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Introduction

In the context of high-dimensional regression models, single index models are more general

than certain linear models (McCullagh and Nelder, 1989), but still provide a way of reducing

the dimension of the predictor variable, thus avoiding the so-called “curse of dimensionality.”

A single index regression model for describing the dependence of a scalar variable Yi upon a

p-variate vector Xi has the form:

Yi = g(β0Xi) + ǫi, i = 1, . . . , n, (0.1)

where ǫi is a random variable with zero mean, conditional on Xi, β0 is the “true” direction

p-vector of unknown parameters, and g is the unknown link function. The scalar β0Xi is

called the index.

It has been proven that under the single index model, the vector β0 can be estimated

at an optimal parametric rate of n−1/2, i.e., as if g were known (see Klein and Spady, 1993;

Newey and Stoker, 1993; Sherman, 1994; Horowitz and Härdle, 1996). The nonparametric

estimator of the link function g is constructed from a p-dimensional predictor variable, but

it achieves the optimal one-dimensional nonparametric rate. For example, if g is assumed

r times differentiable, then, under regularity conditions, the rate of n−r/(2r+1) is attained

(Härdle and Stoker, 1989). The fact that these rates are independent of p, the dimension of

the vector X of explanatory variables, illustrates well how the single index model avoids the

curse of dimensionality.

In order to guarantee the good asymptotic properties just mentioned, the bandwidth

parameter h used in the nonparametric smoother should be optimal. But the optimal band-

width depends on g and β0, and therefore data-driven methods of estimating this bandwidth

are necessary. Such methods are the topic of this paper.

Section 1 reviews some existing methods for selecting a bandwidth parameter in the

general setting of nonparametric regression. In the context of the Single Index Poisson

regression Model (PSIM), Section 2 presents the derivation of cross-validation and double

smoothing-based methods for selecting a bandwidth and estimating the direction vector of

parameters. Finally, in Section 3 the behavior of the proposed estimators is studied by means

of simulation.
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1 Data-driven bandwidth selection methods

For notational simplicity, suppose for the moment that β0 is known and denote by Z the

index β0X. The regression function g is to be estimated from data (Zi, Yi), i = 1, . . . , n,

generated by the model

Yi = g(Zi) + ǫi, i = 1, . . . , n, (1.2)

where ǫi are independent zero-mean random variables with variance σ2(Zi), conditional on Zi.

We denote a nonparametric estimator of g by ĝh, where h is the smoothing parameter. In this

paper we consider Nadaraya-Watson1 (Nadaraya, 1964 and Watson, 1964) nonparametric

estimates of g having the form

ĝh(z) =

∑n
j=1 YjKh(z − Zj)

∑n
j=1 Kh(z − Zj)

, (1.3)

where Kh(x) = h−1K(x/h) and K is a fixed kernel function (e.g., a probability density that

is symmetric about 0).

The Nadaraya-Watson estimator belongs to the class of linear smoothers (such as local

polynomials, splines, wavelet estimators), in the sense that

ĝh = HY,

where

ĝh =









ĝh(Z1)
...

ĝh(Zn)









and the matrix H, which depends on Z = (Z1, . . . , Zn)
T but not on Y = (Y1, . . . , Yn)

T ,

is commonly called the hat matrix or smoother matrix. In the context of multiple linear

regression, the trace of the hat matrix is equal to the number of regressors in the model, i.e.,

p, the dimension of the explanatory variable. By analogy, in the context of nonparametric

regression, trace(H) may be interpreted as the number of effective parameters used in the

smoothing fit (see Hastie and Tibshirani, 1990, Section 3.5). Thus, when h is very small,

1Any linear smoother may be used, e.g. the local linear estimator.
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trace(H) tends to n, which corresponds to the situation where the estimate interpolates the

data. When h tends to infinity, trace(H) tends to 1, corresponding to Ŷ = Ȳ .

Crucial to the performance of ĝh is the choice of bandwidth h. One means of choosing

h is the so-called plug-in method, which is typically based on the mean integrated squared

error:

MISE(ĝh|Z1, . . . , Zn) = E
{∫

[ĝh(z) − g(z)]2f(z) dz
∣

∣

∣Z1, . . . , Zn

}

, (1.4)

where f is the density of Zi and the expectation is with respect to the true conditional

distribution of (Y1, . . . , Yn) given (Z1, . . . , Zn). When ĝh is a Nadaraya-Watson estimator and

g has two continuous derivatives, the smoothing parameter that minimizes an asymptotic

approximation of MISE is

ha
0 = Cmodel CK n−1/5, (1.5)

where

Cmodel =







∫

σ2(z)dz
∫

[

g′′(z) + 2g′(z)f ′(z)
f(z)

]2
f(z)dz







1/5

and

CK =

[
∫

K2(u)du

(
∫

u2K(u)du)2

]1/5

.

A plug-in bandwidth ĥa
0 is given by the right-hand side of (1.5), with estimates of the

unknown parameters ”plugged into” Cmodel to obtain Ĉmodel. Such a scheme has been pro-

posed for Gasser-Müller type estimators by Gasser, Kneip and Köhler (1991) and for local

polynomial estimators by Fan and Gijbels (1995).

Despite having some good asymptotic properties, plug-in selectors target ha
0 (the min-

imizer of an asymptotic approximation of MISE) rather than h0 (the minimizer of MISE

itself), and so it is not always clear how well they behave in small or moderate samples.

Also, from the practical point of view, plug-in selectors have the following disadvantage.

Estimating Cmodel involves nonparametric estimation of a functional of g′′, g′, f and f ′. This

means, in the case of a Nadaraya-Watson estimator, that to obtain the plug-in bandwidth

ĥa
0, four other, preliminary bandwidths have to be chosen. Furthermore, in the case of the
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single index model, g′′ and g′ depend on the unknown direction parameter β0, so a prelim-

inary direction has to be chosen too. After estimating ha
0, another criterion has to be used

for estimating β0.

A rather straightforward method of bandwidth selection is cross-validation (Stone, 1974),

the idea of which is to use a part of the data to construct an estimate of the regression model

and then to predict the rest of the data with this estimate. The most often used form of

cross-validation is the “least squares leave-one-out” cross-validation criterion:

LSCV(h) =
1

n

n
∑

i=1

[Yi − ĝi
h(Zi)]

2, (1.6)

where ĝi
h(z) denotes an estimate of g computed without the ith data point. It can be shown

that LSCV(h) is essentially an unbiased estimator of an empirical version of MISE, called

mean average squared error:

MASE(ĝh|Z1, . . . , Zn) = E

{

1

n

n
∑

i=1

[ĝh(Zi) − g(Zi)]
2
∣

∣

∣Z1, . . . , Zn

}

. (1.7)

Alternative bandwidth selection methods may be based on minimization of an approxi-

mately unbiased estimator of a risk. Two popular risk functions are the MISE (as defined

in (1.4)) and the expected Kullback-Leibler discrepancy between the true and estimated

models, as defined below. Suppose that the conditional distribution of Y given Z is known

up to g. The conditional cdf and pdf of Y given Z = z will be denoted F0(y; g(z)) and

f0(y; g(z)), respectively and the pdf of Z will be denoted f(z). Under model (1.2), the

Kullback-Leibler discrepancy between the true and estimated models is

KL(ĝh) =
∫ ∫

log
f0(y; g(z))

f0(y; ĝh(z))
dF0(y; g(z))f(z)dz. (1.8)

The corresponding risk is the expected Kullback-Leibler discrepancy

MKL(ĝh|Z1, . . . , Zn) = E {2KL(ĝh)|Z1, . . . , Zn} ,

where the factor 2 is introduced for mathematical convenience and the expectation is with

respect to the true conditional pdf of (Y1, . . . , Yn) given (Z1, . . . , Zn).

The risk function MISE may be estimated by a criterion such as generalized cross-

validation (GCV) (Craven and Wahba, 1979) and the risk MKL by using Akaike’s Infor-

mation Criterion (AIC) (Akaike, 1974). Having estimated a risk function, one may choose
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the bandwidth that minimizes this estimate. (See, e.g., Hart, 1997 for a comprehensive de-

scription of different selectors.) Asymptotic properties of risk estimation-based selectors have

been studied and their asymptotic optimality has been proven in a nonparametric regression

setting by Rice (1984) and by Härdle, Hall and Marron (1988). They argue that most band-

width selectors based on risk estimation minimize a penalized version of the residual mean

square, i.e.,

RMS(h) =
1

n

n
∑

i=1

[Yi − ĝh(Zi)]
2.

As an estimator of the mean average squared error given in (1.7), the residual mean

square is greatly biased. Minimizing it leads to a bandwidth that greatly undersmooths,

or even interpolates, the data. To guard against undersmoothing, the residual mean square

may be multiplied by a penalty term Ψ(h). This penalty is designed to penalize under-

smoothing in small or moderate samples, and thus increases with decreasing smoothness

of ĝh. For example, multiplying RMS(h) by ΨGCV (h) = [1 − trace(H)/n)]−2 leads to

the GCV criterion, by ΨAIC(h) = exp(2trace(H)/n) leads to the AIC criterion and by

ΨT (h) = [1 − 2trace(H)/n)]−1 leads to the “T” criterion (Rice, 1984).

Asymptotically, i.e., when n → ∞, h → 0 and nh → ∞ (implying that trace(H)/n → 0),

the risk-based selectors of the previous paragraph are equivalent. Therefore, in large samples

one can expect these criteria to give similar choices for the bandwidth parameter, but in small

samples (i.e., when trace(H)/n is large) they behave differently. Hurvich, Simonoff and Tsai

(1998) provide a graph of the penalties for some of the risk based selectors as a function of

trace(H)/n, thus illustrating how the penalties vary with sample size.

Despite their favorable asymptotic properties, when applied to moderate or small sam-

ples, GCV and AIC present two major drawbacks: they have a tendency to undersmooth

and lead to smoothing parameters with high sampling variability. These drawbacks inspired

the formulation of an improved version of AIC, as proposed by Hurvich, Simonoff and Tsai

(1998), for linear smoothers in the nonparametric regression setting of (1.2) with indepen-

dent N(0, σ2) errors. The improved version of AIC, obtained by modifying the penalty term

of the AIC criterion, is still asymptotically optimal, but leads to regression estimates that

are undersmoothed less often than those obtained with GCV or AIC. The corrected AIC

criterion could also be considered in the Poisson case, but, as discussed in Section 2.3.2, it

turns out that in the absence of an unknown scale parameter no correction is forthcoming.
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2 Methodology

Section 2.1 defines the Poisson single-index model that generates the data. Section 2.2

describes the derivation of the Kullback-Leibler (KL) risk for selecting a bandwidth and

estimating the direction. Two popular methods of estimating the KL risk function are also

presented: pseudo maximum likelihood (PML) and cross-validation (CV). Section 2.3 intro-

duces an L2-type approximation of the KL loss function, called Weighted Average Squared

Error (WASE). For estimating the risk associated with WASE, we propose two methods:

two stage weighted least squares (WLS2) and double smoothing (DS).

2.1 Model

The single index model we will consider is based on the Poisson conditional distribution

family. The observed data (Xi, Yi), i = 1, . . . , n, are independent and identically distributed

(p + 1)-vectors generated by the model

Y | (X = x) ∼ Po(m(x)), (2.9)

m(x) = E(Y | X = x) = g(β0 x),

where g is a smooth function of a single variable and β0 is the p-variate direction vector. As

usual in regression problems, analysis will proceed conditionally on the observed X values.

When g is unspecified, the best one can do is to estimate the parameter β0 up to a

multiplicative scalar, because any scale change in β0X can be absorbed into the link function.

So, we will restrict the parameter space of dimension p to a space of dimension p − 1 by

fixing the first component of β0 to 1. The magnitude of the component β0j , 1 < j ≤ p, has,

in this p − 1 dimensional parameter space, a simple interpretation: it measures the change

in Xj required to match the effect of a unit change in X1.

Specifying the model as in (2.9) is equivalent to specifying a link function g and an error

distribution in model (0.1). Based on this model, the objective is to estimate the direction β0

and the link function g. In doing so, a crucial step is the choice of the smoothing parameter,

which involves the usual compromise between a model’s smoothness and how closely it fits

the data.
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2.2 Derivation of the Kullback-Leibler risk

Model (2.9) is completely specified once g and β0 are known. Let fX denote the density

of the covariate X, let µ be an arbitrary positive function and let β be any p-vector with

first component equal to 1. The KL discrepancy as defined in (1.8) between the true model

(g, β0) and the candidate (µ, β) is

KL(µ, β) =
∫

[µ(βx) − g(β0x) (2.10)

+ g(β0x) log(g(β0x)/µ(βx))]fX(x)dx,

which may be viewed as a loss function.

Ignoring terms that do not depend on either µ or β, an equivalent loss is

∆KL(µ, β) =
∫

[µ(βx) − g(β0x) log(µ(βx))] fX(x)dx.

An empirical version of this loss requiring no knowledge of fX is

∆̃KL(µ, β) =
1

n

n
∑

i=1

[µ(βXi) − g(β0Xi) log(µ(βXi))] . (2.11)

We shall adopt ∆̃KL as our loss function, which seems sensible inasmuch as we are condi-

tioning on the observed X’s.

In the single index model, we will replace the candidate function µ by a Nadaraya-Watson

estimate (given in (1.3)) of the functions g(βx) = E(Y | βX = βx), where z is replaced by

βx and Zj by βXj. Choosing a candidate model (µ, β) thus amounts to selecting values for

the smoothing parameter h and the direction vector β. Ideally we would select h and β to

minimize our loss function ∆̃KL(ĝh, β). Note that ĝh depends upon β, but we supress this

fact in our notation. The corresponding KL risk function is

E
(

2∆̃KL(ĝh, β)
)

=
2

n

n
∑

i=1

{E[ĝh(βXi)] − g(β0Xi)E[log(ĝh(βXi))]} ,

where the expectation is with respect to the conditional distribution of (Y1, . . . , Yn) given

(X1, . . . , Xn). Unfortunately, this risk depends upon the unknown quantities g and β0. A

solution to this problem is to derive appropriate estimators of the KL risk function.

An approximately unbiased estimator of the risk E
(

2∆̃KL(ĝh, β)
)

is the following cross-

validation criterion:
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CV(h, β) =
2

n

n
∑

i=1

{

ĝh(βXi) − Yi log(ĝi
h(βXi))

}

, (2.12)

where ĝh is as in (1.3) and ĝi
h has the same form as ĝh except it is computed without the

data point (Xi, Yi), i = 1, . . . , n. The leave-one-out Nadaraya-Watson estimator in the

second term of (2.12) is used in order for Yi and ĝi
h(βXi) to be independent, i = 1, . . . , n,

implying that the expectation of the product Yi log(ĝi
h(βXi)) is the product of expectations.

As a consequence, CV(h, β) is an approximately unbiased estimator of E
(

2∆̃KL(ĝh, β)
)

.

Another possible risk estimator is based on pseudo maximum likelihood, as proposed in

a semiparametric setting by Bonneu and Delecroix (1992):

PML(h, β) =
2

n

n
∑

i=1

{

ĝi
h(βXi) − Yi log(ĝi

h(βXi))
}

. (2.13)

The PML criterion is obtained by replacing in the log-likelihood function of the PSIM model

the unknown link function g by the leave-one-out Nadaraya-Watson estimator ĝi
h. For any

given value of h, the pseudo-likelihood function is viewed as a function of the direction

parameter β, and an estimator of β0 is obtained by minimizing this function with respect

to β. Delecroix, Hristache, and Patilea (1999) proved that, when PML is considered as a

function of both β and h, the minimizer (β̂, ĥ) yields a consistent estimator for β0 and an

optimal bandwidth choice, respectively.

2.3 L2-type approximation of the KL loss function

To derive alternative methods, we reconsider the loss function ∆̃KL(ĝh, β) from (2.11). For

notational convenience let mi = g(β0Xi) and m̂i = ĝh(βXi). Expanding log m̂i in a Taylor

series about mi and regrouping terms yields

2∆̃KL(ĝh, β) =
2

n

n
∑

i=1

[mi − mi log mi + (2mi)
−1(m̂i − mi)

2

− mi(m̂i − mi)
3/(3m̃3

i )],

where m̃i is between mi and m̂i, i = 1, . . . , n. The term (mi − mi log mi) is free of h and β,

and the last term within the brackets will generally be small in comparison to the second.

This suggests that minimizing the loss

WASE(ĝh, β) =
1

n

n
∑

i=1

(m̂i − mi)
2

mi

(2.14)
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is asymptotically equivalent to minimizing the Kullback-Leibler loss in our Poisson model.

In any event, the loss WASE(ĝh, β) is a reasonable discrepancy measure independent of

the above argument, since it may be interpreted as a weighted average squared error between

ĝh(βx) and g(β0x). The corresponding WASE risk function is defined by

R(h, β; m) = E {WASE(ĝh, β)} = E

{

1

n

n
∑

i=1

(m̂i − mi)
2

mi

| X1, . . . , Xn

}

. (2.15)

Now, m̂i is the Nadaraya-Watson estimator of g(βXi) and may be written

m̂i =
n

∑

k=1

HikYk, (2.16)

where Hik is the ik component of the hat matrix H, which for the Nadaraya-Watson smoother

is

Hij =
Kh(βXi − βXj)

∑n
r=1 Kh(βXi − βXr)

, i, j = 1, . . . , n.

Then, using the linearity (2.16), the fact that Var(Yi|Xi) = mi, i = 1, . . . , n, and the

independence between Yi and Yk for i, k = 1, . . . , n, i 6= k, we have

R(h, β; m) =
1

n

n
∑

i=1

E {(Yi − m̂i)
2|X1, . . . , Xn}

mi

+
2

n
tr(H) − 1. (2.17)

Again, in practice we cannot evaluate the risk R(h, β; m), since it depends on the unknown

link function g and on β0. Therefore, we derive an approximately unbiased estimator of

R(h, β; m).

2.3.1 A classical style risk estimator

An obvious candidate estimator of R(h, β; m) is the following Weighted Least Squares crite-

rion:

WLS(h, β) =
1

n

n
∑

i=1

(Yi − m̂i)
2

m̂i
+

2

n
tr(H) − 1 (2.18)

=
1

n

n
∑

i=1

[Yi − ĝh(βXi)]
2

ĝh(βXi)
+

2

n

[

n
∑

i=1

Kh(0)
∑n

j=1 Kh(βXi − βXj)

]

− 1,

which is similar to classical risk estimators such as Mallows’ Cp (Mallows, 1973). Unfor-

tunately, this estimator has a substantial bias due to the use of 1/m̂i as a weight in place
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of 1/mi. The inadequacy of using a weight depending on the smoothing parameter being

selected has been pointed out already by Härdle, Hall and Ichimura (1993). To remedy this

problem, they proposed a two-stage cross-validation procedure. Analogously, we propose the

following two-stage risk estimation procedure.

Stage 1

Minimize an unweighted least squares cross-validation criterion (as in (1.6)) to obtain pilot

estimates of (h, β):

(ĥ1, β̂1) = argminh,β

1

n

∑

i

[

Yi − ĝi
h(βXi)

]2
,

and then estimate the link function g by the Nadaraya-Watson estimator ĝĥ1
(β̂1x).

Stage 2

The final estimator of (h, β) will then be obtained by minimizing the following risk estimator:

WLS2(h, β) =
1

n

∑

i

[Yi − ĝh(βXi)]
2

ĝĥ1
(β̂1Xi)

+
2

n
tr(H) − 1. (2.19)

Note that in the definition of the above criterion, the weight function ĝĥ1
(β̂1Xi)

−1 is free

of (h, β). Intuitively speaking, WLS2(h, β) should therefore more closely mimic the risk

R(h, β; m) than should the one-stage criterion WLS(h, β).

2.3.2 Double smoothing risk estimator

The stability of risk estimation criteria such as Mallows’ Cp and AIC have been called into

question by a number of authors, including Hall and Johnstone (1992), Hurvich and Tsai

(1995) and Hurvich, Simonoff and Tsai (1998). The latter two references propose “corrected”

versions of AIC that involve a modified penalty term and turn out to be considerably more

stable than the classical AIC. It can be shown that the motivation behind the modified

penalty term rests entirely on the model having an unknown scale parameter. In the classical,

homoscedastic regression setting, if one uses the same derivation as in Hurvich, Simonoff and

Tsai (1998) but assumes a known scale parameter, the resulting risk estimation criterion is

just Mallows’ Cp in which the scale estimate is the known scale parameter. In particular, no

modification of the Cp penalty term arises in this derivation.
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The relevance of the preceding comments to our setting is that, effectively, there is no

unknown scale parameter in the Poisson model. Since the mean and variance are one and

the same, there is no scale parameter above and beyond the mean function. As a result,

the methodology of Hurvich, Simonoff and Tsai (1998) offers no insight on improving the

stability of our risk estimator WLS2(h, β), at least when the probability model really is

Poisson. We thus consider a completely different approach for stabilizing a data-driven

smoothing parameter.

Evaluating the risk (2.15) in the case of a Poisson model leads to the following expression

for R(h, β; m), which is known up to the function m:

R(h, β; m) =
1

n

n
∑

i=1

[

m̃2
i

mi

+
ρi

mi

− 2m̃i + mi

]

,

where

m̃i =
n

∑

j=1

Hijmj and ρi =
n

∑

j=1

H2
ijmj .

As proposed by Wand and Gutierrez (1997), R(h, β; m) may be estimated by R(h, β; mpilot),

where mpilot is some pilot estimate of m. The resulting estimates of bandwidth and direction

parameter are

(ĥDS, β̂DS) = argminh,βR(h, β; mpilot).

Wand and Gutierrez (1997) suggest that mpilot be chosen to optimize the resulting smoothing

parameter. Here we will not be quite so ambitious, settling instead for a simple solution where

mpilot(x) ≡ ĝĥ1
(β̂1x), the stage 1 estimate in the scheme proposed in Section 2.3.1.

We anticipate that this method will be more stable than the one proposed in the previous

section, inasmuch as R(h, β; mpilot) is in error only through mpilot. By contrast, WLS2(h, β)

differs from R(h, β; m) due to errors in the pilot estimate and errors in the estimate of

E[(Yi − m̂i)
2|X1, . . . , Xn].

2.3.3 A two-stage cross-validation criterion

For the heteroscedastic single index models, Härdle, Hall, Ichimura (1993) propose the fol-

lowing two stage cross-validation estimation scheme. They suppose that the conditional

variance of Y given X is only a function of the index β0X:

Var(Y |x) = σ2G{g(β0x)},
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where G is a known, smooth function and σ is a (possibly unknown) overdispersion pa-

rameter. The first stage provides the pilot estimates (ĥ1, β̂1) minimizing the unweighted

LSCV criterion defined in Section 2.3.1. In our PSIM model, Var(Y |x) = g(β0x), thus at the

second stage the final estimator of (h, β) is obtained by minimizing the following weighted

cross-validation criterion:

WLSCV2(h, β) =
1

n

∑

i

[Yi − ĝi
h(βXi)]

2

ĝĥ1
(β̂1Xi)

, (2.20)

which is the same as the first term of the WLS2 criterion defined in (2.19), except for the

leave-one-out estimator in the numerator.

WLSCV2 may be considered as an alternative estimator of the risk associated with

WASE, defined in (2.15). Unless n is very small, R(h, β; m) will be approximately:

R∗(h, β; g(β0X)) = E







1

n

n
∑

i=1

[ĝi
h(βXi) − g(β0Xi)]

2

g(β0Xi)
| X1, . . . , Xn







.

Using the same arguments as for deriving the expression (2.17), it may be shown that

R∗(h, β; g(β0X)) =
1

n

n
∑

i=1

E {(Yi − ĝi
h(βXi))

2|X1, . . . , Xn}

g(β0Xi)
− 1,

for which a candidate estimator is the WLSCV2 criterion.

3 Simulation study

In this section we present results of a simulation study that investigates various methods of

estimating bandwidth and direction parameter. The methods include the cross-validation

and pseudo-maximum-likelihood estimators of the Kullback -Leibler risk presented in Sec-

tion 2.2 and the WASE risk estimation schemes of Section 2.3.

3.1 Monte Carlo setup

The simulated data (Xi, Yi), i = 1, . . . , n, are independent and identically distributed obser-

vations of (X, Y ), where X is a bivariate vector having components Xj ∼ U [0, 1], j = 1, 2,

and Y is Poisson distributed with conditional mean depending on the index Z = β0X/10.

The direction vector used to generate the data is β0 = (1, 9). Four link functions were used

in our study:
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g1(z) = 5 + 900z2(1 − z)2

g2(z) = 10000(z8(1 − z)2 + z2(1 − z)8)

g3(z) = 5 exp(−100(z − 0.75)2) + 480(z − 0.75)2

g4(z) = 7 + 7z5 + 7(z − 1)5.

The four links correspond to different signal to noise ratios (SNR), which we define as

SNR =
max0≤z≤1 g(z) − min0≤z≤1 g(z)

√

E(g(Z1)
.

Note that in our Poisson setting g(z) = Var(Y |Z = z), which motivates our use of
√

E(g(Z1)

in the denominator of SNR. The values of SNR are 9, 9, 30, 5 for g1, g2, g3, g4, respectively.

Two sample sizes were used (n = 50, 150) and 500 replications were conducted for each

combination of sample size and link function. Estimation of h and β was carried out exactly

as described in Section 2. The Nadaraya-Watson estimate of g, whose smoothing parameter

is to be chosen, is computed using a normal kernel.

3.2 The results

The data-driven criteria computed for each simulated sample are as follows:

CV, the likelihood cross-validation criterion, defined in (2.12).

PML, the pseudo maximum likelihood criterion, defined in (2.13).

WLS2, the two stage weighted least squares criterion, defined in (2.19).

DS, the double smoothing estimation scheme of Section 2.3.2.

WLSCV2, the two stage cross-validation scheme of Section 2.3.3.

For a given data set, the optimal choice of (h, β) is that which minimizes the empirical

version of the Kullback-Leibler discrepancy given in (2.11). Minimizing this loss function is

asymptotically equivalent to minimizing the WASE loss defined in (2.14). All the data-driven

criteria studied and the two optimal losses KL and WASE are computed for each data set

and minimized with respect to both h and β. The results obtained for the 500 replications

are presented in Tables 1-4; each table corresponds to a particular link function.
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n DS PML CV WLS2 WLSCV2 WASE KL

Mean(ĥ)
50 0.034 0.027 0.023 0.034 0.030 0.032 0.034
150 0.027 0.025 0.024 0.026 0.024 0.025 0.026

Std.dev.(ĥ) × 10
50 0.086 0.110 0.112 0.094 0.106 0.077 0.079
150 0.050 0.056 0.069 0.053 0.055 0.039 0.040

Mean(ĥ − ĥKL)2 × 103

50 0.143 0.229 0.296 0.157 0.195 0.012
150 0.049 0.054 0.070 0.049 0.053 0.002

Mean(β̂)
50 9.233 10.389 10.560 9.343 9.491 8.934 8.958
150 9.289 9.313 9.412 9.225 9.231 8.911 8.921

Std.dev.(β̂)
50 2.374 2.748 3.085 2.384 2.527 1.003 1.036
150 1.490 1.426 1.762 1.270 1.308 0.349 0.341

Mean(β̂ − β0)
2

50 5.680 9.464 11.932 5.789 6.614 1.009 1.072
150 2.298 2.128 3.267 1.661 1.761 0.130 0.122

Mean(WASE(ĥ, β̂))
50 0.274 0.326 0.359 0.276 0.295 0.213
150 0.115 0.119 0.128 0.115 0.117 0.096

Mean(KL(ĥ, β̂))
50 0.129 0.160 0.177 0.131 0.142 0.101
150 0.055 0.057 0.062 0.055 0.056 0.046

Table 1: Simulation results for g1 link function
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n DS PML CV WLS2 WLSCV2 WASE KL

Mean(ĥ)
50 0.022 0.016 0.015 0.021 0.019 0.019 0.020
150 0.016 0.015 0.015 0.015 0.014 0.014 0.015

Std.dev.(ĥ) × 10
50 0.066 0.069 0.071 0.069 0.077 0.052 0.053
150 0.021 0.027 0.034 0.022 0.024 0.020 0.023

Mean(ĥ − ĥKL)2 × 103

50 0.068 0.091 0.108 0.065 0.081 0.004
150 0.009 0.011 0.015 0.009 0.011 0.003

Mean(β̂)
50 9.071 10.890 10.962 9.026 9.336 8.709 8.713
150 8.852 9.229 9.432 8.934 9.132 8.877 8.839

Std.dev.(β̂)
50 2.128 2.787 3.138 2.091 2.203 1.007 0.972
150 0.929 1.346 1.846 0.925 1.176 0.472 0.368

Mean(β̂ − β0)
2

50 4.524 11.326 13.679 4.363 4.955 1.096 1.025
150 0.883 1.860 3.586 0.859 1.397 0.237 0.161

Mean(WASE(ĥ, β̂))
50 0.435 0.509 0.516 0.425 0.452 0.334
150 0.225 0.219 0.237 0.210 0.214 0.178

Mean(KL(ĥ, β̂))
50 0.198 0.242 0.255 0.198 0.212 0.158
150 0.091 0.096 0.104 0.091 0.095 0.081

Table 2: Simulation results for g2 link function
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n DS PML CV WLS2 WLSCV2 WASE KL

Mean(ĥ)
50 0.029 0.026 0.024 0.029 0.030 0.029 0.029
150 0.023 0.023 0.022 0.023 0.023 0.023 0.023

Std.dev.(ĥ) × 10
50 0.079 0.102 0.120 0.084 0.097 0.073 0.072
150 0.040 0.047 0.075 0.044 0.047 0.033 0.033

Mean(ĥ − ĥKL)2 × 103

50 0.116 0.167 0.236 0.126 0.146 0.004
150 0.029 0.043 0.083 0.039 0.042 0.000

Mean(β̂)
50 9.413 10.136 11.262 9.277 9.244 8.992 8.982
150 9.120 9.063 9.564 9.030 9.047 8.992 8.984

Std.dev.(β̂)
50 2.042 2.403 2.917 1.813 1.762 0.821 0.837
150 1.086 0.895 1.483 0.841 0.841 0.238 0.242

Mean(β̂ − β0)
2

50 4.333 7.055 13.611 3.358 3.160 0.672 0.699
150 1.192 0.804 2.513 0.707 0.708 0.057 0.059

Mean(WASE(ĥ, β̂))
50 0.323 0.362 0.428 0.321 0.326 0.260
150 0.133 0.134 0.153 0.132 0.133 0.114

Mean(KL(ĥ, β̂))
50 0.161 0.183 0.218 0.160 0.163 0.129
150 0.067 0.067 0.077 0.066 0.067 0.057

Table 3: Simulation results for g3 link function
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n DS PML CV WLS2 WLSCV2 WASE KL

Mean(ĥ)
50 0.062 0.054 0.047 0.061 0.058 0.061 0.068
150 0.053 0.048 0.047 0.050 0.048 0.040 0.046

Std.dev.(ĥ) × 10
50 0.300 0.336 0.334 0.318 0.331 0.259 0.248
150 0.274 0.278 0.286 0.273 0.277 0.147 0.154

Mean(ĥ − ĥKL)2 × 103

50 1.643 1.902 2.285 1.731 1.841 0.216
150 1.061 1.025 1.037 1.002 1.014 0.099

Mean(β̂)
50 7.179 8.225 8.325 7.723 8.055 8.123 8.155
150 8.686 9.132 9.230 9.031 9.118 8.013 8.192

Std.dev.(β̂)
50 3.605 4.264 4.311 4.126 4.217 3.221 3.049
150 3.858 4.111 4.130 4.139 4.104 2.013 1.912

Mean(β̂ − β0)
2

50 16.285 18.746 19.005 18.621 18.637 11.124 9.992
150 14.957 16.885 17.076 17.100 16.825 5.017 4.301

Mean(WASE(ĥ, β̂))
50 0.187 0.208 0.225 0.184 0.194 0.109
150 0.088 0.090 0.092 0.087 0.090 0.058

Mean(KL(ĥ, β̂))
50 0.079 0.102 0.113 0.081 0.091 0.049
150 0.035 0.039 0.040 0.037 0.039 0.025

Table 4: Simulation results for g4 link function

17



The values of Mean(ĥ) make it clear that in small samples (n = 50) CV and PML have

a tendency to undersmooth. The mean values of ĥPML and ĥCV are, for all link functions

considered, smaller than the average of the WASE and KL optimal ĥ values. The DS and

WLS2 criteria yield values of ĥ very close to the optimal WASE and KL values for both

sample sizes. This seems to indicate that in the PSIM setting considered, DS and WLS2 are

less subject to undersmoothing than CV and PML. We also calculate the mean trace of the

hat matrix H for each criterion, which can be interpreted as the average number of effective

parameters used in smoothing. The values we obtain (not reported in the tables) using DS

and WLS2 are about the same as the optimal values gotten by minimizing the KL distance.

This result agrees with the first two lines of the tables, where the average ĥ values for DS

and WLS2 are comparable to the optimal KL values.

For all four link functions considered, the standard deviation of ĥDS is the smallest among

all data-driven criteria for both sample sizes, with ĥWLS2 and ĥWLSCV 2 having the second,

respectively third smallest standard deviation. This shows that the second stage in the

double smoothing procedure acts like a shrinkage operator on the bandwidth: it gives the

same average values of ĥ as WLS2 but with reduced variance. For n = 150, the standard

deviation of ĥ for CV is the largest among all the criteria studied for all four link functions,

with PML having the second largest standard deviation. For n = 50, the standard deviation

of ĥ for CV is the largest among all data-driven criteria for the g1 and g3 link functions and

ĥWLSCV 2, ĥPML have the largest standard deviation for g2, g4, respectively.

Our simulation results clearly indicate that the double smoothing criterion gives the best

results for bandwidth selection, followed by the two-stage weighted least-squares criterion,

which leads to smoothing parameters with slightly higher variance. For small samples, CV,

PML and WLSCV2 are biased towards undersmoothing and give more variable bandwidth

choice (especially CV and PML). This is also illustrated in the two upper plots of Fig-

ures 1 and 2, representing kernel density estimates of the data-driven DS, PML, WLS2 and

WLSCV2 bandwidths, for g1 and respectively g3 link functions. The fifth density estimate in

the upper plots represents the optimal KL bandwidth. For n = 50 and even for n = 150, the

bandwidths minimizing DS and WLS2 have a more nearly symmetric sampling distribution

than bandwidths minimizing PML and WLSCV2. The estimated density curves for ĥDS and

ĥWLS2 have almost the same form as the density of the optimal value ĥKL, but with larger

variability, whereas the density curves for ĥWLSCV 2 and, especially, ĥPML have modes shifted
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to the left, indicating undersmoothing.
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Figure 1: Density estimates for estimated h and b for function g1: KL(solid line), DS(long
dashed line), WLS2(dashed line), WLSCV2(dotted line), PML(long-short dashed line).

For estimating the direction parameter from samples with n = 50, for g1 and g2 links,

WLS2 and DS had the smallest bias and smallest variance, followed by WLSCV2, PML and

CV. For link g3, the best direction results are obtained by WLSCV, followed by WLS2, DS,

PML and CV, whereas for link g4, DS had the best direction results, followed by WLS2,

WLSCV2, PML and CV. For samples with n = 150, the differences between the different

criteria are less marked. We observe though that WLS2 gives the best results for all the link

functions considered, except for g4, for which DS has the best results for direction estimation.

CV exhibits the largest bias and variance among all criteria for both sample sizes. For the

function g4, the distance between the “true” direction and the direction estimate given by

the data-driven criteria and even by the two optimal losses WASE and KL is larger than for

the other functions. This may be explained by the higher level of noise for this link function
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Figure 2: Density estimates for estimated h and b for function g3: KL(solid line), DS(long
dashed line), WLS2(dashed line), WLSCV2(dotted line), PML(long-short dashed line).

and also by its particular sigmoid shape (nearly linear in the middle and curved at the ends).

A local-linear estimate would be more suitable than the Nadaraya-Watson in this case, as it

automatically adjusts for edge effects.

Kernel density estimates of β̂ for data-driven DS, PML, WLS2 and WLSCV2 criteria

are given in the lower plots of Figures 1 and 2. For legibility reasons, the density curve for

the optimal values β̂KL is not represented, as it is much more peaked around the true value

β0 = 9 than all data-driven criteria. For n = 50 the values β̂PML present more variability

around the value β0, whereas the density curve for β̂WLS2 is the most concentrated around

β0. For n = 150, the density curves obtained with the four data-driven criteria are nearly

superposed and peaked around β0. The results obtained indicate that the best direction

estimates are given by the WLS2 criterion.

20



The global performance results given by the optimal KL loss classify the criteria as follows:

the best results (for n = 50) are obtained by minimizing DS and WLS2 criteria, followed

closely by WLSCV2, then by PML and CV. While the differences in KL performances are

less marked for n = 150, they still follow the same pattern. The global performance results

obtained using the WASE error measure are consistent with the results obtained using the

KL distance. In fact, WASE seems to be a good approximation for KL, even for n = 50.

Values (ĥ, β̂) obtained minimizing WASE are very similar to the values (ĥ, β̂) minimizing

KL.

4 Conclusion

In this paper we propose two simple and automatic methods for simultaneously estimating

the direction parameter β0 and the smoothing parameter h in a Poisson regression based on

the single index model. The first criterion, called weighted least squares (WLS2) estimates

the Kullback-Leibler risk function and has a penalty term to prevent undersmoothing in

small samples. The second method, termed double smoothing (DS), is based on the esti-

mation of the WASE risk function (which is an L2 approximation of the Kullback-Leibler

risk) and makes use of a double smoothing idea as in Wand and Gutierrez (1997). We

used simulations to compare these two methods to the cross-validation criterion (CV), the

pseudo-maximum likelihood (PML) criterion and the weighted least-squares cross-validation

criterion (WLSCV2) proposed by Härdle, Hall and Ichimura (1993).

The proposed WLS2 criterion gave the best results among all criteria for estimating the

direction parameter of the single index model, whereas the DS rule was the best among all

investigated methods for estimating the bandwidth parameter.

Even better results can probably be obtained with DS and WLS2 methods if at the first

stage presented in Section 2.3.1, the pilot estimates are obtained by minimizing, for example,

the PML criterion instead of LSCV.

The two methods we propose in this paper can be used together for estimating the

unknown link function g as follows: the bandwidth parameter may be estimated by using the

double smoothing criterion DS and the direction by minimizing the weighted least-squares

WLS2. The link function may then be estimated using the Nadaraya-Watson estimator

ĝĥDS
(β̂ ′

WLS2X).

The methodology proposed in this paper can be easily generalized to deal with the case
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of overdispersed Poisson data. Suppose that Var(Yi|xi) = σ2g(β0xi) = σ2mi, where σ2 is the

unknown overdispersion parameter. In this case, using the same arguments as for obtaining

the risk function in (2.17) (corresponding to the Poisson case where Var(Yi|xi) = mi), we

obtain the following risk function:

R(h, β; m) =
1

n

n
∑

i=1

E {(Yi − m̂i)
2|X}

mi
+

2

n
tr(H)σ2.

We may now use either an analog of WLS2 or DS to estimate this quantity. A candidate for

the estimate of σ2 required in the second stage risk estimate is

σ̂2 =
1

n

n
∑

i=1

(Yi − m̂i)
2

m̂i

,

where m̂i is a first stage estimate of mi obtained by one of the methods in this paper.
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