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Abstract

In order to maintain life, living organisms product and transform small molecules called metabolites.

Metabonomics is a recent scienti�c platform, studying the development of biological reactions caused by a

contact with a physio-pathological stimulus, through these metabolites.The 1H-NMR spectroscopy is widely

used to graphically describe a metabolites composition via spectra. Biologists can then con�rm or invalidate

the development of a biological reaction if speci�c NMR spectral regions are altered from a given physiological

situation to another. However, this process supposes a preliminary identi�cation step which traditionally

consists in the study of the two �rst components of a Principal Component Analysis (PCA). This paper

presents a new methodology in four steps providing knowledge on speci�c 1H-NMR spectral areas (and

by extension on biomarkers) via the identi�cation of biomarkers as such, and via the visualization of the

e�ects caused by some external changes. A �rst step implies Independent Component Analysis (ICA) in

order to decompose the spectral data into statistically independent components or sources of information.

The independent (pure or composite) metabolites contained in bio�uids are discovered through the sources,

and their quantities through mixing weights. The advantages of independent components are described in

comparison with usual PCA analysis. Speci�c questions related to ICA like the choice of the number of
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components or their ordering will be discussed here. The second step consists in a statistical modelling

applied to the ICA outputs. The third step will introduce statistical hypothesis tests on the parameters

of the estimated models, with the objective of selecting sources which present biomarkers or signi�cantly

�uctuating spectral regions according to our factor of interest. A panel of various statistical models is

considered here, that can adapt to di�erent possible kinds of data or di�erent investigations. Finally, the

last step proposes a computation of contrasts which can lead to the visualization of changes on spectra caused

by changes of the factor of interest. The whole methodology is illustrated on two experimental datasets.

Keywords: Metabonomics, multivariate statistics, Independent Component Analysis, biomarker identi�cation,1H-

NMR spectroscopy, linear mixed models.

1 Introduction

Metabonomics, one of the most recent section in the world of "Omics", extracts biochemical information re-

�ecting somel biological events. This science studies how the metabolic pro�le of a complex biological system

changes in response to stresses like diseases, toxic exposures or dietary changes. In more technical terms,

metabonomics is de�ned as "The quantitative measurement of the dynamic multiparametric metabolic response

of living systems to pathophysiological stimuli or genetic modi�cation".[1]

Proton nuclear magnetic resonance (1H-NMR) spectroscopy generates spectral pro�les describing the com-

position of metabolites in collected bio�uid samples. A comparison of several spectra in various speci�c states

can permit a preliminary graphical and qualitative investigation of changes in bio�uid metabolite composition

inherent to the presence of a stressor. However, the complexity of 1H-NMR spectra and the high number of spec-

tra (of samples) necessary for metabonomic studies imply an automated data analysis. In addition, systematic

di�erences between samples are often hidden behind biological noise and/or behind peak shifts.

Adequate data pre-processing and multivariate statistical methodologies are then required to extract spectral

regions with stable di�erences between spectra obtained in various conditions. These regions, directly linked

with biomarkers, are assumed to be associated with the alteration of an endogenous metabolite in reaction

to the contact with a considered stressor. A biomarker can then be isolated to detect and follow changes in

biological systems. Beside this goal of biomarker identi�cation, statistical analysis, through predictive models,

can also be used on 1H-NMR spectra to provide the probability of the occurrence of a biological reaction.

The �rst and the most common chemometric tool used in preliminary metabonomic studies is Principal Com-

ponent Analysis (PCA).[2] [3] This method is a starting point for analyzing multivariate data and can rapidly

provide an overview of the hidden information. Data are presented as a two dimensional plot (scoreplot) where

the coordinate axis correspond to the two �rst principal components. If spectra di�er according to a speci�c

characteristic, the scoreplot reveals the presence of natural clusters in the datasets. An examination of the

loadings leads to identify biomarkers or key portions of the 1H-NMR spectra giving rise to these regroupments.
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Sometimes, variations within groups are bigger than variations between groups, resulting in a scoreplot

with clusters that overlap or do not directly correlate to the studied characteristics. In such cases, additional

information can be extracted by using other data decomposition methods such as partial least squares (PLS),

discriminant PLS (PLS-DA) or orthogonal PLS (O-PLS). As PCA, these methods look for systematic variances

between samples. In contrast, they use information about samples such as groups of the characteristic of interest.

Therefore, these methods often allow a better separation of samples and a clearer identi�cation of signi�cant

biomarker variables, but are biased (in contrast to PCA).

Unfortunately, in many publications, PCA is the only statistical standard while it remains a highly ques-

tionable procedure. Haluska and Powers have underlined the negative impact of the PCA sensitivity to noise

for the analysis of 1H-NMR data [4]: very small and random �uctuations within noise of the 1H-NMR spectrum

can result in irrelevant clusters in the scoreplot formed by the two �rst principal components. They propose to

remove noisy regions by only using signals above a chosen peak intensity threshold during PCA.

In a previous work, Rousseau and al presented an improved PCA method [5]. If random noises or even

unexpected variations are contained within data, clusters of interest can be presented in later factors of the

PCA decomposition. They proposed a methodology to identify the two factors that discriminate the most two

classes of spectra, and help them to form a proper scoreplot. In this paper [5], several statistical methods

for the identi�cation of metabonomics biomarkers in 1H-NMR spectroscopy are also suggested and compared.

Discriminant Partial Least Square (PLS-DA) and a method based on independent component analysis (ICA)

showed good competitive performances. On the contrary, even with the proposed improvement, the PCA

biomarker identi�cation demonstrated a general low e�ciency.

We propose here to expand the use of ICA for the identi�cation of speci�c 1H-NMR spectral regions that

are discriminant for two or more categories of spectra. The previous promising results are motivating and

encourage to go futher into the study of the use of ICA for the analysis of metabonomics data. Additionally,

applications of ICA in contexts quite similar to metabonomics, as genomics [9] [10] and even in MASS spec-

troscopy metabonomics [11], have shown that ICA clearly outperforms PCA. ICA has also the advantage to

share similitudes with better known PCA. Both of them are projections methods which linearly decompose

data into components. As for PCA, the ICA results can then be supported by visual representations. Any-

way, the ICA components have a more stringent nature than principal components: PCA decomposes data

into uncorrelated components of maximal variance when ICA attempts to achieve an even greater objective

by modeling the data as a linear mixture of maximally independent components. For non-gaussian data, the

general structure can be more naturally explained and ICA is likely to be successful in this context because

most biological variance sources have exactly non-gaussian distributions. The independence of the components

is also adequate for biological interpretation because the analyzed bio�uid (e.g. plasma, urine) can be seen as a

mixture of unrelated metabolites and 1H-NMR spectra may then be interpreted as weighted sums of 1H-NMR

spectra of these independent metabolites. The application of ICA should then ideally recover components which
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may represent the independent metabolites contained in the media.

In this context, this paper proposes a methodology for the identi�cation of 1H-NMRmetabonomic biomarkers

in 4 steps (Figure 1). The �rst step is the implementation of ICA in order to reduce the dimension and decompose

the multivariate spectral dataset into statistically independent components. We then propose solutions to select

the optimal number of components to estimate and to order these components. Comparatively to usual PCA

analysis, we demonstrate the usefulness of independent components to overview data and to search for outliers.

The second step of this methodology consists in a statistical modelling of the ICA results. We consider a panel

of various mixed linear statistical models adapted to the nature of the domain. In a third step, the model

coe�cients and appropriate multiplicity corrected statistical tests are used to decide which ICA sources can be

considered as biomarkers of the stressor(s) of interest. Finally, in a fourth step, a method is proposed to visualize

the stressor e�ect on 1H-NMR spectra. In other words, all the models are then used to identify biomarkers and

to visualize the e�ects of the experimental factors on these biomarkers.

Figure 1: Methodology steps

This article is organized as follow. Section 2 provides a presentation of both typical metabonomic data

and experimental data used in this paper. Section 3 presents the �rst part of the methodology, the ICA

dimension reduction, with beforehand a general presentation of ICA. The third subsection introduces a criterion

to measure the amount of information contained in the obtained components. This measure allows us to order

the components in a similar way to the percentage of explained variance used in PCA. In Section 4, we propose

to use the mixing weights resulting from ICA in combination with statistical linear models in order to identify

(and perhaps interpret) biomarkers. Section 5 presents the third step consisting in a selection of sources that

describe biomarkers based on the signi�cance of the models estimated in step 2. In section 6, from the selected

sources, we propose to compute contrasts to visualize the spectral e�ects when one factor of interest changes.

All the concepts presented in sections 2 to 6 are illustrated on a simple experimental dataset. Finally, section 7
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illustrates the methodology through an application linked with a more complex 1H-NMR metabonomic dataset

and section 8 introduces an example on real data related to Age related Macular Degeneration (AMD).

2 Data description

2.1 Typical metabonomic data

A typical experimental database is formed by three sets of data: a design, a set of 1H-NMR spectra and biological

and/or hysto-pathological data. The design describes the experimental conditions underlying each available

spectrum. Typical design factors are: subject ID (animal or human) and characteristics, treatment, dose or

time of sampling. A 1H-NMR dataset contains the spectral evaluations of bio�uid samples which were collected

according to the design. After spectra are accumulated, a primary data reduction ("binning") is carried out by

digitizing the one-dimensional spectrum into a series of 250 to 3000 integrated regions or descriptor variables.

However, a typical metabonomic study involves about 30 to 200 spectra or sample measurements. The resulting

dataset is thus typically characterized by a larger number m of variables than the number n of observations.

Another important characteristic of 1H-NMR data is the strong association (dependency) existing between some

descriptors, due to the fact that each molecule can have more than one spectral peak and hence may contribute

to more than one descriptor. As a large variety of dynamic biological systems and processes are re�ected in

spectra, a range of physiological conditions, for example the nutritional status, can also represent a source of

variability into spectra. Noise and biological �uctuations are thus natural and inevitable in spectral data. Each

spectrum in the 1H-NMR dataset is also usually linked with one or more variable(s) aimed at con�rming by

an independent measure the presence of a response of the organism towards the stressor. This con�rmation is

obtained via the current gold-standard examinations (biological measures or hysto-pathological ones) generated

for the subject for which spectra are measured.

2.2 Experimental data

2.2.1 The experimental plan

An experimental plan (see Figure 2) was designed in order to provide a database in which one controls the alter-

ations of known descriptors. In this experiment, homogeneous urine samples were spiked with two products at

di�erent levels of concentration and analyzed through spectroscopy. These products are citric acid ("citrate")

and hippuric acid ("hippurate"). They were added to urine at four levels of concentrations, respectively 0, 2, 4

and 8 mM for citric acid, and 0, 1, 2 and 4 mM for hippuric acid.
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Figure 2: Experimental design

As shown in Figure 3, the peaks corresponding to each product are located in distant areas. The hippurate

is characterized by three peaks, with two of them in the low �eld region containing a low noise level. On the

contrary, citrate peaks are located in the noisy region. In spectral pre-processing, note that these peaks are

aggregated in one to avoid alignment problems (see Section 2.2.4).

Figure 3: A typical urine spectrum with spiked citrate and hippurate

This experimental design was repeated several times with di�erent conditions (two water dilutions, �ve days,

two replicates per day) but only 28 spectra are used in this paper. It corresponds to two replicates of the 14

point design of one day of experiment and in only one water dilution. All spectra are available from the �rst

author under request.

2.2.2 Hypothetical metabonomic study

In this paper, the spectra obtained from the designed experiment are used to mimic a typical metabonomic

study. We will suppose that 28 subjects having four di�erent levels of age (the four levels of citrate) have
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received four di�erent doses of a drug (the four levels of hippurate). The hypothetical goal of the study is to

�nd a critical spectral region or a biomarker which synthesize the drug e�ect on the urine. The "discovered"

biomarker will hopefully have the shape and position of the hippurate peaks but obviously no information on

these peaks is provided in the methodology.

2.2.3 Sample preparation and acquisition of the 1H-NMR data

The two products (citrate and hippurate) were �rst mixed with phosphate bu�er containing TSP. The volume

of bu�er was adapted in order to obtain a volume of 600µl to add to a urine sample. Each urine sample came

from a pool of 344 female Fischer rats and had a volume of 1200µl. Each mixture was added to a urine sample,

centrifuged, frozen at 80 oC and unfrozen at 40 oC the day before the 1H-NMR analysis. Samples were then

analyzed randomly within each day of experiment. NMR measurements were made with a 600 MHz Bruker

spectrometer with 4mm FI-SEI ATM probe. The spectral information is then included in 28 individual free

induction decays (FIDs).

2.2.4 The post-acquisition treatments

Each acquired spectrum was processed using Bubble, a MATLAB tool for automatic processing and for reducing

NMR spectra. [17]. Bubble performs in sequence : suppression of the water resonance, apodisation (with a line

broadening factor of 1Hz), Fourier transform, phase correction, baseline correction using a Whithaker smoother

[16], median normalization and warping in order to align shifted peaks. The last step of the Bubble process

reduces, by simple integration, the part of the spectrum situated between 0.2 and 10 ppm to 600 descriptors. We

manually added several pre-processing tools to spectra prepared by Bubble. First, we replaced all the negative

values by zero. Secondly, we set to zero the ppm values corresponding to the large non-informative urea peak

and to the already treated water peak (4.5-6.0 ppm). Then, the spectral region around the citrate resonances

(2.56-2.72 ppm) was integrated and summarized in just one peak to suppress high shifts. Finally, we normalized

for a second time the dataset. Indeed, the e�ect of the �rst normalization by the median, necessary to realize

an accurate warping, is cancelled due to the reduction. The second normalization consists in a constant sum

normalization : each spectrum is divided by the sum of intensities for all its ppms values.

2.3 Notations

LetX be the (m×n) matrix of spectral data containing n spectra, each of them being described bym descriptors.

Y is a (n× l) matrix of design data describing each sample or spectrum by l variables. One of these variables

describes the characteristic related to the biomarkers: yk. In our experimental data, n=28, m=600 and two of

these design variables correspond to the citrate and hippurate concentrations, later assimilated as subject age

and drug dose.
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3 First step of the methodology: Independent Component Analysis

3.1 The ICA theoretical principles

The basic idea of Independent Component Analysis (ICA) is to reconstruct from observation sequences original

sequences that are assumed to be independent. ICA is a multivariate analysis tool which aims at separating or

recovering unobserved multidimensional independent signals from linearly mixed observed ones [7] .

ICA was originally developed for signal processing to solve the problem of blind source separation (BSS)

[12]. In this context, the aim of BSS is the recovery of a number of original signals when only a mixture of them

is available.

In the basic noiseless ICA model, each observed signal is a mixture of unknown statistically independent

signals (named sources or components):

X = SAT (1)

with X denoting the (m× n) matrix that contains n original signal vectors of m observations (xi), S denoting

the (m × q) matrix that contains q unknown source vectors sj . The relative contribution of each component

to the expression pro�le for a given sample is determined by the coe�cients of the unknow (n × q) mixing

matrix AT . Finally, the "unmixing" problem considered by ICA is to recover S. The goal of ICA is to �nd a

demixing matrix W such that the sources can be estimated by Ŝ = X.W where Ŝ denotes the matrix formed

by q estimations of scaled independent source vectors sj (as columns).

The ICA model introduces an ambiguity in the scale of the recovered sources. It results from the fact that

scaling a source by a factor λ is exactly compensated by dividing the corresponding column of the mixing

matrix by λ. A natural way for �xing the magnitudes of independent components is thus to assume that each

component has unit variance. It should be noted that the ambiguity of the sign remains as we can multiply any

component by -1 without a�ecting the model.

The key assumption of ICA is that the sources have to be statistically independent. Under the ICA model,

the observed data tend to be more gaussian than the independent components due to the Central Limit Theorem

(the distribution of a sum of independent random variables is generally more gaussian than the summands).

Thus, the independence of random variables can be re�ected by non-gaussianity. Solving the ICA problem aims

then at �nding a matrix W and maximising the non-gaussianity of the estimated sources, under the constraint

that their variances are constant.

Two classical measures of non-gaussianity are the kurtosis (the fourth-order cumulant) and the negentropy.

Although the idea of maximising the kurtosis seems quite simple, it can be very sensitive to outliers.[13] In this

paper, we used an algorithm based on the maximisation of the negentropy, the FastICA algorithm proposed by

Hyvärinen.[8] The entropy of a random variable Y , which is the basic concept of information theory, is de�ned
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as follow :

H(Y ) = −
∫
fY (y)log(fY (y))dy (2)

In information theory, among all random variables of equal variance, the normal one has the largest entropy.

The FastICA algorithm uses a contrast function called the negentropy J ,de�ned by :

J(Y ) = H(Ygauss)−H(Y ) (3)

where Ygauss is a gaussian random variable with the same covariance matrix as Y . The main disadvantage of

using negentropy is that it is computationnally intensive because it requires the estimation of the probability

density function. Therefore, a simpler approximation of negentropy is used in FastICA. [?]

Before applying this algorithm to the data, some pre-processing steps are necessary. First, to simplify the

theory and the algorithm, one assumes, without loss of generality, that both the mixture variables and the

independent components have zero mean. This assumption is achieved by centering each observed signal vector.

The second step, called "Whitening", allows the ICA algorithm to transform and reduce the dimension of the

signal matrix X to a (m × q) matrix of orthogonal vectors T in order to reduce the number of parameters to

be estimated. Columns of T are linear combinations of original signal vectors and obtained by PCA with unit

variances. The number q of sources to be computed can be �xed in this step via a method discussed in Section

3.3.

3.2 ICA on metabonomic data

In the context of metabonomic 1H-NMR data, the analyzed bio�uid (e.g. plasma, urine) can be seen as a

mixture of individual metabolites and NMR spectra may then be interpreted as weighted sums of NMR spectra

of these single metabolites. If the matrix X of 1H-NMR spectra is rich enough, the application of ICA to

1H-NMR data should then ideally recover components included in the mixture, interpretable as spectra of pure

or complex metabolites.

3.2.1 Algorithm application

The FastICA algorithm is applied to the spectral matrix as follows:

• Pre-processing step 1: center X by columns:

Xc = X − 1m · X̃

where X̃ is the 1× n vector of spectral means and 1m a m× 1 unit vector.

• Preprocessing step 2 ("Whitening"): reduce by PCA the (m×n) matrix Xc to a (m× q) matrix of scores

T (q ≤ min(n,m)):

Xc = T ?P ? = TP + E
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The column vectors of the full score matrix T ? are centered, uncorrelated and their variances are equal to

one. In other words, the variance-covariance matrix of T ? equals the identity matrix: V ar(T ?) = In. P
?

is a (n×n) matrix de�ned on the basis of the eigenvectors of the covariance matrix (XcTXc)/n. Note that

this PCA di�ers from usual PCA for metabonomic biomarkers identi�cation as the resulting components

are linear combinations of observations (spectra) and not of variables (spectral descriptors), and centering

is done by spectra and not by descriptor. The number of sources q to be estimated can be �xed to less

than min(n,m). This is performed here by selecting the q �rst scores vectors (columns) of T ? in order to

build the (m × q) matrix T . P is then de�ned as the q �rst lines of P ? and E is the error matrix. The

choice of q is discussed in section 3.3.

• ICA based on T and calculation of S and AT . The fastICA algorithm, with parallel extraction of compo-

nents, proceeds in the following steps:

� compute a (q×q) unmixing matrixW such that TW = S where S is the (m×q) matrix of independent

sources. W is chosen to maximize the negentropy of the columns of S.

As the variance of TW must be equal to one, this is equivalent for the whitened data to constrain

the norm of W to be unity .

� de�ne the mixing matrix A as A = W−1P in order to obtain the ICA decomposition Xc = SA+E.

The (m× q) matrix S contains q estimated independent components (IC),sj . Each sj has a zero mean and

a unit variance, and at least (q − 1) sources are non gaussian. The A mixing matrix is a (q × n) matrix. Each

column aj is then a (n×1) vector containing the weights or contributions of the corresponding source sj during

the construction of the n observed spectra. A source sj playing a major role in the contribution of an observed

spectrum xi has then a potentially large absolute value |aij |.

3.3 Choice of the number of sources to estimate

One important parameter that may change ICA results is the number q of estimated components. The real

number of independent sources contributing to the signal is obviously unknown and has to be guessed. In the

ICA theory, it is supposed that the number of sources is less than or equal to the number of observed mixtures:

q ≤ n. This represents a required condition to avoid overlearning e�ects. Moreover, to make the implementation

of the fastICA algorithm e�ective, the maximal value for q is the smallest dimension of its input matrix. Indeed,

the data matrix used as input in the algorithm is the whitened matrix. The maximal number of sources to be

computed is then �xed by the score matrix T , with q ≤ min(n,m). In 1H-NMR metabonomic datasets, the

resolution of a spectrum m is typically higher than the number of spectra n. The maximal value q will then

correspond to the number n of observed spectra: q ≤ n. Anyway, when n is large, the choice of q = n can
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produce convergence problems or very high computational costs. On the other hand, q should be large enough

to allow su�cient freedom or richness of choice for the feature selection algorithms to be powerful.

To avoid convergence problems, the number of sources is here limited to a chosen value q < n by discarding

some score vectors obtained via the whitening matrix T ?. The selection of these vectors is based on the PCA

natural ordering of the columns of T ? according to the eigenvalues λj of X
cTXc . The q �rst vectors of scores

associated with the largest eigenvalues are selected to form the matrix T of reduced dimensions (m × q) with

q < n. This keeps only components which explain most of the variance in the data and discards those describing

noise. Let us de�ne Dq the proportion of the variation of Xc explained by the �rst q principal components:

Dq =

∑q
j=1 λj∑n
j=1 λj

We propose to choose q on the basis of a screeplot in order to be quite sure to preserve enough original

information.

3.4 Measure of the information contained in ICA sources

In ICA, there is no natural ordering of the computed sources. This section presents a possible alternative.

Given a set of q estimated sources sj , we can reconstruct the data as X̂c = SAT . Let us de�ne the error (in

the reconstruction) observed with only the source sj by:

Ej = (Xc − sj .aTj ) = S6=jA
T
6=j

This error is equivalent to the data reconstructed with all the other sources contained in the (m × (q − 1))

matrix S6=j . For sources with zero mean and unit variance, it can be shown that a measure of the proportion

of the variation in T explained by sj is:

R2
j = 1−

tr(ET
j Ej)

tr(X̂T X̂)
=

∑n
i=1 a

2
ij

tr(ATA)

The proportion of the variance of signals in Xc explained by a source sj is then de�ned by:

Cj =

∑n
i=1 a

2
ij

tr(ATA)
×Dq

with Dq the proportion of variance explained by the q scores in T . Below, the sj are ordered according to their

respective Cj .

3.5 Example

In this section, this ICA procedure is applied on the dataset described in section 2.2.1. It involves n=28 spectra

with m=600 ppms, each corresponding to the two replicated samples of each of the 14 mixtures of urine. As

our samples are mixtures of three products, we ideally expected to �nd three independent sources of variation:
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the variation of the urine spectra and the respective variations due to the citrate and hippurate peaks. Anyway,

we supposed that we do not know that data come from an experimental design, and have based the number of

calculated sources on the percentage of explained variance of the principal components (PCs) in the whitening

stage. Based on the screeplot (see Figure 4), we choose to calculate q=6 sources. The percentage of explained

variance with these �rst six PCs is of the order of Dj = 0.9796.

Figure 4: Screeplot of the % of explained variance with the �rst q PCs (from the "PCA-whitening")

The FastICA algorithm was then applied to the (600 × 6) T matrix. Figure 5 presents the six computed

ICA sources and one can directly see that the goal is reached. Source 1 (38.18% of the information) represents

a typical urine spectrum, source 2 (29.62%) the spectrum of pure citrate and source 3 (27.86%) the spectrum

of hippurate. The three last sources explain a very low amount of information and may be attributed to noise.

Note that, out of product peaks, sources 2 and 3 present very low noise. This is an advantageous characteristic

of ICA compared to PCA (see below).
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Figure 5: the q = 6 ICA sources

Figure 6 presents, on a scatter plot, the values of the mixing weights aij for sources 2 and 3 and for the

14 × 2 experiments. The shape of the experimental design can directly be recognized. This illustrates that

mixing weights give a direct idea of the amount of each metabolite in the mixture. The diamond shape of the

design is due to the fact that citrate and hippurate quantities have been added to a constant quantity of urine

and are consequently not real proportions. The positive values of all weights take into account the fact that

pure urine already contains a certain amount of citrate and hippurate.
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Figure 6: Mixing coe�cients for sources 2 and 3

3.6 Comparison between ICA and PCA

ICA and PCA are both methods allowing dimensional reduction but using a di�erent principle to choose the

directions of their components. PCA results in uncorrelated axes with directions computed from the second order

statistics while ICA provides statistically independent axes with directions actually based on the second and

higher orders. The statistical independence of ICA sources is a stronger concept than the non-correlation of the

principal components from PCA. If the variables are independent, they are uncorrelated, while uncorrelatedness

does not imply independence. For this reason, ICA can then be seen as a generalization of PCA which can

highlight high-order dependencies in addition to correlations. ICA also provides more natural and biologically

meaningful representations of the data. The independent components are also more suitable for our study than

uncorrelated components: in metabonomic data, the components (metabolites) of interest are not systematically

in the direction of the maximal variance.

Figure 7.a shows an experimental design allowing to illustrate the advantage of ICA on PCA. In these data

(24 extracted spectra), PCA should ideally choose the two �rst directions shown in Figure 7.b. These directions

represent a variation of both citrate and hippurate. As it can be seen in Figure 8.a, each of the two corresponding

loading vectors includes spectral representations of both products. Figures 7c and 8b respectively present the

three directions ideally chosen by ICA and the corresponding sources. Each ICA direction corresponds to one

of the three products with independent concentration contained into the samples. Moreover, PCA loadings
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contain much more noise than ICA sources, thus increasing the confusion when searching for biomarkers. This

noise induces a worse projection of the design in the score plots (this can be seen on the replicates).

Figure 7 a b c: Component directions chosen by PCA and ICA on an illustrative experimental design

Figure 8 a b: Loadings and scores for PCA - sources and mixing weigths for ICA
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Another advantage of ICA over PCA in metabonomics is the fact that ICA searches for non-Gaussian sources,

and biological sources are typically non-Gaussian. They have either sub -or super-Gaussian distributions (thicker

or thinner tails than Gaussian). PCA is most successful in case of Gaussian cases only.

ICA has of course some drawbacks which must be emphasized. ICA requires to choose the number of

components to compute. The dimensions of the unmixing matrix to estimate can be �xed to obtain a number

of sources equal or less than the number of variables, and the �nal independent components depend on this

postulated number. This is not the case in PCA. In a lot of situations, as in metabonomic studies, the real

number of independent contributions to the signal is unknown.

Another di�erence is the ordering of the components. In PCA, the components are naturally ordered from

the singular values of the data matrix and are used to decrease the dimension of the problem (by considering

only the �rst components which explain most of the variance in the data). In ICA, the sources have no order

and the order in which the sources in S are listed by the algorithm is irrelevant to their independence. In section

3.3, we proposed a measure of the amount of information contained in each estimated source, giving rise to

some ranking.

Finally, in contrast to PCA, all ICA algorithms face the problem of convergence to local optima, thus slightly

di�erent components will be produced when the same data is reanalyzed. It is then recommended to run ICA

algorithm several times and check the stability of the results when using di�erent values of q.

4 Step II: Statistical modeling

4.1 Goal and principle

The second step of the methodology aims to �t a statistical model in order to identify metabonomic biomarkers

from ICA results. More precisely, the model will search for a link between the ICA mixing weight matrix A and

the design factors of the metabonomic study.

The logic underlying this approach is the following. An 1H-NMR spectrum re�ects the concentrations of

pure or complex metabolites contained in the analyzed sample. The design factors, as for example the dose

of an administrated drug, can in�uence these concentrations and consequently modify the spectra in a speci�c

way. The methodology presented in this paper supposes that the q sources recovered by ICA are the spectral

images of pure or complex metabolites that are in�uenced by the (observed or unobserved) variables underlying

the study. Under this assumption, the mixing weights aij should be proportional to the concentrations of the

identi�ed metabolites in the samples. Finally, our statistical models will search for an e�ect of the design

variables of interest on these concentrations (quanti�ed via the mixing weigths).
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4.2 Linear mixed model speci�cation and estimation

Let aj be the (n×1) vector of mixing weigths corresponding to the jth ICA source and Y the (n×l) experimental

design matrix. In order to specify the model to be estimated, two model matrices have to be built from Y :

• Z1, a (n× p1) incidence matrix containing the �xed e�ects of the model: typically a constant term, coded

categorical design variables, continuous variables and interactions or other high-order terms.

• Z2, a (n×p2) incidence matrix containing the random e�ects of the model: typically coded random design

variables as subject, batch, day and interactions between �xed and random variables.

For each of the q sources sj , the following linear mixed model is then de�ned:

aj = Z1βj + Z2γj + εj (4)

where βj is a (p1×1) vector of constant parameters to be estimated, γj is a (p2×1) vector of random e�ects

distributed as a multivariate normal N(0, G) and εj is a (n× 1) vector of residuals distributed as a multivariate

normal N(0, R) [14].

Di�erent speci�c cases of this general model are possible according to the inclusion of both Z1 and Z2, only

Z1 or only Z2 in the model. Models using only Z1 can be separated into two categories according to the nature

of the �xed e�ects covariates. In the case of categorical covariates, the model is an ANOVA one. In the case

of quantitative covariates, a linear regression model is de�ned. And when both types of variables are included

a (�xed) GLM model is concerned. A quantitative variable is typically the dose of a drug and a categorical

variable can be di�erent levels of a treatment (e.g. placebo versus a low and a high dose of a drug). Note

that, in many medical studies, quantitative variables are often categorized before being introduced in statistical

models.

Models using only Z2 are variance components models including only random factors. This arises when one

is interested by the e�ect of various populations (or analytical factors) on the spectrum variability (e.g. subject,

operator, batch,...), but this is not yet common in metabonomics. Complex metabonomic studies will typically

include both �xed and random e�ects as for example in longitudinal studies where n subjects belonging to

p categories of treatments are followed over time. The next subsection will illustrate a simple ANOVA and

regression cases on the hypothetical metabonomic data. Section 7 will illustrate the complete methodology on

a more complex metabonomic dataset.

4.3 Example

We consider here the modelling step on the experimental data in the case where only �xed e�ects are present.

In section 3.5, six ICA sources were identi�ed from the spectral matrix and the mixing weigths gathered in a
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(28× 6) matrix A. The design matrix Y contains two �xed covariates: the drug dose y1 (or hippurate) and the

age of the subject y2 (or citrate). y1 is the covariate of interest for which biomarkers are investigated.

These variables can be introduced either as continuous or as categorical variables in the linear model. In

the �rst case, matrix Z1 will be, at least, a (28× 3) matrix with a constant term as �rst column and y1 and y2

as second and third columns. And, for each source sj , the following linear model is of application:

aj = Z1βj + εj = βj0 + βj1y1 + βj2y2 + εj (5)

The β's estimated by linear regression for the six sources are given in Table 1. We will interpret these coe�cients

in the next step. Note that higher order terms (quadratic or interaction terms) could also have been taken into

account in this model.

If the two covariates are introduced as categorical variables in the model, Z1 becomes a (28 × 7) matrix

with a constant term as �rst column and two blocks of three columns corresponding to the binary coding of the

4-levels categorical variables. Such model can then be estimated by regression but corresponds also to a two

ways ANOVA model which can be �tted through classical ANOVA formulae when the design is balanced [15].

The model would be written in the ANOVA literature as:

ajih = β0 + βi
j1 + βh

j2 + εjih (6)

where indices i and h refer to the levels of the two variables y1 and y2 and β
i
j1 and β

j
j2 to the corresponding main

e�ects according to source sj . Note that one could also introduce an interaction term in this model. ANOVA

model results will be provided in the next section.

5 Step III: Biomarker identi�cation

5.1 Goal and principle

The third step of the procedure aims at �nding which of the q ICA sources vary signi�cantly in the observed

spectra when values of the covariates of interest are modi�ed. These sources or combinations of them will be

considered as potential biomarkers.

Practically, the choice of the signi�cant sources is based on the statistical signi�cance of the terms or e�ects

included in the mixed models estimated in Step II. The adequate statistical tests depend on the model structure

and must include a multiplicity correction when the number of sources is large. This step produces rk signi�cant

sources for each covariate or more complex e�ect of interest in the study. These sources form the input of the

next step of the procedure.
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5.2 Selection of signi�cant sources

In general mixed models, several common procedures exist to test the signi�cance of model terms. They

are di�erent for �xed and random e�ects, depend on the method applied to estimate the model and may be

controversial when complex random e�ects occur. To keep things simple, this paper treats only some simple

cases and the reader is invited to consult related literature [14] and software for general situations (e.g. PROC

MIXED in SAS or lme function in R).

Let us suppose that the model contains only �xed continuous and categorical e�ects and that the e�ect of

interest is the main e�ect of a continuous covariate yk. The signi�cance of yk is derived for each source sj

through the p-value related to a t-statistic and calculated as follows:

pjk = 2× P (t(n−p)) ≥ |t(j, k)|) (7)

with

t(j, k) = β̂jk/s(β̂jk) (8)

and where β̂(jk) is the coe�cient of yk in the �tted model on aj ,s(β̂jk) is the standard error associated with

β̂(jk), n is the number of observations (spectra), p is the number of parameters into the model and t(n−p) is a

t random variable with (n− p) degrees of freedom.

If one supposes now that the e�ect of interest is a categorical covariate with q levels, the signi�cance of yk

is then derived for each source sj through a F statistic as follows:

pjk = P (Fq−1,n−p ≥ F (j, k) (9)

with

F (j, k) = MSykj /MSRj (10)

and where MSRj is the mean square of model residuals for source sj , MSykj the mean square related to yk

e�ect and Fq−1,n−p a F random variable with (q − 1) and (n− p) degrees of freedom.

If such procedure is applied on K variables with more complex e�ects of interest in the model (and for each

of the q sources), (K × q) tests are performed and the decision of signi�cance via the p-values must take into

account the multiplicity situation. If (K × q) remains reasonably small, a simple Bonferroni correction is still

applicable and the signi�cance of the e�ect of yk for source sj is con�rmed if pjk ≤ α/(K × q), where α is a

chosen total error rate (e.g. α=0.05). For larger (K × q), procedures like False Discovery Rate (FDR) could be

a solution [20].

5.3 Example

In the example discussed in Section 4.3, if the dose e�ect y1 is the only e�ect of interest and is treated as

continuous in the model, the p-values associated with the t-tests are given in Table 1 (second column). These p-

values will be declared signi�cant if smaller than α/6 = 0.00833 with α = 0.05. One can notice that four sources
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are signi�cant (three of them are extremely signi�cant), the most signi�cant one being source s3 corresponding

to the hippurate spectrum (as expected).

Sources β̂j1 Linear Regression

p-values

F (j, 1) ANOVA p-values

s1 −6.6−7 1.94−15 105.46 8−13

s2 −5.52−7 4.77−16 152.71 2.04−14

s3 2.64.6−6 8.30−35 4468.90 1.31−29

s4 −1.07−7 0.27 0.83 0.50

s5 2.21−07 0.004 2.86 0.06

s6 3.70−9 0.96 0.02 0.99

Table 1: Results of Linear Regression and ANOVA models.

Figure 9: p-values corresponding to each sources for the regression models (left) and for the ANOVA models

(right). These p-values are expressed as -log(p-value) here. Signi�cant p-values are over the dotted line which

represents the levels of signi�cance after Bonferroni correction along with the -log transformation

If y1 is introduced as a categorical variable in the model (see Equation 6), the two last columns of Table 1

provide the F -statistics and related p-values for the six sources and Figure 9 (right) shows that three sources are
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signi�cant, the most signi�cant still being s3. Regression and ANOVA approaches select then the same more

signi�cant source: s3.

Spectral regions represented in s3 may then represent biomarkers or spectral expression of metabolites

signi�cantly a�ected by a change of the factor of interest y1. As expected in this example with y1 being the

hippurate dose, s3 presents as biomarkers the peaks in the spectral zone of the hippurate molecule.

Additionally, both linear regression and ANOVA models select s1 (spectral pro�le of pure urine) and s2

(spectral pro�le of pure citrate). In linear regression models, the signs of each estimated β̂j1 e�ect of y1 on

the modelised vector of weight could also be inspected. For a selected source, a positive β̂j1 indicates that the

contribution of this source to the observed spectra signi�cantly increase when y1 increases. In other words,

biomarker peaks presented in this source increase when y1 increases.

Table 1 shows that, on the contrary of β̂31, β̂11 and β̂21 are negative: an increase in y1 is followed by an

increase in the spectral peaks of hippurate (regions in s3) and by a decrease in the spectral peaks corresponding

to natural urine (regions in s1) and peaks corresponding to citrate (regions in s2). This can be easily explained

by the fact that each observed spectrum is normalized to have a sum equal to one (constant sum normalization).

Comparisons between linear regression and ANOVA p-values highlight the fact that source s5 is only selected

by linear regression. Although ANOVA analysis has the advantage to account for slightly more of the variation,

the ANOVA method is evaluated on more degrees of freedom than the regression and has greater p-values. This

can lead to a risk of missing signi�cant e�ects as for s5. Treating independent variable as continuous should then

be the choosing method in the �rst instance, with ANOVA being used if regression analysis is not appropriate

(e.g. if the relationship between the variables is not linear enough). Figure 10 shows that in this example the

relationship between the weight vectors and y1 can be considered as linear, and this for each of the level of the

other covariate y2.

Figure 10: relationship between the hippurate dose (y1) and the vector of mixing weights a3. Each of the four
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lines represents the estimated linear regression models for one �xed value of y2

6 Step IV: Visualization of biomarkers and factor e�ects

6.1 Goal and principle

For each covariate of interest in the metabonomic study, Step III provides a list of r signi�cant sources. Step

IV proposes then a simple tool to visually interpret these sources as potential biomakers. It aims to answer the

following question: which average change is expected in the spectrum when the covariate of interest changes

from one level to another (e.g. if a patient is or is not a�ected by a disease or if the dose of a drug is increased).

6.2 Contrast calculation

Let us de�ne S∗ as the (m× r) matrix of signi�cant sources identi�ed in Step III. Let's then y1k and y2k be two

levels of interest for covariate yk (e.g. two drug doses). Let us �nally de�ne ∆â∗2−1 = â∗2 − â∗1 as the vector

of di�erences of model predictions for these two covariate levels and for the r identi�ed sources. For models

without interations, these di�erences are only in�uenced by the terms in yk. For models with interactions, the

values of the other factors should be �xed to chosen levels.

Consequently, the expected change in spectra can simply be obtained via the following contrast:

C2−1 = S∗∆â∗ (11)

where C2−1 is a (m × 1) vector and can be drawn as spectrum to visualize the spectral zones which are

a�ected by the covariate. In particular, if yk is introduced as a continuous variable in the model and β̂∗k is the

vector of the coe�cients for yk and the r identi�ed sources, the expected change between the spectra at the two

levels y1k and y2k is given by: C2−1 = S∗β̂∗k(y2k − y1k).

If yk is introduced as a categorical variable in the model and β̂∗1k and β̂∗2k are the vectors of the estimated

e�ects for the two levels of interest for the r sources, the change in spectra is provided by C2−1 = S∗(β̂∗2k − β̂∗1k ).

6.3 Example

In the design matrix Y , the hippurate dose y1 is observed at the following values: 0, 75, 150 and 300 mg. Three

contrasts C2−1, C3−1, C4−1 respectively describe the expected changes in spectra when the drug dose goes from

0 to 75 mg, 0 to 150 mg and 0 to 300 mg. Figure 11 presents the three contrasts obtained when y1 is introduced

as a continuous variable in the model, while Figure 12 covers the case where y1 is used as a categorical variable.
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Figure 11: the three contrasts obtained when y1 is introduced as a continuous variable

Figure 12: the three contrasts obtained when y1 is introduced as a categorical variable

As the dose goes from 0 to a positive value in each of the three contrasts, the hippurate peaks increase. On

the contrary, negative values �nd themselves everywhere else. It indicates that when the drug dose increases,

peaks corresponding to other metabolites decrease. This can be explained by the fact that each spectrum is

normalized to have a total concentration equal to one.

In addition, it is very important to see that comparisons between C2−1, C3−1, C4−1 show that when the drug

dose is increased by a factor of two (75 to 150 mg, 150 to 300 mg), hippurate peaks are expected to increase in

the same proportion.
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Step I to IV were also applied on these data with the estimation of respectively four and height sources. The

three contrasts obtained in each situation demonstrate the stability of the contrasts according to these di�erent

number of sources.

7 Application to a more complex dataset

In this section, data extracted from the experimental design described in Section 2.2.1 will allow to illustrate

the methodology presented in this paper in a more complex hypothetical situation. As shown in Figure 13,

nine experimental mixtures will be considered and grouped in three classes corresponding, for example, to three

hypothetical disease states: group 0 corresponds to spectra from healthy subjects, group 1 to spectra from

subjects with a �rst kind of disease, group 2 to subjects with a second kind of disease.

Figure 13: experimental design of a more complex dataset divided in three groups

For each experimental condition, the spiked urine samples were analyzed at eight times: as such or in diluted

water (1/1), over two consecutive days and with two replicates per day per media. 72 spectra were then used

and can be described in the design matrix according to the following categorical factors:

y1: disease group (G1, G2, G3).

y2: media (diluted or non diluted urine).

y3: day of measurement (day1 or day2).

y4: replicate within each day (1 or 2).

Pre-treatments described in Sections 2.2.3 and 2.2.4 were applied on the spectral data and produced a (72×600)

spectral matrix X. ICA was then applied, as described in Section 3.2, in order to obtain q = 5 sources

(Dj = 89%) and the associated mixing weight vectors aj (see Figure 14).
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Figure 14: the q = 5 ICA sources for the complex data example

A mixed model was then �tted on each vector aj with y1, y2, y3 as �xed factors and with all possible

interactions of �rst and second order. Table 2 provides the F statistics and p-values corresponding to the main

e�ects of these three factors on the mixing weights. Interaction e�ects are not reported in the table because

they are all not signi�cant. The Bonferroni corrected p-value threshold was taken as 0.05/15 = 0.0033.

This table shows that the experimental group has a very signi�cant e�ect on the three �rst ICA sources.

These sources were then used to compute three contrasts in order to illustrate the e�ect on the spectra when

passing from one group to the other (see Figure 15). C1−0 presents the average expected change when a subject
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Sources F (j, 1) pj,1 F (j, 2) pj,2 F (j, 3) pj,3

s1 35.51 6.67−11 0.09 0.77 0.01 0.92

s2 17.55 9.98−7 0.22 0.64 0.07 0.79

s3 18.70 4.87−7 0.02 0.90 0.07 0.79

s4 0.12 0.89 269.35 1.07−30 0.59 0.44

s5 1.17 0.32 0 0.994 0.50 0.48

Table 2: Linear Regression and ANOVA models: results in a more complex situation

with no disease gets disease 1: citrate peak increases. C2−0 illustrates the fact that, for a healthy subject that

becomes a subject with disease 2, hippurate peaks increase. Finally, C1−2 shows that evolving from disease 2

to disease 1 leads to a decrease of hippurate peaks and an increase of the citrate peak. All these results are of

course expected.

Table 2 allows us to see that the sources do not signi�cantly change from one day to the other (y3) but that

the media (water dilution - y2) has a signi�cant e�ect on source 4. This source is characterized by a peak on

the left side of the water peak region (set to zero during pre-processing). This peak is in fact a side e�ect of the

original water peak but the percentage of variation of the source (0.5%) shows that the di�erent pre-processing

steps used to remove media systematic e�ect were e�cient.

None of the factors has a signi�cant e�ect on source 5 but its mixing weights vector indicates that this source

is mainly in�uenced by one outlier spectrum.

It is also interesting to compare the ICA results obtained in this example and in the example of Section

5.3. Here, 89% of the total variance of X is explained by the �ve �rst sources. In the previous example, 98%

of the variation was explained by the same number of sources. This di�erence can be explained by the fact

that replicating the measures over several days and with di�erent dilutions introduces random noise in the data

which can not be catched by ICA sources.
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Figure 15: contrasts C1−0, C2−0, C1−2

8 Application to real data: metabonomic study of Age related Mac-

ular Degeneration (AMD)

8.1 Goals and design

This study has been realized on serum samples due to vascular hypothesis about the AMD. Indeed, ninety

percent of all vision loss due to AMD results from the exudative form, which is characterized by choroidal

neovascularization, de�ned as newly formed blood vessels arising from choriocapillaries. Age-related changes

that induce pathologic neovascularization are incompletely understood.

The goal of this research is to discover metabonomic biomarkers making the distinction between healthy and

diseased subjects. These molecular biomarkers will be used to develop knowledge about the AMD pathological

mechanisms. Subsequently, their corresponding spectral biomarkers could be used in the future as diagnostic

tool.

The AMD study is a qualitative outcome two class problem disease metabonomic study. In this study, each

spectrum is characterized by the AMD status of its corresponding subject through a binary qualitative outcome:

a medical examination declares if the subject has or not the AMD.

This observational case-control study was designed according to a protocol approved by the ethical committee

of the University Hospital of Liege, Belgium. Cases for the study were de�ned as patients of the University

Hospital of Liege Belgium a�ected by AMD over the age of sixty. Controls are age-matched patients in the same

hospital without any sign of macular disease and not having a known family history of AMD. Cases as controls

were said eligible on the basis of an examination realized by a trained ophthalmologist. Informed consent was

required from all study subjects before participation.
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The protocol also foresaw the additional biochemical and health state information to collect on the serum

samples and subjects. Additionally, AMD patients had to be categorized into active or not active phenotypic

categories depending of the bleeding of lesions on the basis of the Optical Coherence Tomography (OCT)

examination. A design matrix YA was formed during the study design step. This matrix contains the following

information:

an identi�ant for each blood sample providing a spectrum

the qualitative outcome describing the presence or not of AMD according to the examination (0 = yes, 1 = no).

the activity phenotypic character of AMD: 0 = AMD subject in active phase, 1 = AMD subject in inactive

phase, 2 = control (no phase of activity).

In the end, the spectral data matrix X involves 193 spectra; 94 FIDs from AMD subjects and 99 FIDs from

control subjects. All acquisition and pre-processing steps are then available in [6] (chap 6).

8.2 Use of ICA in the AMD study

After the detection phase of outliers, the study of the variability within the data and the implementation of

several statistical methods to �nd biomarkers, combination of ICA with these statistical models was �nally used

in the objective to explore the spectral changes related to the activity state of the disease.

Stationary or evolving states of AMD is described by a variable "AMD activity". Patients in inactive

phase have stationary lesions while patients in active phase have evolving lesions presenting bleeding and

neovascularization. The AMD activity description is available for 75 AMD spectra, including 51 active phase

and 24 inactive phase. Available values of this variable allow to list 171 of the spectra in the three following

categories: AMD active phase (51 spectra), AMD inactive phase (24 spectra), no phase or control (96 spectra).

The ICA with statistical models were applied on the basis of eighteen sources previously recovered (for details,

see [6]) and the mixing weights of the 171 spectra. An ANOVA model involving one �xed factor, the "AMD

activity", was �tted on each weight vector corresponding to one of the the q = 18 recovered sources.

The phase of activity has a signi�cant e�ect on fourteen sources with a Bonferroni corrected p-value threshold

taken as 0.05/18 = 0.0028. These fourteen sources were then used to compute the contrasts presented in Figure

16. The �rst graph represents the changes occurring in the spectra when an healthy or control subject becomes

an AMD subject in inactive phase. The second graph is the contrast computed between AMD subject in active

phase and control. Last graph shows the changes occurring in the spectra when the stationary or inactive AMD

disease turns to an active or evolving disease.
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Figure 16: contrasts in the context of the AMD study: control-inactive (top), control-active (middle),

active-inactive (bottom). Colored spectral zones represent the lactate and lipoproteins zones.

8.3 Molecular interpretation

Spectroscopists have identi�ed the metabolites corresponding to proposed spectral biomarkers. Among these

lists, they found descriptors corresponding to two metabolites of interest, the lipoproteins (LDL, VLDL, HDL)

and the lactate. The discovery of lipoproteins as biomarker supports previous published biological hypothesis

about their role in the onset of AMD [21] . Lactate as biomarker has generated from the ULg researchers a

theory about AMD pathological mechanisms involving an increase of lactate.

The evolution of the lipoproteins and lactate spectral zones in the di�erent states of the disease is viewable

in the ICA contrasts (Figure 16), indicated by the yellow zones. The lactate increases with the emergence of the

disease as in the transition from an inactive to an active state of the disease. On the opposite, the lipoproteins

decrease in this situation. It is shown that the most informative discovered predictors belong to these zones [6].
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9 Conclusions

Metabonomics is emerging as a valuable tool in a number of biological applications. Although, the biomarker

identi�cation in 1H-NMR based metabonomics is traditionally realised, with some limitations, via the examina-

tion of the two �rst components of a PCA. In this paper, we presented a four steps methodology providing three

kinds of knowledge on 1H-NMR metabonomic data: the identi�cation of biomarkers, a statistical con�rmation

of the signi�cance of these biomarkers and the visualization of the e�ects on the biomarkers caused by factor

changes.

The methodology involves a dimension reduction by ICA followed by statistical modelling approaches. We

�rst presented a process to decompose by ICA the spectral data into statistically independent components. We

exposed on experimental data that ICA allows to visualize, through the resulting sources, the spectral pro�le of

independent metabolites contained in the studied bio�uid and their quantity through the corresponding mixing

weights. From Steps II and III, various linear mixed statistical models were applied on ICA results to select

the sources. These sources present spectral regions changing signi�cantly according to the factors of interest.

In the �nal step, the selected sources were used to reconstruct the spectra and to compute contrasts presenting

the alterations in speci�c regions caused by di�erent changes of the factor of interest.

As exposed on experimental data, the ICA solves the weaknesses of the PCA dimension reduction by

providing more natural and also more biologically meaningful representations of the data. Additionally, the

combination of ICA with statistical models has the advantage to base the component selection on an inferential

criterion: biomarkers are identi�ed from components for which the covariate of interest shows a signi�cant

e�ect. In the usual PCA, biomarkers are identi�ed from the component with the largest percentage of variance,

without any inferential information.

In this paper, source selection was based on t-statistics computed on the weight vectors without using their

signi�cance levels. We also provided a more accurate source selection due to its inferential character but also to

the fact that models give the possibility to include all the design covariates jointly with the covariate of interest.

The large diversity of statistical models accepted by this methodology allows to apply it to a large variety of

more complex metabonomic situations: models can include quantitative and qualitative design variables as well

as combinations of �xed and random e�ects (linear mixed models). As a result, additionally to the proposed

biomarker search, the methodology provides information on spectral regions a�ected by other factors of the

study.

Finally, the methodology goes further than the usual search for metabonomic biomarkers: beside their

discovery, contrasts also allow to visualize the alterations of potential biomarkers for de�ned changes of covariate

conditions or context. The methodology has been also applied on a real metabonomic dataset (AMD). The

spectral biomarkers linked with this disease correspond to a metabolite supporting biological explanation of the

setting of AMD.
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