-5 is not a robust extension of the binary single-bit DPA. Indeed,
if we take a closer look at (5.1), we can check that the sign of each single-
bit DPA distinguisher in the sum depends on the choice of the values ω0, j
and ω1, j. Hence, depending on the models m j chosen for the attack, the
sum of the values returned by the single-bit DPA distinguishers when
the good key is tested may be very close to zero, which may result in a
wrong-key discrimination. As already pointed out in [19], a straightfor-
ward solution to circumvent this issue consists in replacing the sum in
(5.15) by a sum of absolute values – or a sum of squares – of single-bit
DPA distinguishers. This leads to define the following AS-DPA distin-
guisher:

AS-DPA(k̂)=
t∑

i=0

∣∣SB-DPA(k̂)i
∣∣ . (6.2)

Contrary to what happens for M-DPA(k̂), the value of each element in
the sum in AS-DPA(k̂) stays unchanged if we replace a family of bijective
model functions (m j) j by another one. We can therefore choose any m
which shows that our new AS-DPA attack is robust.

Illustration of the Differences Between AS-DPA, M-DPA and CPA
Let us focus on an adversary targeting the manipulation of a 2-bit inter-
mediate value Z = Fk(X ) having a uniform distribution. For illustration
purpose, we assume here that the attacked device leaks exactly the dif-
ference between the two bit-coordinates of Z. Namely we assume that
L satisfies L = δ(Z), with δ(Z) = Z [0]−Z [1]. As explained in [96], such
a situation typically occurs when the leakage is measured by electro-
magnetic analysis. If the adversary performs a single-bit DPA to exploit
L , a natural choice for Mk̂ is either Fk̂(X ) [0] or Fk̂(X ) [1] (namely in
(4.3) the model function m is the projection related to one of the bit-
coordinates of Fk̂(X ) and w0 and w1 equal 0 and 1 respectively). We
denote by SB-DPA(k̂)0 (respectively SB-DPA(k̂)1) the distinguisher de-
fined with respect to Mk̂ = Fk̂(X ) [0] (respectively Mk̂ = Fk̂(X ) [1]). Under
Assumption 3 which implies var [Z [0]]= var [Z [1]] and the independency
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between Z [0] and Z [1], we have

SB-DPA(k̂)0 =
{
E [Z [0]]−E [1−Z [0]]= 1 if k̂ = k ,

0 otherwise

and

SB-DPA(k̂)1 =
{
E [Z [1]]−E [1−Z [1]]= 1 if k̂ = k ,

0 otherwise .

Since we have SB-DPA(k̂)0 =−SB-DPA(k̂)1 for every k̂, the distinguisher
M-DPA(k̂) in (5.15) always equals 0 whereas AS-DPA(k̂) = 2 if k̂ = k and
0 otherwise.

Let us now focus on the case where the adversary performs a CPA with
the Hamming weight as a model function. When computing the cor-
relation between the leakage L and the model random variable Mk̂ =
HW(Fk̂(X ))= Fk̂(X ) [0]+Fk̂(X ) [1], we have:

cov
(
L , Mk̂

)= cov
(
Z [0]−Z [1] , Fk̂(X ) [0]+Fk̂(X ) [1]

)
which can be rewritten:

cov
(
L , Mk̂

)= cov
(
Z [0] , Fk̂(X ) [0]

)+cov
(
Z [0] , Fk̂(X ) [1]

)
−cov

(
Z [1] , Fk̂(X ) [0]

)−cov
(
Z [1] , Fk̂(X ) [1]

)
,

from which we deduce CPA(k̂) = 0 whatever the relation between k̂ and
k (since var [Z [0]]= var [Z [1]]).

To sum-up, this section gives an example of a leakage on a 2-bit vari-
able for which the M-DPA and the CPA (with Hamming weight model
function) fail, whereas the AS-DPA still succeeds.

Extension of the Attack to Non-linear Contexts If we relax As-
sumption 4 and assume that the leakage also depends on some mono-
mials zu with d Ê HW(u) Ê 2, then the corresponding SB-DPA cross-
product |SB-DPA(k̂)u1

1 ×SB-DPA(k̂)u2
2 ×·· ·×SB-DPA(k̂)um

m | can be added to
the initial AS-DPA .

6-1.2 Linear Regression

In [88], Schindler et al. describe an efficient profiling method for SCA.
Assuming that the attacker knows the subkey k, they explain how to
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recover the leakage function δ (i.e., the coefficients α j under the IBL
assumption) using linear regression. As mentioned by the authors, their
approach could also enable the recovering of k (but neither details nor
experiments are provided). We develop hereafter this idea that leads to
a robust SCA.

The core idea is to discriminate the key-candidates by processing a lin-
ear regression on a key-dependent variable, denoted Y hereafter. To ap-
ply such a linear regression, the adversary must have chosen a basis
(gi)i=1,...,d of functions beforehand (see Sect. 7-2.2 on the basis choice).
With this basis on hand, he then computes for each key-candidate a dis-
criminating value and finally outputs the key-candidate which gives rise
to the smallest value. For the sake of explanations, the linear regression
at Step 3 of the attack below, is expressed in terms of distance from a
function to a subspace of functions as introduced in Sect. 3-2. More pre-
cisely, the new attack is composed of the following steps:

1. [Basis choice] Choose a family of functions (gi)1ÉiÉd defined from
Fm

2 into R. The set spanned by the functions gi is denoted by H .

2. [Measurement step] For N plaintexts, collect measurements to-
gether with corresponding plaintexts sub-parts: (`i, xi)i ←- (L , X ).
Then we define the vector yN such that yN(i)= `i

3. [Linear regression] For every key hypothesis k̂, compute:

∆k̂(N)= d
(
yN ,Gk̂

)2 , (6.3)

where Gk̂ denotes the space < g1 ◦Fk̂, . . . ,gd ◦Fk̂ >.

4. [Key candidate decision] Select the key hypothesis for which
∆k̂(N) is minimal.

In the following, we shall associate the value yN(i) with the random
variable (Y | X = xi), with Y being defined by:

Y = L .

The computation of the minimum distance at Step 3 involves a linear
regression to model the functional relationship between Y and X . The
function is searched into a set which basis is constructed by composing
the functions gi with the key-hypothesis dependent function Fk̂ defined
in Sect. 4-3. This point is detailed hereafter while the way how to choose
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the family of functions (gi)i is discussed in Sect. 7-2.2. The linear regres-
sion technique itself together with its link with the distance d(·) between
functions is detailed below.

Therefore, for a basis of functions (gi)1≤i≤d, a set of noisy observations
(yN( j))0< jÉN and a key candidate k̂, the goal is to estimate:

∆k̂(N)= min
(a1,...,ad)∈Rd

(a1,...,ad)6=(0,...,0)

d

(
yN ,

(∑
i

aigi

)
◦Fk̂

)2

= min
(a1,...,ad)∈Rd

(a1,...,ad)6=(0,...,0)

∑
j

(
yN( j)−

[
(
∑

i
aigi)◦Fk̂

]
(x j)

)2

.

Note that the square root in the distance computation has no importance
as we search for the minimum of a positive value (a sum of square). The
linear regression technique involved in this paper starts by building the
following regression matrix:

M=



g1(Fk̂(x1)) · · · gd(Fk̂(x1))
g1(Fk̂(x2)) · · · gd(Fk̂(x2))

... . . . ...
g1(Fk̂(xi)) · · · gd(Fk̂(xi))

... . . . ...
g1(Fk̂(xN)) · · · gd(Fk̂(xN))


,

where the value xi in Fk̂(xi) is represented as an integer corresponding
to the binary representation of xi ∈ Fn

2 .

From the vector yN = (yN(0), yN(1), . . . , yN(N)) and M, the following col-
umn vector αk̂ is computed:

α = t(
α1, . . . ,αd

)= (tM ·M)−1 · tM · t yN . (6.4)

Under the Gaussian assumption, it can be proved [39] that [(g1, . . . ,gd) ·
α]◦Fk̂ is the function in < gi >1≤i≤d that is the closest one to yN for the
– squared – Euclidean distance.

Contrary to the attacks analysed in Chap. 5, which involve a fixed model
function, regression attacks output a different model function mk̂ for
each key candidate k̂. For the key discrimination step, an Euclidean
distance is processed in place of a correlation coefficient with the leak-
age sample.
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Remark 16. In the literature, goodness of fit is the common way to de-
scribe how well a model fits a set of observations. Different measures of
goodness of fit can be used depending on the context. The coefficient of
determination or the Akaike information criterion are examples of such
a measure. In this paper, we privileged the following coefficient of deter-
mination:

R2(k̂)= ‖L −M ·α‖2

var [L]
= E

[
(L−M ·α)2]
var [L]

. (6.5)

It first permits to have a value in the range [0,1]. Moreover, it is closely
related to the correlation coefficient. Note that in our specific case, all
models result from a linear regression with the same basis functions
set and with the same observations. This implies that in this particular
case the main known estimators are equivalent to the Euclidian distance
estimator.

6-2 Improvement

6-2.1 Averaging over Plaintexts

In the previous section, a linear regression techniques based attack is
described. The main computation effort lies in the manipulation (e.g.
multiplication and inversion) of the N ×d regression matrix M and has
thus at least a quadratic complexity (both matrix must be read at least
once). This implies that for a large N the attack becomes very time con-
suming if not unfeasible. Nevertheless, one can remark that the random
variable X is over Fn

2 and thus take only 2n values. The core idea of
the improvement proposed here is to average the leakages according to
the value of the corresponding plaintext. This leads to make a linear
regression with an averaged leakage vector containing at most 2n ele-
ments, namely the matrix size (and thus the computation complexity) is
independent of N. With this practical trick, the linear regression reachs
the same complexity than CPA (see Sect. 8-3 for practical results). More
precisely, the improved attack is composed of the following steps:

1. [Basis choice] Choose a family of functions (gi)1ÉiÉd defined from
Fm

2 into R. The set spanned by the functions gi is denoted by H .

2. [Measurement step] For N plaintexts, collect measurements to-
gether with corresponding plaintexts sub-parts: (`i

1, xi)i ←- (L , X ).
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3. [Averaging step] Partition the leakage measurements into sets
Lx defined for every x such that Lx = {`i

1; xi = x}. Then we define
the function γN such that

γN(x)= 1
|Lx|

∑
`1∈Lx

(`1) . (6.6)

4. [Linear regression] For every key hypothesis k̂, compute:*

∆k̂(N)= d
(
γN ,Gk̂

)2 , (6.7)

where Gk̂ denotes the space < g1 ◦Fk̂, . . . ,gd ◦Fk̂ >.

5. [Key candidate decision] Select the key hypothesis for which
∆k̂(N) is minimal.

In this case, the regression matrix became

M=



g1(Fk̂(0)) · · · gd(Fk̂(0))
g1(Fk̂(1)) · · · gd(Fk̂(1))

... . . . ...
g1(Fk̂(x)) · · · gd(Fk̂(x))

... . . . ...
g1(Fk̂(2n −1)) · · · gd(Fk̂(2n −1))


,

and by analogy with the previous attack, from M and the vector γN =
(γN(0), . . . ,γN(2n −1)), the following column vector α is computed:

α = t(
α1, . . . ,αd

)= (tM ·M)−1 · tM · tγN . (6.8)

Remark 17. We assumed that the function γN is defined for every value
in Fn

2 . Nevertheless in some cases (e.g. for a small N) it may happen that
γN is defined only on a strict subset E of Fn

2 . In this case, the linear
regression processing remains the same, except that lines corresponding
to the values in Fn

2\E are discarded from the matrix M.
Proposition 5. Under Assumption 1 linear regression with averaged
leakage vector as observation will output the same model as linear re-
gression with non-averaged leakage vector.

*It must be observed that the distance in (6.7) is computed over 2n values, whereas
the distance in (6.3) is computed over N values.
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Proof. When applying the ordinary least-square algorithm described
in Sect. 6-1.2, we minimize the least-square error function defined as

f (α) =
(
d(yN ,

∑d
j=1α jg j ◦Fk̂)

)2 =∑
i[yN(i)−∑d

j=1α jg j(Fk̂(xi))]2 which can
be rewritten in matrix notation as f (α) = t(yN −M ·α) · (yN −M ·α). By
definition, this “real value” function admits a unique global minimum
(because it is quadratic in α with positive-definite Hessian) which can
be explicitly computed as the unique solution which zeroizes the par-
tial derivatives. Thus, finding this minimum is equivalent to solve the
system of d partial derivatives

Eqk :
∂ f (α)
∂αk

=−2
∑

i

([
yN(i)−

d∑
j
α jg j(Fk̂(xi))

]
·gk(Fk̂(xi))

)
= 0 , (6.9)

for k = 1, . . . ,d.

This is equivalent to the following matrix system:

∂ f (α)
∂α

=−2 · tM · yN +2 · tM ·M ·α = 0 . (6.10)

Assuming tM ·M is invertible, we deduce straightforwardly (6.4) from
(6.10). By analogy, (6.8) can be deduced from the following system:

Eq′
k :

∂ f (α)
∂αk

=−2
2n∑

x=0
gk(Fk̂(x)) ·

(
γN(x)−

d∑
j=1

α jg j(Fk̂(x))

)
= 0 , (6.11)

Taking a closer look to (6.9), it can be rewritten as:

Eqk :
∂ f (α)
∂αk

=−2
2n∑

x=0

∑
i;xi=x

([
yN(i)−

d∑
j=1

α jg j(Fk̂(x))

]
·gk(Fk̂(x))

)
= 0 ,

which gives

Eqk :
∂ f (α)
∂αk

=−2
2n∑

x=0
gk(Fk̂(x)) ·

( ∑
i;xi=x

yN(i)− ∑
i;xi=x

d∑
j=1

α jg j(Fk̂(x))

)
= 0 .

After denoting by cx the cardinal of the set {i; xi = x}, we obtain

Eqk :
∂ f (α)
∂αk

=−2
2n∑

x=0
cx ·gk(Fk̂(x)) ·

(
γN(x)−

d∑
j=1

α jg j(Fk̂(x))

)
= 0 .
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Under Assumption 1, cx is constant w.r.t. x thus the system becomes:

Eqk :
∂ f (α)
∂αk

=−2
2n∑

x=0
gk(Fk̂(x)) ·

(
γN(x)−

d∑
j=1

α jg j(Fk̂(x))

)
= 0 ,

The system of equations (Eqk)k=1,...,d exactly corresponds to the system
(Eq′

k)k=1,...,d resolved in (6.11). Thus both systems are equivalent and
will lead to the same solutions, which concludes this proof. ¦
Remark 18. We assumed that cx is constant which implies that each
plaintext value appears the same number of times in the sample. This
can be straightforwardly done by omitting some values when the sample
size is sufficiently large. Notice that if this condition is not fulfilled, the
variance of the averaged traces are different.

This practical trick can be applied as soon as a mean computation (more
generally a conditional moment computation) according to the plaintexts
is involved (for instance in a CPA attack). Although the gain is not vis-
ible on one single execution, this trick can be viewed as a preprocessing
step of the leakage which can be interesting when several attacks are
performed on the same leakage set (for instance to test different models
on CPA or to compare some attacks).

6-2.2 Adaptive basis

As pointed out in Sect. 7-2.2, the linear regression attack needs a choice
of a suitable basis of functions which largely impacts the attack effi-
ciency. The size of such a basis becomes a real drawback when few sam-
ples are available. To overcome this problem an idea for further works
could be to study the least angle regression introduce by Efron et al. [38].
The core principle consists in computing a linear regression by adding
basis elements to one by one (instead of taking into account the whole
basis directly) from the most to the least correlated coefficient with the
observation. This allows us to bypass the drawback of the basis size and
moreover permits to converge more quickly to the solution as the basis
elements are inserted in order of importance. Eventually, least angle re-
gression algorithm is a least-square refinement which can perform bet-
ter in some contexts. Nevertheless the size of the basis is still a limiting
factor and the idea to use a very large basis and let the least angle re-
gression choose the good elements seems not to be a valid approach with
an “out-of-the-box” algorithm. Additional optimizations (such as lasso
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optimization [38]) can perhaps bypass this drawback. The principle of
lasso is straightforward and consists in limiting the number of basis el-
ements to add during the least angle regression computation. In other
words, instead of fixing a basis, we let to the algorithm the choice of the
most pertinent elements from a larger set. For instance the attacker
has just to fix the size of the basis. Even if we have performed some
encouraging experiments, more investigations must be conducted.

More formally, the least angle algorithm is based on the fact that if the
basis is orthogonal, elements have no effect on each others coefficient
estimations and thus we can estimate separately each coefficient. That
is, after the orthogonalisation of the basis, we compute one coefficient,
subtract it from the residue and do it again until all coefficients are com-
puted or the residue becomes null. Theoretical foundations and detailed
algorithms can be found in the original paper [38].
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CHAPTER7
High-order

7-1 Introduction to High-Order

7-1.1 The Sharing Concept

I
N the previous chapters we focused on univariate SCAs, that
is we focused on an unprotected implementation. A common
countermeasure against such an attack is the use of masking.
When the cryptosystem is protected thanks to a (d)th-order

masking scheme, the sensitive variable Z is randomly split into d + 1
(at least) shares V0,V1, . . . ,Vd that are manipulated at different times
[30]. The manipulation of the shares results in d+1 observable physical
leakages denoted by L0,L1, . . . ,Ld. The parameter d is usually called the
masking order. The analyses conducted in the following are done under
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the assumption that the leakages satisfy:

L i = δ(Vi)+Bi, 0É i É d , (7.1)

where δ(·) is a deterministic unknown function and the random variables
Bi are independent but identically distributed unidimensional Gaussian
variables. Notice that in (7.1) we made the classical assumption that δ(·)
only depends on the underlying hardware, independently of the time.
Usually the random variables V1, . . . ,Vd are independent and uniformly
distributed and V0 is defined such as V0 = Z ?V1? · · ·?Vd where ? is
an operation law such that (Fn

2 ,?) is a group*. For the rest of the thesis,
Assumption 2 is extended to the following assumption:
Assumption 5 (Independent Noise). The noises Bi are independent of
the shared variables Vi.

7-1.2 High-Order Side Channel Attacks

To defeat a dth-order masking, an attacker has to exploit at least d+1
leakages corresponding to d+1 shares manipulation. In this multivari-
ate context the framework presented in Sect. 4-3 becomes:

1. Perform N measurements (`i
0, . . . ,`i

d)i ←- (L0, . . . ,Ld) on the crypto-
graphic device using a sample (xi)i ←- X of plaintexts.

2. Choose a function m to model the deterministic part of the leakage.

3. Compute the model values mk̂,i =m(Fk̂(xi)) from the plaintexts xi

and the model function m, for every key hypothesis k̂.

4. Choose a statistical distinguisher ∆.

5. For every key hypothesis k̂, compute the distinguishing value ∆k̂
defined by:

∆k̂ =∆
(
(`i

0, . . . ,`i
d)i, (mk̂,i)i

)
.

This results in a score vector (∆k̂)k̂.

6. Output as the o most likely key candidates the o key hypotheses
that maximize – or minimize – ∆k̂.

*for instance ? may be the bitwise addition ⊕ or the addition + modulo 2n where
Z and Vi are viewed as elements of Z/2nZ.
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In a multivariate context, the choice of the distinguisher and the choice
of the model are still crucial points. Moreover the choice of the distin-
guisher can hide the choice of a combination function to pass from a
multivariate to an univariate context which permits to apply univariate
statistical tools.

Several combining functions have been proposed in the literature. Two
of them are commonly used: the product combining [30] which consists
in multiplying the different signals and the absolute difference combin-
ing [69] which computes the absolute value of the difference between two
signals. As noted in [33, Sect. 1], the latter can be extended to higher-
orders by induction. Other combining functions have been proposed
in [48, 73]. In a recent paper [80], the different combining functions
are compared for second-order DPA in the Hamming weight model. An
improvement of the product combining called normalized product com-
bining or centralized product combining is proposed and it is shown to
be more efficient than the other combining functions*.

7-2 A Particular Case: Second-Order

In the following, we describe a bivariate attack targeting two differ-
ent time instants with leakage L0 and L1. In this context, (7.1) be-
comes

L0 = δ(Z?V)+B0 and L1 = δ(V)+B1 . (7.2)

In what follows, a new second-order attack is introduced, extending to
a masked context the strategy described in the previous chapter. The
core idea is to discriminate the key-candidates by processing a linear re-
gression on a key-dependent variable which combines the two leakages
defined in (7.2). More precisely, the new attack is composed of the fol-
lowing six steps – derived from the ones in Sect. 6-1.2:

1. [Basis choice] Choose a family of functions (gi)1ÉiÉd defined from
Fm

2 into R. The set spanned by the gi is denoted by H .

2. [Measurement step] For N plaintexts, collect measurements to-
gether with the corresponding plaintexts sub-parts: (`i

0,`i
1, xi)i ←-

(L0,L1, X ).

*This assertion is true while considering a noisy model. In a fully idealized model,
other combining may provide better results (see [80]).
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3. [Partitioning step] Partition the pair of leakage measurements
into sets Lx defined for every x ∈ Fn

2 such that Lx = {(`i
0,`i

1); xi = x}.

4. [Combining step] For every x ∈ Fn
2 , compute:

yN(x)= 1
|Lx|

∑
(`0,`1)∈Lx

(
`0 −µ0(x)

)(
`1 −µ1(x)

)
, (7.3)

where yN is a function of x parameterized by the number of col-
lected measurements, and where µ0(x) and µ1(x) respectively de-
note E [L0 | X = x] and E [L1 | X = x]. For analysis purpose, yN(x) is
viewed* as an approximation of y(x)= cov(L0 | X = x , L1 | X = x).

5. [Linear regression] For every key hypothesis k̂, compute:

∆k̂(N)= d
(
yN ,Gk̂

)2 , (7.4)

where Gk̂ denotes the space < g1 ◦Fk̂, . . . ,gd ◦Fk̂ >.

6. [Key candidate decision] Select the key hypothesis for which
∆k̂(N) is minimal.

A discussion of the new attack rationale will be conducted in the next
section. We can however sum-up its main steps in the following way.
First, and due to the univariate aspect of the linear regression, the leak-
ages L0 and L1 are combined in Step 4 to form an univariate random
variable Y which can be viewed as estimation of the covariance between
L0 and L1 knowing X = x. The latter covariance, viewed as a function
of the random variable X is denoted by Y in the following. The com-
putation of the minimum distance during the fifth step involves linear
regression to find a good model for the functional relationship between
Y and X . The model is searched into a set of functions which basis
is constructed by composing the gi with the key-hypothesis dependent
function Fk̂ defined in Sect. 4-3. This point is detailed in the next sec-
tion while the way how to choose the family of functions (gi)i is discussed
in Sect. 7-2.2. The linear regression technique and its link with the dis-
tance d(·) can be found in Sect. 6-1.2.
Remark 19. The distinguisher in (7.4) is equivalent to the maximiza-
tion of the so-called coefficient of determination between the yN(xi) and
the gi(xi) for gi ranging over Gk̂ (see [39] for more details about this

*The pertinence of this definition of Y (and hence of the construction of yN (x) in
the attack) is discussed in Sect. 7-2.3.
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coefficient). Hence, another way of interpreting our linear regression
based SCA is as follows. The attack attempts to express the trace mea-
surements (`i

0,`i
1)i in terms of a polynomial function of the bits of the

k̂-dependent predicted values
(
Fk̂(xi)

)
i with additive noise. The polyno-

mial is searched into the set generated by the basis functions (gi)i=1···d
themselves viewed as polynomial functions with coefficients in R. The
idea is that only the correct predictions will give a good least-squares
approximation. The natural measure of goodness-of-fit is the coefficient
of determination, which can be interpreted as the proportion of the vari-
ance in the traces which is accounted by the model. So, for a well-chosen
regression function, only the correctly predicted bits will give a good ex-
planation of the variance.

7-2.1 Rationale Behind the New Attack

In this section we analyse the theoretical foundation of such an attack.
Since L0 and L1 satisfy (7.2), and random variables B0, B1 and V are
independent, the definition of Y can be rewritten

Y =ϕ[Fk(X )] , (7.5)

where ϕ denotes the function

z 7→ cov(δ(z?V) , δ(V)) .

By construction, the function yN defined in Step 4 tends toward y as
the number of measurements increases. Therefore from (7.5) and some
terms rearrangements, one deduces the following limit of ∆k̂(N), where
we recall that y is considered as a function of x:

lim
N→∞

∆k̂(N)= lim
N→∞

d
(
yN ,Gk̂

)2 = d(Y ,Gk̂)2

= min
h∈H
h 6=0

d
(
ϕ◦Fk ◦F−1

k̂
◦Fk̂,h◦Fk̂

)2
. (7.6)

Assuming that Fk̂ is balanced, (7.6) simplifies to

lim
N→∞

∆k̂(N)= 2n−m ·d
(
ϕ◦Fk ◦F−1

k̂
,H

)2
. (7.7)

Now, depending on whether k̂ equals k or not, we have the two following
situations:
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Good hypothesis (k̂ = k): Equation (7.7) becomes limN→∞∆k̂(N) =
2n−m ·d(

ϕ,H
)2.

Wrong hypothesis (k̂ 6= k): Equation (7.7) cannot be simplified.

From those two situations, we deduce that the new attack outputs the
correct key if the distance between ϕ◦Fk◦F−1

k̂
and H is minimized when

k̂ = k (e.g. when ϕ ◦Fk ◦F−1
k̂

equals ϕ). This implies that the choice of
H must be relevant. In other words, it highlights the importance of the
choice of the basis (gi)i. This choice is discussed in the next section.
Remark 20. Notice that in this case, F−1

k̂
can refer to a set of functions

and thus the distance is computed over two sets (see (3.7)).

7-2.2 Basis Choice

As pointed out in previous sections, the basis choice is essential since it
directly impacts the attack efficiency. Ideally, the basis should guarantee
the adversary that d

(
ϕ◦Fk ◦F−1

k̂
,H

)
is minimal when k̂ = k. In this

section, we propose a strategy for the adversary to choose it.

By definition, the function ϕ to be approximated belongs to the space
F of all the functions from Fm

2 into R. We recall that any function in
F can be represented in algebraic normal form (see Eq . (6.1)). It can
moreover be checked that the family of functions (zu)u∈Fm

2
spans F [28].

In the following, we denote by Fd the subset of F that contains all the
functions of degree lower than or equal to d. This set is spanned by the
basis (zu)u∈Fm

2 ,HW(u)≤d.

Let us now come back to the attack described in Sect. 6-1.2 and extended
in Sect. 7-2. If the set H spanned by the functions (gi)i equals F (i.e.
(gi)i is also a basis of F ), then for any Fk̂ and Fk it is obvious that

ϕ◦Fk ◦F−1
k̂

is in H . As a consequence, the distance d
(
ϕ◦Fk ◦F−1

k̂
,H

)
is

always null, the key hypothesis k̂ being equal to k or not. This implies
that choosing the basis (gi)i as large as possible is not a sound approach
for our attack (see Sect. 7-3 for more details). Let us now denote by J

the set of functions {Fk ◦F−1
k̂

;k 6= k̂}.

A much better strategy an adversary can follow is to look for a subspace
H such that ϕ ∈ H (i.e. the distance between ϕ and H is null) while
the distance between the two sets H and H ◦J is as high as possible

84 / 220



section 7-2: A Particular Case: Second-Order

(Fig. 7-2-1 illustrates it). For such a purpose, we propose here to make
an assumption on the degree d of ϕ and to set H =Fd. This amounts to
choose the basis such that (gi)i = (zu)u∈Fm

2 ,HW(u)≤d. Since the composition
of functions Fk ◦ F−1

k̂
is very likely to have a high degree (close to m)

due to the cryptographic properties* of F, then none of the functions
ϕ◦Fk ◦F−1

k̂ 6=k
is in Fd for d small enough, whereas ϕ◦Fk ◦F−1

k̂=k
=ϕ does

(by hypothesis).

Fig. 7-2-1 – Relationship between the different spaces.

Remark 21. In our strategy, we assumed that the attacker targets the
result of a non-linear transformation (e.g. an S-box) and thus that the
function F is likely to have a high degree. Nevertheless, one can choose
to target the result of a linear transformation (typically the manipula-
tion of the sensitive variable just before the non-linear transformation).
In this case, the choice of the basis is less obvious and will be very de-
pendent on the algebraic properties of ϕ. Therefore the choice of a basis
must be adapted to the knowledge or assumptions on both ϕ and F (i.e. it
depends on both the nature of the leakage and the nature of the targeted
sensitive variable).

To conclude this section, we give hereafter an example of our strategy in
a realistic attack context.
Example. Let us assume that Fk is an AES S-box. Then the set J con-
tains all the functions that are the composition of AES SubByte with

*These properties relate to the fact that, by construction, functions Fk and Fk̂ must
be as independent as possible when parameterized by different keys. Moreover, the
family of functions Fk must have a high algebraic degree (close to m) to defeat linear
and differential cryptanalyses. As a consequence, the composition of functions Fk and
Fk̂, with k 6= k̂, must act as a random composition of functions with high algebraic
degrees. With very high probability, such a composition results in a function with high
degree. If required, this hypothesis may be tested for a target function F by computing
the minimim degree of the functions in J .
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an AES InvSubByte, the two S-boxes being parameterized by different
keys. By property of the AES S-box, every function in J will be far,
in terms of distance, from the set of affine functions (this relates to the
high non-linearity of the S-box). Hence, a good strategy is to assume that
ϕ belongs to the set of linear functions F1 (i.e. (gi)i = (zu)u∈Fm

2 ,HW(u)≤1).
Indeed, in this case the linear regression will compute a good approxi-
mation of ϕ in F1, while by definition of J , it will not be able to compute
a good approximation of ϕ◦ j for any j ∈J .

7-2.3 Relationship with Other Attacks

7-2.3.1 Relationship with Second-Order CPA

A second-order CPA using the centered product combining function has
been introduced in [80] and compared favorably to other attacks based
on the correlation coefficient. In fact, this CPA may be viewed as a par-
ticular case of our attack where the space spanned by the basis (gi) is
reduced to a single function ϕ̂ that is assumed to approximate the func-
tion ϕ defined in (7.5) (e.g. the Hamming weight function is chosen for
ϕ̂). Indeed, in such a particular case, the distance computation (7.4) can
be rewritten:

∆k̂(N)= d(yN ,H ◦Fk̂)2 = d(yN , ϕ̂◦Fk̂)2 , (7.8)

since H = {ϕ̂}.

Now asymptotically (7.8) becomes:

lim
N→∞

∆k̂(N)= d(y, ϕ̂◦Fk̂)2 = d(y, ŷ)2 , (7.9)

where we have denoted ϕ̂◦Fk̂ by ŷ and where we recall that y denotes
ϕ◦Fk. Equation (7.9) can be rewritten:

lim
N→∞

∆k̂(N) = ∑
x∈Fn

2

(
[ϕ◦Fk](x)− [ϕ̂◦Fk̂](x)

)2

= 2n ·E
[
(Y − Ŷ )2

]
. (7.10)

After developing (7.10), we get:

lim
N→∞

∆k̂(N)

= 2n · (E[
Y 2]+E[

Ŷ 2]−2 ·E[
Y · Ŷ ])

. (7.11)
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As a consequence, if ρ(Y , Ŷ ) denotes the correlation coefficient between
Y and Ŷ viewed as random variables functionally dependent on X , we
recall that ρ(Y , Ŷ ) satisfies:

ρ(Y , Ŷ ) = cov
(
Y , Ŷ

)
σY ·σŶ

(7.12)

= 1
σY ·σŶ

· (E[
Y · Ŷ ]−E [Y ] ·E[

Ŷ
])

,

From (7.11) and (7.12), we deduce:

lim
N→∞

∆k̂(N) = a ·ρ+b , (7.13)

where

a = −2n+1 ·σY ·σŶ and
b = 2n · (E[

Y 2]+E[
Ŷ 2]−2 · (E [Y ] ·E[

Ŷ
]
)
)

are independent of the key hypothesis provided σY , σŶ , E
[
Y 2], E[

Ŷ 2],
E [Y ] and E

[
Ŷ

]
are also independent of the key hypothesis*.

Equation (7.13) above shows that our new attack with space H reduced
to a single function ϕ̂ is asymptotically equivalent to a second-order CPA
involving the centered product as combining function and ϕ̂ as prediction
function.

7-2.3.2 Relationship with Maximum Likelihood Approach

In a second-order attack based on a maximum likelihood approach [31,
43, 73, 88], the adversary knows for every z a good estimation of the
pdf fz of the random variable ((L1,L2)|Z = z). With such a knowledge
and a sample (`i

1,`i
2, xi)i ←- (L1,L2, X ) measured on the targeted device,

the adversary then computes for each key candidate k̂, a set of predic-
tions (ẑ i)i = (Fk̂(xi))i and selects the key that maximizes the product∏

i f ẑ i (`
i
1,`i

2). This class of attack, which has first been introduced in [31]
under the name of template attacks, can be very efficient if the profil-
ing phase is done precisely enough. However, as previously observed in
many papers, the assumption that the adversary has a good approxima-
tion of fz in hand strongly limits the attack practicability and raises the

*This is clearly the case with typical first-order masking schemes involving an ad-
dition, like Boolean and arithmetic masking schemes.
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need for alternative approaches. To some extent, the attack presented
in Sect. 7-2 can be viewed as such an alternative. More precisely, it may
be viewed as an application of the template attacks principle in a con-
text where the adversary has no a priori knowledge of the fz but tries to
reconstruct them on-the-fly. To further discuss on this statement, let us
develop the pdfs fz under Gaussian assumption.

When the leakage is defined as in (7.2), the fz are mixture of elliptic
normal distributions [76]. Namely they are defined such that:

fz = 1
2n

∑
v∈Fn

2

Φmz ,v ,Σ , (7.14)

where Φmz ,v ,Σ denotes the pdf of the multivariate Gaussian distribu-
tion with mean mz,v and covariance matrix Σ, where mz,v and Σ sat-
isfy:

mz,v = (δ(z?v),δ(v)) and Σ=
(
σ2 0
0 σ2

)
.

Our attack implicitly tries to approximate the distribution fz by a bi-
variate Gaussian pdf and this is actually the main difference between it
and template attacks. The use of such an approximation is known in the
literature as the technique of merging the mixture components [86] with
a limited and fixed number of components (here 2). It leads us to make
the following approximation:

fz ∼Φm,Σz , (7.15)

where m= (E [δ(z?V)],E [δ(V)]) and*

Σz =
(
σ2 y(x)
y(x) σ2

)
,

where x corresponds to one pre-image of z through Fk and where y sat-
isfies (7.3).

In view of the definitions of m and Σz it is clear that the only key-
dependent parameter of the pdf approximation (7.15) is y(x). Thus, test-
ing whether an observation (`1,`2) comes from a distribution Φm,Σz re-
duces to test whether (`1,`2) comes from a bivariate distribution with

*Note that m exactly corresponds to the development of the mean vector
(E [L1|Z = z],E [L2]) when using the linearity of the expectation and the fact that the
noise is assumed to have zero mean.
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covariance y(x). As explained in Sect. 7-2.1, our new attack computes
an estimation of this variable, the estimation being parametrized by a
key hypothesis. Then, to validate the hypothesis (or equivalently the
quality of the approximation of y(x) for every x), a mean-of-square test
is computed. It is well known that this test is equivalent to a maximum
likelihood computation under the Gaussian Assumption. Some simula-
tions can be found in Sect. 8-2.5.
Remark 22. Another more precise way of approximating the distribu-
tions may be to look for approximations by mixtures of Gaussian distri-
butions. This approach has already been suggested in [58] but its sound-
ness is still under discussion, it involves a class of algorithms, called
expectation-maximization (EM) algorithms.

7-3 Models and metrics

As pointed out in Sect. 7-2.2, using a basis of the full space F as ba-
sis in the linear regression attack is not a good strategy to follow. In
fact, the linear regression will always find the approximated function
ϕ◦Fk ◦F−1

k̂
for every k̂ and thus the Euclidean distance does not permit

to discriminate k. In other words, we are interested in discriminating ϕ
from ϕ◦Fk ◦F−1

k̂
for k̂ 6= k. Indeed we can expect that ϕ and ϕ◦Fk ◦F−1

k̂
for k̂ 6= k have a different behavior which can be directly noticed in their
algebraic normal form. We recall that linear regression with a basis of
the full space will output the algebraic normal form of the approximated
function (see Sect. 7-2.2).

We suggest that the algebraic normal form can permit to discriminate ϕ
from ϕ◦Fk ◦F−1

k̂
for k̂ 6= k. Namely the distribution of the coefficients in

algebraic normal form reveals some information on the algebraic nature
of the function.

For instance, if we assume that the deterministic part of the leakage δ is
not an (algebraic) complex function (e.g. an AES) – which is a relatively
common assumption – we can hope that ϕ will not be an (algebraic) com-
plex function too. At the opposite, the function F is generally a crypto-
graphic primitive i.e. an (algebraic) complex function (e.g. AES ). In this
case, ϕ◦Fk ◦F−1

k̂
for k̂ 6= k still remains (algebraically) complex. In other

terms, F is generally a highly non-linear function designed to be indis-
tinguishable from a random function. At the opposite the function ϕ is
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assumed to be a simple function resulting from the manipulation of a
data (typically, a linear combination of the bits of the manipulated func-
tion). In this case, the algebraic normal form of ϕ will contain several
zero coefficients whereas ϕ◦Fk ◦F−1

k̂
for k̂ 6= k will not.

Moreover, taking a closer look at ϕ, in the second order case, we no-
ticed that it directly depends on δ and the masking scheme (Eq. (7.5)).
Thus the algebraic form of ϕ can bring information about the masking
scheme. Namely using a full basis linear regression can also serve as a
reverse engineering tool to identify a masking scheme and some leakage
properties.

Eventually, in an attacker point of view, the masking scheme is impor-
tant and the attack must be adapted in consequence. For instance, the
number of zero coefficients can be a good discriminating tool whereas in
other conditions it will not.

This way of discriminating needs a deeper analysis. At the moment
only few experiments reports have been done and are recorded as-is in
App. C

7-4 To infinity... and beyond

In Sect. 7-2 we have treated the special case of second-order side channel
attacks and we have exhibited a relevant way of exploiting linear regres-
sion with a link to a maximum likelihood approach (Sect. 7-2.3.2). This
method cannot be extended to higher order as easily as previously done.
Namely a multivariate Gaussian approximation is still parameterized
by the mean vector and the covariance matrix (3.2) but the covariance
matrix only contains covariance between two leakage points which is, by
definition of the masking countermeasure, independent of the key.

Indeed, to our knowledge, no special analysis have been done on third
and higher order SCA. Currently only MIA is multivariate and still face
estimations difficulties [22]; otherwise univariate attacks with a com-
bination function are used. Some new directions have already been
mentioned that need deeper analysis. For instance computing the pa-
rameters of the Gaussian mixture using the EM algorithm [58] or using
optimization algorithm such as the gradient descent [87]. In the same
way as the maximum likelihood approach, we can try to approximate
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the Gaussian mixture by a more complicated set of function. Namely,
instead of merging the mixture component into a multivariate Gaussian
pdf, one can merge them into a mixture of two Gaussian distributions etc.
Finally, high-order SCAs still need a lot of analysis. In a defender point
of view to have relevant countermeasures in practice, and in a attacker
point of view to have efficient attacks.
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CHAPTER8
Simulations and Experiments

I
N the previous chapters we have analysed from a theoretical
point of view several univariate side channel Attacks and pro-
posed an unified framework (Chap. 5 and Chap. 6) which has
been extended to second-order (Sect. 7-2). In this chapter we

put in practice these analyses to reinforce them. These experiments
show the practicability of our attack and permit to quantify the gain
w.r.t. the state of the art.

8-1 Univariate SCA

In the previous sections we have shown that common univariate side
channel attacks based on a restrictive model are equivalent to a CPA. At
the opposite, we have exhibited two pertinent ways of attacking where
some constraints on the model can be relaxed. It involves as a distin-
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guisher either AS-DPA(k̂) or linear regression techniques. In the follow-
ing we aim at confronting our theoretical analyses with simulations in
realistic scenarios. Simulation parameters are described below.

Attacks Target. The 8-bit output of the AES S-box, denoted by S, is
targeted. Namely the variable Zk in (4.2) [p. 46] satisfies:

Zk = S(P ⊕k) , (8.1)

where P is an 8-bit value known by the adversary.

Attack Types. We list below the attacks we have performed:

1. Single-bit DPA (SB-DPA)

2. All-Or-Nothing DPA (AON-DPA)

3. Generalized DPA (G-DPA)

4. Correlation Power Analysis (CPA)

5. Partition Power Analysis (PPA)

6. Absolute-Sum DPA (AS-DPA)

7. Regression Attack with (vk̂[i])0ÉiÉ7 as basis functions (this corre-
sponds to Assumption 4 with d = 1).

Attacks 1 to 5 are described in Sect 4-4 and attacks 5 and 6 are described
in Sect 6-1.

Model Choice. We recall that AON-DPA, G-DPA, CPA and PPA re-
quire the choice of a model function m, whereas SB-DPA, AS-DPA and
the regression attack do not (for the latter the basis function is fixed). In
our simulation, we have assumed that the definition of the function δ (·)
in (4.2) is not known by the adversary and we thus systematically used
the Hamming weight function when a model was required to perform
the attack. Namely, in AON-DPA, G-DPA, CPA and PPA the model m
satisfies:

m(Zk̂)=HW(Zk̂)=∑
i

Zk̂ [i] . (8.2)

This model choice is very classical and has been experimentally vali-
dated in several papers e.g., [57]. Once the model function has been
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specified, parameters (ω0,ω1) in AON-DPA and (Ω0,Ω1) in G-DPA still
need to be chosen in order to determine the distinguishers defined in
(4.4) and (4.5) respectively. We chose

(ω0,ω1)= (min
Zk̂

m(Zk̂),max
Zk̂

m(Zk̂))= (0,8)

and if we denote by medX f (X ) the median of the sample f (X ) with re-
spect to X , we chose

(Ω0,Ω1)=
([min

Zk̂

m(Zk̂);med
Zk̂

m(Zk̂)[, ]med
Zk̂

m(Zk̂);max
Zk̂

m(Zk̂)])=

([0;4[, ]4;8]) . (8.3)

Note that this choice is optimal and exactly corresponds to the attacks
performed by Messerges in his original papers [67, 69]. Additionally,
we chose the coefficients αi of the PPA distinguisher such that (5.7)
is satisfied for the model function m defined in (8.2) (i.e., PPA(αi)i (k̂) =
Ê
(
L ·HW(Zk̂)

)
).

Leakage Simulations. Leakages have been simulated in accordance
with (4.2) [p. 46], with the noise variable B being a Gaussian random
variable with mean 0 and standard deviation σ.
Remark 23. For instance, algorithmic noise can results from an hard-
ware with a parallel S-boxes computation design and can thus have an
high standard deviation (e.g. in case of AES, one S-box computation in
parallel of the targeted S-box will bring an additive noise with a stan-
dard deviation of

p
2)

As explained in the following sections, we launched our attack simula-
tions for different definitions of the function δ (·) in (4.2), leading to two
different scenarios:

• Scenario 1: we chose δ (·) in (4.2) to be the Hamming weight func-
tion. Namely, the leakage variable L satisfies:

L =HW(Zk)+B , (8.4)

In our attack settings, this first scenario is ideally suited for AON-
DPA, G-DPA, CPA and PPA since the model function m used by the
adversary exactly corresponds to the deterministic function δ (·). It
will be referred as the perfect model scenario.
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• Scenario 2: we chose δ (·) to be a linear combination of the Zk̂ [i]
with randomly generated coefficients. Namely the leakage vari-
able L satisfies:

L =α−1 +
7∑

i=0
αi ·Zk [i]+B , (8.5)

with coefficients (αi)−1ÉiÉ7 uniformly picked in [−1,1]. This sce-
nario is used to observe the distinguishers behavior when the de-
terministic part of the leakage differs from the model used by the
adversary. We restricted ourselves to functions δ (·) that are linear
combinations in R of the bit-coordinates of the targeted value Zk̂
i.e. as in Assumption 4 (p. 68) with d = 1. It will be referred as the
random linear leakage scenario.

Remark 24. We do not restrict ourselves to Assumption 3 (p. 52). That
is we do not ensure that the size of the plaintext sample is a multiple of
256. Nevertheless plaintexts are drawn from a uniform distribution.

Attack Efficiency. In the following, an attack is said to be successful
if the good key is output by the attack, that is if the key corresponding
to the first element in the score vector is the key used in the simulated
cryptographic device. An attack is said to be more efficient than another
if it needs less messages to achieve the same success rate. Success rate
is measured over 1,000 tries.

We report and analyse in next two sections our attack simulations re-
sults for Scenario 1 (Section 8-1.1) and Scenario 2 (Section 8-1.2).

8-1.1 Attack Results in the Perfect Model Scenario

In this section we assume that L satisfies (8.4). In Fig. 8-1-1, the number
of messages needed to achieve a success rate of 90% is recorded for each
attack mentionned before*. Note that a success rate threshold has been
fixed at 90% but in this configuration each attack can reach 100%.

*We inform the reader that the curves are fitted with a fourth degree polynomial
to ease the reading of the figure. Fitted curves permit to observe the general behavior.
Raw data can be found in Appendix A.
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Fig. 8-1-1 – Evolution of the number of messages (y-axis logscaled) to
achieve a success rate of 90% according to the noise standard deviation
(x-axis logscaled) – Fitted curves.
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Curves in Fig. 8-1-1 can be split in two parts depending on the noise
standard deviation: the oversampling part, where a huge number of ob-
servations are needed to deal with the important noise effects and the
undersampling part, where a small number of observations is sufficient.
The two situations are analysed separately in the following. In both
cases, the most relevant observations are listed and discussed.

Oversampling. When the noise standard deviation is strictly greater
than 23, each distinguisher needs a large number of messages (greater
than 500) to reach a success rate of 90%. In this case the curves have the
same shape for each distinguisher, which is compliant with the asymp-
totical results in [65]. Our observations are detailled below:

• The efficiency curves of each attack have the same gradient. This
suggests us that the noise similarly impacts the efficiency of the
attacks.

• The curves corresponding to G-DPA, CPA, PPA, AS-DPA and the
regression attack are stacked. Note that the logscaling implies
that those attacks share approximatively the same efficiency and
that none of them is emerging as better candidate than the oth-
ers. In fact, in the perfect model scenario, the distinguishers corre-
sponding to these attacks are equivalent to a maximum likelihood
test and the attacks therefore perform in a similar (and optimal)
way [65]. This pinpoints the equivalence between the distinguish-
ers when the model function used in the model-based attacks (i.e.,
AON-DPA, G-DPA, CPA and PPA) is optimal (i.e., perfectly corre-
sponds to the function δ (·) in (4.2)).

• As expected, SB-DPA and AON-DPA are less powerful than the
others (around 100 and 30 times less efficient than G-DPA, CPA,
PPA, AS-DPA and the regression attack for the SB-DPA and the
AON-DPA respectively). Indeed, by nature they do not exploit
all the information contained in the leakage signal: in SB-DPA
only one output bit is targeted over the 8 output bits of the AES,
whereas the AON-DPA only exploits a limited part of the leakage
measurements.

Remark 25. The good result of G-DPA can be surprizing as the involved
model is not the Hamming weight model. The G-DPA model only takes
two values -1 and 1 depending on the Hamming weight of the sensitive
variable is lower than 4 or not. In fact the linear correlation between the
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G-DPA model and the Hamming weight model is high (greater than 0.9).
That implies an efficiency ratio of 1.2 (0.08 in a log10 scale) according
to [63]. This explains why G-DPA’s curve appears stacked with CPA’s
curve.

Undersampling. When the noise standard deviation is lower than
23, the number of messages needed to perform an attack is quite small
(lower than 500). In this case, the statistical stability of the involved dis-
tinguisher plays a role. To better understand how the different attacks
perform in this context we redrew in Fig. 8-1-2 the curves with a thiner
resolution than in Fig. 8-1-1. We detail our observations below:
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Fig. 8-1-2 – Evolution of the number of messages (y-axis logscaled) to
achieve a success rate of 90% according to the noise standard deviation
(x-axis logscaled) – Higher resolution.

• An important efficiency difference occurs between the CPA, the
DPAs and the PPA. For example with a noise standard deviation
of 1, CPA needs only 30 messages to reach a success rate of 90%,
whereas PPA needs 280 messages to achieve the same threshold.
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• CPA is the most efficient attack. This confirms that Pearson’s co-
efficient is the good tool to measure a linear correlation.

• In comparison, the PPA is much less efficient than the CPA (and
even also than the DPAs). This result was actually expected. In-
deed, centering the leakage and the model random variables (i.e.
computing the value Ê

(
L ·m(Zk̂)

)− Ê (L)Ê
(
m(Zk̂)

)
in place of the

value Ê
(
L ·m(Zk̂)

)
in the PPA attack) and then normalizing the

centered mean by the standard deviations of the random variables
(i.e. dividing Ê

(
L ·m(Zk̂)

)− Ê (L)Ê
(
m(Zk̂)

)
by σ̂ (L) · σ̂(

m(Zk̂)
)

thus
getting the CPA distinguisher CPA(k̂)) is useful to reduce the linear
dependency estimation errors when the number of observations is
small (i.e. undersampling), which is the case when the attacks are
performed for a small amount of noise.

• G-DPA, CPA and PPA are more efficient than AS-DPA and regres-
sion attacks. It may be noted that this situation is the opposite of
the one occuring in the oversampling case.

Hence, our results corroborate our theoretical analysis: the SB-DPA and
the AON-DPA are less efficient than the other simulated attacks for any
amount of noise in the leakage. This highlights the fact that targeting a
subspace of the model (i.e., a single bit over eight or targeting 2 values
over 256) is suboptimal when the adversary uses a model that well cor-
responds to the function δ (·) (G-DPA, CPA and PPA) or when an AS-DPA
or a regression attack is performed. Whatever the signal-to-noise ratio,
CPA is always the best attack. However its efficiency is very close to
that of G-DPA and PPA when the noise standard deviation reaches the
threshold 4. Actually CPA is mainly better than the other tested attacks
when the leakage is not very noisy (i.e., when the noise standard devia-
tion is between 0 and 4). Eventually, it can be noted that the efficiency
of AS-DPA and linear regression attack tends to be close to that of the
CPA while the perfect model scenario is optimally suited for CPA.

8-1.2 Attack Results in the Random Linear Leakage
Scenario

In this section we assume that L satisfies (8.5). In Fig. 8-1-3, we
recorded the success rate for different numbers of messages and for dif-
ferent values of noise standard deviation.
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Fig. 8-1-3 – Evolution of the success rate (1,000 tries) for different numbers
of messages and according to some critic noise standard deviations – whole
data can be found in Appendix A.
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Fig. 8-1-3 – Evolution of the success rate (1,000 tries) for different numbers
of messages and according to some critic noise standard deviations – whole
data can be found in Appendix A.
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Fig. 8-1-3 – Evolution of the success rate (1,000 tries) for different numbers
of messages and according to some critic noise standard deviations – whole
data can be found in Appendix A.

103 / 220



chapitre II.8 – Simulations and Experiments

Observations are reported below. As in the perfect model scenario we
can split our observations in two parts.

Oversampling. When the number of messages available is greater
than approximately 105 ×σ2, the curves have the same shape for each
distinguisher but contrary to what happened in the perfect model sce-
nario, all the attacks do not reach a success rate of 100%.

• The maximum success rate achieved by the model-based attacks
is lower than 75% (e.g., CPA achieves a success rate of 62% while
G-DPA and PPA are still less efficient with a success rate limit of
58%) independent of the noise standard deviation. In other terms,
for some linear functions δ (·), those attacks do not succeed in dis-
criminating the good key candidate when the Hamming weight
function is involved as model. In Appendix 8-1.5, we give a theo-
retical explanation of the CPA ineffectiveness for some linear func-
tions δ (·) and we argue that it is related to the algebraic properties
of the S-box S that is targeted.

• AON-DPA only reaches a maximal success rate of 6% which is very
low compared to the others. A possible explanation for the AON-
DPA poor effectiveness resides in the fact that the design of the
sets Ω0 and Ω1 under the hypothesis m=HW is not relevant when
δ (·) is far away from the Hamming weight function

• At the opposite SB-DPA reaches a maximal success rate of 72%
which is better than CPA. This observation is not surprising since
SB-DPA targets only one bit (independently of the model choice)
over eight, which lowers the impact of the model choice on the re-
maining seven bits.

Undersampling. Let us focus on the critic values when a small num-
ber of messages is involved in the attack (lower than 500). In this case,
the statistical stability of the involved distinguisher plays a role. To
better understand how the different attacks perform in this context we
redrew in Fig. 8-1-4 the curves with a thiner resolution than in Fig.
8-1-3.

Our observations are detailled below:
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Fig. 8-1-4 – Evolution of the success rate (10,000 tries) for number of mes-
sages from 1 to 1,000 with some noise values.
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Fig. 8-1-4 – Evolution of the success rate (10,000 tries) for number of mes-
sages from 1 to 1,000 with some noise values.
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Fig. 8-1-4 – Evolution of the success rate (10,000 tries) for number of mes-
sages from 1 to 1,000 with some noise values.
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• In this situation, each distinguisher has the same ranking as in
oversampling.

• G-DPA, CPA and PPA are relatively less efficient than in the per-
fect model scenario. Indeed, in the latter model scenario they are
more efficient than AS-DPA and regression attack which is not the
case here.

• SB-DPA and AON-DPA still have a different behavior than other
model based attacks due to the use of a suboptimal model (with
respect to the attacker choice in (8.2)).

The impact of the noise on the attacks efficiency in our linear random
model scenario is very close to what we observed in the perfect model
context. Namely the maximal success rate is the same whatever the
noise deviation but more messages are needed to achieve it. In fact, we
confirm the theoretical analysis in [63], where the author shows that
doubling the noise deviation just increases the number of needed mes-
sages by its square root to reach the same success rate.

Among the attacks we simulated in the random model scenario, the lin-
ear regression attack and the AS-DPA are clearly the most efficient ones
and they are the only ones that reach a success rate of 100%.

8-1.3 Attacks Experiments in Real Life

In previous sections, we have confronted our theoretical analyses with
simulations in realistic scenarios. Two attacks emerged, the CPA and
the linear regression. In the following, we aim to confront our results
against real measurements. Thus we only focus on CPA and linear re-
gression attacks. Attack parameters are described below:

Attacks Target. The 8-bit output of the AES S-box, denoted by S, is
targeted. Namely the variable Zk in (4.2) satisfies:

Zk = S(P ⊕k) , (8.6)

where P corresponds to an 8-bit value known by the adversary.

Attack Types. We list below the attacks we have performed:
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• CPA with m satisfying (8.2) (Hamming weight model).

• Regression Attack with Blin = (vk̂[i])0ÉiÉ7 as basis functions (As-
sumption 4 with d = 1).

• Regression Attack with Bquad = (vk̂[i] ·vk̂[ j])0ÉiÉ jÉ7 as basis func-
tions (Assumption 4 with d = 2).

Leakage Measurements. A sample of 400,000 power consumption
measures have been done on a 8051 8-bit micro-controller. In each mea-
surement curve, the part related to the manipulation of Zk is composed
of 200 points. We suppose the curves to be synchronized (a glitch is
used to be synchronized at the beginning of the manipulation process-
ing). Before mounting the attacks, a pre-processing step has been per-
formed on the curves to determine the most pertinent point of interest
for each attack. By definition, this point is the one among the 200 points
per curve that optimizes the attack efficiency. As argued in Section 5-7,
it corresponds for the CPA to the point when the error resulting from
the approximation of the leakage by the attack model (i.e. the Hamming
weight function) is minimum. For the regression attacks, the point of in-
terest is the point on which the error resulting from the approximation of
the leakage by a linear (resp. quadratic) combination of the coordinates
of the manipulated variable is minimum. During the pre-processing,
we have used the fact that we knew the values vk,i manipulated by the
device. Even if this does not correspond to a real life adversary, pre-
processing in this context allows us to determine the time/point when
an attack performed by an adversary with no such a knowledge is the
most efficient. In the following, we sum-up the pre-processing step for
the three attacks.

• CPA: the coefficient CPAHW(k)2 has been estimated for each of the
200 points of the curve – the estimation being performed for a sam-
ple of size 400,000 – to determine the best attack time location.

• Regression Attack: a model function mlin (resp. mquad) correspond-
ing to the correct k has been computed for each of the 200 points
of the curve, the estimation being performed for a sample of size
400,000. Then, 200 determination coefficients R2 have been per-
formed (one for each model Mk and the corresponding leakage
point) to determine the best attack time location corresponding to
the basis functions Blin (resp. Bquad)
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Figure 8-1-5 illustrates the results of the pre-processing step for each
attack and each of the 200 points.
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Fig. 8-1-5 – Characterisation Timing Diagram. Max values are pinpointed
by an arrow.

For the attack comparisons, only the point of interest resulting in the
maximal distinguishing value has been considered for each attack.

Attack Comparaison. For each attack, the distinguishing coefficient
(in y-axis) has been computed for each key candidate and for a given
(increasing) number of power traces (x-axis). We recorded the mini-
mal number of messages needed to have the real key ranked first (i.e.
emerging from others). Results are drawn in Fig. 8-1-6, 8-1-7 and 8-1-8.
As expected linear regression with linear basis is clearly more efficient
than CPA i.e., a lower number of messages is required for the real key to
emerge (68 messages is sufficient for the first one while 95 at least are
needed for the CPA). As expected, the linear regression with quadratic
basis needs more messages. In fact the information contained in the
quadratic part of the leakage is not enough to compensate for the in-
crease of noise resulting from the multiplication of leakage points (which
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is necessary to process the linear regression). Moreover the quadratic re-
gression has to build a larger model (i.e., from a larger basis) from data.
We can remark that even with quadratic basis, the minimum number
of messages needed to discriminate the real key is still very close to the
one for CPA (≈ 95).
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Fig. 8-1-6 – Evolution of the distinguishing value (y-axis) with the number
of messages (x-axis) for all key candidates for CPA. The curve of the real
key used in the device is plotted in red.

8-1.4 Conclusion on the Attack Simulations and Ex-
periments

When the chosen model exactly corresponds to the leakage function (per-
fect model case), each distinguisher reveals the key and the CPA and
regression attacks are among the most efficient ones (actually except
SB-DPA and AON-DPA all tested attacks have an equivalent efficiency
when the noise increases). Nevertheless in case of undersampling, CPA
is ranked first. This can be explained by the fact that the linear re-
gression attack has to rebuild the model from data while CPA is directly
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Fig. 8-1-7 – Evolution of the distinguishing value (y-axis) with the number
of messages (x-axis) for all key candidates for linear regression with linear
basis. The curve of the real key used in the device is plotted in red.
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Fig. 8-1-8 – Evolution of the distinguishing value (y-axis) with the num-
ber of messages (x-axis) for all key candidates for linear regression with
quadratic basis. The curve of the real key used in the device is plotted in
red.
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provided with the optimal model function and uses the observations only
to corroborate a linear dependency.

When the model is unknown, the linear regression attack and the AS-
DPA always succeed in revealing the key. they both are moreover more
efficient than the model-based attacks. Nevertheless, collating both, the
linear regression is always better than AS-DPA. That is, at a cost of a lit-
tle computational overhead, linear regression attack shall be preferred
to the other distinguishers.

Notice that a more sophisticated model or basis did not necessarily lead
to better distinguishability as it will bring more noise than useful infor-
mation.

Finally, if one has a good linear approximation of δ(·) then CPA is an
optimal way to perform an attack. In other cases, the linear regression
attack will always perform better.

8-1.5 Why CPA can fail?

This section aims at explaining why the CPA fails in discriminating the
correct key for some linear leakage models. Before starting our discus-
sion, let us first have a look on the definition of the CPA distinguisher
(4.8). Under Assumption 3, it involves standard deviations that tend to
be independent of the key hypothesis when the sample size increases.
As a consequence, the distinguisher in (4.8) discriminates key hypothe-
ses in a similar way as the covariance cov

(
L , Mk̂

)
. Explaining the CPA

failure hence amounts to explain the covariance failure when involved
as a key-distinguisher.

Our analysis will be merely related to the following proposition.
Proposition 6. Let f and g be two Boolean functions defined over F2n .
If f and g are balanced, then we have:

cov( f , g)= 1
4

W( f ⊕ g) , (8.7)

where W( f ⊕ g) denotes the value 2−n ∑
x∈Fn

2
(−1) f (x)⊕g(x).

Proof. The result is a direct consequence of the following equality:

f + g = f ⊕ g+2 f g . (8.8)
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¦
Due to Assumption 2 and the fact that the leakage satisfies (4.2), we re-
call that cov

(
L , Mk̂

)
equals cov

(
δ (Zk) , Mk̂

)
independent of the targeted

key k and the key hypothesis k̂. If the model function m is the Hamming
weight and if δ(·) satisfies (6.1) with d = 1 (i.e. Assumption 4), then δ (Zk)
and Mk̂ =m(Vk̂) respectively equal α−1+∑

iαiZk [i] and
∑

j Zk̂ [ j]. Under
those two assumptions, we hence get:

cov
(
L , Mk̂

)= cov

(
α−1 +

∑
i
αiZk [i] ,

∑
j

Zk̂ [ j]

)
, (8.9)

i.e.,

cov
(
L , Mk̂

)=∑
i
αi

(∑
j

cov
(
Zk [i] , Zk̂ [ j]

))
. (8.10)

Since functions Zk [i] and Zk̂ [ j] are both balanced under Assumption 3,
Proposition 6 can be applied to develop the covariances in (8.10):

cov
(
L , Mk̂

)= 1
4

∑
i
αi

∑
j

W(Zk [i]⊕Zk̂ [ j]) , (8.11)

That is we have
cov

(
L , Mk̂

)= 1
4

∑
i
αiwi(k, k̂) (8.12)

after denoting the term
∑

j W(Zk [i]⊕Zk̂ [ j]) by wi(k, k̂).

Let us study (8.12) when the correct key hypothesis is tested, i.e., when
k̂ equals k. As Zk is balanced, the term W(Zk [i]⊕Zk̂ [ j]) is always zero
except for i = j where it equals 1. Equation (8.11) can thus be rewritten
as:

cov
(
L , Mk̂

)= 1
4

∑
i
αi . (8.13)

In view of (8.13), argmaxk̂|cov
(
L , Mk̂

) | is not equal to the expected key
(i.e., the covariance distinguisher fails at discriminating the correct key),
if there exists at least one key hypothesis k̂ 6= k such that Zk̂ satis-
fies:

∣∣∣∣∣∑i
αi

∣∣∣∣∣<
∣∣∣∣∣∑i

αiwi(k, k̂)

∣∣∣∣∣ . (8.14)
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Actually, for the type of variables Zk involved in the attack simulations
reported in Section 8-1.2, the condition (8.14) is often satisfied. Indeed,
in those simulations, Zk corresponds to the output of the AES S-box S
parameterized by the key k. Namely, Zk takes the form S(X ⊕ k). In
this context, Zk [i]⊕ Zk̂ [ j] corresponds to the function X 7→ Si(X ⊕ k)⊕
S j(X ⊕ k̂), where S1, . . . ,Sn denote the boolean coordinate functions of S.
When X has a uniform distribution, the latter function shares the same
distribution as the function Sa

i, j defined by Sa
i, j(X ) = Si(X ⊕ a)⊕S j(X ),

with a denoting k⊕ k̂. After denoting by wi(a) the sum
∑

j W(Sa
i, j), we

therefore conclude on the equivalency between (8.14) and

∣∣∣∣∣∑i
αi

∣∣∣∣∣<
∣∣∣∣∣∑i

αiwi(a)

∣∣∣∣∣ . (8.15)

Since coefficients (αi)i and (wi(a))i,a have an amplitude upper bounded
by 1 and the right hand side of (8.15) is itself upper-bounded by the value
min(

∑
i |αi|,∑i |wi(a)|), we deduce two sufficient conditions for (8.15) to

be never satisfied for a 6= 0 (i.e. for another key candidate than the correct
one):

• All the terms αi have the same sign.

• maxa 6=0
∑

i |wi(a)| is lower than or equal to
∑

i |αi|.
The first sufficient condition condition is device dependent and the sec-
ond condition relies on the S-box properties. For the AES S-box for in-
stance, it can be checked that maxa

∑
i |wi(a)| equals 1.9375 for a = 53

(the absolute sum of wi(a) has been computed for AES for each 256
values of a, results can be found in the Appendix B). Thus, if

∑
i |αi|

is greater than 1.9375, then (8.15) cannot be satisfied for a value a 6= 0
and we deduce that the CPA is theoretically able to succeed in this case.
Otherwise, when

∑
i |αi| < 1.9375 then for some a 6= 0 the distinguisher

value is greater than the one got for the good hypothesis and the attack
thus fails.

In the following, we give an example of such a case (i.e., when CPA fail
to discriminate the good key):
Example 2. Let {αi}0ÉiÉ<7 = {0.5,0.2,−0.5,0.2,−0.5,1,−0.8,0.5} be the
coefficients of the leakage model, that is for every x ∈ F28 :

δ(x)= 0.5x0 +0.2x1 −0.5x2 +0.2x3 −0.5x4 + x5 −0.8x6 +0.5x7
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where (x7, . . . , x0) is the binary decomposition of x. In this case we have
|∑iαi| = 0.6 < 1.9375 and at least ten values (see Table 8-1-1) of a are
such that |∑iαiwi(a)| > |∑iαi|.

Tab. 8-1-1 – Eleven highest values of |∑iαiwi(a)| obtained in Example 2.

a |∑iαiwi(a)|

101 0.8875
228 0.84375
109 0.775
25 0.7625
30 0.721875

176 0.66875
19 0.6578125

151 0.6515625
66 0.634375

158 0.6203125
0 0.6

8-2 Second-Order Side Channel Attack: Ap-
plication on Masking Schemes

In Sect. 7-2, we exhibited a way to attack a masked implementation
by using linear regression techniques. In the following, we aim at con-
fronting our analyses with simulations in realistic scenarios (Sect. 8-2.1
and 8-2.2) and experiments (Sect. 8-2.3). To ease the comparison, several
attack parameters are considered: (1) the underlying masking scheme
used to protect the sensitive variable, (2) the distinguisher involved in
the key discrimination, (3) some related parameters to customize the at-
tack, (4) the nature of the leakage (simulation or real curves) and (5) the
attack efficiency (number of messages, etc.).
Remark 26. Our main purpose is to compare the new attack with the
CPA techniques which are the most widely used in practice. However, in
order to have an analysis as exhaustive as possible, we also implemented
second-order MIA attacks. Among the different techniques to process the
MIA, we chose to implement the one which is based on histogram since
it seems to be the most efficient in practice [22]. Further works may
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consist in deeper comparing the new attack with all the various MIA
techniques [112] and also with the recently introduced attacks based
on Kolmogorov-Smirnov distance estimator [106, 113]. Those attacks
indeed also aim to target masked implementations when the leakage
has unpredictible behaviour.

Attack Target. The attacks exploit the leakage related to the manipu-
lation of two shares that jointly depend on a sensitive variable Z satis-
fying

Z = Fk(X )= F(X ⊕k) , (8.16)

where F denotes the AES S-box and where X corresponds to a 8-bit
uniformly distributed random value known by the adversary and F de-
notes the AES S-box. Depending on the underlying masking scheme, the
definition of the two shares differ. The following masking schemes are
considered in our attacks:

1. 1st-order Boolean masking: the operation ? in (7.2) is the bitwise
addition over F8

2. The two shares are Z ⊕V and V, with V a uni-
formly distributed random variable independent of Z.

2. 1st-order arithmetic masking: the operation ? in (7.2) is the mod-
ular addition over Z/256Z. The two shares are Z+V mod 256 and
V, with V a uniformly distributed random variable independent of
Z.

Leakage Simulations. Leakages have been simulated in accordance
to (7.2) for different definitions of δ(·), leading to the three following sce-
narios:

Scenario 1 (Hamming Weight Leakage): Equation (7.2) becomes:

L1 =HW(Z?V)︸ ︷︷ ︸
δ(Z?V)

+B1 and L2 =HW(V)︸ ︷︷ ︸
δ(V)

+B2 . (8.17)

In our attack settings, this first scenario is ideally suited for CPA since
the model used by the adversary exactly corresponds to the deterministic
function δ(·).
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Scenario 2 (Linear Leakage): Equation (7.2) becomes:

L1 = α0 +
8∑

i=1
αi · (Z?V) [i]︸ ︷︷ ︸
δ(Z?V)

+B1 and

L2 = α0 +
8∑

i=1
αi ·V[i]︸ ︷︷ ︸

δ(V)

+B2 , (8.18)

with coefficients (αi)0ÉiÉ8 uniformly picked from [−1,1]. This scenario
is used to observe the distinguishers behaviour when the deterministic
part of the leakage differs from the model used by the adversary. We
restricted ourselves to functions δ(·) that are linear combinations in R of
the bit-coordinates of the shared values.

Scenario 3 (Quadratic Leakage): Equation (7.2) becomes:

L1 = δ(Z?V)+B1

= α0 +
8∑

i=1
αi · (Z?V) [i]

+
8∑

i1,i2=1
i1<i2

αi1,i2 · (Z?V) [i1] · (Z?V) [i2]+B1

L2 = δ(V)+B2

= α0 +
8∑

i=1
αi ·V[i]

+
8∑

i1,i2=1
i1<i2

αi1,i2 ·V[i1] ·V[i2]+B2 , (8.19)

with coefficients (αi)0ÉiÉ36 uniformly picked from [−1,1]. This scenario
is used to observe the distinguishers behaviour when the deterministic
part of the leakage differs in degree from the model used by the adver-
sary. We restricted ourselves to functions δ(·) that are quadratic combi-
nations in R of the bit-coordinates of the shared values.

Leakage Measurements. The details about the leakage used in exper-
iments (For instance the choice of points of interest) have been confined
to a dedicated section (see Sect.8-2.3).
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Attack Distinguisher.

1. Correlation Power Analysis (CPA). To discriminate the key can-
didates, those attacks approximate ρ(C (L1,L2),m(Fk̂(X ))), where
C (·) is a combining function from R2 to R and m is a model function
deduced from C (·) and an hypothesis on δ(·). A second-order CPA
with model m is denoted by CPAm

2. Linear Regression (LR) is used as described in Sect. 7-2.

3. Mutual Information Analysis (MIA) with Hamming weight model
and histogram estimation (the choice of the bin-width is done using
the rule proposed in [42]).

Model and Basis Choice. Albeit Z ?V and V jointly depend on Z,
each masking scheme induces a different dependency relationship which
implies to adapt the attack strategy accordingly. Namely, for each of the
attacks above, the choice of the consumption model (in CPA) or the choice
of the basis (in LR attacks) require a careful attention.

To perform the second-order CPA, we chose the centered product com-
bining of the leakages and we defined the optimal model function* m as
described in [80] under the assumption δ(·)=HW(·). This kind of CPA is
denoted CPAOpt in the sequel.

As argued in Sect. 7-2.2, to perform efficiently linear regression requires
a set of well-chosen basis functions. To approximate the function ϕ : z 7→
cov(δ(z?V) , δ(V)), we have analysed different choices of basis†:

lin where the (gi)i are the degree-1 monomials z 7→ zu with HW(u)É 1.

quad where the (gi)i are the monomials z 7→ zu with HW(u)É 2.

cub where the (gi)i are the monomials z 7→ zu with HW(u)É 3.

full where the (gi)i are the monomials z 7→ zu with HW(u)É 8.

deg2 where the (gi)i are the degree-2 monomials z 7→ zu with HW(u) =
2.

Opt where the basis is reduced to the constant function z 7→ 1 and the
function g corresponding to the optimal (prediction) function de-
fined in [80]. In Sect. 8-2.1 (i.e. Boolean case), the basis Opt is

*Notice that the optimal model function m differs from one masking scheme to
another and must therefore be computed for each different masking scheme.

†Every basis contains the constant function, g1 : z 7→ 1
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denoted by HW to emphasis the affine equivalence between the
optimal function and the Hamming weight when the optimal func-
tion is designed under the assumption δ(·)=HW and ?=⊕.

In the sequel, an attack using the linear regression with basis basis will
be denoted by LR-basis, where basis is chosen among lin, quad, cub,
deg2, full and Opt.
Remark 27. It has been shown in Sect. 7-2.3 that CPAOpt is asymptoti-
cally equivalent to LR-Opt, nevertheless we have conducted both attacks
to confront this theoretical result to experimentations.

Attack Efficiency. In the following, an attack is said to be successful if
the good key is output by the attack. An attack is said to be more efficient
than another if it needs less messages to achieve the same success rate.
Success rate is measured over 1,000 tries.

We report and analyse in next sections our attack simulations results
for Scenarios 1, 2 and 3 in case of Boolean (Sect. 8-2.1) and arithmetic
masking schemes (Sect. 8-2.2). We inform the reader that we have plot-
ted only attacks which are relevant. In other terms, some attacks never
succeeded and thus have not been plotted to ensure readability of fig-
ures.

8-2.1 Simulation with Boolean Masking Scheme

In this section we assume that L1 and L2 satisfy (8.17) (Scenario 1), or
(8.18) (Scenario 2), or (8.19) (Scenario 3). For each attack listed in the
previous section, we have plotted in Fig(s). 8-2-1–8-2-3 the success rate
as a function of the number of messages. We did this in two different
contexts: a non-noisy one (B1 and B2 are null) and a noisy one (B1 and
B2 have mean 0 and standard deviation 4).

In Scenario 1, without noise, MIA is the most efficient attack. When
there is noise however, LR-HW performs better than the others. As ex-
pected, in both contexts, CPAHW and LR-HW share the same rank, while
the LR-lin attack is ranked second. This is due to the fact that the hy-
pothesis made over δ(·) induces a model that exactly corresponds to the
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Fig. 8-2-1 – Attacks against Boolean masking in Scenario 1
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leakage function. Nevertheless, LR-HW and CPAHW stop to be the most
efficient attacks in Scenarios 2 and 3. This must be a consequence of
the fact that, in those cases the model m is built under the incorrect hy-
pothesis δ(·) = HW(·). In Scenario 2, LR-lin is the most efficient attack.
The efficiency of the linear regression with basis lin is explained by the
fact that yN(·) in (7.3) is linear when δ(·) does (this is a straightforward
extension from the Hamming weight case shown in [80] to any linear
function of the bit-coordinates) and it is thus well approximated in the
linear basis. In Scenario 3, the results are rather the same than in Sce-
nario 2 since LR-lin is still the most efficient attack. This may appear
as a surprising result since we could expect the LR-quad attack to be
more efficient. Indeed, in this scenario yN can be exactly approximated
given the basis quad but cannot with basis lin. So the estimation of yN
returned by the linear regression is better in the quadratic case than
in the linear one. Despite this difference, the attack with linear basis
discriminates faster. This shows that in some circumstances, it may be
sufficient to approximate only the linear part of the leakage and that the
computation overhead brought on by a quadratic (or higher) basis, does
not worth.

Eventually, it seems that for each attack and in each scenario, the pres-
ence of noise makes the curves to be closer from each other. Namely,
attacks reaching a 100% success rate seem to become asymptotically
equivalent when noise increases. It is explained by the fact that the
number of messages needed to annihilate the noise is largely sufficient
to have a good approximation with linear regression whatever the size
of the basis.
Remark 28. As expected, MIA is always the less efficient attack except
in a perfect condition (i.e. without noise and with the leakage determin-
istic part equal to the attack model – here Hamming weight –).

8-2.2 Simulation with Arithmetic Masking Scheme

In this section, L1 and L2 satisfy either (8.17) (Scenario 1), or (8.18)
(Scenario 2), or (8.19) (Scenario 3). For each attack listed before, we have
performed the same attack simulations as in Sect. 8-2.1. The results are
plotted in Fig(s). 8-2-4–8-2-6.

In the arithmetic case, all attacks based on the optimal model are the
most efficient ones, even in Scenarios 2 and 3. The LR-quad attack is
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Fig. 8-2-2 – Attacks against Boolean masking in Scenario 2
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Fig. 8-2-3 – Attacks against Boolean masking in Scenario 3
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Fig. 8-2-4 – Attacks against arithmetic masking in Scenario 1

126 / 220



section 8-2: Second-Order Side Channel Attack: Application on Masking
Schemes

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106 107 108

su
cc

es
s

ra
te

messages

CPA-Opt

CPA-HW

LR-lin

LR-quad

LR-cub

LR-deg2

LR-full

LR-Opt

MIA

(a) No noise

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106 107 108

su
cc

es
s

ra
te

messages

CPA-Opt

CPA-HW

LR-lin

LR-quad

LR-cub

LR-deg2

LR-full

LR-Opt

MIA

(b) σ= 4

Fig. 8-2-5 – Attacks against arithmetic masking in Scenario 2
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Fig. 8-2-6 – Attacks against arithmetic masking in Scenario 3
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ranked second for each scenario and its efficiency is close to that of LR-
Opt and CPAOpt. In particular, it is always better than CPAHW and LR-
lin which actually do not achieve a success rate greater than 85%. This
situation can be explained by the fact that the quadratic terms of the
function yN defined in (7.3) have an important influence on the leakage
when the masking is arithmetic and not Boolean. To illustrate this, fo-
cusing on LR-deg2 attack, it can be checked that its efficiency is close to
that of LR-quad (namely the attack performs almost equivalently with
and without the linear terms in yN). The LR-cub attack is ranked third,
behind the LR-quad. Therefore, considering the computation overhead
induced by the use of a basis with cubic terms, there is no interest to ap-
ply the LR-cub attack instead of LR-quad, even if yN is probably better
approximated in cub basis than in quad basis.

8-2.3 Attacks Experiments in Real Life

In previous sections, we have confronted our theoretical analyses with
simulations in realistic scenarios. In the following, we aim at confronting
our results against real measurements. Attack parameters like the tar-
get, the masking scheme and the distinguisher remain the same as pre-
viously defined while the leakage now comes from real power consump-
tion curves.

8-2.3.1 Leakage Measurements

A sample of 400,00 power consumption leakages have been measured
on a 8051 8-bit micro-controller. In each measurement the parts related
to the manipulation of Z?V and V are composed of 100,000 points. We
assumed the curves to be synchronized (a glitch* is used to synchronize
at the beginning of the manipulation processing). Since most of the at-
tacks involve different model classes (e.g. only HW or linear or quadratic
or cubic functions), some of them may be able to succeed when other
fail and reciprocally. This observation leads us to not systematically
use the same pair of points for all the attacks. Actually, in our attack
comparisons, only the pair of points of interest resulting in the maxi-
mal distinguishing value has been considered for each attack. Hence,

*By glitch we denoted a brief impulse on the power supply (or clock etc.) which
have a distinctive pattern on the measurement trace.
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before mounting each attack, a pre-processing step has been performed
on the curves to determine the two most pertinent points of interest (the
first point corresponding to Z ?V and the second one corresponding to
V). By definition, this pair of points is the one that optimizes the at-
tack efficiency among the 100,0002 possible pairs of points. This more
or less corresponds to the definition given in [108]. For the CPA, the
pair corresponds to the pair of points for which the error resulting from
the approximation of the leakage by the attack model is minimal. For
the regression-based attacks, the points of interest are those for which
the error resulting from the approximation of the leakage in the basis
is minimal. During the pre-processing, we have used the fact that we
knew the values Z ?V and V manipulated by the device. Even if this
does not correspond to a real life adversary, this pre-processing allows
us to perform each attack with the optimal choice of points of interest,
which is a fair context to compare them together.
Remark 29. The search of the best points of interest is not a prerequi-
site to the attacks and must therefore not be considered as a profiling
step. In fact, in this section we adopt a defensive point of view, meaning
that we study the implementation resistance against each attack when it
is launched in the most favorable conditions (namely for the best choice
of pair). We point out that usually an attacker does not have access to
such an information and is consequently less efficient – in algorithmic
complexity – even when using the same distinguisher.

8-2.3.2 Experiments Results

For each attack, the distinguishing coefficient has been computed for
each key candidate and for a given (increasing) number of power traces
up to 460,000. We recorded the minimal number of messages needed to
have the real key ranked first (i.e. emerging from others). Results are
recorded in Tab. 8-2-1.

Globally, the experiments confirm our simulations results: The attacks
are ranked in the same order with the same difference magnitude be-
tween them. The number of traces required by the attacks to succeed
makes us think that the standard deviation of the noise in leakage is
slightly smaller than 4. For Boolean and arithmetic masking, LR at-
tacks and CPA perform quite similarly when they are fed with the same
single function (HW or Opt). Interestingly, a basis lin is the best choice
for the Boolean case, whereas the quadratic terms help to improve at-
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XXXXXXXXXXXXAttack
Masking

Boolean Arithmetic

CPAHW 933
42,330

CPAOpt 2,039
LR-HW

832
42,320

LR-Opt 2,043
LR-lin 976 6,384

LR-quad 3,907 5,907
LR-cub 15,737 6,620

LR-deg2 4,884 14,705

Tab. 8-2-1 – Experimental results

tack efficiency in the arithmetic case. This is totally in line with the
simulations reported in Fig. 8-2-4 and 8-2-5.

8-2.4 Conclusion on the Attack Simulations and Ex-
periments

The theoretical analysis in Sect. 7-2.3 is confirmed by the experimental
results. At first, they corroborate the efficiency of the linear regression
attacks and show that they are at least as efficient as the CPA and are
therefore a real alternative to it. Our simulations point out that LR at-
tacks can even outperform CPA when the device leaks a combination of
the manipulated bits that is not well approximated by a simple func-
tion (as e.g. the Hamming weight). Also, the LR techniques introduced
in this paper seem to be particularly suitable against masking schemes
with complex algebraic representation over F2 (like the arithmetic mask-
ing). Also, for quite comparable attack success rates (and sometimes
even better), the LR techniques are more efficient in terms of computa-
tion timings than the classical attacks. This makes them particularly
interesting when the leakage noise, and hence the number of required
number of traces, is high.

A second outcome of our simulations and experiments is the validation
of the importance of the basis choice. Although attacks based on the
optimal model in Scenario 1 (for both masking schemes) are always at
the first place, this is no longer the case when the optimal model is built
from a wrong hypothesis on δ(·). For instance with Boolean masking,
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choosing a linear basis is sufficient to make LR more efficient than LR-
Opt, whereas with arithmetic masking a quadratic basis is needed. Fi-
nally, as predicted in Sect. 7-2.2, the LR-full attacks (i.e. H =F ) always
fail.
Remark 30. The presence of noise makes the curves to be closer each
one to another. Moreover, whereas the maximal success rate of each at-
tack is unchanged, the higher the noise, the higher the measurements
number to achieve the same success rate. In fact the number of mes-
sages needed to annihilate the noise is largely sufficient to have a good
approximation with linear regression even with a large basis.

8-2.5 A word about Maximum Likelihood Approach

In Sect. 7-2.3.2, we have exhibited the link between our attack and the
Maximum Likelihood approach with a merge of the mixture components.
We propose here to go a step further by using a Maximum Likelihood test
as the distinguisher of Step 6 [p. 82] instead of the mean-of-square.

We recall that the Maximum Likelihood test simply consists in comput-
ing the product

∏
i f ẑ i (`

i
1,`i

2) as already mentioned in Sect. 7-2.3.2. To
be able to compute this latter, the adversary must have on hand the pdf
fz for every z. In view of the approximation that is made in (7.15), the
only parameter of the pdf that he has to guess is Y |Z = z. This latter is
already available, as an approximation, at Step 5 of the attack described
in Sect. 7-2.1. With this pdf approximation, the adversary replaces the
mean-of-square distinguisher used in Step 6 by the Maximum Likeli-
hood test and then outputs the key-candidate which gave rise to the
highest discriminating value.

In Sect. 7-2.3.2, we have already shown that this maximum likelihood
approach cannot be more efficient than the mean-of-square approach.
To confirm and strengthen this fact experimentally, we have conducted
some simulations in the Boolean case and scenario 1.

The simulation parameters are the same as in Sect. 8-2 and the results
are plotted in Fig. 8-2-7.

As expected, for the same basis, the maximum likelihood approach is
never more efficient than the corresponding linear regression approach.
More interestingly, the maximum likelihood efficiency is largely lower
than the linear regression (by a factor of 3). The reason is that, the
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Fig. 8-2-7 – Comparison between mean-of-square and Maximum Likeli-
hood approach against Boolean masking in Scenario 1
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approximation of Y returned by the linear regression is chosen w.r.t.
the distance defined in (7.4). In other words, the approximation of Y
itself is the result of a discriminating process. Then applying another
discriminating test such as the maximum likelihood can only bring more
noise.

8-3 Linear Regression Vs CPA: Timings

As demonstrated in [30], the efficiency of an attack decreases exponen-
tially with the masking order. In other term, a successfully attack will
need a number of messages N growing exponentially w.r.t. the masking
order. This implies that high-order attacks must be able to efficiently
deal with a huge number of observations. In particular, the time spent
on the processing of the observations may become a bottleneck. Although
linear regression processing proposed in Sect. 7-2 is based on matrix op-
erations, the regression matrix has a constant size w.r.t. N (thanks to an
initial averaging step – see (7.3)). More precisely, the linear regression
complexity can be split into two parts: the matrix operation which i con-
stant w.r.t. N and only depends on the basis size; and the least-square
computation (a mean of square) which depends on N. Concerning CPA,
its complexity relies on the computation of a mean of product, a product
of means and two standard deviations that all depend on N. We can thus
expect to have a faster attack when using a linear regression (when N is
sufficiently large to neglect the matrix operation). To quantify the tim-
ing complexity of linear regression, we did several timing measurements
and we compared them with those for CPA attacks. We have first pro-
cessed linear regression with a linear model as a common use case and
with a full basis model as the worst possible case (for n = 8), that is with
the largest regression matrix (i.e. the slowest matrix computation). We
remind the reader that in the latter case, the attack always failed (see
Sect. 7-2.2). The results are plotted in Fig. 8-3-1a with a zoom on the
small numbers of messages in Fig. 8-3-1b. The timings represented in
Fig. 8-3-1 are measured over 100 attacks in an univariate setting. Since
CPA and linear regression are both univariate and are fed in this paper
with the same preprocessed vector of observations (a centered product
combination of two leakage vectors), only the core computation differs
from one to the other.
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Fig. 8-3-1 – Timing comparison for CPA-HW, LR-lin and LR-full attacks.

Results: First and as expected, it can be noticed that the performance
of all the attacks are in the same order of magnitude (and thus are
computationally viable). Nevertheless, with a linear model, the lin-
ear regression becomes noticeably faster than CPA attack (i.e. the con-
stant matrix operation cost stays small and can be quickly neglected) for
N > 25,000 (Fig. 8-3-1b). If we focus on linear regression with the full
basis, the cost of the matrix operation is not negligible and thus a large
number of message (N < 107 messages) is needed to counterbalance it.
In both cases, when the number of messages is sufficiently large to by-
pass the timing offset due to the matrix operation, linear regression is
faster than CPA as expected.

Conclusion This brief analysis pinpointed the soundness of our attack
also in term of computability. That is in all terms the linear regression
encompasses and outmatches CPA.
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CHAPTER9
Shuffling and Masking

9-1 Introduction

T
O thwart DPA attacks, countermeasures try to make leakages
as independent as possible of sensitive variables. Nowadays,
two main approaches are followed to achieve such a purpose
in software: masking and shuffling. We briefly recall here-

after the two techniques.

The core idea behind masking is to randomly split every sensitive vari-
able Z into d + 1 shares as explained in Sect. 7-1.1. When carefully
implemented (namely when all the shares are processed at different
times), dth-order masking perfectly withstands any DPA exploiting less
than d + 1 leakage signals simultaneously. Although attacks exploit-
ing d+1 leakages are always theoretically possible, in practical settings
their complexity grows exponentially with d [30]. The design of efficient
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higher-order masking schemes for block ciphers is therefore of great in-
terest. However, even for small d, dealing with the propagation of the
masks through the underlying scheme is an issue. For linear opera-
tions, efficient and simple solutions exist that induce an acceptable over-
head irrespective of d. Actually, the issue is to protect the non-linear
S-boxes computations. In the particular case d = 1, a straightforward
solution called the table re-computation exists (see for instance [20,68]).
Straightforward generalizations of the method to higher-orders d do not
provide security versus higher-order DPA. Indeed, whatever the number
of masks, an attack targeting two different masked input/output is al-
ways possible (see for instance [74]). To bypass this flaw, [90] suggests
to re-compute a new table before every S-box computation. This solu-
tion is very costly in terms of timings and [33] shows the feasibility of
third-order attacks, so the scheme is only secure for d < 3. An alterna-
tive solution for d = 2 has been proposed in [84] but the timing overhead
is of the same order. Recently, Rivain and Prouff [79] proposed the first
high-order masking scheme provably secure for d > 2 for the AES cipher
and Carlet et al. [29] proposed the first generic scheme for high-order
masking.

Shuffling consists in spreading the signal containing information about a
sensitive variable Z over t different signals L1, . . . ,L t leaking at different
times. This way, if the spread is uniform, then for every i the probability
that L i corresponds to the manipulation of Z is 1

t . As a consequence, the
signal-to-noise ratio of the instantaneous leakage on Z is reduced by a
factor of t (see Sect. 9-2 for details). Applying shuffling is straightfor-
ward and does not relate to the nature (linear or non-linear) of the layer
to protect. Moreover, shuffling is usually significantly less costly than
higher-order masking when applied to non-linear layers.

Since higher-order masking is expensive and since first-order masking
can be defeated with quite reasonable efforts [74], a natural idea is to use
shuffling together with first-order masking. A few schemes have already
been proposed in the literature [46, 103]. In [46], an 8-bit implementa-
tion of AES is protected using first-order masking and shuffling. The
work in [103] extends this scheme to a 32-bit implementation with the
possible use of instructions set extension. Though, [103] proposes some
advanced DPA attacks on such schemes whose practicability is demon-
strated in [102]. These works show that combining first-order masking
with shuffling is definitely not enough to provide a strong security level.
A possible improvement is to involve higher-order masking. This raises

140 / 220



section 9-1: Introduction

two issues. First, a way to combine higher-order masking with shuffling
must be defined (especially for S-boxes computations). Secondly, the se-
curity of such a scheme should be quantifiable. It would indeed be of
particular interest to have a lower bound on the resistance of the overall
implementation by choosing a priori the appropriate trade-off between
masking and shuffling orders. In the rest of the chapter, we address
those two issues.

In the next sections, we investigate the security of the combination of
masking and shuffling towards DPA. Our analysis is conducted in the
Hamming weight leakage model that we formally define hereafter. This
model is very common for the analysis of DPA attacks [48, 80, 103] and
it has been practically validated several times [69,74].
Definition 8 (Hamming weight model). Equation 7.1 became

L i = ai +bi ·H(Vi)+Bi , (9.1)

where ai denotes a constant offset, bi is a real value, H(·) denotes the
Hamming weight function and Bi denotes a noise with mean 0 and stan-
dard deviation σ.

When several leakage signals L i are jointly considered, we shall make
three additional assumptions: (1) the constant bi is the same for the
different L i (without loss of generality, we consider bi = 1), (2) noises Bi
are mutually independent and (3) the noise standard deviation σ is the
same for the different Bi.

Higher-order DPA attacks aim at recovering information on a sensitive
variable Z by considering several non-simultaneous leakage signals. Let
us denote by L the multivariate random variable corresponding to those
signals. The attack starts by converting L into an univariate random
variable by applying it a function g. Then, a prediction function f is
defined according to some assumptions on the device leakage model.
Eventually, every guess Ẑ on Z is checked by estimating the correlation
coefficient between the combined leakage signal g(L) and the so-called
prediction f (Ẑ).

As argued in several works (see for instance [63, 64, 80, 90]), the abso-
lute value of the correlation coefficient ρ [ f (Z), g(L)] (corresponding to
the correct key guess) is a sound estimator of the efficiency of a correla-
tion based DPA characterized by the pair of functions ( f , g). Moreover,
in [64,95], it is even shown that the number of leakage measurements re-
quired for the attack to succeed can be approximated by c·ρ [ f (Z), g(L)]−2
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where c is a constant depending on the number of key guesses and the
required success rate. In the following, we exhibit in the Hamming
weight model (see Def. 8) explicit formulas of this coefficient for ad-
vanced DPA attacks where the sensitive variable is either (1) protected
by (higher-order) masking, or (2) protected by shuffling or (3) protected
with a combination of the two techniques.

9-2 Defeating Shuffling: Integrated DPA

When shuffling is used, the signal containing information about the sen-
sitive variable Z is randomly spread over t different signals L1, ..., L t. As
a result, the correlation between the prediction and one of these signals
is reduced by a factor t compared to the correlation without shuffling.
In [32], an integrated DPA attack (also called windowing attack) is pro-
posed for this issue. The principle is to add the t signals all together to
obtain an integrated signal. The correlation is then computed between
the prediction and the integrated signal. The resulting correlation is re-
duced by a factor

p
t instead of t without integration. This is formalized

in the next proposition.
Proposition 7. Let (L i)1ÉiÉt be t random variables mutually indepen-
dent and identically distributed. Let Y denote a signal L j whose index
j is a random variable uniformly distributed over {1, . . . , t}. Let X be a
random variable that is correlated to Y and that is independent of the
remaining L i. For every measurable function f , the correlation between
f (X ) and L1 +·· ·+L t satisfies:

ρ [ f (X ),L1 +·· ·+L t]= 1p
t
ρ [ f (X ),Y ] . (9.2)

Proof. On one hand we have cov[ f (X ),S1 +·· ·+St] = cov[ f (X ),Y ] and
on the other hand we have σ [S1 +·· ·+St] =

p
t σ [Y ]. Relation (9.2)

straightforwardly follows. ¦

9-3 Defeating Masking: Higher-Order DPA

When dth-order masking is used, any sensitive variable Z is split into
d +1 shares Z ⊕V, V1, ..., Vd, where V denotes the sum

⊕
i Vi. In the

following, we shall denote Z ⊕V by V0. The processing of each share Vi
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respectively results in a leakage signal L i. Since the Vi are assumed
to be mutually independent, every tuple of d signals or less among the
L i is independent of Z. Thus, to recover information about Z, the joint
distribution of all the d + 1 signals must be considered. Higher-order
DPA consists in combining the d +1 leakage signals by the mean of a
so-called combining function C(·, . . . , ·). This enables the construction of
a signal that is correlated to the sensitive variable Z.

In this paper, we therefore consider the normalized product combining
(Sect. 7-1.2) generalized to higher orders:

C (L0,L1, . . . ,Ld)=
d∏

i=0
(L i −E [L i]) . (9.3)

We shall denote by Cd(Z) the – normalized product – combined leakage
signal C (L0,L1, . . . ,Ld) where the L i correspond to the processing of the
shares Z ⊕V, V1, ..., Vd in the Hamming weight model. The following
lemma gives the expectation of Cd(X ) given X = x for every x ∈ Fn

2 .
Lemma 2. Let x ∈ Fn

2 , then the expectation of Cd(x) satisfies:

E [Cd(x)]=
(
−1

2

)d (
H(x)− n

2

)
. (9.4)

In the following, the notation x[ j] stands for the jth bit of a value x ∈ Fn
2 .

To prove Lemma 2, we first need the following lemma:
Lemma 3. Let (Vi)1ÉiÉd be d random variables uniformly distributed
over Fn

2 and mutually independent and let V = ⊕
i Vi. For every x ∈ Fn

2 ,
the expectation of the product H(x⊕V)

∏
i H(Vi) satisfies:

E

[
H(x⊕V)

d∏
i=1

H(Vi)

]
=

(
−1

2

)d (
H(x)− n

2

)
+

(n
2

)d+1
. (9.5)

Proof. We have H(x⊕V)=H(x)+H(V)−2 H(x∧V) giving:

E

[
H(x⊕V)

d∏
i=1

H(Vi)

]
=H(x) E

[
d∏

i=1
H(Vi)

]
+E

[
H(V)

d∏
i=1

H(Vi)

]

−2 E

[
H(x∧V)

d∏
i=1

H(Vi)

]
. (9.6)
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Since the Vi are uniformly distributed and mutually independent, we
have:

E

[
d∏

i=1
H(Vi)

]
=

(n
2

)d
, (9.7)

and

E

[
H(x∧V)

d∏
i=1

H(Vi)

]
= H(x)

n
E

[
H(V)

d∏
i=1

H(Vi)

]
. (9.8)

Relations (9.7) and (9.8) imply that (9.6) can be rewritten as:

E

[
H(x⊕V)

d∏
i=1

H(Vi)

]
=H(x)

(n
2

)d +
(
1−2

H(x)
n

)
E

[
H(V)

d∏
i=1

H(Vi)

]
. (9.9)

The uniformity and mutual independence of the Vi further imply:

E

[
H(V)

d∏
i=1

H(Vi)

]
= n E

[
V[1]

d∏
i=1

H(Vi)

]
,

which can be rewritten as:

E

[
H(V)

d∏
i=1

H(Vi)

]
= n E

[
V[1]V1[1]

d∏
i=2

H(Vi)

]

+n E

[
V[1]

(
n∑

j=2
V1[ j]

)
d∏

i=2
H(Vi)

]
,

and by induction on d:

E

[
H(V)

d∏
i=1

H(Vi)

]
= n E

[
V[1]

d∏
i=1

Vi[1]

]

+n
d∑

k=1
E

[(
V[1]

k−1∏
i=1

Vi[1]

)(
n∑

j=2
Vk[ j]

)(
d∏

i=k+1
H(Vi)

)]
. (9.10)

Then, on one hand, we have:

E

[
V[1]

d∏
i=1

Vi[1]

]
= 2−d(d mod 2) , (9.11)

and, on the other hand, we have the mutual independence between V[1],
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(Vi[1])1ÉiÉk−1,
∑n

j=2 Vk[ j] and (H(Vi))k+1ÉiÉd which implies:

E

[(
V[1]

k−1∏
i=1

Vi[1]

)(
n∑

j=2
Vk[ j]

)(
d∏

i=k+1
H(Vi)

)]

=
(
E [V[1]]

k−1∏
i=1

E [Vi[1]]

)
E

[
n∑

j=2
Vk[ j]

](
d∏

i=k+1
E [H(Vi)]

)

=
(
1
2

)k n−1
2

(n
2

)d−k
. (9.12)

From (9.11) and (9.12), (9.10) can be rewritten as:

E

[
H(V)

d∏
i=1

H(Vi)

]
= n(d mod 2)

2d + n(n−1)
2

d∑
k=1

(
1
2

)k (n
2

)d−k
(9.13)

= n(d mod 2)
2d + n(n−1)

2d+1

d∑
k=1

nk−1 (9.14)

= n(d mod 2)
2d + n(nd −1)

2d+1 (9.15)

= n((−1)d +1)+n(nd −1)
2d+1 . (9.16)

Finally, (9.9) and (9.16) yields (9.5) which conclude the proof. ¦
Proof. (Lemma 2) From the expression of the L i, we have E [L i]= ai + n

2
giving:

Cd(X )=
(
H(x⊕V)− n

2
+B0

) d∏
i=1

(
H(Vi)− n

2
+Bi

)
. (9.17)

Since the Bi have zero means, one deduces:

E [Cd(x)] = E

[(
H(x⊕V)− n

2

) d∏
i=1

(
H(Vi)− n

2

)]

= E

[
H(x⊕V)

d∏
i=1

(
H(Vi)− n

2

)]
− n

2
E

[
d∏

i=1

(
H(Vi)− n

2

)]
.

The uniformity and the mutual independence between the Vi imply:

E [Cd(x)] = E

[
H(x⊕V)

d∏
i=1

(
H(Vi)− n

2

)]

= E

[
H(x⊕V)H(V1)

∏
i>1

(
H(Vi)− n

2

)]
,
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and by induction on d:

E [Cd(x)]= E
[
H(x⊕V)H(V1) · · ·H(Vd−1)

(
H(Vd)− n

2

)]
. (9.18)

Finally, the uniformity and the mutual independence between the Vi
lead to:

E [Cd(x)]= E
[

H(x⊕V)
d∏

i=1
H(Vi)

]
−

(n
2

)d+1
, (9.19)

which together with Lemma 3 imply (9.4). ¦
Lemma 2 shows that the expectation of Cd(x) is an affine function of the
Hamming weight of x. According to the analysis in [80], this implies that
the Hamming weight of X maximizes the correlation. For the reasons
given in [80], this function can therefore be considered as an optimal
prediction for Cd(X ). Hence, the HO-DPA we focus on here, consists in
estimating the correlation between the Hamming weight of the target
variable H(Z) and the combined leakage Cd(Z). The next proposition
provides the exact value of this correlation.
Proposition 8. Let X be a random variable uniformly distributed over
Fn

2 . The correlation between H(X ) and Cd(X ) satisfies:

ρ [H(X ),Cd(X )]= (−1)d
p

n(
n+4σ2

) d+1
2

. (9.20)

Proof. For any measurable function f and for any pair of random vari-
ables (X ,C), the expectation E [ f (X )C] is equal to E [ f (X )E [C|X ]]. This
implies that the covariance between H(X ) and Cd(X ) satisfies:

cov[H(X ),Cd(X )]= cov[H(X ),E [Cd(X )|X ]] .

By Lemma 2, we get:

cov[H(X ),Cd(X )]=
(
−1

2

)d
var [H(X )] ,

which leads to:

ρ [H(X ),Cd(X )]=
(
−1

2

)d σ [H(X )]
σ [Cd(X )]

=
(
−1

2

)d p
n

2 σ [Cd(X )]
. (9.21)
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Since X and the Vi are uniformly distributed and mutually independent,
then so do X ⊕V and the Vi. Moreover since the Bi are mutually inde-
pendent then we get:

var [Cd(X )] = E

[(
H(X ⊕V)− n

2
+B0

)2
] d∏

i=1
E

[(
H(Vi)− n

2
+Bi

)2
]

= E

[(
H(V)− n

2
+B

)2
]d+1

,

where V is a uniform random variable over Fn
2 and B is a random variable

with mean 0 and variance σ2. Since E [H(V)] = n/2 and E
[
H(V)2] = (n2 +

n)/4, one deduces:

E

[(
H(V)− n

2
+B

)2
]
= E

[(
H(V)− n

2

)2
]
+E[

B2]= n
4
+σ2 ,

which implies:

var [Cd(X )]=
(n

4
+σ2

)d+1
. (9.22)

Finally, (9.21) and (9.22) leads to (9.20). ¦
Notation. The correlation coefficient defined in (9.20) shall be referred
as ρ(n,d,σ).

9-4 Defeating Combined Masking and Shuf-
fling: Combined Higher-Order and Inte-
grated DPA

When masking is combined with shuffling, any sensitive variable Z is
split into d +1 shares Z ⊕V, V1, ..., Vd whose manipulations are ran-
domly spread over t different times yielding t different signals L i. The
(d+1)-tuple of signals indices corresponding to the shares hence ranges
over a subset I of the set of (d+1)-combinations from {1, . . . , t}. This sub-
set depends on how the shuffling is performed (e.g. the shares may be
independently shuffled or shuffled all together).

To bypass such a countermeasure, an adversary may combine integrated
and higher-order DPA techniques. A pertinent way to perform such a
combined attack is to design a so-called combined-and-integrated signal
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by summing all the possible combinations of d + 1 signals among L1,
..., L t [102, 103]. That is, the combined-and-integrated signal, denoted
ICd,I(Z), is defined by:

ICd,I(Z)=∑
i∈I

C(L i0 , . . . ,L id ) , (9.23)

where i denotes the vector (i0, ..., id).

By construction of I, the family of signals (L i)i corresponds to a family of
processed data (D i)i such that there always exists a single (d+1)-tuple
(i′0, . . . , i′d) ∈ I for which we have (D i′0 ,D i′1 , . . . ,D i′d

)= (Z⊕⊕
i Vi,V1, . . . ,Vd).

Let us now view (i′0, . . . , i′d) as a random vector uniformly distributed over
I and let us assume that the random variables D j with j 6= i′0, ..., i′d are
uniformly distributed and mutually independent. Then, we have the
following proposition:
Proposition 9. Let X be a random variable uniformly distributed over
Fn

2 . The correlation between H(X ) and ICd,I(X ) satisfies:

ρ
[
H(X ), ICd,I(X )

]= 1p
#I
ρ(n,d,σ) . (9.24)

Proof. According to (9.23) the variance of ICd,I(X ) satisfies:

var
[
ICd,I(X )

]= ∑
(i,j)∈I2

cov
[
C(L i0 , . . . ,L id ),C(L j0 , . . . ,L jd )

]
.

Since by definition each monomial C(L j0 , . . . ,L jd ) is a product of terms
with zero expectation, the covariance between two different monomials
equal zero. By construction, the #I monomials C(L i0 , . . . ,L id ) have equal
variance and we therefore have σ

[
ICd,I(X )

] = p
#I ×σ

[
C(L i′0 , . . . ,L i′d

)
]
.

Moreover, we have only the combination C(L i′0 , . . . ,L i′d
) which is statis-

tically dependent on X . Therefore, we deduce that cov
[
H(X ), ICd,I(X )

]
is equal to cov

[
H(X ),C(L i′0 , . . . ,L i′d

)
]
. Since by definition C(L i′0 , . . . ,L i′d

)
and Cd(X ) have an equal distributions, we deduce that the correlation
ρ

[
H(X ),C(L i′0 , . . . ,L i′d

)
]

equals ρ [H(X ),Cd(X )] = ρ(n,d,σ) and Relation
(9.24) straightforwardly follows. ¦
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CHAPTER10
A Generic Scheme Combining Higher-Order

Masking and Shuffling

10-1 The scheme

I
N this section, we describe a generic scheme to protect a round
ϕ by combining higher-order masking and operations shuf-
fling. Our scheme involves a dth-order masking for an arbi-
trarily chosen d. Namely, the state p is split into d+1 shares

m0, ..., md satisfying:
m0 ⊕·· ·⊕md = p . (10.1)

In practice, m1, ..., md are random masks and m0 is the masked state
defined according to (10.1). In the sequel, we shall denote by (m j)i (resp.
(m j)i(l)) the ith n-bit part (resp. the ith l-bit part) of a share m j. At
the beginning of the ciphering the masks are initialized to zero. Then,
each time a part of a mask is used during the keyed substitution layer
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computation, it is refreshed with a new random value (see below). For
the reasons given in Sect. 9-1, our scheme uses two different approaches
to protect the keyed substitution layer and the linear layer. These are
described hereafter.

10-1.1 Protecting the keyed substitution layer

To protect the keyed substitution layer, we use (for some d′ É d) a sin-
gle d′th-order masked S-box to perform all the S-box computations. As
explained in Sect. 9-1, such a method is vulnerable to a second-order
DPA attack targeting two masked inputs/outputs. To deal with this is-
sue, we make use of a high level of shuffling in order to render such
an attack difficult and to keep an homogeneous security level (see Sect.
10-3).

The input of S is masked with d′ masks r1, ..., rd′ and its output is
masked with d′ masks s1, ..., sd′ . Namely, a masked S-box S∗ is com-
puted that is defined for every x ∈ {0,1}n by:

S∗(x)= S
(
x⊕

d′⊕
j=1

r j

)
⊕

d′⊕
j=1

s j . (10.2)

This masked S-box is then involved to perform all the S-box computa-
tions. Namely, when the S-box must be applied to a masked variable
(m0)i, the d masks (m j)i of this latter are replaced by the d′ masks r j
which enables the application of S∗. The d′ masks s j of the obtained
masked output are then switched for d new random masks (m j)i.

The high level shuffling is ensured by the addition of dummy operations.
Namely, the S-box computation is performed t times: N times on a rel-
evant part of the state and t− N times on dummy data. For such a
purpose, each share m j is extended by a dummy part (m j)N+1 that is
initialized by a random value at the beginning of the ciphering. The
round key k is also extended by such a dummy part kN+1. For each of
the t S-box computations, the index i of the parts (m j)i to process is
read in a table T. This table of size t contains all the indices from 1 to
N stored at random positions and its t−N other elements equal N +1.
Thanks to this table, the S-box computation is performed once on every
of the N relevant parts and t− N times on the dummy parts. The fol-
lowing algorithm describes the whole protected keyed substitution layer
computation.
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Algorithm 1 Protected keyed substitution layer

INPUT: the shares m0, ..., md such that
⊕

mi = p and the round key
k = (k1, . . . ,kN+1)

OUTPUT: the shares m0, ..., md such that
⊕

mi = γ(p⊕k)

1. for iT = 1 to t

// Random index pick-up

2. i ← T[iT ]

// Masks conversion : (m0)i ⇐ pi
⊕

j r j

3. for j = 1 to d′ do (m0)i ← ((m0)i ⊕ r j)⊕ (m j)i

4. for j = d′+1 to d do (m0)i ← (m0)i ⊕ (m j)i

// key addition and S-box computation: (m0)i ⇐ S(pi ⊕ki)⊕⊕
j s j

5. (m0)i ← S∗(
(m0)i ⊕ki

)
// Masks generation and conversion: (m0)i ⇐ S(pi ⊕ki)⊕⊕

j (m j)i

6. for j = 1 to d′

7. (m j)i ← rand()

8. (m0)i ← ((m0)i ⊕ (m j)i)⊕ s j

9. for j = d′+1 to d

10. (m j)i ← rand()

11. (m0)i ← (m0)i ⊕ (m j)i

12. return (m0, . . . ,md)

151 / 220



chapitre III.10 – A Generic Scheme Combining Higher-Order Masking
and Shuffling

Remark 31. In Steps 3 and 8, we used round brackets to underline the
order in which the masks are introduced. A new mask is always intro-
duced before removing an old mask. Respecting this order is mandatory
for the scheme security.

Masked S-box computation. The look-up table for S∗ is computed
dynamically at the beginning of the ciphering by performing d′ table re-
computations such as proposed in [90]. This method has been shown to
be insecure for d′ > 2, or for d′ > 3 depending on the table re-computation
algorithm [33, App. A]. We will therefore consider that one can compute
a masked S-box S∗ with d′ É 3 only. The secure computation of a masked
S-box with d′ > 3 has been resolved recently by Rivain et al. in [85] for
AES only and is left to further investigations for a generic scheme.

Indices table computation. Several solutions exist in the literature
to randomly generate indices permutation over a finite set [49, 75, 77].
Most of them can be slightly transformed to design tables T of size t Ê N
containing all the indices 1 to N in a random order and whose remaining
cells are filled with N +1. However, few of those solutions are efficient
when implemented in low resources devices. In our case, since t is likely
to be much greater than N, we have a straightforward algorithm which
tends to be very efficient for t À N. To generate T, we start by initial-
izing all the cells of T to the value N + 1. Then, for every j É N, we
randomly generate an index i < t until T[i] = N +1 and we move j into
T[i]. The process is detailed hereafter.

Algorithm 2 Generation of T

INPUT: state’s length N and shuffling order t

OUTPUT: indices permutation table T

1. for i ← 0 to t−1

2. do T[i]← N +1 // Initialization of T

3. j ← 1

4. for j ← 1 to N
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5. do i ← rand(t) while T[i]= N+1 // Generate random index i < t

6. T[i]= j and j ← j+1

7. return T

10-1.2 Protecting the linear layer

The atomic operations λi are applied on each part (m j)i(l) of each share
m j in a random order. For such a purpose a table T ′ is constructed at
the beginning of the ciphering that is randomly filled with all the pairs of
indices ( j, i) ∈ {0, . . . ,d}× {1, . . . ,L}. The linear layer is then implemented
such as described by the following algorithm.

Algorithm 3 Protected linear layer

INPUT: the shares m0, ..., md such that
⊕

mi = p

OUTPUT: the shares m0, ..., md such that
⊕

mi =λ(p)

1. for iT ′ = 1 to (d+1) ·L

2. ( j, i)← T ′[iT ′] // Random index look-up

3. (m j)i(l) ←λi
(
(m j)i(l)

)
// Linear operation

4. return (m0, . . . ,md)

Indices table computation. To implement the random generation of
a permutation T ′ on {0, . . . ,d}× {1, . . . ,L}, we followed the outlines of the
method proposed in [34]. However, since this method can only be applied
to generate permutations on sets with cardinality a power of 2 (which is
not a priori the case for T ′), we slightly modified it. The new version can
be found below.
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Generation of T ′. In view of the previous complexity, generating a
permutation with the same implementation as for T is not pertinent (in
this case t = N). To generate the permutation T ′, we follow the outlines
of the method proposed in [34]. However, since this method can only be
applied to generate permutations on sets with cardinality a power of 2
(which is not a priori the case for T ′), we slightly modified it. Let 2q be
the smallest power of 2 which is greater than (d +1)L. Our algorithm
essentially consists in designing a q-bit random permutation T ′ from a
fixed q-bit permutation π and a family of q random values in Fq

2 (Steps 1
to 6 in Algorithm 4). Then, if (d+1)L is not a power of 2, the table T ′ is
transformed into a permutation over {0, . . . ,d}× {1, . . . ,L} by deleting the
elements which are strictly greater than (d+1)L−1.

Algorithm 4 Generation of T ′

INPUT: parameters (d,L) and a n′-bit permutation π with q = dlog2((d+
1)L)e
OUTPUT: indices permutation table T ′

1. for i ← 0 to q−1

2. do aleai ← rand(q) // Initialization of aleas

3. for j ← 0 to 2q −1

4. do T ′[ j]←π[ j]

5. for i ← 0 to q−1

6. do T ′[ j]←π[T ′[ j]⊕aleai] // Process the iþindex

7. if q 6= (d+1)L

8. then for j ← 0 to (d+1)L−1

9. do i ← j

10. while T ′[i]≥ (d+1)L

11. do i ← i+1

12. T ′[ j]← T ′[i]

13. return T ′
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With Algorithm 4, it is not possible to generate all the permutations
over {0, . . . ,d}× {1, . . . ,L}. In our context, we assume that this does not
introduce any weakness in the scheme.

10-2 Time Complexity

In the following we express the time complexity of each step of our
scheme in terms of the parameters (t,d,d′, N,L) and of constants ai that
depend on the implementation and the device architecture. Moreover,
we provide practical values of these constants (in number of clock cycles)
for an AES implementation protected with our scheme and running on
a 8051-architecture.

Generation of T.

Complexity Analysis of loop 4-to-6: f (N, t), the expected num-
ber of iterations of the loop 4-to-7 in Algorithm 2 satisfies:

f (N, t)= t · (Ht −Ht−N) , (10.3)

where for every r, Hr denotes the rth Harmonic number de-

fined by Hr =
r∑

i=1

1
i .

Let us argue about (10.3). For every j É N, the probability
that the loop do-while ends up after i iterations is

(
t− j

t

)
·(

j
t

)i−1
: at the jth iteration of the for loop, the test T[i]= N+1

succeeds with probability p j =
(

j
t

)
and fails with probability

1− p j =
(

t− j
t

)
. One deduces that for every j É N, the expected

number of iterations of the loop do-while is
∑

i∈N i · pi−1
j · (1−

p j). We eventually get that the number of iterations f (N, t)
satisfies f (N, t) = ∑N−1

j=0
∑

i∈N i · (p j
i−1 − p j

i), that is f (N, t) =∑N−1
j=0

∑
i∈N i · p j

i−1 −∑N−1
j=0

∑
i∈N (i+1) · p j

i +∑N−1
j=0

∑
i∈N p j

i. As
the two first sums in the right-hand side of the previous equa-
tion are equal, one deduces that f (N, t) equals

∑N−1
j=0

∑
i∈N p j

i
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that is
∑N−1

j=0
1

1−p j
. Eventually, as p j equals j

t , we get f (N, t)=∑N−1
j=0

t
t− j which is equivalent with (10.3).

As Hr tends towards ln(r)+γ, where γ stands for the Euler-
Mascheroni constant, we can approximate Ht−Ht−N by ln(t)−
ln(t−N). We eventually get the following relation for t À N:

f (N, t)≈ t · ln
(

t
t−N

)
.

Overall Complexity: The complexity CT of the generation of T
satisfies:

CT = t×a0 +N ×a1 + f (N, t)×a2 ,

where f (N, t) = t
∑N−1

i=0
1

t−i . As argued above, f (N, t) can be
approximated by t ln

( t
t−N

)
for t À N.

Example 3. For our AES implementation, we got a0 = 6, a1 = 7
and a2 = 9.

Generation of T ′.

Complexity Analysis of loop 8-to-12: The number of iterations
of loop 8-to-12 in Algorithm 4 in the worst case is 2q.

Overall Complexity: Let q denote dlog2((d+1)L)e. The complex-
ity CT ′ satisfies:

CT ′ =
{

q×a0 +2q × (a1 + q×a2) if q = log2((d+1)L),
q×a0 +2q × (a1 + q×a2)+2q ×a3 otherwise.

Example 4. For our AES implementation, we got a0 = 3, a1 = 15
and a2 = 14, a3 = 17.

Generation the Masked S-box. Its complexity CMS satisfies:

CMS = d′×a0 .

Example 5. For our AES implementation, we got a0 = 4352.

Protected keyed Substitution Layer. Its complexity CSL satisfies:

CSL = t× (a0 +d×a1 +d′×a2) .

Example 6. For our AES implementation, we got a0 = 55, a1 = 37
and a2 = 18.
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Protected Linear Layer. Its complexity CLL satisfies:

CLL = (d+1)L×a0 .

Example 7. For our AES implementation, we got a0 = 169.

10-3 Attack Paths

In this section, we list attacks combining higher-order and integrated
DPA that may be attempted against our scheme. Section 9 is then in-
volved to associate each attack with a correlation coefficient that de-
pends on the leakage noise deviation σ, the block cipher parameters
(n, N, l′,L) and the security parameters (d,d′, t). As argued, these co-
efficients characterize the attacks efficiencies and hence the overall re-
sistance of the scheme.
Remark 32. In this paper, we only consider known plaintext attack i.e.
we assume the different sensitive variables uniformly distributed. In a
chosen plaintext attack, the adversary would be able to fix the value of
some sensitive variables which could yield better attack paths. We do not
take such attacks into account and let them for further investigations.

Each sensitive variable in the scheme is (1) either masked with d unique
masks or (2) masked with d′ masks shared with other sensitive variables
(during the keyed substitution layer).

(1). In the first case, the d+1 shares appear during the keyed substitu-
tion layer computation and the linear layer computation. In both cases,
their manipulation is shuffled.

(1.1). For the keyed substitution layer (see Algorithm 1), the d+1 shares
all appear during a single iteration of the loop among t. The attack con-
sists in combining the d+1 corresponding signals for each loop iteration
and to sum the t obtained combined signals. Proposition 7 implies that
this attack can be associated with the following correlation coefficient
ρ1:

ρ1(t,d)= 1p
t
ρ(n,d,σ) . (10.4)

(1.2). For the linear layer (see Algorithm 3), the d + 1 shares appear
among (d +1) ·L possible operations. The attack consists in summing
all the combinations of d+1 signals among the (d+1) ·L corresponding
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signals. According to Proposition 9, this attack can be associated with
the following correlation coefficient ρ2:

ρ2(L,d)= 1√((d+1)·L
d+1

)ρ(l′,d,σ) . (10.5)

Remark 33. In the analysis above, we chose to not consider attacks
combining shares processed in the linear layers together with shares
processed in the keyed substitution layer. Actually, such an attack would
yield to a correlation coefficient upper bounded by the maximum of the
two correlations in (10.4) and (10.5).

(2). In the second case, the attack targets a d′th-order masked variable
occurring during the keyed substitution layer. Two alternatives are pos-
sible.

(2.1). The first one is to simultaneously target the masked variable (that
appears in one loop iteration among t) and the d′ masks that appear
at fixed times (e.g. in every loop iteration of Algorithm 1 or during the
masked S-box computation). The attack hence consists in summing the
t possible combined signals obtained by combining the masked variable
signal (t possible times) and the d′ masks signals (at fixed times). Ac-
cording to Proposition 9, this leads to a correlation coefficient ρ3 that
satisfies:

ρ3(t,d′)= 1p
t
ρ(n,d′,σ) . (10.6)

(2.2). The second alternative is to target two different variables both
masked with the same sum of d′ masks (for instance two masked S-
box inputs or outputs). once among t · (t−1) pairs of iterations. These
variables are shuffled among t variables. The attack hence consists in
summing all the possible combinations of the two signals among the t
corresponding signals. According to Proposition 9, this leads to a corre-
lation coefficient ρ4 that satisfies:

ρ4(t)= 1p
t · (t−1)

ρ(n,2,σ) . (10.7)

10-4 Parameters Setting

The security parameters (d,d′, t) can be chosen to satisfy an arbitrary
resistance level characterized by an upper bound ρ∗ on the correlation
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Tab. 10-5-1 – Timings for the different steps of the scheme for an AES
implementation on a 8051-architecture.

T Generation CT = 112+ t
(
6+9

∑15
i=0

1
t−i

)
T ′ Generation CT ′ = 3q+2q(15+14q) [+17×2q]
Masked S-box Generation CMS = 4352d′

Pre-computations CT +CT ′ +CMS

Substitution Layer CSL = t(55+37d+18d′)
Linear Layer CLL = 676(d+1)
Protected Round CSL+CLL = 676(d+1)+t(55+37d+18d′)
Unprotected Round 432

coefficients corresponding to the different attack paths exhibited in the
previous section. That is, the parameters are chosen to satisfy the fol-
lowing inequality:

max(|ρ1|, |ρ2|, |ρ3|, |ρ4|)É ρ∗ . (10.8)

Among the 3-tuples (d,d′, t) satisfying the relation above, we select one
among those that minimize the timing complexity (see Sect. 10-2).
Remark 34. detailed here. Regarding the system dimension, this can
be done exhaustively.

10-5 Application to AES

We implemented our scheme for AES on a 8051-architecture. According
to Remark 4, the ShiftRows and the MixColumns were merged in a single
linear layer applying four times the same operation (but with different
state indexings). The block cipher parameters hence satisfy: n = 8, N =
16, l = 32, l′ = 8 and L = 4.
Remark 35. In [46], it is claimed that the manipulations of the differ-
ent bytes in the MixColumns can be shuffled. However it is not clear
how to perform such a shuffling in practice since the processing differs
according to the byte index.

Table 10-5-1 summarizes the timings obtained for the different steps of
the scheme for our implementation.
Remark 36. The implementation of unprotected rounds has been op-
timized, in particular by only using variables stored in DATA memory.
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Tab. 10-5-2 – Optimal parameters and timings according to SNR and ρ∗.

ρ∗ t d d′ timings

SNR=+∞
10−1 16 1 1 3.66×104

10−2 20 3 3 8.57×104

10−3 1954 4 3 5.08×106

10−4 195313 5 3 5.75×108

SNR= 1

10−1 16 1 1 3.66×104

10−2 20 2 2 6.39×104

10−3 123 3 3 3.13×105

10−4 12208 4 3 3.15×107

SNR= 1
4

10−1 16 1 0 2.94×104

10−2 16 1 1 3.66×104

10−3 16 2 2 5.75×104

10−4 19 3 3 8.35×104

Because of memory constraints and due to the scalability of the code cor-
responding to the protected round, many variables have been in stored
in XDATA memory which made the implementation more complex. This
explains that, even for d = d′ = 0 and t = 16 (i.e. when there is no secu-
rity), the protected round is more time consuming than the unprotected
round.

We give hereafter the optimal security parameters (t,d,d′) for our AES
implementation according to some illustrative values of the device noise
deviation σ and of correlation bound ρ∗. We consider three noise devia-
tion values: 0,

p
2 and 4

p
2. In the Hamming weight model, these values

respectively correspond to a signal-to-noise ratio (SNR) to +∞, 1 and 1
4 .

We consider four correlation bounds: 10−1, 10−2, 10−3, and 10−4. The se-
curity parameters and the corresponding timings for the protected AES
implementation are given in Table 10-5-2. Note that all the rounds have
been protected.

When SNR =+∞, the bound d′ É 3 implies an intensive use of shuffling
in the keyed substitution layer. The resulting parameters for correlation
bounds 10−3 and 10−4 imply timings that quickly become prohibitive. A
solution to overcome this drawback would be to design secure table re-
computation algorithms for d′ Ê 3. Besides, these timings underline the
difficulty of securing block ciphers implementations with pure software
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countermeasures. When the leakage signals are not very noisy (SNR =
1), timings clearly decrease (by a factor from 10 to 20). This illustrates,
once again, the soundness of combining masking with noise addition.
This is even clearer when the noise is stronger (SNR = 1

4 ), where it can
be noticed that the addition of dummy operations is almost not required
to achieve the desired security level.
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T
HIS thesis deals with side channel attacks against hardware
implementations of cryptographic algorithms. Studies led in
this document are therefore in place where an adversary has
access to noisy observations of intermediate results of a cryp-

tographic computation. In this context, many attacks are dedicated with
their countermeasures, but their relevance and their implementation
are still unclear.

This thesis initially focuses on the relevance of existing attacks and po-
tential links between them. A formal classification is proposed as well
as selection criteria. Based on this study, a generic efficient attack is
described and analysed in depth.

In a second step, the implementation of common countermeasures is
studied, leading to the creation of an application scheme mixing them
to achieve a better efficiency / security trade off.

In conclusion, this thesis presents a unification of the various existing
side channel attacks, introduces new attack techniques which are more
robust to errors in the modeling steps and proposes a new scheme to
counteract these attacks.

Although some points are still open, new points arise and are a matter
of interest. Namely, in Part III a generic framework combining common
countermeasures is given based on the CPA. This attack was chosen as
its distinguisher value is directly linked to the efficiency of the attack
(see Sect. 4-6). Nevertheless as argued in Chap. 5 the main drawback of
CPA is the choice of a relevant model. Thus an interesting extension of
our work could be to make an equivalent study based on MIA instead of
CPA. Such a work would bring a theoretical basis to study the efficiency
of a countermeasure against an optimal attack.

In Part II, a formal classification is given. Nevertheless it can be in-
creased by the study of new – or more unconventional – attacks. In
Chap. 6 the linear regression based attack is introduced and its link with
CPA is shown. An interesting question would be to exhibit a link with
mutual information based attack for instance starting from Least Square
Mutual Information [101]. In a more practical view, deeper study of lin-
ear regression would be profitable. For example algorithm optimization
with respect to the basis choice as initiated in Sect. 6-2.2 would permit
to have a more generic and more efficient attack. Another example is
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the new promising distinguisher introduced in Sect. 7-3.

In a more general context, it would be interesting to explore high or-
der attacks in practice. For instance the approach based on the EMA
algorithm [58] or based on optimization theory [87] are quite exciting.
Another turbulent domain which is not treated in this thesis is the do-
main of profiling attacks. Reducing the gap between profiling and non-
profiling attacks is a real challenge.

Eventually, the countermeasure aspect has to be treated too. Currently,
to counteract high-order attacks, only one generic scheme exists [29] and
this scheme is very costly in practice. Thus reducing the overhead of this
framework or find a less costly framework is very important as high-
order attacks become efficient in practice.
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APPENDIXA
Extra Data From Experimentations in

Sect. 8-1 (part II)

I
N Sect. 8-1, several experimentations have been conducted, re-
sulting in various sets of results. Some of the data sets have
been adapted (e.g., fitted, truncated) to become more readable.
For informational purpose we plot the whole data set in this

section. Figure 1 shows us the raw data use for fitting in Fig. 8-1-1.

Figure 2 shows us the evolution of the success rate according to the num-
ber of messages and the noise deviation in the random leakage scenario.
Figures 8-1-3 and 8-1-4 are extracted from Fig. 2.
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Fig. 1 – Evolution of the number of messages needed to achieve a success
rate of 90% for different noise values.
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Fig. 2 – evolution of the success rate according to the number of messages
and the noise deviation.

171 / 220



172 / 220



APPENDIXB
AES S-box wi values

Tab. 1 – Values of wi and
∑

wi for the AES S-box – values must be divided
by 256.

a w0 w1 w2 w3 w4 w5 w6 w7
∑

wi

0 256 256 256 256 256 256 256 256 2048
1 -48 -28 0 -68 24 16 48 -72 304
2 -8 8 -16 -68 40 -16 40 4 200
3 0 40 32 8 0 84 48 4 216
4 64 -52 92 52 -44 -12 -12 40 368
5 4 24 -4 -28 -20 -20 -68 -88 256
6 64 -24 24 12 -48 20 40 16 248
7 36 48 -52 4 48 -40 84 -16 328
8 40 -60 20 24 76 84 -24 -96 424
9 -84 -40 -24 -52 12 40 -24 36 312
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10 60 0 56 4 -12 24 68 72 296
11 -48 -108 -60 -20 -60 -4 -4 -56 360
12 0 -36 32 -52 -108 32 12 40 312
13 40 -28 -64 60 80 -36 40 -52 400
14 48 -28 100 48 44 64 -20 -24 376
15 12 -12 -4 -56 32 56 -4 -40 216
16 -44 -16 -36 -52 -40 64 -48 -12 312
17 -36 28 -96 8 12 -44 20 -36 280
18 -36 24 -60 40 -32 -36 -12 -56 296
19 -44 -20 -76 -28 80 -64 36 -84 432
20 40 4 56 -68 -12 -24 24 76 304
21 -32 -8 -48 -48 -44 24 36 -32 272
22 20 44 60 140 12 0 16 68 360
23 -36 24 -52 -20 44 -48 -68 -4 296
24 -20 28 44 20 -12 52 -80 16 272
25 -40 12 8 -56 16 -72 68 -56 328
26 -16 8 -32 -16 -100 44 12 100 328
27 -20 36 -8 -104 32 -16 -20 -12 248
28 -56 48 -12 -28 -28 -20 -32 128 352
29 20 48 -104 -76 -68 -80 -40 -52 488
30 100 12 -44 -4 -56 24 -24 80 344
31 -104 -20 -32 4 8 0 -60 20 248
32 60 44 -16 88 56 -12 4 -104 384
33 -76 0 -88 -24 -44 -36 16 -60 344
34 8 24 12 -4 52 60 -60 76 296
35 -52 -48 -16 -28 -24 -64 -28 -68 328
36 20 24 16 44 -4 56 52 40 256
37 -48 76 -28 8 60 84 -12 -76 392
38 32 16 44 -84 52 60 20 44 352
39 -24 52 0 64 0 68 36 52 296
40 64 64 -68 -36 60 28 16 56 392
41 -32 -32 -52 -40 -32 -32 -8 -4 232
42 60 16 32 -36 16 -32 8 16 216
43 -20 -32 36 8 28 32 -24 -20 200
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44 12 -60 44 -56 -64 20 -36 84 376
45 40 -28 -16 -12 32 4 4 -48 184
46 32 -20 -28 -84 -36 44 -48 -20 312
47 20 80 -92 32 64 8 -64 -8 368
48 68 20 16 36 28 -40 -16 104 328
49 -12 52 0 -60 -28 -32 -44 36 264
50 92 -28 48 -44 -8 0 76 40 336
51 24 -12 80 16 96 52 40 16 336
52 -4 24 24 40 40 -40 -16 68 256
53 -4 -60 -120 -84 68 -100 -12 -48 496
54 24 -36 44 -8 -16 -60 48 -44 280
55 4 68 8 -40 -60 16 -52 -24 272
56 24 -88 -8 24 -52 76 -28 12 312
57 24 12 -36 -32 -16 -32 -60 36 248
58 -32 -36 -32 40 -72 -4 -80 40 336
59 -72 60 16 -12 -84 -76 -32 -32 384
60 -28 -40 28 -112 -92 -8 -8 -44 360
61 -8 -28 84 24 -44 72 -20 -16 296
62 104 32 36 96 72 -4 36 12 392
63 -64 -40 -76 -124 -8 -20 16 -92 440
64 64 -12 60 -20 -16 -8 -104 28 312
65 12 -48 32 -60 -88 -8 -12 28 288
66 112 -16 -12 8 -32 48 0 76 304
67 -8 44 -24 68 -16 -16 -20 -60 256
68 20 64 -40 52 8 -28 -12 48 272
69 -28 28 -68 -36 -20 -28 44 44 296
70 -24 40 72 4 60 4 16 -36 256
71 20 20 -32 -32 -8 40 -96 -88 336
72 56 16 84 52 -20 20 12 -12 272
73 -20 -52 -32 0 76 -12 4 -12 208
74 -100 -40 -44 -8 -24 40 -36 -36 328
75 8 28 -12 36 -48 12 -28 -28 200
76 8 -12 -20 -16 -16 -96 0 -48 216
77 -32 -56 -32 -24 40 -12 -76 -80 352
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78 -36 36 44 4 -32 -12 -12 -48 224
79 0 56 -60 -20 -60 48 24 -28 296
80 -4 -68 -36 40 -36 -16 24 -80 304
81 36 -40 -20 -24 32 -16 -44 -4 216
82 -12 -8 8 64 72 -68 48 80 360
83 8 -12 -40 -76 -12 -28 -20 -36 232
84 -8 -48 -16 8 16 -36 8 44 184
85 20 96 -52 -40 100 52 52 20 432
86 64 8 44 36 56 -16 -16 -24 264
87 -16 -76 -24 -44 -4 -24 -44 -16 248
88 68 20 -20 -20 40 -20 -56 12 256
89 -76 -20 84 -28 -36 28 4 -44 320
90 -24 40 -4 12 -32 -24 76 4 216
91 -12 -8 -24 -20 36 0 0 -4 104
92 -32 104 -4 40 48 24 36 56 344
93 44 40 -52 -20 40 12 24 -64 296
94 -60 -40 24 56 -76 36 32 12 336
95 16 92 -40 -20 0 8 24 72 272
96 32 -16 -60 -60 8 -4 0 -44 224
97 -32 24 -60 24 0 -8 -36 0 184
98 0 16 12 48 88 -40 -20 24 248
99 -56 -24 32 -52 20 48 12 -60 304

100 56 12 8 -24 48 12 76 4 240
101 96 -24 -64 28 -92 48 -68 -4 424
102 64 36 20 12 28 -80 76 -4 320
103 0 24 -24 -40 -64 20 16 -20 208
104 92 68 -16 -4 -16 -16 8 -36 256
105 -80 12 16 -56 -44 -20 -4 -80 312
106 -24 -68 -32 -96 36 12 12 -24 304
107 132 56 -40 0 -8 52 4 -44 336
108 12 44 92 -20 12 -60 4 92 336
109 -32 76 -36 20 4 88 -64 80 400
110 -32 -48 12 -24 -12 0 36 -68 232
111 -20 16 4 28 12 -44 -24 68 216
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112 68 28 60 -8 76 0 -16 -8 264
113 -4 -20 -80 20 0 60 52 -20 256
114 -36 -40 -56 -12 -24 -8 104 32 312
115 36 32 44 -44 -48 12 -44 92 352
116 -76 -116 -20 -32 20 -40 12 28 344
117 16 120 64 28 36 88 -24 16 392
118 24 -32 -16 60 4 32 16 24 208
119 48 -28 -40 -60 76 -48 20 16 336
120 -76 -8 24 40 -32 20 72 -16 288
121 -32 8 20 60 -80 36 60 56 352
122 36 0 -72 32 80 -20 12 76 328
123 -20 32 -32 60 108 68 -40 40 400
124 -44 -76 -44 -56 -32 -24 32 44 352
125 -4 8 -60 68 -28 40 72 -24 304
126 -20 -48 -4 72 -12 -44 -48 8 256
127 -28 0 52 -36 -32 4 -16 -40 208
128 -24 -52 -36 -56 4 -16 -16 -100 304
129 52 16 -16 44 80 -32 -32 -40 312
130 -32 -32 -44 -12 -72 -36 -44 -88 360
131 -36 -4 -36 -92 -24 -52 -24 12 280
132 52 -44 12 28 28 -44 -40 24 272
133 -20 24 -12 -32 -92 -48 4 -40 272
134 12 36 20 8 20 -44 -4 -24 168
135 -28 0 64 56 0 24 -52 -16 240
136 8 24 8 -24 44 -44 -16 0 168
137 72 124 0 24 52 28 12 -8 320
138 4 36 -36 48 0 -60 16 -48 248
139 24 44 0 -100 -28 8 24 28 256
140 -8 -28 16 -24 36 -12 16 -4 144
141 4 -20 -24 0 -108 -52 -32 -24 264
142 -4 32 -16 64 -32 -36 56 -48 288
143 -12 24 12 8 -64 32 28 -44 224
144 24 24 0 4 112 -76 12 44 296
145 36 -12 8 92 -12 -32 -16 104 312
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146 112 -4 84 32 -8 -32 -36 60 368
147 0 -80 72 12 -40 32 0 -28 264
148 -84 -8 72 -56 -68 -56 -20 -36 400
149 -4 -8 -12 52 -40 -20 -12 100 248
150 -24 8 -20 56 -20 24 80 8 240
151 0 0 -68 32 28 76 -48 52 304
152 8 -48 88 80 48 4 20 16 312
153 -120 -44 0 32 -60 0 -40 -96 392
154 12 -36 -32 0 -8 -28 -16 -44 176
155 -20 -48 -72 44 -40 -36 24 76 360
156 28 -8 60 32 104 0 96 32 360
157 -48 -96 -48 -44 -4 64 12 -4 320
158 -72 0 20 -8 52 -24 44 -52 272
159 -8 68 32 88 8 8 40 28 280
160 36 -36 80 20 -40 -8 -32 -92 344
161 60 0 12 32 28 72 -12 0 216
162 36 72 16 40 12 -44 36 64 320
163 0 -44 36 -56 16 4 -4 16 176
164 -12 20 36 -52 8 20 -40 -4 192
165 24 4 4 -4 24 -32 52 0 144
166 -56 -36 28 -4 12 44 -72 28 280
167 -84 -60 -12 -80 20 -56 -60 -52 424
168 -4 -56 16 68 -36 0 -4 24 208
169 -76 -60 -60 -24 -56 -40 36 -32 384
170 -68 -84 80 -12 -32 -52 -40 -24 392
171 20 -20 24 -12 44 40 -44 12 216
172 -32 -8 52 12 -4 -4 8 24 144
173 -12 -36 -32 -56 -52 24 64 -60 336
174 36 56 12 8 52 48 60 72 344
175 64 -24 -24 -12 40 40 -72 12 288
176 28 24 -28 -4 -12 68 -64 28 256
177 -72 8 -44 8 12 16 0 -56 216
178 -44 -28 4 32 -20 32 4 -68 232
179 32 -16 -76 -8 -52 -40 64 -24 312
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180 -28 -4 32 0 4 -4 32 32 136
181 -8 -4 12 4 -88 12 -32 24 184
182 0 16 24 -8 -20 -20 40 0 128
183 0 -40 -28 20 48 28 24 -28 216
184 48 112 0 48 -8 72 36 52 376
185 -32 40 -8 -16 -4 0 16 4 120
186 4 20 100 -16 60 -48 -16 8 272
187 -24 -68 -60 -32 -72 16 44 -52 368
188 20 36 60 68 8 -4 4 -40 240
189 -132 28 -64 -16 -24 -28 -44 -40 376
190 -32 8 4 16 -4 -24 20 60 168
191 -12 52 4 20 -4 4 72 32 200
192 -64 0 -40 28 8 32 -20 40 232
193 -40 8 48 -28 -16 56 -20 -48 264
194 -72 -44 -56 24 56 4 -32 -32 320
195 -52 96 -32 20 52 4 -60 52 368
196 4 -28 -16 0 96 -20 0 -28 192
197 -32 -48 20 28 -16 92 44 -8 288
198 4 -44 40 60 -40 48 64 28 328
199 -68 0 52 -32 32 -4 -32 -44 264
200 -36 32 12 -4 -20 -28 -28 -56 216
201 68 48 4 20 32 60 4 76 312
202 48 64 8 40 64 4 68 72 368
203 -24 -32 8 -52 -64 32 -12 24 248
204 -44 12 44 24 92 -52 0 -4 272
205 72 16 -28 -24 -40 12 8 56 256
206 56 -32 -36 12 -12 -64 4 24 240
207 -12 -4 36 4 -8 36 -36 32 168
208 -72 52 156 20 -40 28 24 0 392
209 -20 -32 40 -40 -36 68 -68 -72 376
210 20 -36 -20 -32 16 -48 8 -20 200
211 -12 36 36 16 -80 64 80 92 416
212 92 60 -36 -12 76 16 -4 56 352
213 12 -8 24 20 8 56 36 28 192
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214 -72 4 -16 -96 -44 12 -16 -44 304
215 0 44 28 40 -92 8 44 -8 264
216 56 16 -32 24 4 -68 8 -80 288
217 -12 -48 -8 24 -68 -44 64 -4 272
218 0 -36 -4 76 28 -36 36 -8 224
219 4 -20 0 -8 -32 -52 -72 -92 280
220 28 4 -32 -12 -8 0 -28 -40 152
221 -72 -4 88 8 -84 -44 -48 -20 368
222 32 -76 -12 -48 56 16 32 8 280
223 -36 -36 -24 -8 -44 36 -52 -52 288
224 -64 -52 24 48 -12 8 4 36 248
225 12 20 -16 0 -44 -28 88 40 248
226 64 -28 0 28 -12 0 8 12 152
227 -32 -20 84 -76 24 4 48 16 304
228 -28 28 -28 56 56 120 -84 80 480
229 -48 -36 -16 -44 56 -16 32 -32 280
230 68 -44 24 4 36 -64 4 12 256
231 32 -28 44 28 60 68 0 28 288
232 -20 -48 32 64 -76 -20 -84 16 360
233 48 -28 -20 68 8 -52 -28 -44 296
234 8 64 -4 136 -12 4 44 32 304
235 12 16 28 4 8 -52 32 32 184
236 116 -8 -12 12 76 -52 28 0 304
237 -24 -32 32 20 12 68 100 16 304
238 -16 4 -12 96 -44 -16 8 -4 200
239 44 -28 32 0 -80 -52 -12 -120 368
240 -16 60 -28 8 -24 -64 -32 48 280
241 -60 -4 -40 -20 -4 40 -8 0 176
242 -104 -8 60 16 8 56 -40 12 304
243 -4 -8 -28 -68 36 -60 -40 28 272
244 40 44 0 20 24 0 -52 -4 184
245 -104 -92 -56 -16 -72 4 -44 -92 480
246 -56 -40 16 -44 -28 0 8 -40 232
247 48 4 28 40 4 24 8 4 160
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248 48 16 88 -64 52 -60 12 12 352
249 44 -28 32 -84 -28 -52 -24 -44 336
250 68 40 -24 -16 60 -32 -48 56 344
251 -76 32 -56 -112 -56 28 20 -4 384
252 44 -24 20 56 32 -48 -96 0 320
253 -12 -24 -28 0 -68 -88 -32 60 312
254 100 28 16 28 -16 -24 -28 8 248
255 0 -28 -36 -36 40 -52 -76 -28 296
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APPENDIXC
Full Basis Linear Regression

As pointed out in Sect. 7-3, the linear regression outputs a function
in its normal algebraic form and we suggest that the normal algebraic
form can permit to discriminate the key. In the following we have per-
formed a few experiments to validate our suggestion. These experiments
need more deeper analyses that why they are provide as-is in this ap-
pendix.

C-1 Simulation

First of all we are interested in the distribution of the coefficient of the
algebraic normal form. A straightforward way to analyse this distribu-
tion is to take a look on the cumulative distribution function (which is
in fact equivalent to analyse the shape of the sorted list of coefficient).
Here we will draw the coefficients sorted (without normalization). We
also studied the deviation from the mean, that is we compute the av-
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erage function g over the whole candidates (i.e. each coefficient of the
average function g is the mean of the correspinding coefficient of every
function).

Attacks description. The 8-bit output of the AES sbox is targeted.
Leakages are simulated according to three scenarios which depend of
the deterministic part of the leakage δ:

1. δ is the Hamming weight function

2. δ is a linear function in the bit of the sensitive variable, with coef-
ficients picked uniformly into [−1,1]

3. δ is a quadratic function in the bit of the sensitive variable, with
coefficients picked uniformly into [−1,1]

For each scenario, only one attack has been performed with a set of
100,000,000. That implies that for scenario 2 and 3, only one δ is gener-
ate, which is different for each session.

The attack is a linear regression with the full basis over the centered
product combined leakages. In the following we have recorded the value
of each coefficient for each key guess (leftmost figure, the good key is
drawn in red). We have also drawn the coefficients sorted by value (cen-
ter figure, the good key is drawn in red). Then we compute the Euclidean
distance between the coefficient vector of each key guess with the aver-
age function (righmost figure).
Remark 37. The attacks have been performed in a noiseless context.
The same attacks have also been performed with noise and the results
are approximately the same and thus are not reported here.
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section C-1: Simulation

C-1.1 Boolean Masking

C-1.1.1 Scenario 1
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Due to the small degree of the combined function, only a small fraction
of the coefficient for the good key have a nonzero value. Where the key
hypothesis is wrong, each coefficient plays a role due to the complexity
of Fk ◦F−1

k̂
. Moreover we observe that the mean of the coefficients tends

toward zero. That is why in the rightmost figure, the good hypothesis
have the lower distance from the average function.

C-1.1.2 Scenario 2
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The combined fonction has still a small algebraic degree, thus the same
observation as in the first scenario can be made.

C-1.1.3 Scenario 3
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Same observations as for scenario 1 and 2.
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C-1.2 Arithmetic Masking

C-1.2.1 Scenario 1

-20

-15

-10

-5

0

5

10

15

20

0 25 50 75 100 125 150 175 200 225 250

α
u

uth coefficient

HW-arith-0

-20

-15

-10

-5

0

5

10

15

20

0 25 50 75 100 125 150 175 200 225 250

α
u

uth coefficient

HW-arith-0

0

1000

2000

3000

4000

5000

6000

0 25 50 75 100 125 150 175 200 225 250

mean-HW-arith-0
Good Key

We observe that the combined function has still a small algebraic degree
and so same observations as with boolean masking can be done.

C-1.2.2 Scenario 2
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The same observations as for Boolean case can be done.

C-1.2.3 Scenario 3
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The same observations as for Boolean case can be done.
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C-1.3 Multiplicative Masking

C-1.3.1 Scenario 1
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With multiplicative masking, even if δ is the Hamming weight function,
the centered product combination seems to have a more complex alge-
braic form. The curve for the good hypothesis does not seem to emerge
from the other curves. When sorted, we can see that the coefficients
for the good key seems to be uniformly distributed whereas for a wrong
hypothesis it is not uniformly distributed. In this case, testing the uni-
formity of the distribution of the coefficient may be a good approach.
Nevertheless, some other keys seems to have a very similar behavior
(i.e. uniformity will not discriminate the good key but the good key will
be among a few ones). Thus the distance to the average function does
not permit to discriminated the good key.
Remark 38. Notice that we are aware of the fact that this masking is
flawed at first-order (due to the masking of zero, see [44]). Nevertheless
it allow us to validate our approach.

C-1.3.2 Scenario 2
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When δ is not the Hamming weight, the curve for the good key seems to
be a little noisier nevertheless when sorted, the coefficient seems to have
a very similar behavior as in HW case.
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C-1.3.3 Scenario 3
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Same observations as in the linear random case.

C-1.4 Affine Masking

C-1.4.1 Scenario 1
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When δ is the Hamming weight, we know that the combined function
is a dirac function (cf. [40]). Although the curves have a characteristic
shape it can be dissociated from others. Nevertheless when the coeffi-
cient are sorted, we can observe that the good curves is the one with the
smallest number of zero coefficient. This implies that at the opposite of
the Boolean and arithmetic case, the distance to the average function is
maximize.

C-1.4.2 Scenario 2
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Same observation as in the Hamming weight case.
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C-1.4.3 Scenario 3
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ibidem.

C-2 Conclusion

First we observe that the masking scheme has an huge impact on the
combined function and thus the discrimination process must be adapt in
accordance with the scheme. Moreover, while δ is kept to a simple alge-
braic function, it does not really impact the complexity of the combined
function. Nevertheless, although δ is a simple function, the combined
function may not (cf. affine case).

The relevant point seems to be the shape – complexity – of the combined
function which rely on the masking scheme. When it has a low algebraic
degree (such as with Boolean and arithmetic masking), each higher de-
gree coefficient will be zero and is thus sufficient to discriminate the good
key. When it is has not a low algebraic degree function, we do not have
such a generic remark but ad-hoc one. For instance, for a dirac func-
tion (e.g. affine masking), the good curve has only non-zero coefficients
whereas others curves seems to have zero coefficients. The zeroiness of
the coefficient is in those case a good discriminating method.

The case of multiplicative masking is more tricky as no specific behavior
seems to outcomes. Perhaps another combination function can bring
more information.

Finally, we have a powerful attack which outpass the drawback of the
basis building in linear regression but which still failed in multiplica-
tive masking. Moreover, we have tested it only for small algebraic de-
gree δ function. We have also validate the retro-engineering approach
of this attack. It open the door to a real interesting way of lead such
attack.
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APPENDIXD
Résumé en Français
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D-2 Introduction

Cette thèse dans le domaine de la cryptologie s’intéresse aux attaques
par canaux auxiliaires. Traditionnellement, les preuves de sécurité en
cryptologie se placent dans un modèle dit en boite noire, qui suppose
que l’adversaire connaît l’algorithme utilisé et n’a accès qu’à un oracle
paramétré par un secret lui fournissant les résultats (chiffrement ou dé-
chiffrement) de ses requêtes. Dans ce modèle, il est possible de montrer
que, pour certains algorithmes, un adversaire appliquant une stratégie
optimale ne peut retrouver le secret de l’oracle plus rapidement qu’une
recherche exhaustive. Cependant, le modèle en boite noire ne permet pas
de prouver la sécurité d’un système en pratique.

En pratique, en effet, l’adversaire peut avoir physiquement un accès à
l’oracle (c’est notamment le cas pour les cartes à puces, largement utili-
sées dans le monde bancaire et de la téléphonie mobile comme outils de
sécurité). Dans ce contexte, il peut observer (voire même perturber) les
calculs faits par l’oracle et mesurer l’impact de ce calcul sur son environ-
nement (par exemple la consommation du courant, le temps de calcul,
etc.). Ces observations sont généralement liées aux valeurs des résultats
intermédiaires manipulées par l’oracle et donnent ainsi de l’information
supplémentaire à l’adversaire, lui permettant de retrouver plus efficace-
ment le secret. Ce modèle où un adversaire a accès à des valeurs inter-
médiaires est appelé modèle en boite grise.

L’utilisation d’informations physiques afin de casser un crypto-système
ainsi que l’étude des contre-mesures associées font partie du domaine de
l’analyse par canaux auxiliaires dans lequel s’inscrit cette thèse.

Dans un premier temps, une attention particulière est portée aux at-
taques par canaux auxiliaires existantes et un cadre d’étude général est
proposé pour permettre leur étude comparée.
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D-3 Étude comparée des attaques par canaux
auxiliaires

D-3.1 Un cadre général

Les attaques par canaux auxiliaires peuvent être classifiées selon trois
paramètres.
Le premier paramètre est la puissance de l’attaquant qui permet de dé-
finir deux classes. Dans la première classe, l’attaquant est supposé être
très puissant et contrôle une copie identique du dispositif attaqué (at-
taque par apprentissage). Sous cette hypothèse, il peut insérer n’importe
quel secret dans la copie, faire les observations correspondantes et se
constituer un dictionnaire. Dans la seconde classe (attaque simple), l’at-
taquant est supposé avoir un accès limité au dispositif attaqué et n’a
plus la capacité de faire un dictionnaire, même partiel.
Un second paramètre est le type d’opération ciblée. L’attaque peut, en
effet, par exemple, cibler le flot d’opérations, ce qui consiste essentielle-
ment à analyser directement les observations afin d’y lire la valeur ma-
nipulée. D’autres types d’attaques peuvent consister à cibler la manipu-
lation d’une donnée. Dans ce cas, une valeur intermédiaire dépendante
du secret et d’une valeur connue est ciblée. Dans ce cas l’attaquant peut
avoir besoin de plusieurs observations avec différentes valeurs connues
afin d’appliquer un traitement statistique pour retrouver le secret.
Le troisième et dernier paramètre est l’arité de l’attaque. Une attaque
est dite univariée si elle cible un seul instant de fuite et multivariée si
elle cible plusieurs instants de fuite.

Une attaque par canaux auxiliaires est principalement composée de 6
étapes : (1) mesure des observations physiques (fuites) dépendantes de
l’entrée (connue) et du secret (non connu), (2) choix d’une modélisation
des fuites, (3) choix d’une hypothèse sur une partie du secret et modé-
lisation de la possible fuite, (4) choix d’un outil statistique pour valider
l’hypothèse, (5) comparaison, à l’aide de l’outil statistique choisi, de la
fuite modélisée pour chaque hypothèse avec la fuite réellement mesu-
rée, (6) choix de l’hypothèse qui produit le modèle le plus proche des
mesures. Dans cette description générale, il peut être observé que les
étapes (2) et (4) relèvent d’un choix empirique par l’attaquant. L’un des
buts de cette thèse est de donner un cadre formel permettant de guider
l’attaquant dans cette étape. En particulier, une classification précise

195 / 220



chapitre V.D – Résumé en Français

des attaques existantes est établie, mettant en avant l’importance du
choix de la modélisation (étape (2)). De plus, un lien entre différentes
attaques de la littérature est établi et une nouvelle attaque générique
plus performante que celles existantes est exhibée.

Dans un premier temps nous nous sommes intéressés aux attaques par
canaux auxiliaire simples et univariées ciblant une unique valeur in-
termédiaire. Dans ce cas, la fuite, notée L est modélisée de la manière
suivante :

L = δ(Z)+B , (D.1)

où δ correspond à la partie déterministe de la fuite, où B est un bruit
gaussien et où Z correspond à la donnée manipulée. Nous supposons
que cette donnée résulte de l’application d’une fonction F connue à une
variable connue X et un secret k. La variable Z = Fk(X ) est dite sensible
car elle dépend et d’un secret et d’une valeur connue.

D-3.2 Principales attaques et classification

De nombreuses attaques basées sur une analyse statistique des données
existent dans la littérature, notamment la Differential Power Analysis
(DPA) introduite par Kocher et al. [52]. Le principe de cette dernière est
de partitionner les fuites en fonction d’une hypothèse sur un bit de la va-
leur intermédiaire ciblée et de soustraire la moyenne des deux partitions
ainsi crées. Cette attaque a été étendue à plusieurs bits par Messerges
dans [67] de deux façons : la all-or-nothing DPA, qui partitionne suivant
2 valeurs (au lieu de 2 bits) et la generalized DPA qui partitionne les
fuites suivant 2 sous-ensembles de valeurs.

Après le travail de Messerges, d’autres extensions ont été proposées. No-
tamment, la Partition Power Analysis (PPA) par Le et al. dans [56] qui,
au lieu de partitionner les fuites en 2 ensembles, partitionne les fuites
suivant chaque valeur de la variable intermédiaire ciblée puis fait une
somme pondérée de la moyenne de chacune des partitions. Une autre ex-
tension des travaux de Messerges a été proposée sous le terme Variance
Power Analysis (VPA) par Standaert et al. dans [97] et Magrhebi et al.
dans [60]. Son principe est assez proche de celui de la PPA : une somme
pondérée est calculée, non plus entre des moyennes, mais entre des va-
riances, chacune correspondant à une partition. Enfin, en 2004, la Cor-
relation Power Analysis (CPA) a été proposée par Brier et al. dans [26],
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où un coefficient de corrélation linéaire entre les fuites et les hypothèses
est calculée.
Tout comme les travaux originaux de Messerges, les extensions que nous
avons rappelées, sont basées sur un critère de dépendance linéaire entre
la fuite mesurée et une hypothèse. Un autre type d’attaques basé sur
l’information mutuelle a été aussi proposé par Gierlich et al. [42]. Le
principe est de tenter de mesurer l’information mutuelle entre la fuite et
une hypothèse sur la fuite. Cette attaque permet théoriquement de me-
surer toute dépendance même non linéaire. Cependant, les différentes
expériences rapportées dans la littérature montrent, qu’en pratique, ces
attaques sont moins efficaces que celles basées sur le coefficient de Pear-
son.

Toutes les attaques citées précédemment ont été appliquées dans de
nombreux papiers (e.g. [35,44,67].) et parfois comparées empiriquement
entre elles [55, 65, 97]. Néanmoins aucun de ces travaux ne permet de
tirer une conclusion définitive sur leurs similarités et différences. Cette
thèse a pour but de combler ce manque, d’une part en établissant une ré-
duction des différentes attaques à la CPA, et d’autre part en établissant
une classification formelle des attaques qui met en avant l’importance de
la modélisation de la fuite. Cela à conduit à l’exhibition d’une nouvelle
attaque générique plus performante que celles existantes.

D-4 Une nouvelle attaque générique

D-4.1 Description

Dans une seconde partie de cette thèse, nous avons analysé en détails
une nouvelle attaque qui a pour particularité principale d’élargir le choix
de la modélisation à l’étape (2). D’un point de vue technique, l’attaque,
basée sur le principe de la régression linéaire, permet de tester tout les
modèles qui appartiennent à une certaine catégorie obtenue en faisant
des hypothèses réalistes sur le fonctionnement du matériel pendant les
calculs. Plus concrètement, une hypothèse est faite sur le degré algé-
brique de la partie déterministe des fuites et l’attaque cherche le modèle
(vu comme une fonction) qui se rapproche le plus de cette partie déter-
ministe.

Pour mener la nouvelle, attaque proposée, l’attaquant doit choisir une
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base de fonctions puis appliquer une régression linéaire qui va calculer
la fonction qui appartient à l’espace engendré par la base (i.e. qui est
une combinaison linéaire des éléments de la base) qui est la plus proche
(au sens de la distance euclidienne) des observations. Ce calcul repose
sur un calcul des moindres carrés. En effet, la régression recherche les
coefficients de la combinaison linéaire des éléments de la base qui mi-
nimise la distance avec les observations. Cette distance étant une forme
quadratique avec une matrice Hessienne définie positive, la minimiser
revient à résoudre le système qui annule les dérivés partielles en chaque
coefficients, ce qui se fait facilement si le système est déterminé (ce qui
est généralement le cas).

La principale difficulté de cette nouvelle attaque réside dans le choix de
la base. L’analyse de cette difficulté fait l’objet de la section suivante.

D-4.2 Choix de la base

Comme remarqué précédemment, le choix de la base pour la régression
linéaire est un choix important. En effet, idéalement la base doit garan-
tir que la fonction calculée sous la bonne hypothèse de clé k est « plus
proche » des observations que les fonctions calculées pour des mauvaises
hypothèses de clé k̂. Si nous notons H l’ensemble des fonctions générées
par la base choisie, l’étape de régression minimise la distance entre la
fonction δ◦Fk ◦F−1

k̂
et l’espace H . Ainsi lorsque la bonne hypothèse est

faite, l’attaque approxime directement la fonction δ alors que sinon elle
approxime une fonction de la forme δ◦Fk ◦F−1

k̂
, qui suivant la nature de

F, est plus ou moins « éloignée »de δ. Idéalement, il faut donc choisir une
base (et donc un ensemble engendré H ) telle que δ appartient à H mais
pas δ◦Fk ◦F−1

k̂
quand k̂ 6= k. Si nous notons J l’ensemble des fonctions

{Fk ◦Fk̂ ; k 6= k̂}, une bonne stratégie consiste en le choix d’une base qui
contient δ et pour laquelle la distance entre H et H ◦J est maximale.
Cela est résumé dans la figure D-4-1.
Une conséquence importante de cette stratégie est que choisir la base la
plus large (et à l’extrême choisir la base qui engendre l’espace complet
F des fonctions) est inefficace. En effet dans ce cas, aussi bien δ que δ◦
Fk◦F−1

k̂
pour k̂ 6= k risque d’appartenir à H . En pratique, on observe que

δ est de faible degré algébrique (typiquement une combinaison linéaire
des bits de la variable manipulée) et que Fk ◦ F−1

k̂
pour k 6= k̂ est une

fonction de haut degré algébrique (c’est typiquement le cas lorsque F est
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FIGURE D-4-1 – Relations entre les différents espaces.

une boîte-S d’un chiffrement par blocs). Ainsi choisir une base qui génère
les fonctions de petits degrés algébriques est une bonne stratégie.

Remarque : Bien qu’utiliser une base générant tout l’espace soit ineffi-
cace lorsqu’on utilise la distance euclidienne, il est possible d’appliquer
une étape supplémentaire aux approximations fournies par la régression
dans le but de « reconnaître » celle correspondant à δ de celles correspon-
dant à δ◦Fk ◦F−1

k̂
pour k 6= k̂. Par exemple dans le cas d’une fonction δ

de petit degré algébrique et d’une fonction F de type boîte-S, la fonction
δ aura donc tous ses coefficients de degré élevé nuls contrairement aux
autres fonctions.

De nombreuses expériences ont été faites afin de valider le lien entre les
différentes attaques connues et la pertinence de cette nouvelle attaque
et ainsi que des différentes stratégies pour le choix de la base.

D-4.3 Optimisations

Deux optimisations algorithmiques de l’attaque par régression linéaire
sont aussi proposées et analysées dans cette thèse.

La première optimisation concerne un pré-traitement des fuites suivant
la valeur connue qui leur est associée. En effet, la régression linéaire
étant basée sur la résolution d’un système linéaire, elle utilise des opé-
rations matricielles qui ont une complexité quadratique en le nombres
d’observations. De ce fait, lorsque le nombre d’observations est grand, la
complexité de l’attaque devient critique. Une solution pour remédier à ce
problème est de préalablement regrouper (i.e. moyenner) les fuites sui-
vant la valeur de la donnée connue. Nous avons montré que cela ne mo-
difie pas l’efficacité de l’attaque. En revanche sa complexité devient indé-
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pendante du nombre d’observations ce qui permet de considérablement
réduire les temps de calcul lorsque l’attaque nécessite de nombreuses
observations.

Remarque : Cette optimisation n’est pas dédiée à la régression linéaire
mais peux être appliquée à toute attaque basée sur un calcul de moments
conditionnels (par exemple la CPA).

La seconde optimisation proposée dans cette thèse consiste en l’utilisa-
tion d’un algorithme itératif afin de calculer la fonction qui minimise la
distance euclidienne avec les observations. Le principe repose sur le fait
que si chaque élément de la base est linéairement indépendant, alors il
est possible de faire la régression linéaire élément par élément. Ainsi cet
algorithme recherche l’élément de la base le plus corrélé avec les obser-
vations, fait une régression linéaire suivant cet élément, puis retranche
le résultat des observations puis recommence (pour plus de détails tech-
niques,voir [38]). Cet algorithme introduisant les éléments de la base du
plus corrélé au moins corrélé, il permet de réduire la taille de la base (et
donc l’une des dimensions de la matrice dans la régression) en ne gar-
dant que les éléments pertinents pour l’attaque. Cela permet en outre,
quand le nombre d’observations est trop faible, de ne pas introduire tous
les éléments de la base. De plus, cela permet de choisir à chaque fois les
éléments les plus pertinents de la base. Dans ce cas de figure, une bonne
stratégie est de donner une base très large et de laisser l’algorithme choi-
sir un petit nombre d’éléments dans cette base. Cela apporte ainsi une
plus grande flexibilité sur le choix de la base de régression linéaire et
une attaque plus performante.

Ces deux optimisations proposées dans cette thèse peuvent bien évi-
demment être combinées afin d’atteindre une attaque performante et
rapide.

D-5 Attaques d’ordre supérieur

Pour contrer les attaques univariées, des contre-mesures efficaces ont
été mises en place (cf. section suivante sur les contre-mesures associées).
Dans ce contexte les attaques doivent souvent cibler deux instants afin
d’avoir une chance de retrouver de l’information sur le secret. Dans une
troisième partie, nous nous sommes donc intéressés au coté multivarié
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des attaques par régression linéaire afin de les appliquer à des implan-
tations protégées.

Après avoir étudié les attaques par canaux auxiliaires simples ciblant
une valeur intermédiaire dans le monde univarié, nous nous sommes in-
téressés au monde multivarié. En particulier, nous nous sommes concen-
trés sur les attaques bivariées (a.k.a. du second-ordre). En général, les
différents instants sont combinés entre eux par produit (centré) afin
d’appliquer des attaque univariées parmi celles rappelées dans la sec-
tion D-3.2. En effet, seules quelques attaques comme la MIA sont intrin-
sèquement multivariées.
Dans un premier temps, nous avons montré que l’attaque par régression
linéaire présentée dans la section D-4 pouvait aussi s’appliquer dans le
cas d’observations bivariées. Pour se faire, la régression linéaire étant
une attaque univariée, nous avons montré qu’une fonction de combinai-
son devait être appliquée. Nous avons choisi le produit centré et nous
avons étudié la pertinence théorique de ce choix. Nous avons ensuite
montré d’une part, qu’elle englobait les précédentes attaques basées sur
la CPA, et d’autre part, qu’il existait un lien entre celle-ci et une attaque
par maximum de vraisemblance (attaque optimale en théorie).

Remarque : Dans le cas bivarié, et la fonction de combinaison et la
contre-mesure employée ont un impact sur la fonction approximée par
la régression linéaire. Par conséquent, utiliser une base complète et dis-
criminer directement avec la forme algébrique (comme remarqué précé-
demment) nécéssite de prendre en compte ces deux facteurs supplémen-
taires. Plus intéressant, la forme algébrique peut aussi servir à faire de
la rétro-ingénierie et permettre de retrouver la contre-mesure appliquée
si elle n’était pas connue.

De nombreuses expériences ont été menées afin de valider cette ap-
proche.

D-6 Contre-mesures associées

Dans une quatrième partie de cette thèse, nous nous sommes intéressés
aux deux principales contre-mesures existantes, à savoir la manipula-
tion temporelle aléatoire des données et le partage aléatoire des don-
nées, ainsi qu’aux techniques pour combiner ensemble ces deux contre-
mesures.
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D-6.1 Description

La manipulation temporelle aléatoire des données consiste à rendre aléa-
toire sur une certaine durée t l’instant auquel une certaine donnée sen-
sible est manipulée. Bien que cette technique ne rende pas inefficace
une attaque par canaux auxiliaires, elle en diminue l’efficacité (environ
t fois plus de mesures seront nécessaires afin d’obtenir un même taux
de succès qu’en l’absence de contre-mesures). Pour contourner une telle
contre-mesure, un attaquant doit cibler les t instants en même temps
(par exemple en les sommant, le résultat contenant obligatoirement la
valeur de la donnée sensible). Cette contre-mesure est assez simple à
mettre en place mais nécessite de donner une grande valeur à t pour
être efficace.

La seconde grande famille de contre-mesures, le partage aléatoire de
données, quant à lui consiste à rendre tout uplet de d instants de mesure
(d étant un paramètre de la contre-mesure) indépendant de la donnée
sensible. Pour se faire, un nombre d de valeurs aléatoires sont générés
à chaque exécution de l’algorithme. Ces valeurs aléatoires (appelées gé-
néralement masques) sont ensuite combinées avec la donnée sensible.
De cette façon la donnée manipulée correspondante à la donnée sensible
combinée aux aléas ne dépend plus du secret. Une attaque par canaux
auxiliaires ne ciblant que d instants de la fuite (ou moins) est alors inef-
ficace.

Cette contre-mesure bien que très efficace (le nombre de message néces-
saire pour obtenir un même taux de succès qu’en l’absence de contre-
mesures augmente exponentiellement avec d) est très coûteuse à implé-
menter lorsque les opérations effectuées sur la donnée sensible ne sont
pas linéaires.

D-6.2 Combinaisons

Des travaux ont montré qu’une stratégie efficace de sécurisation et d’im-
plantation consistait à combiner le partage de données avec la manipu-
lation temporelle aléatoire. Dans ce cas, la donnée sensible est partagé
en d+1 parts et la manipulation de chacune des parties est rendue aléa-
toire sur t instants.

Pour contourner une telle combinaison de contre-mesures, une combinai-
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son des attaques elles-mêmes doit être opérée. La meilleure application
de cette stratégie connue consiste à ce que l’attaquant fasse une somme
de toutes les d+1 combinaisons possibles parmi les t fuites. Bien qu’en
théorie, une telle combinaison soit toujours possible, de nombreux obs-
tacles pratiques jalonnent l’implantation d’une telle contre-mesure, no-
tamment la quantification de la sécurité apportée. Certains schémas ont
déjà été proposé [46,103] mais se limitent à un partage d’ordre 1.

Dans cette thèse nous avons proposé des nouveaux schémas combinant
la manipulation aléatoire des données et le partage de données dans le
but de bénéficier des avantages des deux types de contre-mesures tout en
limitant les défauts. Nous avons par ailleurs proposé un nouveau cadre
permettant de quantifier la sécurité apportée par de telles techniques en
fonction des paramètres t et d.

D-7 Conclusion

En conclusion, les apports principaux de cette thèse sont : une unifi-
cation des différentes attaques par canaux auxiliaires existantes, une
introduction de nouvelles techniques d’attaques plus robustes aux er-
reurs lors des étapes de modélisation et un nouveau schéma de protec-
tion contre toutes ces attaques ainsi qu’un schéma d’évaluation asso-
cié..
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RÉSUMÉ COURT :

Cette thèse s’intéresse aux attaques par canaux auxiliaires contre les implantations
matérielles d’algorithmes cryptographiques. Les études conduites dans ce document
se placent donc dans le cadre où un adversaire a accès à des observations bruitées des
résultats intermédiaires d’un calcul cryptographique. Dans ce contexte, de nombreuses
attaques existent avec leurs contremesures dédiées, mais leur pertinence et leur mise
en pratique restent encore floues.

Cette thèse s’intéresse dans un premier temps à la pertinence des attaques existantes
et aux possibles liens qui les unissent. Une classification formelle est proposée ainsi
que des critères de choix. Sur la base de cette étude, une attaque générique perfor-
mante est décrite et analysée en profondeur.

Dans un second temps, la mise en pratique des contremesures actuelles est étudiée,
donnant lieu à la création d’un schéma d’application les mélangeant pour atteindre de
meilleurs compromis efficacité/sécurité.

MOTS-CLÉS :

• Systèmes enfouis (informatique) • Cryptographie • Analyse de régression • Analyse
stochastique • Corrélation

TITLE:

Side-Channel Analysis and Countermeasures

BRIEF SUMMARY:

This thesis deals with side channel attacks against hardware implementations of cryp-
tographic algorithms. Studies conducted in this document are therefore in place where
an adversary has access to noisy observations of intermediate results of a cryptographic
computation. In this context, many attacks are dedicated with their countermeasures,
but their relevance and their implementation are still unclear.

This thesis initially focuses on the relevance of existing attacks and potential links
between them. A formal classification is proposed as well as selection criteria. Based
on this study, a generic efficient attack is described and analysed in depth.

In a second step, the implementation of common countermeasures is studied, leading
to the creation of an application scheme mixing them to achieve a better efficiency /
security trade off.

KEYWORDS:

• Embedded systems (computer science) • Cryptography • Regression analysis • Stochas-
tic analysis • Correlation (statistic)
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