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Abstract

In Grosskopf (1995) and Banker (1995) different approaches and
problems of statistical inference in DEA frontier models are presented.
This paper focuses on the basic characteristics of DEA models from a
statistical point of view. It arose from comments and discussions on
both papers above. The framework of DEA models is deterministic
(all the observed points lie on the same side of the frontier) never-
theless a stochastic statistical model can be constructed once a data
generating process is defined. So statistical analysis may be performed
and sampling properties of DEA estimators can be established. How-
ever, practical statistical inference (like test of hypothesis, confidence
intervals,...) still needs artifacts like the bootstrap to be performed.
A consistent bootstrap relies also on a clear definition of the data gen-
erating process and on a consistent estimator of it: the approach of
Simar and Wilson (1995) is described. Finally, some trails are pro-
posed for introducing stochastic noise in DEA models, in the spirit of
the Kneip-Simar (1995) approach.

∗ This paper summarizes the discussions presented at the Advanced Research
Workshop on Efficiency Measurement, Odense University, 22-24 may 1995, on the
papers presented by Shawna Grosskopf (1995) and Rajiv Banker (1995). Many
thanks to both authors for their nice papers and for providing me the opportunity
of this discussion.
∗∗ Research support from the contract “Projet d’Actions de Recherche Concertées”
and the Belgian Programme on Interuniversity Poles of Attraction, initiated by
the Belgian State are gratefully acknowledged.
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1 Introduction

The papers of Grosskopf (1995) and Banker (1995) are very important
and contribute both to develop reflections on the crucial but hard
problem of how to conduct statistical inference in DEA models.

A nice job is done in Grosskopf’s survey. It was not an easy task to
summarize the different approaches of statistical inference in nonpara-
metric efficiency analysis: the result is good, the survey is stimulating
and raises good questions for future research.

Banker’s paper devotes attention to one important aspect of statis-
tical analysis: hypotheses testing. The paper is a summary of his own
several papers on the subject adapting a very good simple argument to
various testing problems. He then analyzes their performance through
Monte-Carlo simulations. His ideas are very original and will certainly
motivate new developments although their practical uses have still to
be refined (see below).

This paper is organized as follows: section 2 presents the basic fea-
tures of so-called deterministic frontiers, showing clearly that a statis-
tical (stochastic) model for the deterministic frontiers can be defined
once the Data Generating Process (DGP) is correctly provided. A way
of defining a DGP in the DEA framework is proposed in section 3. A
statistical analysis can then be conducted, but due to the complexity
of the process, the bootstrap seems to be, till now, an attractive so-
lution to approximate the desired inference. In particular, it provides
an alternative to Banker’s approximations. Section 4 then proposes
some trails for introducing stochastic frontiers in the framework of
DEA techniques and clarifies the differences between two proposed
“two-step” procedures quoted in Grosskopf’s survey.

2 Are DEA models deterministic?

The DEA type models are extensions of the very simple ideas de-
veloped in Farrell (1957). They were popularized in a modern (OR)
fashion by Charnes, Cooper and Rhodes (1978) and extended to pos-
sible nonconvex attainable sets by Deprins, Simar and Tulkens (1984)
(the FDH models). All those models are often classified in the liter-
ature as being (nonparametric) deterministic models as opposed to
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econometric models as if the former had no statistical backgrounds∗.
This impression is confirmed by the fact that, till now, many of the
applications using DEA provided only point estimates of the efficiency
measures.

However this way of looking at deterministic models is certainly too
narrow and the survey of Grosskopf (1995) and the paper of Banker
(1995) will certainly contribute to change this (general) state of mind.
It is now clear that statistical inference (in the sense of a stochas-
tic appreciation of statistical estimators) is possible in deterministic
frontiers although it might be still complicated to perform. In a cer-
tain sense the word “deterministic” is inappropriate, although I will
continue to use it to avoid confusion.

Deterministic is in fact used to characterize the property that all
the observations generated by some DGP lie on one side of the frontier.
It is a very old idea whose main interest lies in its apparent simplicity
for estimating the models.

Let us illustrate that first in a very simple model: this will be useful
to understand the more complex case of section 3. In the output
oriented case, if the deterministic frontier is parametric and if the
output is one dimensional, the model is easily defined as e.g. in Greene
(1980)

yi = x′
iβ − ti i = 1, . . . , n (1)

where yi ∈ IR is the output, xi ∈ IRp is the vector of inputs and ti ≥ 0
denotes the random (one-sided) departure from the frontier. This term
ti represents a combination of random elements (including eventually
some elements of noise) which explain why an observed firm is below
the frontier and so is apparently inefficient.

Clearly, in Greene’s approach, statistical inference can be done
within the limit of the statistical model (1) which precludes that some
observations could be above the frontier. Once a particular proba-
bility law is chosen for ti (say F (t)) the DGP is completely defined:
conditional on the observed xi, the firm i produces a random level
of production yi at a random distance ti from the frontier x′

iβ. The
unknown parameters of the models are (β, F ) to be estimated from

∗The amusing thing is that the pioneer paper of Farrell appeared in one of the
most famous statistical journals.

3



         

the sample {(xi, yi), i = 1, . . . , n}. The DGP is thus completely char-
acterized by (β, F ).

The basic problem is that, due to a lack of modeling and identifica-
tion, the estimated values of t̂i are used as a first proxy for estimating
the inefficiency of the firms. Thus the error term is in fact interpreted
as capturing inefficiency only, as if no noise or no other random el-
ements were present. The stochastic model of Aigner, Lovell and
Schmidt (1977) provides a solution to this: a random term ǫi ∈ IR
capturing noise is convoluted with ti capturing inefficiency†.

In a nonparametric setup, it may be much more delicate to define
the DGP but this can be done (see the next section). The construc-
tion will be in the spirit of what has been done for the simple model
(1) but taking into account the multidimensional and nonparametric
framework of the DEA. The DGP will again be characterized by a set
of (functional) unknown parameters: the stochastic nature of the sam-
ple can be defined. So, conceptually, in “deterministic” nonparametric
frontier models, statistical inference can be conducted. However, due
to the functional nature of the parameters, the statistical properties
of the estimators are still hard to derive.

As pointed out above, the basic issue, and the basic limitation, of
the deterministic frontier (parametric or not), is the one sided nature
of the residuals. This point cannot be skipped and should never be
forgotten. In some situations this may be realistic (when e.g. variables
are averages over several periods and so, as a first approximation, the
noise can be considered as being averaged out) but in many situations
this is not natural (randomness of economic behavior, noise, errors of
measurement on the variables, ...). The use of so-called deterministic
models may be misleading in such cases. In particular, the presence of
possible outliers should lead the researcher, either to identify and elim-
inate them (see Grosskopf’s survey for references), or use stochastic
frontier models if they cannot be identified‡.

But this basic issue is not concerned with statistical inference, it is

†This is the elegant way to introduce noise but it raises identification problems
even in the simple parametric setup and complicates somewhat the mathematics
of the analysis (it is well known that a convolution of a real random variable with
a nonnegative one is hard to handle analytically).

‡A procedure proposed in section 4 may be viewed as one way to clean-up the
data for noise and for outliers.
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the issue of chosing the appropriate model for analyzing a problem§.
Once a “deterministic” model has been chosen, the estimates can be
analysed by statistical tools.

3 A data generating process for DEA

No statistical inference can be conducted without a clear description
of a statistical model which contains the description of the DGP¶.
This will be particularly important in this framework since we often
will need to use the bootstrap to approximate the desired sampling
distributions. Those approximations are indeed obtained by mimicing
the DGP; it may thus be very hazardous (and even inconsistent) to
use bootstrap if this DGP is not clearly defined.

In the case of a one dimensional output (in the output efficiency
oriented case) this is not too complicated‖. Banker (1993) introduces
the randomness of the data exactly as in model (1) above except that
now the DEA frontier is characterized by some unknown function g(x)
sharing some properties (concavity, monotonicity, ...). Roughly speak-
ing we have:

yi = g(xi) − ti, ti ≥ 0 (2)

with some restriction on F (t). Under this statistical model, observa-
tion of the sample (xi, yi) i = 1, . . . , n allows one to make inference
on the unknown functional parameters (g, F ). The DGP is now com-
pletely characterized by (g, F ).

Banker shows that the DEA estimator ĝ is the MLE of the un-
known g. He proves also its consistency.

Korostelev, Tsybakov and Simar (1995a) and (1995b) consider a
related but more general setup where (y, x1, . . . , xp) are distributed
according some unknown d.f. H(y, x1, . . . , xp) which gives probability

§The confusion there explain maybe why DEA models have occasionally been
criticized by some econometricians.

¶See Kneip and Simar (1995), section 2.1, for an exhaustive description of a
statistical model (including the DGP) in a very general setup of stochastic frontiers
with panel data.

‖The same could be said for a one dimensional input in the input efficiency
oriented case.
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one to the set y ≤ g(x1, . . . , xp). Here the DGP is completely charac-
terized by (g,H). Again, under restricted models for g (concavity and
monotonicity or monotonicity alone), DEA and FDH estimators ĝ are
the MLE of g. However the achieved rates of convergence, although

optimal, are very low as p increases (e.g. of order Op(n
− 2

2+p ) for DEA,

and of order Op(n
− 1

1+p ) in the less restricted case of FDH)∗∗.
It is a little more complicated to define carefully the DGP in the

more general multi-input and multi-output case considered by DEA
models. Simar and Wilson (1995) propose to extend the ideas of the
simplest model (1) taking Farrell’s ideas of efficiency into account.
Consider for instance the input efficiency oriented case with p inputs
and q outputs. The process may be summarized as follows. Let Ψ be
the production set of physically attainable points (x, y):

Ψ = {(x, y) ∈ IRp+q
+ | x can produce y} (3)

The input requirement set X(y) is defined ∀ y ∈ Ψ by:

X(y) = {x ∈ IRp
+ | (x, y) ∈ Ψ} (4)

The Farrell input efficient boundary is denoted by ∂X(y), it is the
minimal attainable boundary in a radial sense:

∂X(y) = {x | x ∈ X(y), θx /∈ X(y), ∀ 0 < θ < 1} (5)

and thus, for a given point (x0, y0), its input efficiency is defined as:

θ0 = min{θ | θx0 ∈ X(y0)} (6)

The efficient level of input corresponding to the output level y0 is then
given by:

x∂(y0) = θ0x0 (7)

Now a DGP can be described as follows: for a given value of y, we
know that x ∈ X(y). Due to the presence of inefficiency, x may not
be equal to x∂(y), but is generated along a fixed ray (i.e. with a fixed

∗∗These low rates of convergence for large p are specific to nonparametric tech-
niques because the parameter space is a functional space: it is the ”curse of di-
mensionality” (see Kneip and Simar (1995) for more details).
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proportion of inputs) away from the frontier. Therefore a particular
unit (xi, yi) may be considered as being generated, conditionally on
yi and on the observed proportion of inputs by the random variables
θi ∈ [0, 1] such that xi = x∂(yi)/θi. Note that, mutatis mutandis, θi
plays exactly the same role as ti in the simple model (1) above. If the
θi are distributed according to some probability law F (θ), the DGP
Pi, generating xi conditionally on the observed value of yi and on the
observed proportion of inputs is completely characterized by x∂(yi)
and F :

Pi = (x∂(yi), F ). (8)

The whole DGP is now completely characterized by Pi; i = 1, . . . , n.
The set P1, . . . ,Pn has to be estimated, as in all statistical models,

from a sample (xi, yi) i = 1, . . . , n. In particular, if the DEA estimator

is used, ̂x∂(yi) = θ̂ixi where θ̂i is the input efficiency estimate obtained
by the usual linear program:

θ̂i = min{θ|yi ≤
n∑

k=1

γkyk; θxi ≥
n∑

k=1

γkxk; θ > 0;

n∑

k=1

γk = 1; γk ≥ 0, k = 1, . . . , n}

Finally, an estimator F̂ of F might be provided by the empirical
d.f. of θ̂i, i = 1, . . . , n. It is known that this is a poor estimator of F
on the boundaries of its domain [0, 1]; it will be improved in order to
build a consistent bootstrap (see below).

From a conceptual point of view, we are now in a position to con-
duct statistical inference on the unknown quantities of the model (sam-
pling distribution of the efficiency estimates θ̂i, tests of hypotheses on
θi, test on F , . . .).

However, from a practical point of view, the sampling distributions
of the obtained estimators are unknown. As far as consistency is con-
cerned, the results of Banker and of Korostelev, Simar and Tsybakov
have still to be extended to this general multidimensional case. In
particular, the speed of convergence of θ̂i to θi have not yet been in-
vestigated although, as a conjecture, the results of Korostelev, Simar
and Tsybakov (1995a and b) could be applied.
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Some attempts have been proposed for making inference on the
efficiency measures θi. For instance, in Banker (1995)††, a procedure
is proposed for testing hypotheses on the efficiency measures. Three
types of problems are analyzed: testing the equality of the mean effi-
ciency of two subgroups of firms, testing hypotheses on returns to scale
and testing for input substitutability. The test statistics proposed in
each problem are very attractive and certainly intuitively appealing.

Consider for example the comparison of the mean efficiency of two
groups of firms. The test statistic is roughly a (rescaled) ratio of the
within group averages of the estimates θ̂i. Under the null (no differ-
ence between the two groups) we expect indeed a standard value for
this statistic (like 1). The problem is that due a.o. to the dependence
structure of the estimators θ̂i, it is almost impossible to derive their
exact sampling distribution under the null hypotheses, and so no crit-
ical values or p−values can be computed. This is true even in the
simpler cases, considered by Banker, where F belongs to some known
parametric family (exponential or half normal).

Banker argues, comparing the results of a great variety of simula-
tion scenarios, that the sampling distributions of the (appropriately
rescaled) test statistics can be approximated by well known usual dis-
tributions (like χ2 or F distributions in some cases), and that the
procedure seems to behave better than some other appropriate para-
metric tests. Unfortunately, the Monte-Carlo simulations of Banker
(1995) do not provide any support to this. Indeed, the number of
replications of the Monte-Carlo is definitely too small to draw any
conclusions of the quality of the approximations or on the virtues of
the procedure (comparisons of type I and type II errors are based on
comparisons of proportions of successes based only on 10 experiments
in the worst case and on 30 in the best case)‡‡.

Nevertheless, the ideas are very attractive and some work has still
to be done to show the practical usefulness of the procedures.

As pointed out above, in this complex framework, sampling distri-

††Note that Banker does not make explicit the DGP in terms of (x, y) but
concentrates his attention on F (θ) only. The description of the DGP above is thus
implicit in Banker’s approach which is restricted to one-dimensional output.

‡‡See also Kittlesen (1995) for more substantial Monte-Carlo experiments con-
firming my fears on the validity of the approximations.
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butions are not easily obtainable: this is a situation where the boot-
strap can help. In Simar and Wilson (1995), a procedure is proposed
to conduct, in a consistent way, the bootstrap. The basic idea is to
construct a consistent estimator of the DGP (a crucial step) and then
to draw random samples from this estimated DGP in order to mimic
the original unknown DGP. As pointed in Grosskopf’s survey, many
have used the bootstrap to analyse the sensitivity of the efficiency
measures to sampling variations. Unfortunately, in many cases, the
DGP is not clearly defined and so it is not clear which process the
bootstrap is mimicing; consequently the proposed approximations are
very hazardous. Moreover, in most cases, inconsistent estimators of
the distribution F are used, so the bootstrap is inconsistent.

In Simar and Wilson (1995), both issues are addressed. The ideas
can be summarized as follows: the DGP P1, . . . ,Pn has to be defined
as above, a consistent estimator of the frontier is provided by the DEA
estimator, and a nonparametric kernel density estimator F̂ has to be
used for F , (it is a smoothed version of the empirical distribution of the
θ̂i, i = 1, . . . , n corrected by a reflection method, in order to provide
a consistent estimator of F over its domain [0, 1] and particularly at
the upper bound 1).

From a practical point of view, a pseudo-sample (x∗
i , y

∗
i ); i =

1, . . . , n is generated as follows: starting from the original cloud of
points, we estimate (consistently by DEA) the frontier. This gives

a set of “estimated efficient” points ( ̂x∂(yi), yi) i = 1, . . . , n, which
will stay fixed during all the process (they provide the estimated fron-
tier). The DGP says that the sample is generated by radial random
deviation (characterized by F ) from the unknown frontier; the pseudo-
sample is thus generated according to the estimated DGP in the same
way:

(x∗
i , y

∗
i ) = (

̂x∂(yi)

θ∗i
, yi), (9)

where θ∗i is generated from the consistent estimator F̂ .
We can now, for one given pseudo-sample (x∗

i , y
∗
i ); i = 1, . . . , n,

compute the corresponding value θ̂∗i by using the same DEA method.
The usefulness of the bootstrap appears in the following key approxi-
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mation:
θ̂∗i − θ̂i | P̂1, . . . , P̂n ∼ θ̂i − θi | P1, . . . ,Pn. (10)

The right-hand side of (10) is the desired unknown quantity, in the
left-hand side everything is observable: it provides the bootstrap ap-
proximation to the sampling distribution.

For practical purposes, it is easily obtained by repeating the whole
process (i.e. drawing pseudo-samples (x∗

i , y
∗
i ) i = 1, . . . , n and com-

puting θ̂∗i ) a very large number of times: the empirical d.f. of θ̂∗i over
the repetitions provides an estimator of the left-hand side of (10). This
algorithm is easy to implement and requires reasonable computer time
(a few minutes to a few hours depending on the size of the problem:
see Wilson and Simar (1995) for a large set of applications, and for a
discussion on the consistency of (10)).

This idea can also be used to simulate the sampling distribution
of any regular statistics computed from θ̂i. Wilson and Simar (1996)
show how to adapt the bootstrap algorithm in order to solve some
testing problems.

In conclusion, DGPs can be defined in a DEA context; statisti-
cal properties of DEA have been established, but practical statistical
computations need still to use artifacts like the bootstrap.

4 How to use DEA in a stochastic fron-

tier framework?

As pointed in section 2, there are situations where pure deterministic
frontiers are not natural, or at least, situations where we would be
more robust w.r.t. possible outliers. We would then analyze stochastic
nonparametric models. In the case of a one dimensional output, it
could be written as:

yi = g(xi) + εi − ti; (11)

where εi ∈ IR represents the noise, ti ∈ IR+ is the inefficiency and g
is the production frontier. The aim of this section is to discuss two
“two-step procedures” mentioned in Grosskopf’s survey allowing to
mix DEA and noise, in order to clarify the differences between the
two approaches. We propose also some trails for future research in
that direction.
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A first two-step procedure suggested by Thiry and Tulkens (1992)
is provided in Simar (1992) as a “semiparametric” approach. The
main objective there is to obtain a parametric frontier represent-
ing the best practice production function of efficient production units.
This goal is achieved by deleting, from the initial sample, and in a
nonparametric way, all the production units which are “clearly” inef-
ficient. The tool used for this first filtering step is the FDH technique
(or the DEA, although the latter relies on more stringent assump-
tions). Then, on the remaining sample points, a standard procedure
(OLS, ...) is used to estimate the parametric production frontier.

Clearly, this first two-step procedure is only valid in a “deter-

ministic” framework and does not provide a stochastic version of
DEA. If the real DGP implies some two-sided noise, the probability
of observing an outlier tends to one as the sample size increases. So
this procedure is not valid (inconsistent) in the case of an implicit
“stochastic” frontier model like (11). However, this procedure remains
valid in a “deterministic” framework where a parametric function is
wanted to model the best practice frontier.

It is clear that the filtering step remains, as for any deterministic
method, sensitive to outliers. One way to alleviate the role of possible
outliers is provided by Simar (1992). It is there recommended to keep
for the second step procedure all the firms achieving at least 0.90 (or
0.95) efficiency levels.

This way of robust nonparametric filtering (using p−percent effi-
cient units) could be extended in a more probabilistic setup by using
new results of Fan, Hu and Truong (1994). They propose a nonpara-
metric percentile curve estimation. For a given p (say p = 0.90 or
0.95), the p−percentile curve fp(x) is defined as P (y ≤ fp(x)|x) = p.
The paper proposes a nonparametric estimation of fp(x).

Another two step procedure is suggested by Kneip and Simar
(1995), and looks at the problem the other way around. The idea
is to estimate the frontier using DEA type estimators but with a DGP
allowing for noise. Since DEA is deterministic, the noise, in a first
step, has to be averaged out. One way to achieve this is to use a
robust method, e.g. a nonparametric smoothing technique.

Indeed, those techniques provide fitted values ŷi of the output for
given xi, i = 1, . . . , n and, roughly speaking, the fitted values ŷi are
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the values of yi given by (11), after cleaning the noise ǫi out.
Then, keeping the cloud of points (xi, ŷi); i = 1, . . . , n, we are back

to a “deterministic” framework. So that, in a second step, the frontier
may be estimated by using DEA techniques. The problem still remains
of how to chose the nonparametric smoothing technique: Kneip and
Simar (1995) propose a procedure based on a kernel smoother in the
presence of panel data. This technique could be adapted to more
general data structures.

The procedure is an attempt for proposing the use of DEA tech-
niques in a real stochastic frontier framework. However the statistical
properties of the procedure have still to be explored. As a conjec-
ture, I believe that the rates of convergence for this stochastic DEA
model will be of the same order those obtained in the pure determin-

istic case (i.e. Op(n
− 2

p+q+1 )). I expect that, very soon, new results
will give the theoretical background to this appealing stochastic DEA
approach. Once the consistency is proved, an (adapted) bootstrap
algorithm could serve as a basis for analyzing the sampling variations
of the obtained estimators.
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