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†ICTEAM institute, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
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Abstract—We study a special case of Willems’s two-user
multi-access channel with partially cooperating encoders from a
security perspective. This model differs from Willems’s setup in
the following aspects — only one encoder, Encoder 1, is allowed
to conference, Encoder 2 does not transmit any message, and
there is an additional passive eavesdropper from whom the com-
munication should be kept secret. For the discrete memoryless
(DM) case, we establish inner and outer bounds on the capacity-
equivocation region. The inner bound is established by a careful
combination of Willems’s coding scheme, noise injection scheme
and additional binning that provides randomization for security.
For the memoryless Gaussian model, we establish lower and
upper bounds on the secrecy capacity. We also studied some
extreme cases of cooperation between the encoders and showed
that, under certain conditions, these bounds coincide.

I. INTRODUCTION

Wyner, in his seminal paper [1], introduced a basic wiretap

model to study security from an information theoretic per-

spective. The wiretap model consists of three nodes, a source,

a legitimate receiver and an eavesdropper. In this model for

secure communication, two constraints need to be fulfilled

simultaneously — transmitted information should be received

reliably at the legitimate receiver and should be perfectly

secured from the eavesdropper. The Wiretap model has been

applied further to study the security of different multiuser

channels, for instance, multi-antenna wiretap channel [2]–

[4], multi-access wiretap channel [5], [6], relay-eavesdropper

channel [7], [8], parallel relay channel [9] and interference

channel [10], [11].

In this contribution, we study the problem of secure

communication over a multi-access channel (MAC) with par-

tially cooperating encoders. Willems studied the MAC with

partially cooperating encoders model in [12], where prior

to transmitting their respective messages, the two encoders

are allowed to cooperate with each other over noiseless bit-

pipes of finite-capacities. Willems characterizes the complete

capacity region of this model for the DM case. The capacity

region of the corresponding Gaussian version was character-

ized by Bross et. al in [13]. In both [12] and [13], among

other observations, it is shown in particular that holding a

conference prior to the transmission, enlarges the capacity

region relative to the standard MAC with independent inputs.

We study a special case of Willems setup with an ad-

ditional security constraint on the communication. More
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Fig. 1. Multi-access channel with partially cooperating encoders and
security constraints.

precisely, as depicted in Figure 1, we consider a two-user

multi-access channel in which the two users can partially

cooperate with each other via a unidirectional noiseless bit-

pipe of finite capacity C12. In addition to this, we restrict

the role of Encoder 2 to only helping Encoder 1, i.e.,

Encoder 2 has no message of its own to transmit. We also

assume that there is a passive eavesdropper who overhears

the transmission and from whom the communication from

Encoder 1 and Encoder 2 to the legitimate receiver should be

kept secret. The eavesdropper is passive in the sense that it is

not allowed to modify the transmitted information. The role

of Encoder 2 is then to only help Encoder 1 communicate

with the legitimate receiver while keeping the transmitted

information secret from the eavesdropper. Practically, this

model may be appropriate for example to the study of the role

of backbone connections among base stations for securing

transmission in cellular environments. In this work, we study

the capacity-equivocation region of this model.

The MAC model that we study in this paper has some con-

nections with a number of related works studied previously.

In contrast to the orthogonal relay-eavesdropper channel

studied in [14], the orthogonal link between the source and

the relay is here replaced by a noiseless bit-pipe of finite

capacity C12. In comparison to the wiretap channel with a

helper interferer (WT-HI) studied in [15], our model permits

cooperation among the encoders. Finally, compared with the

primitive relay channel of [16], our model imposes security
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constraints on the transmitted message.

For the DM case, we establish bounds on the capacity-

equivocation region. The coding scheme that we used to

construct an inner bound is based on an appropriate careful

combination of Willems coding scheme [12], noise injection

[7, Theorem 3] and binning for randomization. The converse

proof is established by extending the converse proof of [12]

by taking security constraint into account and that of [17] to

account for the unidirectional noiseless bit-pipe cooperation

among the encoders. In doing so, we note that one needs to

re-define the involved auxiliary random variables appropri-

ately. We note that characterizing the capacity-equivocation

region of our model in the general setting is non-trivial; and,

in fact, the capacity-equivocation region or secrecy-capacity

of closely related models that are reported in the literature,

such as [15], [18], [19], are still to be found — the model

of [15] can be seen as a special case of our model obtained

by taking a noiseless bit-pipe of zero capacity. From this

viewpoint, the inner and outer bounds that we develop here

can be seen as one step further towards a better understanding

of the full capacity-equivocation region of the model that we

study in this paper.

We also study the Gaussian memoryless model of the

MAC model shown in Figure 1. For this setup, we only

focus on the perfect secure transmission. For this model, we

establish lower and upper bounds on the secrecy capacity.

The coding scheme that we use to establish the lower bound

uses ideas that are essentially similar to those for the DM

case. The upper bound on the secrecy capacity does not

involve auxiliary random variables and, so, is computable.

Furthermore, it has the same expression as the secrecy

capacity of the Gaussian wiretap channel with a two-antenna

transmitter, single-antenna legitimate receiver and single-

antenna eavesdropper [2]–[4].

We also show the optimality of our lower bound for some

extreme cases of cooperation among the encoders, including

when the two encoders fully cooperate, i.e., C12 := ∞. For

the case in which the two encoders do not conference, i.e.,

C12 := 0, the studied model reduces to a wiretap channel

with a helper interferer [15], [18]. In this case, our coding

scheme reduces to merely injecting statistically independent

noise [7, Theorem 3]; and, by comparing it to the upper

bound that we develop, we show that it is optimal under

certain conditions. For the case of full cooperation among

the encoders, i.e., C12 := ∞, our coding scheme reduces

to full two-antenna cooperation for providing secrecy in the

context of multiantenna wiretap channels [2]–[4].

II. CHANNEL MODEL AND DEFINITIONS

Figure 1 shows the channel model. Let W denote the

message to be transmitted, taken uniformly from the set

W = {1, . . . , 2nR}. Encoder 1 is allowed to conference the

message W to Encoder 2 using K communicating functions

{φ11, φ12, . . . , φ1K}, over the noiseless bit-pipe. Let G1k :=
φ1k(W ), defined as the output of the communication process

for the k-th communication, where G1k ranges over the finite

alphabet G1k, k = 1, . . . ,K. The information conferenced is

bounded due to the finiteness of noiseless bit-pipe capacity

between the two encoders. A conference is permissible if

communication functions are such that

K
∑

k=1

log |G1k| ≤ nC12. (1)

To transmit the message W , Encoder 1 sends a codeword

Xn
1 ∈ Xn

1 , where X1 designates the input alphabet at

Encoder 1. Encoder 2 transmits a codeword Xn
2 ∈ Xn

2 where

X2 designates the input alphabet at Encoder 2. Let Y and

Z designate the output alphabets at the legitimate receiver

and eavesdropper, respectively. The legitimate receiver gets

the channel output Y n ∈ Yn, and tries to estimate the

transmitted message from it. The eavesdropper overhears the

channel output Zn ∈ Zn. The transmission over the channel

is characterized by the memoryless conditional probability

p(y, z|x1, x2). The channel is memoryless in the sense that

p(yn, zn|xn1 , x
n
2 ) =

n
∏

i=1

p(yi, zi|x1,i, x2,i). (2)

A (2nR, n) code for the multi-access model with partially

cooperating encoders shown in Figure 1 consists of encoding

functions1

φ1 : W −→ Xn
1 ,

φ1k : W −→ G1k, k = 1, ...,K,

φ2 : {1, . . . , 2nC12} −→ Xn
2 , (3)

and a decoding function ψ(·) at the legitimate receiver

ψ : Yn −→ W. (4)

The average error probability for the (2nR, n) code is defined

as

Pne =
1

2nR

∑

W∈W
Pr{Ŵ 6=W |W}. (5)

The eavesdropper overhears to what the encoders transmit

and tries to guess the information from it. The equivocation

rate per channel use is defined as Re = H(W |Zn)/n. A

rate-equivocation pair (R,Re) is said to be achievable if for

any ǫ > 0 there exists a sequence of codes (2nR, n) such

that for any n ≥ n(ǫ)

H(W )

n
≥ R− ǫ,

H(W |Zn)

n
≥ Re − ǫ,

Pne ≤ ǫ. (6)

The secrecy capacity is defined as the maximum achievable

rate at which the communication rate is equal to the equiv-

ocation rate, i.e., (R,Re) = (R,R).

1The source encoder, φ1, is a stochastic encoder that introduces additional
randomization to increase secrecy.
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III. DISCRETE MEMORYLESS CASE

In this section we consider the MAC shown in Figure 1

and establish bounds on the capacity-equivocation region.

A. Outer Bound

The following theorem provides an outer bound on the

capacity-equivocation region of the MAC with partially coop-

erating encoders and security constraints shown in Figure 1.

Theorem 1: For the MAC with partially cooperating en-

coders and security constraints shown in Figure 1, and for any

achievable rate-equivocation pair (R,Re), there exist some

random variables U ↔ (V1, V2) ↔ (X1, X2) ↔ (Y,Z), such

that (R,Re) satisfies

R ≤ min{I(V1, V2;Y ), I(V1;Y |V2) + C12}

Re ≤ R

Re ≤ min{I(V1, V2;Y |U)− I(V1, V2;Z|U),

I(V1;Y |V2, U) + C12 − I(V1, V2;Z|U)}. (7)

Proof: The proof of Theorem 1 is provided in [20,

Appendix I].

B. Inner Bound

Next, we establish an inner bound on the capacity-

equivocation region of the MAC shown in Figure 1.

Theorem 2: For the MAC with partially cooperating en-

coders and security constraints shown in Figure 1, the rate

pairs in the closure of the convex hull of all (R,Re) satisfying

R ≤ min{I(V1, V2;Y |U), I(V1;Y |V2, V, U) + C12}

Re ≤ R

Re ≤ [min{I(V2;Y |V,U), I(V2;Z|V1, V, U)}

+min{I(V1, V2;Y |U), I(V1;Y |V2, V, U) + C12}

− I(V1, V2;Z|U)]+ (8)

for some measure p(u, v, v1, v2, x1, x2, y, z) =
p(u)p(v|u)p(v1|v, u)p(v2|v, u)p(x1|v1)p(x2|v2)p(y, z|x1, x2),
are achievable.

Outline of Proof:

We briefly outline the coding scheme that we use to prove the

achievability of the inner bound of Theorem 2. The details of

the proof is provided in [20, Appendix II]. The inner bound

of Theorem 2 is based on a coding scheme that consists in

appropriate careful combination of Willems’s coding scheme

[12], noise injection [7, Theorem 3] and binning for random-

ization to provide security. Let W denote the message to be

transmitted. Using the noiseless bit-pipe of finite capacity,

Encoder 1 conferences a part of the information message W
to Encoder 2. After completion of the conferencing process,

this part can be regarded as a common information to be

transmitted by both encoders. The random variable V in

Theorem 2 represents this common information. The part of

the information message that is sent only by Encoder 1 can

be regarded as an individual message. The random variable

V1 in Theorem 2 represents this individual information. The

input of Encoder 2 is composed of the common information,

which it has received through noiseless finite capacity link

from Encoder 1, and a statistically independent artificial noise

component. The random variable V2 in Theorem 2 represents

the input from Encoder 2. The transmission of both common

information and artificial noise components at Encoder 2 in

Theorem 2 is adjusted by appropriate selection of random

variable V . Additional random binning is employed to secure

both individual and common information from the passive

eavesdropper [1]. Finally, the random variable U in Theorem

2 stands for a channel prefix.

IV. MEMORYLESS GAUSSIAN MODEL

Now, we study the Gaussian version of the MAC channel

shown in Figure 1.

A. Channel Model

For the Gaussian model, the outputs of the MAC at the

legitimate receiver and eavesdropper for each symbol time

are given by

Y = h1dX1 + h2dX2 +N1

Z = h1eX1 + h2eX2 +N2 (9)

where h1d, h2d, h1e, and h2e are the channel gain coefficients

associated with Encoder 1-to-destination (1-D), Encoder 2-

to-destination (2-D), Encoder 1-to-eavesdropper (1-E), and

Encoder 2-to-eavesdropper (2-E) links respectively. The noise

processes {N1,i} and {N2,i} are independent and identically

distributed (i.i.d) with the components being zero mean Gaus-

sian random variables with variances σ2
1 and σ2

2 , respectively;

and X1,i and X2,i are the channel inputs from Encoder 1 and

Encoder 2 respectively. The channel inputs are bounded by

average block power constraints

n
∑

i=1

E[X2
1,i] ≤ nP1,

n
∑

i=1

E[X2
2,i] ≤ nP2. (10)

B. Upper Bound on the Secrecy Capacity

In this section, we establish an upper bound on the secrecy

capacity on Gaussian MAC (9). We establish a computable

upper bound using the techniques developed earlier to estab-

lish the secrecy capacity of a multiple-input multiple-output

(MIMO) wiretap channel [2]–[4] — taking a setup with two

antennas at the transmitter, one antenna at the legitimate

receiver and one antenna at the eavesdropper in our case.

Corollary 1: For the Gaussian MAC with partially coop-

erating encoders and security constraints (9), an upper bound

on the secrecy capacity is given by

Rup
e = max

ψ
[I(X1, X2;Y )− I(X1, X2;Z)] (11)
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where [X1, X2] ∼ N (0,KP) with KP =
{

KP : KP=
[

P1 ψ
√
P1P2

ψ
√
P1P2 P2

]

, −1 ≤ ψ ≤ 1
}

, with E[X2
1 ], E[X2

2 ]

satisfying (10).

C. Lower Bound on the Secrecy Capacity

For the Gaussian MAC with partially cooperating encoders

and security constraints (9), we obtain a lower bound on

the secrecy capacity by using our result for the DM model

in Theorem 2. The results established for the DM case can

be readily extended to memoryless channels with discrete

time and continuous alphabets using standard techniques [21,

Chapter 7].

Corollary 2: For the Gaussian MAC with partially coop-

erating encoders and security constraints (9), a lower bound

on the secrecy capacity is given by

R
low
e = max

0≤α≤1,
0≤β≤1

[

min

{

C

(

β|h2d|
2P2

σ2
1 + α|h1d|2P1

)

, C

(

β|h2e|
2P2

σ2
2

)}

+min

{

C

(

α|h1d|
2P1

σ2
1

)

+ C12,

C

(

|h1d|
2P1 + |h2d|

2P2 + 2
√

ᾱβ̄|h1d|2P1|h2d|2P2

σ1
2

)}

− C

(

|h1e|
2P1 + |h2e|

2P2 + 2
√

ᾱβ̄|h1e|2P1|h2e|2P2

σ2
2

)]+

.

(12)

Proof: The achievability follows by computing the in-

ner bound in Theorem 2 with the choice U := constant,

V1 := X1 and V2 := X2, X1 :=
√

(αP1)X̃1 +
√

(ᾱP1)V ,

X2 :=
√

(βP2)X̃2 +
√

(β̄P2)V , where X̃1, X̃2 and V be

independent random variables with N (0, 1), and α ∈ [0, 1],
ᾱ := 1 − α, β ∈ [0, 1], and β̄ := 1 − β. Straightforward

algebra that is omitted for brevity gives (12).

D. Analysis of Some Extreme Cases

In this section we consider two special cases of the

Gaussian MAC (9) with partially cooperating encoders shown

in Figure 1, where the capacity of the bit-pipe is either,

1) C12 = 0, or

2) C12 = ∞.

The Case 1 corresponds to the wiretap channel with a

helping interferer (WT-HI) studied in [15], [18]. The Case

2 corresponds to a two-antenna transmitter wiretap channel

[4], [22].

1) Case C12 := 0: In this case the encoders do not cooper-

ate. Since Encoder 2 does not know the common information

to transmit, it only injects statistically independent artificial

noise.

Corollary 3: For the Gaussian model (9) with C12 := 0:

1) An upper bound on the secrecy capacity is given by

Rup
e = max

E[X2

1
]≤P1,

E[X2

2
]≤P2

[

C
( |h1d|

2
E[X2

1 ]

σ2
1

)

− C
( |h1e|

2
E[X2

1 ]

σ2
2 + |h2e|2E[X2

2 ]

)

]+

. (13)

2) A lower bound on the secrecy capacity is given by

Rlow
e = max

[

C
( |h1d|

2
E[X2

1 ]

σ2
1

)

− C
( |h1e|

2
E[X2

1 ]

σ2
2 + |h2e|2E[X2

2 ]

)

]+

(14)

where the maximization is over E[X2
1 ] ≤ P1 and

E[X2
2 ] ≤ P2 such that

C
( |h2d|2E[X2

2 ]

|h1d|2E[X2
1 ] + σ2

1

)

≥ C
( |h2e|2E[X2

2 ]

σ2
2

)

. (15)

Proof:

Upper Bound. We bound the term in (13) as follows. The

proof follows by using elements from an upper bounding

technique developed in [14]. We assume that there is a

noiseless link between Encoder 2 and the legitimate receiver,

and the eavesdropper is constrained to treat Encoder 2’s

signal as unknown noise. The upper bound established for

this alternate model, with full cooperation between Encoder

2 and the legitimate receiver and a constrained eavesdropper,

also applies to the model of Corollary 3. The details of the

proof is provided in [20].

Lower Bound. The proof of the lower bound follows

by evaluating the equivocation rate in Theorem 2 with a

specific choice of the variables. More specifically, evaluating

Theorem 2 with the choice C12 := 0, U = V = φ,

V1 := X1 and V2 := X2, with X1 ∼ N (0, P1) independent

of X2 ∼ N (0, P2), and such that (15) is satisfied, we obtain

the rate expression in (14). The RHS of (14) then follows

by maximization over E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2 and

satisfying (15).

Remark 1: The bounds on the secrecy capacity in (13)

and (14) have identical expressions but the maximization is

over different sets of inputs. The bounds coincide in the case

in which the inputs (E[X2
1 ],E[X

2
2 ]) that maximize the RHS

of (13) also satisfy the condition (15). In this case, the perfect

secrecy of the studied model is given by

Cs = max

[

C
( |h1d|

2
E[X2

1 ]

σ2
1

)

− C
( |h1e|

2
E[X2

1 ]

σ2
2 + |h2e|2E[X2

2 ]

)

]+

(16)

where the maximization is over E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2

satisfying

C
( |h2d|

2
E[X2

2 ]

|h1d|2E[X2
1 ] + σ2

1

)

≥ C
( |h2e|

2
E[X2

2 ]

σ2
2

)

. (17)
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Fig. 2. Bounds on the secrecy capacity.

2) Case C12 := ∞: In this case the model (9) reduces to

a wiretap channel in which the transmitter equipped with

two antenna and the legitimate receiver and eavesdropper

equipped with single antennas. As it will be shown below, in

this case the upper bound of Corollary 1 and the lower bound

of Corollary 2 coincide, thus providing a characterization of

the secrecy capacity, which can also be obtained from [3],

[4] in this specific case.

Corollary 4: For the Gaussian model (9) with fully co-

operating encoders, the secrecy capacity is given by

Cs = max
ψ

[I(X1, X2;Y )− I(X1, X2;Z)] (18)

where [X1, X2] ∼ N (0,KP) with KP =
{

KP : KP=
[

P1 ψ
√
P1P2

ψ
√
P1P2 P2

]

, −1 ≤ ψ ≤ 1
}

, with E[X2
1 ] and E[X2

2 ]

satisfying (10).

Proof: The upper bound follows by Corollary 1. The

proof of the lower bound follows by evaluating the equiv-

ocation rate in Theorem 2 with a specific choice of the

random variables. More specifically, the rate expression (18)

is obtained by setting C12 := ∞, U := constant, V1 := X1,

V = V2 = X2, in Theorem 2 where [X1, X2] ∼ N (0,KP)

with KP =
{

KP : KP=
[

P1 ψ
√
P1P2

ψ
√
P1P2 P2

]

, −1 ≤ ψ ≤ 1
}

and E[X2
1 ] and E[X2

2 ] satisfying (10).

With straightforward algebra, it can be checked that this

corresponds also to the special case C12 = ∞ in Corollary 2.

V. NUMERICAL RESULTS

We consider the Gaussian MAC (9) in which the outputs

at the legitimate receiver and eavesdropper are corrupted by

additive white Gaussian noise (AWGN) of zero mean and

unit variance each. We model channel gains between node

i ∈ {1, 2} and j ∈ {d, e} as distance dependent path loss,

hi,j = d
−γ/2
i,j , where γ is the path loss exponent. We assume

that both users have an average power constraint of 1 watt

each and the path loss exponent γ:=2. We consider a network

geometry in which Encoder 1 is located at the point (0,0),

Encoder 2 is located at the point (d,0), the legitimate receiver

is located at the point (1,0) and the eavesdropper is located at

the point (1.5,0), where d is the distance between Encoders

1 and 2. The upper (11) and the lower (12) bounds are

optimized numerically for Gaussian inputs. Figure 2 shows

the upper and lower bounds on the secrecy capacity for

different values of finite capacity link. As a reference we

consider the case in which there is no helping Encoder, i.e., a

basic wiretap channel. If we set C12 := 0, Encoder 1 does not

conference to Encoder 2, for this setup the MAC (9) reduces

to the classic WT-HI [15], [18]. In this case Encoder 2 can

help Encoder 1 by injecting confusion codewords to confuse

the eavesdropper [7, Theorem 3]. If we increase the capacity

of noiseless bit-pipe, the achievable secrecy rate increases,

this follows because Encoder 2 is more informed about the

information message from Encoder 1 and can cooperate with

each other. For instance, if we consider a very large value of

noiseless bit-pipe capacity, the upper and lower bounds will

eventually coincide. This is due to the fact that a large value

of C12 results in full cooperation between the encoders, due

to which the channel reduces to a two-antenna transmitter

wiretap channel for which secrecy capacity is established

(Corollary 4).

VI. CONCLUSION

In this contribution, we studied a special case of Willems’s

multi-access channel with partially cooperating encoders [12]

from security perspective. We established outer and inner

bounds on the capacity-equivocation region, for the DM case.

The inner bound is established by an appropriate careful

combination of Willems’s coding scheme, noise injection

[7, Theorem 3] and additional random binning for security.

The converse proof is obtained by using the techniques

developed earlier in the context of broadcast channels with

confidential messages and Willems’s MAC to the considered

setup. We note that the outer and inner bounds which we

have established do not agree in general, but can be seen as

a step ahead towards characterizing the capacity-equivocation

region. For the Gaussian setup, we establish lower and upper

bounds on the secrecy capacity. We also study some extreme

cases of cooperation between the encoders. For the setup

in which the encoders do not cooperate, we show that under

certain conditions, our lower and upper bounds agree. For the

case of full cooperation between the encoders, the studied

setup reduces to a multi-antenna wiretap channel and the

developed bounds coincide.
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