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Abstract
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1 Introduction
The idea of estimating production efficiency scores in a nonparametric setup dates
back to the original work of Farrell (1957). The efficiency of production units is
generally measured relatively to a production frontier, defined as the geometrical
locus of optimal productions. This frontier may be estimated (nonparametrically)
from a set of n observed production units.

The DEA (Data Envelopment Analysis) approach develops Farrell’s ideas and
is based on linear programming techniques: the frontier is a boundary of the con-
vex hull of the set of observed points. It relies on convexity assumptions of the
attainable set of productions (see e.g.: Charnes, Cooper and Rhodes (1978) or
Färe, Grosskopf and Lovell (1985). The FDH (Free Disposal Hull) initiated by
Deprins, Simar and Tulkens (1984) extends the idea, allowing non convex pro-
duction sets: the attainable set is the set of minimal volume containing all the
observations. It relies only on disposability assumptions on inputs and outputs.

Since statistical estimators of the frontier are obtained from finite samples, the
corresponding measures of efficiency are sensitive to the sampling variations of the
obtained frontier. Korostelev, Simar and Tsybakov (1992) and (1995) have shown
the consistency of FDH and DEA estimators under very weak general conditions
but the obtained rates of convergence are, as in many nonparametric estimators,
very slow.

This is why the bootstrap methodology seems an attractive tool to analyze
the sensitivity of measured efficiency scores to the sampling variations. It was
introduced in the frontier framework by Simar (1992), for parametric, nonpara-
metric and semiparametric models in the presence of panel data; Hall, Härdle and
Simar (1991) have investigated the consistency of the bootstrap distributions in
the context of parametric frontier estimation.

The bootstrap, introduced by Efron (1979), is based on the idea of repeatedly
simulating the data generating process (DGP) (usually through resampling) and
applying the original estimator to mimic the sampling distribution of the original
estimator. In principle, this can be done for any statistic (estimator) defined on
the data, provided the underlying DGP is properly simulated. ( For more details
on the bootstrap, see Efron, 1982; Hall, 1992; or Efron and Tibshirani, 1993.)

The primary difficulty in applying bootstrap methods in complex situations,
such as the case of nonparametric frontier estimation, lies in simulating the DGP.
In the case of nonparametric frontier estimation, one must first clearly define what
the DGP is.

The goal of this paper is to propose a bootstrap strategy that can be motivated
through reasonable assumptions regarding the DGP. If the DGP is not specified
a priori, we cannot know whether the bootstrap mimics the sampling distribu-
tion of the estimators of interest, or some other distribution. Section 2 presents
the general framework of frontier models and discusses the bootstrap within the
context of this framework. We show how the bootstrap analog of the DGP can
approximate the sampling variation of the estimated frontier, allowing us to an-
alyze the sensitivity of the efficiency score of a given production unit. Section
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3 briefly reviews some of the nonparametric efficiency estimators that have been
proposed in the literature (DEA and FDH), along with their statistical properties.
The main results of the paper are presented in section 4, where we show a rea-
sonable assumption on the DGP allows one to easily produce a bootstrap version.
Special attention is devoted to the smooth bootstrap and its implementation in
this framework. The results from this section are applied in section 5 to the par-
ticular case of nonparametric efficiency estimation. Two algorithms are proposed
any compared with other possible approaches. Section 6 provides an empirical
illustration of the bootstrap algorithms.

2 Data Generating Process and Bootstrap: The
General Setup

Given a list of p inputs (x ∈ IRp
+) and of q outputs (y ∈ IRq

+), it is common
practice in economic analysis to describe the activity of a productive organization
by means of the production set Ψ of physically attainable points (x, y).

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y} (2.1)

This set can be described by its sections, either an input requirement set defined
∀ y ∈ Ψ:

X(y) = {x ∈ IRp
+ | (x, y) ∈ Ψ} (2.2)

or an output correspondence set defined ∀ x ∈ Ψ:

Y (x) = {y ∈ IRq
+ | (x, y) ∈ Ψ}. (2.3)

The relations between the two sets, along with standard assumptions one may rea-
sonably make on them, are discussed in section 9.1 of Sheppard (1970). Convexity
of X(y) for all y (and of Y (x) for all x) and disposability of inputs and outputs are
the most usual. The Farrell efficiency boundaries are subsets of X(y) (and Y (x)
respectively) denoted by ∂X(y) (resp. ∂Y (x)):

∂X(y) = {x | x ∈ X(y), θx /∈ X(y) ∀ 0 < θ < 1} (2.4)
∂Y (x) = {y | y ∈ Y (x), βy /∈ X(y) ∀ β > 1} (2.5)

These may be used to define the Farrell input and output measures of efficiency
(respectively) for a given point (xk, yk):

θk = min{θ | θxk ∈ X(yk)} (2.6)
βk = max{β | βyk ∈ Y (xk)} (2.7)

If θk = 1 (βk = 1), the unit (xk, yk) is considered as being “input-efficient”
(“output-efficient”). The input efficiency score θk ≤ 1 represents the feasible
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proportionate reduction of inputs the production unit could realize if yk were pro-
duced efficiently. It will be useful for later development to denote by x∂(yk) the
efficient level of input corresponding to the output level yk

x∂(yk) = θkxk (2.8)

Note that x∂(yk) is the intersection of ∂X(yk) and the ray θxk.
Similarly, βk ≥ 1 gives the feasible proportionate increase in outputs the pro-

duction unit could realize if the given inputs xk were used efficiently. Note that
both are radial measures of the distances between (yk, xk) and the correspond-
ing frontier (∂X(yk) or ∂Y (xk)). Simar and Deprins (1983) analyze the relations
between both measures.

We discuss the bootstrap in terms of input efficiency measures to conserve
space. Bootstrapping in the output efficiency case largely involves a straightfor-
ward translation of the notation in the following discussion.

Typically, Ψ, X(y), and ∂X(y) are unknown; hence, for a given unit (xk, yk),
θk is also unknown. Suppose that some DGP, P, generates a random sample X =
{(xi, yi)|i = 1, . . . , n}. This sample defines, by some method M, the estimators
Ψ̂, X̂(y), and ∂X̂(y). Thus, for a given unit (xk, yk), we can estimate its efficiency
by

θ̂k = min{θ | θxk ∈ X̂(yk)}. (2.9)

Note that the sampling properties of Ψ̂, X̂(y), ̂∂X(y), and consequently of θ̂k
depend on P, which is unknown. Further, they are difficult to determine when M
is complex (as in nonparametric methods).

The bootstrap is perhaps most useful in situations such as ours where the
sampling properties of estimators are either difficult or impossible to obtain ana-
lytically. Suppose that due to our knowledge of P, we can produce a reasonable
estimator P̂ of P from the data X . Consider now a data set X ∗ = {(x∗

i , y
∗
i ), i =

1, . . . , n} generated by P̂. This pseudo-sample defines, by the same method M,
the corresponding quantities Ψ̂∗, X̂∗(y), ̂∂X∗(y). In particular, for the given unit
(xk, yk) its measure of efficiency θ̂∗k is given by:

θ̂∗k = min{θ | θxk ∈ ̂X∗(yk)}. (2.10)

Note that conditionally on X the sampling distributions of the estimators Ψ̂∗,
X̂∗(y), and ∂X̂∗(y) are (in principle) completely known since P̂ is known, although
they may be difficult to compute analytically. However, the sampling distributions
are easily approximated by Monte Carlo methods. Using P̂ to generate B samples
X ∗

b , b = 1, . . . , B, and applying M to each of these pseudo samples yields sets of
pseudo estimates Ψ̂∗

b , X̂
∗
b (y), and ∂X̂∗

b (y), b = 1, . . . , B. In particular, for a given
unit (xk, yk), we have {θ̂∗kb}Bb=1; the empirical density function of {θ̂∗kb}Bb=1 is the
Monte Carlo approximation of the distribution of θ̂∗k conditional on P̂.

The key to the bootstrap method is that if P̂ is a reasonable estimator of P, the
known bootstrap distributions mimic the original unknown sampling distributions
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of the estimators of interest. More specifically for the efficiency measure θk of a
given fixed unit (xk, yk) we have:

(θ̂∗k − θ̂k) | P̂ ∼ (θ̂k − θk) | P (2.11)

where θk, θ̂k and θ̂∗k are defined by (2.6), (2.9) and (2.10). To be more explicit,
analogy defined by (2.11) is valid provided P̂ is a consistent estimator of P (see
e.g. Hall (1992)).

The key expression (2.11) allows us to estimate the bias of θ̂k, the original
estimator of θk:

biasP,k = EP(θ̂k) − θk (2.12)

by its bootstrap estimate:

biasP̂,k = EP̂(θ̂∗k) − θ̂k. (2.13)

The latter quantity may be approximated through the Monte-Carlo realizations
θ̂∗k,b:

b̂iask =
1
B

B∑

b=1

θ̂∗k,b − θ̂k = θ
∗
k − θ̂k. (2.14)

Therefore, a bias-corrected estimator of θk is:

θ̃k = θ̂k − b̂iask = 2θ̂k − θ
∗
k. (2.15)

The standard error of θ̂k may be estimated by:

ŝe =
{

1
B − 1

B∑

b=1

(θ̂∗k,b − θ
∗
k)

2

}1/2

. (2.16)

Finally, the empirical distribution of θ̂∗k,b, b = 1, . . . , B provides, after correction
for bias, confidence intervals for θk. The correction for bias is obtained as follows:
we want the corrected empirical d.f. to be centered on θ̃k, the bias corrected
estimator of θk. Therefore, the empirical d.f. of θ̂∗k,b has to be shifted by 2b̂iask to
the left since a correction of 1b̂iask would center on the biased θ̂k rather than θ̃k.
Hence we now consider now the empirical d.f. of θ̃∗k,b, b = 1, . . . , B, where:

θ̃∗k,b = θ̂∗k,b − 2b̂iask. (2.17)

Then the usual percentile confidence interval for θk with intended coverage (1−2α)
is given by: (

θ̂k,low, θ̂k,up
)

=
(
θ̃∗(α)
k , θ̃∗(1−α)

k

)
(2.18)

where θ̃∗(α)
k indicate the 100 · αth percentile of the empirical d.f. of θ̃∗k,b, b =

1, . . . , B.
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If the empirical d.f. of θ̃∗k,b is skewed, it is often preferable to center the median
of the distribution on θ̃k. This is achieved through the following median-bias
corrected confidence intervals (see Efron (1982)):

(
θ̂k,low, θ̂k,up

)
=

(
θ̃∗(α1)
k , θ̃∗(α2)

k

)
(2.19)

where
α1 = Φ(2ẑ0 + z(α))
α2 = Φ(2ẑ0 + z(1−α))

ẑ0 = Φ−1

(
#(θ̃∗

k,b<θ̃k)

B

)

Φ is the standard normal cumulative d.f. and Φ(z(α)) = α.

Roughly speaking, ẑ0 measures the discrepancy between the median of θ̃∗ and θ̃
in normal units. If there is no bias, ẑ0 = 0, then α1 = α and α2 = 1 − α.

The main question remains: how should P̂ be chosen? Since the answer de-
pends on the estimation method M, the next section presents briefly the usual
nonparametric estimators proposed in the literature, then section 4 will address
the basic issue.

3 Nonparametric Frontier Estimation
The DEA approach is based on Farrell’s (1957) ideas. It relies on the assumption
of the convexity of Ψ (Charnes, Cooper and Rhodes (1978)). It typically involves
measurement of efficiency for a given unit (xk, yk) relative to the boundary of the
convex hull of X = {(xi, yi), i = 1, . . . , n}. More precisely, we have∗:

Ψ̂DEA = {(x, y) ∈ IRp+q|y ≤
n∑

i=1

γiyi;x ≥
n∑

i=1

γixi;
n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

(3.1)
Then we obtain from (2.4) the input-efficient boundary for the output level y †

̂∂X(y) = {x|y ≤
n∑

i=1

γiyi; θx <
n∑

i=1

γixi; θ < 1;
n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

(3.2)

∗This is the definition of Ψ̂DEA with varying returns to scale. If the equality constraint in
(3.1) is replaced by the inequality

∑n

i=1
γi ≤ 1, this add the origin in the feasible set and implies

decreasing returns to scale. For constant returns to scale this constraint is suppressed.
†Note that ̂∂X(y) is only defined for y such that:

y ≤
n∑

i=1

γiyi;

n∑

i=1

γi = 1; γi ≥ 0 i = 1, . . . , n.

In particular, if q = 1, it is not defined if y > max(y1, . . . , yn).
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Finally, for any given point (xk, yk), θ̂k is obtained by (2.9). It is computed by
solving the following linear program:

θ̂k = min{θ|yk ≤
n∑

i=1

γiyi; θxk ≥
n∑

i=1

γixi; θ > 0;
n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

(3.3)
In fact, θ̂k measures the radial distance between the point of interest (xk, yk)
and (x̂∂(yk), yk) where x̂∂(yk) is the level of the inputs the unit should reach in
order to be on the efficient boundary of Ψ̂DEA, with the same level of output
yk and the same proportion of inputs (i.e. moving from xk to x̂∂(yk) along
the ray θxk); i.e.,

x̂∂(yk) = θ̂kxk. (3.4)

Note that Ψ̂DEA ⊆ Ψ, and so ̂∂X(y) is an downward-biased estimator of ∂X(y).
For the kth observed production unit (xk, yk) ∈ Ψ̂DEA, θ̂k ≤ 1 is an upward-biased
estimator of θk. If we choose an (unobserved) point (x′, y′) ∈ Ψ but /∈ Ψ̂DEA (see
footnote 2), then θ̂′ > 1, confirming the downward bias of ∂X̂(y). In this case θ̂′

would be interpreted as the proportionate increase in inputs required to move the
point (x′, y′) onto the boundary of Ψ̂DEA, computed from X .

The consistency of the DEA estimator of Ψ has been investigated by Ko-
rostelev, Simar and Tsybakov (hereafter KST) (1995) for the case q = 1,who show
that under very weak general conditions ((x, y) have a strictly positive density on
∂X(y)) Ψ̂DEA is, among the convex sets with monotone boundaries, the maximum
likelihood estimator of Ψ.

The convergence rate of an estimator Ψ̂ to Ψ depend on the criterion chosen
to appreciate the discrepancy between the two sets. In this general setup, the
Lebesgue measure (volume) of the symmetric difference is often chosen:

d∆(Ψ, Ψ̂) = mes (Ψ∆Ψ̂). (3.5)

It is proved in KST (1995) that EP(n2/p+2d∆(Ψ, Ψ̂DEA)) is asymptotically bounded.
This means that for large values of n, the discrepancy between Ψ and Ψ̂DEA is
Op(n− 2

p+2 ). It is further proved that no other estimator, in the class of convex
sets with monotone boundaries can converge with a faster rate. Although
optimal, the achieved convergence rate is very low if p increases.

The FDH estimator proposed by Deprins et al. (1984) provides an alterna-
tive nonparametric estimate of Ψ. The FDH estimator relaxes the assumption of
convexity of Ψ and may be defined as:

Ψ̂FDH = {(x, y) ∈ IRp+q
+ | y ≤ yi, x ≥ xi, (xi, yi) ∈ X}. (3.6)

Ψ̂FDH is the union of all positive orthants in the inputs and of the negative orthants
in the outputs whose origin coincides with the observed points (xi, yi) ∈ X . To
stress the analogy with the DEA estimator Ψ̂DEA, note that (3.6) may be rewritten
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as:

Ψ̂FDH = {(x, y) ∈ IRp+q
+ | y ≤

n∑

i=1

γiyi;x ≥
n∑

i=1

γiyi;x ≥
n∑

i=1

γixi;

n∑

i=1

γi = 1; γi ∈ {0, 1}, i = 1, . . . , n}. (3.7)

Therefore, definitions of ̂∂X(y) and θ̂k corresponding to Ψ̂FDH follow from (3.2)
and (3.3) after replacing the constraint γi ≥ 0 with γi ∈ {0, 1}. ‡

The consistency of Ψ̂FDH has been investigated for the case q = 1 by KST
(1992) and (1995). Here, Ψ̂FDH is, under very weak general conditions, among the
sets with monotone boundaries, the maximum likelihood estimator of Ψ (the main
condition being again that the density of (x, y) is strictly positive on the frontier).
The convergence rate for Ψ̂FDH is analyzed in KST (1995) w.r.t. the Lebesgue
measure of the symmetric difference between an estimator Ψ̂ and Ψ given by (3.5).
In this case it is proved that EP(n

1
p+2 d∆(Ψ, Ψ̂FDH)) is asymptotically bounded.

For large n, d∆(Ψ, Ψ̂FDH) is Op(n−1/p+1) and again no other estimator, in the
class of sets with monotone boundaries, can converge with a faster rate. Note that
this convergence rate is lower than for DEA estimators, due to the more general
framework (no convexity assumptions).

In KST (1992), the Hausdorff metric is used to appreciate the discrepancy
between Ψ and an estimator Ψ̂:

dH(Ψ, Ψ̂) = max{max
z∈Ψ

d(z, Ψ̂),max
z∈Ψ̂

d(z,Ψ)} (3.8)

where d(z,A) = minw∈A |z − ω| is the Euclidean distance between a point z and

a set A. It is there shown that EP

((
n

logn

)1/p+1
dH(Ψ, Ψ̂FDH)

)
is asymptotically

bounded. This again is a very low rate of convergence when p is large.

4 The Bootstrap
From section 2, we know that the key to successful implementation of the bootstrap
is to find a reasonable estimate P̂ of the DGP, P.

4.1 General Theory

Since P generates X = {(xi, yi), i = 1, . . . , n}, a naive estimator of P would be
the empirical distribution function defined as the discrete distribution that puts

‡The definition (3.7) is convenient for stressing the analogy with DEA but is typically not
used for computational purposes. Rather the efficiency of a given unit (xk, yk) is easily computed
by the program:

θ̂k = min{θ | yk ≤ yi; θxk ≥ xi, (xi, yi) ∈ X}.
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probability 1
n on each point (xi, yi). Then a bootstrap sample X ∗ = {(x∗

i , y
∗
i ), i =

1, . . . , n} would simply be obtained by randomly sampling with replacement in X .
The strategy is certainly attractive since it is robust w.r.t. assumptions made on
the DGP. This is in the line of the “correlation model” proposed by Freedman
(1981) in regression frameworks. However, in the frontier framework, this does
not appear to provide a reasonable estimate of the DGP.

First, it does not reflect Farrell’s view of input inefficiency resulting from,
for a given value of y, corresponding values of x which deviate from x∂(y) in a
radial direction. Second, for some realizations of X ∗ produced from the empirical
distribution, ∂X̂∗(y) cannot be defined, and so the corresponding θ̂∗k also cannot
be defined (see footnote 2). In the regression framework, it is often preferable to
bootstrap on the “residuals” (see Freedman (1981), Wu (1986), and Efron and
Tibshirani (1993)). Here, the “residuals” are characterized by θ̂i. Basing the
bootstrap on the θ̂i will account for the fact that the observed inefficiencies are
conditional on the observed outputs as well as the observed frontier.

In fact, the DGP may be described as follows: for a given value of y (the
output vector), we know that x ∈ X(y). Due to the presence of inefficiency, x may
not be on ∂X(y) but is generated along a fixed ray (fixed proportion of inputs)
away from x∂(y). Therefore, a particular unit (xi, yi) may be considered as being
generated, conditionally on yi and on the observed proportion of inputs
by the random variables θi ∈ [0, 1] such that xi = x∂(yi)/θi. Suppose that the
process generating inefficiencies θi is the following:

(θ1, . . . , θn) ∼ iid F, (4.1)

where F is a d.f. on [0, 1].
Then the DGP, Pi generating xi conditionally on the observed output values

yi, and on the observed proportion of inputs is completely characterized by x∂(yi)
and F :

Pi = (x∂(yi), F ), i = 1, . . . , n, (4.2)

and finally the whole DGP is P = (P1, . . . ,Pn).
If ∂X(yi) and so x∂(yi) were known, we could calculate:

θi =
x∂(yi)
xi

and estimate F by their empirical distribution function. We don’t

know ∂X(yi), but we can use ̂∂X(yi) and hence x̂∂(yi) to calculate approximate
efficiency scores θ̂i (by the methods explained in section 3). An obvious estimate
of F is then the empirical distribution of the θ̂i:

F̂ : puts a probability
1
n

on θ̂i i = 1, . . . , n. (4.3)

Now defining
P̂i = (x̂∂(yi), F̂ ), i = 1, . . . , n, (4.4)

we know how to generate pseudo samples X ∗ = {x∗
i , yi} conditionally on yi

and on the observed proportions of inputs of the unit i, for i = 1, . . . , n.
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To generate X ∗, we first select at random with replacement θ∗i i = 1, . . . , n from
θ̂1, . . . , θ̂n:

θ∗1 , . . . , θ
∗
n ∼ iid F̂ . (4.5)

Then for i = 1, . . . , n, the bootstrap inputs are given by:

x∗
i =

x̂∂(yi)
θ∗i

=
θ̂i
θ∗i

xi. (4.6)

The general principles of section 2 can now be applied: From this pseudo-
sample X ∗ we can compute Ψ̂∗ and for any fixed point (xk, yk), ̂∂X∗(yk), x̂∗(yk),
and θ̂∗k.

In particular, consider a fixed production unit (x0, y0). The estimation of its
efficiency score depends on the chosen estimator Ψ̂ based on the sample X . For
instance if DEA is used we have by (3.3):

θ̂0 = min{θ|y0 ≤
n∑

i=1

γiyi; θx0 ≥
n∑

i=1

γixi; θ > 0;
n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

(4.7)
In order to compute its efficiency score w.r.t. to X ∗, we have to define the corre-
sponding estimator Ψ̂∗

DEA:

Ψ̂∗
DEA = {(x, y) ∈ IRp+q

+ |y ≤
n∑

i=1

γiyi;x ≥
n∑

i=1

γix
∗
i ;

n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

(4.8)
Note that Ψ̂∗

DEA ⊆ Ψ̂DEA, which in the bootstrap world mimics the original fact
Ψ̂DEA ⊆ Ψ. Then θ̂∗0 is obtained by solving the linear program (3.3):

θ̂∗0 = min{θ|y0 ≤
n∑

i=1

γiyi; θx0 ≥
n∑

i=1

γix
∗
i ; θ > 0

n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

(4.9)
In the bootstrap world (given P̂), θ̂∗0 may be viewed as an estimator of θ̂0, in the
same way as in the original world (given P), θ̂0 is an estimator of θ0. Formally,
by (2.11):

(θ̂∗0 − θ̂0) | P̂ ∼ (θ̂0 − θ0) | P. (4.10)

Hence, the sensitivity analysis of the efficiency θ̂0 of the production unit (x0, y0) can
be achieved along the lines of section 2 (correction for bias, percentile confidence
interval, ...)

In practical problems, one is typically interested in analyzing the sensitivity of
the efficiency scores θ̂i of the original units (xi, yi), i = 1, . . . , n. This is discussed
in section 5.

Remark (1): It should be noted that θ̂0, and consequently θ̂∗0 , are only defined

if y0 ≤
n∑

i=1

γiyi;
n∑

i=1

γi = 1, γi ≥ 0, i = 1, . . . , n (see footnote 2). Note also that θ̂0
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(as θ̂∗0) may be less, equal or larger than one (see section 3), but if θ̂0 ≥ 1, then
θ̂∗0 ≥ 1 with probability one.

Remark (2): Other DGP’s
The DGP P : (P1, . . . ,Pn) where Pi is given by (4.2) relies on a very re-

strictive hypothesis (4.1). This hypothesis validates the choice (4.5) of generating
θ∗1 , . . . , θ

∗
n. A less restrictive hypothesis would be

θi ∼ independent Fi (4.11)

allowing the inefficiency levels to be related to xi. Unfortunately F̂i is not available
from one single observation of θ̂i. In this framework the wild bootstrap proposed
by Härdle and Mammen (1991) does not apply. Of course, if a panel of data
X = {(xit, yit); i = 1, . . . , n; t = 1, . . . , T} were available, the hypothesis (4.1)
could then be replaced by

θi1, . . . , θiT ∼ iid Fi. (4.12)

Then F̂i could be obtained from θ̂i1, . . . , θ̂iT and θ∗it, t = 1, . . . , T could be gener-
ated according to:

θ∗i1, . . . , θ
∗
iT ∼ iid F̂i. (4.13)

This is the spirit of Simar (1992), and, as observed there, is certainly a more
comfortable scenario in which to infer the efficiency of a given unit, provided one
is willing to assume that the level of inefficiency does not vary over time.

Remark (3): The DEA (or FDH) estimator may produce a large number of
ostensibly efficient units with θ̂i = 1 (the number of such units is likely to increase
with p, the number of inputs). Consequently, F̂ will provide a poor estimate of
F near the upper bound (1) of its support (indeed, it can be shown that near
the upper bound, the empirical distribution function is not a consistent estimator
of F ; see Efron and Tibshirani (1993) for an example). The problem is that F
is (typically) by definition continuous on [0, 1], whereas with probability one, F̂
puts a positive mass at θ = 1. Furthermore, it is well-known that it is difficult
to estimate F from the empirical distribution F̂ in the extreme tails when, as is
the case here, the support of F is bounded. Note that in the context of frontier
efficiency estimation, only the upper bound for θ (namely θ = 1) raises a problem.
In particular, bootstrap estimates may be inconsistent if this issue is not addressed.

4.2 The Smoothed Bootstrap

One way to improve the estimation of F and avoid the problem outlined in Remark
(3) above is to smooth the empirical F̂ (see Silverman and Young (1987)). A naive
smoothed estimator is provided by a Gaussian kernel density estimate
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F̂G,h(t) =
1
nh

n∑

i=1

φ

(
t− θ̂i
h

)
, (4.14)

where the smoothing parameter h is fixed and φ is the standard normal p.d.f.
Unfortunately, this kernel estimate does not take into account the boundary con-
dition that t < 1. (The density estimated by (4.14) can be shown to be inconsistent
and asymptotically biased when the support of F is bounded). The reflection
method described by Silverman (1986) is a simple tool to overcome this difficulty.

Consider that each point θ̂i ≤ 1 is reflected by its symmetric image 2− θ̂i ≥ 1,
i = 1, . . . , n and then estimate the kernel density from this set of 2n points. From
(4.14),

Ĝh(t) =
1

2nh

n∑

i=1

[
φ

(
t− θ̂i
h

)
+ φ

(
t− 2 + θ̂i

h

)]
. (4.15)

Now define

F̂s,h(t) =
{

2Ĝh(t) if t ≤ 1
0 otherwise,

(4.16)

It can be proven that F̂s,h(t) is a consistent estimator of F for all t ≤ 1.
The problem of generating samples θ∗1 , . . . , θ

∗
n from F̂s,h(t) is very simple. Let

β∗
1 , . . . , β

∗
n be a simple bootstrap sample from θ̂1, . . . , θ̂n (obtained by drawing with

replacement from θ̂1, . . . , θ̂n). It is easy to show (by the convolution formula; Efron
and Tibshirani (1993)) that

ti = β∗
i + hε∗i ∼ Ĝ1,h(t) =

1
n

n∑

i=1

1
h
φ

(
t− θ̂i
h

)
, (4.17)

where ε∗i is a random drawn from a standard normal. Similarly, let tRi be the
reflection of ti w.r.t. 1. Then we have

tRi = 2 − β∗
i − hε∗i ∼ Ĝ2,h(t) =

1
n

n∑

i=1

1
h
φ

(
t− 2 + θ̂i

h

)
. (4.18)

Note that Ĝh(t) given by (4.15) may be written as:

Ĝh(t) =
1
2
Ĝ1,h(t) +

1
2
Ĝ2,h(t). (4.19)

Consider now the following random generator:

θ̃∗i =
{

β∗
i + hε∗i if β∗

i + hε∗i ≤ 1
2 − β∗

i − hε∗i otherwise. (4.20)

It is straightforward to prove using (4.16)-(4.19) that:

θ̃∗i ∼ F̂s,h(t) (4.21)
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Finally, it may be proven by standard manipulations that the obtained boot-
strap random variable θ̃∗i has the following properties:

E(θ̃∗i | θ̂1, . . . , θ̂n) = θ̂ (4.22)

V (θ̃∗i | θ̂1, . . . , θ̂n) = σ̂2
θ̂

+ h2, (4.23)

where σ̂2
θ is the “plug in” estimator of the variance of θ̂1, . . . , θ̂n, i.e.,

σ̂2
θ =

1
n

n∑

i=1

(θ̂2
i − θ̂)2. (4.24)

As is typical when kernel estimators are used, the variance of the generated boot-
strap sequence must be corrected by computing

θ∗i = β
∗

+
1√

1 +
h2

σ̂2
θ̂

(θ̃∗i − β
∗
), (4.25)

where β
∗

=
1
n

n∑

i=1

β∗
i .

It may be proven by straightforward manipulation that

E(θ∗i | θ̂1, . . . , θ̂n) = θ̂ (4.26)

V (θ∗i | θ̂1, . . . , θ̂n) = σ̂2
θ̂
(1 +

h2

n(σ̂2
θ̂

+ h2)
) (4.27)

Thus, the sequence θ∗i obtained by the smoothed bootstrap has better properties
than θ̃∗i . The smoothed bootstrap steps for generating θ∗1 , . . . , θ

∗
n from θ̂1, . . . , θ̂n

are summarized by the following steps:

[1] Generate β∗
1 , . . . , β

∗
n from F̂ (drawing with replacement from θ̂1, . . . , θ̂n).

[2] Define the sequence θ̃∗1 , . . . , θ̃
∗
n using (4.20).

[3] Define the bootstrap sequence θ∗1 . . . θ
∗
n using (4.25).

5 Sensitivity analysis of the original efficiency
scores

In the usual application, the researcher is confronted with a set of observations
X = {(xi, yi) | i = 1, . . . , n} corresponding to n production units. For each of
the n observed units, we wish to analyze the sensitivity of the efficiency scores
estimated by θ̂1, . . . , θ̂n. We consider two approaches, which differ primarily in
how the reference set is constructed: the Leave-One-Out (LOO) Bootstrap, and
the Complete Bootstrap.

12



      

5.1 The Leave-One-Out Bootstrap

Given a set of n observations X as described above, consider the problem of analyz-
ing the sensitivity of the measured efficiency score for the kth observation (xk, yk).
The LOO bootstrap involves using the reference set

X(k) = {(xi, yi) | i = 1, . . . , k − 1, k + 1, . . . , n}, (5.1)

rather than X to compute the efficiency score for the k unit.
This approach has been used by Andersen and Petersen (1989) and by Lovell

et al. (1993) to allow a complete ranking of n production units. Charnes et al.
(1986, 1991) and Thrall (1993) have used this approach to identify separate classes
of efficient observations. Wilson (1995) uses this approach to identify influential
observations.

We may apply the bootstrap technique of section 4 by replacing (x0, y0) with
(xk, yk) and replacing X with X(k). This allows us to measure the sensitivity of
the distance of the fixed point (xk, yk) to the estimated frontier ̂∂X(k)(yk), relative
to the sampling variation of the estimator evaluated from the (n − 1) remaining
points X(k).
The DGP, P(k) = (P1,(k), . . . ,Pk−1,(k),Pk+1,(k), . . . ,Pn,(k)), is in fact estimated
(as in (4.4)) by

P̂j,(k) = (x̂∂
(k)(yj), F̂(k)), j = 1, . . . , n; j (= k, (5.2)

where x̂∂
(j)(yk) and F̂(k) are defined as in section 4 with X replaced by the leave-

one-out set X(k). The key relation (2.10) here becomes:

(θ̂∗k − θ̂k,(k)) | P̂(k) ∼ (θ̂k,(k) − θk) | P(k), (5.3)

where θ̂k,(k) is the initial estimate of θk from the data set X(k):

θ̂k,(k) = min{θ | θxk ∈ ̂X(k)(yk)}. (5.4)

The bootstrap reference sets are thus X ∗
(k), generated as X ∗, by drawing with

replacement in θ̂j,(k), j = 1, . . . , n, j (= k. This provides in the Monte-Carlo loop,
θ̂∗k,b for b = 1, . . . , B. For the DEA approach, the LOO bootstrap algorithm is
summarized by the following steps:

[1] Select a production unit k in X

[2] Define X(k) and compute θ̂j,(k), j = 1, . . . , n, by solving

θ̂j,(k) = min{θ | yj ≤
n∑

i=1
i"=k

γiyi; θxj ≥
n∑

i=1
i"=k

γixi; θ > 0;

n∑

i=1
i"=k

γi = 1; γi ≥ 0, i = 1, . . . , n, i (= k}
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[3] Define the empirical d.f. F̂(k) putting mass
1

n− 1
on θ̂j,(k), j = 1, . . . , n;

j (= k.

[4] Generate a random sample of size (n − 1) from a smooth version of F̂(k) :
θ∗j,(k),b; j = 1, . . . , n; j (= k.

[5] Compute X ∗
(k),b = {(x∗

jb, yj); j = 1, . . . , n; j (= k}

where x∗
jb =

θ̂j,(k)

θ∗j,(k),bxj

[6] Compute the bootstrap estimate: θ̂∗k,b

θ̂∗k,b = min{θ | yk ≤
n∑

i=1
i"=k

γiyi; θxk ≥
n∑

i=1
i"=k

γix
∗
i,b; θ > 0;

n∑

i=1
i"=k

γi = 1; γi ≥ 0, i = 1, . . . , n, i (= k}

[7] Repeat [4] - [6] B times, providing

{θ̂∗k,b, b = 1, . . . , B}

[8] Repeat [1] - [7] for k = 1, . . . , n.

This procedure has two important drawbacks. First, by omitting the kth obser-
vation from X and estimating the reference set Ψ by Ψ̂(k), important information
about the frontier ∂X(yk) is lost. In cases where θ̂k = 1, the estimator θ̂k,(k) will
be biased upward even more than the corresponding estimator θ̂k. More generally,
for finite samples, P̂(k) gives a less precise estimate of the DGP P than does P̂;
this problem becomes more severe as n becomes smaller. Secondly, for at least
one k ∈ {1, . . . , n}, θ̂k,(k) and therefore θ̂∗k,b will not be defined due to infeasible
constraints in the linear programs in steps [2] and [6] above (see footnote 2).

Both of these drawbacks are avoided in the Complete Bootstrap.

5.2 The Complete Bootstrap

There is no need to delete observations from the reference set in order to examine
the sensitivity of efficiency scores. The procedure in section 4 may be followed
by allowing each observation (xk, yk) k = 1, . . . , n to replace (x0, y0) sequentially.
This allows us to analyze the sensitivity of the distance from a fixed point (xk, yk)
to the estimated frontier ∂X̂(yk), relative to the sampling variation of the estimator
of the frontier, taking into account the entire set of observations X . For the DEA
approach, the complete bootstrap algorithm is summarized by the following steps:
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[1] For each (xk, yk) k = 1, . . . , n compute θ̂k by the linear program (3.3)

[2] Define the empirical d.f. F̂ putting mass
1
n

on θ̂i, i = 1, . . . , n

[3] Generate a random sample of size n from a smoothed version of F̂ :

θ∗1b, . . . , θ
∗
nb

[4] Compute X ∗
b = {(x∗

ib, yi) i = 1, . . . , n}

where x∗
ib =

θ̂i
θ∗ib

xi, i = 1, . . . , n

[5] Compute the bootstrap estimate of θ̂k : θ̂∗k,b for k = 1, . . . , n, by solving

θ̂∗k,b = min{θ|yk ≤
n∑

i=1

γiyi, θxk ≥
n∑

i=1

γix
∗
k,b; θ > 0;

n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}

[6] Repeat [3] - [5] B times to provide for k = 1, . . . , n a set of estimates

{θ̂∗k,b, b = 1, . . . , B}.

6 Empirical Illustration
To illustrate the two approaches proposed in section 5, we use data from Färe,
Grosskopf, and Kokkelenberg (1989) on 19 electric utilities operating in 1978. The
data contain information on one output (electric power, measured in KWH) and
three inputs (labor, measured by average annual employment; fuel; and capital,
represented by installed capacity measured in MW).

Figure 1 shows the histogram of θ̂1, . . . , θ̂19, along with its smooth version for
selected bandwidths h (h = 0.01, 0.02, 0.03, 0.04). As expected, small values of h
give smooth density estimates which follow the empirical d.f. and place too much
weight near the upper bound 1. Large values of h provide oversmooth density
estimates with long tails at the left (below the smallest observed value of θ̂). We
choose h = 0.02 which provides a reasonably smooth estimate of F . Table 1 shows
the results for the complete bootstrap for B = 500.

The last four columns of Table 1 provides the confidence intervals: (θ̃∗(0.025)k ,
θ̃∗(0.975)) the 95% bias corrected confidence interval for θ (see (2.18)), and its
correction for centering the intervals on θ̃k (see (2.19)).

Note that here, the median of θ̃∗k,b being not so far from θ̃k the latter confidence
intervals are very similar to the preceding ones. This table allows to appreciate
the sensitivity of the efficiency measures w.r.t. the sampling variations. It shows
clearly how careful should be the relative comparisons of the performances among
firms based on θ̂k (compare the first two rows of Table 1). A graphical representa-
tion of the distribution of θ̃∗k,b b = 1, . . . , 500, k = 1, . . . , 19 is displayed on figure 2.
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The box-plots there facilitate the comparison among firms. For each firm the box
represents the 50% mid range values of θ̃∗k,b; its length is the interquantile range
(IQR). The whiskers define the natural bounds of the distributions (the mean ±1.5
(IQR)), the crosses represent outliers standing out of the regular bounds.

Looking at the IQR’s, the firms #1, 7, 8, 9, 10, 16 stand below the other ones,
(particularly the firm #8). No firm looks like dominating the others, although the
regular good behavior of firms #4, 11, 13 and 19 should be stressed.

The sensitivity of the results to the chosen bandwidth h in the bootstrap may
be appreciated by looking to Tables 2 and 3. The results are not really sensitive
to this choice although for h = 0.01, more weight is given near the upper bound of
θ and on the contrary for h = 0.04 all the distributions are slightly moved to the
left. Table 4 illustrates the results of the Leave-one out bootstrap. Note that the
sensitivity analysis cannot be performed for the unit #15, note also that a few θ̂k
are larger than one. Note also that for firms such that θ̂k < 1, the results are very
similar (as expected) to the complete bootstrap.
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TABLE 1: COMPLETE BOOTSTRAP with bandwidth h = 0.0200

k θ̂k θ̃k b̂iask median std. dev. 2.5% 97.5% 2.5% 97.5%
of θ̃∗k,b bias corrected centered on θ̃k

1 0.8692 0.8475 0.0217 0.8440 0.0151 0.8292 0.8869 0.8308 0.9008
2 1.0000 0.9270 0.0730 0.9124 0.0592 0.8585 1.0463 0.8592 1.0630
3 1.0000 0.9427 0.0573 0.9325 0.0457 0.8892 1.0468 0.8900 1.0527
4 0.9307 0.9136 0.0170 0.9110 0.0101 0.9004 0.9372 0.9013 0.9458
5 1.0000 0.9319 0.0681 0.9168 0.0536 0.8687 1.0485 0.8698 1.0621
6 0.9071 0.8873 0.0199 0.8827 0.0144 0.8710 0.9283 0.8728 0.9375
7 0.8915 0.8717 0.0199 0.8660 0.0180 0.8550 0.9245 0.8577 0.9475
8 0.8210 0.8036 0.0174 0.8008 0.0120 0.7896 0.8379 0.7909 0.8496
9 0.8892 0.8593 0.0300 0.8475 0.0295 0.8329 0.9410 0.8364 0.9828
10 0.8469 0.8342 0.0127 0.8326 0.0072 0.8253 0.8525 0.8263 0.8609
11 0.9534 0.9376 0.0158 0.9355 0.0109 0.9255 0.9685 0.9267 0.9829
12 1.0000 0.9308 0.0692 0.9075 0.0596 0.8658 1.0578 0.8680 1.0741
13 0.9602 0.9383 0.0219 0.9344 0.0147 0.9211 0.9725 0.9225 0.9864
14 1.0000 0.9254 0.0746 0.9035 0.0652 0.8553 1.0731 0.8578 1.0848
15 1.0000 0.9276 0.0724 0.9047 0.0644 0.8592 1.0727 0.8610 1.0896
16 0.8885 0.8732 0.0153 0.8702 0.0100 0.8611 0.8979 0.8624 0.9082
17 1.0000 0.9303 0.0697 0.9161 0.0535 0.8649 1.0437 0.8662 1.0545
18 1.0000 0.9388 0.0612 0.9319 0.0465 0.8819 1.0436 0.8828 1.0543
19 0.9441 0.9285 0.0156 0.9266 0.0086 0.9167 0.9485 0.9178 0.9578
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TABLE 2: COMPLETE BOOTSTRAP with bandwidth h = 0.0100

k θ̂k θ̃k b̂iask median std. dev. 2.5% 97.5% 2.5% 97.5%
of θ̃∗k,b bias corrected centered on θ̃k

1 0.8692 0.8533 0.0160 0.8468 0.0154 0.8385 0.8971 0.8399 0.9187
2 1.0000 0.9307 0.0693 0.9178 0.0620 0.8629 1.0511 0.8634 1.0799
3 1.0000 0.9480 0.0520 0.9432 0.0481 0.8972 1.0590 0.8973 1.0598
4 0.9307 0.9193 0.0114 0.9159 0.0095 0.9092 0.9424 0.9108 0.9661
5 1.0000 0.9356 0.0644 0.9250 0.0565 0.8730 1.0560 0.8733 1.0756
6 0.9071 0.8930 0.0141 0.8872 0.0143 0.8803 0.9335 0.8823 0.9591
7 0.8915 0.8768 0.0147 0.8691 0.0189 0.8631 0.9339 0.8655 0.9735
8 0.8210 0.8090 0.0121 0.8044 0.0122 0.7981 0.8464 0.7998 0.8598
9 0.8892 0.8637 0.0255 0.8480 0.0313 0.8395 0.9489 0.8411 0.9777
10 0.8469 0.8394 0.0075 0.8376 0.0061 0.8332 0.8561 0.8340 0.8730
11 0.9534 0.9436 0.0098 0.9405 0.0106 0.9351 0.9832 0.9362 1.0042
12 1.0000 0.9341 0.0659 0.9145 0.0624 0.8697 1.0600 0.8708 1.0744
13 0.9602 0.9446 0.0156 0.9392 0.0148 0.9309 0.9841 0.9332 1.0278
14 1.0000 0.9285 0.0715 0.9105 0.0678 0.8585 1.0755 0.8600 1.0853
15 1.0000 0.9303 0.0697 0.9114 0.0676 0.8617 1.0747 0.8627 1.0894
16 0.8885 0.8785 0.0100 0.8750 0.0093 0.8696 0.9045 0.8713 0.9389
17 1.0000 0.9340 0.0660 0.9242 0.0567 0.8694 1.0582 0.8703 1.0705
18 1.0000 0.9441 0.0559 0.9404 0.0488 0.8898 1.0436 0.8902 1.0566
19 0.9441 0.9345 0.0096 0.9323 0.0075 0.9262 0.9536 0.9277 0.9685
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TABLE 3: COMPLETE BOOTSTRAP with bandwidth h = 0.0400

k θ̂k θ̃k b̂iask median std. dev. 2.5% 97.5% 2.5% 97.5%
of θ̃∗k,b bias corrected centered on θ̃k

1 0.8692 0.8380 0.0312 0.8362 0.0155 0.8157 0.8776 0.8164 0.8829
2 1.0000 0.9209 0.0791 0.9094 0.0540 0.8530 1.0285 0.8544 1.0406
3 1.0000 0.9338 0.0662 0.9263 0.0423 0.8775 1.0259 0.8803 1.0534
4 0.9307 0.9038 0.0269 0.9014 0.0116 0.8863 0.9290 0.8881 0.9354
5 1.0000 0.9257 0.0743 0.9119 0.0499 0.8631 1.0310 0.8675 1.0666
6 0.9071 0.8771 0.0300 0.8739 0.0148 0.8570 0.9120 0.8584 0.9182
7 0.8915 0.8625 0.0290 0.8571 0.0179 0.8422 0.9091 0.8449 0.9284
8 0.8210 0.7947 0.0264 0.7922 0.0127 0.7775 0.8269 0.7791 0.8325
9 0.8892 0.8506 0.0386 0.8417 0.0276 0.8212 0.9223 0.8246 0.9601
10 0.8469 0.8253 0.0216 0.8239 0.0090 0.8131 0.8466 0.8139 0.8538
11 0.9534 0.9276 0.0258 0.9246 0.0121 0.9117 0.9548 0.9135 0.9643
12 1.0000 0.9247 0.0753 0.9112 0.0546 0.8606 1.0485 0.8650 1.0825
13 0.9602 0.9280 0.0322 0.9243 0.0161 0.9064 0.9676 0.9079 0.9775
14 1.0000 0.9200 0.0800 0.9005 0.0613 0.8520 1.0698 0.8560 1.1046
15 1.0000 0.9224 0.0776 0.9045 0.0592 0.8552 1.0665 0.8595 1.0915
16 0.8885 0.8638 0.0246 0.8616 0.0114 0.8477 0.8891 0.8497 0.8980
17 1.0000 0.9238 0.0762 0.9131 0.0490 0.8588 1.0301 0.8612 1.0383
18 1.0000 0.9294 0.0706 0.9219 0.0435 0.8703 1.0285 0.8721 1.0375
19 0.9441 0.9186 0.0255 0.9170 0.0103 0.9031 0.9431 0.9043 0.9475
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TABLE 4: LEAVE-ONE OUT BOOTSTRAP with bandwidth
h = 0.0200

k θ̂k θ̃k b̂iask median std. dev. 2.5% 97.5% 2.5% 97.5%
of θ̃∗k,b bias corrected centered on θ̃k

1 0.8692 0.8423 0.0269 0.8413 0.0156 0.8199 0.8792 0.8201 0.8828
2 1.1309 1.0495 0.0814 1.0393 0.0543 0.9820 1.1620 0.9834 1.1826
3 1.0510 0.9777 0.0734 0.9621 0.0540 0.9126 1.1066 0.9158 1.1169
4 0.9307 0.9122 0.0185 0.9097 0.0101 0.8986 0.9353 0.9014 0.9494
5 1.0978 1.0291 0.0687 1.0143 0.0468 0.9716 1.1334 0.9755 1.1545
6 0.9071 0.8845 0.0226 0.8801 0.0144 0.8664 0.9201 0.8685 0.9295
7 0.8915 0.8669 0.0246 0.8581 0.0218 0.8466 0.9256 0.8496 0.9535
8 0.8210 0.8016 0.0195 0.7996 0.0115 0.7861 0.8313 0.7874 0.8443
9 0.8892 0.8442 0.0451 0.8297 0.0370 0.8042 0.9304 0.8066 0.9468
10 0.8469 0.8331 0.0138 0.8317 0.0069 0.8233 0.8483 0.8241 0.8533
11 0.9534 0.9360 0.0174 0.9337 0.0117 0.9222 0.9682 0.9240 0.9813
12 1.1465 1.0930 0.0535 1.0864 0.0343 1.0480 1.1733 1.0523 1.1893
13 0.9602 0.9326 0.0276 0.9287 0.0175 0.9096 0.9764 0.9115 0.9905
14 1.4857 1.3853 0.1004 1.3629 0.0763 1.2904 1.5332 1.2927 1.5558
15 - - - - - - - - -
16 0.8885 0.8714 0.0171 0.8693 0.0099 0.8584 0.8993 0.8607 0.9058
17 1.1026 1.0316 0.0709 1.0255 0.0439 0.9717 1.1323 0.9739 1.1436
18 1.0675 1.0044 0.0630 0.9910 0.0494 0.9462 1.1139 0.9485 1.1261
19 0.9441 0.9267 0.0174 0.9246 0.0099 0.9138 0.9500 0.9149 0.9560
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