
Real-time Estimate of Period Derivatives using Adaptive Oscillators:
Application to Impedance-Based Walking Assistance*

Renaud Ronsse1, Stefano Marco Maria De Rossi2, Nicola Vitiello2, Tommaso Lenzi2, Bram Koopman3

Herman van der Kooij3, Maria Chiara Carrozza2, and Auke J. Ijspeert4

Abstract— Inferring temporal derivatives (like velocity and
acceleration) from a noisy position signal is a well-known
challenge in control engineering, due to the intrinsic trade-off
between noise filtering and estimation bandwidth. To tackle this
problem, in this paper we propose a new approach specifically
designed for periodic movements. This approach uses an adap-
tive oscillator as fundamental building block. It is a tool capable
of synchronizing to a periodic input while learning its features
(frequency, amplitude, . . . ) in dedicated state variables. Since
the oscillator’s input and output are perfectly synchronized
during steady-state regime, a non-delayed estimate of the input
temporal derivatives can be obtained simply by deriving the
output analytical form. Pending a (quasi-)periodic input signal,
these temporal derivatives are thus synchronized with the actual
kinematics, while the signal bandwidth can be arbitrarily tuned
by the intrinsic dynamics of the oscillator. We further validate
this approach by developing an impedance-based strategy for
assisting human walking in the LOPES lower-limb exoskeleton.
Preliminary results with a single participant give rise to three
main conclusions. First, our method indeed provides velocity
and acceleration estimates of the participant’s joint kinematics
which are smoother and less delayed with respect to the
actual kinematics than using a standard Kalman filter. Second,
closing the human-robot loop with a high-gain impedance field
depending on the acceleration is not possible with a Kalman
filter approach, due to unstable dynamics. In contrast, our
approach tolerates high gains (up to 70% of the nominal walking
torque), showing its intrinsic stability. Finally, no clear benefit
of the acceleration-dependent field with respect to a simpler
position-dependent field is visible regarding the reduction of
metabolic cost. This last result illustrates the challenge of
designing sound assistive strategies for complex tasks like
walking.

I. INTRODUCTION

Measuring a position signal with a digital encoder is
intrinsically noisy, due to quantization errors and some
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irregularities of the space between two consecutive encoder
slits. Furthermore, many applications require to infer an
estimate of the temporal derivatives of this measured po-
sition, in particular velocity and acceleration. Using specific
velocity and/or acceleration sensors impacts on the device
cost, complexity, and encumbrance, while the corresponding
signal processing becomes challenging [1]. A more common
alternative is to infer velocity and acceleration directly from
the noisy position signal. An abundant literature exists to
propose smart signal processing techniques to tackle this
problem.

In this paper, we propose a novel approach to estimate
the velocity and acceleration (and potentially higher-order
derivatives) of a noisy position signal by using adaptive oscil-
lators. Adaptive oscillators are mathematical tools developed
by Righetti et al. [2], [3] and used in various applications [4]:
adaptive control of compliant robots, frequency analysis, and
construction of limit cycles of arbitrary shape. More recently,
we used them in robotics for movement assistance [5]–[8]
and predictive control [9], [10]. An adaptive oscillator is able
to synchronize to an input signal by learning its features (fre-
quency and amplitude/envelope) in dedicated state variables.
As such, estimates of temporal derivatives can be obtained
from analytical expressions of the estimated signal envelope.
This approach works thus only for cyclical (or periodic)
signals close to steady-state regime, but combines the nice
advantages of filtering out the measurement noise (through
the dynamics of the adaptive oscillator) and of giving es-
timates which are, at steady state, phase-synchronized (i.e.
delay-free) with respect to the actual temporal derivatives
[3]. This is a critical difference between this approach and
classical low-pass filtering, which unavoidably introduces
delay.

This papers is organized as follows. In Section II, we
briefly review the state-of-the-art for estimating velocity and
acceleration from a noisy position signal. In Section III,
we propose our new oscillator-based approach. In Section
IV, we apply this technique to an assistive strategy for
human walking, by using the LOPES device [11]–[14]. This
assistance is based on a so-called impedance control law,
requiring therefore an estimate of velocity and acceleration
to be properly implemented. Section V discusses the main
results of this experiment, and the paper ends with a conclu-
sion.



II. ESTIMATING DERIVATIVES OF POSITION

This section briefly reviews the existing methods to esti-
mate the temporal derivatives (velocity and acceleration) of
a position signal provided e.g. by a digital encoder.

Existing methods for estimating the time derivatives of an
encoder signal range in two categories, depending whether
a model of the system dynamics is available or not. Model-
based approaches require a full dynamic model of the system
in order to combine the system’s inputs and outputs with
dynamic predictions. Typical approaches include model-
based Kalman filters [15], neural networks [16] or other
nonlinear methods [17], [18]. Model-based approaches can
provide accurate estimates of derivatives, but are strongly
context-dependent, such that their performances significantly
rely on the accuracy of the process model.

Model-free methods, conversely, do not make use of
dynamic models of the system, and only rely on data-
processing algorithms. The naive way to obtain a velocity
estimate of an input signal is through a digital, filtered
derivative estimation. This approach suffers from the well-
know trade-off between bandwidth and smoothness [19]: The
smoother the estimate, the higher the time (or phase) delay
introduced by the filter. Most non-naive approaches can be
divided into three main categories [20]: (i) Predictive post-
filtering techniques, (ii) linear state space observers, and (iii)
indirect methods interpolating the data before performing an
exact (continuous) derivative evaluation.

Predictive post-filtering techniques perform a (usually
delay-free) filtering on the numerically differentiated signal.
Most common approaches are summarized in [21] and in-
clude Taylor series expansion, backwards difference expan-
sion, and least squares fitting. All these techniques provide
a predictive filtering of the past signal, and then estimate the
signal slope based on its derivative. A more recent approach
using an adaptive windowing of the signal was proposed
in [22] and showed to be superior to traditional filtering
techniques. Importantly, these techniques were developed to
get only an estimate of the first order derivative (i.e. velocity),
and are not appropriate when the estimate of the acceleration
is also required.

State space observers use a linear, time-invariant model
as a representation of data and its derivatives. The most
common of these approaches is the model-free linear Kalman
filter technique [1]. In this case, the process is modeled as a
noise-driven chain of n integrators for which an observer can
be constructed. It provides an estimate of the position and
its (n− 1) first derivatives by using a n-equations system,
the variability of intrinsic noise being the sole open param-
eter. A more recent implementation, based on an extended
Kalman filter taking the encoder quantization into account,
was proposed in [23]. Other state-space techniques were
proposed in [24], [25]. The approach proposed by [26] is
also worth being mentioned, because it specifically targets
periodic signals. It is however practically more difficult to
implement than the method presented here, due to the huge
number of open parameters, requiring a partial knowledge of

the input frequency content.
Finally, indirect methods are based on the approximation

of the signal using interpolation, and analytical differentia-
tion of this interpolation to get the derivative estimates. Poly-
nomial interpolation approaches were first presented in [27].
Recently some authors proposed techniques to skip some
recorded encoder events which do not increase the precision
of the estimate (e.g. [20]). This turns the time stamping
approach effectively applicable to real-world scenarios, for
estimation of both velocity and acceleration.

III. PROPOSED APPROACH
This section introduces a new method to get a non-delayed

estimate of the velocity and acceleration (and potentially
higher-order derivatives) of a position signal. Importantly,
this method is specifically tailored to work with periodic
position signals, and relies on a central element, namely an
adaptive oscillator.

A. Adaptive oscillator
The central element of the estimation method presented

in this paper is an adaptive oscillator [2], [3]. Here, we
introduce the simplest adaptive oscillator, which can be
viewed as an augmented phase oscillator:

φ̇(t) = ω(t)+νF(t)cosφ(t), (1)
ω̇(t) = νF(t)cosφ(t), (2)

where φ(t) is the oscillator phase, ω(t) its frequency, and ν

the learning parameter determining the speed of phase syn-
chronization to the periodic teaching signal F(t). Note that in
(2), the oscillator frequency is a state variable, integrating the
phase update, in order to learn the frequency of the teaching
signal F(t), instead of doing mere synchronization only. As
such, the oscillator has the capacity to constantly adapt its
frequency to the teaching signal frequency, and to keep this
input frequency in memory, i.e. in the state variable ω(t). The
proof of convergence of ω(t) toward a stationary frequency
was established by [2], while [3] provided further results
with time-varying parameters.

The same authors further proposed to put several of these
oscillators in parallel in a feedback loop (see the upper part
of Fig. 1) to learn the features (i.e. the frequency spectrum)
of an arbitrary periodic input θ(t) [28]. Assuming the signal
to be periodic (such that all frequencies with a non-zero
power spectrum are multiple of a fundamental harmonic), an
estimate of the input signal can be derived from its Fourier
decomposition (see also [29]):

θ̂(t) =
K

∑
i=0

αi sin(φi(t)) =
K

∑
i=0

αi sin(iωt +ϕi), (3)

where K denotes the number of harmonics kept in the
estimate. Righetti et al. [28] showed that the convergence of
θ̂(t) to θ(t) is guaranteed by using the difference between
these two signals as teaching signal: F(t) = θ(t)− θ̂(t), and
by implementing the following integrators for learning the
harmonics amplitude:

α̇i(t) = ηF(t)sinφi(t), (4)



Fig. 1. On-line learning of a periodic but non-sinusoidal input signal θ(t).
The upper block is a pool of adaptive oscillators (4), (5), decomposing the
input into a real-time Fourier series. The lower block is a kernel-based non-
linear filter, mapping the phase of the main harmonic φ1(t) to the input
envelope. Adapted from [30].

where η is the integrator gain. Similarly, the learning of the
phases and frequency is governed by extensions of (1) and
(2), respectively:

φ̇i(t) = iω(t)+νF(t)cosφi(t), (5)
ω̇(t) = νF(t)cosφ1(t).

Note that in (4), and (5), the 0-th oscillator (i = 0) is a
simple integrator (assuming φ0(0) = π/2) learning the signal
offset, i.e. α̇0(t) = ηF(t). From (4), and (5), it is visible that
steady-state is reached when F(t) = 0, i.e. when θ̂(t) = θ(t).
If θ(t) is only quasi-stationary — i.e. if the input features
(frequency, amplitudes, phases) slowly vary in time — θ̂(t)
will be a low-pass filtered version of θ(t). Indeed, random
noise affecting the input θ(t) will be filtered out by the
dynamics of the adaptive oscillator (4), (5). Importantly, θ̂(t)
and θ(t) will however be phase-synchronized on average [3].

B. Estimating derivatives using adaptive oscillator

If the estimated features (namely ω , αi, ϕi) converged to
the actual ones, an estimate of the input’s derivatives can be
obtained by differentiating the analytical form of the position
estimate, i.e. (3). For the velocity and acceleration, this gives:

ˆ̇
θ(t) =

K

∑
i=1

αi(t)iω(t)cosφi(t), (6)

ˆ̈
θ(t) =

K

∑
i=1
−αi(t)(iω(t))2 sinφi(t).

Again in steady-state (i.e. if the features are stationary
and the estimations converged), these filtered estimates are
undelayed with respect to the actual signals, in contrast to

more classical low-pass filter-based approaches like Kalman
filtering.

In [6], we used this approach to estimate the velocity and
acceleration of human quasi-sinusoidal elbow movements —
i.e. by limiting (3) and (6) to the first harmonic (K = 1)
— and to provide assistance based on an inverse dynamic
model.

C. Kernel-based filter
If the input signal θ(t) possesses a large frequency spec-

trum, like for instance if it contains a plateau of quasi-
constant position, the estimated signal θ̂(t) can only merely
approximate the original one, since the learned signal is
truncated to a finite number of harmonics K. Moreover,
this approximation error grows up with higher-order time
derivatives, each amplifying high frequencies by a factor ω .

To solve this limitation by keeping K reasonably low, we
propose to augment the structure of the learning algorithm
with a second block, working in the time (or phase) domain
[30]. The approach is described in Figure 1. The pool of
adaptive oscillators is used only to extract the phase of the
input signal. i.e. φ1(t). This phase is used afterwards as the
input of a non-linear filter working in the phase domain.

This filter actually solves a supervised learning problem,
where the signal to be learned is approximated as a sum of
local models, i.e.:

θ̂?(t) =
∑Ψi(t)wi

∑Ψi(t)
, (7)

where Ψi(t) = exp(h(cos(φ(t)− ci)−1)) is a set of N
Gaussian-like kernel functions, and ∑ stands for ∑

N
i=1. The

parameter h determines the kernel width, and ci = c̄+ i2π/N
their center (equally spaced between 0 and 2π in N steps).
These kernel functions are represented by the dotted gray
curves in Figure 1. Locally weighted regression corresponds
to finding, for each kernel function Ψi, the weight vector
wi which minimizes a quadratic error criterion. Following
[30], [31], an on-line version of this learning process can
be implemented using incremental regression, which is done
with the use of recursive least squares with a forgetting factor
of λ , to determine the weights wi. Given the input θ(t), wi
is updated by:

wi(tk+1) = wi(tk)+Ψi(tk)Pi(tk+1)(θ(tk)−wi(tk)) ,

Pi(tk+1) =
1
λ

(
Pi(tk)−

Pi(tk)2

λ

Ψi(tk)
+Pi(tk)

)
, (8)

where the tk’s are the discrete time steps, and P is the inverse
covariance matrix [32]. If λ < 1, the regression gives more
weight to recent data.

An estimate of the temporal derivatives of θ(t) can again
be obtained by differentiating equation (7). Assuming steady-
state weights wi, the first derivative gives:

ˆ̇
θ?(t) =

(∑Ψi(t))(∑Ψ̇i(t)wi)− (∑Ψ̇i(t))(∑Ψi(t)wi)

(∑Ψi(t))
2 , (9)

where the kernel derivatives are given by:

Ψ̇(t) =−Ψ(t)hsin(φ(t)− ci)ω(t). (10)



Moreover, from (10), it can be observed that:

N

∑
i=1

Ψ̇i '
−Nhω

2π

∫ 2π

0
sin(φ −ϕ)

exp(h(cos(φ −ϕ)−1))dϕ = 0.

This simplification holds if the number of kernels is large
enough and/or if the kernels are wide enough. Then (9)
simply reduces to:

ˆ̇
θ?(t) =

∑Ψ̇i(t)wi

∑Ψi(t)
, (11)

i.e. to a weighted sum of the derivatives of each local kernel.
Similarly, estimates of temporal derivatives of any order j
can be obtained from:

d̂ jθ?

dt j (t) =
∑

d jΨi
dt j wi

∑Ψi
. (12)

For acceleration, the second derivative of the local kernel is
obtained from (10):

Ψ̈i(t) = −Ψ̇i(t)hsin(φ(t)− ci)ω(t)−Ψi(t)h (13)
cos(φ(t)− ci)ω(t)2−Ψihsin(φ(t)− ci)ω̇(t)︸ ︷︷ ︸

'0

.

The last term vanishes assuming that the main frequency ω

evolves at a slower timescale than the kernel functions.

IV. IMPEDANCE-BASED WALKING ASSISTANCE

In this section, we validate the estimation method previ-
ously presented with an experimental investigation. Numeri-
cal parameters used for this experiment are: ν = 6, η = 0.25,
K = 6, h = 36, λ = 0.9995, and N = 90.

A. Assistive strategy

The goal of this experiment is to provide assistance during
walking by means of a lower-limb exoskeleton (the LOPES
device, see below). The implemented control approach re-
quires to deliver a torque to human joints which obeys a
so-called impedance law:

τe(t) = k fW
(

kc + kpθ̂?(t)+ ka
ˆ̈
θ?(t)

)
, (14)

where kp and ka are gains making the assistive torque pro-
portional to the joint position and acceleration, respectively
(for simplicity, we did not include a term proportional to
velocity); kc is a constant gain; W is the participant weight;
and k f is the general modulation gain. The gain vector
(kc,kp,ka) is optimized (with k f = 1) to minimize the squared
error between the assistive torque τe(t) and the actual torque
provided by human joints during steady-state walking, with
the corresponding joint kinematics. These data were taken
from [33]. It draws a parallel between our approach and other
approaches providing assistance by computing the actual
torque provided by the human using an inverse dynamic
model [5], [6], [34]. In that respect, note that the vector
(kc,kp,ka) was separately optimized for the stance and swing
phases, since they both obey largely different dynamics, and

Fig. 2. Best fit of the gains in Equation (14) to match the human torques
(normalized to the body weight, i.e. in Nm/kg) in the “position only”
(top) and “position+acceleration” (bottom) conditions, for the hip (left) and
knee (right) joints. Panels show the reference data (black), the optimization
performed on the two subregions separately (green) and the mix of the two
optimizations, modulated by the force plate data during the double support
phase (dashed red). The swing phase takes place between the two vertical
lines (from about 20% to about 50% of the gait cycle). Data taken from
[33].

the respective fits were mixed during the double support
phase.

We performed this optimization on the hip and knee data
(i.e. the two joints which can be assisted with the LOPES)
and with 2 different configurations: position only (ka = 0),
and position+acceleration. The best fits are shown in Figure
2. For the hip, the behavior is strongly influenced by the
position, such that adding the acceleration dependence does
not really improve the fit. The torque is proportional to
the joint position, with a negative gain (i.e. in anti-phase).
Furthermore, the gains are quite similar between subregions
1 and 2 (swing and stance phases), making the transition
very smooth. For the knee, a torque also proportional to the
acceleration provides a better fit. The “position+acceleration”
condition gives a good fit but induces a quite large negative
peak at the end of the swing phase. The gains are smaller
during the swing phase, since the knee follows almost a
ballistic trajectory during that phase (no actuation torque).

B. Experimental protocol

A single participant took part to the preliminary exper-
iment described here (age 26, male). The experiment was
conducted in agreement with the local institution’s ethics
regulations, and participant signed a written consent form.
This participant was not part of the cohort of subjects who
were involved in the experiment giving the walking data we
used for curve fitting in Section IV-A [33].

We used the LOPES (Figure 3), a treadmill-based lower-
limb exoskeleton developed at the University of Twente [11],
[14], and capable of assisting 8 DOFs of the lower-limbs
(right and left hip abduction/adduction, hip flexion/extension,
and knee flexion/extension, forward/backward and sideways



Fig. 3. Picture of an healthy subject wearing the LOPES.

movements of the pelvis) by providing torques through the
principle of series elastic actuation [13], [35]. The LOPES
is lightweight and actuation is produced remotely by means
of Bowden cables. Therefore, it is considered as a close-
to-transparent device, inducing only small changes in the
kinematic and EMG patterns with respect to normal walking
[12]. To improve the LOPES transparency, we further used
a model-based dynamic compensation, as described in [36],
and using estimates of velocity and acceleration either pro-
vided by a Kalman filter, or by our new method, depending
on the condition (see below).

The joint kinematics were recorded using the LOPES
sensors, both to feed the adaptive oscillators, and to proceed
with post-hoc analyses. The LOPES was controlled us-
ing Matlab/Simulink – xPC-Target (the Mathworks, Natick,
MA), with a sampling frequency of 1kHz.

The metabolic energy expended by the participant was
measured by the Oxycon Pro system (Jaeger, Hoechberg,
Germany), measuring oxygen consumption (VO2 ) and the vol-
ume expiration (VE ). These parameters were measured and
stored on the Oxycon at 0.2Hz. Thereafter, the normalized
rate of expended energy was inferred from the formula used
in [37]:

Ē[W/kg] =
16.58V̇O2 +4.51V̇CO2

W
, (15)

where V̇O2 and V̇CO2 are the rates of O2 and CO2 volume
involved in respiratory exchange, and W is the participant
body weight.

The participant walked comfortably on the treadmill,
wearing the LOPES on both legs, except during the “free
walking” condition, detailed later. The LOPES was fastened
via attachment cuffs to the middle of the thighs, and the top
and bottom of the calves. The LOPES pelvis module was
further attached to the participant waist with a belt.

The participant underwent eight types of condition, as
detailed in Table I. These conditions implemented gradual
levels of assistance: no assistance (k f = 0), compensation
of the exoskeleton dynamics, position-only impedance-based
assistance (ka = 0), and position+acceleration impedance-
based assistance (ka 6= 0). Most of these conditions were
tested by using either a Kalman filter or our new oscillator-

TABLE I
EXPERIMENTAL CONDITIONS

Condition name Q1 Q2 k f kp ka Q3
free-walk No No 0 0 0 -
zero-imp Yes No 0 0 0 -
transp-KF Yes Yes 0 0 0 KF
transp-AO Yes Yes 0 0 0 AO

pos-KF Yes Yes 0.7 6= 0 0 KF
pos-AO Yes Yes 0.7 6= 0 0 AO

posacc-KF Yes Yes 0.7 6= 0 6= 0 KF
posacc-AO Yes Yes 0.7 6= 0 6= 0 AO

Q1: In the LOPES? / Q2: Dynamic compensation? / Q3: method for
estimating velocity and acceleration / KF: Kalman filter / AO: adaptive
oscillator.

Fig. 4. Right hip and knee velocity and acceleration during 3 representative
seconds of the “zero-imp” condition. Black: actual kinematics; Dotted blue:
estimation provided by the Kalman filter; Dashed red: estimation provided
by the adaptive oscillator.

based approach to estimate velocity and acceleration. All
assisted conditions used an assistance level of k f = 0.7,
such that the exoskeleton should provide 70% of the torque
at the hips and knees during steady-state walking. All the
conditions lasted a single trial of 6 minutes, with a treadmill
speed of 3.6km/h. Only the last 2 minutes of each trial
(steady-state walking) were used to compute the results.

V. RESULTS

First, Figure 4 compares the velocity and acceleration esti-
mates provided by the Kalman filter and the oscillator-based
approach presented here, for the right hip and knee, and
during 3 representative seconds of the “zero-imp” condition.
The velocity estimate provided both by the Kalman filter
and by our oscillator-based approach are very close to the
actual velocity (computed off-line), and the one provided by
the oscillator-based method is smoother. This is confirmed
by computing the mean absolute error over the whole trial
duration (130s), showing a slight advantage in favor of the
adaptive oscillator: 7.9 vs. 8.8deg/s for the hip, and 14.1
vs. 21.9deg/s for the knee. As expected, the Kalman-based
acceleration estimate shows some delay with respect to the



Fig. 5. Right hip and knee torque provided by the
LOPES during all conditions given in Table I. Aver-
aged during the last 2 minutes of all trials (steady-
state).

actual acceleration, while the one provided by our method
stays in phase with. This tendency is confirmed by computing
the mean absolute error over the whole trial, clearly in
favor of the adaptive-oscillator-based method: 168.4 vs.
224.6deg/s2 for the hip, and 299.0 vs. 562.9deg/s2 for the
knee.

Figure 5 shows the torques provided by the LOPES
during all conditions listed in Table I. Obviously, during
the “zero-imp” condition, no torque was requested, since the
LOPES was controlled to render zero impedance. During
both “transp-XX” conditions, some torque was provided to
cancel the exoskeleton dynamics, according to the method
explained in [36]. Both conditions give rise to slightly dif-
ferent profiles, since the velocity and acceleration estimates
were not exactly the same (see Figure 4). During both “pos-
XX” conditions, some more torque was provided to assist
walking. They are in good agreement with the upper panels
of Figure 2 (up to a factor 0.7, since k f = 0.7), again
with some variations between the “pos-KF” and “pos-AO”
conditions. The torque provided by the “pos-AO” condition
was smoother, in agreement with the fact that the oscillator-
based estimates were smoother than those provided by the
Kalman filter. Finally, the “posacc-AO” also agrees with the
lower panels of Figure 2 (position+acceleration). In contrast,
the “posacc-KF” condition gave rise to big instabilities,
putting the subject in a very uncomfortable situation. To
cope with that, we had to reduce k f as low as 0.15, such that
the commanded torques approached those of the “transp-KF”
condition (compare the dark and light blue curves).

Finally, Figure 6 shows the mean normalized rate of
expended energy, i.e. the metabolic consumption, during the
steady-state of the 8 different conditions. First, it is important
to point out that the simple fact of wearing the LOPES (i.e.
from “free-walk” to “zero-imp”) caused a big increase of
metabolic cost (in line with the results from [7], [8], obtained
with 9 participants). This increase was partly compensated in
the “transp-XX” conditions (mainly when the Kalman filter
was used), but not to a point to conclude that the LOPES

Fig. 6. Normalized rate of expended energy (Equation 15 during all
conditions given in Table I. Mean ± STD during the last 2 minutes of
all trials (steady-state).

was actually transparent (in terms of metabolic cost) in these
conditions. The lowest metabolic consumption was encoun-
tered in the “pos-XX” conditions, but, again, not to the point
of reaching the baseline (free walking). The “posacc-XX”
were apparently more challenging for the participant. This
makes sense for the “posacc-KF”, since in this case almost
no assistance was provided, but is more unexpected for the
“posacc-AO” condition. In sum, while wearing the LOPES
caused an increase of energy expenditure of about 40%,
two thirds of this increase were compensated by our most
effective assistive strategies, corresponding to the “pos-XX”
conditions. No clear difference between the oscillator-based
and the Kalman-based approaches is observable in terms of
energy expenditure.

VI. CONCLUSION

This paper provided a new method for getting a real-
time estimate of the temporal derivatives (mainly velocity
and acceleration) of noisy position signals, e.g. obtained
through a digital encoder. This method works only for
cyclical/periodic signals near to steady-state regime, but has
the paramount advantage to provide estimates which are
both filtered (i.e. the high-frequency, noise-driven part of
the signal is filtered out), and delay-free (as opposed to
classical low-pass filters). This is achieved by synchronizing
the input signal to a (pool of) adaptive oscillator(s) — whose
convergence is proved in [2], [3] — and a non-linear kernel
filter in the phase domain.

This method was tested by implementing an impedance-
based assistive control in the LOPES. Preliminary results
obtained with a single participant illustrate that: (i) our
method indeed provides velocity and acceleration estimates
which are smoother and less delayed with respect to the
actual kinematics than a standard Kalman filter; (ii) closing
the loop with a high-gain impedance field depending on
the acceleration is not possible with a Kalman filter ap-
proach, but well with our approach – illustrating therefore
its intrinsic stability; and (iii) implementing an impedance-
based assistive field which depends on the acceleration is
not a trivial task, since no clear benefit with respect to a



purely position-depended field was established, in terms of
metabolic consumption. While our method seems to hold
promise for the design of intrinsically stable impedance
fields in human-robot rhythmic interactions, future work will
have to specifically address the design of these complex
interaction laws in order to optimize their efficiency.

REFERENCES

[1] P. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, “Estimation of
angular velocity and acceleration from shaft-encoder measurements,”
Int J Robot Res, vol. 17, no. 11, pp. 1225–1233, 1998.

[2] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning
in adaptive frequency oscillators,” Physica D, vol. 216, pp. 269–281,
2006.

[3] J. Buchli, L. Righetti, and A. J. Ijspeert, “Frequency analysis with
coupled nonlinear oscillators,” Physica D, vol. 237, pp. 1705–1718,
2008.

[4] L. Righetti, J. Buchli, and A. J. Ijspeert, “Adaptive frequency oscilla-
tors and applications,” The Open Cybernetics and Systemics Journal,
vol. 3, pp. 64–69, 2009.

[5] R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M. C. Carrozza,
and A. J. Ijspeert, “Adaptive oscillators with human-in-the-loop: Proof
of concept for assistance and rehabilitation,” in Biomedical Robotics
and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS
International Conference on, 2010, pp. 668–674.

[6] ——, “Human-robot synchrony: Flexible assistance using adaptive
oscillators,” IEEE Trans Biomed Eng, vol. 58, no. 4, pp. 1001–1012,
2011.

[7] R. Ronsse, B. Koopman, N. Vitiello, T. Lenzi, S. M. M. De Rossi,
J. van den Kieboom, E. van Asseldonk, M. C. Carrozza, H. van der
Kooij, and A. J. Ijspeert, “Oscillator-based walking assistance: A
model-free approach,” in Proc. IEEE Int Rehabilitation Robotics
(ICORR) Conf, 2011, pp. 1–6.

[8] R. Ronsse, T. Lenzi, N. Vitiello, B. Koopman, E. van Asseldonk,
S. M. M. De Rossi, J. van den Kieboom, H. van der Kooij, M. C.
Carrozza, and A. J. Ijspeert, “Oscillator-based assistance of cyclical
movements: model-based and model-free approaches.” Med Biol Eng
Comput, vol. 49, no. 10, pp. 1173–1185, Oct 2011.

[9] R. Ronsse, J. van den Kieboom, and A. J. Ijspeert, “Automatic
resonance tuning and feedforward learning of biped walking using
adaptive oscillators,” in Multibody Dynamics 2011, ECCOMAS The-
matic Conference, J.-C. Samin and P. Fisette, Eds., Brussels, Belgium,
July 2011.

[10] W. van Dijk, B. Koopman, R. Ronsse, and H. van der Kooij, “Feed-
forward support of human walking,” in Biomedical Robotics and
Biomechatronics (BioRob), 2012 4th IEEE RAS and EMBS Interna-
tional Conference on, 2012, pp. 1955–1960.

[11] J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H.
F. V. Asseldonk, and H. van der Kooij, “Design and evaluation of the
lopes exoskeleton robot for interactive gait rehabilitation.” IEEE Trans
Neural Syst Rehabil Eng, vol. 15, no. 3, pp. 379–386, Sep 2007.

[12] E. H. F. van Asseldonk, J. F. Veneman, R. Ekkelenkamp, J. H. Buurke,
F. C. T. van der Helm, and H. van der Kooij, “The effects on kinematics
and muscle activity of walking in a robotic gait trainer during zero-
force control,” IEEE Trans Neural Syst Rehabil Eng, vol. 16, no. 4,
pp. 360–370, 2008.

[13] H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss,
and H. van Der Kooij, “Compliant actuation of rehabilitation robots,”
IEEE Robot Autom Mag, vol. 15, no. 3, pp. 60–69, Sep. 2008.

[14] H. Vallery, E. H. F. van Asseldonk, M. Buss, and H. van der Kooij,
“Reference trajectory generation for rehabilitation robots: complemen-
tary limb motion estimation.” IEEE Trans Neural Syst Rehabil Eng,
vol. 17, no. 1, pp. 23–30, Feb 2009.

[15] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sensorless estima-
tion for induction motors using extended kalman filters,” Industrial
Electronics, IEEE Transactions on, vol. 54, no. 1, pp. 272–280, 2007.

[16] S.-H. Kim, T.-S. Park, J.-Y. Yoo, and G.-T. Park, “Speed-sensorless
vector control of an induction motor using neural network speed
estimation,” Industrial Electronics, IEEE Transactions on, vol. 48,
no. 3, pp. 609–614, 2001.

[17] S. Nicosia and P. Tomei, “Robot control by using only joint position
measurements,” Automatic Control, IEEE Transactions on, vol. 35,
no. 9, pp. 1058–1061, 1990.

[18] C. Canudas de Wit and N. Fixot, “Robot control via robust estimated
state feedback,” Automatic Control, IEEE Transactions on, vol. 36,
no. 12, pp. 1497–1501, 1991.

[19] L. Bascetta, G. Magnani, and P. Rocco, “Velocity estimation: Assess-
ing the performance of non-model-based techniques,” Control Systems
Technology, IEEE Transactions on, vol. 17, no. 2, pp. 424 –433, mar.
2009.

[20] R. Merry, M. van de Molengraft, and M. Steinbuch, “Velocity and ac-
celeration estimation for optical incremental encoders,” Mechatronics,
vol. 20, no. 1, pp. 20–26, 2010, special Issue on “Servo Control for
Data Storage and Precision Systems”, from 17th IFAC World Congress
2008.

[21] R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of
algorithms for velocity estimation from discrete position versus time
data,” Industrial Electronics, IEEE Transactions on, vol. 39, no. 1, pp.
11–19, 1992.

[22] F. Janabi-Sharifi, V. Hayward, and C.-S. J. Chen, “Discrete-time adap-
tive windowing for velocity estimation,” Control Systems Technology,
IEEE Transactions on, vol. 8, no. 6, pp. 1003–1009, 2000.

[23] J. Corres and P. Gil, “Instantaneous speed and disturbance torque
observer using nonlinearity cancellation of shaft encoder,” in Proc.
IEEE 33rd Annual Power Electronics Specialists Conf. pesc 02, vol. 2,
2002, pp. 540–545.

[24] L. Kovudhikulrungsri and T. Koseki, “Precise speed estimation from a
low-resolution encoder by dual-sampling-rate observer,” IEEE/ASME
Trans Mechatronics, vol. 11, no. 6, pp. 661–670, 2006.

[25] Y. Su, C. Zheng, P. Mueller, and B. Duan, “A simple improved velocity
estimation for low-speed regions based on position measurements
only,” Control Systems Technology, IEEE Transactions on, vol. 14,
no. 5, pp. 937 –942, sep. 2006.

[26] R. Marino and G. Santosuosso, “Nonlinear observers of time deriva-
tives from noisy measurements of periodic signals,” in Nonlinear
control in the year 2000 volume 2, ser. Lecture Notes in Control
and Information Sciences, A. Isidori, F. Lamnabhi-Lagarrigue, and
W. Respondek, Eds. Springer Berlin / Heidelberg, 2001, vol. 259, pp.
123–135.

[27] K. Saito, K. Kamiyama, T. Ohmae, and T. Matsuda, “A
microprocessor-controlled speed regulator with instantaneous speed
estimation for motor drives,” Industrial Electronics, IEEE Transactions
on, vol. 35, no. 1, pp. 95–99, 1988.

[28] L. Righetti and A. J. Ijspeert, “Programmable central pattern gen-
erators: an application to biped locomotion control,” in Proc. IEEE
International Conference on Robotics and Automation ICRA 2006,
May 15–19, 2006, pp. 1585–1590.
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