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∗∗Institut de Statistique and CORE, Université Catholique de Louvain, Voie du Roman Pays 34,
Louvain-la-Neuve, Belgium. Research support from the contract “Projet d’Actions de Recherche Con-
certées” (PARC No. 93/98–164) of the Belgian Government is gratefully acknowledged.

∗∗∗Department of Economics, University of Texas, Austin, Texas 78712, USA. Research support from
the Management Science Group, US Department of Veterans Affairs, is gratefully acknowledged.



     

1. INTRODUCTION

Färe et al. (1992) merge ideas on measurement of efficiency from Farrell (1957) and on

measurement of productivity from Caves et al. (1982) to develop a Malmquist index of

productivity change. Caves et al. define their input-based Malmquist productivity index

as the ratio of two input distance functions, while assuming no technical inefficiency in the

sense of Farrell. Färe et al. extend the Caves et al. approach by dropping the assumption

of no technical inefficiency and devoloping a Malmquist index of productivity that can be

decomposed into indices describing changes in technology and efficiency. We extend the

Färe et al. approach by giving a statistical interpretation to their Malmquist productivity

index and its components, and by presenting a bootstrap algorithm which may be used

to estimate confidence intervals for the indices. This work will allow researchers to speak

in terms of whether changes in productivity, efficiency, or technology are significant in a

statistical sense.

The input-based Malmquist index of productivity developed by Färe et al. measures

productivity change between time t1 and t2. This index, as well as its component indices

describing changes in technology and efficiency, consists of ratios of input distance func-

tions (a more rigorous description appears in the next section). However, Färe et al. do not

distinguish between the underlying true distance functions and their estimates. For exam-

ple, as a prelude to their equation (4) (page 88), they state that “the value of the distance

function ... is obtained as the solution to the linear programming problem ....” Färe et

al. are not alone in this regard; indeed, the literature on nonparametric efficiency measure-

ment is filled with such statements. Lovell (1993) and others have labelled nonparametric,

linear-programming based approaches to efficiency measurement as deterministic, which

seems to suggest that these approaches have no statistical underpinnings. Yet, if one

views production data as having been generated from a distribution with bounded support

over the true production set, then efficiency, and changes in productivity, technology, and

efficiency, are always measured relative to estimates of underlying, true frontiers, condi-
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tional on observed data resulting from the underlying (and unobserved) data-generating

process. Consequently, the estimates researchers are interested in involve uncertainty due

to sampling variation.

Simar and Wilson (1996) develop a bootstrap procedure which may be used to esti-

mate confidence intervals for distance functions used to measure technical efficiency, and

demonstrate that the key to statistically consistent estimation of these confidence intervals

lies in the replication of the unobserved data-generating process. This paper extends those

ideas to the case of Malmquist indices constructed from nonparametric distance function

estimates using data from different time periods.

In the next section, we define the input-based Malmquist productivity index and the

distance functions from which it is constructed, and describe how the productivity index

can be decomposed into indices of efficiency change and technical shift. While we focus

on input-based indices, one may trivially extend our results to output-based measures by

merely modifying our notation. In section three, we examine how the Malmquist index

and its component indices may be estimated nonparametrically using linear programming

techniques. The bootstrap procedure is presented in section four. In section five, we

illustrate the bootstrap estimation using a panel of data on Swedish pharmacies previously

examined by Färe et al. Conclusions are given in the final section.

2. THE MALMQUIST INDEX AND ITS DECOMPOSITION

To begin, consider firms which produce m outputs from n inputs. Let x ∈ Rn
+ and

y ∈ Rm
+ denote input and output vectors, respectively. The production possibilities set at

time t is given by the closed set

Pt = {(x,y) | x can produce y at time t} . (2.1)

The boundary of this set is given by the intersection of Pt and the closure of its compliment,

and may be represented as

Bt =
{
(x,y) | (x,y) ∈ Pt, (λx,y) "∈ Pt ∀ 0 < λ< 1, (x, τy) "∈ Pt ∀ τ > 1

}
. (2.2)
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The set Bt represents the technology faced by firms at time t, and is sometimes called the

production frontier.

The set Pt may be described in terms of its section

Xt(y) =
{
x ∈ Rn

+ | (x,y) ∈ Pt
}
, (2.3)

which is the input requirement set. Shephard (1970) discusses assumptions one may rea-

sonably make regarding Xt(x) (and hence Pt and Bt); typical assumptions, which we

adopt, are (i) Xt(y) is convex for all y, t; (ii) all production requires use of some inputs,

i.e., 0 "∈ Xt(y) if y ≥ 0,y "= 0; and (iii) both inputs and outputs are strongly disposable,

i.e., x̃ ≥ x ∈ Xt(y) ⇒ x̃ ∈ Xt(y) and ỹ ≥ y ⇒ Xt(ỹ) ⊆ Xt(y).

Let subscripts i, t, i = 1, . . . , N, t = 1, 2 denote observations on a particular firm i at

time t. The Shephard (1970) input distance function for firm i at time t, relative to the

technology existing at time t, is defined as

Dt|t
i ≡ sup

{
θ > 0 | xit/θ ∈ Xt(yit)

}
. (2.4)

Clearly, Dt|t
i ≥ 1 iff xit ∈ Xt(yit); therefore, Dt|t

i ≥ 1. The distance function Dt|t
i gives a

normalized measure of distance from the ith firm’s position in the input/output space at

time t to the boundary of the production set at time t in the hyperplane where outputs

remain constant. For distance measured relative to the contemporaneous technology as in

(2.4), the distance function provides a measure of input technical efficiency at time t. The

distance function Dt|t
i measures the maximum feasible proportionate reduction at time t of

the ith firm’s inputs, holding output constant, subject to the technology at time t defined

by (2.2). Firms where Dt|t
i > 1 are regarded as inefficient in a technical sense, while those

where Dt|t
i = 1 are regarded as technically efficient.

Input distance functions may also be defined to measure normalized distance between

a firm’s position in the input/output space at time t1 and some future technology at time

t2 by writing

Dt1|t2
i ≡ sup

{
θ > 0 | xit1/θ ∈ Xt2(yit1)

}
. (2.5)
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Alternatively, we may define Dt2|t1
i by reversing the t1, t2 superscripts in (2.5); Dt2|t1

i

would measure normalized distance between a firm’s position in the input/output space

at time t2 and a past technology at time t1.

Following Caves et al. (1982), input-based Malmquist indexes measuring productivity

change from time t1 to time t2 (relative to the technology at time t1) may be defined as

Mi(t1, t2|t1) ≡
Dt2|t1

i

Dt1|t1
i

(2.6)

and (relative to the technology at time t2) as

Mi(t1, t2|t2) ≡
Dt2|t2

i

Dt1|t2
i

. (2.7)

The Malmquist indices of Caves et al. (1982) can be defined so that one may compare

two firms at a point in time or one firm over two periods; here, we compare one firm over

two periods. In addition, Caves et al. assume Dt1|t1
i = Dt2|t2

i = 1; i.e., they assume no

technical inefficiency, which we allow.

The productivity index proposed by Färe et al. (1992) can be obtained by combining

(2.6)–(2.7) by taking the geometric mean, yielding

Mi(t1, t2) =

(
Dt2|t1

i

Dt1|t1
i

× Dt2|t2
i

Dt1|t2
i

)(1/2)

. (2.8)

Values Mi(t1, t2) < 1 indicate improvements in productivity between t1 and t2, while

values Mi(t1, t2) > 1 indicate decreases in productivity from time t1 to t2 (Mi(t1, t2) = 1

would indicate no change in productivity). Färe et al. then decompose this index into

indices of efficiency and technology change by rewriting (2.8) as

Mi(t1, t2) =
Dt2|t2

i

Dt1|t1
i

×
(
Dt2|t1

i

Dt2|t2
i

× Dt1|t1
i

Dt1|t2
i

)(1/2)

. (2.9)

The ratio Dt2|t2
i /Dt1|t1

i in (2.9) measures the change in input technical efficiency between

periods t1 and t2; hence we can define an input-based index of efficiency change as

Ei(t1, t2) ≡
Dt2|t2

i

Dt1|t1
i

. (2.10)
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Values of Ei(t1, t2) less than (greater than) unity indicate improvements (decreases) in

efficiency between t1 and t2.

The first ratio inside the parentheses in (2.9),

Ti(t1, t2|t2) ≡
Dt2|t1

i

Dt2|t2
i

, (2.11)

measures the position of the ith firm in input-output space at time t2 relative to technolo-

gies at times t1 and t2. Thus, this ratio gives a measure of the shift in technology relative

to the position of the ith firm at time t2; Similarly, the second ratio inside the parentheses

in (2.9),

Ti(t1, t2|t1) ≡
Dt1|t1

i

Dt1|t2
i

, (2.12)

measures the position of the ith firm in input-output space at time t1 relative to tech-

nologies at times t1 and t2, and thus gives a measure of the shift in technology relative to

the position of the ith firm at time t1.1 Hence, we can define an input-based measure of

technical change as

Ti(t1, t2) =

(
Dt2|t1

i

Dt2|t2
i

× Dt1|t1
i

Dt1|t2
i

)(1/2)

, (2.13)

which gives the geometric mean of two measures of the shift in technology from t1 to t2 in

(2.11)–(2.12). As with Mi(t1, t2) and Ei(t1, t2), values of Ti(t1, t2) less than (greater than)

unity indicate technical progress (regress) between times t1 and t2.2

3. ESTIMATING MALMQUIST INDICES

Unfortunately, the production set Pt is typically unobserved; similarly, Bt and Xt(x) are

also unobserved, as are the values of the distance functions which appear in the Malmquist

index in (2.9) and its components in (2.10) and (2.13). Similarly, the Malmquist index

1The measure Ti(t1, t2|t1) is analgous to the measure of technical change used by Elyasiani and Mehdian
(1990).

2Note that output distance functions can be defined similar to the input distance functions in (2.4)–
(2.5). Hence output-based measures of productivity, efficiency, and technical change can be constructed
by merely replacing the input distance functions in (2.9)–(2.13) with the corresponding output distance
functions.
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given in (2.9) and its components in (2.10) and (2.13) represent true values which must

be estimated. Substituting estimators for the correpsonding true distance function val-

ues in (2.9)–(2.10) and (2.13) yields estimators M̂i(t1, t2), Êi(t1, t2), and T̂i(t1, t2) of the

productivity, efficiency, and technology change indices, respectively.

Estimation of the input distance functions in (2.4)–(2.5) requires estimation of Pt and

Xt(y). Given a sample S = {(xit,yit) | i = 1, . . . , N ; t = 1, 2} of observations on N firms

in 2 periods, there are several ways in which Pt may be estimated. A common approach

is to estimate Pt by the convex hull of the sample observations, which allows for the

possibility of variable returns to scale:

P̂t =
{

(x,y) ∈ Rm+n | y ≤ Y tq, x ≥ Xtq,
⇀
1qi = 1, q ∈ RN

+

}
, (3.1)

where Y t = [y1t . . .yNt], Xt = [x1t . . .xNt], with xit and yit denoting (n×1) and (m×1)

vectors of observed inputs and outputs, respectively, and where ⇀
1 is a (1 ×N) vector of

ones and q is a (N × 1) vector of intensity variables.

As with Pt, the set P̂t may be described in terms of its section, namely

X̂t(y) =
{
x ∈ Rn | y ≤ Y tq, x ≥ Xtq,

⇀
1qi = 1, q ∈ RN

+

}
(3.2)

which provides an estimator of Xt(y) in (2.3). Using X̂t(y), estimators of Dt|t
i and Dt1|t2

i

may be constructed by defining (respectively)

D̂t|t
i ≡ sup

{
λ > 0 | xit/λ ∈ X̂t(yit)

}
(3.3)

and

D̂t1|t2
i ≡ sup

{
λ > 0 | xit1/λ ∈ X̂t2(yit1)

}
. (3.4)

These may be computed by solving (respectively) the linear programs

(
D̂t|t

i

)−1
= max

{
λ | yit ≤ Y tqi, λxit ≥ Xtqi,

⇀
1qi = 1, qi ∈ RN

+

}
(3.5)
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and

(
D̂t1|t2

i

)−1
= max

{
λ | yit1 ≤ Y t2qi, λxit1 ≥ Xt2qi,

⇀
1qi = 1, qi ∈ RN

+

}
. (3.6)

Estimates D̂t2|t1
i can be computed by solving the linear program obtained by reversing the

t1 and t2 super- and subscripts in (3.6).

Alternatively, the production set Pt can be estimated by the conical hull of the sample

observations:

P̃t =
{

(x,y) ∈ Rm+n | y ≤ Y tq, x ≥ Xtq, q ∈ RN
+

}
. (3.7)

As before, the set P̃t can be described in terms of its section

X̃t(y) =
{
x ∈ Rn | y ≤ Y tq, x ≥ Xtq, q ∈ RN

+

}
, (3.8)

which provides another estimator of Xt(y) in (2.3). Replacing Xt(y) in (2.4)–(2.5) with

X̃t(y) leads to the linear programs

(
D̃t|t

i

)−1
= max

{
λ | yit ≤ Y tqi, λxit ≥ Xtqi, qi ∈ RN

+

}
(3.9)

and
(
D̃t1|t2

i

)−1
= max

{
λ | yit1 ≤ Y t2qi, λxit1 ≥ Xt2qi, qi ∈ RN

+

}
. (3.10)

The distance function estimators in (3.9)–(3.10) based on the conical hull can be substi-

tuted into (2.9)–(2.10) and (2.13) to yeild estimators M̃i(t1, t2), Ẽi(t1, t2), and T̃i(t1, t2) of

the productivity, efficiency, and technology change indices, respectively.

Other estimators are also possible; for instance, one could use the free disposal hull

of the sample observations suggested by Deprins et al. (1984). Use of the conical hull in

(3.7) implicitly assumes that the technology Bt exhibits constant returns to scale. Färe et

al. (1992) as well as most others who have used Malmquist indices have assumed constant

returns to scale, perhaps because allowing for variable returns by using the convex hull

estimator does not guarantee solutions to (3.6) for all observations.
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If the underlying true technology has constant returns to scale, then both P̂t and P̃t will

converge to Pt as N → ∞. However, if the true technology has variable returns to scale,

then P̂t will converge to Pt as N → ∞, but P̃t will not. Hence P̃t and the distance function

estimators in (3.9)–(3.10) are inconsistent in a statistical sense when the true technology

has variable returns to scale. Therefore, using distance function estimators based on the

convex hull of the data may be a safer approach. In the empirical examples which appear

below, we present results using both estimators.3

4. BOOTSTRAPPING THE MALMQUIST INDICES

The methodology for bootstrapping distance function estimators such as (3.3) pre-

sented in Simar and Wilson (1996) are easily adapted to the present case, except here

the possible time-dependence structure of the data must be taken into account. As

in our earlier work, we assume a data-generating process where firms randomly devi-

ate from the underlying true frontier in a radial input direction. These random devi-

ations are further assumed to result from inefficiency, and have density f . Bootstrap-

ping involves replicating this data-generating process, generating an appropriately large

number B of pseudo samples S∗ = {(x∗
it,y

∗
it) | i = 1, . . . , N ; t = 1, 2}, and applying the

original estimators to these pseudo samples. For example, if the distance function es-

timators based on the convex hull are used, this last step will yield bootstrap esti-

mates
{
D̂t1|t1∗

i (b), D̂t2|t2∗
i (b), D̂t1|t2∗

i (b), D̂t2|t1∗
i (b)

}B

b=1
for each i = 1, . . . , N . These es-

timates can then be used to construct bootstrap estimates M̂∗
i (t1, t2)(b), Ê∗

i (t1, t2)(b),

and T̂ ∗
i (t1, t2)(b) (where i = 1, . . . , N and b = 1, . . . , B) corresponding to (2.9)–(2.10)

and (2.13), respectively, by replacing the true distance function values in (2.9)–(2.10) and

(2.13) with their corresponding bootstrap estimates.

Once these bootstrap values have been computed, bias-corrected confidence intervals at

3In effect, each of the distance function estimators is computed by measuring the normalized radial
distance from an observed point in the input/output space to the boundary of an estimate the production

set. Korostelev et al. (1995) give the rate of convergence of bPt to Pt for some special cases.
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the desired level of significance can be constructed using the methods described in Simar

and Wilson (1996). To illustrate this methodology, consider the set of bootstrap estimates

for the malmquist index for firm i:
{
M̂∗

i (t1, t2)(b)
}B

b=1
. The bootstrap bias estimate for

the original estimator M̂i(t1, t2) is

Est. Bias[M̂i(t1, t2)] = B−1
b∑

b=1

M̂∗
i (t1, t2)(b) − M̂i(t1, t2), (4.1)

which is the empirical bootstrap analog of E[M̂i(t1, t2)] − Mi(t1, t2). Therefore, a bias-

corrected estimate of Mi(t1, t2) may be computed as

̂̂Mi(t1, t2) = M̂i(t1, t2) − Est. Bias[M̂i(t1, t2)]. (4.2)

Of course, the bias-corrected estimate ̂̂Mi(t1, t2) might have larger mean square error than

the uncorrected estimate M̂i(t1, t2), and so the correction in (4.2) should be used with

caution. However, if the estimated variance of M̂i(t1, t2) is much less than the square of

the bias estimated from (4.1), then the bias correction in (4.1) is unlikely to increase mean

square error.4

To obtain the bias-corrected confidence intervals, note that the bootstrapped values
{
M̂∗

i (t1, t2)(b)
}B

b=1
give a biased approximation to the sampling distribution of M̂i(t1, t2).

To remove the bias, we compute

̂̂M∗
i (t1, t2)(b) = M̂∗

i (t1, t2)(b) −
(
2 × Est. Bias[M̂i(t1, t2)]

)
∀ b = 1, . . . , B. (4.3)

Note that merely subtracting Est. Bias[M̂i(t1, t2)] in (4.3) would center the distribu-

tion of the M̂∗
i (t1, t2)(b) on M̂i(t1, t2), but M̂i(t1, t2) must also be adjusted to remove

bias; hence two times the estimated bias is the correct adjustment factor.5 The values

4The variance of cMi(t1, t2) may be estimated by the sample variance of the bootstrap estimates
n

cM∗
i (t1, t2)(b)

o B

b=1
. Note that we refer to

ccMi(t1, t2) as a bias-corrected, rather than an unbiased, esti-

mator, since (4.2) involves only a first-order correction of the bias in cMi(t1, t2).

5The reader can indeed verify that B−1 P b
b=1

cM∗
i (t1, t2)(b) =

ccMi(t1, t2) to demonstrate that the
correct adjustment factor is used in (4.3).
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{
̂̂M∗

i (t1, t2)(b)
}B

b=1

provide a bias-corrected approximation of the sampling distribution

of ̂̂Mi(t1, t2).

Efron’s (1982) percentile method involves sorting the values
{

̂̂M∗
i (t1, t2)(b)

}B

b=1

by al-

gebraic value and deleting (1−α/100)/2×B elements from either end of the sorted array to

obtain two-sided α-percent confidence intervals for the original estimator M̂i(t1, t2).6 The

bootstrap methodology outlined by Simar and Wilson (1996) can also be used to construct

confidence intervals for the distance function estimators used in estimating the Malmquist

index. However, when bias-corrected bootstrap distance function estimates are computed

analagously to (4.3), some of the bias-corrected bootstrap distance function values may

be less than the corresponding original distance function estimate. Since all estimation

is conditional on the sample data, the true (input) distance function values comprising

the true Malmquist index in (2.9) cannot be less than the initial estimate obtained from

(3.3) or (3.4). Thus, we condition on the observed data by omitting elements from the

set
{

̂̂M∗
i (t1, t2)(b)

}B

b=1

if the element is comprised of one or more bias-corrected boot-

strap distance function estimates which are less than the corresponding original estimate.7

Efron’s percentile method is then applied using the remaining values of ̂̂M∗
i (t1, t2)(b).8

The key to obtaining consistent bootstrap estimates of the confidence intervals lies

in replicating the data-generating process. As discussed in Simar and Wilson (1996),

resampling from the empirical distribution of the data to construct the pseudo samples

will lead to inconsistent bootstrap estimation of the confidence intervals. However, using a

6Alternatively, one could employ the bias-corrected and accelerated (BCa) described by Efron and
Tibshirani (1993). However, since additional jackknife estimates are required to estimate the acceleration
parameter in this method, the computational burden is likely to be too great for datasets with more than
100–200 observations.

7If bDi > 1 is the original distance function estimate and
bbD∗
i is the corresponding bias-corrected boot-

strap estimate obtained by making a correction analogously to (4.3), then
bbD∗
i < bDi would suggest that

the true frontier lies interior to the original estimate of the production frontier. The data, however, refute
this possibility.

8We have illustrated the bootstrap procedure in terms of estimates of the productivity index; trivially
changing the notation in (4.1)–(4.3) leads to bootstrap algorithms for the efficiency and technology change
indices.
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smooth bootstrap procedure as in Simar and Wilson (1996) will yield consistent estimates.

When bootstrapping distance function estimates from a single cross-section of data, this

may be accomplished by using a univariate kernel estimator of the density of the original

distance function estimates, and then drawing from this estimated density to construct the

pseudo samples S∗ as in and Simar and Wilson (1996). In the present case, however, we

have panel data, with the possibility of temporal correlation.9 To preserve the temporal

correlation, we use kernel methods to estimate the joint density of
{

(D̂t1,t1
i , D̂t2,t2

i )
}N

i=1
.

The bivariate kernel density estimator with bivariate kernel function K(·) and band-

width h is given by

f̂(z) = N−1h−2
N∑

i=1

K

(
(z −Zi)

h

)
, (4.4)

where z has dimension (1× 2) and Zi is the ith row of the (N × 2) matrix containing the

original data.10 Note, however, that both D̂t1,t1
i and D̂t2,t2

i are bounded from below by

unity. The density estimated from (4.4) can be shown to be inconsistent and asymptotically

biased when the support of f is bounded.

To overcome this problem, we adapt the univariate reflection method described by

Silverman (1986) to our bivariate case. For the case of univariate data {zi}Ni=1, bounded

from below at unity, the reflection method involves using the univariate kernel density

estimator to estimate the density of the original observations and their reflections {z′i}
N
i=1

about unity, where z′i = 2 − zi ∀ i = 1, . . . , N . Truncating the resulting density estimate

on the left at unity yields the desired density estimate for the univariate case (see Simar

and Wilson, 1996, for an illustration). In the bivariate case, we proceed similarly, except

that there are now two boundaries in two-dimensional space.

First, we form vectors

A =
[
D̂t1,t1

1 . . . D̂t1,t1
N

]
(4.5)

9For example, an inefficient firm in period one may be more likely to be inefficient in period two than
a firm that is relatively more efficient in period one.

10ONe might prefer to use different bandwidths in each direction; however, this is not necessary if the
data are rescaled by the decomposed sample covariance matrix as discussed below.
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and

B =
[
D̂t2,t2

1 . . . D̂t2,t2
N

]
. (4.6)

To reflect the distance function values about the boundaries in two-dimensional space, we

form the (4N × 2) matrix

∆ =
[
A 2 −A A 2 −A
B B 2 −B 2 −B

]′
. (4.7)

The matrix ∆ contains 4N pairs of values corresponding to the two time periods; the

temporal correlation of this cloud of points is measured by the sample covariance matrix

Σ̂ =
[
σ̂2

1 σ̂12

σ̂12 σ̂2
2

]
(4.8)

of the columns of ∆.11

To generate the random deviates needed for the bootstrap, we do not have to actually

estimate the density of the observations in ∆; rather, we use the method suggested by

Silverman (1986) and analogous to that used for the univariate case in Simar and Wilson

(1996). The Cholesky decomposition of Σ̂ yields the lower triangular matrix L =
[
!1 0
!2 !3

]
,

where LL′ = Σ̂, '1 = σ̂1, '2 = σ̂12/σ̂1, and '3 =
(
σ̂2

2 − σ̂2
12
σ̂2
1

)1/2
. Specifying the kernel

function K(·) as bivariate normal with covariance matrix
[

1 0
0 1

]
, we draw ε, an (N × 2)

matrix of independent, identically distributed standard normal deviates. Then compute

ε∗ = εL′, (4.9)

which gives an (N × 2) matrix of normal deviates with the same correlation structure as

the data in ∆.
11To visualize the reflection, let ai, bi represent the ith elements of A and B, respectively (i =

1, . . . , N). Then for N firms at times t1 and t2, we have N points (ai, bi) lying northeast of the point
(1, 1) in two-dimensional Euclidean space. These points may be reflected by taking the “mirror images”
about vertical and horizontal lines passing through (1, 1). This leaves a boundary along the horizontal line
passing through (1, 1) to the left of this point, and along the vertical line passing through (1, 1) below this
point. Hence, an additional reflection is required, obtained by taking the mirror image of the points to
the southeast of (1, 1) about the vertical line passing through (1, 1), or equivalently, by taking the mirror
image of the points to the northwest of (1, 1) about the horizontal line passing through (1, 1). Hence ∆ in
(4.7) has 4N rows.
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Next, randomly draw with replacement N rows from ∆ to form the (N × 2) matrix

∆∗ = [δij ], i = 1, . . . , N, j = 1, 2 such that each row of ∆ has equal probability of

selection. Let δ̄·j = N−1
∑N

i=1 δij for j = 1, 2. Then compute the (N × 2) matrix

Γ = (1 + h2)−1/2

(
∆∗ + hε∗ −C

[
δ̄·1 0
0 δ̄·2

])
+ C

[
δ̄·1 0
0 δ̄·2

]
, (4.10)

where C is an (N × 2) matrix of ones, which gives an (N × 2) matrix of bivariate deviates

from the estimated density of ∆, scaled to have the first and second moment properties

observed in the original sample represented by ∆. Finally, for each element γij of Γ, set

γ∗
ij =

{
γij , if γij ≥ 1
2 − γij , otherwise.

(4.11)

The resulting (N×2) matrix Γ∗ = [γ∗
ij ] consists of two column-vectors of simulated distance

function values. Pseudo samples S∗ are then constructed by setting x∗
itj = γ∗

ijxitj/D̂
tj |tj
i

and y∗
itj = yitj for i = 1, . . . , N , j = 1, 2.12

The only remaining issue is the choice of the bandwidth, h. Tapia and Thompson

(1978), Silverman (1978, 1986), and Härdle (1990) discuss considerations relevant to the

choice of h; in general, for a given sample size, larger values of h produce more diffuse (i.e.,

less efficient) estimates of the density, while very small values produce estimated densities

with multiple modes. In the empirical examples which follow, we use Silverman’s (1986)

suggestion for bivariate data by setting

h = 0.96σ̂N−1/6, (4.12)

where σ̂ is average of the sample standard deviations of the elements in the columns of

∆.13

12Computing xitj /
bD
tj |tj
i scales the input vector back to the ostensibly efficient level indicated by the

estimated frontier; multiplying by γ∗
ij simulates a random deviation away from this frontier. If we were

using output distance functions and the output-based Malmquist index, we would retain the original input
vector in the pseudo sample and generate a new output vector.

13Alternatively, one might use the likelihood cross-validation procedure discussed by Silverman (1986)
to choose h. The results in Simar and Wilson (1996) suggest, however, that the estimated confidence
intervals are not very sensitive with respect to the choice of bandwidth.
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5. EMPIRICAL EXAMPLES

Färe et al. (1992) describe annual data on 42 Swedish pharmacies from 1980 to 1989,

which produce four outputs from four inputs. Färe et al. assume constant returns to

scale and estimate distance functions using (3.9)–(3.10) to construct estimates Ẽi(t1, t2),

T̃i(t1, t2), and M̃i(t1, t2), which they report in Tables 1–3 of their article. Maintaining

the assumption of constant returns to scale, we applied the bootstrap methods outlined in

section four to obtain bias corrected estimates ˜̃E i(t1, t2),
˜̃T i(t1, t2), and ˜̃Mi(t1, t2). Consis-

tent with Färe et al., we report the reciprocals of our estimates in Tables 1–3 (respectively)

so that numbers greater than unity denote progress while numbers less than unity denote

regress. Single asterisks (∗) indicate cases where the indices are significantly different from

unity at the .10 level; double asterisks (∗∗) indicate cases where the indices are significantly

different from unity at the .05 level.

While examining changes in efficiency, Färe et al. find (page 96) “five pharmacies

(nos. 15, 32, 33, 35, and 39) to be efficient in all time periods,” reflecting their failure

to distinguish between true distance function values and their corresponding estimates.

Consequently they report values of unity for efficiency change between all successive pairs

of years in Table 1 of their article for these five pharmacies. By contrast, our bootstrap

results in Table 1 below indicate that only three pharmacies (nos. 2, 14, and 33) had no

significant changes in efficiency across the study period.

Turning to our results for the technical change index in Table 2, our bootstrap results

generally support the statements made by Färe et al. with respect to technical change.

Färe et al. state that “between 1981 and 1982 almost all pharmacies showed technical

progress,” and our results show that these changes are significant at the .05 level in all

but two instances. They find only one pharmacy (no. 33) showing technical progress in all

periods, but our results indicate that the changes are not significant in four periods.

Similarly, our results for the index of productivity change in Table 3 generally support

statements made by Färe et al. Where Färe et al. find productivity gains in 259 cases
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and productivity losses in 119 cases, we find significant (at .10) gains in 226 cases, and

significant (at .10) losses in 95 cases. Because of the bias correction afforded by our

bootstrap methods, the magnitudes of the changes we report are different from those

reported by Färe et al.

As noted in section three, assuming constant returns to scale and using the conical

hull of the observed data to estimate the production set will yield statistically inconsistent

distance function estimates when the true technology has nonconstant returns to scale. The

convex hull estimator of the production set, however, converges to the true production set

regardless of whether returns to scale are constant or otherwise. Therefore, lacking a formal

test of returns to scale, using distance function estimators based on the convex hull as in

(3.3)–(3.4) to construct the Malmquist index may be a safer approach.

Using the distance function estimators in (3.3)–(3.4) and the bootstrap methodology

outlined in section four, we computed biased corrected estimates ̂̂E i(t1, t2),
̂̂T i(t1, t2), and

̂̂Mi(t1, t2) of the efficiency, technology, and productivity change indices, respectively. Re-

sults are reported in Tables 4–6, where again single asterisks indicate cases where the

indices are significantly different from unity at the .10 level, and double asterisks indicate

cases where the indices are significantly different from unity at the .05 level.

Using the convex hull-based estimators indicates 195 significant changes in efficiency in

Table 4, 19 more than were found when assuming constant returns to scale. The efficiency

changes in Table 4 are generally smaller (i.e., closer to unity) than those shown in Table

1. In addition, we find nine instances where the estimated efficiency change is significant

in both Tables 1 and 4, but in opposite directions.

Using the convex hull-based estimators to estimate Ti(t1, t2) in Table 5 yields a few

cases where the estimator is undefined. For these cases, the constraints of the linear

program in (3.5) are infeasible; in such cases, no contraction or expansion of the input

vector for a firm at time t1 (t2) can reach the production frontier estimated at time t2 (t1).

Clearly, technical change is occurring in these cases, but the convex hull-based estimator of
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Ti(t1, t2) is undefined. Similarly, since Mi(t1, t2) = Ei(t1, t2) × Ti(t1, t2), the convex hull-

based estimator of Mi(t1, t2) is undefined in the same cases. Fortunately, this problem

arises in a relatively small number of cases.

The results for the convex hull-based estimators of Ti(t1, t2) and Mi(t1, t2) shown in

Tables 5–6 are somewhat different than the corresponding estimates in Tables 2–3 based

on the conical hull. In some cases, using the convex hull-based estimators yields larger es-

timated changes (i.e., estimates farther from unity) than the conical hull-based estimators,

while in other cases the reverse is true. There seems to be no clear pattern. To reiterate,

the convex hull-based estimators are statistically consistent regardless of the shape of the

true technology (provided it is convex), while the conical hull-based estimators are not

consistent if returns to scale are nonconstant.

As noted in section four, use of the bias correction in (4.2) may increase mean square

error. To check this possibility, we compared the bootstrap estimates of bias with the

standard deviation of the bootstrap estimates; in almost all cases, the estimated bias

exceeded the corresponding standard deviation measure by an order of magnitude or more.

Hence, the bias corrections we employed are unlikely to increase mean square error.14

6. CONCLUSIONS

Malmquist indices have been widely used in recent years to examine changes in pro-

ductivity, efficiency, and technology not only within a variety of industries, but across

countries as well. In each case, researchers have provided point estimates, although clearly

there must be uncertainty surrounding these estimates due to sampling variation. Our

methodology outlined in the preceeding sections provides a tractible approach for consis-

tently estimating confidence intervals. In addition, as illustrated in our empirical examples,

our bootstrap methodology provides a correction for the inherent bias in nonparametric

distance function estimates (and hence in estimates of Malmquist indices).

14We have omitted tables showing bias estimates, standard errors, etc. for individual firms in each year
in the interests of parsimony. These results can be supplied on request.
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Confidence intervals such as those estimated in our empirical examples are useful in

interpreting estimates of Malmquist indices. As with any estimator, it is not enough to

know whether the Malmquist index estimator indicates increases or decreases in produc-

tivity, but whether the indicated changes are significant in a statistical sense; i.e., whether

the result indicates a real change in productivity, or is an artifact of sampling noise. Our

bootstrap procedure allows the researcher to make these distinctions.
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TABLE 1

Changes in Efficiency, 42 Swedish Pharmacies
(Constant returns to scale)

1980/ 1981/ 1982/ 1983/ 1984/ 1985/ 1986/ 1987/ 1988/

No. 1981 1982 1983 1984 1985 1986 1987 1988 1989

1 1.0097
∗∗

0.8628
∗∗

1.1736
∗∗

1.0842
∗∗

0.9590
∗∗

0.9948 1.0173 1.0218 0.9960

2 1.0082 0.9507 1.0576 0.9937 1.0120 0.9975 0.9876 1.0100 1.0010

3 1.0242 0.9431 1.0752
∗∗

0.9912 0.9854 0.9932 1.0260 1.0083 0.9042
∗∗

4 1.0137 0.9086
∗∗

1.0332
∗∗

0.9921 0.9784
∗

0.9474
∗∗

0.9965 1.0638
∗∗

1.0229
∗∗

5 1.0796
∗∗

0.6975
∗∗

1.2137
∗∗

1.1802
∗∗

0.9624
∗∗

0.9264
∗∗

0.9983 1.0536
∗∗

0.9729
∗∗

6 1.0517
∗∗

0.8773
∗∗

1.1956
∗∗

0.9260
∗∗

1.0072 0.9970 0.9524
∗∗

1.0182 0.9679
∗∗

7 1.1741
∗∗

0.9919 0.9465
∗∗

1.0801
∗∗

0.9936 0.9682
∗∗

0.9900 1.1071
∗∗

0.9935

8 1.5896
∗∗

0.7400
∗∗

1.3454
∗∗

0.9604 1.0027 0.9878 1.0108 1.0139 1.0134

9 0.9794
∗∗

0.9463
∗∗

1.0257 1.2080
∗∗

0.9860 0.9103
∗∗

0.9681
∗

1.0093 0.9958

10 1.0210
∗∗

0.7991
∗∗

1.2473
∗∗

0.8821
∗∗

1.0999
∗∗

0.9630
∗∗

1.0305
∗∗

1.0233 1.0363
∗∗

11 0.9683
∗∗

0.9154
∗∗

1.2117
∗∗

0.9267
∗∗

1.0299
∗∗

1.0185 0.9986 1.0230 1.0266

12 0.9995 0.9498 1.1073 0.9752
∗

0.9652
∗∗

0.9584
∗∗

1.0449
∗∗

0.9057
∗∗

1.0344
∗∗

13 1.0282 0.9530 1.0504 0.9841 0.9414
∗∗

1.0422
∗

0.9721 1.0618
∗∗

1.0050

14 1.0091 0.9520 1.0409 0.9874 1.0051 0.9877 1.0041 1.0132 1.0113

15 1.0287 0.9436
∗

1.0599 0.9882 1.0053 0.9889 1.0058 1.0339 0.9924

16 1.0414
∗∗

0.9213
∗∗

1.1439
∗∗

0.9929 0.9402
∗∗

0.9968 0.9603
∗∗

1.0476
∗∗

1.0276
∗∗

17 1.0068 0.9281
∗∗

1.0677
∗

0.9860 1.0051 1.0005 0.9943 1.0559 1.0006

18 1.0170 0.9522 1.0364 0.9069
∗∗

1.0527
∗∗

1.0447
∗∗

0.9794
∗

1.0419
∗∗

0.9198
∗∗

19 1.1460
∗∗

0.9439 1.0820 0.9790 1.0057 0.9883 1.0041 1.0190 1.0066

20 0.9853 0.9768 1.0434
∗∗

0.9935 0.9752 0.9940 1.0006 1.0428
∗

1.0015

21 1.0085 0.8952
∗∗

1.0964
∗∗

0.9851
∗

0.9051
∗∗

0.9026
∗∗

1.0093 1.1893
∗∗

0.9993

22 0.9452
∗∗

0.8255
∗∗

1.2024
∗∗

0.9228
∗∗

0.9605
∗∗

0.9699
∗

1.0456
∗∗

1.0344
∗

1.0460
∗∗

23 1.0468
∗∗

0.8732
∗∗

1.1212
∗∗

0.9894 0.9963 1.0168 0.9884 1.0147 0.9986

24 1.0933
∗∗

0.9177
∗∗

1.0326
∗

0.9383
∗∗

1.0151
∗

1.0763
∗∗

0.9305
∗∗

1.0952
∗∗

0.9250
∗∗

25 1.0116 0.9102
∗∗

1.0318 1.0644
∗∗

0.9273
∗∗

1.0684
∗∗

0.9537 1.0141 1.0079

26 1.0004 0.9444
∗

1.0583 0.9909 1.0053 0.9739 1.0279 1.0118 1.0045

27 1.0924
∗∗

0.9066
∗∗

1.0260 0.9010
∗∗

1.0167
∗

0.9336
∗∗

1.0492
∗∗

0.9898 1.0718
∗∗

28 0.9999 0.8004
∗∗

1.1577
∗∗

1.0016 0.9595
∗∗

0.9871 1.0045 1.0714
∗∗

1.0416
∗∗

29 0.9405
∗∗

0.7841
∗∗

1.2133
∗∗

1.0473
∗∗

0.9608
∗∗

0.9874 0.9926 0.9820 1.1650
∗∗

30 1.0358
∗∗

0.9565 1.0147 0.8850
∗∗

1.0545
∗∗

0.9914 1.0503
∗∗

1.0403 1.0155

31 1.0182 0.9451
∗

1.0539 0.8825
∗∗

0.9805
∗

1.0219
∗

1.0537
∗∗

0.9771
∗∗

1.0136
∗∗

32 1.0128 0.9667 1.0297 0.9987 0.9940 1.0117 0.9819 1.0150 1.0262
∗

33 1.0087 0.9750 1.0242 0.9785 1.0217 0.9922 0.9851 1.0128 0.9999

34 1.0699
∗∗

0.9554 1.0337 0.9896 1.0081 0.9852 0.9024
∗∗

1.0984
∗∗

1.0524
∗∗

35 1.0213 0.9414 1.0636 0.9885 1.0089 0.9883 1.0040 1.0141 1.0082

36 1.0126 0.9589 1.0283 0.9273
∗∗

1.0510
∗∗

1.0290 1.0102 1.0102 1.0057

37 1.1263
∗∗

0.9004
∗∗

1.0064 1.0106 1.0254
∗∗

0.7784
∗∗

1.3017
∗∗

1.0027 1.0851
∗∗

38 1.0270 0.9790 1.0168 0.9919 0.9931 1.0062 1.0082 1.0060 0.9302
∗∗

39 1.0271 0.9422
∗

1.0613 0.9897 1.0056 0.9871 1.0048 1.0138 1.0072

40 0.8475
∗∗

0.8282
∗∗

1.1285
∗∗

0.9690
∗∗

1.3125
∗∗

0.9897 0.9960 1.0362
∗

1.0085

41 1.0195 0.9287
∗

1.0212 0.9582
∗∗

1.0101 1.0953
∗∗

0.8368
∗∗

0.9074
∗∗

1.0635
∗∗

42 1.0093 0.8983
∗∗

1.0927
∗∗

0.9927 1.0085 0.9783 0.9946 1.0703
∗∗

0.9547
∗∗
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TABLE 2

Changes in Technology, 42 Swedish Pharmacies
(Constant returns to scale)

1980/ 1981/ 1982/ 1983/ 1984/ 1985/ 1986/ 1987/ 1988/

No. 1981 1982 1983 1984 1985 1986 1987 1988 1989

1 0.8941
∗∗

1.1228
∗∗

0.9708
∗∗

0.9337
∗∗

1.0491
∗∗

0.9726 1.0270
∗∗

1.0193 1.0546
∗∗

2 0.9991 1.2207
∗∗

0.9266
∗∗

0.9723 1.0263 1.0207 1.2003
∗∗

1.1110
∗∗

1.0585
∗

3 0.9728 1.1489
∗∗

0.9438
∗∗

0.9467
∗∗

1.0546
∗∗

1.1112
∗∗

1.0057 1.0621
∗∗

1.0951
∗∗

4 0.9480
∗∗

1.1173
∗∗

0.9772
∗∗

0.9486
∗∗

1.0438
∗∗

1.0471
∗∗

1.1022
∗∗

1.0347
∗∗

1.0260
∗∗

5 0.9365
∗∗

1.4611
∗∗

0.8638
∗∗

0.7994
∗∗

1.0638
∗∗

1.1522
∗∗

1.0560
∗∗

1.0609
∗∗

1.1357
∗∗

6 0.9056
∗∗

1.1847
∗∗

0.9306
∗∗

0.8220
∗∗

1.0553
∗∗

1.0425
∗∗

1.1049
∗∗

1.0509
∗∗

1.0212
∗∗

7 0.8453
∗∗

1.0699
∗∗

1.0177 0.9017
∗∗

1.0437
∗∗

1.0506
∗∗

1.1201
∗∗

1.0235
∗∗

1.0062

8 0.9137
∗∗

1.4596
∗∗

0.7974
∗∗

1.1559
∗∗

1.0493
∗

1.1371
∗∗

0.9761 1.0385
∗∗

1.0362

9 0.9568
∗∗

1.1772
∗∗

0.9730 0.8331
∗∗

1.0298 1.0925
∗∗

1.0848
∗∗

1.0971
∗∗

1.0881
∗∗

10 0.9248
∗∗

1.3324
∗∗

0.8598
∗∗

1.0707
∗∗

1.0617
∗∗

1.1034
∗∗

1.0632
∗∗

1.0213
∗

1.0292
∗∗

11 0.9010
∗∗

1.1663
∗∗

0.9620 0.7607
∗∗

1.0480
∗∗

1.0697
∗∗

1.0979
∗∗

1.0414
∗∗

1.1361
∗∗

12 1.0405
∗∗

1.8305
∗∗

0.6660
∗∗

1.0051 1.0954
∗∗

1.0770
∗∗

1.1018
∗∗

1.0172 1.0107

13 1.0011 1.2127
∗∗

0.9171
∗∗

1.0007 0.9807 1.0465
∗∗

1.1489
∗∗

0.9802 1.0532
∗∗

14 1.0679
∗∗

1.2598
∗∗

1.0079 1.0354 0.9424
∗∗

1.0761
∗∗

1.0515
∗

1.1183
∗∗

0.9626

15 0.9901 1.1473
∗∗

0.8792
∗∗

1.0539 1.0262 0.9962 0.9904 0.8741
∗∗

1.0805
∗∗

16 0.9779
∗∗

1.1670
∗∗

0.9380
∗∗

0.9398
∗∗

1.0526
∗∗

1.0049 1.0531
∗∗

1.0431
∗∗

1.0316
∗∗

17 1.0516
∗∗

1.0952
∗∗

1.0031 0.9560 1.0282 0.9822 1.0626
∗∗

0.8868
∗∗

1.0648
∗∗

18 0.9579
∗∗

1.1932
∗∗

0.8990
∗∗

0.9658
∗∗

1.0531
∗∗

0.9545
∗∗

1.0222
∗

0.9483
∗∗

1.0385
∗∗

19 0.8141
∗∗

1.2018
∗∗

0.9643 1.1408
∗∗

1.0851
∗∗

1.0890
∗∗

0.9863 0.9352
∗∗

0.9869

20 0.9649
∗∗

1.1605
∗∗

1.0239 1.0620
∗∗

1.1187
∗∗

1.0280 1.0130 0.9543
∗∗

1.0532
∗∗

21 0.9597 1.1790
∗∗

0.9200
∗∗

1.0853
∗∗

1.1211
∗∗

1.0768
∗∗

1.0715
∗∗

1.0020 1.0358
∗∗

22 1.0186 1.1804
∗∗

0.8525
∗∗

1.0031 1.0040 0.9748
∗

0.9919 0.9355
∗∗

1.0942
∗∗

23 0.6550
∗∗

1.1221
∗∗

0.9175
∗∗

0.9886 1.0922
∗∗

0.9340
∗∗

1.0677
∗∗

0.9919 1.0352

24 0.9107
∗∗

1.1019
∗∗

0.9653
∗∗

0.9439
∗∗

1.0576
∗∗

1.0255
∗

1.1878
∗∗

1.0664
∗∗

1.1442
∗∗

25 0.8717
∗∗

1.2927
∗∗

0.9579
∗∗

0.9081
∗∗

1.0767
∗∗

0.9301
∗∗

1.1375
∗∗

1.0128 1.0643

26 1.0294
∗

1.0972
∗∗

0.9682 0.9812 1.1489
∗∗

0.8530
∗∗

1.2372
∗∗

1.0779
∗∗

1.0941
∗∗

27 0.9117
∗∗

1.1146
∗∗

1.0174 0.9384
∗∗

1.0567
∗∗

1.0353
∗∗

1.0203 1.0425
∗∗

1.0314
∗∗

28 0.9086
∗∗

1.3033
∗∗

0.8771
∗∗

0.9131
∗∗

1.0880
∗∗

0.9653
∗∗

1.0334
∗∗

1.0125 1.0696
∗∗

29 0.8835
∗∗

1.2877
∗∗

0.8520
∗∗

0.9232
∗∗

1.0466
∗∗

1.0112 1.0496
∗∗

1.0274
∗∗

1.0369
∗∗

30 0.9090
∗∗

1.1541
∗∗

1.1084
∗∗

0.9133
∗∗

1.0810
∗∗

1.0496
∗∗

1.0142 1.0541
∗∗

1.0058

31 0.9553 1.1656
∗∗

1.0127 0.8278
∗∗

1.0942
∗∗

1.0455
∗∗

1.1143
∗∗

1.0393
∗∗

1.0436
∗∗

32 0.9737 1.0995
∗∗

1.0392
∗∗

0.9879 1.0880
∗∗

1.0062 1.1270
∗∗

0.9997 0.9639
∗∗

33 1.0338
∗∗

1.0670 1.0359 1.0767
∗∗

0.9893 1.1238
∗∗

1.1901
∗∗

1.0082 1.1178
∗∗

34 0.8978
∗∗

1.1647
∗∗

1.0707
∗∗

0.9434 0.9259
∗∗

1.0331 0.8894
∗∗

1.0441
∗∗

1.0290
∗∗

35 1.3264
∗∗

0.8306
∗∗

0.9769 1.0993
∗∗

0.9565
∗

0.9756 0.9672 0.9949 0.9160
∗∗

36 0.9682 1.0854
∗∗

1.0141 0.9152
∗∗

1.0252 1.0028 1.0519
∗

1.0266
∗

0.9707
∗

37 0.9464
∗∗

1.2658
∗∗

0.9863 0.9616
∗∗

1.0732
∗∗

1.0351
∗∗

1.0456
∗∗

0.9817 1.0505
∗∗

38 1.0063 1.2297
∗∗

1.0101 0.9361
∗∗

1.0613
∗∗

1.1261
∗∗

1.0414 1.0618
∗∗

1.1110
∗∗

39 1.0047 1.1695
∗∗

1.0804
∗∗

0.8600
∗∗

0.9827 1.0392 1.1632
∗∗

1.0160 1.0089

40 1.1326
∗∗

1.2726
∗∗

0.9067
∗∗

1.0110 0.9784
∗

1.1064
∗∗

1.0947
∗∗

1.0908
∗∗

1.0760
∗∗

41 1.0782
∗∗

0.9925 0.9426
∗∗

1.0457
∗∗

0.9644
∗∗

1.0911
∗∗

1.1274
∗∗

0.9916 1.0553
∗∗

42 1.0673
∗∗

1.4503
∗∗

0.9225
∗∗

0.9974 1.0387 1.0361 1.0150 1.0564
∗∗

1.0442
∗∗
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TABLE 3

Changes in Productivity, 42 Swedish Pharmacies
(Constant returns to scale)

1980/ 1981/ 1982/ 1983/ 1984/ 1985/ 1986/ 1987/ 1988/

No. 1981 1982 1983 1984 1985 1986 1987 1988 1989

1 0.9025
∗∗

0.9678
∗∗

1.1380
∗∗

1.0121 1.0058 0.9671
∗∗

1.0441
∗∗

1.0407
∗∗

1.0495
∗∗

2 1.0049 1.1518
∗∗

0.9716
∗

0.9642
∗∗

1.0375
∗∗

1.0173 1.1816
∗∗

1.1208
∗∗

1.0583
∗∗

3 0.9912
∗∗

1.0804
∗∗

1.0127
∗∗

0.9377
∗∗

1.0386
∗∗

1.1028
∗∗

1.0286
∗∗

1.0702
∗∗

0.9894

4 0.9606
∗∗

1.0149
∗∗

1.0095
∗∗

0.9409
∗∗

1.0210
∗∗

0.9918 1.0982
∗∗

1.1004
∗∗

1.0493
∗∗

5 1.0097 1.0141
∗∗

1.0444
∗∗

0.9424
∗∗

1.0234
∗∗

1.0667
∗∗

1.0526
∗∗

1.1167
∗∗

1.1046
∗∗

6 0.9523
∗∗

1.0389
∗∗

1.1122
∗∗

0.7609
∗∗

1.0627
∗∗

1.0393
∗∗

1.0517
∗∗

1.0695
∗∗

0.9882

7 0.9915 1.0604
∗∗

0.9627
∗∗

0.9738
∗∗

1.0369
∗∗

1.0171 1.1083
∗∗

1.1324
∗∗

0.9995

8 1.4518
∗∗

1.0763
∗∗

1.0699
∗∗

1.1045
∗∗

1.0508
∗∗

1.1212
∗∗

0.9842 1.0514
∗∗

1.0484
∗∗

9 0.9366
∗∗

1.1123
∗∗

0.9968 1.0060 1.0150 0.9942 1.0498
∗∗

1.1067
∗∗

1.0834
∗∗

10 0.9441
∗∗

1.0615
∗∗

1.0696
∗∗

0.9437
∗∗

1.1673
∗∗

1.0620
∗∗

1.0951
∗∗

1.0446
∗∗

1.0660
∗∗

11 0.8724
∗∗

1.0669
∗∗

1.1641
∗∗

0.7027
∗∗

1.0791
∗∗

1.0891
∗∗

1.0960
∗∗

1.0650
∗∗

1.1646
∗∗

12 1.0396
∗∗

1.7091
∗∗

0.7257
∗∗

0.9796
∗∗

1.0571
∗∗

1.0317
∗∗

1.1506
∗∗

0.9206
∗∗

1.0452
∗∗

13 1.0271 1.1467
∗∗

0.9567
∗∗

0.9834
∗∗

0.9228
∗∗

1.0899
∗∗

1.1158
∗∗

1.0401
∗∗

1.0576
∗∗

14 1.0765
∗∗

1.1885
∗∗

1.0420
∗∗

1.0173
∗∗

0.9450
∗∗

1.0602
∗∗

1.0524
∗∗

1.1306
∗∗

0.9714
∗∗

15 1.0113
∗∗

1.0677
∗∗

0.9217
∗∗

1.0362
∗∗

1.0290
∗∗

0.9827
∗∗

0.9931 0.9007
∗∗

1.0710
∗∗

16 1.0178
∗∗

1.0727
∗∗

1.0714
∗∗

0.9329
∗∗

0.9892 1.0013 1.0108 1.0922
∗∗

1.0599
∗∗

17 1.0572
∗∗

1.0143 1.0693
∗∗

0.9391
∗∗

1.0317
∗∗

0.9814
∗∗

1.0549
∗∗

0.9323
∗∗

1.0654
∗∗

18 0.9727
∗∗

1.1259
∗∗

0.9279
∗∗

0.8749
∗∗

1.1079
∗∗

0.9969 1.0010 0.9876
∗∗

0.9547
∗∗

19 0.9282
∗∗

1.1184
∗∗

1.0293 1.1052
∗∗

1.0884
∗∗

1.0731
∗∗

0.9872
∗∗

0.9508
∗∗

0.9920

20 0.9493
∗∗

1.1310
∗∗

1.0667
∗∗

1.0535
∗∗

1.0875
∗∗

1.0207
∗∗

1.0119 0.9918 1.0542
∗∗

21 0.9669
∗∗

1.0544
∗∗

1.0066 1.0683
∗∗

1.0143 0.9715
∗∗

1.0808
∗∗

1.1909
∗∗

1.0351
∗∗

22 0.9617
∗∗

0.9697
∗∗

1.0209
∗∗

0.9250
∗∗

0.9641
∗∗

0.9450
∗∗

1.0367
∗∗

0.9669
∗∗

1.1439
∗∗

23 0.6808
∗∗

0.9787 1.0271 0.9760 1.0866
∗∗

0.9480
∗∗

1.0537
∗∗

1.0051 1.0323
∗∗

24 0.9950 1.0101
∗

0.9953 0.8854
∗∗

1.0735
∗∗

1.1035
∗∗

1.1040
∗∗

1.1670
∗∗

1.0576
∗∗

25 0.8811
∗∗

1.1736
∗∗

0.9875 0.9663
∗∗

0.9976 0.9930 1.0787
∗∗

1.0246
∗∗

1.0704
∗∗

26 1.0267
∗∗

1.0216
∗∗

1.0141
∗∗

0.9678
∗∗

1.1519
∗∗

0.8293
∗∗

1.2655
∗∗

1.0887
∗∗

1.0975
∗∗

27 0.9954 1.0087 1.0419
∗∗

0.8452
∗∗

1.0742
∗∗

0.9661
∗∗

1.0700
∗∗

1.0317
∗∗

1.1052
∗∗

28 0.9083
∗∗

1.0418
∗∗

1.0141
∗∗

0.9142
∗∗

1.0434
∗∗

0.9524
∗∗

1.0376
∗∗

1.0842
∗∗

1.1131
∗∗

29 0.8307
∗∗

1.0080
∗∗

1.0323
∗∗

0.9667
∗∗

1.0054 0.9981 1.0414
∗∗

1.0085 1.2079
∗∗

30 0.9414
∗∗

1.0993
∗∗

1.1225
∗∗

0.8061
∗∗

1.1395
∗∗

1.0400
∗∗

1.0646
∗∗

1.0949
∗∗

1.0203
∗

31 0.9701
∗∗

1.0880
∗∗

1.0574
∗∗

0.7280
∗∗

1.0724
∗∗

1.0679
∗∗

1.1738
∗∗

1.0152 1.0576
∗∗

32 0.9845
∗∗

1.0579
∗∗

1.0664
∗∗

0.9851 1.0807
∗∗

1.0167
∗

1.1044
∗∗

1.0137
∗

0.9872

33 1.0412
∗∗

1.0372
∗∗

1.0582
∗∗

1.0508
∗

1.0084 1.1137
∗∗

1.1699
∗∗

1.0195
∗∗

1.1157
∗∗

34 0.9587
∗∗

1.1051
∗∗

1.1004
∗∗

0.9289
∗∗

0.9310
∗∗

1.0142
∗∗

0.7987
∗∗

1.1463
∗∗

1.0825
∗∗

35 1.3497
∗∗

0.7747
∗∗

1.0269
∗∗

1.0827
∗∗

0.9621
∗∗

0.9611
∗∗

0.9677
∗∗

1.0068
∗

0.9220
∗∗

36 0.9786
∗∗

1.0336
∗∗

1.0376
∗∗

0.8457
∗∗

1.0769
∗∗

1.0301 1.0613
∗∗

1.0362
∗∗

0.9754
∗∗

37 1.0654
∗∗

1.1375
∗∗

0.9916 0.9714
∗∗

1.1000
∗∗

0.8055
∗∗

1.3605
∗∗

0.9838
∗∗

1.1399
∗∗

38 1.0312 1.2005
∗∗

1.0253
∗∗

0.9272
∗∗

1.0511
∗∗

1.1320
∗∗

1.0490
∗∗

1.0654
∗∗

1.0333
∗∗

39 1.0241
∗∗

1.0862
∗∗

1.1346
∗∗

0.8475
∗∗

0.9854
∗∗

1.0222
∗∗

1.1644
∗∗

1.0275
∗∗

1.0143
∗∗

40 0.9594
∗∗

1.0501
∗∗

1.0199
∗

0.9779
∗∗

1.2830
∗∗

1.0945
∗∗

1.0896
∗∗

1.1294
∗∗

1.0846
∗∗

41 1.0947
∗∗

0.9180
∗∗

0.9599
∗∗

1.0010 0.9738
∗∗

1.1936
∗∗

0.9420
∗∗

0.8992
∗∗

1.1216
∗∗

42 1.0757
∗∗

1.2994
∗∗

1.0041 0.9868 1.0460
∗∗

1.0112 1.0090 1.1301
∗∗

0.9966
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TABLE 4
Changes in Efficiency, 42 Swedish Pharmacies

(Variable returns to scale)

1980/ 1981/ 1982/ 1983/ 1984/ 1985/ 1986/ 1987/ 1988/

No. 1981 1982 1983 1984 1985 1986 1987 1988 1989

1 0.9970 0.9013
∗∗

1.1193
∗∗

1.0868
∗∗

0.9731
∗∗

1.0052 1.0254
∗∗

0.9906
∗

0.9998

2 1.0018 0.9597
∗

1.0376
∗

0.9992 1.0099 1.0140 0.9838
∗∗

1.0046 0.9999

3 1.0118 0.9784 1.0271
∗

0.9879 0.9993 0.9912 1.0212 1.0002 0.9801

4 1.0154
∗∗

0.9081
∗∗

1.0653
∗∗

0.9755
∗∗

0.9607
∗∗

0.9699
∗∗

1.0348
∗∗

1.0833
∗∗

0.9553
∗∗

5 1.0012 0.6862
∗∗

1.2970
∗∗

1.1340
∗∗

1.0060 0.9182
∗∗

0.9582
∗∗

1.0171
∗∗

0.9806
∗∗

6 1.0255
∗∗

0.8658
∗∗

1.1738
∗∗

0.9609
∗

1.0299
∗∗

0.9733
∗∗

0.9713
∗∗

1.0124
∗

0.9495
∗∗

7 1.1447
∗∗

1.0083 0.9760
∗∗

1.0389
∗∗

0.9932 0.9784
∗∗

1.0031 1.0696
∗∗

1.0005

8 1.5803
∗∗

0.7715
∗∗

1.2839
∗∗

0.9790 1.0031 0.9865 1.0173 1.0076 1.0057
∗

9 0.9402
∗∗

0.9311
∗∗

1.0009 1.1930
∗∗

1.0230
∗∗

0.8961
∗∗

0.9656
∗∗

1.0033 0.9913
∗∗

10 0.9996 0.8195
∗∗

1.2107
∗∗

0.9019
∗∗

1.0735
∗∗

0.9659
∗∗

1.0731
∗∗

0.9958 1.0130
∗∗

11 1.0169
∗

0.9621
∗

1.0287
∗

0.9988 1.0023 0.9900 1.0154 1.0053 0.9969

12 1.0015 0.9684 1.0641
∗∗

1.0021 0.9775
∗

0.9511
∗∗

1.0662
∗∗

0.8735
∗∗

1.0352
∗∗

13 1.0196
∗

0.9538 1.0465
∗∗

0.9978 1.0215 0.9798 1.0039 1.0092 1.0198
∗

14 0.9969 0.9545 1.0484
∗∗

0.9960 1.0025 0.9883 1.0158 1.0072 0.9995

15 1.0167
∗

0.9549
∗

1.0480
∗∗

0.9962 1.0032 0.9873 1.0149 1.0133 0.9936

16 0.9940 1.0112 1.0812
∗∗

1.0271
∗∗

0.9961 0.9790
∗∗

1.0438
∗∗

0.9974 0.9491
∗∗

17 1.0175
∗

0.9634 1.0291 1.0008 1.0031 0.9874 1.0146 1.0074 1.0031
∗

18 1.0130
∗

0.9411
∗

1.0547
∗∗

0.9141
∗∗

1.0581
∗∗

1.0511
∗∗

1.0002 0.9876 0.9991

19 1.0015 0.9554 1.0602
∗∗

0.9857 1.0027 0.9868 1.0154 1.0076 1.0002

20 0.9878 0.9811
∗

1.0309
∗∗

0.9914 0.9934 0.9883 1.0121 1.0156 1.0091
∗∗

21 0.9997 0.9001
∗∗

1.0953
∗∗

0.9815
∗∗

0.9244
∗∗

0.9025
∗∗

1.0131 1.1677
∗∗

0.9906
∗∗

22 0.9402
∗∗

0.8626
∗∗

1.1488
∗∗

0.9362
∗∗

0.9525
∗∗

0.9683
∗∗

1.0536
∗∗

1.0251
∗∗

1.1035
∗∗

23 1.0122 0.9538 1.0519
∗∗

0.9962 1.0017 0.9872 1.0142 1.0088 0.9995

24 1.0457
∗∗

0.9270
∗∗

1.0306
∗∗

0.9545
∗∗

1.0031 1.0905
∗∗

0.9785
∗∗

1.0136 1.0109
∗∗

25 1.0152
∗

0.9268
∗∗

1.0292
∗∗

1.0365
∗∗

0.9466
∗∗

1.0593
∗∗

0.9757
∗

1.0105 0.9999

26 1.0012 0.9555
∗

1.0459
∗∗

1.0000 1.0018 0.9762 1.0287 1.0066 0.9995

27 1.0270
∗∗

0.9167
∗∗

1.0446
∗∗

0.9446
∗∗

1.0277
∗∗

0.9614
∗∗

1.0884
∗∗

0.9932 0.9655
∗∗

28 1.0029 0.8576
∗∗

1.0796
∗∗

1.0176
∗∗

0.9715
∗∗

1.0029 1.0176
∗∗

1.0768
∗∗

0.9784
∗∗

29 0.9532
∗∗

0.7678
∗∗

1.2568
∗∗

0.9999 0.9818
∗∗

0.9874
∗∗

1.0022 0.9725
∗∗

1.1404
∗∗

30 1.0144
∗

0.9552 1.0468
∗∗

0.9247
∗∗

1.0872
∗∗

0.9590
∗∗

1.0204
∗∗

1.0251 0.9986

31 1.0065 0.9544 1.0433
∗∗

0.8716
∗∗

0.9960 1.0154
∗

1.0633
∗∗

1.0342
∗∗

0.9441
∗∗

32 1.0081 0.9748 1.0183 1.0008 1.0021 1.0002 0.9998 1.0073 1.0198
∗∗

33 1.0053 0.9800 1.0181 0.9904 1.0164 0.9868 1.0018 1.0070 0.9983

34 1.0195
∗

0.9626
∗

1.0316
∗

0.9970 1.0036 0.9860 1.0212 1.0304
∗∗

0.9980

35 1.0163
∗

0.9540 1.0478
∗∗

0.9992 1.0035 0.9876 1.0146 1.0091 0.9985

36 1.0075 0.9600
∗

1.0346
∗

0.9620
∗

1.0480
∗∗

0.9915 1.0047 1.0098 1.0019

37 1.1010
∗∗

0.9327
∗∗

0.9877
∗

0.9975 1.0412
∗∗

0.8148
∗∗

1.2530
∗∗

1.0196
∗∗

1.0347
∗∗

38 1.0162
∗

0.9780 1.0149 1.0125 0.9897 0.9933 1.0213 0.9975 0.9446
∗∗

39 1.0145
∗

0.9553 1.0460
∗∗

0.9981 1.0028 0.9866 1.0156 1.0079 0.9986

40 0.8977
∗∗

0.8567
∗∗

1.1206
∗∗

1.1387
∗∗

1.0447
∗∗

1.0005 1.0061 1.0013 0.9990

41 1.0148
∗

0.9729 1.0254 0.9961 1.0025 0.9875 1.0158 1.0064 0.9983

42 1.0109 0.9504
∗

1.0466
∗∗

0.9985 1.0031 0.9956 1.0149 1.0081 1.0006
∗
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TABLE 5

Changes in Technology, 42 Swedish Pharmacies
(Variable returns to scale)

1980/ 1981/ 1982/ 1983/ 1984/ 1985/ 1986/ 1987/ 1988/

No. 1981 1982 1983 1984 1985 1986 1987 1988 1989

1 0.8916
∗∗

1.0745
∗∗

0.9882 0.9351
∗∗

1.0491
∗∗

0.9852 0.9710
∗∗

1.0470
∗∗

1.0493
∗∗

2 1.0132 1.2274
∗∗

0.9231
∗∗

0.9968 1.0116 1.0001 1.1447
∗∗

1.0997
∗∗

1.0487
∗∗

3 0.9872 1.1375
∗∗

0.9883 0.9698
∗

1.0678
∗∗

1.0801
∗∗

1.0016 1.0890
∗∗

1.0580
∗∗

4 0.9510
∗∗

1.1173
∗∗

0.9498
∗∗

0.9697
∗∗

1.0607
∗∗

1.0017 1.0395
∗∗

0.9943 1.0787
∗∗

5 1.0334
∗∗

1.5258
∗∗

0.8306
∗∗

0.8096
∗∗

1.0137 1.1621
∗∗

1.1384
∗∗

1.0681
∗∗

1.1208
∗∗

6 0.9211
∗∗

1.2057
∗∗

0.9407
∗∗

0.7735
∗∗

1.0383
∗∗

1.0711
∗∗

1.0798
∗∗

1.0170
∗∗

1.0287
∗∗

7 0.8582
∗∗

1.0562
∗∗

0.9844
∗∗

0.9311
∗∗

1.0223
∗∗

1.0312
∗∗

1.0752
∗∗

1.0356
∗∗

1.0040

8 0.9214
∗∗

1.4006
∗∗

0.8046
∗∗

1.1409
∗∗

1.0424
∗

1.1993
∗∗

0.9672 1.0661
∗∗

1.0429
∗∗

9 0.9821
∗∗

1.2370
∗∗

0.9865 0.8430
∗∗

0.9904 1.1073
∗∗

1.0799
∗∗

1.0790
∗∗

1.0834
∗∗

10 1.1575
∗∗

1.5406
∗∗

0.9225
∗∗

1.0350
∗∗

1.0564
∗∗

1.0831
∗∗

1.0025 1.0195
∗∗

1.0381
∗∗

11 0.9720
∗∗

1.0847
∗∗

1.2123
∗∗

0.7523
∗∗

1.0017 1.0446
∗

0.9786 1.0390
∗∗

1.1282
∗∗

12 — 1.9463
∗∗

0.7065
∗∗

0.9448
∗∗

1.1747
∗∗

1.1157
∗∗

1.1943
∗∗ — 1.0093

13 1.0946
∗∗

1.3249
∗∗

0.9020
∗∗

0.9821 0.8926
∗∗

1.1273
∗∗

1.2330
∗∗

0.9873 0.9695
∗∗

14 — — — — — — — — —
15 1.0014 1.1779

∗∗
0.8879

∗∗
1.0142 1.0750

∗∗
1.0312 1.0191 0.8017

∗∗
1.0710

∗∗

16 1.0380
∗∗

1.0509
∗∗

0.9385
∗∗

0.9784
∗∗

0.9688
∗∗

0.9976 0.9348
∗∗

1.0155
∗∗

1.0969
∗∗

17 — 1.0742
∗∗ — — — — — — —

18 0.9612
∗∗ — 0.7569

∗∗
0.9842 1.0342

∗∗
0.9994 1.0745

∗∗
0.7940

∗∗ —
19 0.7637

∗∗
1.3461

∗∗
0.9711

∗∗
1.1183

∗∗ — — — — 0.9692
∗∗

20 0.9725
∗∗

1.1808
∗∗

1.0351
∗∗

1.0913
∗∗

1.0858
∗∗

1.0514 1.0099 0.9249
∗∗

1.0519
∗∗

21 0.9628
∗∗

1.1818
∗∗

0.9179
∗∗

1.0847
∗∗

1.0910
∗∗

1.0681
∗∗

1.0521
∗∗

0.9943 1.0525
∗∗

22 1.0183
∗∗

1.1154
∗∗

0.8623
∗∗

1.0083 1.0202
∗∗

0.9691
∗∗

0.9882 0.9640
∗∗

1.0127
∗∗

23 0.8514
∗∗

1.1388
∗∗

0.6309
∗∗

0.9758
∗ — — — — —

24 0.9342
∗∗

1.1029
∗∗

0.9558
∗∗

0.9749
∗∗

1.0131 0.9883 1.1013
∗∗

1.0884
∗∗

1.0430
∗∗

25 0.8554
∗∗

1.2781
∗∗

0.9587
∗∗

0.9206
∗∗

1.0537
∗∗

0.9422
∗∗

1.1302
∗∗

1.0881
∗∗

1.0891
∗∗

26 1.0284
∗

1.0638
∗

0.9765 0.9815 1.1990
∗∗

0.8469
∗∗

1.2385
∗∗

1.1940
∗∗

1.1413
∗∗

27 0.9896 1.1020
∗∗

0.9835
∗

0.9209
∗∗

1.0164
∗∗

0.9971 0.9609
∗∗

0.9968 1.1184
∗∗

28 0.9167
∗∗

1.2145
∗∗

0.9338
∗∗

0.9053
∗∗

1.0586
∗∗

0.9603
∗∗

1.0279
∗∗

1.0272
∗∗

1.1538
∗∗

29 0.8949
∗∗

1.3261
∗∗

0.8272
∗∗

0.9071
∗∗

1.0269
∗∗

1.0035 1.0281
∗∗

1.0448
∗∗

1.0668
∗∗

30 — — — — — — 1.0566
∗∗ — —

31 0.9604
∗∗

1.1745
∗∗

1.0265 0.8241
∗∗

1.0668
∗∗

1.0406
∗∗

1.0758
∗∗

0.9943 1.0875
∗∗

32 1.1933
∗∗

1.1855
∗∗

1.0563
∗∗

0.9202
∗∗

1.1601
∗∗

1.0771
∗∗

1.2018
∗∗

1.0794
∗∗

0.9533
∗∗

33 1.1173
∗∗

1.1074
∗∗

1.0764
∗∗

1.0711
∗∗

1.0099 1.1426
∗∗

1.2681
∗∗

1.0454
∗∗ —

34 0.8694
∗∗

1.2972
∗∗

1.0977
∗∗

0.8174
∗∗

0.8835
∗∗

1.0096 0.8044
∗∗

1.0179
∗∗

1.0660
∗∗

35 — — — — — — — — —
36 0.9706

∗∗
1.0894

∗∗
1.0116 0.8962

∗∗
0.9685

∗∗
1.0726

∗∗
1.1153

∗∗
1.0543

∗∗
1.0096

37 0.9696
∗∗

1.2421
∗∗

0.9940 0.9694
∗∗

1.0351
∗∗

1.0169 1.0086 0.9667
∗∗

1.0708
∗∗

38 — — 1.0147 0.9318
∗∗

1.0422
∗∗

1.1198
∗∗

1.0305 1.0563
∗∗

1.0903
∗∗

39 1.0366
∗∗

1.1448
∗∗

1.0700
∗∗

0.8757
∗∗

0.9800 1.0448
∗

1.1910
∗∗

1.0141 1.0059

40 1.1046
∗∗

1.2252
∗∗

0.8818
∗∗

1.0283
∗∗

1.1074
∗∗

1.0271 1.0530
∗∗

1.0699
∗∗

1.1014
∗∗

41 0.9711
∗∗

0.9661 0.9228
∗∗

1.1802
∗∗

0.9287
∗∗

1.1245
∗∗

0.9332
∗∗

0.9764 1.1055
∗∗

42 — — 1.1486
∗∗

0.9195
∗∗ — 0.8984

∗∗
1.0948

∗∗
1.1324

∗∗
1.0609

∗∗
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TABLE 6

Changes in Productivity, 42 Swedish Pharmacies
(Variable returns to scale)

1980/ 1981/ 1982/ 1983/ 1984/ 1985/ 1986/ 1987/ 1988/

No. 1981 1982 1983 1984 1985 1986 1987 1988 1989

1 0.8889
∗∗

0.9681
∗∗

1.1058
∗∗

1.0160
∗

1.0205
∗

0.9901 0.9953 1.0361
∗∗

1.0488
∗∗

2 1.0138
∗∗

1.1696
∗∗

0.9525
∗∗

0.9933 1.0206
∗∗

1.0135 1.1249
∗∗

1.1040
∗∗

1.0480
∗∗

3 0.9955 1.1094
∗∗

1.0126
∗∗

0.9568
∗∗

1.0662
∗∗

1.0699
∗∗

1.0206
∗∗

1.0887
∗∗

1.0355
∗∗

4 0.9656
∗∗

1.0144
∗

1.0116
∗∗

0.9457
∗∗

1.0186
∗∗

0.9714
∗∗

1.0754
∗∗

1.0770
∗∗

1.0305
∗∗

5 1.0334
∗∗

1.0441
∗∗

1.0747
∗∗

0.9174
∗∗

1.0196
∗∗

1.0663
∗∗

1.0898
∗∗

1.0861
∗∗

1.0988
∗∗

6 0.9445
∗∗

1.0434
∗∗

1.1025
∗∗

0.7413
∗∗

1.0693
∗∗

1.0422
∗∗

1.0485
∗∗

1.0293
∗∗

0.9767
∗∗

7 0.9820 1.0644
∗∗

0.9604
∗∗

0.9670
∗∗

1.0152
∗∗

1.0088 1.0783
∗∗

1.1075
∗∗

1.0045

8 1.4556
∗∗

1.0778
∗∗

1.0316
∗∗

1.1140
∗∗

1.0448
∗∗

1.1808
∗∗

0.9815
∗∗

1.0731
∗∗

1.0482
∗∗

9 0.9234
∗∗

1.1510
∗∗

0.9869
∗∗

1.0053 1.0131 0.9920 1.0423
∗∗

1.0824
∗∗

1.0739
∗∗

10 1.1569
∗∗

1.2601
∗∗

1.1147
∗∗

0.9330
∗∗

1.1339
∗∗

1.0456
∗∗

1.0753
∗∗

1.0150
∗∗

1.0514
∗∗

11 0.9854 1.0369
∗∗

1.2435
∗∗

0.7495
∗∗

1.0032 1.0325
∗∗

0.9925 1.0436
∗∗

1.1238
∗∗

12 — 1.8632
∗∗

0.7454
∗∗

0.9458
∗∗

1.1474
∗∗

1.0609
∗∗

1.2723
∗∗ — 1.0446

∗∗

13 1.1089
∗∗

1.2505
∗∗

0.9366
∗∗

0.9764
∗∗

0.9098
∗∗

1.1020
∗∗

1.2370
∗∗

0.9948 0.9875

14 — — — — — — — — —
15 1.0125

∗∗
1.1120

∗∗
0.9231

∗∗
1.0069 1.0776

∗∗
1.0158

∗∗
1.0322

∗∗
0.8111

∗∗
1.0634

∗∗

16 1.0316
∗∗

1.0617
∗∗

1.0140 1.0047 0.9648
∗∗

0.9764
∗∗

0.9752
∗∗

1.0128
∗∗

1.0410
∗∗

17 — 1.0319
∗ — — — — — — —

18 0.9726
∗∗ — 0.7915

∗∗
0.8987

∗∗
1.0941

∗∗
1.0502

∗∗
1.0743

∗∗
0.7829

∗∗ —
19 0.7630

∗∗
1.2711

∗∗
1.0227

∗∗
1.0990

∗∗ — — — — 0.9686
∗∗

20 0.9596
∗∗

1.1574
∗∗

1.0661
∗∗

1.0798
∗∗

1.0772
∗∗

1.0376
∗∗

1.0209
∗∗

0.9383
∗∗

1.0608
∗∗

21 0.9622
∗∗

1.0629
∗∗

1.0039 1.0641
∗∗

1.0083 0.9638
∗∗

1.0656
∗∗

1.1606
∗∗

1.0426
∗∗

22 0.9570
∗∗

0.9598
∗∗

0.9888 0.9432
∗∗

0.9714
∗∗

0.9382
∗∗

1.0409
∗∗

0.9880 1.1173
∗∗

23 0.8593
∗∗

1.0748
∗∗

0.6598
∗∗

0.9704
∗∗ — — — — —

24 0.9768
∗∗

1.0216
∗∗

0.9842 0.9303
∗∗

1.0161 1.0776
∗∗

1.0774
∗∗

1.1025
∗∗

1.0537
∗∗

25 0.8679
∗∗

1.1834
∗∗

0.9862 0.9534
∗∗

0.9971 0.9974 1.1005
∗∗

1.0979
∗∗

1.0878
∗∗

26 1.0280
∗∗

1.0052 1.0136
∗∗

0.9782
∗∗

1.2003
∗∗

0.8258
∗∗

1.2723
∗∗

1.2003
∗∗

1.1397
∗∗

27 1.0162 1.0089 1.0261
∗∗

0.8698
∗∗

1.0445
∗∗

0.9584
∗∗

1.0455
∗∗

0.9900
∗∗

1.0798
∗∗

28 0.9192
∗∗

1.0412
∗∗

1.0077
∗∗

0.9208
∗∗

1.0283
∗∗

0.9628
∗∗

1.0457
∗∗

1.1061
∗∗

1.1271
∗∗

29 0.8529
∗∗

1.0165
∗∗

1.0380
∗∗

0.9068
∗∗

1.0081
∗

0.9905 1.0300
∗∗

1.0160
∗∗

1.2164
∗∗

30 — — — — — — 1.0777
∗∗ — —

31 0.9653
∗∗

1.1094
∗∗

1.0638
∗∗

0.7169
∗∗

1.0622
∗∗

1.0564
∗∗

1.1438
∗∗

1.0283
∗∗

1.0266
∗∗

32 1.2005
∗∗

1.1511
∗∗

1.0733
∗∗

0.9191
∗∗

1.1618
∗∗

1.0763
∗∗

1.2003
∗∗

1.0864
∗∗

0.9709
∗∗

33 1.1221
∗∗

1.0828
∗∗

1.0945
∗∗

1.0591
∗∗

1.0250
∗∗

1.1260
∗∗

1.2694
∗∗

1.0514
∗∗ —

34 0.8822
∗∗

1.2408
∗∗

1.1280
∗∗

0.8123
∗∗

0.8861
∗∗

0.9931 0.8173
∗∗

1.0487
∗∗

1.0637
∗∗

35 — — — — — — — — —
36 0.9761

∗∗
1.0377

∗∗
1.0418

∗∗
0.8599

∗∗
1.0148 1.0604

∗∗
1.1197

∗∗
1.0635

∗∗
1.0109

∗∗

37 1.0673
∗∗

1.1581
∗∗

0.9813 0.9667
∗∗

1.0776
∗∗

0.8285
∗∗

1.2634
∗∗

0.9853
∗∗

1.1078
∗∗

38 — — 1.0271 0.9421
∗∗

1.0307
∗∗

1.1116
∗∗

1.0506
∗∗

1.0520
∗∗

1.0299
∗∗

39 1.0460
∗∗

1.0810
∗∗

1.1116
∗∗

0.8715
∗∗

0.9817
∗∗

1.0281
∗∗

1.2074
∗∗

1.0203
∗∗

1.0035

40 0.9914 1.0479
∗∗

0.9868 1.1701
∗∗

1.1549
∗∗

1.0270
∗∗

1.0589
∗∗

1.0704
∗∗

1.0997
∗∗

41 0.9813 0.9351
∗∗

0.9433
∗∗

1.1729
∗∗

0.9302
∗∗

1.1078
∗∗

0.9460
∗∗

0.9818 1.1027
∗∗

42 — — 1.1950
∗∗

0.9152
∗∗ — 0.8936

∗∗
1.1095

∗∗
1.1406

∗∗
1.0602

∗∗
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