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UNIVERSITÉ CATHOLIQUE DE LOUVAIN

D I S C U S S I O N

P A P E R

0146 Revised

DETECTING OUTLIERS IN FRONTIER MODELS:

A SIMPLE APPROACH

L. SIMAR

http://www.stat.ucl.ac.be



Detecting Outliers in Frontier Models:
A Simple Approach
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Abstract

In frontier analysis, most of the nonparametric approaches (DEA,FDH) are based
on envelopment ideas which suppose that with probability one, all the observed units
belong to the attainable set. In these “deterministic” frontier models, statistical theory
is now mostly available (Simar and Wilson, 2000a). In the presence of super-efficient
outliers, envelopment estimators could behave dramatically since they are very sensitive
to extreme observations. Some recent results from Cazals, Florens and Simar (2002)
on robust nonparametric frontier estimators may be used in order to detect outliers
by defining a new DEA/FDH “deterministic” type estimator which does not envelop
all the data points and so is more robust to extreme data points. In this paper we
summarize the main results of Cazals, Florens and Simar (2002) and we show how this
tool can be used for detecting outliers when using the classical DEA/FDH estimators
or any parametric techniques. We propose a methodology implementing the tool and
we illustrate through some numerical examples with simulated and real data. The
method should be used in a first step, as an exploratory data analysis, before using
any frontier estimation.
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1 Introduction and Notations

In frontier analysis, most of the nonparametric approaches (DEA, FDH) are based on envel-

opment ideas which suppose that with probability one, all the observed units belong to the

attainable set. Economic theory of firms (Koopmans, 1951, Debreu, 1951, Shephard, 1970),

introduces the production set, where activity is described through a set of p inputs x ∈ IRp
+

used to produce a set of q outputs y ∈ IRq
+, is defined as the set of physically attainable

points (x, y):

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y}. (1.1)

Then the production process, which generates observations {(xi, yi)|i = 1, . . . , n} is defined,

e.g., through the joint distribution of (X, Y ) on IRp
+ × IRq

+ where, in deterministic frontier

models, Prob ((X, Y ) ∈ Ψ) = 1.

The production set can be described by its sections: the input requirement sets is defined

for all y ∈ Ψ as C(y) = {x ∈ IRp
+ | (x, y) ∈ Ψ}, and the output requirement set is defined

for all x ∈ Ψ as P (x) = {y ∈ IRq
+ | (x, y) ∈ Ψ}.

The radial (input-oriented) efficiency boundary (“efficient frontier”) is defined by

∂C(y) = {x | x ∈ C(y), θx /∈ C(y) ∀ 0 < θ < 1}. (1.2)

The Farrell input measure of efficiency of a production unit working at level (x0, y0) is defined

as

θ(x0, y0) = inf{θ | θx0 ∈ C(y0)} = inf{θ | (θx0, y0) ∈ Ψ}. (1.3)

Note that ∂C(y) = {x | θ(x, y) = 1}. The same could be done in the output space where

the radial efficient boundary is

∂P (x) = {y | y ∈ P (x), λy /∈ P (x) ∀ λ > 1}. (1.4)

Then the Farrell output measure of efficiency for a production unit working at level (x0, y0)

is given by

λ(x0, y0) = sup{λ | λy0 ∈ P (x0)} = sup{λ | (x0, λy0) ∈ Ψ}. (1.5)

Here, ∂P (x) = {y | λ(x, y) = 1}. Note that the frontier of Ψ is unique, and ∂C(y) and

∂P (x) are two different ways of describing it. Different assumptions can be assumed on Ψ

(e.g., free disposability, convexity,etc.; see Shephard, 1970 for details).

1



The econometric problem arises since usually Ψ (and hence ∂C(y) and ∂P (x)) are un-

known, and therefore the efficiency measures θ(x0, y0) and λ(x0, y0) have to be estimated.

Several estimators of Ψ from a random sample of production units {(Xi, Yi) | i = 1, . . . , n}
are available: in this deterministic frontier framework, the most popular nonparametric esti-

mators are the Free Disposal Hull (FDH) and the Data Envelopment Analysis (DEA). Both

derive from the pioneering work of Farrell (1957). In summary,

Ψ̂FDH =
{
(x, y) ∈ IRp+q

+ | y ≤ Yi, x ≥ Xi, i = 1, . . . , n
}

is the free disposable hull of the sample proposed by Deprins, Simar and Tulkens (1984) and

Ψ̂DEA = {(x, y) ∈ IRp+q
+ | y ≤

n∑

i=1

γiYi ; x ≥
n∑

i=1

γiXi ;

n∑

i=1

γi = 1 ; γi ≥ 0, i = 1, . . . , n}

is the convex hull of Ψ̂FDH, initiated by Farrell (1957) and popularized by Charnes, Cooper

and Rhodes (1978). The estimators of the efficiency measures for a production unit working

at level (x0, y0), θ̂(x0, y0) and λ̂(x0, y0), are then obtained by plugging Ψ̂FDH or Ψ̂DEA in

place of Ψ in the appropriate expressions. Today, statistical inference based on DEA/FDH-

type estimators is available either by using asymptotic results (Kneip, Park and Simar, 1998,

Gijbels, Mammen, Park and Simar (1999) and Park, Simar and Weiner, 2000) or by using

the bootstrap (Simar and Wilson, 1998, 2000b). See Simar and Wilson (2000a) for a recent

survey of available results.

Nonparametric deterministic frontier models are very appealing because they rely on

few assumptions; but, by construction, they are quite sensitive to extreme values and to

outliers. Detecting outliers is thus of primary importance: it is not an easy task in this

multivariate setup. Most of the standard geometrical methods for detecting outliers are

very computer intensive in multivariate set-ups and do not take the frontier aspects of the

problem into account: we are mostly interested to detect super-efficient outliers which will

be very influential to the efficiency measures θ̂(x0, y0) and λ̂(x0, y0). Wilson (1993, 1995)

proposed methods making use of influence functions to detect outliers in this framework but

the methods become computationally prohibitive as the number of observations increases,

particularly if one exhaustively examines the “masking effect” mentioned below in Section 4.

Recently Cazals, Florens and Simar (2002) (CFS hereafter) proposed nonparametric fron-
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tier estimators that are robust with respect to these extreme values. The CFS idea are based

on the concept of “expected frontier of order-m”, where m can be viewed as a “trimming”

parameter of the frontier but, as shown below, m has also its own empirical economic in-

terpretation. The properties of the order-m frontier and its relation to the frontier of Ψ are

investigated in CFS. In particular, as explained below, for large values of m, the two frontiers

coincide. A nonparametric estimator of the order-m frontier is very easy to derive and very

fast to compute. Also it has remarkable statistical properties: no curse of dimensionality

(standard
√
n-consistency) and asymptotic normality. Due to trimming nature of the order-

m frontier, the estimator does not envelop all the observed data points, even for large m,

and so it is more robust to outliers and/or to extreme values. The procedure proposed below

to detect outliers is based on a sensitivity analysis relative to several values of m, so that m

will also be viewed as a tuning parameter for outliers detection.

In this paper, we briefly summarize the definition and the properties of the expected

frontier of order-m and explain how to derive a nonparametric estimator of it. Then we show

how the procedure can be used to detect potential outliers in the data set. The approach

is multivariate (multi-inputs and/or multi-outputs) and can be applied either to FDH or

to DEA approaches or even to any parametric frontier model. The procedure is illustrated

through some simulated and real examples. No “optimal” procedure nor “miracle” procedure

can be defined to detect outliers in this difficult context, but our method is very easy and very

fast to implement. Consequently, it certainly offers an appealing and useful methodology in

the exploratory data analysis phase of any efficiency analysis with real data.

An “outlier” is an atypical observation or a data point outlying the cloud of data points.

In the statistical literature, an outlier does not have a generally accepted, precise definition

(Davies and Gather, 1993). Often it is referred to as an observation which appears to be

inconsistent with the remainder of the set of data (Barnett and Lewis, 1995). There are many

reasons why an observation might be atypical. An observation could be an outlier because

it contains an error (bad coding, etc.), or because it arose from a different data generating

process (DGP) than the others, or it might simply be a datum with low probability of

being drawn from the same DGP (see also the discussion in Wilson, 1993). In deterministic

frontier models (parametric or nonparametric), outlying points might be highly influential

if they distort the enveloping estimator of the frontier of Ψ. So it is important to develop

exploratory data analysis tools which allow detection of extreme values. Once a potential
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outlier is detected, a careful consideration must be given to determine why it is an outlier

(see the discussion in Olesen et al., 1996, page 343). The idea is to use outlier detectors as

diagnostic tools, flagging a (hopefully) small set of observations for closer scrutiny.

In the framework here (deterministic frontiers), the concept of outlier is different from

the concept of noise in the data, although some isolated data points, perturbed by noise,

could be viewed as outliers. If the DGP contains a noise process, then procedures based on

stochastic frontier models (parametric and/or nonparametric) would be more appropriate

(for nonparametric approaches, see Hall and Simar, 2000 and Simar, 2002); in this case

DEA/FDH are inconsistent.

In Section 2 we summarize the basic concepts and the CFS results. In Section 3, we ex-

plain how to implement estimators in a multivariate context. Section 4 proposes a method-

ology for detecting the outliers, while Section 5 illustrates the procedure with simulated as

well as real data. Section 6 concludes. The Appendix provides a Matlab code that computes

the estimator of the expected order-m frontier in the input and output directions.

2 Basic Concepts: Expected Frontier of Order-m

We define the basic concepts in a simple bivariate case (one-input, one output), in the input-

orientated case. We also briefly indicate how to adapt the formulation to the output-oriented

case. All the proofs are provided in CFS.

2.1 An other way for defining the efficient frontier of Ψ

The DGP is characterized by the distribution of the random point (X, Y ) on Ψ. We focus

here on how to define the frontier of Ψ. Consider, for a moment, the simplest case consisting

of a one-dimensional frontier: suppose that every firm produces one unit of output, and that

we are looking for the univariate, input-efficient frontier. Here we have only one random

variable X, and we are interested in φ, the lower boundary of X. This unknown parameter

can be defined as

φ = inf{x|FX(x) > 0},

where FX(·) is the distribution function of X. Equivalently, we could use the survivor

function SX(x) = Prob(X ≥ x) = 1 − FX(x) to define φ:

φ = inf{x|SX(x) < 1}. (2.1)
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In the bivariate case, where X is the input and Y is the output, we can also define the

boundary of the support of (X, Y ) in the input direction. It will be, in the input space, the

lower level of input X attainable for a firm producing at least a given level of the output.

This can also be characterized by a survivor function, but here, we will use the appropriate

conditional survivor function of X, given Y ≥ y:

Sc(x|y) = Prob(X ≥ x|Y ≥ y) =
S(x, y)

SY (y)
, (2.2)

where S(x, y) = Prob(X ≥ x, Y ≥ y), and SY (y) = Prob(Y ≥ y) is the marginal survivor

function of Y (SY (y) = S(0, y)). The lower boundary of this conditional survivor function

is thus defined, for any value of y by

φ(y) = inf{x|Sc(x|y) < 1}. (2.3)

Figure 1 illustrates the concept of the input-frontier function.
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Figure 1: Input-oriented frontier in bivariate case: for any value of y0, φ(y0) =
inf{x|Sc(x|y0) < 1}.

For the output-oriented frontier, the same approach can be followed to describe the

boundary of Ψ. In the bivariate framework, it can be defined for any level of the input x as

the upper boundary of the conditional distribution function of Y , given X ≤ x:

Fc(y | x) = Prob(Y ≤ y | X ≤ x) (2.4)
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=
F (x, y)

FX(x)
, (2.5)

where FX(x) = Prob(X ≤ x). Then, for any value of x, the frontier of Ψ in the output

direction is given by

ψ(x) = sup{y | Fc(y | x) < 1}, (2.6)

the maximum level of output attainable for any firm using less than the level x of input.

CFS prove that the frontier functions φ(y) and ψ(x) are monotone, non-decreasing in

their arguments. Moreover, φ(y) (ψ(x)) is the largest (smallest) monotone function which is

smaller (larger) or equal to the efficient frontier ∂C(y) (∂P (x)). If the production set Ψ is

free disposal (a quite reasonable assumption in practice), φ(y) = ∂C(y) and ψ(x) = ∂P (x)

which amounts to a reparametrization of the definition of the efficient frontier of Ψ.

In this new formulation, a natural nonparametric estimator of the frontiers in both direc-

tions is given by plugging the empirical analog of Sc(x|y) or of Fc(y|x) into the appropriate

formula. Let

Ŝc,n(x | y) =
Ŝn(x, y)

ŜY,n(y)
, (2.7)

where Ŝn(x, y) = (1/n)
∑n

i=1 1I(xi ≥ x, yi ≥ y), and let

F̂c,n(y | x) =
F̂n(x, y)

F̂X,n(x)
, (2.8)

where F̂n(x, y) = (1/n)
∑n

i=1 1I(xi ≤ x, yi ≤ y). Then we have

φ̂n(y) = inf{x | Ŝc,n(x | y) < 1} (2.9)

and

ψ̂n(x) = sup{y | F̂c,n(y | x) < 1}. (2.10)

Note that the obtained estimators are the input- and output-oriented frontiers obtained

by the FDH estimator. They share the same properties as the corresponding estimated

functions, i.e., monotonicity in their arguments.

2.2 The order-m frontiers of Ψ

Input-oriented case

Consider again the simplest univariate case, where firms produce one unit of output. The
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lower boundary of X, φ, is defined in (2.1). Suppose, that instead of focusing on the true

lower boundary of X, we consider an alternative measure defined as follows. Consider a fixed

integer m ≥ 1. We define as the order-m lower boundary for X, the expected value of the

minimum of m random variables X1, . . . , Xm drawn from the distribution function of X, as

φm = E
[
min(X1, . . . , Xm)

]
=

∫ ∞

0
[SX(x)]mdx. (2.11)

So φm is the expected minimum achievable input-level among m firms drawn from the

population of firms (all the firms producing here, one unit of output). The value of m is

arbitrary and can be fixed to any desired level, but it is interesting to analyze the value of

φm as a function of m. In particular, it is easy to prove that limm→∞ φm = φ and that, for

all finite m, φm ≥ φ.

For any fixed value of m ≥ 1, φm is an unknown parameter, but can be estimated easily

from a sample of observed values (x1, . . . , xn). At this elementary stage, it is important to

notice the difference between m and n: m is a “trimming” parameter fixed at any desired

level defining the level of the benchmark, whereas, n is the sample size and so, there are

no a priori relations between m and n. The idea of trimming is not new in statistics (most

readers know the concept of a “trimmed mean” where the mean is computed after a part

of the observations in both tails of the observations are deleted), its use here in boundary

estimation is new.

Nonparametric estimators of φ and of φm based on a random sample of size n can be

obtained by plugging the empirical survivor function of X into (2.1) and (2.11), respectively,

yielding φ̂n and φ̂m,n. The relations between φ and φm are reflected in their empirical

counterparts: for all finite m, φ̂m,n ≥ φ̂n = x(1), where x(1) is the first order statistic and

limm→∞ φ̂m,n = φ̂n. Clearly, φ̂n ≤ xi, i = 1, . . . , n, but this is not true for the order-m

frontier estimator, φ̂m,n, even for large m. This is primarily due to the expectation in (2.11)

and to the finiteness of m. If some observed points xi remain below φ̂m,n, even when m

increases, this could indicate “potential” outliers. The main idea of this paper is to use

order-m frontiers to detect outliers.

The bivariate extension is immediate. We first deal with the input-oriented case. Con-

sider the input levels X of firms producing at least a given level y of output. The process

generating the input levels of such firms can be characterized by the conditional distribution

of X given Y ≥ y. The minimum achievable level of input for these firms is given by the
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input-oriented frontier φ(y) defined in (2.3). Now consider a fixed integer m ≥ 1. We define

the (expected) order-m lower boundary of inputs X, for firms producing more than y, as the

expected value of the minimum of m random variables X1, . . . , Xm drawn from the condi-

tional distribution function of X given Y ≥ y. Formally, this (expected) frontier function of

order-m is defined by

φm(y) = E
[
min(X1, . . . , Xm) | Y ≥ y

]
=

∫ ∞

0
[Sc(x | y)]m dx. (2.12)

For all value of y and for all finite m, φm(y) ≥ φ(y), and for all y, limm→∞ φm(y) = φ(y).

From an economic perspective, φm(y) has its own interest. It does not provide the input-

efficient frontier, but rather another reasonable benchmark value of the input for a firm

producing a level y of output: it is the expected minimal value of input achievable among a

fixed number of m firms drawn from the population of firms producing at least this level y

of output. Being far above this order-m input-frontier is a clear indication of being input-

inefficient, whereas, being near or below this level could indicate efficiency, or in some case,

super-efficiency. The value of m is chosen at the desired level for fixing this benchmark

level, but a sensitivity analysis with a few values of m could be helpful in evaluating the

performance of a firm.

Of course, φm(y) is unknown, but it can be estimated non-parametrically by plugging

the empirical survivor function into (2.12) to obtain

φ̂m,n(y) = Ê
[
min(X1, . . . , Xm) | Y ≥ y

]
, (2.13)

where X1, . . . , Xm are m i.i.d. random variables generated by the empirical distribution of

X given Y ≥ y, whose survivor function is Ŝc,n(x | y). So,

φ̂m,n(y) =
∫ ∞

0
[Ŝc,n(x | y)]m dx. (2.14)

As before, the relations between the order-m frontier and the true frontier carry over to their

estimators φ̂m,n(y) and φ̂n(y). The asymptotic behavior of φ̂m,n(y), when the sample size n

increases, is investigated by CFS: in summary, φ̂m,n(y) achieves
√
n-consistency, is asymp-

totically unbiased, and normally distributed: L
(√

n(φ̂m,n(y) − φm(y))
)
→ N(0, σ2(y)). An

expression for σ2(y) is given in CFS.

Remark 2.1 As noted in CFS, for a fixed sample size, the value of σ2(y) increases with

y since there are fewer observed points (xi, yi) where yi ≤ y, and consequently fewer points
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to estimate the conditional survivor function Ŝc,n(x | y). This border effect often arises in

nonparametric methods. Note that we have the same problem for the FDH estimator (see

(2.7) and (2.9)), and to some extent for the DEA estimator (which is the convex closure

of the FDH). This point is often ignored. In Park et al. (2000) the standard deviation of

the FDH estimator at a point is shown to be proportional to the inverse of the probability of

observing a point near the frontier at this point: again this probability is small and difficult

to estimate for border points. Gijbels et al. (1999) obtain the same result for the DEA

estimator (a formula is available only when p = q = 1). The practical consequences of this

problem in the present setup are discussed in Section 4.

Output-oriented case

For the output oriented case, a similar approach can be followed. Given a fixed integer

m ≥ 1, define for a given level of input x the (expected) order-m output-oriented frontier

as the expected value of the maximum of m random variables Y 1, . . . , Y m drawn from the

conditional distribution function of Y given X ≤ x:

ψm(x) = E
[
max(Y 1, . . . , Y m) | X ≤ x

]
=

∫ ∞

0
(1 − [Fc(y | x)]m) dy. (2.15)

A nonparametric estimator of ψm(x) is given by:

ψ̂m,n(x) = Ê
[
max(Y 1, . . . , Y m) | X ≤ x

]
, (2.16)

which may be computed as

ψ̂m,n(x) =
∫ ∞

0
(1 − [F̂c,n(y | x)]m) dy. (2.17)

Mutatis mutandis, this estimator achieves the same properties as in the input-oriented case.

Here, the standard deviation of ψ̂m,n(x) increases when x is small (see Remark 2.1 above).

We will describe in the next section how these estimators can be computed in a multi-

variate setup. But from now on, it should be clear that in a sample of points, if the input

(output) level of a data point is far below (above) its corresponding order-m input (output)-

frontier, even when m increases, this indicates a potential outlier. This is true regardless of

which estimator is to be used in hte final analysis (FDH, DEA, or any parametric method).
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3 Multivariate Extensions

For handling the multivariate case and to provide results which are easier to read, the

practical computations are made in terms of radial distances (Farrell efficiency measures)

from a particular firm (x0, y0) to the frontier or to the order-m frontier.

3.1 Order-m efficiency scores

Let (x0, y0) be the point of interest in Ψ ⊂ IRp
+× IRq

+, and let m ≥ 1 be a fixed integer. Now,

we consider m (p-dimensional) random variables X1, . . . , Xm drawn from the conditional

distribution function of X given Y ≥ y0. Define the following random variable:

θ̃m(x0, y0) = min
i=1,...,m

{

max
j=1,...,p

(X i,j

xj
0

)}

(3.1)

where X i,j (xj
0) denotes the jth component of X i (of x0 respectively). This random variable

measures the radial distance, in the input space, between the point x0 and the free disposal

hull of the random points X1, . . . , Xm generated from the conditional distribution function

of X given Y ≥ y0. The (expected) order-m input measure of efficiency of a point (x0, y0) is

defined as

θm(x0, y0) = E
[
θ̃m(x0, y0) | Y ≥ y0

]
. (3.2)

It may be proven (see CFS for details) that limm→∞ θm(x0, y0) = θ(x0, y0), the Farrell input

measure of efficiency defined in (1.3). Also when p = 1 it is easy to show that x0 θm(x0, y0) =

φm(y0), the order-m input frontier defined above.

For the output orientation, we consider m (q-dimensional) random variables Y 1, . . . , Y m

generated from the conditional distribution of Y given X ≤ x0. Then define

λ̃m(x0, y0) = max
i=1,...,m

{

min
j=1,...,p

(Y i,j

yj
0

)}

. (3.3)

λ̃m(x0, y0) measures the radial distance, in the output space, between the point y0 and the free

disposal hull of the random points Y 1, . . . , Y m generated from the conditional distribution

function of Y given X ≤ x0. The (expected) order-m output measure of efficiency of a point

(x0, y0) is now defined as

λm(x0, y0) = E
[
λ̃m(x0, y0) | X ≤ x0

]
. (3.4)
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Here again, limm→∞ λm(x0, y0) = λ(x0, y0), which is the Farrell output measure of efficiency

defined in (1.5). When q = 1, we have y0 λm(x0, y0) = ψm(y0), the order-m output frontier

defined in Section 2 for the bivariate case.

3.2 Nonparametric estimation

As above, plug-in nonparametric estimators of the order-m frontiers are obtained by using

empirical distribution functions in place of the unknown population distributions. We have

θ̂m,n(x0, y0) = Ê(θ̃m(x0, y0) | Y ≥ y0), (3.5)

where the expectation Ê is taken with respect to the empirical conditional distribution of

X, given Y ≥ y0. In multivariate setups, this involves a numerical integration which is

easier to solve by Monte-Carlo approximation. The computational algorithm is very simple

to implement and works as follows. For a given y0, draw a random sample of size m with

replacement among those xi where yi ≥ y0, and denote this sample by (X1
b , . . . , X

m
b ). Then

compute

θ̃b
m(x0, y0) = min

i=1,...,m

{

max
j=1,...,p

(X i,j
b

xj
0

)}

.

Repeat this for b = 1, . . . , B, where B is the number of Monte-Carlo replications (B is large).

Then,

θ̂m,n(x0, y0) =
1

B

B∑

b=1

θ̃b
m(x0, y0). (3.6)

By the law of large numbers, θ̂m,n(x0, y0) converges to Ê(θ̃m(x0, y) | Y ≥ y0), as B → ∞. In

order to appreciate the quality of the Monte-Carlo approximation (which can be tuned by an

appropriate choice of B), it may be worthwhile to also compute the Monte-Carlo standard

deviation of the approximation, i.e.,

STDMC(θ̂m,n(x0, y0)) =
1√
B

√√√√
∑B

b=1(θ̃
b
m(x0, y0) − θ̂m,n(x0, y0))2

B − 1
. (3.7)

It should be clear, to avoid misunderstandings, that STDMC is not the sampling standard

deviation of our estimator θ̂m,n(x0, y0); it only gives the standard deviation of the approxima-

tion (3.6) when trying to evaluate (3.5). This MC-standard deviation can be made arbitrarily

small by increasing B.
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It can also be proven that for all value of the sample size n, the order-m frontier estimator

converges to the FDH estimator of the frontier when m→ ∞:

lim
m→∞

θ̂m,n(x0, y0) = θ̂n(x0, y0) = θ̂FDH,n(x0, y0) = min
i|yi≥y0

{

max
j=1,...,p

(xj
i

xj
0

)}

. (3.8)

The same can be done for the order-m output efficiency measures. We have

λ̂m,n(x0, y0) = Ê(λ̃m(x0, y) | X ≤ x0), (3.9)

where the expectation Ê is taken with respect to the empirical conditional distribution of

Y , given X ≤ x0. The Monte-Carlo approximation works as follows. For a given x0, draw

a random sample of size m with replacement among those yi such that xi ≤ x0, and denote

this sample by (Y 1
b , . . . , Y

m
b ). Then compute

λ̃b
m(x0, y0) = max

i=1,...,m

{

min
j=1,...,p

(Y i,j
b

yj
0

)}

.

Repeat this for b = 1, . . . , B. Then

λ̂m,n(x0, y0) =
1

B

B∑

b=1

λ̃b
m(x0, y0). (3.10)

The relation with the FDH estimator is, for any value of n, given by

lim
m→∞

λ̂m,n(x0, y0) = λ̂n(x0, y0) = λ̂FDH,n(x0, y0) = max
i|xi≤x0

{

min
j=1,...,p

(yj
i

yj
0

)}

. (3.11)

As shown in the appendix, all these efficiency measures are very easy (and fast) to

compute, even for large sample sizes.

4 Detecting Outliers: Practical Computations

4.1 A Methodology for Outliers Detection

Now we have a tool for detecting potential outliers among the data set X = {(xi, yi) | i =

1, . . . , n}. Any point (x0, y0) ∈ Ψ ⊂ IRp
+ × IRq

+ is a likely outlier when, even if m increases,

its order-m input efficiency measure θ̂m,n(x0, y0) is greater than one. The same may be said

for the output direction when the order-m output efficiency measure λ̂m,n(x0, y0) is smaller

than one.

12



For example, consider a point (x0, y0) such that θ̂100,n(x0, y0) = 1.5. This production unit

uses 50% less inputs (proportionate reduction) than the expectation of the minimum input

level of 100 other firms drawn from the population and producing more than y0 output.

This point is a potential super-input-efficient point. The same could be said for the output

direction; if, for example, λ̂100,n(x0, y0) = 0.33, the firm represented by (x0, y0) produces 3

times more output (in radial extension) than the expected value of the maximal level of

output of 100 other firms drawn from the population of firms using less than x0 inputs. It

is a potential super-output-efficient outlier.

We present the basic ideas in the input-oriented case, but the same will also be done

in the output-oriented case. In practice, both results will be useful for detecting outliers.

Let us compute for each data point (xi, yi) its order-m input-efficiency score leaving out the

observation (xi, yi) from the reference set. We denote this “leave-one-out” efficiency score by

θ̂(i)
m,n(xi, yi) and the corresponding reference set by X (i). We compute these scores for several

reasonable values of m: we have to detect values of θ̂(i)
m,n(xi, yi) substantially larger than 1.

We know that, for finite m, θ̂(i)
m,n(xi, yi) ≥ θ̂

(i)
FDH,n(xi, yi) (at the Monte-Carlo precision for

computing θ̂(i)
m,n(xi, yi)). In practice, for every “FDH-efficient” point, θ̂(i)

m,n(xi, yi) ≥ 1, but

this does not automatically indicate a potential outlier: we must choose a threshold value,

e.g. (1 + α); θ̂(i)
m,n(xi, yi) ≥ 1 + α then indicates observation i is an outlier.

So, both m and the threshold level must be chosen. There are no definite rules, but the

two issues can be addressed through sensitivity analysis, taking into account that m has an

empirical, economic interpretation and that we want to flag points clearly outside the cloud

of other points (for α sufficiently large).

For each observation i, we compute θ̂(i)
m,n(xi, yi), for, say, m=10, 25, 50, 75, 100, 150 (any

other set of values for m could of course be chosen). Here we must realize that the sample

is finite. When computing θ̂(i)
m,n(xi, yi) by (3.5), we estimate the conditional distribution

function Sc(x|Y ≥ yi) by its empirical counterpart. The latter will be achieved by looking

at all points in the sample X (i) with output value larger or equal to yi; this number could

be small (in particular, for points at the edge of the sample values it could even be equal to

zero). Denote this number of points by Ninput(xi, yi). This value is useful because it indicates

the number of points used to estimate a p-variate distribution function, and it indicates how

close the point (xi, yi) is to the edge of the support of the data points.

Then we will report in a first table of results, for each data point (xi, yi), the values of

13



θ̂(i)
m,n(xi, yi), for the increasing values of m, along with their Monte-Carlo standard deviations

(3.7), to assess the precision of the Monte-Carlo approximation (if too much imprecision, we

increase B and redo the computations). We report also in the table the values ofNinput(xi, yi).

Mutatis mutandis, the same can be done in the output direction, providing a second table

of results for the “leave-one-out” output-efficiency scores λ̂(i)
m,n(xi, yi) with their MC standard

deviations and the values of Noutput(xi, yi) the number of sample points in X (i) with input

value smaller or equal to xi.

Looking carefully through these two tables will help detect potential outliers: for extreme

points, where θ̂(i)
m,n(xi, yi) ≥ 1, both the decrease of the order-m efficiencies as a function of

m and the values of Ninput are of interest; in the output table, we analyze the increase of

the values of λ̂(i)
m,n(xi, yi) which are ≤ 1 as a function of m and the corresponding values of

Noutput. If even for large values of m, both θ̂(i)
m,n(xi, yi) ≥ 1 and λ̂(i)

m,n(xi, yi) ≤ 1, indicate that

(xi, yi) is a potential outlier. Then of course, this data point deserves closer scrutiny.

4.2 A semi-automatic warning procedure

For large values of n, a careful reading of the tables of results is not easy so we need some help

in flagging potential outliers. It is never easy to derive a fully automatic procedure to detect

outliers; this is particularly true in the present context because any tuning parameter or

threshold value will depend on the underlying DGP in a very complicated way. For instance,

a choice of a value for m and for the threshold value α activating our “flag” will not be

the same in the input and the output orientations. The underlying conditional distributions

used in both cases could indeed be completely different: for instance, homoscedastic output

inefficiencies do not imply homoscedastic input inefficiencies (even in the constant return to

scale case). The idea is to propose a simple procedure which seems to be reasonable, and

we will show in the numerical illustrations that it performs well.

As noted earlier, we must first decide on some threshold values for the efficiency scores.

This is achieved again through a sensitivity analysis. We propose to choose several reasonable

threshold values distant from 1, such as 1±α where α ∈ {0.20, 0.30, 0.40, 0.50}. Recall that

we want to detect points which are really outlying the cloud of points, so super-efficiency

of less than say, 10%, in this leave-one-out approach would not be a useful indicator of

potential outlier. Of course, any other set of values for α could be chosen. Then we will

plot the percentage of points in the sample X with θ̂(i)
m,n(xi, yi) ≥ 1 + α, as a function of m,
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for the different chosen values of α. For the output oriented case, we plot the percentage of

points with λ̂(i)
m,n(xi, yi) ≤ 1 − α. In practice1, we take the Monte-Carlo standard deviations

into account (because B is finite). For instance, in the input case, we consider points such

that θ̂(i)
m,n(xi, yi) − 1.645 ∗ STDMC(θ̂(i)

m,n(xi, yi)) ≥ 1 + α, where 1.645 is the 0.95 percentile of

the standard normal distribution2. These curves indicate the percentage of points outside

the order-m frontier, as a function of m and of α.

By construction, all these curves should decrease when m increases, and if there are no

outliers, they should converge (approximately, due to sampling imprecision) linearly to the

percentage of points having a leave-on-out FDH efficiency score greater than 1. So any

strong departure from linearity will indicate the potential existence of outliers: for instance,

if the curves show an “elbow effect” (sharp negative slope, followed by a smooth decreasing

slope), it indicates that the points remaining outside the order-m frontier, for this value of

m and for the chosen threshold (1 + α), need closer analysis. Indeed, we need much larger

values of m (eventually to ∞), to get these points inside (or closer to) the order-m frontier.

Since the situation could be different in the input and in the output direction, we need to

look at both pictures. In addition, all data points with order-m efficiency measures ≥ 1 for

input (≤ 1 for output) and having small values of Ninput (for Noutput) should be flagged as

being extreme. For these points, the value of the order-m efficiency in the other direction

will confirm if they are potential outliers.

For choosing the value of (m,α), we must also realize that the percentage of points left

outside the frontier has to be reasonable. Again no theoretical rules exist on how to fix

an upper bound for the number of outliers. In the statistical literature an upper bound

is sometimes given for the accepted proportion of outliers; for instance, Barnett and Lewis

(1995) suggests
√
n/n as a reasonable upper bound3.

1Since we know the asymptotic sampling distribution of θ̂m,n and its standard deviation (see CFS) we
could adjust for sampling variability, but except for p = 1 in the input-oriented case and for q = 1 in
the output oriented case, the computation of the sampling standard deviations is rather intricate. In this
exploratory data analysis, we only use the point estimates, corrected for their Monte-Carlo imprecisions.

2Although distributions of efficiencies are generally skewed, the central limit theorem can be used here,
in the Monte-Carlo experiment: we approximate indeed a mean of a random variable by its empirical analog
over B random replications. The correction 1.645 ∗ STDMC is just to adjust for the fact that we use finite
values of B.

3 We are assuming here that we only have one DGP and not a mixture of different DGPs. In the latter
case the problem of outliers detection becomes a problem of cluster analysis or of discrimination between
two or more DGPs. As pointed in the discussion by Ole Olesen, note that if our procedure flags too much
potential outliers with values of Ninput and Noutput not too small, this might indicate the presence of clusters
of points and so of more than one DGP. These points could be at the border of a cluster and detected as
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With the help of these tuning values (m,α), it is easy to identify these extreme points

by an appropriate computer program and then go back to the tables of results and to the

data. Several values of (m,α) could also be tried.

Once outliers have been detected and confirmed, the analysis can be redone without

these points, in order to avoid the “masking” effect, discussed by Wilson (1993, 1995). An

outlier could mask another outlier (or several other outliers) situated near the first one. Our

procedure should be more robust with respect to this masking effect (due to the expectation

operator) but of course, the method is not foolproof4. The required computations are very

fast and so the entire process can be repeated several times, by sequentially deleting outliers

from one run to the next (see the appendix for more information on computing times).

As observed in the introduction, no “optimal” procedure nor “miracle” exist to detect

outliers in this difficult context, but the method proposed here is very easy and very fast

to implement. It cannot be a complete “automatic” procedure (we must inspect pictures,

go back to the table of results, etc.). However, it certainly offers an appealing and useful

methodology in the exploratory data analysis phase of any efficiency analysis with real data,

and the semi-automatic warning procedure of potential outliers is particularly useful when

n is large. The next section illustrates the ideas with numerical examples.

5 Numerical Illustrations

All computations were performed using the MATLAB code listed in the Appendix.

being extreme but they are not extreme in the full cloud of points. This idea will not be pursued here.
4In other words, in the presence of two nearby outliers (one masking the other), our procedure is more

robust to detect both in the first run. The point is that here, we use an expectation rather than an
extreme observed point to estimate the frontier. Let us illustrate the idea in the simplest univariate in-
put oriented case: the classical envelopment estimator is min(X1, . . . , Xn), and the order-m estimator is

Ê[min(X1, . . . , Xm)] where (X1, . . . , Xm) is a i.i.d. random sample drawn from (X1, . . . , Xn). Suppose we
have, say, two outlying nearby too small values X(1), X(2). Only if m → ∞, both estimators are the same.
At the first run the min operator will get X(1), at the second run (X(1) is dropped out), it will get X(2)

“masked” by X(1) at the first run, even if n is large. Whereas, for finite m, Ê[min(X1, . . . , Xm)] is less
sensitive to the values of both X(1) and X(2): for reasonable values of n, both could be detected more easily
as being outside the order-m boundary.
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5.1 Example 1: bivariate case

The first example is a simulated one: we simulate a sample of n = 100 observations (xi, yi)

according the DGP:

Y = Xβ ∗ exp(−U), (5.1)

where β = 0.5, X is uniform on (0,1) and U is an exponential with mean µ = 1/3. The true

average output-efficiency is 1/(µ + 1) = 3/4. Three outliers were added arbitrarly: units

#(1, 2, 3), resulting in 103 observations shown in Figure 2.
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Figure 2: Data set for Example 1 with 3 outliers: units #(1,2,3).

To save space, we show in Tables 1 and 2 the order-m efficiencies of 14 units: the three

outliers (unit #1, unit #2 and unit #3), some points detected as being potential outliers by

our semi-automatic procedure, and other points chosen randomly.

Note first that the STDMC are small, indicating that a value of B equal to 200, in this

case, is large enough for our purpose. We see also that the 3 first units have clear extreme

values for both order-m efficiency scores and that in the output direction unit #2 has only

4 other units with output larger than y2. Unit #3 has the most extreme value for the

output: Ninput = 0 and θ̂(3)
m,n(x3, y3) = ∞. The procedure confirms that units #(1, 2, 3) are

outliers. Also, units #(58, 62, 65) are rather extreme in both directions. Unit #58 has the

smallest observed input in the sample Noutput = 0 and λ̂(3)
m,n(x58, y58) = 0. Note also that

unit #61 is rather extreme in both directions but too a lesser extent (for m = 150, only
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unit θ̂
(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
F DH,n

(xi, yi)

m = 10 m = 25 m = 50 m = 75 m = 100 m = 150

1 5.6741 5.2500 5.0747 5.0041 5.0000 5.0000 5.0000
0.0407 0.0288 0.0168 0.0041 0.0000 0.0000

20 20 20 20 20 20
2 1.4161 1.4000 1.4000 1.4000 1.4000 1.4000 1.4000

0.0056 0.0000 0.0000 0.0000 0.0000 0.0000
4 4 4 4 4 4

3 Inf Inf Inf Inf Inf Inf Inf
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
4 1.0506 0.9124 0.8705 0.8595 0.8579 0.8579 0.8579

0.0130 0.0085 0.0044 0.0016 0.0000 0.0000
15 15 15 15 15 15

5 0.6826 0.5041 0.3910 0.3230 0.3124 0.2603 0.2361
0.0179 0.0151 0.0124 0.0103 0.0097 0.0058

67 67 67 67 67 67
6 0.7494 0.5060 0.3435 0.2813 0.2101 0.2069 0.1940

0.0234 0.0238 0.0194 0.0157 0.0071 0.0064
36 36 36 36 36 36

58 5.9967 2.8815 1.8760 1.5627 1.3681 1.2949 1.2252
0.4020 0.1615 0.0790 0.0491 0.0284 0.0188
101 101 101 101 101 101

59 1.0936 0.8035 0.5396 0.4441 0.3530 0.2896 0.2604
0.0259 0.0289 0.0266 0.0233 0.0174 0.0101

49 49 49 49 49 49
60 0.5927 0.3915 0.2718 0.2320 0.1757 0.1634 0.1464

0.0164 0.0180 0.0152 0.0132 0.0082 0.0063
40 40 40 40 40 40

61 2.2698 1.6145 1.3062 1.2191 1.2095 1.1192 1.0771
0.0678 0.0419 0.0222 0.0160 0.0150 0.0076

81 81 81 81 81 81
62 3.8436 1.8396 1.4627 1.3594 1.3120 1.2693 1.2421

0.2115 0.0684 0.0267 0.0191 0.0101 0.0044
92 92 92 92 92 92

65 7.1394 3.7481 2.8314 2.6031 2.4688 2.3832 2.2423
0.4058 0.1451 0.0684 0.0327 0.0250 0.0199

96 96 96 96 96 96
102 0.6560 0.3302 0.2564 0.2340 0.2295 0.2196 0.2069

0.0363 0.0133 0.0049 0.0025 0.0024 0.0017
93 93 93 93 93 93

103 0.7040 0.7040 0.7040 0.7040 0.7040 0.7040 0.7040
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 1 1 1 1 1

Table 1: Leave-One-Out order-m input efficiency measures for example 1: the first 3 units
are outliers. For each unit, the first row is the efficiency score, the second row, the Monte-
Carlo standard deviation (B = 200) and the third row is Ninput, the number of points in X ,
with output level greater or equal to yi.
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unit λ̂
(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
F DH,n

(xi, yi)

m = 10 m = 25 m = 50 m = 75 m = 100 m = 150

1 0.3873 0.4070 0.4133 0.4135 0.4139 0.4139 0.4139
0.0026 0.0012 0.0004 0.0003 0.0000 0.0000

14 14 14 14 14 14
2 0.6672 0.7239 0.7539 0.7648 0.7700 0.7750 0.7778

0.0069 0.0036 0.0022 0.0017 0.0013 0.0007
55 55 55 55 55 55

3 0.7289 0.7798 0.8235 0.8443 0.8620 0.8806 0.9000
0.0060 0.0055 0.0051 0.0047 0.0043 0.0033

80 80 80 80 80 80
4 0.8788 1.0063 1.0602 1.1242 1.1502 1.1699 1.1992

0.0101 0.0109 0.0101 0.0087 0.0074 0.0059
62 62 62 62 62 62

5 1.3436 1.5104 1.6448 1.7113 1.7262 1.7414 1.7527
0.0161 0.0142 0.0123 0.0078 0.0064 0.0042

44 44 44 44 44 44
6 1.0749 1.2299 1.3378 1.3876 1.4255 1.4572 1.4806

0.0161 0.0144 0.0125 0.0111 0.0090 0.0060
56 56 56 56 56 56

58 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
59 0.9723 1.1140 1.2023 1.2096 1.2576 1.2610 1.2736

0.0136 0.0111 0.0088 0.0082 0.0043 0.0039
41 41 41 41 41 41

60 1.2057 1.2891 1.3721 1.3952 1.4335 1.4716 1.5055
0.0115 0.0098 0.0094 0.0091 0.0081 0.0061

76 76 76 76 76 76
61 0.8445 0.8840 0.8977 0.8994 0.8998 0.8998 0.8998

0.0045 0.0024 0.0009 0.0004 0.0000 0.0000
13 13 13 13 13 13

62 0.6787 0.6796 0.6796 0.6796 0.6796 0.6796 0.6796
0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

5 5 5 5 5 5
65 0.4982 0.4982 0.4982 0.4982 0.4982 0.4982 0.4982

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 2 2 2 2 2

102 2.8720 3.6409 4.1102 4.1960 4.2174 4.2174 4.2174
0.0818 0.0681 0.0331 0.0151 0.0000 0.0000

18 18 18 18 18 18
103 0.8309 0.9141 0.9608 0.9754 0.9841 0.9949 1.0068

0.0074 0.0047 0.0035 0.0027 0.0025 0.0019
102 102 102 102 102 102

Table 2: Leave-One-Out order-m output efficiency measures for example 1: the first 3 units
are outliers. For each unit, the first row is the efficiency score, the second row, the Monte-
Carlo standard deviation (B = 200) and the third row is Noutput, the number of points in X ,
with input level smaller or equal to xi.
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10% of superefficiency) and its leave-one-out FDH input score is not far from one. Finally

unit #103 deserves some comments: it is extreme in the output direction Ninput = 1, but

its output efficiency score moves rapidly close toward 1 when m increases, so it is not an

outlier.

As a conclusion, units #(1, 2, 3, 58, 62, 65) seem to be outside the cloud of points. Since

here we have two dimensions we can simply plot the observations and identify the outliers.

This is done in Figure 2, which reveals why units #(58, 62, 65) were flagged as outliers: they

have extremely low input level, where the true frontier increases very fast (ψ(x) =
√
x) and

there are not so many points in this area.

The selection of the printed rows in Tables 1 and 2 was done by our semi-automatic

warning procedure, plus some random rows, to compare. For comparison, we also need the

curves showing the percentage of points outside the frontier as a function of m. This is done

in Figure 3.
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Figure 3: Percentages of points outside the order-m frontier as a function of m and of the
threshold value α for example 1 with 3 outliers. Solid line is for α = 0.20, dotted for α = 0.30,
dashed for α = 0.40 and dash-dotted for α = 0.50. Left panel: input-oriented, right panel
output oriented.

The differences in the shape of the two curves should be noticed: this stresses the asym-

metry of the treatment of inputs and outputs. This is due to our DGP where the Xs are

uniformly generated but the Y s are generated conditionally on X according to the efficiency

model (5.1). Here we realize that we have many more points outside the order-m frontier in

the input direction than in the output direction, even for large values of m: since we want to

flag points being outside the frontier in both directions, it will mainly be the output curves
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that will dominate in our choice of the tuning parameters.

The analysis of the right panel of Figure 3 suggests (elbow effect) in the output direction

to select the values m = 25 and α = 0.20. Looking to the left panel, we see this choice is

very conservative with respect to the input-oriented case. This choice provides a reasonable

number of flagged points: the procedure identifies automatically units #(1, 2, 3, 58, 62,

65) as extreme points. An automatic test on the values of Ninput and of Noutput for units

having efficiency score greater or equal to 1 identifies units #(3, 58) as particularly extreme

at least in one direction and are indeed flagged as potential outliers. So we see how the semi-

automatic procedure helped to select a small number of rows in the full tables of results

needing closer scrutiny.

The same analysis was performed on the same cloud of 100 points, without the three

outliers units #(1,2,3). To save place, we do not reproduce the tables of results: the order of

magnitude of the efficiency scores are the same, because the order-m concept is rather robust

to outliers since the frontier does not envelop all the points. A careful analysis of the tables

concludes exactly as above. The semi-automatic procedure is based on the analysis of Figure

4 (same peculiar shapes as above). The points flagged for the values m = 25, α = 0.20 are

as above units #(58, 62, 65), pointing here units #(58, 103) as being extremes when looking

to Ninput and of Noutput; however unit #103 is not detected as a potential outlier, at this

level of the tuning parameters.

We repeated the same exercice, in two dimensions (because we can see the clouds of

points), with many other simulated data sets with convex and non-convex attainable set and

we obtained roughly the same qualitative results. The conclusion is that effective outliers are

detected but that, in a conservative approach some other extreme points (with small values

for Ninput or Noutput) on the border of the support of the cloud of points in each variable

direction could also be flagged by the procedure.

5.2 Example 2: multivariate simulated case

Here we simulate a data set of n = 100 points with p = 2 inputs and q = 2 outputs,

according the scenario proposed in Park, Simar and Weiner (2000, page 866). Here the

function describing the efficient frontier is given by:

y2 = 1.0845(x1)0.3(x2)0.4 − y1
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Figure 4: Percentages of points outside the order-m frontier as a function of m and of the
threshold value α for example 1 without outliers. Solid line is for α = 0.20, dotted for
α = 0.30, dashed for α = 0.40 and dash-dotted for α = 0.50. Left panel: input-oriented,
right panel output oriented.

where yj, (xj), denotes the jth component of y, (of x), for j = 1, 2. We draw Xj
i independent

uniforms on (1, 2) and Ỹ j
i independent uniform on (0.2, 5). Then the generated random rays

in the output space are characterized by the slopes Si = Ỹ 2
i /Ỹ

1
i . Finally, the generated

random points on the frontier are defined by:

Y 1
i,eff =

1.0845(X1
i )

0.3(X2
i )0.4

Si + 1

Y 2
i,eff = 1.0845(X1

i )
0.3(X2

i )0.4 − Y 1
i,eff .

We chose, as above, the efficiencies generated by exp(−Ui) where Ui are drawn from an

exponential with mean µ = 1/3. So that finally Yi = Yi,eff ∗ exp(−Ui).

Here also, we add 3 outliers in the output space as follows. We define an outlier at

X1 = (1.5, 1.5) with a slope S1 = 1 in the output space and λ̂FDH,n(X1, Y1) = 0.6, at X2 =

(1.25, 1.75) with a slope S2 = 1/2 and λ̂FDH,n(X2, Y2) = 0.6 and finally for X3 = (1.75, 1.25)

with a slope S3 = 2 and λ̂FDH,n(X3, Y3) = 0.6, where λ̂FDH,n(x, y) is the FDH efficiency

score computed with the reference set given by the n = 100 points generated above. So the

points are outside the FDH frontier estimated from the 100 “regular” points . Of course in

this multivariate setup, we expect to have many FDH-efficient points. The outliers are again

units #(1, 2, 3).

The results are shown in Tables 3 and 4. Again, a subset of the tables are printed to save

space. This subset has been chosen by our semi-automatic warning procedure, plus some
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additional units chosen at random. The flagged rows were detected for a selected value of

(m,α) chosen by looking to Figure 5.
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Figure 5: Percentages of points outside the order-m frontier as a function of m and of the
threshold value α for example 2 with 3 outliers. Solid line is for α = 0.20, dotted for α = 0.30,
dashed for α = 0.40 and dash-dotted for α = 0.50. Left panel: input-oriented, right panel
output oriented.

The pictures suggests choosing m = 50 and α = 0.30: this identifies as potential outliers

the units#(1, 2, 3, 26). A more conservative choice is m = 25, α = 0.30 which flags, in

addition, the unit #85. Also, a test on the values of Ninput and Noutput for efficient points

identifies the points #(32, 43, 72, 80, 84, 103) as being extreme in at least one direction.

The other units in Tables 3 and 4 are chosen at random for comparison.

By looking more carefully at these tables, it appears that units #(1, 2, 3, 26) and,

to a smaller extent, unit #85 are potential outliers. Of course, here, in a 4-dimensional

framework, we have much more extreme points, with order-m input efficiency scores equal

to ∞ for units # (1, 2, 3, 84), but unit #84, is not so extreme in the output direction (less

than 7% superefficient for m = 100) and so is not detected as a potential outlier. For the

order-m output efficiencies, units #(32, 43, 72, 80, 103) have a score equal to zero. But

units #(32, 80) are not so extreme in the input direction (10% of super efficiency), however,

units #(43, 72, 103) deserves a warning althoug much below the threshold of 30% of super

efficiency chosen above. As a conclusion, we would stay with our 5 potential outliers #(1,

2, 3 , 26, 85 ) and 3 warnings #(43, 72, 103).

As for example 1, we redid the same analysis without the 3 outliers, and the results

confirm what is written above. The semi-automatic warning procedure is based on Figure
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unit θ̂
(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
F DH,n

(xi, yi)

m = 10 m = 25 m = 50 m = 75 m = 100 m = 150

1 Inf Inf Inf Inf Inf Inf Inf
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
2 Inf Inf Inf Inf Inf Inf Inf

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

3 Inf Inf Inf Inf Inf Inf Inf
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
4 1.1938 1.1634 1.1530 1.1517 1.1508 1.1508 1.1508

0.0036 0.0020 0.0008 0.0006 0.0000 0.0000
14 14 14 14 14 14

5 1.0376 1.0200 1.0195 1.0195 1.0195 1.0195 1.0195
0.0028 0.0005 0.0000 0.0000 0.0000 0.0000

6 6 6 6 6 6
6 0.7868 0.7803 0.7794 0.7794 0.7794 0.7794 0.7794

0.0012 0.0003 0.0000 0.0000 0.0000 0.0000
9 9 9 9 9 9

26 1.4356 1.4086 1.4064 1.4061 1.4061 1.4061 1.4061
0.0047 0.0015 0.0004 0.0000 0.0000 0.0000

8 8 8 8 8 8
32 1.2083 1.1420 1.1137 1.1078 1.1059 1.1054 1.1054

0.0073 0.0043 0.0019 0.0011 0.0005 0.0000
22 22 22 22 22 22

43 1.2912 1.2298 1.2112 1.2017 1.2007 1.1955 1.1942
0.0067 0.0030 0.0015 0.0010 0.0010 0.0005

56 56 56 56 56 56
44 0.8862 0.8804 0.8804 0.8804 0.8804 0.8804 0.8804

0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
4 4 4 4 4 4

72 1.2733 1.2647 1.2636 1.2636 1.2636 1.2636 1.2636
0.0014 0.0004 0.0000 0.0000 0.0000 0.0000

8 8 8 8 8 8
73 0.7262 0.6961 0.6823 0.6782 0.6778 0.6774 0.6774

0.0032 0.0025 0.0014 0.0006 0.0004 0.0000
18 18 18 18 18 18

80 1.1284 1.1273 1.1273 1.1273 1.1273 1.1273 1.1273
0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

3 3 3 3 3 3
84 Inf Inf Inf Inf Inf Inf Inf

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

85 1.4147 1.4147 1.4147 1.4147 1.4147 1.4147 1.4147
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 2 2 2 2 2
86 0.8926 0.8663 0.8448 0.8420 0.8376 0.8353 0.8353

0.0033 0.0028 0.0018 0.0016 0.0010 0.0000
25 25 25 25 25 25

102 0.7235 0.6845 0.6663 0.6616 0.6610 0.6604 0.6602
0.0041 0.0027 0.0012 0.0003 0.0003 0.0001

32 32 32 32 32 32
103 1.3085 1.2464 1.1924 1.1760 1.1630 1.1630 1.1608

0.0089 0.0078 0.0054 0.0039 0.0015 0.0015
26 26 26 26 26 26

Table 3: Leave-One-Out order-m input efficiency measures for example 2: the first 3 units
are outliers. For each unit, the first row is the efficiency score, the second row, the Monte-
Carlo standard deviation (B = 200) and the third row is Ninput, the number of points in X ,
with output level greater or equal to yi.
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unit λ̂
(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
F DH,n

(xi, yi)

m = 10 m = 25 m = 50 m = 75 m = 100 m = 150

1 0.5637 0.5935 0.5983 0.5997 0.5999 0.6000 0.6000
0.0038 0.0014 0.0005 0.0001 0.0001 0.0000

24 24 24 24 24 24
2 0.5345 0.5804 0.5950 0.5993 0.5991 0.6000 0.6000

0.0055 0.0028 0.0011 0.0004 0.0004 0.0000
20 20 20 20 20 20

3 0.5464 0.5819 0.5947 0.5989 0.5995 0.6000 0.6000
0.0045 0.0021 0.0009 0.0004 0.0003 0.0000

24 24 24 24 24 24
4 0.8853 0.9537 0.9807 0.9831 0.9837 0.9837 0.9837

0.0081 0.0048 0.0013 0.0006 0.0000 0.0000
15 15 15 15 15 15

5 0.8610 0.9353 0.9649 0.9715 0.9726 0.9732 0.9732
0.0084 0.0049 0.0021 0.0008 0.0002 0.0000

28 28 28 28 28 28
6 1.0562 1.2143 1.3085 1.3902 1.4169 1.4701 1.5619

0.0146 0.0155 0.0148 0.0141 0.0137 0.0116
89 89 89 89 89 89

26 0.1071 0.1071 0.1071 0.1071 0.1071 0.1071 0.1071
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 1 1 1 1 1
32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
44 0.8255 0.9145 0.9780 1.0074 1.0203 1.0397 1.0493

0.0085 0.0081 0.0064 0.0052 0.0042 0.0026
56 56 56 56 56 56

72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
73 1.2441 1.4034 1.4786 1.5004 1.5231 1.5440 1.5590

0.0144 0.0095 0.0058 0.0049 0.0039 0.0026
96 96 96 96 96 96

80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0 0 0 0 0
84 0.8151 0.8827 0.9148 0.9235 0.9294 0.9310 0.9328

0.0070 0.0043 0.0021 0.0013 0.0006 0.0005
71 71 71 71 71 71

85 0.6547 0.6832 0.7001 0.7039 0.7052 0.7059 0.7062
0.0037 0.0023 0.0012 0.0007 0.0005 0.0003

23 23 23 23 23 23
86 1.2385 1.4027 1.4636 1.4841 1.5005 1.5013 1.5015

0.0157 0.0098 0.0059 0.0043 0.0002 0.0001
52 52 52 52 52 52

102 1.5044 1.7604 1.8580 1.9482 2.0689 2.1094 2.1917
0.0243 0.0229 0.0214 0.0198 0.0161 0.0134

82 82 82 82 82 82
103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

Table 4: Leave-One-Out order-m output efficiency measures for example 2: the first 3 units
are outliers. For each unit, the first row is the efficiency score, the second row, the Monte-
Carlo standard deviation (B = 200) and the third row is Ninput, the number of points in X ,
with input level smaller or equal to xi.
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6, which is very similar to Figure 5. For the values m = 25, α = 0.30 the units #(26, 85)

are flagged as potential ouliers. We do not reproduce the tables in the interest of space.
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Figure 6: Percentages of points outside the order-m frontier as a function of m and of the
threshold value α for example 2 without the 3 outliers. Solid line is for α = 0.20, dotted for
α = 0.30, dashed for α = 0.40 and dash-dotted for α = 0.50. Left panel: input-oriented,
right panel output oriented.

As a conclusion, the semi-automatic procedure helps effectively to build tables of results

with a moderate number of rows. Of course, in a multidimensional framework, the number

of warnings increases with the number of dimensions when the sample size is fixed.

In order to investigate the influence of the sample size on our procedure we redid the

full example 2 with a basic reference sample of size n = 1000, adding the same outliers

according the same process. Figure 7 identifies m = 25 and α = 0.30 again as a reasonable

choice of tuning parameters. Units #(1, 2, 3, 449) are identified as being potential outliers.

In addition, 9 additional points are detected as being extreme in at least one dimension,

although none of them are detected as potential outliers. A detailed analysis of the tables

confirms this5.

When redoing the analysis without the 3 outliers, the results are mostly confirmed: only

two units #(128, 449) are detected as outliers over the 1000 data points (value of the tuning

parameters m = 25, α = 0.30). The procedure is clearly useful when sample size is large.

5The full tables of results are available on request to the author at simar@stat.ucl.ac.be.
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Figure 7: Percentages of points outside the order-m frontier as a function of m and of the
threshold value α for example 2 without the 3 outliers. Solid line is for α = 0.20, dotted for
α = 0.30, dashed for α = 0.40 and dash-dotted for α = 0.50. Left panel: input-oriented,
right panel output oriented.

5.3 Example 3: multivariate real data

Her we examine real data in a multivariate setting: the data on Program Follow Through

(PFT), an experimental education program administered in US schools are reported by

Charnes, Cooper and Rhodes (1981). There are 5 inputs and 3 outputs for 70 schools. This

data set has also been analyzed by Wilson (1993). Note that here in a 8-dimensional space,

there is no room for doing inference, since the sample size is definitely too small for drawing

inference in a FDH/DEA framework. So no definite conclusions can be drawn from this

example, because all the estimators are flawed by large sampling variances. For instance,

note that 64 of the 70 units are FDH-efficient: this indicates that in a 8 dimensional space,

with a full non-parametric approach, 70 observations are too few to get sensible results.

Wilson’s results are based on convexity and of course we have no means to test, in a so small

sample size, if the technology is convex. Our approach can handle convex and non convex

sets. So we use this popular data set here just for illustration purposes and to check if our

procedure provides some warnings on the most extreme points.

A sampled part of the tables of results is provided in Tables 5 and 6, where we show a se-

lection of 28 units, among them, are the potential outliers detected by our “semi-automatic”

procedure and those detected in Wilson (1993). The tables include also the 6 units #(4,

13, 31, 37, 53, 66), which were not FDH-efficient with the full data set. In order to save

place in the tables we do not reproduce the value of the Monte-Carlo standard deviations
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(most of them were of an order much less than 0.01), even if, the semi-automatic procedure

uses these values explicitely to decide if the order-m efficiency score is above (or below) the

chosen threshold value.
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Figure 8: Percentages of points outside the order-m frontier as a function of m and of the
thershold value 1 + α for the PFT data, example 3. Solid line is for α = 0.20, dotted for
α = 0.30, dashed for α = 0.40 and dash-dotted for α = 0.50.

The percentages of points outside the m-frontier for selected threshold values of α are

shown in Figure 8. It appears that, as expected, these percentages are very high. So the

idea here is to detect the most extreme points with small values for m and large values of

α: here we select m = 25 and α = 0.5 because we have several elbow effect at m = 25. The

chosen value for α = 0.50 will point out the 14% of the 70 units being the most extreme

(note that here
√
n/n ≈ 0.12).

This identifies the units #(5, 14, 32, 38, 44, 48, 58, 59, 62, 69). If we want to be more

conservative and we chose the elbow at m = 25 and α = 0.40, we identify, in addition the

units #(15, 17, 49, 52, 56, 68). But this makes a total of 16 units over the sample of 70:

this is too much in this small sample situation with a large dimensional space. Wilson’s

procedure identifies 3 groups of units as being potential outliers, #(44, 59), #(33, 35, 66,

67) and #(1, 50, 54). However these tables deserve some comments.

1. The 6 FDH non-efficient units #(4, 13, 31, 37, 53, 66) have indeed, as expected, their

input (or their output) order-m efficiency score which is less or equal to 1 (larger or

equal to 1) when m increases.

2. The most extreme points in both directions in the tables are indeed #(5, 14, 32, 38,
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unit θ̂
(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
m,n(xi, yi) θ̂

(i)
F DH,n

(xi, yi)

m = 10 m = 25 m = 50 m = 75 m = 100 m = 150

1 1.7583 1.7583 1.7583 1.7583 1.7583 1.7583 1.7583
2 2 2 2 2 2

4 1.1456 1.0433 0.9934 0.9700 0.9593 0.9535 0.9511
43 43 43 43 43 43

5 2.2787 1.8529 1.6910 1.6346 1.6195 1.5979 1.5793
64 64 64 64 64 64

13 1.0447 0.9953 0.9883 0.9869 0.9867 0.9866 0.9866
20 20 20 20 20 20

14 1.9479 1.7054 1.6320 1.6109 1.6028 1.6005 1.5975
59 59 59 59 59 59

15 4.0746 3.4319 3.0624 2.9230 2.8396 2.7613 2.7273
44 44 44 44 44 44

17 2.0115 1.6784 1.5802 1.5397 1.5169 1.5076 1.5000
43 43 43 43 43 43

31 1.1637 1.0159 0.9761 0.9550 0.9546 0.9485 0.9454
47 47 47 47 47 47

32 1.9226 1.5438 1.4214 1.3504 1.3130 1.2769 1.2500
69 69 69 69 69 69

33 1.5352 1.5352 1.5352 1.5352 1.5352 1.5352 1.5352
2 2 2 2 2 2

35 1.8333 1.8333 1.8333 1.8333 1.8333 1.8333 1.8333
2 2 2 2 2 2

37 1.3465 1.1259 1.0403 1.0145 1.0138 1.0010 1.0000
43 43 43 43 43 43

38 2.2771 2.0168 1.9424 1.9221 1.9013 1.8935 1.8817
60 60 60 60 60 60

44 3.5097 3.5097 3.5097 3.5097 3.5097 3.5097 3.5097
1 1 1 1 1 1

48 3.2183 2.3049 1.9179 1.7644 1.7606 1.7229 1.7044
60 60 60 60 60 60

49 2.6536 2.2963 2.2388 2.2243 2.2204 2.2173 2.2143
45 45 45 45 45 45

50 1.1668 1.1000 1.0938 1.0938 1.0938 1.0938 1.0938
9 9 9 9 9 9

52 1.5066 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000
5 5 5 5 5 5

53 1.4803 1.2371 1.1163 1.0582 1.0134 0.9924 0.9872
37 37 37 37 37 37

54 1.8891 1.8838 1.8838 1.8838 1.8838 1.8838 1.8838
2 2 2 2 2 2

56 3.8348 3.2193 2.7981 2.6725 2.6009 2.5475 2.5161
44 44 44 44 44 44

58 2.4656 2.1321 1.9937 1.9250 1.9019 1.9019 1.8908
33 33 33 33 33 33

59 Inf Inf Inf Inf Inf Inf Inf
0 0 0 0 0 0

62 3.0023 2.3935 2.2156 2.1181 2.0646 2.0188 1.9810
61 61 61 61 61 61

66 1.2216 1.1152 1.0338 1.0032 0.9895 0.9839 0.9761
36 36 36 36 36 36

67 1.2585 1.1967 1.1794 1.1723 1.1711 1.1706 1.1706
23 23 23 23 23 23

68 2.8354 2.4874 2.3596 2.3382 2.3321 2.3291 2.3291
18 18 18 18 18 18

69 2.9957 2.4762 2.2437 2.1621 2.1215 2.0904 2.0604
64 64 64 64 64 64

Table 5: Leave-One-Out order-m input efficiency measures for the PFT data (example 3).
For each unit, the first row is the efficiency score, the second row, the number of points in
X , with output level greater or equal to yi.
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unit λ̂
(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
m,n(xi, yi) λ̂

(i)
F DH,n

(xi, yi)

m = 10 m = 25 m = 50 m = 75 m = 100 m = 150

1 0.6318 0.7336 0.7697 0.7981 0.8085 0.8198 0.8284
54 54 54 54 54 54

4 0.9256 0.9871 1.0134 1.0164 1.0192 1.0198 1.0204
21 21 21 21 21 21

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

13 0.8864 0.9875 1.0153 1.0251 1.0308 1.0331 1.0339
35 35 35 35 35 35

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

15 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373 0.5373
2 2 2 2 2 2

17 0.5740 0.5745 0.5745 0.5745 0.5745 0.5745 0.5745
3 3 3 3 3 3

31 1.0680 1.1268 1.1413 1.1453 1.1453 1.1456 1.1456
17 17 17 17 17 17

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

33 0.6891 0.7307 0.7463 0.7486 0.7507 0.7519 0.7527
55 55 55 55 55 55

35 0.7256 0.7801 0.7946 0.8004 0.8034 0.8051 0.8060
37 37 37 37 37 37

37 0.9746 1.0661 1.0788 1.0797 1.0797 1.0797 1.0797
11 11 11 11 11 11

38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

44 0.4233 0.4533 0.4708 0.4765 0.4781 0.4822 0.4839
52 52 52 52 52 52

48 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

49 0.5656 0.5702 0.5702 0.5702 0.5702 0.5702 0.5702
4 4 4 4 4 4

50 0.6517 0.7054 0.7348 0.7473 0.7494 0.7525 0.7533
39 39 39 39 39 39

52 0.5212 0.5891 0.6275 0.6397 0.6443 0.6487 0.6487
28 28 28 28 28 28

53 0.8720 0.9968 1.0464 1.0658 1.0644 1.0672 1.0672
20 20 20 20 20 20

54 0.5926 0.6604 0.7052 0.7339 0.7379 0.7557 0.7609
52 52 52 52 52 52

56 0.5691 0.5691 0.5691 0.5691 0.5691 0.5691 0.5691
2 2 2 2 2 2

58 0.4370 0.4370 0.4370 0.4370 0.4370 0.4370 0.4370
2 2 2 2 2 2

59 0.3703 0.4238 0.4716 0.4919 0.4953 0.5176 0.5319
69 69 69 69 69 69

62 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

66 0.8874 0.9507 0.9827 0.9957 0.9963 1.0010 1.0021
27 27 27 27 27 27

67 0.7593 0.8553 0.9229 0.9362 0.9523 0.9523 0.9542
32 32 32 32 32 32

68 0.5383 0.5523 0.5545 0.5547 0.5547 0.5547 0.5547
12 12 12 12 12 12

69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0

Table 6: Leave-One-Out order-m output efficiency measures for the PFT data (example 3).
For each unit, the first row is the efficiency score, the second row, the number of points in
X , with input level smaller or equal to xi.
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44, 48, 58, 59, 62, 69), the points detected as potential outliers by our semi-automatic

procedure.

3. Of course, many other points would also be flagged by chosing α < 0.4, but we know

it is not reasonable in this illustration (too much points).

4. The points flagged by Wilson’s procedure are quite different, except for units #(44,

59) which are really extreme (highest input order-m scores with Ninput = 1 and 0

respectively). As pointed above the comparison is difficult because Wilson’s method

is based on influence function arguments and incorporate a convexity assumption. In

addition, Wilson’s method is not direction-specific, as is the method here (even if one

can look in several direction sequentially). So it is not a surprise that the list of

observations flagged by the two methods are different. But anyway, we can check how

our procedure warns these points:

(a) Units #(1, 33, 35, 54) : they are not so extreme in the output direction, although

20%-25% super efficient even for m = 150. But with these values of tuning

parameters, many other points (6) would also have been detected in the full

tables.

(b) Unit #50: it is not so extreme in the input direction, only 10% super efficient

even with m = 25.

(c) Unit #66 is not really extreme in either direction.

(d) Unit #67 is not so extreme in the output direction.

5. Note that in the input direction only one unit (#59) has no other unit having a larger

level of output and that in the output direction (here p = 3), 6 units have no other

units with smaller input (here q = 5).

As a conclusion, in this example, we show how our semi-automatic procedure allows to

points the most extreme outlying points, but of course, the sample size is too small regarding

the dimension to draw some definite conclusions. A closer analysis of the flagged units would

be useful to understand why they are outlying the cloud of data points.

It should also be noticed that different outlier detection methods never flag the same

observations always. The point is to use several methods. Here a new, easy-to-compute
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method is offered to augment those that already exist. Given that there are so few methods

suitable for productivity settings (as opposed, for instance, to the regression setting, where

there are many more methods), there is certainly room for another method, especially one

that does not involve large computational burdens.

6 Conclusions

The concept of order-m frontier, introduced by Cazals, Florens and Simar (2002) is a useful

concept of frontier which is easy to estimate, with nice statistical properties and certainly

robust to outliers or extreme data points. In this paper we describe in details and in a

comprehensive way all the steps for computing the order-m input and output efficiency

measures in the general multi-output, multi-input framework.

Then we have shown how this tool can be useful, in an exploratory data analysis phase

of any efficiency analysis of firms, with real data, in order to detect any potential outliers.

This method, should be used in a first step, before performing any frontier estimation.

This is true for DEA, FDH techniques, but also any parametric techniques using the deter-

ministic approach.
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Appendix

A MATLAB Code for Computing Order-m Efficiency measures.

The following code is written for MATLAB. It computes for a fixed point x0, y0 the input and

the output order-m efficiency measures. the formulae are given in Section 3 by expression

(3.6) and (3.10). The input arguments of the function are xk = x0, yk = y0, the data matrices

for the reference set: (X, Y ), the value of m and the value of B, to tune the precision of the

Monte-Carlo approximations: usually, B = 200 provide already sensible approximations.

The output arguments of the function are

effmk = [effmk(1), effmk(2)] =
[
θ̂m,n(x0, y0), λ̂m,n(x0, y0)

]

stdeffk = [stdeffk(1), stdeffk(2)] = [STDMC(effmk(1)), STDMC(effmk(2)]

All the statements starting with a % are comments lines: so we have less than 30 effective

statements in this code. The function “eff m” uses an other function “resample” which is

also provided below.

To give an idea on how the program is fast on a Pentium III, 450 Mghz, we provide

some computing times for some of the examples of Section 5. The computation of the order-

m efficiencies, for m = 10, 25, 50, 75, 100, 150, plus the computation of the FDH efficiency

scores (all the 7 efficiencies togheter, both input and output oriented), for all the n units, is

very fast. Table 7 shows how this computing time varies in function of n, and p + q. The

dimension of the problem has very weak impact on the computing time and the sample size

has only a linear effect. Clearly, the effect of the choice of B, the number of Monte-Carlo

replications in computing the order-m efficiencies is also linear (not provided in Table 7,

were B = 200).

sample size n p = 1 and q = 1 p = 2 and q = 2

100 82 97
500 392 514
1000 785 1014

Table 7: Computing time, in seconds, for producing the full tables of results for the n ob-
servations, for m = 10, 25, 50, 75, 100, 150 and the FDH efficiency scores. All scores in both
direction (input and output). The value of B is set to 200.

The full tables of results for the PFT example (n = 70 and (p, q) = (3, 5)) were obtained

in 80 seconds.
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%**************************************************************
function [effmk,stdeffk]=eff_m(xk,yk,X,Y,m,B)
%
% ===========================
% order-m efficiency measures
% ===========================
% written by L. SIMAR, july 8, 2001
%
% IN
% ------
% X : Matrix of input(s) (n x p)
% Y : Matrix of output(s) (n x q)
% xk,yk : coordinate of the reference point
% m : ORDER of the frontier
% B : number of Monte Carlo replication
%
% OUT
% ------
% effmk : efficiency vector of ORDER-m,
% vector (1 x 2)=(m-input, m-output)
% stdeffk: Monte-Carlo stand. dev. of estimates,
% vector (1 x 2)
%
% This function uses the function ’resample’
%
[n,p] = size(X);
[n,q] = size(Y);%
%
% define the sample where the m iid units will be drawn
%-------------------
% INPUT orientation
ykv=ones(n,1)*yk;
flagy=(Y>=ykv);
flagy=all(flagy,2);
%
XM=X(flagy,:);
[nxm,pxm]=size(XM);
if nxm==0

disp(’order-m input frontier not available, yk is too large’)
break

end
%--------------------
% OUTPUT orientation
xkv=ones(n,1)*xk;
flagx=(X<=xkv);
flagx=all(flagx,2);
%
YM=Y(flagx,:);
[nym,qym]=size(YM);
if nym==0

disp(’order-m frontier not available, xk is too small’)
break

end
%
% start Monte-Carlo loop
%
thetab=[];
for b=1:B

XMb=resample(XM,m);% ’resample’ is another matlab function
YMb=resample(YM,m);
xkv=ones(m,1)*xk;
ykv=ones(m,1)*yk;
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ratioxk=XMb./xkv;
ratioyk=YMb./ykv;
I_thetak=min(max(ratioxk,[],2),[],1);
O_thetak=max(min(ratioyk,[],2),[],1);
thetab=[thetab;[I_thetak O_thetak]];

end
% end of the Monte-Carlo loop
%
effmk=mean(thetab);
stdeffk=std(thetab)/sqrt(B);
%
%
if effmk(1)==Inf

stdeffk(1)=0;
end
% end of the function eff_m
%**************************************************************

%**************************************************************
function xb=resample(x,m)
%
% written by L. SIMAR, july 2001
%
% xb is a resample with replacement from a matrix x: (n x k)
% the entire ROW of x is drawn at each step
% m can be smaller, equal or larger than n
%
[n,k]=size(x);
sample=floor(n*rand(m,1)+1);
xb=x(sample,:);
%
% end of the function resample
%**************************************************************
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